OSDN Git Service

dpaa_eth: fix DMA mapping leak
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *       notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *       notice, this list of conditions and the following disclaimer in the
9  *       documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *       names of its contributors may be used to endorse or promote products
12  *       derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <linux/phy_fixed.h>
55 #include <soc/fsl/bman.h>
56 #include <soc/fsl/qman.h>
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76 #define FM_FD_STAT_RX_ERRORS                                            \
77         (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL     | \
78          FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79          FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME     | \
80          FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81          FM_FD_ERR_PRS_HDR_ERR)
82
83 #define FM_FD_STAT_TX_ERRORS \
84         (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85          FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88                           NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89                           NETIF_MSG_IFDOWN)
90
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL        127
124
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127
128 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
129 #define DPAA_SGT_SIZE 256
130
131 /* Values for the L3R field of the FM Parse Results
132  */
133 /* L3 Type field: First IP Present IPv4 */
134 #define FM_L3_PARSE_RESULT_IPV4 0x8000
135 /* L3 Type field: First IP Present IPv6 */
136 #define FM_L3_PARSE_RESULT_IPV6 0x4000
137 /* Values for the L4R field of the FM Parse Results */
138 /* L4 Type field: UDP */
139 #define FM_L4_PARSE_RESULT_UDP  0x40
140 /* L4 Type field: TCP */
141 #define FM_L4_PARSE_RESULT_TCP  0x20
142
143 /* FD status field indicating whether the FM Parser has attempted to validate
144  * the L4 csum of the frame.
145  * Note that having this bit set doesn't necessarily imply that the checksum
146  * is valid. One would have to check the parse results to find that out.
147  */
148 #define FM_FD_STAT_L4CV         0x00000004
149
150 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
151 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
152
153 #define FSL_DPAA_BPID_INV               0xff
154 #define FSL_DPAA_ETH_MAX_BUF_COUNT      128
155 #define FSL_DPAA_ETH_REFILL_THRESHOLD   80
156
157 #define DPAA_TX_PRIV_DATA_SIZE  16
158 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
159 #define DPAA_TIME_STAMP_SIZE 8
160 #define DPAA_HASH_RESULTS_SIZE 8
161 #define DPAA_RX_PRIV_DATA_SIZE  (u16)(DPAA_TX_PRIV_DATA_SIZE + \
162                                         dpaa_rx_extra_headroom)
163
164 #define DPAA_ETH_PCD_RXQ_NUM    128
165
166 #define DPAA_ENQUEUE_RETRIES    100000
167
168 enum port_type {RX, TX};
169
170 struct fm_port_fqs {
171         struct dpaa_fq *tx_defq;
172         struct dpaa_fq *tx_errq;
173         struct dpaa_fq *rx_defq;
174         struct dpaa_fq *rx_errq;
175         struct dpaa_fq *rx_pcdq;
176 };
177
178 /* All the dpa bps in use at any moment */
179 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
180
181 #define DPAA_BP_RAW_SIZE 4096
182
183 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
184
185 static int dpaa_max_frm;
186
187 static int dpaa_rx_extra_headroom;
188
189 #define dpaa_get_max_mtu()      \
190         (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
191
192 static int dpaa_netdev_init(struct net_device *net_dev,
193                             const struct net_device_ops *dpaa_ops,
194                             u16 tx_timeout)
195 {
196         struct dpaa_priv *priv = netdev_priv(net_dev);
197         struct device *dev = net_dev->dev.parent;
198         struct dpaa_percpu_priv *percpu_priv;
199         const u8 *mac_addr;
200         int i, err;
201
202         /* Although we access another CPU's private data here
203          * we do it at initialization so it is safe
204          */
205         for_each_possible_cpu(i) {
206                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
207                 percpu_priv->net_dev = net_dev;
208         }
209
210         net_dev->netdev_ops = dpaa_ops;
211         mac_addr = priv->mac_dev->addr;
212
213         net_dev->mem_start = priv->mac_dev->res->start;
214         net_dev->mem_end = priv->mac_dev->res->end;
215
216         net_dev->min_mtu = ETH_MIN_MTU;
217         net_dev->max_mtu = dpaa_get_max_mtu();
218
219         net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
220                                  NETIF_F_LLTX | NETIF_F_RXHASH);
221
222         net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
223         /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
224          * For conformity, we'll still declare GSO explicitly.
225          */
226         net_dev->features |= NETIF_F_GSO;
227         net_dev->features |= NETIF_F_RXCSUM;
228
229         net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
230         /* we do not want shared skbs on TX */
231         net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
232
233         net_dev->features |= net_dev->hw_features;
234         net_dev->vlan_features = net_dev->features;
235
236         memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
237         memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
238
239         net_dev->ethtool_ops = &dpaa_ethtool_ops;
240
241         net_dev->needed_headroom = priv->tx_headroom;
242         net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
243
244         /* start without the RUNNING flag, phylib controls it later */
245         netif_carrier_off(net_dev);
246
247         err = register_netdev(net_dev);
248         if (err < 0) {
249                 dev_err(dev, "register_netdev() = %d\n", err);
250                 return err;
251         }
252
253         return 0;
254 }
255
256 static int dpaa_stop(struct net_device *net_dev)
257 {
258         struct mac_device *mac_dev;
259         struct dpaa_priv *priv;
260         int i, err, error;
261
262         priv = netdev_priv(net_dev);
263         mac_dev = priv->mac_dev;
264
265         netif_tx_stop_all_queues(net_dev);
266         /* Allow the Fman (Tx) port to process in-flight frames before we
267          * try switching it off.
268          */
269         msleep(200);
270
271         err = mac_dev->stop(mac_dev);
272         if (err < 0)
273                 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
274                           err);
275
276         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
277                 error = fman_port_disable(mac_dev->port[i]);
278                 if (error)
279                         err = error;
280         }
281
282         if (net_dev->phydev)
283                 phy_disconnect(net_dev->phydev);
284         net_dev->phydev = NULL;
285
286         msleep(200);
287
288         return err;
289 }
290
291 static void dpaa_tx_timeout(struct net_device *net_dev)
292 {
293         struct dpaa_percpu_priv *percpu_priv;
294         const struct dpaa_priv  *priv;
295
296         priv = netdev_priv(net_dev);
297         percpu_priv = this_cpu_ptr(priv->percpu_priv);
298
299         netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
300                    jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
301
302         percpu_priv->stats.tx_errors++;
303 }
304
305 /* Calculates the statistics for the given device by adding the statistics
306  * collected by each CPU.
307  */
308 static void dpaa_get_stats64(struct net_device *net_dev,
309                              struct rtnl_link_stats64 *s)
310 {
311         int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
312         struct dpaa_priv *priv = netdev_priv(net_dev);
313         struct dpaa_percpu_priv *percpu_priv;
314         u64 *netstats = (u64 *)s;
315         u64 *cpustats;
316         int i, j;
317
318         for_each_possible_cpu(i) {
319                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
320
321                 cpustats = (u64 *)&percpu_priv->stats;
322
323                 /* add stats from all CPUs */
324                 for (j = 0; j < numstats; j++)
325                         netstats[j] += cpustats[j];
326         }
327 }
328
329 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
330                          void *type_data)
331 {
332         struct dpaa_priv *priv = netdev_priv(net_dev);
333         struct tc_mqprio_qopt *mqprio = type_data;
334         u8 num_tc;
335         int i;
336
337         if (type != TC_SETUP_QDISC_MQPRIO)
338                 return -EOPNOTSUPP;
339
340         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
341         num_tc = mqprio->num_tc;
342
343         if (num_tc == priv->num_tc)
344                 return 0;
345
346         if (!num_tc) {
347                 netdev_reset_tc(net_dev);
348                 goto out;
349         }
350
351         if (num_tc > DPAA_TC_NUM) {
352                 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
353                            DPAA_TC_NUM);
354                 return -EINVAL;
355         }
356
357         netdev_set_num_tc(net_dev, num_tc);
358
359         for (i = 0; i < num_tc; i++)
360                 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
361                                     i * DPAA_TC_TXQ_NUM);
362
363 out:
364         priv->num_tc = num_tc ? : 1;
365         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
366         return 0;
367 }
368
369 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
370 {
371         struct dpaa_eth_data *eth_data;
372         struct device *dpaa_dev;
373         struct mac_device *mac_dev;
374
375         dpaa_dev = &pdev->dev;
376         eth_data = dpaa_dev->platform_data;
377         if (!eth_data) {
378                 dev_err(dpaa_dev, "eth_data missing\n");
379                 return ERR_PTR(-ENODEV);
380         }
381         mac_dev = eth_data->mac_dev;
382         if (!mac_dev) {
383                 dev_err(dpaa_dev, "mac_dev missing\n");
384                 return ERR_PTR(-EINVAL);
385         }
386
387         return mac_dev;
388 }
389
390 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
391 {
392         const struct dpaa_priv *priv;
393         struct mac_device *mac_dev;
394         struct sockaddr old_addr;
395         int err;
396
397         priv = netdev_priv(net_dev);
398
399         memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
400
401         err = eth_mac_addr(net_dev, addr);
402         if (err < 0) {
403                 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
404                 return err;
405         }
406
407         mac_dev = priv->mac_dev;
408
409         err = mac_dev->change_addr(mac_dev->fman_mac,
410                                    (enet_addr_t *)net_dev->dev_addr);
411         if (err < 0) {
412                 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
413                           err);
414                 /* reverting to previous address */
415                 eth_mac_addr(net_dev, &old_addr);
416
417                 return err;
418         }
419
420         return 0;
421 }
422
423 static void dpaa_set_rx_mode(struct net_device *net_dev)
424 {
425         const struct dpaa_priv  *priv;
426         int err;
427
428         priv = netdev_priv(net_dev);
429
430         if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
431                 priv->mac_dev->promisc = !priv->mac_dev->promisc;
432                 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
433                                                  priv->mac_dev->promisc);
434                 if (err < 0)
435                         netif_err(priv, drv, net_dev,
436                                   "mac_dev->set_promisc() = %d\n",
437                                   err);
438         }
439
440         if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
441                 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
442                 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
443                                                   priv->mac_dev->allmulti);
444                 if (err < 0)
445                         netif_err(priv, drv, net_dev,
446                                   "mac_dev->set_allmulti() = %d\n",
447                                   err);
448         }
449
450         err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
451         if (err < 0)
452                 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
453                           err);
454 }
455
456 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
457 {
458         if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
459                 return NULL;
460
461         return dpaa_bp_array[bpid];
462 }
463
464 /* checks if this bpool is already allocated */
465 static bool dpaa_bpid2pool_use(int bpid)
466 {
467         if (dpaa_bpid2pool(bpid)) {
468                 refcount_inc(&dpaa_bp_array[bpid]->refs);
469                 return true;
470         }
471
472         return false;
473 }
474
475 /* called only once per bpid by dpaa_bp_alloc_pool() */
476 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
477 {
478         dpaa_bp_array[bpid] = dpaa_bp;
479         refcount_set(&dpaa_bp->refs, 1);
480 }
481
482 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
483 {
484         int err;
485
486         if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
487                 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
488                        __func__);
489                 return -EINVAL;
490         }
491
492         /* If the pool is already specified, we only create one per bpid */
493         if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
494             dpaa_bpid2pool_use(dpaa_bp->bpid))
495                 return 0;
496
497         if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
498                 dpaa_bp->pool = bman_new_pool();
499                 if (!dpaa_bp->pool) {
500                         pr_err("%s: bman_new_pool() failed\n",
501                                __func__);
502                         return -ENODEV;
503                 }
504
505                 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
506         }
507
508         if (dpaa_bp->seed_cb) {
509                 err = dpaa_bp->seed_cb(dpaa_bp);
510                 if (err)
511                         goto pool_seed_failed;
512         }
513
514         dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
515
516         return 0;
517
518 pool_seed_failed:
519         pr_err("%s: pool seeding failed\n", __func__);
520         bman_free_pool(dpaa_bp->pool);
521
522         return err;
523 }
524
525 /* remove and free all the buffers from the given buffer pool */
526 static void dpaa_bp_drain(struct dpaa_bp *bp)
527 {
528         u8 num = 8;
529         int ret;
530
531         do {
532                 struct bm_buffer bmb[8];
533                 int i;
534
535                 ret = bman_acquire(bp->pool, bmb, num);
536                 if (ret < 0) {
537                         if (num == 8) {
538                                 /* we have less than 8 buffers left;
539                                  * drain them one by one
540                                  */
541                                 num = 1;
542                                 ret = 1;
543                                 continue;
544                         } else {
545                                 /* Pool is fully drained */
546                                 break;
547                         }
548                 }
549
550                 if (bp->free_buf_cb)
551                         for (i = 0; i < num; i++)
552                                 bp->free_buf_cb(bp, &bmb[i]);
553         } while (ret > 0);
554 }
555
556 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
557 {
558         struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
559
560         /* the mapping between bpid and dpaa_bp is done very late in the
561          * allocation procedure; if something failed before the mapping, the bp
562          * was not configured, therefore we don't need the below instructions
563          */
564         if (!bp)
565                 return;
566
567         if (!refcount_dec_and_test(&bp->refs))
568                 return;
569
570         if (bp->free_buf_cb)
571                 dpaa_bp_drain(bp);
572
573         dpaa_bp_array[bp->bpid] = NULL;
574         bman_free_pool(bp->pool);
575 }
576
577 static void dpaa_bps_free(struct dpaa_priv *priv)
578 {
579         dpaa_bp_free(priv->dpaa_bp);
580 }
581
582 /* Use multiple WQs for FQ assignment:
583  *      - Tx Confirmation queues go to WQ1.
584  *      - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
585  *        to be scheduled, in case there are many more FQs in WQ6).
586  *      - Rx Default goes to WQ6.
587  *      - Tx queues go to different WQs depending on their priority. Equal
588  *        chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
589  *        WQ0 (highest priority).
590  * This ensures that Tx-confirmed buffers are timely released. In particular,
591  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
592  * are greatly outnumbered by other FQs in the system, while
593  * dequeue scheduling is round-robin.
594  */
595 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
596 {
597         switch (fq->fq_type) {
598         case FQ_TYPE_TX_CONFIRM:
599         case FQ_TYPE_TX_CONF_MQ:
600                 fq->wq = 1;
601                 break;
602         case FQ_TYPE_RX_ERROR:
603         case FQ_TYPE_TX_ERROR:
604                 fq->wq = 5;
605                 break;
606         case FQ_TYPE_RX_DEFAULT:
607         case FQ_TYPE_RX_PCD:
608                 fq->wq = 6;
609                 break;
610         case FQ_TYPE_TX:
611                 switch (idx / DPAA_TC_TXQ_NUM) {
612                 case 0:
613                         /* Low priority (best effort) */
614                         fq->wq = 6;
615                         break;
616                 case 1:
617                         /* Medium priority */
618                         fq->wq = 2;
619                         break;
620                 case 2:
621                         /* High priority */
622                         fq->wq = 1;
623                         break;
624                 case 3:
625                         /* Very high priority */
626                         fq->wq = 0;
627                         break;
628                 default:
629                         WARN(1, "Too many TX FQs: more than %d!\n",
630                              DPAA_ETH_TXQ_NUM);
631                 }
632                 break;
633         default:
634                 WARN(1, "Invalid FQ type %d for FQID %d!\n",
635                      fq->fq_type, fq->fqid);
636         }
637 }
638
639 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
640                                      u32 start, u32 count,
641                                      struct list_head *list,
642                                      enum dpaa_fq_type fq_type)
643 {
644         struct dpaa_fq *dpaa_fq;
645         int i;
646
647         dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
648                                GFP_KERNEL);
649         if (!dpaa_fq)
650                 return NULL;
651
652         for (i = 0; i < count; i++) {
653                 dpaa_fq[i].fq_type = fq_type;
654                 dpaa_fq[i].fqid = start ? start + i : 0;
655                 list_add_tail(&dpaa_fq[i].list, list);
656         }
657
658         for (i = 0; i < count; i++)
659                 dpaa_assign_wq(dpaa_fq + i, i);
660
661         return dpaa_fq;
662 }
663
664 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
665                               struct fm_port_fqs *port_fqs)
666 {
667         struct dpaa_fq *dpaa_fq;
668         u32 fq_base, fq_base_aligned, i;
669
670         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
671         if (!dpaa_fq)
672                 goto fq_alloc_failed;
673
674         port_fqs->rx_errq = &dpaa_fq[0];
675
676         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
677         if (!dpaa_fq)
678                 goto fq_alloc_failed;
679
680         port_fqs->rx_defq = &dpaa_fq[0];
681
682         /* the PCD FQIDs range needs to be aligned for correct operation */
683         if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
684                 goto fq_alloc_failed;
685
686         fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
687
688         for (i = fq_base; i < fq_base_aligned; i++)
689                 qman_release_fqid(i);
690
691         for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
692              i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
693                 qman_release_fqid(i);
694
695         dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
696                                 list, FQ_TYPE_RX_PCD);
697         if (!dpaa_fq)
698                 goto fq_alloc_failed;
699
700         port_fqs->rx_pcdq = &dpaa_fq[0];
701
702         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
703                 goto fq_alloc_failed;
704
705         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
706         if (!dpaa_fq)
707                 goto fq_alloc_failed;
708
709         port_fqs->tx_errq = &dpaa_fq[0];
710
711         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
712         if (!dpaa_fq)
713                 goto fq_alloc_failed;
714
715         port_fqs->tx_defq = &dpaa_fq[0];
716
717         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
718                 goto fq_alloc_failed;
719
720         return 0;
721
722 fq_alloc_failed:
723         dev_err(dev, "dpaa_fq_alloc() failed\n");
724         return -ENOMEM;
725 }
726
727 static u32 rx_pool_channel;
728 static DEFINE_SPINLOCK(rx_pool_channel_init);
729
730 static int dpaa_get_channel(void)
731 {
732         spin_lock(&rx_pool_channel_init);
733         if (!rx_pool_channel) {
734                 u32 pool;
735                 int ret;
736
737                 ret = qman_alloc_pool(&pool);
738
739                 if (!ret)
740                         rx_pool_channel = pool;
741         }
742         spin_unlock(&rx_pool_channel_init);
743         if (!rx_pool_channel)
744                 return -ENOMEM;
745         return rx_pool_channel;
746 }
747
748 static void dpaa_release_channel(void)
749 {
750         qman_release_pool(rx_pool_channel);
751 }
752
753 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
754 {
755         u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
756         const cpumask_t *cpus = qman_affine_cpus();
757         struct qman_portal *portal;
758         int cpu;
759
760         for_each_cpu_and(cpu, cpus, cpu_online_mask) {
761                 portal = qman_get_affine_portal(cpu);
762                 qman_p_static_dequeue_add(portal, pool);
763                 qman_start_using_portal(portal, dev);
764         }
765 }
766
767 /* Congestion group state change notification callback.
768  * Stops the device's egress queues while they are congested and
769  * wakes them upon exiting congested state.
770  * Also updates some CGR-related stats.
771  */
772 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
773                            int congested)
774 {
775         struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
776                 struct dpaa_priv, cgr_data.cgr);
777
778         if (congested) {
779                 priv->cgr_data.congestion_start_jiffies = jiffies;
780                 netif_tx_stop_all_queues(priv->net_dev);
781                 priv->cgr_data.cgr_congested_count++;
782         } else {
783                 priv->cgr_data.congested_jiffies +=
784                         (jiffies - priv->cgr_data.congestion_start_jiffies);
785                 netif_tx_wake_all_queues(priv->net_dev);
786         }
787 }
788
789 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
790 {
791         struct qm_mcc_initcgr initcgr;
792         u32 cs_th;
793         int err;
794
795         err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
796         if (err < 0) {
797                 if (netif_msg_drv(priv))
798                         pr_err("%s: Error %d allocating CGR ID\n",
799                                __func__, err);
800                 goto out_error;
801         }
802         priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
803
804         /* Enable Congestion State Change Notifications and CS taildrop */
805         memset(&initcgr, 0, sizeof(initcgr));
806         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
807         initcgr.cgr.cscn_en = QM_CGR_EN;
808
809         /* Set different thresholds based on the MAC speed.
810          * This may turn suboptimal if the MAC is reconfigured at a speed
811          * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
812          * In such cases, we ought to reconfigure the threshold, too.
813          */
814         if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
815                 cs_th = DPAA_CS_THRESHOLD_10G;
816         else
817                 cs_th = DPAA_CS_THRESHOLD_1G;
818         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
819
820         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
821         initcgr.cgr.cstd_en = QM_CGR_EN;
822
823         err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
824                               &initcgr);
825         if (err < 0) {
826                 if (netif_msg_drv(priv))
827                         pr_err("%s: Error %d creating CGR with ID %d\n",
828                                __func__, err, priv->cgr_data.cgr.cgrid);
829                 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
830                 goto out_error;
831         }
832         if (netif_msg_drv(priv))
833                 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
834                          priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
835                          priv->cgr_data.cgr.chan);
836
837 out_error:
838         return err;
839 }
840
841 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
842                                       struct dpaa_fq *fq,
843                                       const struct qman_fq *template)
844 {
845         fq->fq_base = *template;
846         fq->net_dev = priv->net_dev;
847
848         fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
849         fq->channel = priv->channel;
850 }
851
852 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
853                                      struct dpaa_fq *fq,
854                                      struct fman_port *port,
855                                      const struct qman_fq *template)
856 {
857         fq->fq_base = *template;
858         fq->net_dev = priv->net_dev;
859
860         if (port) {
861                 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
862                 fq->channel = (u16)fman_port_get_qman_channel_id(port);
863         } else {
864                 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
865         }
866 }
867
868 static void dpaa_fq_setup(struct dpaa_priv *priv,
869                           const struct dpaa_fq_cbs *fq_cbs,
870                           struct fman_port *tx_port)
871 {
872         int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
873         const cpumask_t *affine_cpus = qman_affine_cpus();
874         u16 channels[NR_CPUS];
875         struct dpaa_fq *fq;
876
877         for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
878                 channels[num_portals++] = qman_affine_channel(cpu);
879
880         if (num_portals == 0)
881                 dev_err(priv->net_dev->dev.parent,
882                         "No Qman software (affine) channels found\n");
883
884         /* Initialize each FQ in the list */
885         list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
886                 switch (fq->fq_type) {
887                 case FQ_TYPE_RX_DEFAULT:
888                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
889                         break;
890                 case FQ_TYPE_RX_ERROR:
891                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
892                         break;
893                 case FQ_TYPE_RX_PCD:
894                         if (!num_portals)
895                                 continue;
896                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
897                         fq->channel = channels[portal_cnt++ % num_portals];
898                         break;
899                 case FQ_TYPE_TX:
900                         dpaa_setup_egress(priv, fq, tx_port,
901                                           &fq_cbs->egress_ern);
902                         /* If we have more Tx queues than the number of cores,
903                          * just ignore the extra ones.
904                          */
905                         if (egress_cnt < DPAA_ETH_TXQ_NUM)
906                                 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
907                         break;
908                 case FQ_TYPE_TX_CONF_MQ:
909                         priv->conf_fqs[conf_cnt++] = &fq->fq_base;
910                         /* fall through */
911                 case FQ_TYPE_TX_CONFIRM:
912                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
913                         break;
914                 case FQ_TYPE_TX_ERROR:
915                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
916                         break;
917                 default:
918                         dev_warn(priv->net_dev->dev.parent,
919                                  "Unknown FQ type detected!\n");
920                         break;
921                 }
922         }
923
924          /* Make sure all CPUs receive a corresponding Tx queue. */
925         while (egress_cnt < DPAA_ETH_TXQ_NUM) {
926                 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
927                         if (fq->fq_type != FQ_TYPE_TX)
928                                 continue;
929                         priv->egress_fqs[egress_cnt++] = &fq->fq_base;
930                         if (egress_cnt == DPAA_ETH_TXQ_NUM)
931                                 break;
932                 }
933         }
934 }
935
936 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
937                                    struct qman_fq *tx_fq)
938 {
939         int i;
940
941         for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
942                 if (priv->egress_fqs[i] == tx_fq)
943                         return i;
944
945         return -EINVAL;
946 }
947
948 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
949 {
950         const struct dpaa_priv  *priv;
951         struct qman_fq *confq = NULL;
952         struct qm_mcc_initfq initfq;
953         struct device *dev;
954         struct qman_fq *fq;
955         int queue_id;
956         int err;
957
958         priv = netdev_priv(dpaa_fq->net_dev);
959         dev = dpaa_fq->net_dev->dev.parent;
960
961         if (dpaa_fq->fqid == 0)
962                 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
963
964         dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
965
966         err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
967         if (err) {
968                 dev_err(dev, "qman_create_fq() failed\n");
969                 return err;
970         }
971         fq = &dpaa_fq->fq_base;
972
973         if (dpaa_fq->init) {
974                 memset(&initfq, 0, sizeof(initfq));
975
976                 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
977                 /* Note: we may get to keep an empty FQ in cache */
978                 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
979
980                 /* Try to reduce the number of portal interrupts for
981                  * Tx Confirmation FQs.
982                  */
983                 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
984                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
985
986                 /* FQ placement */
987                 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
988
989                 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
990
991                 /* Put all egress queues in a congestion group of their own.
992                  * Sensu stricto, the Tx confirmation queues are Rx FQs,
993                  * rather than Tx - but they nonetheless account for the
994                  * memory footprint on behalf of egress traffic. We therefore
995                  * place them in the netdev's CGR, along with the Tx FQs.
996                  */
997                 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
998                     dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
999                     dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1000                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1001                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1002                         initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1003                         /* Set a fixed overhead accounting, in an attempt to
1004                          * reduce the impact of fixed-size skb shells and the
1005                          * driver's needed headroom on system memory. This is
1006                          * especially the case when the egress traffic is
1007                          * composed of small datagrams.
1008                          * Unfortunately, QMan's OAL value is capped to an
1009                          * insufficient value, but even that is better than
1010                          * no overhead accounting at all.
1011                          */
1012                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1013                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1014                         qm_fqd_set_oal(&initfq.fqd,
1015                                        min(sizeof(struct sk_buff) +
1016                                        priv->tx_headroom,
1017                                        (size_t)FSL_QMAN_MAX_OAL));
1018                 }
1019
1020                 if (td_enable) {
1021                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1022                         qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1023                         initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1024                 }
1025
1026                 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1027                         queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1028                         if (queue_id >= 0)
1029                                 confq = priv->conf_fqs[queue_id];
1030                         if (confq) {
1031                                 initfq.we_mask |=
1032                                         cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1033                         /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1034                          *           A2V=1 (contextA A2 field is valid)
1035                          *           A0V=1 (contextA A0 field is valid)
1036                          *           B0V=1 (contextB field is valid)
1037                          * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1038                          * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1039                          */
1040                                 qm_fqd_context_a_set64(&initfq.fqd,
1041                                                        0x1e00000080000000ULL);
1042                         }
1043                 }
1044
1045                 /* Put all the ingress queues in our "ingress CGR". */
1046                 if (priv->use_ingress_cgr &&
1047                     (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1048                      dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1049                      dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1050                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1051                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1052                         initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1053                         /* Set a fixed overhead accounting, just like for the
1054                          * egress CGR.
1055                          */
1056                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1057                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1058                         qm_fqd_set_oal(&initfq.fqd,
1059                                        min(sizeof(struct sk_buff) +
1060                                        priv->tx_headroom,
1061                                        (size_t)FSL_QMAN_MAX_OAL));
1062                 }
1063
1064                 /* Initialization common to all ingress queues */
1065                 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1066                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1067                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1068                                                 QM_FQCTRL_CTXASTASHING);
1069                         initfq.fqd.context_a.stashing.exclusive =
1070                                 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1071                                 QM_STASHING_EXCL_ANNOTATION;
1072                         qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1073                                             DIV_ROUND_UP(sizeof(struct qman_fq),
1074                                                          64));
1075                 }
1076
1077                 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1078                 if (err < 0) {
1079                         dev_err(dev, "qman_init_fq(%u) = %d\n",
1080                                 qman_fq_fqid(fq), err);
1081                         qman_destroy_fq(fq);
1082                         return err;
1083                 }
1084         }
1085
1086         dpaa_fq->fqid = qman_fq_fqid(fq);
1087
1088         return 0;
1089 }
1090
1091 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1092 {
1093         const struct dpaa_priv  *priv;
1094         struct dpaa_fq *dpaa_fq;
1095         int err, error;
1096
1097         err = 0;
1098
1099         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1100         priv = netdev_priv(dpaa_fq->net_dev);
1101
1102         if (dpaa_fq->init) {
1103                 err = qman_retire_fq(fq, NULL);
1104                 if (err < 0 && netif_msg_drv(priv))
1105                         dev_err(dev, "qman_retire_fq(%u) = %d\n",
1106                                 qman_fq_fqid(fq), err);
1107
1108                 error = qman_oos_fq(fq);
1109                 if (error < 0 && netif_msg_drv(priv)) {
1110                         dev_err(dev, "qman_oos_fq(%u) = %d\n",
1111                                 qman_fq_fqid(fq), error);
1112                         if (err >= 0)
1113                                 err = error;
1114                 }
1115         }
1116
1117         qman_destroy_fq(fq);
1118         list_del(&dpaa_fq->list);
1119
1120         return err;
1121 }
1122
1123 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1124 {
1125         struct dpaa_fq *dpaa_fq, *tmp;
1126         int err, error;
1127
1128         err = 0;
1129         list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1130                 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1131                 if (error < 0 && err >= 0)
1132                         err = error;
1133         }
1134
1135         return err;
1136 }
1137
1138 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1139                                  struct dpaa_fq *defq,
1140                                  struct dpaa_buffer_layout *buf_layout)
1141 {
1142         struct fman_buffer_prefix_content buf_prefix_content;
1143         struct fman_port_params params;
1144         int err;
1145
1146         memset(&params, 0, sizeof(params));
1147         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1148
1149         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1150         buf_prefix_content.pass_prs_result = true;
1151         buf_prefix_content.pass_hash_result = true;
1152         buf_prefix_content.pass_time_stamp = true;
1153         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1154
1155         params.specific_params.non_rx_params.err_fqid = errq->fqid;
1156         params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1157
1158         err = fman_port_config(port, &params);
1159         if (err) {
1160                 pr_err("%s: fman_port_config failed\n", __func__);
1161                 return err;
1162         }
1163
1164         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1165         if (err) {
1166                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1167                        __func__);
1168                 return err;
1169         }
1170
1171         err = fman_port_init(port);
1172         if (err)
1173                 pr_err("%s: fm_port_init failed\n", __func__);
1174
1175         return err;
1176 }
1177
1178 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1179                                  struct dpaa_fq *errq,
1180                                  struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1181                                  struct dpaa_buffer_layout *buf_layout)
1182 {
1183         struct fman_buffer_prefix_content buf_prefix_content;
1184         struct fman_port_rx_params *rx_p;
1185         struct fman_port_params params;
1186         int err;
1187
1188         memset(&params, 0, sizeof(params));
1189         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1190
1191         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1192         buf_prefix_content.pass_prs_result = true;
1193         buf_prefix_content.pass_hash_result = true;
1194         buf_prefix_content.pass_time_stamp = true;
1195         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1196
1197         rx_p = &params.specific_params.rx_params;
1198         rx_p->err_fqid = errq->fqid;
1199         rx_p->dflt_fqid = defq->fqid;
1200         if (pcdq) {
1201                 rx_p->pcd_base_fqid = pcdq->fqid;
1202                 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1203         }
1204
1205         rx_p->ext_buf_pools.num_of_pools_used = 1;
1206         rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1207         rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1208
1209         err = fman_port_config(port, &params);
1210         if (err) {
1211                 pr_err("%s: fman_port_config failed\n", __func__);
1212                 return err;
1213         }
1214
1215         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1216         if (err) {
1217                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1218                        __func__);
1219                 return err;
1220         }
1221
1222         err = fman_port_init(port);
1223         if (err)
1224                 pr_err("%s: fm_port_init failed\n", __func__);
1225
1226         return err;
1227 }
1228
1229 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1230                                struct dpaa_bp *bp,
1231                                struct fm_port_fqs *port_fqs,
1232                                struct dpaa_buffer_layout *buf_layout,
1233                                struct device *dev)
1234 {
1235         struct fman_port *rxport = mac_dev->port[RX];
1236         struct fman_port *txport = mac_dev->port[TX];
1237         int err;
1238
1239         err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1240                                     port_fqs->tx_defq, &buf_layout[TX]);
1241         if (err)
1242                 return err;
1243
1244         err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1245                                     port_fqs->rx_defq, port_fqs->rx_pcdq,
1246                                     &buf_layout[RX]);
1247
1248         return err;
1249 }
1250
1251 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1252                              struct bm_buffer *bmb, int cnt)
1253 {
1254         int err;
1255
1256         err = bman_release(dpaa_bp->pool, bmb, cnt);
1257         /* Should never occur, address anyway to avoid leaking the buffers */
1258         if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1259                 while (cnt-- > 0)
1260                         dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1261
1262         return cnt;
1263 }
1264
1265 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1266 {
1267         struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1268         struct dpaa_bp *dpaa_bp;
1269         int i = 0, j;
1270
1271         memset(bmb, 0, sizeof(bmb));
1272
1273         do {
1274                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1275                 if (!dpaa_bp)
1276                         return;
1277
1278                 j = 0;
1279                 do {
1280                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1281
1282                         bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1283
1284                         j++; i++;
1285                 } while (j < ARRAY_SIZE(bmb) &&
1286                                 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1287                                 sgt[i - 1].bpid == sgt[i].bpid);
1288
1289                 dpaa_bman_release(dpaa_bp, bmb, j);
1290         } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1291 }
1292
1293 static void dpaa_fd_release(const struct net_device *net_dev,
1294                             const struct qm_fd *fd)
1295 {
1296         struct qm_sg_entry *sgt;
1297         struct dpaa_bp *dpaa_bp;
1298         struct bm_buffer bmb;
1299         dma_addr_t addr;
1300         void *vaddr;
1301
1302         bmb.data = 0;
1303         bm_buffer_set64(&bmb, qm_fd_addr(fd));
1304
1305         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1306         if (!dpaa_bp)
1307                 return;
1308
1309         if (qm_fd_get_format(fd) == qm_fd_sg) {
1310                 vaddr = phys_to_virt(qm_fd_addr(fd));
1311                 sgt = vaddr + qm_fd_get_offset(fd);
1312
1313                 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1314                                DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1315
1316                 dpaa_release_sgt_members(sgt);
1317
1318                 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1319                                     virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1320                                     DMA_FROM_DEVICE);
1321                 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1322                         netdev_err(net_dev, "DMA mapping failed\n");
1323                         return;
1324                 }
1325                 bm_buffer_set64(&bmb, addr);
1326         }
1327
1328         dpaa_bman_release(dpaa_bp, &bmb, 1);
1329 }
1330
1331 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1332                       const union qm_mr_entry *msg)
1333 {
1334         switch (msg->ern.rc & QM_MR_RC_MASK) {
1335         case QM_MR_RC_CGR_TAILDROP:
1336                 percpu_priv->ern_cnt.cg_tdrop++;
1337                 break;
1338         case QM_MR_RC_WRED:
1339                 percpu_priv->ern_cnt.wred++;
1340                 break;
1341         case QM_MR_RC_ERROR:
1342                 percpu_priv->ern_cnt.err_cond++;
1343                 break;
1344         case QM_MR_RC_ORPWINDOW_EARLY:
1345                 percpu_priv->ern_cnt.early_window++;
1346                 break;
1347         case QM_MR_RC_ORPWINDOW_LATE:
1348                 percpu_priv->ern_cnt.late_window++;
1349                 break;
1350         case QM_MR_RC_FQ_TAILDROP:
1351                 percpu_priv->ern_cnt.fq_tdrop++;
1352                 break;
1353         case QM_MR_RC_ORPWINDOW_RETIRED:
1354                 percpu_priv->ern_cnt.fq_retired++;
1355                 break;
1356         case QM_MR_RC_ORP_ZERO:
1357                 percpu_priv->ern_cnt.orp_zero++;
1358                 break;
1359         }
1360 }
1361
1362 /* Turn on HW checksum computation for this outgoing frame.
1363  * If the current protocol is not something we support in this regard
1364  * (or if the stack has already computed the SW checksum), we do nothing.
1365  *
1366  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1367  * otherwise.
1368  *
1369  * Note that this function may modify the fd->cmd field and the skb data buffer
1370  * (the Parse Results area).
1371  */
1372 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1373                                struct sk_buff *skb,
1374                                struct qm_fd *fd,
1375                                void *parse_results)
1376 {
1377         struct fman_prs_result *parse_result;
1378         u16 ethertype = ntohs(skb->protocol);
1379         struct ipv6hdr *ipv6h = NULL;
1380         struct iphdr *iph;
1381         int retval = 0;
1382         u8 l4_proto;
1383
1384         if (skb->ip_summed != CHECKSUM_PARTIAL)
1385                 return 0;
1386
1387         /* Note: L3 csum seems to be already computed in sw, but we can't choose
1388          * L4 alone from the FM configuration anyway.
1389          */
1390
1391         /* Fill in some fields of the Parse Results array, so the FMan
1392          * can find them as if they came from the FMan Parser.
1393          */
1394         parse_result = (struct fman_prs_result *)parse_results;
1395
1396         /* If we're dealing with VLAN, get the real Ethernet type */
1397         if (ethertype == ETH_P_8021Q) {
1398                 /* We can't always assume the MAC header is set correctly
1399                  * by the stack, so reset to beginning of skb->data
1400                  */
1401                 skb_reset_mac_header(skb);
1402                 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1403         }
1404
1405         /* Fill in the relevant L3 parse result fields
1406          * and read the L4 protocol type
1407          */
1408         switch (ethertype) {
1409         case ETH_P_IP:
1410                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1411                 iph = ip_hdr(skb);
1412                 WARN_ON(!iph);
1413                 l4_proto = iph->protocol;
1414                 break;
1415         case ETH_P_IPV6:
1416                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1417                 ipv6h = ipv6_hdr(skb);
1418                 WARN_ON(!ipv6h);
1419                 l4_proto = ipv6h->nexthdr;
1420                 break;
1421         default:
1422                 /* We shouldn't even be here */
1423                 if (net_ratelimit())
1424                         netif_alert(priv, tx_err, priv->net_dev,
1425                                     "Can't compute HW csum for L3 proto 0x%x\n",
1426                                     ntohs(skb->protocol));
1427                 retval = -EIO;
1428                 goto return_error;
1429         }
1430
1431         /* Fill in the relevant L4 parse result fields */
1432         switch (l4_proto) {
1433         case IPPROTO_UDP:
1434                 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1435                 break;
1436         case IPPROTO_TCP:
1437                 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1438                 break;
1439         default:
1440                 if (net_ratelimit())
1441                         netif_alert(priv, tx_err, priv->net_dev,
1442                                     "Can't compute HW csum for L4 proto 0x%x\n",
1443                                     l4_proto);
1444                 retval = -EIO;
1445                 goto return_error;
1446         }
1447
1448         /* At index 0 is IPOffset_1 as defined in the Parse Results */
1449         parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1450         parse_result->l4_off = (u8)skb_transport_offset(skb);
1451
1452         /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1453         fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1454
1455         /* On P1023 and similar platforms fd->cmd interpretation could
1456          * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1457          * is not set so we do not need to check; in the future, if/when
1458          * using context_a we need to check this bit
1459          */
1460
1461 return_error:
1462         return retval;
1463 }
1464
1465 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1466 {
1467         struct net_device *net_dev = dpaa_bp->priv->net_dev;
1468         struct bm_buffer bmb[8];
1469         dma_addr_t addr;
1470         struct page *p;
1471         u8 i;
1472
1473         for (i = 0; i < 8; i++) {
1474                 p = dev_alloc_pages(0);
1475                 if (unlikely(!p)) {
1476                         netdev_err(net_dev, "dev_alloc_pages() failed\n");
1477                         goto release_previous_buffs;
1478                 }
1479
1480                 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1481                                     DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1482                 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1483                                                addr))) {
1484                         netdev_err(net_dev, "DMA map failed\n");
1485                         goto release_previous_buffs;
1486                 }
1487
1488                 bmb[i].data = 0;
1489                 bm_buffer_set64(&bmb[i], addr);
1490         }
1491
1492 release_bufs:
1493         return dpaa_bman_release(dpaa_bp, bmb, i);
1494
1495 release_previous_buffs:
1496         WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1497
1498         bm_buffer_set64(&bmb[i], 0);
1499         /* Avoid releasing a completely null buffer; bman_release() requires
1500          * at least one buffer.
1501          */
1502         if (likely(i))
1503                 goto release_bufs;
1504
1505         return 0;
1506 }
1507
1508 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1509 {
1510         int i;
1511
1512         /* Give each CPU an allotment of "config_count" buffers */
1513         for_each_possible_cpu(i) {
1514                 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1515                 int j;
1516
1517                 /* Although we access another CPU's counters here
1518                  * we do it at boot time so it is safe
1519                  */
1520                 for (j = 0; j < dpaa_bp->config_count; j += 8)
1521                         *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1522         }
1523         return 0;
1524 }
1525
1526 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1527  * REFILL_THRESHOLD.
1528  */
1529 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1530 {
1531         int count = *countptr;
1532         int new_bufs;
1533
1534         if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1535                 do {
1536                         new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1537                         if (unlikely(!new_bufs)) {
1538                                 /* Avoid looping forever if we've temporarily
1539                                  * run out of memory. We'll try again at the
1540                                  * next NAPI cycle.
1541                                  */
1542                                 break;
1543                         }
1544                         count += new_bufs;
1545                 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1546
1547                 *countptr = count;
1548                 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1549                         return -ENOMEM;
1550         }
1551
1552         return 0;
1553 }
1554
1555 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1556 {
1557         struct dpaa_bp *dpaa_bp;
1558         int *countptr;
1559         int res;
1560
1561         dpaa_bp = priv->dpaa_bp;
1562         if (!dpaa_bp)
1563                 return -EINVAL;
1564         countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1565         res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1566         if (res)
1567                 return res;
1568
1569         return 0;
1570 }
1571
1572 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1573  * either contiguous frames or scatter/gather ones.
1574  * Skb freeing is not handled here.
1575  *
1576  * This function may be called on error paths in the Tx function, so guard
1577  * against cases when not all fd relevant fields were filled in. To avoid
1578  * reading the invalid transmission timestamp for the error paths set ts to
1579  * false.
1580  *
1581  * Return the skb backpointer, since for S/G frames the buffer containing it
1582  * gets freed here.
1583  */
1584 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1585                                           const struct qm_fd *fd, bool ts)
1586 {
1587         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1588         struct device *dev = priv->net_dev->dev.parent;
1589         struct skb_shared_hwtstamps shhwtstamps;
1590         dma_addr_t addr = qm_fd_addr(fd);
1591         void *vaddr = phys_to_virt(addr);
1592         const struct qm_sg_entry *sgt;
1593         struct sk_buff *skb;
1594         u64 ns;
1595         int i;
1596
1597         if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1598                 dma_unmap_page(priv->tx_dma_dev, addr,
1599                                qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1600                                dma_dir);
1601
1602                 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1603                  * it's from lowmem.
1604                  */
1605                 sgt = vaddr + qm_fd_get_offset(fd);
1606
1607                 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1608                 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1609                                  qm_sg_entry_get_len(&sgt[0]), dma_dir);
1610
1611                 /* remaining pages were mapped with skb_frag_dma_map() */
1612                 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1613                      !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1614                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1615
1616                         dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1617                                        qm_sg_entry_get_len(&sgt[i]), dma_dir);
1618                 }
1619         } else {
1620                 dma_unmap_single(priv->tx_dma_dev, addr,
1621                                  priv->tx_headroom + qm_fd_get_length(fd),
1622                                  dma_dir);
1623         }
1624
1625         skb = *(struct sk_buff **)vaddr;
1626
1627         /* DMA unmapping is required before accessing the HW provided info */
1628         if (ts && priv->tx_tstamp &&
1629             skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1630                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1631
1632                 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1633                                           &ns)) {
1634                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
1635                         skb_tstamp_tx(skb, &shhwtstamps);
1636                 } else {
1637                         dev_warn(dev, "fman_port_get_tstamp failed!\n");
1638                 }
1639         }
1640
1641         if (qm_fd_get_format(fd) == qm_fd_sg)
1642                 /* Free the page that we allocated on Tx for the SGT */
1643                 free_pages((unsigned long)vaddr, 0);
1644
1645         return skb;
1646 }
1647
1648 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1649 {
1650         /* The parser has run and performed L4 checksum validation.
1651          * We know there were no parser errors (and implicitly no
1652          * L4 csum error), otherwise we wouldn't be here.
1653          */
1654         if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1655             (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1656                 return CHECKSUM_UNNECESSARY;
1657
1658         /* We're here because either the parser didn't run or the L4 checksum
1659          * was not verified. This may include the case of a UDP frame with
1660          * checksum zero or an L4 proto other than TCP/UDP
1661          */
1662         return CHECKSUM_NONE;
1663 }
1664
1665 /* Build a linear skb around the received buffer.
1666  * We are guaranteed there is enough room at the end of the data buffer to
1667  * accommodate the shared info area of the skb.
1668  */
1669 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1670                                         const struct qm_fd *fd)
1671 {
1672         ssize_t fd_off = qm_fd_get_offset(fd);
1673         dma_addr_t addr = qm_fd_addr(fd);
1674         struct dpaa_bp *dpaa_bp;
1675         struct sk_buff *skb;
1676         void *vaddr;
1677
1678         vaddr = phys_to_virt(addr);
1679         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1680
1681         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1682         if (!dpaa_bp)
1683                 goto free_buffer;
1684
1685         skb = build_skb(vaddr, dpaa_bp->size +
1686                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1687         if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1688                 goto free_buffer;
1689         WARN_ON(fd_off != priv->rx_headroom);
1690         skb_reserve(skb, fd_off);
1691         skb_put(skb, qm_fd_get_length(fd));
1692
1693         skb->ip_summed = rx_csum_offload(priv, fd);
1694
1695         return skb;
1696
1697 free_buffer:
1698         free_pages((unsigned long)vaddr, 0);
1699         return NULL;
1700 }
1701
1702 /* Build an skb with the data of the first S/G entry in the linear portion and
1703  * the rest of the frame as skb fragments.
1704  *
1705  * The page fragment holding the S/G Table is recycled here.
1706  */
1707 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1708                                     const struct qm_fd *fd)
1709 {
1710         ssize_t fd_off = qm_fd_get_offset(fd);
1711         dma_addr_t addr = qm_fd_addr(fd);
1712         const struct qm_sg_entry *sgt;
1713         struct page *page, *head_page;
1714         struct dpaa_bp *dpaa_bp;
1715         void *vaddr, *sg_vaddr;
1716         int frag_off, frag_len;
1717         struct sk_buff *skb;
1718         dma_addr_t sg_addr;
1719         int page_offset;
1720         unsigned int sz;
1721         int *count_ptr;
1722         int i, j;
1723
1724         vaddr = phys_to_virt(addr);
1725         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1726
1727         /* Iterate through the SGT entries and add data buffers to the skb */
1728         sgt = vaddr + fd_off;
1729         skb = NULL;
1730         for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1731                 /* Extension bit is not supported */
1732                 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1733
1734                 sg_addr = qm_sg_addr(&sgt[i]);
1735                 sg_vaddr = phys_to_virt(sg_addr);
1736                 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1737                                     SMP_CACHE_BYTES));
1738
1739                 dma_unmap_page(priv->rx_dma_dev, sg_addr,
1740                                DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1741
1742                 /* We may use multiple Rx pools */
1743                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1744                 if (!dpaa_bp)
1745                         goto free_buffers;
1746
1747                 if (!skb) {
1748                         sz = dpaa_bp->size +
1749                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1750                         skb = build_skb(sg_vaddr, sz);
1751                         if (WARN_ON(!skb))
1752                                 goto free_buffers;
1753
1754                         skb->ip_summed = rx_csum_offload(priv, fd);
1755
1756                         /* Make sure forwarded skbs will have enough space
1757                          * on Tx, if extra headers are added.
1758                          */
1759                         WARN_ON(fd_off != priv->rx_headroom);
1760                         skb_reserve(skb, fd_off);
1761                         skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1762                 } else {
1763                         /* Not the first S/G entry; all data from buffer will
1764                          * be added in an skb fragment; fragment index is offset
1765                          * by one since first S/G entry was incorporated in the
1766                          * linear part of the skb.
1767                          *
1768                          * Caution: 'page' may be a tail page.
1769                          */
1770                         page = virt_to_page(sg_vaddr);
1771                         head_page = virt_to_head_page(sg_vaddr);
1772
1773                         /* Compute offset in (possibly tail) page */
1774                         page_offset = ((unsigned long)sg_vaddr &
1775                                         (PAGE_SIZE - 1)) +
1776                                 (page_address(page) - page_address(head_page));
1777                         /* page_offset only refers to the beginning of sgt[i];
1778                          * but the buffer itself may have an internal offset.
1779                          */
1780                         frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1781                         frag_len = qm_sg_entry_get_len(&sgt[i]);
1782                         /* skb_add_rx_frag() does no checking on the page; if
1783                          * we pass it a tail page, we'll end up with
1784                          * bad page accounting and eventually with segafults.
1785                          */
1786                         skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1787                                         frag_len, dpaa_bp->size);
1788                 }
1789
1790                 /* Update the pool count for the current {cpu x bpool} */
1791                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1792                 (*count_ptr)--;
1793
1794                 if (qm_sg_entry_is_final(&sgt[i]))
1795                         break;
1796         }
1797         WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1798
1799         /* free the SG table buffer */
1800         free_pages((unsigned long)vaddr, 0);
1801
1802         return skb;
1803
1804 free_buffers:
1805         /* free all the SG entries */
1806         for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1807                 sg_addr = qm_sg_addr(&sgt[j]);
1808                 sg_vaddr = phys_to_virt(sg_addr);
1809                 /* all pages 0..i were unmaped */
1810                 if (j > i)
1811                         dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1812                                        DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1813                 free_pages((unsigned long)sg_vaddr, 0);
1814                 /* counters 0..i-1 were decremented */
1815                 if (j >= i) {
1816                         dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1817                         if (dpaa_bp) {
1818                                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1819                                 (*count_ptr)--;
1820                         }
1821                 }
1822
1823                 if (qm_sg_entry_is_final(&sgt[j]))
1824                         break;
1825         }
1826         /* free the SGT fragment */
1827         free_pages((unsigned long)vaddr, 0);
1828
1829         return NULL;
1830 }
1831
1832 static int skb_to_contig_fd(struct dpaa_priv *priv,
1833                             struct sk_buff *skb, struct qm_fd *fd,
1834                             int *offset)
1835 {
1836         struct net_device *net_dev = priv->net_dev;
1837         enum dma_data_direction dma_dir;
1838         unsigned char *buff_start;
1839         struct sk_buff **skbh;
1840         dma_addr_t addr;
1841         int err;
1842
1843         /* We are guaranteed to have at least tx_headroom bytes
1844          * available, so just use that for offset.
1845          */
1846         fd->bpid = FSL_DPAA_BPID_INV;
1847         buff_start = skb->data - priv->tx_headroom;
1848         dma_dir = DMA_TO_DEVICE;
1849
1850         skbh = (struct sk_buff **)buff_start;
1851         *skbh = skb;
1852
1853         /* Enable L3/L4 hardware checksum computation.
1854          *
1855          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1856          * need to write into the skb.
1857          */
1858         err = dpaa_enable_tx_csum(priv, skb, fd,
1859                                   buff_start + DPAA_TX_PRIV_DATA_SIZE);
1860         if (unlikely(err < 0)) {
1861                 if (net_ratelimit())
1862                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1863                                   err);
1864                 return err;
1865         }
1866
1867         /* Fill in the rest of the FD fields */
1868         qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1869         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1870
1871         /* Map the entire buffer size that may be seen by FMan, but no more */
1872         addr = dma_map_single(priv->tx_dma_dev, buff_start,
1873                               priv->tx_headroom + skb->len, dma_dir);
1874         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1875                 if (net_ratelimit())
1876                         netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1877                 return -EINVAL;
1878         }
1879         qm_fd_addr_set64(fd, addr);
1880
1881         return 0;
1882 }
1883
1884 static int skb_to_sg_fd(struct dpaa_priv *priv,
1885                         struct sk_buff *skb, struct qm_fd *fd)
1886 {
1887         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1888         const int nr_frags = skb_shinfo(skb)->nr_frags;
1889         struct net_device *net_dev = priv->net_dev;
1890         struct qm_sg_entry *sgt;
1891         struct sk_buff **skbh;
1892         void *buff_start;
1893         skb_frag_t *frag;
1894         dma_addr_t addr;
1895         size_t frag_len;
1896         struct page *p;
1897         int i, j, err;
1898
1899         /* get a page to store the SGTable */
1900         p = dev_alloc_pages(0);
1901         if (unlikely(!p)) {
1902                 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1903                 return -ENOMEM;
1904         }
1905         buff_start = page_address(p);
1906
1907         /* Enable L3/L4 hardware checksum computation.
1908          *
1909          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1910          * need to write into the skb.
1911          */
1912         err = dpaa_enable_tx_csum(priv, skb, fd,
1913                                   buff_start + DPAA_TX_PRIV_DATA_SIZE);
1914         if (unlikely(err < 0)) {
1915                 if (net_ratelimit())
1916                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1917                                   err);
1918                 goto csum_failed;
1919         }
1920
1921         /* SGT[0] is used by the linear part */
1922         sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
1923         frag_len = skb_headlen(skb);
1924         qm_sg_entry_set_len(&sgt[0], frag_len);
1925         sgt[0].bpid = FSL_DPAA_BPID_INV;
1926         sgt[0].offset = 0;
1927         addr = dma_map_single(priv->tx_dma_dev, skb->data,
1928                               skb_headlen(skb), dma_dir);
1929         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1930                 netdev_err(priv->net_dev, "DMA mapping failed\n");
1931                 err = -EINVAL;
1932                 goto sg0_map_failed;
1933         }
1934         qm_sg_entry_set64(&sgt[0], addr);
1935
1936         /* populate the rest of SGT entries */
1937         for (i = 0; i < nr_frags; i++) {
1938                 frag = &skb_shinfo(skb)->frags[i];
1939                 frag_len = skb_frag_size(frag);
1940                 WARN_ON(!skb_frag_page(frag));
1941                 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
1942                                         frag_len, dma_dir);
1943                 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1944                         netdev_err(priv->net_dev, "DMA mapping failed\n");
1945                         err = -EINVAL;
1946                         goto sg_map_failed;
1947                 }
1948
1949                 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
1950                 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
1951                 sgt[i + 1].offset = 0;
1952
1953                 /* keep the offset in the address */
1954                 qm_sg_entry_set64(&sgt[i + 1], addr);
1955         }
1956
1957         /* Set the final bit in the last used entry of the SGT */
1958         qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
1959
1960         /* set fd offset to priv->tx_headroom */
1961         qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1962
1963         /* DMA map the SGT page */
1964         skbh = (struct sk_buff **)buff_start;
1965         *skbh = skb;
1966
1967         addr = dma_map_page(priv->tx_dma_dev, p, 0,
1968                             priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
1969         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1970                 netdev_err(priv->net_dev, "DMA mapping failed\n");
1971                 err = -EINVAL;
1972                 goto sgt_map_failed;
1973         }
1974
1975         fd->bpid = FSL_DPAA_BPID_INV;
1976         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1977         qm_fd_addr_set64(fd, addr);
1978
1979         return 0;
1980
1981 sgt_map_failed:
1982 sg_map_failed:
1983         for (j = 0; j < i; j++)
1984                 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
1985                                qm_sg_entry_get_len(&sgt[j]), dma_dir);
1986 sg0_map_failed:
1987 csum_failed:
1988         free_pages((unsigned long)buff_start, 0);
1989
1990         return err;
1991 }
1992
1993 static inline int dpaa_xmit(struct dpaa_priv *priv,
1994                             struct rtnl_link_stats64 *percpu_stats,
1995                             int queue,
1996                             struct qm_fd *fd)
1997 {
1998         struct qman_fq *egress_fq;
1999         int err, i;
2000
2001         egress_fq = priv->egress_fqs[queue];
2002         if (fd->bpid == FSL_DPAA_BPID_INV)
2003                 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2004
2005         /* Trace this Tx fd */
2006         trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2007
2008         for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2009                 err = qman_enqueue(egress_fq, fd);
2010                 if (err != -EBUSY)
2011                         break;
2012         }
2013
2014         if (unlikely(err < 0)) {
2015                 percpu_stats->tx_fifo_errors++;
2016                 return err;
2017         }
2018
2019         percpu_stats->tx_packets++;
2020         percpu_stats->tx_bytes += qm_fd_get_length(fd);
2021
2022         return 0;
2023 }
2024
2025 static netdev_tx_t
2026 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2027 {
2028         const int queue_mapping = skb_get_queue_mapping(skb);
2029         bool nonlinear = skb_is_nonlinear(skb);
2030         struct rtnl_link_stats64 *percpu_stats;
2031         struct dpaa_percpu_priv *percpu_priv;
2032         struct netdev_queue *txq;
2033         struct dpaa_priv *priv;
2034         struct qm_fd fd;
2035         int offset = 0;
2036         int err = 0;
2037
2038         priv = netdev_priv(net_dev);
2039         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2040         percpu_stats = &percpu_priv->stats;
2041
2042         qm_fd_clear_fd(&fd);
2043
2044         if (!nonlinear) {
2045                 /* We're going to store the skb backpointer at the beginning
2046                  * of the data buffer, so we need a privately owned skb
2047                  *
2048                  * We've made sure skb is not shared in dev->priv_flags,
2049                  * we need to verify the skb head is not cloned
2050                  */
2051                 if (skb_cow_head(skb, priv->tx_headroom))
2052                         goto enomem;
2053
2054                 WARN_ON(skb_is_nonlinear(skb));
2055         }
2056
2057         /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2058          * make sure we don't feed FMan with more fragments than it supports.
2059          */
2060         if (unlikely(nonlinear &&
2061                      (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2062                 /* If the egress skb contains more fragments than we support
2063                  * we have no choice but to linearize it ourselves.
2064                  */
2065                 if (__skb_linearize(skb))
2066                         goto enomem;
2067
2068                 nonlinear = skb_is_nonlinear(skb);
2069         }
2070
2071         if (nonlinear) {
2072                 /* Just create a S/G fd based on the skb */
2073                 err = skb_to_sg_fd(priv, skb, &fd);
2074                 percpu_priv->tx_frag_skbuffs++;
2075         } else {
2076                 /* Create a contig FD from this skb */
2077                 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2078         }
2079         if (unlikely(err < 0))
2080                 goto skb_to_fd_failed;
2081
2082         txq = netdev_get_tx_queue(net_dev, queue_mapping);
2083
2084         /* LLTX requires to do our own update of trans_start */
2085         txq->trans_start = jiffies;
2086
2087         if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2088                 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2089                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2090         }
2091
2092         if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2093                 return NETDEV_TX_OK;
2094
2095         dpaa_cleanup_tx_fd(priv, &fd, false);
2096 skb_to_fd_failed:
2097 enomem:
2098         percpu_stats->tx_errors++;
2099         dev_kfree_skb(skb);
2100         return NETDEV_TX_OK;
2101 }
2102
2103 static void dpaa_rx_error(struct net_device *net_dev,
2104                           const struct dpaa_priv *priv,
2105                           struct dpaa_percpu_priv *percpu_priv,
2106                           const struct qm_fd *fd,
2107                           u32 fqid)
2108 {
2109         if (net_ratelimit())
2110                 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2111                           be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2112
2113         percpu_priv->stats.rx_errors++;
2114
2115         if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2116                 percpu_priv->rx_errors.dme++;
2117         if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2118                 percpu_priv->rx_errors.fpe++;
2119         if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2120                 percpu_priv->rx_errors.fse++;
2121         if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2122                 percpu_priv->rx_errors.phe++;
2123
2124         dpaa_fd_release(net_dev, fd);
2125 }
2126
2127 static void dpaa_tx_error(struct net_device *net_dev,
2128                           const struct dpaa_priv *priv,
2129                           struct dpaa_percpu_priv *percpu_priv,
2130                           const struct qm_fd *fd,
2131                           u32 fqid)
2132 {
2133         struct sk_buff *skb;
2134
2135         if (net_ratelimit())
2136                 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2137                            be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2138
2139         percpu_priv->stats.tx_errors++;
2140
2141         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2142         dev_kfree_skb(skb);
2143 }
2144
2145 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2146 {
2147         struct dpaa_napi_portal *np =
2148                         container_of(napi, struct dpaa_napi_portal, napi);
2149
2150         int cleaned = qman_p_poll_dqrr(np->p, budget);
2151
2152         if (cleaned < budget) {
2153                 napi_complete_done(napi, cleaned);
2154                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2155         } else if (np->down) {
2156                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2157         }
2158
2159         return cleaned;
2160 }
2161
2162 static void dpaa_tx_conf(struct net_device *net_dev,
2163                          const struct dpaa_priv *priv,
2164                          struct dpaa_percpu_priv *percpu_priv,
2165                          const struct qm_fd *fd,
2166                          u32 fqid)
2167 {
2168         struct sk_buff  *skb;
2169
2170         if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2171                 if (net_ratelimit())
2172                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2173                                    be32_to_cpu(fd->status) &
2174                                    FM_FD_STAT_TX_ERRORS);
2175
2176                 percpu_priv->stats.tx_errors++;
2177         }
2178
2179         percpu_priv->tx_confirm++;
2180
2181         skb = dpaa_cleanup_tx_fd(priv, fd, true);
2182
2183         consume_skb(skb);
2184 }
2185
2186 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2187                                          struct qman_portal *portal)
2188 {
2189         if (unlikely(in_irq() || !in_serving_softirq())) {
2190                 /* Disable QMan IRQ and invoke NAPI */
2191                 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2192
2193                 percpu_priv->np.p = portal;
2194                 napi_schedule(&percpu_priv->np.napi);
2195                 percpu_priv->in_interrupt++;
2196                 return 1;
2197         }
2198         return 0;
2199 }
2200
2201 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2202                                               struct qman_fq *fq,
2203                                               const struct qm_dqrr_entry *dq)
2204 {
2205         struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2206         struct dpaa_percpu_priv *percpu_priv;
2207         struct net_device *net_dev;
2208         struct dpaa_bp *dpaa_bp;
2209         struct dpaa_priv *priv;
2210
2211         net_dev = dpaa_fq->net_dev;
2212         priv = netdev_priv(net_dev);
2213         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2214         if (!dpaa_bp)
2215                 return qman_cb_dqrr_consume;
2216
2217         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2218
2219         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2220                 return qman_cb_dqrr_stop;
2221
2222         dpaa_eth_refill_bpools(priv);
2223         dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2224
2225         return qman_cb_dqrr_consume;
2226 }
2227
2228 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2229                                                 struct qman_fq *fq,
2230                                                 const struct qm_dqrr_entry *dq)
2231 {
2232         struct skb_shared_hwtstamps *shhwtstamps;
2233         struct rtnl_link_stats64 *percpu_stats;
2234         struct dpaa_percpu_priv *percpu_priv;
2235         const struct qm_fd *fd = &dq->fd;
2236         dma_addr_t addr = qm_fd_addr(fd);
2237         enum qm_fd_format fd_format;
2238         struct net_device *net_dev;
2239         u32 fd_status, hash_offset;
2240         struct dpaa_bp *dpaa_bp;
2241         struct dpaa_priv *priv;
2242         unsigned int skb_len;
2243         struct sk_buff *skb;
2244         int *count_ptr;
2245         void *vaddr;
2246         u64 ns;
2247
2248         fd_status = be32_to_cpu(fd->status);
2249         fd_format = qm_fd_get_format(fd);
2250         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2251         priv = netdev_priv(net_dev);
2252         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2253         if (!dpaa_bp)
2254                 return qman_cb_dqrr_consume;
2255
2256         /* Trace the Rx fd */
2257         trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2258
2259         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2260         percpu_stats = &percpu_priv->stats;
2261
2262         if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2263                 return qman_cb_dqrr_stop;
2264
2265         /* Make sure we didn't run out of buffers */
2266         if (unlikely(dpaa_eth_refill_bpools(priv))) {
2267                 /* Unable to refill the buffer pool due to insufficient
2268                  * system memory. Just release the frame back into the pool,
2269                  * otherwise we'll soon end up with an empty buffer pool.
2270                  */
2271                 dpaa_fd_release(net_dev, &dq->fd);
2272                 return qman_cb_dqrr_consume;
2273         }
2274
2275         if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2276                 if (net_ratelimit())
2277                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2278                                    fd_status & FM_FD_STAT_RX_ERRORS);
2279
2280                 percpu_stats->rx_errors++;
2281                 dpaa_fd_release(net_dev, fd);
2282                 return qman_cb_dqrr_consume;
2283         }
2284
2285         dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2286                        DMA_FROM_DEVICE);
2287
2288         /* prefetch the first 64 bytes of the frame or the SGT start */
2289         vaddr = phys_to_virt(addr);
2290         prefetch(vaddr + qm_fd_get_offset(fd));
2291
2292         /* The only FD types that we may receive are contig and S/G */
2293         WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2294
2295         /* Account for either the contig buffer or the SGT buffer (depending on
2296          * which case we were in) having been removed from the pool.
2297          */
2298         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2299         (*count_ptr)--;
2300
2301         if (likely(fd_format == qm_fd_contig))
2302                 skb = contig_fd_to_skb(priv, fd);
2303         else
2304                 skb = sg_fd_to_skb(priv, fd);
2305         if (!skb)
2306                 return qman_cb_dqrr_consume;
2307
2308         if (priv->rx_tstamp) {
2309                 shhwtstamps = skb_hwtstamps(skb);
2310                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2311
2312                 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2313                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
2314                 else
2315                         dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
2316         }
2317
2318         skb->protocol = eth_type_trans(skb, net_dev);
2319
2320         if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2321             !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2322                                               &hash_offset)) {
2323                 enum pkt_hash_types type;
2324
2325                 /* if L4 exists, it was used in the hash generation */
2326                 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2327                         PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2328                 skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2329                              type);
2330         }
2331
2332         skb_len = skb->len;
2333
2334         if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2335                 percpu_stats->rx_dropped++;
2336                 return qman_cb_dqrr_consume;
2337         }
2338
2339         percpu_stats->rx_packets++;
2340         percpu_stats->rx_bytes += skb_len;
2341
2342         return qman_cb_dqrr_consume;
2343 }
2344
2345 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2346                                                 struct qman_fq *fq,
2347                                                 const struct qm_dqrr_entry *dq)
2348 {
2349         struct dpaa_percpu_priv *percpu_priv;
2350         struct net_device *net_dev;
2351         struct dpaa_priv *priv;
2352
2353         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2354         priv = netdev_priv(net_dev);
2355
2356         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2357
2358         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2359                 return qman_cb_dqrr_stop;
2360
2361         dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2362
2363         return qman_cb_dqrr_consume;
2364 }
2365
2366 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2367                                                struct qman_fq *fq,
2368                                                const struct qm_dqrr_entry *dq)
2369 {
2370         struct dpaa_percpu_priv *percpu_priv;
2371         struct net_device *net_dev;
2372         struct dpaa_priv *priv;
2373
2374         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2375         priv = netdev_priv(net_dev);
2376
2377         /* Trace the fd */
2378         trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2379
2380         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2381
2382         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2383                 return qman_cb_dqrr_stop;
2384
2385         dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2386
2387         return qman_cb_dqrr_consume;
2388 }
2389
2390 static void egress_ern(struct qman_portal *portal,
2391                        struct qman_fq *fq,
2392                        const union qm_mr_entry *msg)
2393 {
2394         const struct qm_fd *fd = &msg->ern.fd;
2395         struct dpaa_percpu_priv *percpu_priv;
2396         const struct dpaa_priv *priv;
2397         struct net_device *net_dev;
2398         struct sk_buff *skb;
2399
2400         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2401         priv = netdev_priv(net_dev);
2402         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2403
2404         percpu_priv->stats.tx_dropped++;
2405         percpu_priv->stats.tx_fifo_errors++;
2406         count_ern(percpu_priv, msg);
2407
2408         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2409         dev_kfree_skb_any(skb);
2410 }
2411
2412 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2413         .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2414         .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2415         .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2416         .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2417         .egress_ern = { .cb = { .ern = egress_ern } }
2418 };
2419
2420 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2421 {
2422         struct dpaa_percpu_priv *percpu_priv;
2423         int i;
2424
2425         for_each_online_cpu(i) {
2426                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2427
2428                 percpu_priv->np.down = 0;
2429                 napi_enable(&percpu_priv->np.napi);
2430         }
2431 }
2432
2433 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2434 {
2435         struct dpaa_percpu_priv *percpu_priv;
2436         int i;
2437
2438         for_each_online_cpu(i) {
2439                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2440
2441                 percpu_priv->np.down = 1;
2442                 napi_disable(&percpu_priv->np.napi);
2443         }
2444 }
2445
2446 static void dpaa_adjust_link(struct net_device *net_dev)
2447 {
2448         struct mac_device *mac_dev;
2449         struct dpaa_priv *priv;
2450
2451         priv = netdev_priv(net_dev);
2452         mac_dev = priv->mac_dev;
2453         mac_dev->adjust_link(mac_dev);
2454 }
2455
2456 static int dpaa_phy_init(struct net_device *net_dev)
2457 {
2458         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2459         struct mac_device *mac_dev;
2460         struct phy_device *phy_dev;
2461         struct dpaa_priv *priv;
2462
2463         priv = netdev_priv(net_dev);
2464         mac_dev = priv->mac_dev;
2465
2466         phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2467                                  &dpaa_adjust_link, 0,
2468                                  mac_dev->phy_if);
2469         if (!phy_dev) {
2470                 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2471                 return -ENODEV;
2472         }
2473
2474         /* Remove any features not supported by the controller */
2475         ethtool_convert_legacy_u32_to_link_mode(mask, mac_dev->if_support);
2476         linkmode_and(phy_dev->supported, phy_dev->supported, mask);
2477
2478         phy_support_asym_pause(phy_dev);
2479
2480         mac_dev->phy_dev = phy_dev;
2481         net_dev->phydev = phy_dev;
2482
2483         return 0;
2484 }
2485
2486 static int dpaa_open(struct net_device *net_dev)
2487 {
2488         struct mac_device *mac_dev;
2489         struct dpaa_priv *priv;
2490         int err, i;
2491
2492         priv = netdev_priv(net_dev);
2493         mac_dev = priv->mac_dev;
2494         dpaa_eth_napi_enable(priv);
2495
2496         err = dpaa_phy_init(net_dev);
2497         if (err)
2498                 goto phy_init_failed;
2499
2500         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2501                 err = fman_port_enable(mac_dev->port[i]);
2502                 if (err)
2503                         goto mac_start_failed;
2504         }
2505
2506         err = priv->mac_dev->start(mac_dev);
2507         if (err < 0) {
2508                 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2509                 goto mac_start_failed;
2510         }
2511
2512         netif_tx_start_all_queues(net_dev);
2513
2514         return 0;
2515
2516 mac_start_failed:
2517         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2518                 fman_port_disable(mac_dev->port[i]);
2519
2520 phy_init_failed:
2521         dpaa_eth_napi_disable(priv);
2522
2523         return err;
2524 }
2525
2526 static int dpaa_eth_stop(struct net_device *net_dev)
2527 {
2528         struct dpaa_priv *priv;
2529         int err;
2530
2531         err = dpaa_stop(net_dev);
2532
2533         priv = netdev_priv(net_dev);
2534         dpaa_eth_napi_disable(priv);
2535
2536         return err;
2537 }
2538
2539 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2540 {
2541         struct dpaa_priv *priv = netdev_priv(dev);
2542         struct hwtstamp_config config;
2543
2544         if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
2545                 return -EFAULT;
2546
2547         switch (config.tx_type) {
2548         case HWTSTAMP_TX_OFF:
2549                 /* Couldn't disable rx/tx timestamping separately.
2550                  * Do nothing here.
2551                  */
2552                 priv->tx_tstamp = false;
2553                 break;
2554         case HWTSTAMP_TX_ON:
2555                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2556                 priv->tx_tstamp = true;
2557                 break;
2558         default:
2559                 return -ERANGE;
2560         }
2561
2562         if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
2563                 /* Couldn't disable rx/tx timestamping separately.
2564                  * Do nothing here.
2565                  */
2566                 priv->rx_tstamp = false;
2567         } else {
2568                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2569                 priv->rx_tstamp = true;
2570                 /* TS is set for all frame types, not only those requested */
2571                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2572         }
2573
2574         return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
2575                         -EFAULT : 0;
2576 }
2577
2578 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2579 {
2580         int ret = -EINVAL;
2581
2582         if (cmd == SIOCGMIIREG) {
2583                 if (net_dev->phydev)
2584                         return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2585         }
2586
2587         if (cmd == SIOCSHWTSTAMP)
2588                 return dpaa_ts_ioctl(net_dev, rq, cmd);
2589
2590         return ret;
2591 }
2592
2593 static const struct net_device_ops dpaa_ops = {
2594         .ndo_open = dpaa_open,
2595         .ndo_start_xmit = dpaa_start_xmit,
2596         .ndo_stop = dpaa_eth_stop,
2597         .ndo_tx_timeout = dpaa_tx_timeout,
2598         .ndo_get_stats64 = dpaa_get_stats64,
2599         .ndo_change_carrier = fixed_phy_change_carrier,
2600         .ndo_set_mac_address = dpaa_set_mac_address,
2601         .ndo_validate_addr = eth_validate_addr,
2602         .ndo_set_rx_mode = dpaa_set_rx_mode,
2603         .ndo_do_ioctl = dpaa_ioctl,
2604         .ndo_setup_tc = dpaa_setup_tc,
2605 };
2606
2607 static int dpaa_napi_add(struct net_device *net_dev)
2608 {
2609         struct dpaa_priv *priv = netdev_priv(net_dev);
2610         struct dpaa_percpu_priv *percpu_priv;
2611         int cpu;
2612
2613         for_each_possible_cpu(cpu) {
2614                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2615
2616                 netif_napi_add(net_dev, &percpu_priv->np.napi,
2617                                dpaa_eth_poll, NAPI_POLL_WEIGHT);
2618         }
2619
2620         return 0;
2621 }
2622
2623 static void dpaa_napi_del(struct net_device *net_dev)
2624 {
2625         struct dpaa_priv *priv = netdev_priv(net_dev);
2626         struct dpaa_percpu_priv *percpu_priv;
2627         int cpu;
2628
2629         for_each_possible_cpu(cpu) {
2630                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2631
2632                 netif_napi_del(&percpu_priv->np.napi);
2633         }
2634 }
2635
2636 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2637                                    struct bm_buffer *bmb)
2638 {
2639         dma_addr_t addr = bm_buf_addr(bmb);
2640
2641         dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2642                        DMA_FROM_DEVICE);
2643
2644         skb_free_frag(phys_to_virt(addr));
2645 }
2646
2647 /* Alloc the dpaa_bp struct and configure default values */
2648 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2649 {
2650         struct dpaa_bp *dpaa_bp;
2651
2652         dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2653         if (!dpaa_bp)
2654                 return ERR_PTR(-ENOMEM);
2655
2656         dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2657         dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2658         if (!dpaa_bp->percpu_count)
2659                 return ERR_PTR(-ENOMEM);
2660
2661         dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2662
2663         dpaa_bp->seed_cb = dpaa_bp_seed;
2664         dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2665
2666         return dpaa_bp;
2667 }
2668
2669 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2670  * We won't be sending congestion notifications to FMan; for now, we just use
2671  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2672  * before they reach our ingress queues and eat up memory.
2673  */
2674 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2675 {
2676         struct qm_mcc_initcgr initcgr;
2677         u32 cs_th;
2678         int err;
2679
2680         err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2681         if (err < 0) {
2682                 if (netif_msg_drv(priv))
2683                         pr_err("Error %d allocating CGR ID\n", err);
2684                 goto out_error;
2685         }
2686
2687         /* Enable CS TD, but disable Congestion State Change Notifications. */
2688         memset(&initcgr, 0, sizeof(initcgr));
2689         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2690         initcgr.cgr.cscn_en = QM_CGR_EN;
2691         cs_th = DPAA_INGRESS_CS_THRESHOLD;
2692         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2693
2694         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2695         initcgr.cgr.cstd_en = QM_CGR_EN;
2696
2697         /* This CGR will be associated with the SWP affined to the current CPU.
2698          * However, we'll place all our ingress FQs in it.
2699          */
2700         err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2701                               &initcgr);
2702         if (err < 0) {
2703                 if (netif_msg_drv(priv))
2704                         pr_err("Error %d creating ingress CGR with ID %d\n",
2705                                err, priv->ingress_cgr.cgrid);
2706                 qman_release_cgrid(priv->ingress_cgr.cgrid);
2707                 goto out_error;
2708         }
2709         if (netif_msg_drv(priv))
2710                 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2711                          priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2712
2713         priv->use_ingress_cgr = true;
2714
2715 out_error:
2716         return err;
2717 }
2718
2719 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2720 {
2721         u16 headroom;
2722
2723         /* The frame headroom must accommodate:
2724          * - the driver private data area
2725          * - parse results, hash results, timestamp if selected
2726          * If either hash results or time stamp are selected, both will
2727          * be copied to/from the frame headroom, as TS is located between PR and
2728          * HR in the IC and IC copy size has a granularity of 16bytes
2729          * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2730          *
2731          * Also make sure the headroom is a multiple of data_align bytes
2732          */
2733         headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2734                 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2735
2736         return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2737                                               DPAA_FD_DATA_ALIGNMENT) :
2738                                         headroom;
2739 }
2740
2741 static int dpaa_eth_probe(struct platform_device *pdev)
2742 {
2743         struct net_device *net_dev = NULL;
2744         struct dpaa_bp *dpaa_bp = NULL;
2745         struct dpaa_fq *dpaa_fq, *tmp;
2746         struct dpaa_priv *priv = NULL;
2747         struct fm_port_fqs port_fqs;
2748         struct mac_device *mac_dev;
2749         int err = 0, channel;
2750         struct device *dev;
2751
2752         dev = &pdev->dev;
2753
2754         err = bman_is_probed();
2755         if (!err)
2756                 return -EPROBE_DEFER;
2757         if (err < 0) {
2758                 dev_err(dev, "failing probe due to bman probe error\n");
2759                 return -ENODEV;
2760         }
2761         err = qman_is_probed();
2762         if (!err)
2763                 return -EPROBE_DEFER;
2764         if (err < 0) {
2765                 dev_err(dev, "failing probe due to qman probe error\n");
2766                 return -ENODEV;
2767         }
2768         err = bman_portals_probed();
2769         if (!err)
2770                 return -EPROBE_DEFER;
2771         if (err < 0) {
2772                 dev_err(dev,
2773                         "failing probe due to bman portals probe error\n");
2774                 return -ENODEV;
2775         }
2776         err = qman_portals_probed();
2777         if (!err)
2778                 return -EPROBE_DEFER;
2779         if (err < 0) {
2780                 dev_err(dev,
2781                         "failing probe due to qman portals probe error\n");
2782                 return -ENODEV;
2783         }
2784
2785         /* Allocate this early, so we can store relevant information in
2786          * the private area
2787          */
2788         net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2789         if (!net_dev) {
2790                 dev_err(dev, "alloc_etherdev_mq() failed\n");
2791                 return -ENOMEM;
2792         }
2793
2794         /* Do this here, so we can be verbose early */
2795         SET_NETDEV_DEV(net_dev, dev);
2796         dev_set_drvdata(dev, net_dev);
2797
2798         priv = netdev_priv(net_dev);
2799         priv->net_dev = net_dev;
2800
2801         priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2802
2803         mac_dev = dpaa_mac_dev_get(pdev);
2804         if (IS_ERR(mac_dev)) {
2805                 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
2806                 err = PTR_ERR(mac_dev);
2807                 goto free_netdev;
2808         }
2809
2810         /* Devices used for DMA mapping */
2811         priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
2812         priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
2813         err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
2814         if (!err)
2815                 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
2816                                                    DMA_BIT_MASK(40));
2817         if (err) {
2818                 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
2819                 return err;
2820         }
2821
2822         /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2823          * we choose conservatively and let the user explicitly set a higher
2824          * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2825          * in the same LAN.
2826          * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2827          * start with the maximum allowed.
2828          */
2829         net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2830
2831         netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2832                    net_dev->mtu);
2833
2834         priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2835         priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2836
2837         /* bp init */
2838         dpaa_bp = dpaa_bp_alloc(dev);
2839         if (IS_ERR(dpaa_bp)) {
2840                 err = PTR_ERR(dpaa_bp);
2841                 goto free_dpaa_bps;
2842         }
2843         /* the raw size of the buffers used for reception */
2844         dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
2845         /* avoid runtime computations by keeping the usable size here */
2846         dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
2847         dpaa_bp->priv = priv;
2848
2849         err = dpaa_bp_alloc_pool(dpaa_bp);
2850         if (err < 0)
2851                 goto free_dpaa_bps;
2852         priv->dpaa_bp = dpaa_bp;
2853
2854         INIT_LIST_HEAD(&priv->dpaa_fq_list);
2855
2856         memset(&port_fqs, 0, sizeof(port_fqs));
2857
2858         err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2859         if (err < 0) {
2860                 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2861                 goto free_dpaa_bps;
2862         }
2863
2864         priv->mac_dev = mac_dev;
2865
2866         channel = dpaa_get_channel();
2867         if (channel < 0) {
2868                 dev_err(dev, "dpaa_get_channel() failed\n");
2869                 err = channel;
2870                 goto free_dpaa_bps;
2871         }
2872
2873         priv->channel = (u16)channel;
2874
2875         /* Walk the CPUs with affine portals
2876          * and add this pool channel to each's dequeue mask.
2877          */
2878         dpaa_eth_add_channel(priv->channel, &pdev->dev);
2879
2880         dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2881
2882         /* Create a congestion group for this netdev, with
2883          * dynamically-allocated CGR ID.
2884          * Must be executed after probing the MAC, but before
2885          * assigning the egress FQs to the CGRs.
2886          */
2887         err = dpaa_eth_cgr_init(priv);
2888         if (err < 0) {
2889                 dev_err(dev, "Error initializing CGR\n");
2890                 goto free_dpaa_bps;
2891         }
2892
2893         err = dpaa_ingress_cgr_init(priv);
2894         if (err < 0) {
2895                 dev_err(dev, "Error initializing ingress CGR\n");
2896                 goto delete_egress_cgr;
2897         }
2898
2899         /* Add the FQs to the interface, and make them active */
2900         list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2901                 err = dpaa_fq_init(dpaa_fq, false);
2902                 if (err < 0)
2903                         goto free_dpaa_fqs;
2904         }
2905
2906         priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2907         priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2908
2909         /* All real interfaces need their ports initialized */
2910         err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
2911                                   &priv->buf_layout[0], dev);
2912         if (err)
2913                 goto free_dpaa_fqs;
2914
2915         /* Rx traffic distribution based on keygen hashing defaults to on */
2916         priv->keygen_in_use = true;
2917
2918         priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2919         if (!priv->percpu_priv) {
2920                 dev_err(dev, "devm_alloc_percpu() failed\n");
2921                 err = -ENOMEM;
2922                 goto free_dpaa_fqs;
2923         }
2924
2925         priv->num_tc = 1;
2926         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2927
2928         /* Initialize NAPI */
2929         err = dpaa_napi_add(net_dev);
2930         if (err < 0)
2931                 goto delete_dpaa_napi;
2932
2933         err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2934         if (err < 0)
2935                 goto delete_dpaa_napi;
2936
2937         dpaa_eth_sysfs_init(&net_dev->dev);
2938
2939         netif_info(priv, probe, net_dev, "Probed interface %s\n",
2940                    net_dev->name);
2941
2942         return 0;
2943
2944 delete_dpaa_napi:
2945         dpaa_napi_del(net_dev);
2946 free_dpaa_fqs:
2947         dpaa_fq_free(dev, &priv->dpaa_fq_list);
2948         qman_delete_cgr_safe(&priv->ingress_cgr);
2949         qman_release_cgrid(priv->ingress_cgr.cgrid);
2950 delete_egress_cgr:
2951         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2952         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2953 free_dpaa_bps:
2954         dpaa_bps_free(priv);
2955 free_netdev:
2956         dev_set_drvdata(dev, NULL);
2957         free_netdev(net_dev);
2958
2959         return err;
2960 }
2961
2962 static int dpaa_remove(struct platform_device *pdev)
2963 {
2964         struct net_device *net_dev;
2965         struct dpaa_priv *priv;
2966         struct device *dev;
2967         int err;
2968
2969         dev = &pdev->dev;
2970         net_dev = dev_get_drvdata(dev);
2971
2972         priv = netdev_priv(net_dev);
2973
2974         dpaa_eth_sysfs_remove(dev);
2975
2976         dev_set_drvdata(dev, NULL);
2977         unregister_netdev(net_dev);
2978
2979         err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2980
2981         qman_delete_cgr_safe(&priv->ingress_cgr);
2982         qman_release_cgrid(priv->ingress_cgr.cgrid);
2983         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2984         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2985
2986         dpaa_napi_del(net_dev);
2987
2988         dpaa_bps_free(priv);
2989
2990         free_netdev(net_dev);
2991
2992         return err;
2993 }
2994
2995 static const struct platform_device_id dpaa_devtype[] = {
2996         {
2997                 .name = "dpaa-ethernet",
2998                 .driver_data = 0,
2999         }, {
3000         }
3001 };
3002 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3003
3004 static struct platform_driver dpaa_driver = {
3005         .driver = {
3006                 .name = KBUILD_MODNAME,
3007         },
3008         .id_table = dpaa_devtype,
3009         .probe = dpaa_eth_probe,
3010         .remove = dpaa_remove
3011 };
3012
3013 static int __init dpaa_load(void)
3014 {
3015         int err;
3016
3017         pr_debug("FSL DPAA Ethernet driver\n");
3018
3019         /* initialize dpaa_eth mirror values */
3020         dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3021         dpaa_max_frm = fman_get_max_frm();
3022
3023         err = platform_driver_register(&dpaa_driver);
3024         if (err < 0)
3025                 pr_err("Error, platform_driver_register() = %d\n", err);
3026
3027         return err;
3028 }
3029 module_init(dpaa_load);
3030
3031 static void __exit dpaa_unload(void)
3032 {
3033         platform_driver_unregister(&dpaa_driver);
3034
3035         /* Only one channel is used and needs to be released after all
3036          * interfaces are removed
3037          */
3038         dpaa_release_channel();
3039 }
3040 module_exit(dpaa_unload);
3041
3042 MODULE_LICENSE("Dual BSD/GPL");
3043 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");