OSDN Git Service

2007-02-15 Kyle Galloway <kgallowa@redhat.com>
[pf3gnuchains/gcc-fork.git] / libjava / include / i386-signal.h
1 // i386-signal.h - Catch runtime signals and turn them into exceptions
2 // on an i386 based Linux system.
3
4 /* Copyright (C) 1998, 1999, 2001, 2002, 2006, 2007  Free Software Foundation
5
6    This file is part of libgcj.
7
8 This software is copyrighted work licensed under the terms of the
9 Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
10 details.  */
11
12
13 #ifndef JAVA_SIGNAL_H
14 #define JAVA_SIGNAL_H 1
15
16 #include <signal.h>
17 #include <sys/syscall.h>
18
19 #define HANDLE_SEGV 1
20 #define HANDLE_FPE 1
21
22 #define SIGNAL_HANDLER(_name)                                   \
23 static void _Jv_##_name (int, siginfo_t *,                      \
24                          void *_p __attribute__ ((__unused__)))
25
26 #define HANDLE_DIVIDE_OVERFLOW                                          \
27 do                                                                      \
28 {                                                                       \
29   struct ucontext *_uc = (struct ucontext *)_p;                         \
30   gregset_t &_gregs = _uc->uc_mcontext.gregs;                           \
31   unsigned char *_eip = (unsigned char *)_gregs[REG_EIP];               \
32                                                                         \
33   /* According to the JVM spec, "if the dividend is the negative        \
34    * integer of largest possible magnitude for the type and the         \
35    * divisor is -1, then overflow occurs and the result is equal to     \
36    * the dividend.  Despite the overflow, no exception occurs".         \
37                                                                         \
38    * We handle this by inspecting the instruction which generated the   \
39    * signal and advancing ip to point to the following instruction.     \
40    * As the instructions are variable length it is necessary to do a    \
41    * little calculation to figure out where the following instruction   \
42    * actually is.                                                       \
43                                                                         \
44   */                                                                    \
45                                                                         \
46   /* Detect a signed division of Integer.MIN_VALUE.  */                 \
47   if (_eip[0] == 0xf7)                                                  \
48     {                                                                   \
49       bool _min_value_dividend = false;                                 \
50       unsigned char _modrm = _eip[1];                                   \
51                                                                         \
52       if (((_modrm >> 3) & 7) == 7) /* Signed divide */                 \
53         {                                                               \
54           _min_value_dividend =                                         \
55             _gregs[REG_EAX] == (greg_t)0x80000000UL;                    \
56         }                                                               \
57                                                                         \
58       if (_min_value_dividend)                                          \
59         {                                                               \
60           unsigned char _rm = _modrm & 7;                               \
61           _gregs[REG_EDX] = 0; /* the remainder is zero */              \
62           switch (_modrm >> 6)                                          \
63             {                                                           \
64             case 0:  /* register indirect */                            \
65               if (_rm == 5)   /* 32-bit displacement */                 \
66                 _eip += 4;                                              \
67               if (_rm == 4)  /* A SIB byte follows the ModR/M byte */   \
68                 _eip += 1;                                              \
69               break;                                                    \
70             case 1:  /* register indirect + 8-bit displacement */       \
71               _eip += 1;                                                \
72               if (_rm == 4)  /* A SIB byte follows the ModR/M byte */   \
73                 _eip += 1;                                              \
74               break;                                                    \
75             case 2:  /* register indirect + 32-bit displacement */      \
76               _eip += 4;                                                \
77               if (_rm == 4)  /* A SIB byte follows the ModR/M byte */   \
78                 _eip += 1;                                              \
79               break;                                                    \
80             case 3:                                                     \
81               break;                                                    \
82             }                                                           \
83           _eip += 2;                                                    \
84           _gregs[REG_EIP] = (greg_t)_eip;                               \
85           return;                                                       \
86         }                                                               \
87     }                                                                   \
88 }                                                                       \
89 while (0)
90
91 /* We use kernel_sigaction here because we're calling the kernel
92    directly rather than via glibc.  The sigaction structure that the
93    syscall uses is a different shape from the one in userland and not
94    visible to us in a header file so we define it here.  */
95
96 extern "C" 
97 {
98   struct kernel_sigaction 
99   {
100     void (*k_sa_sigaction)(int,siginfo_t *,void *);
101     unsigned long k_sa_flags;
102     void (*k_sa_restorer) (void);
103     sigset_t k_sa_mask;
104   };
105 }
106
107 #define MAKE_THROW_FRAME(_exception)
108
109 #define RESTORE(name, syscall) RESTORE2 (name, syscall)
110 #define RESTORE2(name, syscall)                 \
111 asm                                             \
112   (                                             \
113    ".text\n"                                    \
114    ".byte 0  # Yes, this really is necessary\n" \
115    "    .align 16\n"                            \
116    "__" #name ":\n"                             \
117    "    movl $" #syscall ", %eax\n"             \
118    "    int  $0x80"                             \
119    );
120
121 /* The return code for realtime-signals.  */
122 RESTORE (restore_rt, __NR_rt_sigreturn)
123 void restore_rt (void) asm ("__restore_rt")
124   __attribute__ ((visibility ("hidden")));
125
126 #define INIT_SEGV                                               \
127 do                                                              \
128   {                                                             \
129     struct kernel_sigaction act;                                \
130     act.k_sa_sigaction = _Jv_catch_segv;                        \
131     sigemptyset (&act.k_sa_mask);                               \
132     act.k_sa_flags = SA_SIGINFO|0x4000000;                      \
133     act.k_sa_restorer = restore_rt;                             \
134     syscall (SYS_rt_sigaction, SIGSEGV, &act, NULL, _NSIG / 8); \
135   }                                                             \
136 while (0)  
137
138 #define INIT_FPE                                                \
139 do                                                              \
140   {                                                             \
141     struct kernel_sigaction act;                                \
142     act.k_sa_sigaction = _Jv_catch_fpe;                         \
143     sigemptyset (&act.k_sa_mask);                               \
144     act.k_sa_flags = SA_SIGINFO|0x4000000;                      \
145     act.k_sa_restorer = restore_rt;                             \
146     syscall (SYS_rt_sigaction, SIGFPE, &act, NULL, _NSIG / 8);  \
147   }                                                             \
148 while (0)  
149
150 /* You might wonder why we use syscall(SYS_sigaction) in INIT_FPE
151  * instead of the standard sigaction().  This is necessary because of
152  * the shenanigans above where we increment the PC saved in the
153  * context and then return.  This trick will only work when we are
154  * called _directly_ by the kernel, because linuxthreads wraps signal
155  * handlers and its wrappers do not copy the sigcontext struct back
156  * when returning from a signal handler.  If we return from our divide
157  * handler to a linuxthreads wrapper, we will lose the PC adjustment
158  * we made and return to the faulting instruction again.  Using
159  * syscall(SYS_sigaction) causes our handler to be called directly
160  * by the kernel, bypassing any wrappers.
161
162  * Also, there may not be any unwind info in the linuxthreads
163  * library's signal handlers and so we can't unwind through them
164  * anyway.  */
165
166 #endif /* JAVA_SIGNAL_H */
167