OSDN Git Service

Merge in gcc2-ss-010999
[pf3gnuchains/gcc-fork.git] / gcc / invoke.texi
1 @c Copyright (C) 1988, 89, 92-98, 1999 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @node Invoking GCC
6 @chapter GCC Command Options
7 @cindex GCC command options
8 @cindex command options
9 @cindex options, GCC command
10
11 When you invoke GCC, it normally does preprocessing, compilation,
12 assembly and linking.  The ``overall options'' allow you to stop this
13 process at an intermediate stage.  For example, the @samp{-c} option
14 says not to run the linker.  Then the output consists of object files
15 output by the assembler.
16
17 Other options are passed on to one stage of processing.  Some options
18 control the preprocessor and others the compiler itself.  Yet other
19 options control the assembler and linker; most of these are not
20 documented here, since you rarely need to use any of them.
21
22 @cindex C compilation options
23 Most of the command line options that you can use with GCC are useful
24 for C programs; when an option is only useful with another language
25 (usually C++), the explanation says so explicitly.  If the description
26 for a particular option does not mention a source language, you can use
27 that option with all supported languages.
28
29 @cindex C++ compilation options
30 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
31 options for compiling C++ programs.
32
33 @cindex grouping options
34 @cindex options, grouping
35 The @code{gcc} program accepts options and file names as operands.  Many
36 options have multiletter names; therefore multiple single-letter options
37 may @emph{not} be grouped: @samp{-dr} is very different from @w{@samp{-d
38 -r}}.
39
40 @cindex order of options
41 @cindex options, order
42 You can mix options and other arguments.  For the most part, the order
43 you use doesn't matter.  Order does matter when you use several options
44 of the same kind; for example, if you specify @samp{-L} more than once,
45 the directories are searched in the order specified.
46
47 Many options have long names starting with @samp{-f} or with
48 @samp{-W}---for example, @samp{-fforce-mem},
49 @samp{-fstrength-reduce}, @samp{-Wformat} and so on.  Most of
50 these have both positive and negative forms; the negative form of
51 @samp{-ffoo} would be @samp{-fno-foo}.  This manual documents
52 only one of these two forms, whichever one is not the default.
53
54 @menu
55 * Option Summary::      Brief list of all options, without explanations.
56 * Overall Options::     Controlling the kind of output:
57                         an executable, object files, assembler files,
58                         or preprocessed source.
59 * Invoking G++::        Compiling C++ programs.
60 * C Dialect Options::   Controlling the variant of C language compiled.
61 * C++ Dialect Options:: Variations on C++.
62 * Warning Options::     How picky should the compiler be?
63 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
64 * Optimize Options::    How much optimization?
65 * Preprocessor Options:: Controlling header files and macro definitions.
66                          Also, getting dependency information for Make.
67 * Assembler Options::   Passing options to the assembler.
68 * Link Options::        Specifying libraries and so on.
69 * Directory Options::   Where to find header files and libraries.
70                         Where to find the compiler executable files.
71 * Spec Files::          How to pass switches to sub-processes.
72 * Target Options::      Running a cross-compiler, or an old version of GCC.
73 * Submodel Options::    Specifying minor hardware or convention variations,
74                         such as 68010 vs 68020.
75 * Code Gen Options::    Specifying conventions for function calls, data layout
76                         and register usage.
77 * Environment Variables:: Env vars that affect GCC.
78 * Running Protoize::    Automatically adding or removing function prototypes.
79 @end menu
80
81 @node Option Summary
82 @section Option Summary
83
84 Here is a summary of all the options, grouped by type.  Explanations are
85 in the following sections.
86
87 @table @emph
88 @item Overall Options
89 @xref{Overall Options,,Options Controlling the Kind of Output}.
90 @smallexample
91 -c  -S  -E  -o @var{file}  -pipe  -v  --help  -x @var{language}
92 @end smallexample
93
94 @item C Language Options
95 @xref{C Dialect Options,,Options Controlling C Dialect}.
96 @smallexample
97 -ansi -flang-isoc9x -fallow-single-precision  -fcond-mismatch  -fno-asm
98 -fno-builtin  -ffreestanding  -fhosted  -fsigned-bitfields  -fsigned-char
99 -funsigned-bitfields  -funsigned-char  -fwritable-strings
100 -traditional  -traditional-cpp  -trigraphs
101 @end smallexample
102
103 @item C++ Language Options
104 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
105 @smallexample
106 -fno-access-control  -fcheck-new  -fconserve-space  -fdollars-in-identifiers
107 -fno-elide-constructors  -fexternal-templates  -ffor-scope  
108 -fno-for-scope  -fno-gnu-keywords  -fguiding-decls
109 -fhonor-std -fhuge-objects  -fno-implicit-templates  -finit-priority
110 -fno-implement-inlines -fname-mangling-version-@var{n}  -fno-default-inline  
111 -foperator-names  -fno-optional-diags  -fpermissive -frepo  -fstrict-prototype
112 -fsquangle  -ftemplate-depth-@var{n}  -fthis-is-variable  -fvtable-thunks
113 -nostdinc++  -Wctor-dtor-privacy -Wno-deprecated -Weffc++  
114 -Wno-non-template-friend 
115 -Wnon-virtual-dtor  -Wold-style-cast  -Woverloaded-virtual  
116 -Wno-pmf-conversions  -Wreorder  -Wsign-promo  -Wsynth
117 @end smallexample
118
119 @item Warning Options
120 @xref{Warning Options,,Options to Request or Suppress Warnings}.
121 @smallexample
122 -fsyntax-only  -pedantic  -pedantic-errors
123 -w  -W  -Wall  -Waggregate-return  -Wbad-function-cast
124 -Wcast-align  -Wcast-qual  -Wchar-subscripts  -Wcomment
125 -Wconversion  -Werror  -Wformat
126 -Wid-clash-@var{len}  -Wimplicit -Wimplicit-int 
127 -Wimplicit-function-declaration  -Wimport
128 -Werror-implicit-function-declaration  -Winline
129 -Wlarger-than-@var{len}  -Wlong-long
130 -Wmain  -Wmissing-declarations  -Wmissing-noreturn
131 -Wmissing-prototypes  -Wmultichar  -Wnested-externs  -Wno-import  
132 -Wparentheses -Wpointer-arith  -Wredundant-decls
133 -Wreturn-type -Wshadow  -Wsign-compare  -Wstrict-prototypes  
134 -Wswitch  -Wtraditional  
135 -Wtrigraphs -Wundef  -Wuninitialized  -Wunknown-pragmas -Wunreachable-code 
136 -Wunused  -Wwrite-strings
137 @end smallexample
138
139 @item Debugging Options
140 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
141 @smallexample
142 -a  -ax  -d@var{letters}  -fdump-unnumbered -fdump-translation-unit-@var{file}
143 -fpretend-float -fprofile-arcs  -ftest-coverage
144 -g  -g@var{level}  -gcoff  -gdwarf  -gdwarf-1  -gdwarf-1+  -gdwarf-2
145 -ggdb  -gstabs  -gstabs+  -gxcoff  -gxcoff+
146 -p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name
147 -print-prog-name=@var{program}  -print-search-dirs  -save-temps
148 @end smallexample
149
150 @item Optimization Options
151 @xref{Optimize Options,,Options that Control Optimization}.
152 @smallexample
153 -falign-functions=@var{n}  -falign-labels=@var{n}  -falign-loops=@var{n} 
154 -falign-jumps=@var{n}  -fbranch-probabilities  
155 -fcaller-saves  -fcse-follow-jumps  -fcse-skip-blocks
156 -fdelayed-branch   -fexpensive-optimizations
157 -ffast-math  -ffloat-store  -fforce-addr  -fforce-mem
158 -fdata-sections  -ffunction-sections  -fgcse 
159 -finline-functions  -finline-limit=@var{n}  -fkeep-inline-functions
160 -fmove-all-movables  -fno-default-inline  -fno-defer-pop
161 -fno-function-cse  -fno-inline  -fno-peephole
162 -fomit-frame-pointer  -foptimize-register-moves  -fregmove
163 -frerun-cse-after-loop  -frerun-loop-opt  -freduce-all-givs
164 -fschedule-insns  -fschedule-insns2  -fstrength-reduce
165 -fstrict-aliasing  -fthread-jumps  -funroll-all-loops
166 -funroll-loops
167 -O  -O0  -O1  -O2  -O3 -Os
168 @end smallexample
169
170 @item Preprocessor Options
171 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
172 @smallexample
173 -A@var{question}(@var{answer})  -C  -dD  -dM  -dN
174 -D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H
175 -idirafter @var{dir}
176 -include @var{file}  -imacros @var{file}
177 -iprefix @var{file}  -iwithprefix @var{dir}
178 -iwithprefixbefore @var{dir}  -isystem @var{dir} -isystem-c++ @var{dir}
179 -M  -MD  -MM  -MMD  -MG  -nostdinc  -P  -trigraphs
180 -undef  -U@var{macro}  -Wp,@var{option}
181 @end smallexample
182
183 @item Assembler Option
184 @xref{Assembler Options,,Passing Options to the Assembler}.
185 @smallexample
186 -Wa,@var{option}
187 @end smallexample
188
189 @item Linker Options
190 @xref{Link Options,,Options for Linking}.
191 @smallexample
192 @var{object-file-name}  -l@var{library}
193 -nostartfiles  -nodefaultlibs  -nostdlib
194 -s  -static  -shared  -symbolic
195 -Wl,@var{option}  -Xlinker @var{option}
196 -u @var{symbol}
197 @end smallexample
198
199 @item Directory Options
200 @xref{Directory Options,,Options for Directory Search}.
201 @smallexample
202 -B@var{prefix}  -I@var{dir}  -I-  -L@var{dir}  -specs=@var{file}
203 @end smallexample
204
205 @item Target Options
206 @c I wrote this xref this way to avoid overfull hbox. -- rms
207 @xref{Target Options}.
208 @smallexample
209 -b @var{machine}  -V @var{version}
210 @end smallexample
211
212 @item Machine Dependent Options
213 @xref{Submodel Options,,Hardware Models and Configurations}.
214 @smallexample
215 @emph{M680x0 Options}
216 -m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040
217 -m68060  -mcpu32 -m5200  -m68881  -mbitfield  -mc68000  -mc68020  
218 -mfpa -mnobitfield  -mrtd  -mshort  -msoft-float  -mpcrel
219 -malign-int
220
221 @emph{VAX Options}
222 -mg  -mgnu  -munix
223
224 @emph{SPARC Options}
225 -mcpu=@var{cpu type}
226 -mtune=@var{cpu type}
227 -mcmodel=@var{code model}
228 -m32  -m64
229 -mapp-regs  -mbroken-saverestore  -mcypress  -mepilogue
230 -mflat  -mfpu  -mhard-float  -mhard-quad-float
231 -mimpure-text  -mlive-g0  -mno-app-regs  -mno-epilogue
232 -mno-flat  -mno-fpu  -mno-impure-text
233 -mno-stack-bias  -mno-unaligned-doubles
234 -msoft-float  -msoft-quad-float  -msparclite  -mstack-bias
235 -msupersparc  -munaligned-doubles  -mv8
236
237 @emph{Convex Options}
238 -mc1  -mc2  -mc32  -mc34  -mc38
239 -margcount  -mnoargcount
240 -mlong32  -mlong64
241 -mvolatile-cache  -mvolatile-nocache
242
243 @emph{AMD29K Options}
244 -m29000  -m29050  -mbw  -mnbw  -mdw  -mndw
245 -mlarge  -mnormal  -msmall
246 -mkernel-registers  -mno-reuse-arg-regs
247 -mno-stack-check  -mno-storem-bug
248 -mreuse-arg-regs  -msoft-float  -mstack-check
249 -mstorem-bug  -muser-registers
250
251 @emph{ARM Options}
252 -mapcs-frame -mno-apcs-frame
253 -mapcs-26 -mapcs-32
254 -mapcs-stack-check -mno-apcs-stack-check
255 -mapcs-float -mno-apcs-float
256 -mapcs-reentrant -mno-apcs-reentrant
257 -msched-prolog -mno-sched-prolog
258 -mlittle-endian -mbig-endian -mwords-little-endian
259 -mshort-load-bytes -mno-short-load-bytes -mshort-load-words -mno-short-load-words
260 -msoft-float -mhard-float -mfpe
261 -mthumb-interwork -mno-thumb-interwork
262 -mcpu= -march= -mfpe= 
263 -mstructure-size-boundary=
264 -mbsd -mxopen -mno-symrename
265 -mabort-on-noreturn
266 -mnop-fun-dllimport -mno-nop-fun-dllimport
267 -msingle-pic-base -mno-single-pic-base
268 -mpic-register=
269
270 @emph{Thumb Options}
271 -mtpcs-frame -mno-tpcs-frame
272 -mtpcs-leaf-frame -mno-tpcs-leaf-frame
273 -mlittle-endian  -mbig-endian
274 -mthumb-interwork -mno-thumb-interwork
275 -mstructure-size-boundary=
276 -mnop-fun-dllimport -mno-nop-fun-dllimport
277 -mcallee-super-interworking -mno-callee-super-interworking
278 -mcaller-super-interworking -mno-caller-super-interworking
279 -msingle-pic-base -mno-single-pic-base
280 -mpic-register=
281
282 @emph{MN10200 Options}
283 -mrelax
284
285 @emph{MN10300 Options}
286 -mmult-bug
287 -mno-mult-bug
288 -mrelax
289
290 @emph{M32R/D Options}
291 -mcode-model=@var{model type}  -msdata=@var{sdata type}
292 -G @var{num}
293
294 @emph{M88K Options}
295 -m88000  -m88100  -m88110  -mbig-pic
296 -mcheck-zero-division  -mhandle-large-shift
297 -midentify-revision  -mno-check-zero-division
298 -mno-ocs-debug-info  -mno-ocs-frame-position
299 -mno-optimize-arg-area  -mno-serialize-volatile
300 -mno-underscores  -mocs-debug-info
301 -mocs-frame-position  -moptimize-arg-area
302 -mserialize-volatile  -mshort-data-@var{num}  -msvr3
303 -msvr4  -mtrap-large-shift  -muse-div-instruction
304 -mversion-03.00  -mwarn-passed-structs
305
306 @emph{RS/6000 and PowerPC Options}
307 -mcpu=@var{cpu type}
308 -mtune=@var{cpu type}
309 -mpower  -mno-power  -mpower2  -mno-power2
310 -mpowerpc  -mpowerpc64  -mno-powerpc
311 -mpowerpc-gpopt  -mno-powerpc-gpopt
312 -mpowerpc-gfxopt  -mno-powerpc-gfxopt
313 -mnew-mnemonics  -mno-new-mnemonics
314 -mfull-toc   -mminimal-toc  -mno-fop-in-toc  -mno-sum-in-toc
315 -m64  -m32  -mxl-call  -mno-xl-call  -mthreads  -mpe
316 -msoft-float  -mhard-float  -mmultiple  -mno-multiple
317 -mstring  -mno-string  -mupdate  -mno-update
318 -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align
319 -mstrict-align  -mno-strict-align  -mrelocatable
320 -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib
321 -mtoc  -mno-toc -mlittle  -mlittle-endian  -mbig  -mbig-endian
322 -mcall-aix  -mcall-sysv  -mprototype  -mno-prototype
323 -msim  -mmvme  -mads  -myellowknife  -memb -msdata
324 -msdata=@var{opt}  -G @var{num}
325
326 @emph{RT Options}
327 -mcall-lib-mul  -mfp-arg-in-fpregs  -mfp-arg-in-gregs
328 -mfull-fp-blocks  -mhc-struct-return  -min-line-mul
329 -mminimum-fp-blocks  -mnohc-struct-return
330
331 @emph{MIPS Options}
332 -mabicalls  -mcpu=@var{cpu type}  -membedded-data
333 -membedded-pic  -mfp32  -mfp64  -mgas  -mgp32  -mgp64
334 -mgpopt  -mhalf-pic  -mhard-float  -mint64  -mips1
335 -mips2  -mips3 -mips4 -mlong64  -mlong32 -mlong-calls  -mmemcpy
336 -mmips-as  -mmips-tfile  -mno-abicalls
337 -mno-embedded-data  -mno-embedded-pic
338 -mno-gpopt  -mno-long-calls
339 -mno-memcpy  -mno-mips-tfile  -mno-rnames  -mno-stats
340 -mrnames  -msoft-float
341 -m4650  -msingle-float  -mmad
342 -mstats  -EL  -EB  -G @var{num}  -nocpp
343 -mabi=32 -mabi=n32 -mabi=64 -mabi=eabi
344
345 @emph{i386 Options}
346 -mcpu=@var{cpu type}
347 -march=@var{cpu type}
348 -mieee-fp  -mno-fancy-math-387
349 -mno-fp-ret-in-387  -msoft-float  -msvr3-shlib
350 -mno-wide-multiply  -mrtd  -malign-double
351 -mreg-alloc=@var{list}  -mregparm=@var{num}
352 -malign-jumps=@var{num}  -malign-loops=@var{num}
353 -malign-functions=@var{num} -mpreferred-stack-boundary=@var{num}
354
355 @emph{HPPA Options}
356 -march=@var{architecture type}
357 -mbig-switch  -mdisable-fpregs  -mdisable-indexing  
358 -mfast-indirect-calls -mgas  -mjump-in-delay  
359 -mlong-load-store  -mno-big-switch  -mno-disable-fpregs
360 -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas
361 -mno-jump-in-delay  -mno-long-load-store  
362 -mno-portable-runtime  -mno-soft-float
363 -mno-space-regs  -msoft-float  -mpa-risc-1-0  
364 -mpa-risc-1-1  -mpa-risc-2-0 -mportable-runtime
365 -mschedule=@var{cpu type}  -mspace-regs
366
367 @emph{Intel 960 Options}
368 -m@var{cpu type}  -masm-compat  -mclean-linkage
369 -mcode-align  -mcomplex-addr  -mleaf-procedures
370 -mic-compat  -mic2.0-compat  -mic3.0-compat
371 -mintel-asm  -mno-clean-linkage  -mno-code-align
372 -mno-complex-addr  -mno-leaf-procedures
373 -mno-old-align  -mno-strict-align  -mno-tail-call
374 -mnumerics  -mold-align  -msoft-float  -mstrict-align
375 -mtail-call
376
377 @emph{DEC Alpha Options}
378 -mfp-regs  -mno-fp-regs -mno-soft-float  -msoft-float
379 -malpha-as -mgas
380 -mieee  -mieee-with-inexact  -mieee-conformant
381 -mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode}
382 -mtrap-precision=@var{mode}  -mbuild-constants
383 -mcpu=@var{cpu type}
384 -mbwx -mno-bwx -mcix -mno-cix -mmax -mno-max
385 -mmemory-latency=@var{time}
386
387 @emph{Clipper Options}
388 -mc300  -mc400
389
390 @emph{H8/300 Options}
391 -mrelax  -mh -ms -mint32  -malign-300
392
393 @emph{SH Options}
394 -m1  -m2  -m3  -m3e  -mb  -ml  -mdalign -mrelax
395
396 @emph{System V Options}
397 -Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}
398
399 @emph{ARC Options}
400 -EB  -EL
401 -mmangle-cpu  -mcpu=@var{cpu}  -mtext=@var{text section}
402 -mdata=@var{data section}  -mrodata=@var{readonly data section}
403
404 @emph{TMS320C3x/C4x Options}
405 -mcpu=@var{cpu} -mbig -msmall -mregparm -mmemparm
406 -mfast-fix -mmpyi -mbk -mti -mdp-isr-reload
407 -mrpts=@var{count}  -mrptb -mdb -mloop-unsigned
408 -mparallel-insns -mparallel-mpy -mpreserve-float
409
410 @emph{V850 Options}
411 -mlong-calls -mno-long-calls -mep -mno-ep
412 -mprolog-function -mno-prolog-function -mspace
413 -mtda=@var{n} -msda=@var{n} -mzda=@var{n}
414 -mv850 -mbig-switch
415
416 @emph{NS32K Options}
417 -m32032 -m32332 -m32532 -m32081 -m32381 -mmult-add -mnomult-add
418 -msoft-float -mrtd -mnortd -mregparam -mnoregparam -msb -mnosb
419 -mbitfield -mnobitfield -mhimem -mnohimem
420 @end smallexample
421
422 @item Code Generation Options
423 @xref{Code Gen Options,,Options for Code Generation Conventions}.
424 @smallexample
425 -fcall-saved-@var{reg}  -fcall-used-@var{reg}
426 -fexceptions -ffixed-@var{reg}  -finhibit-size-directive
427 -fcheck-memory-usage  -fprefix-function-name
428 -fno-common  -fno-ident  -fno-gnu-linker
429 -fpcc-struct-return  -fpic  -fPIC
430 -freg-struct-return  -fshared-data  -fshort-enums
431 -fshort-double  -fvolatile  -fvolatile-global -fvolatile-static
432 -fverbose-asm -fpack-struct  -fstack-check
433 -fargument-alias  -fargument-noalias
434 -fargument-noalias-global
435 -fleading-underscore
436 @end smallexample
437 @end table
438
439 @menu
440 * Overall Options::     Controlling the kind of output:
441                         an executable, object files, assembler files,
442                         or preprocessed source.
443 * C Dialect Options::   Controlling the variant of C language compiled.
444 * C++ Dialect Options:: Variations on C++.
445 * Warning Options::     How picky should the compiler be?
446 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
447 * Optimize Options::    How much optimization?
448 * Preprocessor Options:: Controlling header files and macro definitions.
449                          Also, getting dependency information for Make.
450 * Assembler Options::   Passing options to the assembler.
451 * Link Options::        Specifying libraries and so on.
452 * Directory Options::   Where to find header files and libraries.
453                         Where to find the compiler executable files.
454 * Spec Files::          How to pass switches to sub-processes.
455 * Target Options::      Running a cross-compiler, or an old version of GCC.
456 @end menu
457
458 @node Overall Options
459 @section Options Controlling the Kind of Output
460
461 Compilation can involve up to four stages: preprocessing, compilation
462 proper, assembly and linking, always in that order.  The first three
463 stages apply to an individual source file, and end by producing an
464 object file; linking combines all the object files (those newly
465 compiled, and those specified as input) into an executable file.
466
467 @cindex file name suffix
468 For any given input file, the file name suffix determines what kind of
469 compilation is done:
470
471 @table @code
472 @item @var{file}.c
473 C source code which must be preprocessed.
474
475 @item @var{file}.i
476 C source code which should not be preprocessed.
477
478 @item @var{file}.ii
479 C++ source code which should not be preprocessed.
480
481 @item @var{file}.m
482 Objective-C source code.  Note that you must link with the library
483 @file{libobjc.a} to make an Objective-C program work.
484
485 @item @var{file}.h
486 C header file (not to be compiled or linked).
487
488 @item @var{file}.cc
489 @itemx @var{file}.cxx
490 @itemx @var{file}.cpp
491 @itemx @var{file}.C
492 C++ source code which must be preprocessed.  Note that in @samp{.cxx},
493 the last two letters must both be literally @samp{x}.  Likewise,
494 @samp{.C} refers to a literal capital C.
495
496 @item @var{file}.s
497 Assembler code.
498
499 @item @var{file}.S
500 Assembler code which must be preprocessed.
501
502 @item @var{other}
503 An object file to be fed straight into linking.
504 Any file name with no recognized suffix is treated this way.
505 @end table
506
507 You can specify the input language explicitly with the @samp{-x} option:
508
509 @table @code
510 @item -x @var{language}
511 Specify explicitly the @var{language} for the following input files
512 (rather than letting the compiler choose a default based on the file
513 name suffix).  This option applies to all following input files until
514 the next @samp{-x} option.  Possible values for @var{language} are:
515 @example
516 c  objective-c  c++
517 c-header  cpp-output  c++-cpp-output
518 assembler  assembler-with-cpp
519 @end example
520
521 @item -x none
522 Turn off any specification of a language, so that subsequent files are
523 handled according to their file name suffixes (as they are if @samp{-x}
524 has not been used at all).
525 @end table
526
527 If you only want some of the stages of compilation, you can use
528 @samp{-x} (or filename suffixes) to tell @code{gcc} where to start, and
529 one of the options @samp{-c}, @samp{-S}, or @samp{-E} to say where
530 @code{gcc} is to stop.  Note that some combinations (for example,
531 @samp{-x cpp-output -E} instruct @code{gcc} to do nothing at all.
532
533 @table @code
534 @item -c
535 Compile or assemble the source files, but do not link.  The linking
536 stage simply is not done.  The ultimate output is in the form of an
537 object file for each source file.
538
539 By default, the object file name for a source file is made by replacing
540 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
541
542 Unrecognized input files, not requiring compilation or assembly, are
543 ignored.
544
545 @item -S
546 Stop after the stage of compilation proper; do not assemble.  The output
547 is in the form of an assembler code file for each non-assembler input
548 file specified.
549
550 By default, the assembler file name for a source file is made by
551 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
552
553 Input files that don't require compilation are ignored.
554
555 @item -E
556 Stop after the preprocessing stage; do not run the compiler proper.  The
557 output is in the form of preprocessed source code, which is sent to the
558 standard output.
559
560 Input files which don't require preprocessing are ignored.
561
562 @cindex output file option
563 @item -o @var{file}
564 Place output in file @var{file}.  This applies regardless to whatever
565 sort of output is being produced, whether it be an executable file,
566 an object file, an assembler file or preprocessed C code.
567
568 Since only one output file can be specified, it does not make sense to
569 use @samp{-o} when compiling more than one input file, unless you are
570 producing an executable file as output.
571
572 If @samp{-o} is not specified, the default is to put an executable file
573 in @file{a.out}, the object file for @file{@var{source}.@var{suffix}} in
574 @file{@var{source}.o}, its assembler file in @file{@var{source}.s}, and
575 all preprocessed C source on standard output.@refill
576
577 @item -v
578 Print (on standard error output) the commands executed to run the stages
579 of compilation.  Also print the version number of the compiler driver
580 program and of the preprocessor and the compiler proper.
581
582 @item -pipe
583 Use pipes rather than temporary files for communication between the
584 various stages of compilation.  This fails to work on some systems where
585 the assembler is unable to read from a pipe; but the GNU assembler has
586 no trouble.
587
588 @item --help
589 Print (on the standard output) a description of the command line options
590 understood by @code{gcc}.  If the @code{-v} option is also specified
591 then @code{--help} will also be passed on to the various processes
592 invoked by @code{gcc}, so that they can display the command line options
593 they accept.  If the @code{-W} option is also specified then command
594 line options which have no documentation associated with them will also
595 be displayed.
596 @end table
597
598 @node Invoking G++
599 @section Compiling C++ Programs
600
601 @cindex suffixes for C++ source
602 @cindex C++ source file suffixes
603 C++ source files conventionally use one of the suffixes @samp{.C},
604 @samp{.cc}, @samp{.cpp}, @samp{.c++}, @samp{.cp}, or @samp{.cxx};
605 preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
606 files with these names and compiles them as C++ programs even if you
607 call the compiler the same way as for compiling C programs (usually with
608 the name @code{gcc}).
609
610 @findex g++
611 @findex c++
612 However, C++ programs often require class libraries as well as a
613 compiler that understands the C++ language---and under some
614 circumstances, you might want to compile programs from standard input,
615 or otherwise without a suffix that flags them as C++ programs.
616 @code{g++} is a program that calls GCC with the default language
617 set to C++, and automatically specifies linking against the C++
618 library.  On many systems, the script @code{g++} is also
619 installed with the name @code{c++}.
620
621 @cindex invoking @code{g++}
622 When you compile C++ programs, you may specify many of the same
623 command-line options that you use for compiling programs in any
624 language; or command-line options meaningful for C and related
625 languages; or options that are meaningful only for C++ programs.
626 @xref{C Dialect Options,,Options Controlling C Dialect}, for
627 explanations of options for languages related to C.
628 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
629 explanations of options that are meaningful only for C++ programs.
630
631 @node C Dialect Options
632 @section Options Controlling C Dialect
633 @cindex dialect options
634 @cindex language dialect options
635 @cindex options, dialect
636
637 The following options control the dialect of C (or languages derived
638 from C, such as C++ and Objective C) that the compiler accepts:
639
640 @table @code
641 @cindex ANSI support
642 @item -ansi
643 In C mode, support all ANSI standard C programs.  In C++ mode,
644 remove GNU extensions that conflict with ANSI C++.
645 @c shouldn't we be saying "ISO"?
646
647 This turns off certain features of GCC that are incompatible with ANSI
648 C (when compiling C code), or of ANSI standard C++ (when compiling C++ code),
649 such as the @code{asm} and @code{typeof} keywords, and
650 predefined macros such as @code{unix} and @code{vax} that identify the
651 type of system you are using.  It also enables the undesirable and
652 rarely used ANSI trigraph feature.  For the C compiler, 
653 it disables recognition of C++ style @samp{//} comments as well as
654 the @code{inline} keyword.  For the C++ compiler,
655 @samp{-foperator-names} is enabled as well.
656
657
658 The alternate keywords @code{__asm__}, @code{__extension__},
659 @code{__inline__} and @code{__typeof__} continue to work despite
660 @samp{-ansi}.  You would not want to use them in an ANSI C program, of
661 course, but it is useful to put them in header files that might be included
662 in compilations done with @samp{-ansi}.  Alternate predefined macros
663 such as @code{__unix__} and @code{__vax__} are also available, with or
664 without @samp{-ansi}.
665
666 The @samp{-ansi} option does not cause non-ANSI programs to be
667 rejected gratuitously.  For that, @samp{-pedantic} is required in
668 addition to @samp{-ansi}.  @xref{Warning Options}.
669
670 The macro @code{__STRICT_ANSI__} is predefined when the @samp{-ansi}
671 option is used.  Some header files may notice this macro and refrain
672 from declaring certain functions or defining certain macros that the
673 ANSI standard doesn't call for; this is to avoid interfering with any
674 programs that might use these names for other things.
675
676 The functions @code{alloca}, @code{abort}, @code{exit}, and
677 @code{_exit} are not builtin functions when @samp{-ansi} is used.
678
679 @item -flang-isoc9x
680 Enable support for features found in the C9X standard.  In particular,
681 enable support for the C9X @code{restrict} keyword.  
682
683 Even when this option is not specified, you can still use some C9X
684 features in so far as they do not conflict with previous C standards.
685 For example, you may use @code{__restrict__} even when -flang-isoc9x
686 is not specified. 
687
688 @item -fno-asm
689 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
690 keyword, so that code can use these words as identifiers.  You can use
691 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
692 instead.  @samp{-ansi} implies @samp{-fno-asm}.
693
694 In C++, this switch only affects the @code{typeof} keyword, since
695 @code{asm} and @code{inline} are standard keywords.  You may want to
696 use the @samp{-fno-gnu-keywords} flag instead, as it also disables the
697 other, C++-specific, extension keywords such as @code{headof}.
698
699 @item -fno-builtin
700 @cindex builtin functions
701 @findex abort
702 @findex abs
703 @findex alloca
704 @findex cos
705 @findex exit
706 @findex fabs
707 @findex ffs
708 @findex labs
709 @findex memcmp
710 @findex memcpy
711 @findex sin
712 @findex sqrt
713 @findex strcmp
714 @findex strcpy
715 @findex strlen
716 Don't recognize builtin functions that do not begin with @samp{__builtin_}
717 as prefix.  Currently, the functions affected include @code{abort},
718 @code{abs}, @code{alloca}, @code{cos}, @code{exit}, @code{fabs},
719 @code{ffs}, @code{labs}, @code{memcmp}, @code{memcpy}, @code{sin},
720 @code{sqrt}, @code{strcmp}, @code{strcpy}, and @code{strlen}.
721
722 GCC normally generates special code to handle certain builtin functions
723 more efficiently; for instance, calls to @code{alloca} may become single
724 instructions that adjust the stack directly, and calls to @code{memcpy}
725 may become inline copy loops.  The resulting code is often both smaller
726 and faster, but since the function calls no longer appear as such, you
727 cannot set a breakpoint on those calls, nor can you change the behavior
728 of the functions by linking with a different library.
729
730 The @samp{-ansi} option prevents @code{alloca} and @code{ffs} from being
731 builtin functions, since these functions do not have an ANSI standard
732 meaning.
733
734 @item -fhosted
735 @cindex hosted environment
736
737 Assert that compilation takes place in a hosted environment.  This implies
738 @samp{-fbuiltin}.  A hosted environment is one in which the
739 entire standard library is available, and in which @code{main} has a return
740 type of @code{int}.  Examples are nearly everything except a kernel.
741 This is equivalent to @samp{-fno-freestanding}.
742
743 @item -ffreestanding
744 @cindex hosted environment
745
746 Assert that compilation takes place in a freestanding environment.  This
747 implies @samp{-fno-builtin}.  A freestanding environment
748 is one in which the standard library may not exist, and program startup may
749 not necessarily be at @code{main}.  The most obvious example is an OS kernel.
750 This is equivalent to @samp{-fno-hosted}.
751
752 @item -trigraphs
753 Support ANSI C trigraphs.  You don't want to know about this
754 brain-damage.  The @samp{-ansi} option implies @samp{-trigraphs}.
755
756 @cindex traditional C language
757 @cindex C language, traditional
758 @item -traditional
759 Attempt to support some aspects of traditional C compilers.
760 Specifically:
761
762 @itemize @bullet
763 @item
764 All @code{extern} declarations take effect globally even if they
765 are written inside of a function definition.  This includes implicit
766 declarations of functions.
767
768 @item
769 The newer keywords @code{typeof}, @code{inline}, @code{signed}, @code{const}
770 and @code{volatile} are not recognized.  (You can still use the
771 alternative keywords such as @code{__typeof__}, @code{__inline__}, and
772 so on.)
773
774 @item
775 Comparisons between pointers and integers are always allowed.
776
777 @item
778 Integer types @code{unsigned short} and @code{unsigned char} promote
779 to @code{unsigned int}.
780
781 @item
782 Out-of-range floating point literals are not an error.
783
784 @item
785 Certain constructs which ANSI regards as a single invalid preprocessing
786 number, such as @samp{0xe-0xd}, are treated as expressions instead.
787
788 @item
789 String ``constants'' are not necessarily constant; they are stored in
790 writable space, and identical looking constants are allocated
791 separately.  (This is the same as the effect of
792 @samp{-fwritable-strings}.)
793
794 @cindex @code{longjmp} and automatic variables
795 @item
796 All automatic variables not declared @code{register} are preserved by
797 @code{longjmp}.  Ordinarily, GNU C follows ANSI C: automatic variables
798 not declared @code{volatile} may be clobbered.
799
800 @item
801 @kindex \x
802 @kindex \a
803 @cindex escape sequences, traditional
804 The character escape sequences @samp{\x} and @samp{\a} evaluate as the
805 literal characters @samp{x} and @samp{a} respectively.  Without
806 @w{@samp{-traditional}}, @samp{\x} is a prefix for the hexadecimal
807 representation of a character, and @samp{\a} produces a bell.
808 @end itemize
809
810 You may wish to use @samp{-fno-builtin} as well as @samp{-traditional}
811 if your program uses names that are normally GNU C builtin functions for
812 other purposes of its own.
813
814 You cannot use @samp{-traditional} if you include any header files that
815 rely on ANSI C features.  Some vendors are starting to ship systems with
816 ANSI C header files and you cannot use @samp{-traditional} on such
817 systems to compile files that include any system headers.
818
819 The @samp{-traditional} option also enables @samp{-traditional-cpp},
820 which is described next.
821
822 @item -traditional-cpp
823 Attempt to support some aspects of traditional C preprocessors.
824 Specifically:
825
826 @itemize @bullet
827 @item
828 Comments convert to nothing at all, rather than to a space.  This allows
829 traditional token concatenation.
830
831 @item
832 In a preprocessing directive, the @samp{#} symbol must appear as the first
833 character of a line.
834
835 @item
836 Macro arguments are recognized within string constants in a macro
837 definition (and their values are stringified, though without additional
838 quote marks, when they appear in such a context).  The preprocessor
839 always considers a string constant to end at a newline.
840
841 @item
842 @cindex detecting @w{@samp{-traditional}}
843 The predefined macro @code{__STDC__} is not defined when you use
844 @samp{-traditional}, but @code{__GNUC__} is (since the GNU extensions
845 which @code{__GNUC__} indicates are not affected by
846 @samp{-traditional}).  If you need to write header files that work
847 differently depending on whether @samp{-traditional} is in use, by
848 testing both of these predefined macros you can distinguish four
849 situations: GNU C, traditional GNU C, other ANSI C compilers, and other
850 old C compilers.  The predefined macro @code{__STDC_VERSION__} is also
851 not defined when you use @samp{-traditional}.  @xref{Standard
852 Predefined,,Standard Predefined Macros,cpp.info,The C Preprocessor},
853 for more discussion of these and other predefined macros.
854
855 @item
856 @cindex string constants vs newline
857 @cindex newline vs string constants
858 The preprocessor considers a string constant to end at a newline (unless
859 the newline is escaped with @samp{\}).  (Without @w{@samp{-traditional}},
860 string constants can contain the newline character as typed.)
861 @end itemize
862
863 @item -fcond-mismatch
864 Allow conditional expressions with mismatched types in the second and
865 third arguments.  The value of such an expression is void.
866
867 @item -funsigned-char
868 Let the type @code{char} be unsigned, like @code{unsigned char}.
869
870 Each kind of machine has a default for what @code{char} should
871 be.  It is either like @code{unsigned char} by default or like
872 @code{signed char} by default.
873
874 Ideally, a portable program should always use @code{signed char} or
875 @code{unsigned char} when it depends on the signedness of an object.
876 But many programs have been written to use plain @code{char} and
877 expect it to be signed, or expect it to be unsigned, depending on the
878 machines they were written for.  This option, and its inverse, let you
879 make such a program work with the opposite default.
880
881 The type @code{char} is always a distinct type from each of
882 @code{signed char} or @code{unsigned char}, even though its behavior
883 is always just like one of those two.
884
885 @item -fsigned-char
886 Let the type @code{char} be signed, like @code{signed char}.
887
888 Note that this is equivalent to @samp{-fno-unsigned-char}, which is
889 the negative form of @samp{-funsigned-char}.  Likewise, the option
890 @samp{-fno-signed-char} is equivalent to @samp{-funsigned-char}.
891
892 You may wish to use @samp{-fno-builtin} as well as @samp{-traditional}
893 if your program uses names that are normally GNU C builtin functions for
894 other purposes of its own.
895
896 You cannot use @samp{-traditional} if you include any header files that
897 rely on ANSI C features.  Some vendors are starting to ship systems with
898 ANSI C header files and you cannot use @samp{-traditional} on such
899 systems to compile files that include any system headers.
900
901 @item -fsigned-bitfields
902 @itemx -funsigned-bitfields
903 @itemx -fno-signed-bitfields
904 @itemx -fno-unsigned-bitfields
905 These options control whether a bitfield is signed or unsigned, when the
906 declaration does not use either @code{signed} or @code{unsigned}.  By
907 default, such a bitfield is signed, because this is consistent: the
908 basic integer types such as @code{int} are signed types.
909
910 However, when @samp{-traditional} is used, bitfields are all unsigned
911 no matter what.
912
913 @item -fwritable-strings
914 Store string constants in the writable data segment and don't uniquize
915 them.  This is for compatibility with old programs which assume they can
916 write into string constants.  The option @samp{-traditional} also has
917 this effect.
918
919 Writing into string constants is a very bad idea; ``constants'' should
920 be constant.
921
922 @item -fallow-single-precision
923 Do not promote single precision math operations to double precision,
924 even when compiling with @samp{-traditional}.
925
926 Traditional K&R C promotes all floating point operations to double
927 precision, regardless of the sizes of the operands.   On the
928 architecture for which you are compiling, single precision may be faster
929 than double precision.   If you must use @samp{-traditional}, but want
930 to use single precision operations when the operands are single
931 precision, use this option.   This option has no effect when compiling
932 with ANSI or GNU C conventions (the default).
933
934 @end table
935
936 @node C++ Dialect Options
937 @section Options Controlling C++ Dialect
938
939 @cindex compiler options, C++
940 @cindex C++ options, command line
941 @cindex options, C++
942 This section describes the command-line options that are only meaningful
943 for C++ programs; but you can also use most of the GNU compiler options
944 regardless of what language your program is in.  For example, you
945 might compile a file @code{firstClass.C} like this:
946
947 @example
948 g++ -g -frepo -O -c firstClass.C
949 @end example
950
951 @noindent
952 In this example, only @samp{-frepo} is an option meant
953 only for C++ programs; you can use the other options with any
954 language supported by GCC.
955
956 Here is a list of options that are @emph{only} for compiling C++ programs:
957
958 @table @code
959 @item -fno-access-control
960 Turn off all access checking.  This switch is mainly useful for working
961 around bugs in the access control code.
962
963 @item -fcheck-new
964 Check that the pointer returned by @code{operator new} is non-null
965 before attempting to modify the storage allocated.  The current Working
966 Paper requires that @code{operator new} never return a null pointer, so
967 this check is normally unnecessary.
968
969 An alternative to using this option is to specify that your
970 @code{operator new} does not throw any exceptions; if you declare it
971 @samp{throw()}, g++ will check the return value.  See also @samp{new
972 (nothrow)}.
973
974 @item -fconserve-space
975 Put uninitialized or runtime-initialized global variables into the
976 common segment, as C does.  This saves space in the executable at the
977 cost of not diagnosing duplicate definitions.  If you compile with this
978 flag and your program mysteriously crashes after @code{main()} has
979 completed, you may have an object that is being destroyed twice because
980 two definitions were merged.
981
982 This option is no longer useful on most targets, now that support has
983 been added for putting variables into BSS without making them common.
984
985 @item -fdollars-in-identifiers
986 Accept @samp{$} in identifiers.  You can also explicitly prohibit use of
987 @samp{$} with the option @samp{-fno-dollars-in-identifiers}.  (GNU C allows
988 @samp{$} by default on most target systems, but there are a few exceptions.)
989 Traditional C allowed the character @samp{$} to form part of
990 identifiers.  However, ANSI C and C++ forbid @samp{$} in identifiers.
991
992 @item -fno-elide-constructors
993 The C++ standard allows an implementation to omit creating a temporary
994 which is only used to initialize another object of the same type.
995 Specifying this option disables that optimization, and forces g++ to
996 call the copy constructor in all cases.
997
998 @item -fexternal-templates
999 Cause template instantiations to obey @samp{#pragma interface} and
1000 @samp{implementation}; template instances are emitted or not according
1001 to the location of the template definition.  @xref{Template
1002 Instantiation}, for more information.
1003
1004 This option is deprecated.
1005
1006 @item -falt-external-templates
1007 Similar to -fexternal-templates, but template instances are emitted or
1008 not according to the place where they are first instantiated.
1009 @xref{Template Instantiation}, for more information.
1010
1011 This option is deprecated.
1012
1013 @item -ffor-scope
1014 @itemx -fno-for-scope
1015 If -ffor-scope is specified, the scope of variables declared in
1016 a @i{for-init-statement} is limited to the @samp{for} loop itself,
1017 as specified by the draft C++ standard.
1018 If -fno-for-scope is specified, the scope of variables declared in
1019 a @i{for-init-statement} extends to the end of the enclosing scope,
1020 as was the case in old versions of gcc, and other (traditional)
1021 implementations of C++.
1022
1023 The default if neither flag is given to follow the standard,
1024 but to allow and give a warning for old-style code that would
1025 otherwise be invalid, or have different behavior.
1026
1027 @item -fno-gnu-keywords
1028 Do not recognize @code{classof}, @code{headof}, or @code{typeof} as a
1029 keyword, so that code can use these words as identifiers.  You can use
1030 the keywords @code{__classof__}, @code{__headof__}, and
1031 @code{__typeof__} instead.  @samp{-ansi} implies
1032 @samp{-fno-gnu-keywords}.
1033
1034 @item -fguiding-decls
1035 Treat a function declaration with the same type as a potential function
1036 template instantiation as though it declares that instantiation, not a
1037 normal function.  If a definition is given for the function later in the
1038 translation unit (or another translation unit if the target supports
1039 weak symbols), that definition will be used; otherwise the template will
1040 be instantiated.  This behavior reflects the C++ language prior to
1041 September 1996, when guiding declarations were removed.
1042
1043 This option implies @samp{-fname-mangling-version-0}, and will not work
1044 with other name mangling versions.  Like all options that change the
1045 ABI, all C++ code, @emph{including libgcc.a} must be built with the same
1046 setting of this option.
1047
1048 @item -fhonor-std
1049 Treat the @code{namespace std} as a namespace, instead of ignoring
1050 it. For compatibility with earlier versions of g++, the compiler will,
1051 by default, ignore @code{namespace-declarations},
1052 @code{using-declarations}, @code{using-directives}, and
1053 @code{namespace-names}, if they involve @code{std}.
1054
1055 @item -fhuge-objects
1056 Support virtual function calls for objects that exceed the size
1057 representable by a @samp{short int}.  Users should not use this flag by
1058 default; if you need to use it, the compiler will tell you so.
1059
1060 This flag is not useful when compiling with -fvtable-thunks.
1061
1062 Like all options that change the ABI, all C++ code, @emph{including
1063 libgcc} must be built with the same setting of this option.
1064
1065 @item -fno-implicit-templates
1066 Never emit code for non-inline templates which are instantiated
1067 implicitly (i.e. by use); only emit code for explicit instantiations.
1068 @xref{Template Instantiation}, for more information.
1069
1070 @item -fno-implicit-inline-templates
1071 Don't emit code for implicit instantiations of inline templates, either.
1072 The default is to handle inlines differently so that compiles with and
1073 without optimization will need the same set of explicit instantiations.
1074
1075 @item -finit-priority
1076 Support @samp{__attribute__ ((init_priority (n)))} for controlling the
1077 order of initialization of file-scope objects.  On ELF targets, this
1078 requires GNU ld 2.10 or later.
1079
1080 @item -fno-implement-inlines
1081 To save space, do not emit out-of-line copies of inline functions
1082 controlled by @samp{#pragma implementation}.  This will cause linker
1083 errors if these functions are not inlined everywhere they are called.
1084
1085 @item -fms-extensions
1086 Disable pedwarns about constructs used in MFC, such as implicit int and
1087 getting a pointer to member function via non-standard syntax.
1088
1089 @item -fname-mangling-version-@var{n}
1090 Control the way in which names are mangled.  Version 0 is compatible
1091 with versions of g++ before 2.8.  Version 1 is the default.  Version 1
1092 will allow correct mangling of function templates.  For example, 
1093 version 0 mangling does not mangle foo<int, double> and foo<int, char>
1094 given this declaration:
1095
1096 @example
1097 template <class T, class U> void foo(T t);
1098 @end example
1099
1100 Like all options that change the ABI, all C++ code, @emph{including
1101 libgcc} must be built with the same setting of this option.
1102
1103 @item -foperator-names
1104 Recognize the operator name keywords @code{and}, @code{bitand},
1105 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
1106 synonyms for the symbols they refer to.  @samp{-ansi} implies
1107 @samp{-foperator-names}.
1108
1109 @item -fno-optional-diags
1110 Disable diagnostics that the standard says a compiler does not need to
1111 issue.  Currently, the only such diagnostic issued by g++ is the one for
1112 a name having multiple meanings within a class.
1113
1114 @item -fpermissive
1115 Downgrade messages about nonconformant code from errors to warnings.  By
1116 default, g++ effectively sets @samp{-pedantic-errors} without
1117 @samp{-pedantic}; this option reverses that.  This behavior and this
1118 option are superseded by @samp{-pedantic}, which works as it does for GNU C.
1119
1120 @item -frepo
1121 Enable automatic template instantiation.  This option also implies
1122 @samp{-fno-implicit-templates}.  @xref{Template Instantiation}, for more
1123 information.
1124
1125 @item -fno-rtti
1126 Disable generation of the information used by C++ runtime type
1127 identification features (@samp{dynamic_cast} and @samp{typeid}).  If you
1128 don't use those parts of the language (or exception handling, which uses
1129 @samp{dynamic_cast} internally), you can save some space by using this
1130 flag.
1131
1132 @item -fstrict-prototype
1133 Within an @samp{extern "C"} linkage specification, treat a function
1134 declaration with no arguments, such as @samp{int foo ();}, as declaring
1135 the function to take no arguments.  Normally, such a declaration means
1136 that the function @code{foo} can take any combination of arguments, as
1137 in C.  @samp{-pedantic} implies @samp{-fstrict-prototype} unless
1138 overridden with @samp{-fno-strict-prototype}.
1139
1140 Specifying this option will also suppress implicit declarations of
1141 functions.
1142
1143 This flag no longer affects declarations with C++ linkage.
1144
1145 @item -fsquangle
1146 @itemx -fno-squangle
1147 @samp{-fsquangle} will enable a compressed form of name mangling for
1148 identifiers. In particular, it helps to shorten very long names by recognizing
1149 types and class names which occur more than once, replacing them with special
1150 short ID codes.  This option also requires any C++ libraries being used to
1151 be compiled with this option as well.  The compiler has this disabled (the
1152 equivalent of @samp{-fno-squangle}) by default.
1153
1154 Like all options that change the ABI, all C++ code, @emph{including
1155 libgcc.a} must be built with the same setting of this option.
1156
1157 @item -ftemplate-depth-@var{n}
1158 Set the maximum instantiation depth for template classes to @var{n}.
1159 A limit on the template instantiation depth is needed to detect
1160 endless recursions during template class instantiation. ANSI/ISO C++
1161 conforming programs must not rely on a maximum depth greater than 17.
1162
1163 @item -fthis-is-variable
1164 Permit assignment to @code{this}.  The incorporation of user-defined
1165 free store management into C++ has made assignment to @samp{this} an
1166 anachronism.  Therefore, by default it is invalid to assign to
1167 @code{this} within a class member function; that is, GNU C++ treats
1168 @samp{this} in a member function of class @code{X} as a non-lvalue of
1169 type @samp{X *}.  However, for backwards compatibility, you can make it
1170 valid with @samp{-fthis-is-variable}.
1171
1172 @item -fvtable-thunks
1173 Use @samp{thunks} to implement the virtual function dispatch table
1174 (@samp{vtable}).  The traditional (cfront-style) approach to
1175 implementing vtables was to store a pointer to the function and two
1176 offsets for adjusting the @samp{this} pointer at the call site.  Newer
1177 implementations store a single pointer to a @samp{thunk} function which
1178 does any necessary adjustment and then calls the target function.
1179
1180 This option also enables a heuristic for controlling emission of
1181 vtables; if a class has any non-inline virtual functions, the vtable
1182 will be emitted in the translation unit containing the first one of
1183 those.
1184
1185 Like all options that change the ABI, all C++ code, @emph{including
1186 libgcc.a} must be built with the same setting of this option.
1187
1188 @item -nostdinc++
1189 Do not search for header files in the standard directories specific to
1190 C++, but do still search the other standard directories.  (This option
1191 is used when building the C++ library.)
1192 @end table
1193
1194 In addition, these optimization, warning, and code generation options
1195 have meanings only for C++ programs:
1196
1197 @table @code
1198 @item -fno-default-inline
1199 Do not assume @samp{inline} for functions defined inside a class scope.
1200 @xref{Optimize Options,,Options That Control Optimization}.  Note that these
1201 functions will have linkage like inline functions; they just won't be
1202 inlined by default.
1203
1204 @item -Wctor-dtor-privacy (C++ only)
1205 Warn when a class seems unusable, because all the constructors or
1206 destructors in a class are private and the class has no friends or
1207 public static member functions.
1208
1209 @item -Wnon-virtual-dtor (C++ only)
1210 Warn when a class declares a non-virtual destructor that should probably
1211 be virtual, because it looks like the class will be used polymorphically.
1212
1213 @item -Wreorder (C++ only)
1214 @cindex reordering, warning
1215 @cindex warning for reordering of member initializers
1216 Warn when the order of member initializers given in the code does not
1217 match the order in which they must be executed.  For instance:
1218
1219 @smallexample
1220 struct A @{
1221   int i;
1222   int j;
1223   A(): j (0), i (1) @{ @}
1224 @};
1225 @end smallexample
1226
1227 Here the compiler will warn that the member initializers for @samp{i}
1228 and @samp{j} will be rearranged to match the declaration order of the
1229 members.
1230 @end table
1231
1232 The following @samp{-W@dots{}} options are not affected by @samp{-Wall}.
1233
1234 @table @code
1235 @item -Weffc++ (C++ only)
1236 Warn about violations of various style guidelines from Scott Meyers'
1237 @cite{Effective C++} books.  If you use this option, you should be aware
1238 that the standard library headers do not obey all of these guidelines;
1239 you can use @samp{grep -v} to filter out those warnings.
1240
1241 @item -Wno-deprecated (C++ only)
1242 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
1243
1244 @item -Wno-non-template-friend (C++ only)
1245 Disable warnings when non-templatized friend functions are declared
1246 within a template. With the advent of explicit template specification
1247 support in g++, if the name of the friend is an unqualified-id (ie,
1248 @samp{friend foo(int)}), the C++ language specification demands that the
1249 friend declare or define an ordinary, nontemplate function. (Section
1250 14.5.3). Before g++ implemented explicit specification, unqualified-ids
1251 could be interpreted as a particular specialization of a templatized
1252 function. Because this non-conforming behavior is no longer the default
1253 behavior for g++, @samp{-Wnon-template-friend} allows the compiler to
1254 check existing code for potential trouble spots, and is on by default.
1255 This new compiler behavior can also be turned off with the flag
1256 @samp{-fguiding-decls}, which activates the older, non-specification
1257 compiler code, or with @samp{-Wno-non-template-friend} which keeps the
1258 conformant compiler code but disables the helpful warning.
1259
1260 @item -Wold-style-cast (C++ only)
1261 Warn if an old-style (C-style) cast is used within a C++ program.  The
1262 new-style casts (@samp{static_cast}, @samp{reinterpret_cast}, and
1263 @samp{const_cast}) are less vulnerable to unintended effects.
1264
1265 @item -Woverloaded-virtual (C++ only)
1266 @cindex overloaded virtual fn, warning
1267 @cindex warning for overloaded virtual fn
1268 Warn when a derived class function declaration may be an error in
1269 defining a virtual function.  In a derived class, the
1270 definitions of virtual functions must match the type signature of a
1271 virtual function declared in the base class.  With this option, the
1272 compiler warns when you define a function with the same name as a
1273 virtual function, but with a type signature that does not match any
1274 declarations from the base class.
1275
1276 @item -Wno-pmf-conversions (C++ only)
1277 Disable the diagnostic for converting a bound pointer to member function
1278 to a plain pointer.
1279
1280 @item -Wsign-promo (C++ only)
1281 Warn when overload resolution chooses a promotion from unsigned or
1282 enumeral type to a signed type over a conversion to an unsigned type of
1283 the same size.  Previous versions of g++ would try to preserve
1284 unsignedness, but the standard mandates the current behavior.
1285
1286 @item -Wsynth (C++ only)
1287 @cindex warning for synthesized methods
1288 @cindex synthesized methods, warning
1289 Warn when g++'s synthesis behavior does not match that of cfront.  For
1290 instance:
1291
1292 @smallexample
1293 struct A @{
1294   operator int ();
1295   A& operator = (int);
1296 @};
1297
1298 main ()
1299 @{
1300   A a,b;
1301   a = b;
1302 @}
1303 @end smallexample
1304
1305 In this example, g++ will synthesize a default @samp{A& operator =
1306 (const A&);}, while cfront will use the user-defined @samp{operator =}.
1307 @end table
1308
1309 @node Warning Options
1310 @section Options to Request or Suppress Warnings
1311 @cindex options to control warnings
1312 @cindex warning messages
1313 @cindex messages, warning
1314 @cindex suppressing warnings
1315
1316 Warnings are diagnostic messages that report constructions which
1317 are not inherently erroneous but which are risky or suggest there
1318 may have been an error.
1319
1320 You can request many specific warnings with options beginning @samp{-W},
1321 for example @samp{-Wimplicit} to request warnings on implicit
1322 declarations.  Each of these specific warning options also has a
1323 negative form beginning @samp{-Wno-} to turn off warnings;
1324 for example, @samp{-Wno-implicit}.  This manual lists only one of the
1325 two forms, whichever is not the default.
1326
1327 These options control the amount and kinds of warnings produced by GCC:
1328
1329 @table @code
1330 @cindex syntax checking
1331 @item -fsyntax-only
1332 Check the code for syntax errors, but don't do anything beyond that.
1333
1334 @item -pedantic
1335 Issue all the warnings demanded by strict ANSI C and ISO C++;
1336 reject all programs that use forbidden extensions.
1337
1338 Valid ANSI C and ISO C++ programs should compile properly with or without
1339 this option (though a rare few will require @samp{-ansi}).  However,
1340 without this option, certain GNU extensions and traditional C and C++
1341 features are supported as well.  With this option, they are rejected.
1342
1343 @samp{-pedantic} does not cause warning messages for use of the
1344 alternate keywords whose names begin and end with @samp{__}.  Pedantic
1345 warnings are also disabled in the expression that follows
1346 @code{__extension__}.  However, only system header files should use
1347 these escape routes; application programs should avoid them.
1348 @xref{Alternate Keywords}.
1349
1350 This option is not intended to be @i{useful}; it exists only to satisfy
1351 pedants who would otherwise claim that GCC fails to support the ANSI
1352 standard.
1353
1354 Some users try to use @samp{-pedantic} to check programs for strict ANSI
1355 C conformance.  They soon find that it does not do quite what they want:
1356 it finds some non-ANSI practices, but not all---only those for which
1357 ANSI C @emph{requires} a diagnostic.
1358
1359 A feature to report any failure to conform to ANSI C might be useful in
1360 some instances, but would require considerable additional work and would
1361 be quite different from @samp{-pedantic}.  We don't have plans to
1362 support such a feature in the near future.
1363
1364 @item -pedantic-errors
1365 Like @samp{-pedantic}, except that errors are produced rather than
1366 warnings.
1367
1368 @item -w
1369 Inhibit all warning messages.
1370
1371 @item -Wno-import
1372 Inhibit warning messages about the use of @samp{#import}.
1373
1374 @item -Wchar-subscripts
1375 Warn if an array subscript has type @code{char}.  This is a common cause
1376 of error, as programmers often forget that this type is signed on some
1377 machines.
1378
1379 @item -Wcomment
1380 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
1381 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
1382
1383 @item -Wformat
1384 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
1385 the arguments supplied have types appropriate to the format string
1386 specified.
1387
1388 @item -Wimplicit-int
1389 Warn when a declaration does not specify a type.
1390
1391 @item -Wimplicit-function-declaration
1392 @itemx -Werror-implicit-function-declaration
1393 Give a warning (or error) whenever a function is used before being
1394 declared.
1395
1396 @item -Wimplicit
1397 Same as @samp{-Wimplicit-int} and @samp{-Wimplicit-function-}@*
1398 @samp{declaration}.
1399
1400 @item -Wmain
1401 Warn if the type of @samp{main} is suspicious.  @samp{main} should be a
1402 function with external linkage, returning int, taking either zero
1403 arguments, two, or three arguments of appropriate types.
1404
1405 @item -Wmultichar
1406 Warn if a multicharacter constant (@samp{'FOOF'}) is used.  Usually they
1407 indicate a typo in the user's code, as they have implementation-defined
1408 values, and should not be used in portable code.
1409   
1410 @item -Wparentheses
1411 Warn if parentheses are omitted in certain contexts, such
1412 as when there is an assignment in a context where a truth value
1413 is expected, or when operators are nested whose precedence people
1414 often get confused about.
1415
1416 Also warn about constructions where there may be confusion to which
1417 @code{if} statement an @code{else} branch belongs.  Here is an example of
1418 such a case:
1419
1420 @smallexample
1421 @{
1422   if (a)
1423     if (b)
1424       foo ();
1425   else
1426     bar ();
1427 @}
1428 @end smallexample
1429
1430 In C, every @code{else} branch belongs to the innermost possible @code{if}
1431 statement, which in this example is @code{if (b)}.  This is often not
1432 what the programmer expected, as illustrated in the above example by
1433 indentation the programmer chose.  When there is the potential for this
1434 confusion, GNU C will issue a warning when this flag is specified.
1435 To eliminate the warning, add explicit braces around the innermost
1436 @code{if} statement so there is no way the @code{else} could belong to
1437 the enclosing @code{if}.  The resulting code would look like this:
1438
1439 @smallexample
1440 @{
1441   if (a)
1442     @{
1443       if (b)
1444         foo ();
1445       else
1446         bar ();
1447     @}
1448 @}
1449 @end smallexample
1450
1451 @item -Wreturn-type
1452 Warn whenever a function is defined with a return-type that defaults
1453 to @code{int}.  Also warn about any @code{return} statement with no
1454 return-value in a function whose return-type is not @code{void}.
1455
1456 @item -Wswitch
1457 Warn whenever a @code{switch} statement has an index of enumeral type
1458 and lacks a @code{case} for one or more of the named codes of that
1459 enumeration.  (The presence of a @code{default} label prevents this
1460 warning.)  @code{case} labels outside the enumeration range also
1461 provoke warnings when this option is used.
1462
1463 @item -Wtrigraphs
1464 Warn if any trigraphs are encountered (assuming they are enabled).
1465
1466 @item -Wunused
1467 Warn whenever a variable is unused aside from its declaration,
1468 whenever a function is declared static but never defined, whenever a
1469 label is declared but not used, and whenever a statement computes a
1470 result that is explicitly not used.
1471
1472 In order to get a warning about an unused function parameter, you must
1473 specify both @samp{-W} and @samp{-Wunused}.
1474
1475 To suppress this warning for an expression, simply cast it to void.  For
1476 unused variables, parameters and labels, use the @samp{unused} attribute
1477 (@pxref{Variable Attributes}).
1478
1479 @item -Wuninitialized
1480 Warn if an automatic variable is used without first being initialized or
1481 if a variable may be clobbered by a @code{setjmp} call.
1482
1483 These warnings are possible only in optimizing compilation,
1484 because they require data flow information that is computed only
1485 when optimizing.  If you don't specify @samp{-O}, you simply won't
1486 get these warnings.
1487
1488 These warnings occur only for variables that are candidates for
1489 register allocation.  Therefore, they do not occur for a variable that
1490 is declared @code{volatile}, or whose address is taken, or whose size
1491 is other than 1, 2, 4 or 8 bytes.  Also, they do not occur for
1492 structures, unions or arrays, even when they are in registers.
1493
1494 Note that there may be no warning about a variable that is used only
1495 to compute a value that itself is never used, because such
1496 computations may be deleted by data flow analysis before the warnings
1497 are printed.
1498
1499 These warnings are made optional because GCC is not smart
1500 enough to see all the reasons why the code might be correct
1501 despite appearing to have an error.  Here is one example of how
1502 this can happen:
1503
1504 @smallexample
1505 @{
1506   int x;
1507   switch (y)
1508     @{
1509     case 1: x = 1;
1510       break;
1511     case 2: x = 4;
1512       break;
1513     case 3: x = 5;
1514     @}
1515   foo (x);
1516 @}
1517 @end smallexample
1518
1519 @noindent
1520 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
1521 always initialized, but GCC doesn't know this.  Here is
1522 another common case:
1523
1524 @smallexample
1525 @{
1526   int save_y;
1527   if (change_y) save_y = y, y = new_y;
1528   @dots{}
1529   if (change_y) y = save_y;
1530 @}
1531 @end smallexample
1532
1533 @noindent
1534 This has no bug because @code{save_y} is used only if it is set.
1535
1536 @cindex @code{longjmp} warnings
1537 This option also warns when a nonvolatile automatic variable might be
1538 changed by a call to @code{longjmp}.  These warnings as well are possible
1539 only in optimizing compilation.
1540
1541 The compiler sees only the calls to @code{setjmp}.  It cannot know
1542 where @code{longjmp} will be called; in fact, a signal handler could
1543 call it at any point in the code.  As a result, you may get a warning
1544 even when there is in fact no problem because @code{longjmp} cannot
1545 in fact be called at the place which would cause a problem.
1546
1547 Some spurious warnings can be avoided if you declare all the functions
1548 you use that never return as @code{noreturn}.  @xref{Function
1549 Attributes}.
1550
1551 @item -Wreorder (C++ only)
1552 @cindex reordering, warning
1553 @cindex warning for reordering of member initializers
1554 Warn when the order of member initializers given in the code does not
1555 match the order in which they must be executed.  For instance:
1556
1557 @item -Wunknown-pragmas
1558 @cindex warning for unknown pragmas
1559 @cindex unknown pragmas, warning
1560 @cindex pragmas, warning of unknown
1561 Warn when a #pragma directive is encountered which is not understood by
1562 GCC.  If this command line option is used, warnings will even be issued
1563 for unknown pragmas in system header files.  This is not the case if
1564 the warnings were only enabled by the @samp{-Wall} command line option.
1565
1566 @item -Wall
1567 All of the above @samp{-W} options combined.  This enables all the
1568 warnings about constructions that some users consider questionable, and
1569 that are easy to avoid (or modify to prevent the warning), even in
1570 conjunction with macros.
1571 @end table
1572
1573 The following @samp{-W@dots{}} options are not implied by @samp{-Wall}.
1574 Some of them warn about constructions that users generally do not
1575 consider questionable, but which occasionally you might wish to check
1576 for; others warn about constructions that are necessary or hard to avoid
1577 in some cases, and there is no simple way to modify the code to suppress
1578 the warning.
1579
1580 @table @code
1581 @item -W
1582 Print extra warning messages for these events:
1583
1584 @itemize @bullet
1585 @item
1586 A function can return either with or without a value.  (Falling
1587 off the end of the function body is considered returning without
1588 a value.)  For example, this function would evoke such a
1589 warning:
1590
1591 @smallexample
1592 @group
1593 foo (a)
1594 @{
1595   if (a > 0)
1596     return a;
1597 @}
1598 @end group
1599 @end smallexample
1600
1601 @item
1602 An expression-statement or the left-hand side of a comma expression
1603 contains no side effects.
1604 To suppress the warning, cast the unused expression to void.
1605 For example, an expression such as @samp{x[i,j]} will cause a warning,
1606 but @samp{x[(void)i,j]} will not.
1607
1608 @item
1609 An unsigned value is compared against zero with @samp{<} or @samp{<=}.
1610
1611 @item
1612 A comparison like @samp{x<=y<=z} appears; this is equivalent to
1613 @samp{(x<=y ? 1 : 0) <= z}, which is a different interpretation from
1614 that of ordinary mathematical notation.
1615
1616 @item
1617 Storage-class specifiers like @code{static} are not the first things in
1618 a declaration.  According to the C Standard, this usage is obsolescent.
1619
1620 @item
1621 If @samp{-Wall} or @samp{-Wunused} is also specified, warn about unused
1622 arguments.
1623
1624 @item
1625 A comparison between signed and unsigned values could produce an
1626 incorrect result when the signed value is converted to unsigned.
1627 (But don't warn if @samp{-Wno-sign-compare} is also specified.)
1628
1629 @item
1630 An aggregate has a partly bracketed initializer.
1631 For example, the following code would evoke such a warning,
1632 because braces are missing around the initializer for @code{x.h}:
1633
1634 @smallexample
1635 struct s @{ int f, g; @};
1636 struct t @{ struct s h; int i; @};
1637 struct t x = @{ 1, 2, 3 @};
1638 @end smallexample
1639
1640 @item
1641 An aggregate has an initializer which does not initialize all members.
1642 For example, the following code would cause such a warning, because
1643 @code{x.h} would be implicitly initialized to zero:
1644
1645 @smallexample
1646 struct s @{ int f, g, h; @};
1647 struct s x = @{ 3, 4 @};
1648 @end smallexample
1649 @end itemize
1650
1651 @item -Wtraditional
1652 Warn about certain constructs that behave differently in traditional and
1653 ANSI C.
1654
1655 @itemize @bullet
1656 @item
1657 Macro arguments occurring within string constants in the macro body.
1658 These would substitute the argument in traditional C, but are part of
1659 the constant in ANSI C.
1660
1661 @item
1662 A function declared external in one block and then used after the end of
1663 the block.
1664
1665 @item
1666 A @code{switch} statement has an operand of type @code{long}.
1667
1668 @item
1669 A non-@code{static} function declaration follows a @code{static} one.
1670 This construct is not accepted by some traditional C compilers.
1671 @end itemize
1672
1673 @item -Wundef
1674 Warn if an undefined identifier is evaluated in an @samp{#if} directive.
1675
1676 @item -Wshadow
1677 Warn whenever a local variable shadows another local variable.
1678
1679 @item -Wid-clash-@var{len}
1680 Warn whenever two distinct identifiers match in the first @var{len}
1681 characters.  This may help you prepare a program that will compile
1682 with certain obsolete, brain-damaged compilers.
1683
1684 @item -Wlarger-than-@var{len}
1685 Warn whenever an object of larger than @var{len} bytes is defined.
1686
1687 @item -Wpointer-arith
1688 Warn about anything that depends on the ``size of'' a function type or
1689 of @code{void}.  GNU C assigns these types a size of 1, for
1690 convenience in calculations with @code{void *} pointers and pointers
1691 to functions.
1692
1693 @item -Wbad-function-cast
1694 Warn whenever a function call is cast to a non-matching type.
1695 For example, warn if @code{int malloc()} is cast to @code{anything *}.
1696
1697 @item -Wcast-qual
1698 Warn whenever a pointer is cast so as to remove a type qualifier from
1699 the target type.  For example, warn if a @code{const char *} is cast
1700 to an ordinary @code{char *}.
1701
1702 @item -Wcast-align
1703 Warn whenever a pointer is cast such that the required alignment of the
1704 target is increased.  For example, warn if a @code{char *} is cast to
1705 an @code{int *} on machines where integers can only be accessed at
1706 two- or four-byte boundaries.
1707
1708 @item -Wwrite-strings
1709 Give string constants the type @code{const char[@var{length}]} so that
1710 copying the address of one into a non-@code{const} @code{char *}
1711 pointer will get a warning.  These warnings will help you find at
1712 compile time code that can try to write into a string constant, but
1713 only if you have been very careful about using @code{const} in
1714 declarations and prototypes.  Otherwise, it will just be a nuisance;
1715 this is why we did not make @samp{-Wall} request these warnings.
1716
1717 @item -Wconversion
1718 Warn if a prototype causes a type conversion that is different from what
1719 would happen to the same argument in the absence of a prototype.  This
1720 includes conversions of fixed point to floating and vice versa, and
1721 conversions changing the width or signedness of a fixed point argument
1722 except when the same as the default promotion.
1723
1724 Also, warn if a negative integer constant expression is implicitly
1725 converted to an unsigned type.  For example, warn about the assignment
1726 @code{x = -1} if @code{x} is unsigned.  But do not warn about explicit
1727 casts like @code{(unsigned) -1}.
1728
1729 @item -Wsign-compare
1730 @cindex warning for comparison of signed and unsigned values
1731 @cindex comparison of signed and unsigned values, warning
1732 @cindex signed and unsigned values, comparison warning
1733 Warn when a comparison between signed and unsigned values could produce
1734 an incorrect result when the signed value is converted to unsigned.
1735 This warning is also enabled by @samp{-W}; to get the other warnings
1736 of @samp{-W} without this warning, use @samp{-W -Wno-sign-compare}.
1737
1738 @item -Waggregate-return
1739 Warn if any functions that return structures or unions are defined or
1740 called.  (In languages where you can return an array, this also elicits
1741 a warning.)
1742
1743 @item -Wstrict-prototypes
1744 Warn if a function is declared or defined without specifying the
1745 argument types.  (An old-style function definition is permitted without
1746 a warning if preceded by a declaration which specifies the argument
1747 types.)
1748
1749 @item -Wmissing-prototypes
1750 Warn if a global function is defined without a previous prototype
1751 declaration.  This warning is issued even if the definition itself
1752 provides a prototype.  The aim is to detect global functions that fail
1753 to be declared in header files.
1754
1755 @item -Wmissing-declarations
1756 Warn if a global function is defined without a previous declaration.
1757 Do so even if the definition itself provides a prototype.
1758 Use this option to detect global functions that are not declared in
1759 header files.
1760
1761 @item -Wmissing-noreturn
1762 Warn about functions which might be candidates for attribute @code{noreturn}.
1763 Note these are only possible candidates, not absolute ones.  Care should
1764 be taken to manually verify functions actually do not ever return before
1765 adding the @code{noreturn} attribute, otherwise subtle code generation
1766 bugs could be introduced.
1767
1768 @item -Wredundant-decls
1769 Warn if anything is declared more than once in the same scope, even in
1770 cases where multiple declaration is valid and changes nothing.
1771
1772 @item -Wnested-externs
1773 Warn if an @code{extern} declaration is encountered within a function.
1774
1775 @item -Wunreachable-code
1776 Warn if the compiler detects that code will never be executed.
1777
1778 This option is intended to warn when the compiler detects that at
1779 least a whole line of source code will never be executed, because
1780 some condition is never satisfied or because it is after a
1781 procedure that never returns.
1782
1783 It is possible for this option to produce a warning even though there
1784 are circumstances under which part of the affected line can be executed,
1785 so care should be taken when removing apparently-unreachable code.
1786
1787 For instance, when a function is inlined, a warning may mean that the
1788 line is unreachable in only one inlined copy of the function.  
1789
1790 This option is not made part of @samp{-Wall} because in a debugging
1791 version of a program there is often substantial code which checks
1792 correct functioning of the program and is, hopefully, unreachable
1793 because the program does work.  Another common use of unreachable
1794 code is to provide behaviour which is selectable at compile-time.
1795
1796 @item -Winline
1797 Warn if a function can not be inlined and it was declared as inline.
1798
1799 @item -Wlong-long
1800 Warn if @samp{long long} type is used.  This is default.  To inhibit
1801 the warning messages, use @samp{-Wno-long-long}.  Flags
1802 @samp{-Wlong-long} and @samp{-Wno-long-long} are taken into account
1803 only when @samp{-pedantic} flag is used.
1804
1805 @item -Werror
1806 Make all warnings into errors.
1807 @end table
1808
1809 @node Debugging Options
1810 @section Options for Debugging Your Program or GCC
1811 @cindex options, debugging
1812 @cindex debugging information options
1813
1814 GCC has various special options that are used for debugging
1815 either your program or GCC:
1816
1817 @table @code
1818 @item -g
1819 Produce debugging information in the operating system's native format
1820 (stabs, COFF, XCOFF, or DWARF).  GDB can work with this debugging
1821 information.
1822
1823 On most systems that use stabs format, @samp{-g} enables use of extra
1824 debugging information that only GDB can use; this extra information
1825 makes debugging work better in GDB but will probably make other debuggers
1826 crash or
1827 refuse to read the program.  If you want to control for certain whether
1828 to generate the extra information, use @samp{-gstabs+}, @samp{-gstabs},
1829 @samp{-gxcoff+}, @samp{-gxcoff}, @samp{-gdwarf-1+}, or @samp{-gdwarf-1}
1830 (see below).
1831
1832 Unlike most other C compilers, GCC allows you to use @samp{-g} with
1833 @samp{-O}.  The shortcuts taken by optimized code may occasionally
1834 produce surprising results: some variables you declared may not exist
1835 at all; flow of control may briefly move where you did not expect it;
1836 some statements may not be executed because they compute constant
1837 results or their values were already at hand; some statements may
1838 execute in different places because they were moved out of loops.
1839
1840 Nevertheless it proves possible to debug optimized output.  This makes
1841 it reasonable to use the optimizer for programs that might have bugs.
1842
1843 The following options are useful when GCC is generated with the
1844 capability for more than one debugging format.
1845
1846 @item -ggdb
1847 Produce debugging information for use by GDB.  This means to use the
1848 most expressive format available (DWARF 2, stabs, or the native format
1849 if neither of those are supported), including GDB extensions if at all
1850 possible.
1851
1852 @item -gstabs
1853 Produce debugging information in stabs format (if that is supported),
1854 without GDB extensions.  This is the format used by DBX on most BSD
1855 systems.  On MIPS, Alpha and System V Release 4 systems this option
1856 produces stabs debugging output which is not understood by DBX or SDB.
1857 On System V Release 4 systems this option requires the GNU assembler.
1858
1859 @item -gstabs+
1860 Produce debugging information in stabs format (if that is supported),
1861 using GNU extensions understood only by the GNU debugger (GDB).  The
1862 use of these extensions is likely to make other debuggers crash or
1863 refuse to read the program.
1864
1865 @item -gcoff
1866 Produce debugging information in COFF format (if that is supported).
1867 This is the format used by SDB on most System V systems prior to
1868 System V Release 4.
1869
1870 @item -gxcoff
1871 Produce debugging information in XCOFF format (if that is supported).
1872 This is the format used by the DBX debugger on IBM RS/6000 systems.
1873
1874 @item -gxcoff+
1875 Produce debugging information in XCOFF format (if that is supported),
1876 using GNU extensions understood only by the GNU debugger (GDB).  The
1877 use of these extensions is likely to make other debuggers crash or
1878 refuse to read the program, and may cause assemblers other than the GNU
1879 assembler (GAS) to fail with an error.
1880
1881 @item -gdwarf
1882 Produce debugging information in DWARF version 1 format (if that is
1883 supported).  This is the format used by SDB on most System V Release 4
1884 systems.
1885
1886 @item -gdwarf+
1887 Produce debugging information in DWARF version 1 format (if that is
1888 supported), using GNU extensions understood only by the GNU debugger
1889 (GDB).  The use of these extensions is likely to make other debuggers
1890 crash or refuse to read the program.
1891
1892 @item -gdwarf-2
1893 Produce debugging information in DWARF version 2 format (if that is
1894 supported).  This is the format used by DBX on IRIX 6.
1895
1896 @item -g@var{level}
1897 @itemx -ggdb@var{level}
1898 @itemx -gstabs@var{level}
1899 @itemx -gcoff@var{level}
1900 @itemx -gxcoff@var{level}
1901 @itemx -gdwarf@var{level}
1902 @itemx -gdwarf-2@var{level}
1903 Request debugging information and also use @var{level} to specify how
1904 much information.  The default level is 2.
1905
1906 Level 1 produces minimal information, enough for making backtraces in
1907 parts of the program that you don't plan to debug.  This includes
1908 descriptions of functions and external variables, but no information
1909 about local variables and no line numbers.
1910
1911 Level 3 includes extra information, such as all the macro definitions
1912 present in the program.  Some debuggers support macro expansion when
1913 you use @samp{-g3}.
1914
1915 @cindex @code{prof}
1916 @item -p
1917 Generate extra code to write profile information suitable for the
1918 analysis program @code{prof}.  You must use this option when compiling
1919 the source files you want data about, and you must also use it when
1920 linking.
1921
1922 @cindex @code{gprof}
1923 @item -pg
1924 Generate extra code to write profile information suitable for the
1925 analysis program @code{gprof}.  You must use this option when compiling
1926 the source files you want data about, and you must also use it when
1927 linking.
1928
1929 @cindex @code{tcov}
1930 @item -a
1931 Generate extra code to write profile information for basic blocks, which will
1932 record the number of times each basic block is executed, the basic block start
1933 address, and the function name containing the basic block.  If @samp{-g} is
1934 used, the line number and filename of the start of the basic block will also be
1935 recorded.  If not overridden by the machine description, the default action is
1936 to append to the text file @file{bb.out}.
1937
1938 This data could be analyzed by a program like @code{tcov}.  Note,
1939 however, that the format of the data is not what @code{tcov} expects.
1940 Eventually GNU @code{gprof} should be extended to process this data.
1941
1942 @item -Q
1943 Makes the compiler print out each function name as it is compiled, and
1944 print some statistics about each pass when it finishes.
1945
1946 @item -ax
1947 Generate extra code to profile basic blocks.  Your executable will
1948 produce output that is a superset of that produced when @samp{-a} is
1949 used.  Additional output is the source and target address of the basic
1950 blocks where a jump takes place, the number of times a jump is executed,
1951 and (optionally) the complete sequence of basic blocks being executed.
1952 The output is appended to file @file{bb.out}.
1953
1954 You can examine different profiling aspects without recompilation.  Your
1955 executable will read a list of function names from file @file{bb.in}.
1956 Profiling starts when a function on the list is entered and stops when
1957 that invocation is exited.  To exclude a function from profiling, prefix
1958 its name with `-'.  If a function name is not unique, you can
1959 disambiguate it by writing it in the form
1960 @samp{/path/filename.d:functionname}.  Your executable will write the
1961 available paths and filenames in file @file{bb.out}.
1962
1963 Several function names have a special meaning:
1964 @table @code
1965 @item __bb_jumps__
1966 Write source, target and frequency of jumps to file @file{bb.out}.
1967 @item __bb_hidecall__
1968 Exclude function calls from frequency count.
1969 @item __bb_showret__
1970 Include function returns in frequency count.
1971 @item __bb_trace__
1972 Write the sequence of basic blocks executed to file @file{bbtrace.gz}.
1973 The file will be compressed using the program @samp{gzip}, which must
1974 exist in your @code{PATH}.  On systems without the @samp{popen}
1975 function, the file will be named @file{bbtrace} and will not be
1976 compressed.  @strong{Profiling for even a few seconds on these systems
1977 will produce a very large file.}  Note: @code{__bb_hidecall__} and
1978 @code{__bb_showret__} will not affect the sequence written to
1979 @file{bbtrace.gz}.
1980 @end table
1981
1982 Here's a short example using different profiling parameters
1983 in file @file{bb.in}.  Assume function @code{foo} consists of basic blocks
1984 1 and 2 and is called twice from block 3 of function @code{main}.  After
1985 the calls, block 3 transfers control to block 4 of @code{main}.
1986
1987 With @code{__bb_trace__} and @code{main} contained in file @file{bb.in},
1988 the following sequence of blocks is written to file @file{bbtrace.gz}:
1989 0 3 1 2 1 2 4.  The return from block 2 to block 3 is not shown, because
1990 the return is to a point inside the block and not to the top.  The
1991 block address 0 always indicates, that control is transferred
1992 to the trace from somewhere outside the observed functions.  With
1993 @samp{-foo} added to @file{bb.in}, the blocks of function
1994 @code{foo} are removed from the trace, so only 0 3 4 remains.
1995
1996 With @code{__bb_jumps__} and @code{main} contained in file @file{bb.in},
1997 jump frequencies will be written to file @file{bb.out}.  The
1998 frequencies are obtained by constructing a trace of blocks
1999 and incrementing a counter for every neighbouring pair of blocks
2000 in the trace.  The trace 0 3 1 2 1 2 4 displays the following
2001 frequencies:
2002
2003 @example
2004 Jump from block 0x0 to block 0x3 executed 1 time(s)
2005 Jump from block 0x3 to block 0x1 executed 1 time(s)
2006 Jump from block 0x1 to block 0x2 executed 2 time(s)
2007 Jump from block 0x2 to block 0x1 executed 1 time(s)
2008 Jump from block 0x2 to block 0x4 executed 1 time(s)
2009 @end example
2010
2011 With @code{__bb_hidecall__}, control transfer due to call instructions
2012 is removed from the trace, that is the trace is cut into three parts: 0
2013 3 4, 0 1 2 and 0 1 2.  With @code{__bb_showret__}, control transfer due
2014 to return instructions is added to the trace.  The trace becomes: 0 3 1
2015 2 3 1 2 3 4.  Note, that this trace is not the same, as the sequence
2016 written to @file{bbtrace.gz}.  It is solely used for counting jump
2017 frequencies.
2018
2019 @item -fprofile-arcs
2020 Instrument @dfn{arcs} during compilation.  For each function of your
2021 program, GCC creates a program flow graph, then finds a spanning tree
2022 for the graph.  Only arcs that are not on the spanning tree have to be
2023 instrumented: the compiler adds code to count the number of times that these
2024 arcs are executed.  When an arc is the only exit or only entrance to a
2025 block, the instrumentation code can be added to the block; otherwise, a
2026 new basic block must be created to hold the instrumentation code.
2027
2028 Since not every arc in the program must be instrumented, programs
2029 compiled with this option run faster than programs compiled with
2030 @samp{-a}, which adds instrumentation code to every basic block in the
2031 program.  The tradeoff: since @code{gcov} does not have
2032 execution counts for all branches, it must start with the execution
2033 counts for the instrumented branches, and then iterate over the program
2034 flow graph until the entire graph has been solved.  Hence, @code{gcov}
2035 runs a little more slowly than a program which uses information from
2036 @samp{-a}.
2037
2038 @samp{-fprofile-arcs} also makes it possible to estimate branch
2039 probabilities, and to calculate basic block execution counts.  In
2040 general, basic block execution counts do not give enough information to
2041 estimate all branch probabilities.  When the compiled program exits, it
2042 saves the arc execution counts to a file called
2043 @file{@var{sourcename}.da}.  Use the compiler option
2044 @samp{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
2045 Control Optimization}) when recompiling, to optimize using estimated
2046 branch probabilities.
2047
2048 @need 2000
2049 @item -ftest-coverage
2050 Create data files for the @code{gcov} code-coverage utility
2051 (@pxref{Gcov,, @code{gcov}: a GCC Test Coverage Program}).
2052 The data file names begin with the name of your source file:
2053
2054 @table @code
2055 @item @var{sourcename}.bb
2056 A mapping from basic blocks to line numbers, which @code{gcov} uses to
2057 associate basic block execution counts with line numbers.
2058
2059 @item @var{sourcename}.bbg
2060 A list of all arcs in the program flow graph.  This allows @code{gcov}
2061 to reconstruct the program flow graph, so that it can compute all basic
2062 block and arc execution counts from the information in the
2063 @code{@var{sourcename}.da} file (this last file is the output from
2064 @samp{-fprofile-arcs}).
2065 @end table
2066
2067 @item -Q
2068 Makes the compiler print out each function name as it is compiled, and
2069 print some statistics about each pass when it finishes.
2070
2071 @item -d@var{letters}
2072 Says to make debugging dumps during compilation at times specified by
2073 @var{letters}.  This is used for debugging the compiler.  The file names
2074 for most of the dumps are made by appending a word to the source file
2075 name (e.g.  @file{foo.c.rtl} or @file{foo.c.jump}).  Here are the
2076 possible letters for use in @var{letters}, and their meanings:
2077
2078 @table @samp
2079 @item b
2080 Dump after computing branch probabilities, to @file{@var{file}.bp}.
2081 @item c
2082 Dump after instruction combination, to the file @file{@var{file}.combine}.
2083 @item d
2084 Dump after delayed branch scheduling, to @file{@var{file}.dbr}.
2085 @item D
2086 Dump all macro definitions, at the end of preprocessing, in addition to
2087 normal output.
2088 @item r
2089 Dump after RTL generation, to @file{@var{file}.rtl}.
2090 @item j
2091 Dump after first jump optimization, to @file{@var{file}.jump}.
2092 @item F
2093 Dump after purging ADDRESSOF, to @file{@var{file}.addressof}.
2094 @item f
2095 Dump after flow analysis, to @file{@var{file}.flow}.
2096 @item g
2097 Dump after global register allocation, to @file{@var{file}.greg}.
2098 @item G      
2099 Dump after GCSE, to @file{@var{file}.gcse}.
2100 @item j
2101 Dump after first jump optimization, to @file{@var{file}.jump}.
2102 @item J
2103 Dump after last jump optimization, to @file{@var{file}.jump2}.
2104 @item k
2105 Dump after conversion from registers to stack, to @file{@var{file}.stack}.
2106 @item l
2107 Dump after local register allocation, to @file{@var{file}.lreg}.
2108 @item L
2109 Dump after loop optimization, to @file{@var{file}.loop}.
2110 @item M
2111 Dump after performing the machine dependent reorganisation pass, to
2112 @file{@var{file}.mach}. 
2113 @item N
2114 Dump after the register move pass, to @file{@var{file}.regmove}.
2115 @item r
2116 Dump after RTL generation, to @file{@var{file}.rtl}.
2117 @item R
2118 Dump after the second instruction scheduling pass, to @file{@var{file}.sched2}.
2119 @item s
2120 Dump after CSE (including the jump optimization that sometimes follows
2121 CSE), to @file{@var{file}.cse}. 
2122 @item S
2123 Dump after the first instruction scheduling pass, to @file{@var{file}.sched}.
2124 @item t
2125 Dump after the second CSE pass (including the jump optimization that
2126 sometimes follows CSE), to @file{@var{file}.cse2}. 
2127 @item a
2128 Produce all the dumps listed above.
2129 @item m
2130 Print statistics on memory usage, at the end of the run, to
2131 standard error.
2132 @item p
2133 Annotate the assembler output with a comment indicating which
2134 pattern and alternative was used.  The length of each instruction is
2135 also printed.
2136 @item x
2137 Just generate RTL for a function instead of compiling it.  Usually used
2138 with @samp{r}.
2139 @item y
2140 Dump debugging information during parsing, to standard error.
2141 @item A
2142 Annotate the assembler output with miscellaneous debugging information.
2143 @end table
2144
2145 @item -fdump-unnumbered
2146 When doing debugging dumps (see -d option above), suppress instruction
2147 numbers and line number note output.  This makes it more feasible to
2148 use diff on debugging dumps for compiler invokations with different
2149 options, in particular with and without -g.
2150
2151 @item -fdump-translation-unit-@var{file} (C++ only)
2152 Dump a representation of the tree structure for the entire translation
2153 unit to @var{file}.
2154
2155 @item -fpretend-float
2156 When running a cross-compiler, pretend that the target machine uses the
2157 same floating point format as the host machine.  This causes incorrect
2158 output of the actual floating constants, but the actual instruction
2159 sequence will probably be the same as GCC would make when running on
2160 the target machine.
2161
2162 @item -save-temps
2163 Store the usual ``temporary'' intermediate files permanently; place them
2164 in the current directory and name them based on the source file.  Thus,
2165 compiling @file{foo.c} with @samp{-c -save-temps} would produce files
2166 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}.
2167
2168 @item -print-file-name=@var{library}
2169 Print the full absolute name of the library file @var{library} that
2170 would be used when linking---and don't do anything else.  With this
2171 option, GCC does not compile or link anything; it just prints the
2172 file name.
2173
2174 @item -print-prog-name=@var{program}
2175 Like @samp{-print-file-name}, but searches for a program such as @samp{cpp}.
2176
2177 @item -print-libgcc-file-name
2178 Same as @samp{-print-file-name=libgcc.a}.
2179
2180 This is useful when you use @samp{-nostdlib} or @samp{-nodefaultlibs}
2181 but you do want to link with @file{libgcc.a}.  You can do
2182
2183 @example
2184 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
2185 @end example
2186
2187 @item -print-search-dirs
2188 Print the name of the configured installation directory and a list of
2189 program and library directories gcc will search---and don't do anything else.
2190
2191 This is useful when gcc prints the error message
2192 @samp{installation problem, cannot exec cpp: No such file or directory}.
2193 To resolve this you either need to put @file{cpp} and the other compiler
2194 components where gcc expects to find them, or you can set the environment
2195 variable @code{GCC_EXEC_PREFIX} to the directory where you installed them.
2196 Don't forget the trailing '/'.
2197 @xref{Environment Variables}.
2198 @end table
2199
2200 @node Optimize Options
2201 @section Options That Control Optimization
2202 @cindex optimize options
2203 @cindex options, optimization
2204
2205 These options control various sorts of optimizations:
2206
2207 @table @code
2208 @item -O
2209 @itemx -O1
2210 Optimize.  Optimizing compilation takes somewhat more time, and a lot
2211 more memory for a large function.
2212
2213 Without @samp{-O}, the compiler's goal is to reduce the cost of
2214 compilation and to make debugging produce the expected results.
2215 Statements are independent: if you stop the program with a breakpoint
2216 between statements, you can then assign a new value to any variable or
2217 change the program counter to any other statement in the function and
2218 get exactly the results you would expect from the source code.
2219
2220 Without @samp{-O}, the compiler only allocates variables declared
2221 @code{register} in registers.  The resulting compiled code is a little
2222 worse than produced by PCC without @samp{-O}.
2223
2224 With @samp{-O}, the compiler tries to reduce code size and execution
2225 time.
2226
2227 When you specify @samp{-O}, the compiler turns on @samp{-fthread-jumps}
2228 and @samp{-fdefer-pop} on all machines.  The compiler turns on
2229 @samp{-fdelayed-branch} on machines that have delay slots, and
2230 @samp{-fomit-frame-pointer} on machines that can support debugging even
2231 without a frame pointer.  On some machines the compiler also turns
2232 on other flags.@refill
2233
2234 @item -O2
2235 Optimize even more.  GCC performs nearly all supported optimizations
2236 that do not involve a space-speed tradeoff.  The compiler does not
2237 perform loop unrolling or function inlining when you specify @samp{-O2}.
2238 As compared to @samp{-O}, this option increases both compilation time
2239 and the performance of the generated code.
2240
2241 @samp{-O2} turns on all optional optimizations except for loop unrolling
2242 and function inlining.  It also turns on the @samp{-fforce-mem} option
2243 on all machines and frame pointer elimination on machines where doing so
2244 does not interfere with debugging.
2245
2246 @item -O3
2247 Optimize yet more.  @samp{-O3} turns on all optimizations specified by
2248 @samp{-O2} and also turns on the @samp{inline-functions} option.
2249
2250 @item -O0
2251 Do not optimize.
2252
2253 @item -Os
2254 Optimize for size.  @samp{-Os} enables all @samp{-O2} optimizations that
2255 do not typically increase code size.  It also performs further
2256 optimizations designed to reduce code size.
2257
2258 If you use multiple @samp{-O} options, with or without level numbers,
2259 the last such option is the one that is effective.
2260 @end table
2261
2262 Options of the form @samp{-f@var{flag}} specify machine-independent
2263 flags.  Most flags have both positive and negative forms; the negative
2264 form of @samp{-ffoo} would be @samp{-fno-foo}.  In the table below,
2265 only one of the forms is listed---the one which is not the default.
2266 You can figure out the other form by either removing @samp{no-} or
2267 adding it.
2268
2269 @table @code
2270 @item -ffloat-store
2271 Do not store floating point variables in registers, and inhibit other
2272 options that might change whether a floating point value is taken from a
2273 register or memory.
2274
2275 @cindex floating point precision
2276 This option prevents undesirable excess precision on machines such as
2277 the 68000 where the floating registers (of the 68881) keep more
2278 precision than a @code{double} is supposed to have.  Similarly for the
2279 x86 architecture.  For most programs, the excess precision does only
2280 good, but a few programs rely on the precise definition of IEEE floating
2281 point.  Use @samp{-ffloat-store} for such programs, after modifying
2282 them to store all pertinent intermediate computations into variables.
2283
2284 @item -fno-default-inline
2285 Do not make member functions inline by default merely because they are
2286 defined inside the class scope (C++ only).  Otherwise, when you specify
2287 @w{@samp{-O}}, member functions defined inside class scope are compiled
2288 inline by default; i.e., you don't need to add @samp{inline} in front of
2289 the member function name.
2290
2291 @item -fno-defer-pop
2292 Always pop the arguments to each function call as soon as that function
2293 returns.  For machines which must pop arguments after a function call,
2294 the compiler normally lets arguments accumulate on the stack for several
2295 function calls and pops them all at once.
2296
2297 @item -fforce-mem
2298 Force memory operands to be copied into registers before doing
2299 arithmetic on them.  This produces better code by making all memory
2300 references potential common subexpressions.  When they are not common
2301 subexpressions, instruction combination should eliminate the separate
2302 register-load.  The @samp{-O2} option turns on this option.
2303
2304 @item -fforce-addr
2305 Force memory address constants to be copied into registers before
2306 doing arithmetic on them.  This may produce better code just as
2307 @samp{-fforce-mem} may.
2308
2309 @item -fomit-frame-pointer
2310 Don't keep the frame pointer in a register for functions that
2311 don't need one.  This avoids the instructions to save, set up and
2312 restore frame pointers; it also makes an extra register available
2313 in many functions.  @strong{It also makes debugging impossible on
2314 some machines.}
2315
2316 @ifset INTERNALS
2317 On some machines, such as the Vax, this flag has no effect, because
2318 the standard calling sequence automatically handles the frame pointer
2319 and nothing is saved by pretending it doesn't exist.  The
2320 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
2321 whether a target machine supports this flag.  @xref{Registers}.@refill
2322 @end ifset
2323 @ifclear INTERNALS
2324 On some machines, such as the Vax, this flag has no effect, because
2325 the standard calling sequence automatically handles the frame pointer
2326 and nothing is saved by pretending it doesn't exist.  The
2327 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
2328 whether a target machine supports this flag.  @xref{Registers,,Register
2329 Usage, gcc.info, Using and Porting GCC}.@refill
2330 @end ifclear
2331
2332 @item -fno-inline
2333 Don't pay attention to the @code{inline} keyword.  Normally this option
2334 is used to keep the compiler from expanding any functions inline.
2335 Note that if you are not optimizing, no functions can be expanded inline.
2336
2337 @item -finline-functions
2338 Integrate all simple functions into their callers.  The compiler
2339 heuristically decides which functions are simple enough to be worth
2340 integrating in this way.
2341
2342 If all calls to a given function are integrated, and the function is
2343 declared @code{static}, then the function is normally not output as
2344 assembler code in its own right.
2345
2346 @item -finline-limit=@var{n}
2347 By default, gcc limits the size of functions that can be inlined.  This flag
2348 allows the control of this limit for functions that are explicitly marked as
2349 inline (ie marked with the inline keyword or defined within the class 
2350 definition in c++).  @var{n} is the size of functions that can be inlined in 
2351 number of pseudo instructions (not counting parameter handling).  The default
2352 value of n is 10000.  Increasing this value can result in more inlined code at
2353 the cost of compilation time and memory consumption.  Decreasing usually makes
2354 the compilation faster and less code will be inlined (which presumably 
2355 means slower programs).  This option is particularly useful for programs that 
2356 use inlining heavily such as those based on recursive templates with c++.
2357
2358 @emph{Note:} pseudo instruction represents, in this particular context, an
2359 abstract measurement of function's size.  In no way, it represents a count
2360 of assembly instructions and as such its exact meaning might change from one
2361 release to an another.
2362
2363 @item -fkeep-inline-functions
2364 Even if all calls to a given function are integrated, and the function
2365 is declared @code{static}, nevertheless output a separate run-time
2366 callable version of the function.  This switch does not affect
2367 @code{extern inline} functions.
2368
2369 @item -fkeep-static-consts
2370 Emit variables declared @code{static const} when optimization isn't turned
2371 on, even if the variables aren't referenced.
2372
2373 GCC enables this option by default.  If you want to force the compiler to
2374 check if the variable was referenced, regardless of whether or not
2375 optimization is turned on, use the @samp{-fno-keep-static-consts} option.
2376
2377 @item -fno-function-cse
2378 Do not put function addresses in registers; make each instruction that
2379 calls a constant function contain the function's address explicitly.
2380
2381 This option results in less efficient code, but some strange hacks
2382 that alter the assembler output may be confused by the optimizations
2383 performed when this option is not used.
2384
2385 @item -ffast-math
2386 This option allows GCC to violate some ANSI or IEEE rules and/or
2387 specifications in the interest of optimizing code for speed.  For
2388 example, it allows the compiler to assume arguments to the @code{sqrt}
2389 function are non-negative numbers and that no floating-point values
2390 are NaNs.
2391
2392 This option should never be turned on by any @samp{-O} option since
2393 it can result in incorrect output for programs which depend on
2394 an exact implementation of IEEE or ANSI rules/specifications for
2395 math functions.
2396 @end table
2397
2398 @c following causes underfulls.. they don't look great, but we deal.
2399 @c --mew 26jan93
2400 The following options control specific optimizations.  The @samp{-O2}
2401 option turns on all of these optimizations except @samp{-funroll-loops}
2402 and @samp{-funroll-all-loops}.  On most machines, the @samp{-O} option
2403 turns on the @samp{-fthread-jumps} and @samp{-fdelayed-branch} options,
2404 but specific machines may handle it differently.
2405
2406 You can use the following flags in the rare cases when ``fine-tuning''
2407 of optimizations to be performed is desired.
2408
2409 @table @code
2410 @item -fstrength-reduce
2411 Perform the optimizations of loop strength reduction and
2412 elimination of iteration variables.
2413
2414 @item -fthread-jumps
2415 Perform optimizations where we check to see if a jump branches to a
2416 location where another comparison subsumed by the first is found.  If
2417 so, the first branch is redirected to either the destination of the
2418 second branch or a point immediately following it, depending on whether
2419 the condition is known to be true or false.
2420
2421 @item -fcse-follow-jumps
2422 In common subexpression elimination, scan through jump instructions
2423 when the target of the jump is not reached by any other path.  For
2424 example, when CSE encounters an @code{if} statement with an
2425 @code{else} clause, CSE will follow the jump when the condition
2426 tested is false.
2427
2428 @item -fcse-skip-blocks
2429 This is similar to @samp{-fcse-follow-jumps}, but causes CSE to
2430 follow jumps which conditionally skip over blocks.  When CSE
2431 encounters a simple @code{if} statement with no else clause,
2432 @samp{-fcse-skip-blocks} causes CSE to follow the jump around the
2433 body of the @code{if}.
2434
2435 @item -frerun-cse-after-loop
2436 Re-run common subexpression elimination after loop optimizations has been
2437 performed.
2438
2439 @item -frerun-loop-opt
2440 Run the loop optimizer twice.
2441
2442 @item -fgcse
2443 Perform a global common subexpression elimination pass.
2444 This pass also performs global constant and copy propagation.
2445
2446 @item -fexpensive-optimizations
2447 Perform a number of minor optimizations that are relatively expensive.
2448
2449 @item -foptimize-register-moves
2450 @itemx -fregmove
2451 Attempt to reassign register numbers in move instructions and as
2452 operands of other simple instructions in order to maximize the amount of
2453 register tying.  This is especially helpful on machines with two-operand
2454 instructions.  GCC enables this optimization by default with @samp{-O2}
2455 or higher.
2456
2457 Note @code{-fregmove} and @code{-foptimize-register-moves} are the same
2458 optimization.
2459
2460 @item -fdelayed-branch
2461 If supported for the target machine, attempt to reorder instructions
2462 to exploit instruction slots available after delayed branch
2463 instructions.
2464
2465 @item -fschedule-insns
2466 If supported for the target machine, attempt to reorder instructions to
2467 eliminate execution stalls due to required data being unavailable.  This
2468 helps machines that have slow floating point or memory load instructions
2469 by allowing other instructions to be issued until the result of the load
2470 or floating point instruction is required.
2471
2472 @item -fschedule-insns2
2473 Similar to @samp{-fschedule-insns}, but requests an additional pass of
2474 instruction scheduling after register allocation has been done.  This is
2475 especially useful on machines with a relatively small number of
2476 registers and where memory load instructions take more than one cycle.
2477
2478 @item -ffunction-sections
2479 @itemx -fdata-sections
2480 Place each function or data item into its own section in the output
2481 file if the target supports arbitrary sections.  The name of the
2482 function or the name of the data item determines the section's name
2483 in the output file.
2484
2485 Use these options on systems where the linker can perform optimizations
2486 to improve locality of reference in the instruction space.  HPPA
2487 processors running HP-UX and Sparc processors running Solaris 2 have
2488 linkers with such optimizations.  Other systems using the ELF object format
2489 as well as AIX may have these optimizations in the future.
2490
2491 Only use these options when there are significant benefits from doing
2492 so.  When you specify these options, the assembler and linker will
2493 create larger object and executable files and will also be slower.
2494 You will not be able to use @code{gprof} on all systems if you
2495 specify this option and you may have problems with debugging if
2496 you specify both this option and @samp{-g}.
2497
2498 @item -fcaller-saves
2499 Enable values to be allocated in registers that will be clobbered by
2500 function calls, by emitting extra instructions to save and restore the
2501 registers around such calls.  Such allocation is done only when it
2502 seems to result in better code than would otherwise be produced.
2503
2504 This option is always enabled by default on certain machines, usually
2505 those which have no call-preserved registers to use instead.
2506
2507 For all machines, optimization level 2 and higher enables this flag by
2508 default.
2509
2510 @item -funroll-loops
2511 Perform the optimization of loop unrolling.  This is only done for loops
2512 whose number of iterations can be determined at compile time or run time.
2513 @samp{-funroll-loops} implies both @samp{-fstrength-reduce} and
2514 @samp{-frerun-cse-after-loop}.
2515
2516 @item -funroll-all-loops
2517 Perform the optimization of loop unrolling.  This is done for all loops
2518 and usually makes programs run more slowly.  @samp{-funroll-all-loops}
2519 implies @samp{-fstrength-reduce} as well as @samp{-frerun-cse-after-loop}.
2520
2521 @item -fmove-all-movables
2522 Forces all invariant computations in loops to be moved
2523 outside the loop.
2524
2525 @item -freduce-all-givs
2526 Forces all general-induction variables in loops to be
2527 strength-reduced.
2528
2529 @emph{Note:} When compiling programs written in Fortran,
2530 @samp{-fmove-all-movables} and @samp{-freduce-all-givs} are enabled
2531 by default when you use the optimizer.
2532
2533 These options may generate better or worse code; results are highly
2534 dependent on the structure of loops within the source code.
2535
2536 These two options are intended to be removed someday, once
2537 they have helped determine the efficacy of various
2538 approaches to improving loop optimizations.
2539
2540 Please let us (@code{gcc@@gcc.gnu.org} and @code{fortran@@gnu.org})
2541 know how use of these options affects
2542 the performance of your production code.
2543 We're very interested in code that runs @emph{slower}
2544 when these options are @emph{enabled}.
2545
2546 @item -fno-peephole
2547 Disable any machine-specific peephole optimizations.
2548
2549 @item -fbranch-probabilities
2550 After running a program compiled with @samp{-fprofile-arcs}
2551 (@pxref{Debugging Options,, Options for Debugging Your Program or
2552 @code{gcc}}), you can compile it a second time using
2553 @samp{-fbranch-probabilities}, to improve optimizations based on
2554 guessing the path a branch might take.
2555
2556 @ifset INTERNALS
2557 With @samp{-fbranch-probabilities}, GCC puts a @samp{REG_EXEC_COUNT}
2558 note on the first instruction of each basic block, and a
2559 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
2560 These can be used to improve optimization.  Currently, they are only
2561 used in one place: in @file{reorg.c}, instead of guessing which path a
2562 branch is mostly to take, the @samp{REG_BR_PROB} values are used to
2563 exactly determine which path is taken more often.
2564 @end ifset
2565
2566 @item -fstrict-aliasing
2567 Allows the compiler to assume the strictest aliasing rules applicable to
2568 the language being compiled.  For C (and C++), this activates
2569 optimizations based on the type of expressions.  In particular, an
2570 object of one type is assumed never to reside at the same address as an
2571 object of a different type, unless the types are almost the same.  For
2572 example, an @code{unsigned int} can alias an @code{int}, but not a
2573 @code{void*} or a @code{double}.  A character type may alias any other
2574 type.  
2575
2576 Pay special attention to code like this:
2577 @example
2578 union a_union @{ 
2579   int i;
2580   double d;
2581 @};
2582
2583 int f() @{
2584   a_union t;
2585   t.d = 3.0;
2586   return t.i;
2587 @}
2588 @end example
2589 The practice of reading from a different union member than the one most
2590 recently written to (called ``type-punning'') is common.  Even with
2591 @samp{-fstrict-aliasing}, type-punning is allowed, provided the memory
2592 is accessed through the union type.  So, the code above will work as
2593 expected.  However, this code might not:
2594 @example
2595 int f() @{ 
2596   a_union t;
2597   int* ip;
2598   t.d = 3.0;
2599   ip = &t.i;
2600   return *ip;
2601 @}
2602 @end example
2603
2604 @ifset INTERNALS
2605 Every language that wishes to perform language-specific alias analysis
2606 should define a function that computes, given an @code{tree}
2607 node, an alias set for the node.  Nodes in different alias sets are not
2608 allowed to alias.  For an example, see the C front-end function
2609 @code{c_get_alias_set}.
2610 @end ifset
2611
2612 @item -falign-functions
2613 @itemx -falign-functions=@var{n}
2614 Align the start of functions to the next power-of-two greater than
2615 @var{n}, skipping up to @var{n} bytes.  For instance,
2616 @samp{-falign-functions=32} aligns functions to the next 32-byte
2617 boundary, but @samp{-falign-functions=24} would align to the next
2618 32-byte boundary only if this can be done by skipping 23 bytes or less.
2619
2620 @samp{-fno-align-functions} and @samp{-falign-functions=1} are
2621 equivalent and mean that functions will not be aligned.
2622
2623 Some assemblers only support this flag when @var{n} is a power of two;
2624 in that case, it is rounded up.
2625
2626 If @var{n} is not specified, use a machine-dependent default.
2627
2628 @item -falign-labels
2629 @itemx -falign-labels=@var{n}
2630 Align all branch targets to a power-of-two boundary, skipping up to
2631 @var{n} bytes like @samp{-falign-functions}.  This option can easily
2632 make code slower, because it must insert dummy operations for when the
2633 branch target is reached in the usual flow of the code.
2634
2635 If @samp{-falign-loops} or @samp{-falign-jumps} are applicable and
2636 are greater than this value, then their values are used instead.
2637
2638 If @var{n} is not specified, use a machine-dependent default which is
2639 very likely to be @samp{1}, meaning no alignment.
2640
2641 @item -falign-loops
2642 @itemx -falign-loops=@var{n}
2643 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
2644 like @samp{-falign-functions}.  The hope is that the loop will be
2645 executed many times, which will make up for any execution of the dummy
2646 operations.
2647
2648 If @var{n} is not specified, use a machine-dependent default.
2649
2650 @item -falign-jumps
2651 @itemx -falign-jumps=@var{n}
2652 Align branch targets to a power-of-two boundary, for branch targets
2653 where the targets can only be reached by jumping, skipping up to @var{n}
2654 bytes like @samp{-falign-functions}.  In this case, no dummy operations
2655 need be executed.
2656
2657 If @var{n} is not specified, use a machine-dependent default.
2658
2659 @end table
2660
2661 @node Preprocessor Options
2662 @section Options Controlling the Preprocessor
2663 @cindex preprocessor options
2664 @cindex options, preprocessor
2665
2666 These options control the C preprocessor, which is run on each C source
2667 file before actual compilation.
2668
2669 If you use the @samp{-E} option, nothing is done except preprocessing.
2670 Some of these options make sense only together with @samp{-E} because
2671 they cause the preprocessor output to be unsuitable for actual
2672 compilation.
2673
2674 @table @code
2675 @item -include @var{file}
2676 Process @var{file} as input before processing the regular input file.
2677 In effect, the contents of @var{file} are compiled first.  Any @samp{-D}
2678 and @samp{-U} options on the command line are always processed before
2679 @samp{-include @var{file}}, regardless of the order in which they are
2680 written.  All the @samp{-include} and @samp{-imacros} options are
2681 processed in the order in which they are written.
2682
2683 @item -imacros @var{file}
2684 Process @var{file} as input, discarding the resulting output, before
2685 processing the regular input file.  Because the output generated from
2686 @var{file} is discarded, the only effect of @samp{-imacros @var{file}}
2687 is to make the macros defined in @var{file} available for use in the
2688 main input.
2689
2690 Any @samp{-D} and @samp{-U} options on the command line are always
2691 processed before @samp{-imacros @var{file}}, regardless of the order in
2692 which they are written.  All the @samp{-include} and @samp{-imacros}
2693 options are processed in the order in which they are written.
2694
2695 @item -idirafter @var{dir}
2696 @cindex second include path
2697 Add the directory @var{dir} to the second include path.  The directories
2698 on the second include path are searched when a header file is not found
2699 in any of the directories in the main include path (the one that
2700 @samp{-I} adds to).
2701
2702 @item -iprefix @var{prefix}
2703 Specify @var{prefix} as the prefix for subsequent @samp{-iwithprefix}
2704 options.
2705
2706 @item -iwithprefix @var{dir}
2707 Add a directory to the second include path.  The directory's name is
2708 made by concatenating @var{prefix} and @var{dir}, where @var{prefix} was
2709 specified previously with @samp{-iprefix}.  If you have not specified a
2710 prefix yet, the directory containing the installed passes of the
2711 compiler is used as the default.
2712
2713 @item -iwithprefixbefore @var{dir}
2714 Add a directory to the main include path.  The directory's name is made
2715 by concatenating @var{prefix} and @var{dir}, as in the case of
2716 @samp{-iwithprefix}.
2717
2718 @item -isystem @var{dir}
2719 Add a directory to the beginning of the second include path, marking it
2720 as a system directory, so that it gets the same special treatment as
2721 is applied to the standard system directories.
2722
2723 @item -nostdinc
2724 Do not search the standard system directories for header files.  Only
2725 the directories you have specified with @samp{-I} options (and the
2726 current directory, if appropriate) are searched.  @xref{Directory
2727 Options}, for information on @samp{-I}.
2728
2729 By using both @samp{-nostdinc} and @samp{-I-}, you can limit the include-file
2730 search path to only those directories you specify explicitly.
2731
2732 @item -undef
2733 Do not predefine any nonstandard macros.  (Including architecture flags).
2734
2735 @item -E
2736 Run only the C preprocessor.  Preprocess all the C source files
2737 specified and output the results to standard output or to the
2738 specified output file.
2739
2740 @item -C
2741 Tell the preprocessor not to discard comments.  Used with the
2742 @samp{-E} option.
2743
2744 @item -P
2745 Tell the preprocessor not to generate @samp{#line} directives.
2746 Used with the @samp{-E} option.
2747
2748 @cindex make
2749 @cindex dependencies, make
2750 @item -M
2751 Tell the preprocessor to output a rule suitable for @code{make}
2752 describing the dependencies of each object file.  For each source file,
2753 the preprocessor outputs one @code{make}-rule whose target is the object
2754 file name for that source file and whose dependencies are all the
2755 @code{#include} header files it uses.  This rule may be a single line or
2756 may be continued with @samp{\}-newline if it is long.  The list of rules
2757 is printed on standard output instead of the preprocessed C program.
2758
2759 @samp{-M} implies @samp{-E}.
2760
2761 Another way to specify output of a @code{make} rule is by setting
2762 the environment variable @code{DEPENDENCIES_OUTPUT} (@pxref{Environment
2763 Variables}).
2764
2765 @item -MM
2766 Like @samp{-M} but the output mentions only the user header files
2767 included with @samp{#include "@var{file}"}.  System header files
2768 included with @samp{#include <@var{file}>} are omitted.
2769
2770 @item -MD
2771 Like @samp{-M} but the dependency information is written to a file made by
2772 replacing ".c" with ".d" at the end of the input file names.
2773 This is in addition to compiling the file as specified---@samp{-MD} does
2774 not inhibit ordinary compilation the way @samp{-M} does.
2775
2776 In Mach, you can use the utility @code{md} to merge multiple dependency
2777 files into a single dependency file suitable for using with the @samp{make}
2778 command.
2779
2780 @item -MMD
2781 Like @samp{-MD} except mention only user header files, not system
2782 header files.
2783
2784 @item -MG
2785 Treat missing header files as generated files and assume they live in the
2786 same directory as the source file.  If you specify @samp{-MG}, you
2787 must also specify either @samp{-M} or @samp{-MM}.  @samp{-MG} is not
2788 supported with @samp{-MD} or @samp{-MMD}.
2789
2790 @item -H
2791 Print the name of each header file used, in addition to other normal
2792 activities.
2793
2794 @item -A@var{question}(@var{answer})
2795 Assert the answer @var{answer} for @var{question}, in case it is tested
2796 with a preprocessing conditional such as @samp{#if
2797 #@var{question}(@var{answer})}.  @samp{-A-} disables the standard
2798 assertions that normally describe the target machine.
2799
2800 @item -D@var{macro}
2801 Define macro @var{macro} with the string @samp{1} as its definition.
2802
2803 @item -D@var{macro}=@var{defn}
2804 Define macro @var{macro} as @var{defn}.  All instances of @samp{-D} on
2805 the command line are processed before any @samp{-U} options.
2806
2807 @item -U@var{macro}
2808 Undefine macro @var{macro}.  @samp{-U} options are evaluated after all
2809 @samp{-D} options, but before any @samp{-include} and @samp{-imacros}
2810 options.
2811
2812 @item -dM
2813 Tell the preprocessor to output only a list of the macro definitions
2814 that are in effect at the end of preprocessing.  Used with the @samp{-E}
2815 option.
2816
2817 @item -dD
2818 Tell the preprocessing to pass all macro definitions into the output, in
2819 their proper sequence in the rest of the output.
2820
2821 @item -dN
2822 Like @samp{-dD} except that the macro arguments and contents are omitted.
2823 Only @samp{#define @var{name}} is included in the output.
2824
2825 @item -trigraphs
2826 Support ANSI C trigraphs.  The @samp{-ansi} option also has this effect.
2827
2828 @item -Wp,@var{option}
2829 Pass @var{option} as an option to the preprocessor.  If @var{option}
2830 contains commas, it is split into multiple options at the commas.
2831 @end table
2832
2833 @node Assembler Options
2834 @section Passing Options to the Assembler
2835
2836 @c prevent bad page break with this line
2837 You can pass options to the assembler.
2838
2839 @table @code
2840 @item -Wa,@var{option}
2841 Pass @var{option} as an option to the assembler.  If @var{option}
2842 contains commas, it is split into multiple options at the commas.
2843 @end table
2844
2845 @node Link Options
2846 @section Options for Linking
2847 @cindex link options
2848 @cindex options, linking
2849
2850 These options come into play when the compiler links object files into
2851 an executable output file.  They are meaningless if the compiler is
2852 not doing a link step.
2853
2854 @table @code
2855 @cindex file names
2856 @item @var{object-file-name}
2857 A file name that does not end in a special recognized suffix is
2858 considered to name an object file or library.  (Object files are
2859 distinguished from libraries by the linker according to the file
2860 contents.)  If linking is done, these object files are used as input
2861 to the linker.
2862
2863 @item -c
2864 @itemx -S
2865 @itemx -E
2866 If any of these options is used, then the linker is not run, and
2867 object file names should not be used as arguments.  @xref{Overall
2868 Options}.
2869
2870 @cindex Libraries
2871 @item -l@var{library}
2872 Search the library named @var{library} when linking.
2873
2874 It makes a difference where in the command you write this option; the
2875 linker searches processes libraries and object files in the order they
2876 are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
2877 after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
2878 to functions in @samp{z}, those functions may not be loaded.
2879
2880 The linker searches a standard list of directories for the library,
2881 which is actually a file named @file{lib@var{library}.a}.  The linker
2882 then uses this file as if it had been specified precisely by name.
2883
2884 The directories searched include several standard system directories
2885 plus any that you specify with @samp{-L}.
2886
2887 Normally the files found this way are library files---archive files
2888 whose members are object files.  The linker handles an archive file by
2889 scanning through it for members which define symbols that have so far
2890 been referenced but not defined.  But if the file that is found is an
2891 ordinary object file, it is linked in the usual fashion.  The only
2892 difference between using an @samp{-l} option and specifying a file name
2893 is that @samp{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
2894 and searches several directories.
2895
2896 @item -lobjc
2897 You need this special case of the @samp{-l} option in order to
2898 link an Objective C program.
2899
2900 @item -nostartfiles
2901 Do not use the standard system startup files when linking.
2902 The standard system libraries are used normally, unless @code{-nostdlib}
2903 or @code{-nodefaultlibs} is used.
2904
2905 @item -nodefaultlibs
2906 Do not use the standard system libraries when linking.
2907 Only the libraries you specify will be passed to the linker.
2908 The standard startup files are used normally, unless @code{-nostartfiles}
2909 is used.  The compiler may generate calls to memcmp, memset, and memcpy
2910 for System V (and ANSI C) environments or to bcopy and bzero for
2911 BSD environments.  These entries are usually resolved by entries in
2912 libc.  These entry points should be supplied through some other
2913 mechanism when this option is specified.
2914
2915 @item -nostdlib
2916 Do not use the standard system startup files or libraries when linking.
2917 No startup files and only the libraries you specify will be passed to
2918 the linker. The compiler may generate calls to memcmp, memset, and memcpy
2919 for System V (and ANSI C) environments or to bcopy and bzero for
2920 BSD environments.  These entries are usually resolved by entries in
2921 libc.  These entry points should be supplied through some other
2922 mechanism when this option is specified.
2923
2924 @cindex @code{-lgcc}, use with @code{-nostdlib}
2925 @cindex @code{-nostdlib} and unresolved references
2926 @cindex unresolved references and @code{-nostdlib}
2927 @cindex @code{-lgcc}, use with @code{-nodefaultlibs}
2928 @cindex @code{-nodefaultlibs} and unresolved references
2929 @cindex unresolved references and @code{-nodefaultlibs}
2930 One of the standard libraries bypassed by @samp{-nostdlib} and
2931 @samp{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
2932 that GCC uses to overcome shortcomings of particular machines, or special
2933 needs for some languages.
2934 @ifset INTERNALS
2935 (@xref{Interface,,Interfacing to GCC Output}, for more discussion of
2936 @file{libgcc.a}.)
2937 @end ifset
2938 @ifclear INTERNALS
2939 (@xref{Interface,,Interfacing to GCC Output,gcc.info,Porting GCC},
2940 for more discussion of @file{libgcc.a}.)
2941 @end ifclear
2942 In most cases, you need @file{libgcc.a} even when you want to avoid
2943 other standard libraries.  In other words, when you specify @samp{-nostdlib}
2944 or @samp{-nodefaultlibs} you should usually specify @samp{-lgcc} as well.
2945 This ensures that you have no unresolved references to internal GCC
2946 library subroutines.  (For example, @samp{__main}, used to ensure C++
2947 constructors will be called; @pxref{Collect2,,@code{collect2}}.)
2948
2949 @item -s
2950 Remove all symbol table and relocation information from the executable.
2951
2952 @item -static
2953 On systems that support dynamic linking, this prevents linking with the shared
2954 libraries.  On other systems, this option has no effect.
2955
2956 @item -shared
2957 Produce a shared object which can then be linked with other objects to
2958 form an executable.  Not all systems support this option.  You must
2959 also specify @samp{-fpic} or @samp{-fPIC} on some systems when
2960 you specify this option.
2961
2962 @item -symbolic
2963 Bind references to global symbols when building a shared object.  Warn
2964 about any unresolved references (unless overridden by the link editor
2965 option @samp{-Xlinker -z -Xlinker defs}).  Only a few systems support
2966 this option.
2967
2968 @item -Xlinker @var{option}
2969 Pass @var{option} as an option to the linker.  You can use this to
2970 supply system-specific linker options which GCC does not know how to
2971 recognize.
2972
2973 If you want to pass an option that takes an argument, you must use
2974 @samp{-Xlinker} twice, once for the option and once for the argument.
2975 For example, to pass @samp{-assert definitions}, you must write
2976 @samp{-Xlinker -assert -Xlinker definitions}.  It does not work to write
2977 @samp{-Xlinker "-assert definitions"}, because this passes the entire
2978 string as a single argument, which is not what the linker expects.
2979
2980 @item -Wl,@var{option}
2981 Pass @var{option} as an option to the linker.  If @var{option} contains
2982 commas, it is split into multiple options at the commas.
2983
2984 @item -u @var{symbol}
2985 Pretend the symbol @var{symbol} is undefined, to force linking of
2986 library modules to define it.  You can use @samp{-u} multiple times with
2987 different symbols to force loading of additional library modules.
2988 @end table
2989
2990 @node Directory Options
2991 @section Options for Directory Search
2992 @cindex directory options
2993 @cindex options, directory search
2994 @cindex search path
2995
2996 These options specify directories to search for header files, for
2997 libraries and for parts of the compiler:
2998
2999 @table @code
3000 @item -I@var{dir}
3001 Add the directory @var{dir} to the head of the list of directories to be
3002 searched for header files.  This can be used to override a system header
3003 file, substituting your own version, since these directories are
3004 searched before the system header file directories.  If you use more
3005 than one @samp{-I} option, the directories are scanned in left-to-right
3006 order; the standard system directories come after.
3007
3008 @item -I-
3009 Any directories you specify with @samp{-I} options before the @samp{-I-}
3010 option are searched only for the case of @samp{#include "@var{file}"};
3011 they are not searched for @samp{#include <@var{file}>}.
3012
3013 If additional directories are specified with @samp{-I} options after
3014 the @samp{-I-}, these directories are searched for all @samp{#include}
3015 directives.  (Ordinarily @emph{all} @samp{-I} directories are used
3016 this way.)
3017
3018 In addition, the @samp{-I-} option inhibits the use of the current
3019 directory (where the current input file came from) as the first search
3020 directory for @samp{#include "@var{file}"}.  There is no way to
3021 override this effect of @samp{-I-}.  With @samp{-I.} you can specify
3022 searching the directory which was current when the compiler was
3023 invoked.  That is not exactly the same as what the preprocessor does
3024 by default, but it is often satisfactory.
3025
3026 @samp{-I-} does not inhibit the use of the standard system directories
3027 for header files.  Thus, @samp{-I-} and @samp{-nostdinc} are
3028 independent.
3029
3030 @item -L@var{dir}
3031 Add directory @var{dir} to the list of directories to be searched
3032 for @samp{-l}.
3033
3034 @item -B@var{prefix}
3035 This option specifies where to find the executables, libraries,
3036 include files, and data files of the compiler itself.
3037
3038 The compiler driver program runs one or more of the subprograms
3039 @file{cpp}, @file{cc1}, @file{as} and @file{ld}.  It tries
3040 @var{prefix} as a prefix for each program it tries to run, both with and
3041 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
3042
3043 For each subprogram to be run, the compiler driver first tries the
3044 @samp{-B} prefix, if any.  If that name is not found, or if @samp{-B}
3045 was not specified, the driver tries two standard prefixes, which are
3046 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc-lib/}.  If neither of
3047 those results in a file name that is found, the unmodified program
3048 name is searched for using the directories specified in your
3049 @samp{PATH} environment variable.
3050
3051 @samp{-B} prefixes that effectively specify directory names also apply
3052 to libraries in the linker, because the compiler translates these
3053 options into @samp{-L} options for the linker.  They also apply to
3054 includes files in the preprocessor, because the compiler translates these
3055 options into @samp{-isystem} options for the preprocessor.  In this case,
3056 the compiler appends @samp{include} to the prefix.
3057
3058 The run-time support file @file{libgcc.a} can also be searched for using
3059 the @samp{-B} prefix, if needed.  If it is not found there, the two
3060 standard prefixes above are tried, and that is all.  The file is left
3061 out of the link if it is not found by those means.
3062
3063 Another way to specify a prefix much like the @samp{-B} prefix is to use
3064 the environment variable @code{GCC_EXEC_PREFIX}.  @xref{Environment
3065 Variables}.
3066
3067 @item -specs=@var{file}
3068 Process @var{file} after the compiler reads in the standard @file{specs}
3069 file, in order to override the defaults that the @file{gcc} driver
3070 program uses when determining what switches to pass to @file{cc1},
3071 @file{cc1plus}, @file{as}, @file{ld}, etc.  More than one
3072 @samp{-specs=}@var{file} can be specified on the command line, and they
3073 are processed in order, from left to right.
3074 @end table
3075
3076 @node Spec Files
3077 @section Specifying subprocesses and the switches to pass to them
3078 @cindex Spec Files
3079 @code{GCC} is a driver program.  It performs its job by invoking a
3080 sequence of other programs to do the work of compiling, assembling and
3081 linking.  GCC interprets its command-line parameters and uses these to
3082 deduce which programs it should invoke, and which command-line options
3083 it ought to place on their command lines.  This behaviour is controlled
3084 by @dfn{spec strings}.  In most cases there is one spec string for each
3085 program that GCC can invoke, but a few programs have multiple spec
3086 strings to control their behaviour.  The spec strings built into GCC can
3087 be overridden by using the @samp{-specs=} command-line switch to specify
3088 a spec file.
3089
3090 @dfn{Spec files} are plaintext files that are used to construct spec
3091 strings.  They consist of a sequence of directives separated by blank
3092 lines.  The type of directive is determined by the first non-whitespace
3093 character on the line and it can be one of the following:
3094
3095 @table @code
3096 @item %@var{command}
3097 Issues a @var{command} to the spec file processor.  The commands that can
3098 appear here are: 
3099
3100 @table @code
3101 @item %include <@var{file}>
3102 @cindex %include
3103 Search for @var{file} and insert its text at the current point in the
3104 specs file.
3105
3106 @item %include_noerr <@var{file}>
3107 @cindex %include_noerr
3108 Just like @samp{%include}, but do not generate an error message if the include
3109 file cannot be found.
3110
3111 @item %rename @var{old_name} @var{new_name}
3112 @cindex %rename
3113 Rename the spec string @var{old_name} to @var{new_name}.
3114
3115 @end table
3116
3117 @item *[@var{spec_name}]:
3118 This tells the compiler to create, override or delete the named spec
3119 string.  All lines after this directive up to the next directive or
3120 blank line are considered to be the text for the spec string.  If this
3121 results in an empty string then the spec will be deleted.  (Or, if the
3122 spec did not exist, then nothing will happened.)  Otherwise, if the spec
3123 does not currently exist a new spec will be created.  If the spec does
3124 exist then its contents will be overridden by the text of this
3125 directive, unless the first character of that text is the @samp{+}
3126 character, in which case the text will be appended to the spec.
3127
3128 @item [@var{suffix}]:
3129 Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
3130 and up to the next directive or blank line are considered to make up the
3131 spec string for the indicated suffix.  When the compiler encounters an 
3132 input file with the named suffix, it will processes the spec string in
3133 order to work out how to compile that file.  For example:
3134
3135 @smallexample
3136 .ZZ:
3137 z-compile -input %i
3138 @end smallexample
3139
3140 This says that any input file whose name ends in @samp{.ZZ} should be
3141 passed to the program @samp{z-compile}, which should be invoked with the
3142 command-line switch @samp{-input} and with the result of performing the
3143 @samp{%i} substitution.  (See below.)
3144
3145 As an alternative to providing a spec string, the text that follows a
3146 suffix directive can be one of the following:
3147
3148 @table @code
3149 @item @@@var{language}
3150 This says that the suffix is an alias for a known @var{language}.  This is
3151 similar to using the @code{-x} command-line switch to GCC to specify a
3152 language explicitly.  For example:
3153
3154 @smallexample
3155 .ZZ:
3156 @@c++
3157 @end smallexample
3158
3159 Says that .ZZ files are, in fact, C++ source files.
3160
3161 @item #@var{name}
3162 This causes an error messages saying:
3163
3164 @smallexample
3165 @var{name} compiler not installed on this system.
3166 @end smallexample
3167 @end table
3168
3169 GCC already has an extensive list of suffixes built into it.
3170 This directive will add an entry to the end of the list of suffixes, but
3171 since the list is searched from the end backwards, it is effectively
3172 possible to override earlier entries using this technique.
3173
3174 @end table
3175
3176 GCC has the following spec strings built into it.  Spec files can
3177 override these strings or create their own.  Note that individual
3178 targets can also add their own spec strings to this list. 
3179
3180 @smallexample
3181 asm          Options to pass to the assembler
3182 asm_final    Options to pass to the assembler post-processor
3183 cpp          Options to pass to the C preprocessor
3184 cc1          Options to pass to the C compiler
3185 cc1plus      Options to pass to the C++ compiler
3186 endfile      Object files to include at the end of the link
3187 link         Options to pass to the linker
3188 lib          Libraries to include on the command line to the linker
3189 libgcc       Decides which GCC support library to pass to the linker
3190 linker       Sets the name of the linker
3191 predefines   Defines to be passed to the C preprocessor
3192 signed_char  Defines to pass to CPP to say whether @code{char} is signed by default
3193 startfile    Object files to include at the start of the link
3194 @end smallexample
3195
3196 Here is a small example of a spec file:
3197
3198 @smallexample
3199 %rename lib                 old_lib
3200
3201 *lib:
3202 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
3203 @end smallexample
3204
3205 This example renames the spec called @samp{lib} to @samp{old_lib} and
3206 then overrides the previous definition of @samp{lib} with a new one.
3207 The new definition adds in some extra command-line options before
3208 including the text of the old definition.
3209
3210 @dfn{Spec strings} are a list of command-line options to be passed to their
3211 corresponding program.  In addition, the spec strings can contain
3212 @samp{%}-prefixed sequences to substitute variable text or to
3213 conditionally insert text into the command line.  Using these constructs
3214 it is possible to generate quite complex command lines.
3215
3216 Here is a table of all defined @samp{%}-sequences for spec
3217 strings.  Note that spaces are not generated automatically around the
3218 results of expanding these sequences.  Therefore you can concatenate them
3219 together or combine them with constant text in a single argument. 
3220
3221 @table @code
3222 @item %%
3223 Substitute one @samp{%} into the program name or argument.
3224
3225 @item %i
3226 Substitute the name of the input file being processed.
3227
3228 @item %b
3229 Substitute the basename of the input file being processed.
3230 This is the substring up to (and not including) the last period
3231 and not including the directory.
3232
3233 @item %d
3234 Marks the argument containing or following the @samp{%d} as a
3235 temporary file name, so that that file will be deleted if GCC exits
3236 successfully.  Unlike @samp{%g}, this contributes no text to the
3237 argument. 
3238
3239 @item %g@var{suffix}
3240 Substitute a file name that has suffix @var{suffix} and is chosen
3241 once per compilation, and mark the argument in the same way as
3242 @samp{%d}.  To reduce exposure to denial-of-service attacks, the file
3243 name is now chosen in a way that is hard to predict even when previously 
3244 chosen file names are known.  For example, @samp{%g.s ... %g.o ... %g.s}
3245 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
3246 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
3247 treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
3248 was simply substituted with a file name chosen once per compilation,
3249 without regard to any appended suffix (which was therefore treated
3250 just like ordinary text), making such attacks more likely to succeed.
3251
3252 @item %u@var{suffix}
3253 Like @samp{%g}, but generates a new temporary file name even if
3254 @samp{%u@var{suffix}} was already seen.
3255
3256 @item %U@var{suffix}
3257 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
3258 new one if there is no such last file name.  In the absence of any
3259 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
3260 the same suffix @emph{space}, so @samp{%g.s ... %U.s ... %g.s ... %U.s}
3261 would involve the generation of two distinct file names, one
3262 for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
3263 simply substituted with a file name chosen for the previous @samp{%u},
3264 without regard to any appended suffix.
3265
3266 @item %w
3267 Marks the argument containing or following the @samp{%w} as the
3268 designated output file of this compilation.  This puts the argument
3269 into the sequence of arguments that @samp{%o} will substitute later.
3270
3271 @item %o
3272 Substitutes the names of all the output files, with spaces
3273 automatically placed around them.  You should write spaces
3274 around the @samp{%o} as well or the results are undefined.
3275 @samp{%o} is for use in the specs for running the linker.
3276 Input files whose names have no recognized suffix are not compiled
3277 at all, but they are included among the output files, so they will
3278 be linked.
3279
3280 @item %O
3281 Substitutes the suffix for object files.  Note that this is
3282 handled specially when it immediately follows @samp{%g, %u, or %U},
3283 because of the need for those to form complete file names.  The
3284 handling is such that @samp{%O} is treated exactly as if it had already
3285 been substituted, except that @samp{%g, %u, and %U} do not currently
3286 support additional @var{suffix} characters following @samp{%O} as they would
3287 following, for example, @samp{.o}.
3288
3289 @item %p
3290 Substitutes the standard macro predefinitions for the
3291 current target machine.  Use this when running @code{cpp}.
3292
3293 @item %P
3294 Like @samp{%p}, but puts @samp{__} before and after the name of each
3295 predefined macro, except for macros that start with @samp{__} or with
3296 @samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ANSI
3297 C.  
3298
3299 @item %I
3300 Substitute a @samp{-iprefix} option made from GCC_EXEC_PREFIX.
3301
3302 @item %s
3303 Current argument is the name of a library or startup file of some sort.
3304 Search for that file in a standard list of directories and substitute
3305 the full name found. 
3306
3307 @item %e@var{str}
3308 Print @var{str} as an error message.  @var{str} is terminated by a newline.
3309 Use this when inconsistent options are detected.
3310
3311 @item %|
3312 Output @samp{-} if the input for the current command is coming from a pipe.
3313
3314 @item %(@var{name})
3315 Substitute the contents of spec string @var{name} at this point.
3316
3317 @item %[@var{name}]
3318 Like @samp{%(...)} but put @samp{__} around @samp{-D} arguments.
3319
3320 @item %x@{@var{option}@}
3321 Accumulate an option for @samp{%X}.
3322
3323 @item %X
3324 Output the accumulated linker options specified by @samp{-Wl} or a @samp{%x}
3325 spec string.
3326
3327 @item %Y
3328 Output the accumulated assembler options specified by @samp{-Wa}.
3329
3330 @item %Z
3331 Output the accumulated preprocessor options specified by @samp{-Wp}.
3332
3333 @item %v1
3334 Substitute the major version number of GCC.
3335 (For version 2.9.5, this is 2.)
3336
3337 @item %v2
3338 Substitute the minor version number of GCC.
3339 (For version 2.9.5, this is 9.)
3340
3341 @item %a
3342 Process the @code{asm} spec.  This is used to compute the
3343 switches to be passed to the assembler.
3344
3345 @item %A
3346 Process the @code{asm_final} spec.  This is a spec string for
3347 passing switches to an assembler post-processor, if such a program is
3348 needed.
3349
3350 @item %l
3351 Process the @code{link} spec.  This is the spec for computing the
3352 command line passed to the linker.  Typically it will make use of the
3353 @samp{%L %G %S %D and %E} sequences.
3354
3355 @item %D
3356 Dump out a @samp{-L} option for each directory that GCC believes might
3357 contain startup files.  If the target supports multilibs then the
3358 current multilib directory will be prepended to each of these paths. 
3359
3360 @item %L
3361 Process the @code{lib} spec.  This is a spec string for deciding which
3362 libraries should be included on the command line to the linker. 
3363
3364 @item %G
3365 Process the @code{libgcc} spec.  This is a spec string for deciding
3366 which GCC support library should be included on the command line to the linker. 
3367
3368 @item %S
3369 Process the @code{startfile} spec.  This is a spec for deciding which
3370 object files should be the first ones passed to the linker.  Typically
3371 this might be a file named @file{crt0.o}. 
3372
3373 @item %E
3374 Process the @code{endfile} spec.  This is a spec string that specifies
3375 the last object files that will be passed to the linker.  
3376
3377 @item %C
3378 Process the @code{cpp} spec.  This is used to construct the arguments
3379 to be passed to the C preprocessor.
3380
3381 @item %c
3382 Process the @code{signed_char} spec.  This is intended to be used
3383 to tell cpp whether a char is signed.  It typically has the definition: 
3384 @smallexample
3385 %@{funsigned-char:-D__CHAR_UNSIGNED__@}
3386 @end smallexample
3387
3388 @item %1
3389 Process the @code{cc1} spec.  This is used to construct the options to be
3390 passed to the actual C compiler (@samp{cc1}).
3391
3392 @item %2
3393 Process the @code{cc1plus} spec.  This is used to construct the options to be
3394 passed to the actual C++ compiler (@samp{cc1plus}).
3395
3396 @item %*
3397 Substitute the variable part of a matched option.  See below.
3398 Note that each comma in the substituted string is replaced by
3399 a single space.
3400
3401 @item %@{@code{S}@}
3402 Substitutes the @code{-S} switch, if that switch was given to GCC.
3403 If that switch was not specified, this substitutes nothing.  Note that
3404 the leading dash is omitted when specifying this option, and it is
3405 automatically inserted if the substitution is performed.  Thus the spec
3406 string @samp{%@{foo@}} would match the command-line option @samp{-foo}
3407 and would output the command line option @samp{-foo}.
3408
3409 @item %W@{@code{S}@}
3410 Like %@{@code{S}@} but mark last argument supplied within as a file to be
3411 deleted on failure. 
3412
3413 @item %@{@code{S}*@}
3414 Substitutes all the switches specified to GCC whose names start
3415 with @code{-S}, but which also take an argument.  This is used for
3416 switches like @samp{-o, -D, -I}, etc.  GCC considers @samp{-o foo} as being
3417 one switch whose names starts with @samp{o}.  %@{o*@} would substitute this
3418 text, including the space.  Thus two arguments would be generated. 
3419
3420 @item %@{^@code{S}*@}
3421 Like %@{@code{S}*@}, but don't put a blank between a switch and its
3422 argument.  Thus %@{^o*@} would only generate one argument, not two.
3423
3424 @item %@{@code{S}*:@code{X}@}
3425 Substitutes @code{X} if one or more switches whose names start with
3426 @code{-S} are specified to GCC.  Note that the tail part of the
3427 @code{-S} option (i.e. the part matched by the @samp{*}) will be substituted
3428 for each occurrence of @samp{%*} within @code{X}. 
3429
3430 @item %@{@code{S}:@code{X}@}
3431 Substitutes @code{X}, but only if the @samp{-S} switch was given to GCC.
3432
3433 @item %@{!@code{S}:@code{X}@}
3434 Substitutes @code{X}, but only if the @samp{-S} switch was @emph{not} given to GCC.
3435
3436 @item %@{|@code{S}:@code{X}@}
3437 Like %@{@code{S}:@code{X}@}, but if no @code{S} switch, substitute @samp{-}.
3438
3439 @item %@{|!@code{S}:@code{X}@}
3440 Like %@{!@code{S}:@code{X}@}, but if there is an @code{S} switch, substitute @samp{-}.
3441
3442 @item %@{.@code{S}:@code{X}@}
3443 Substitutes @code{X}, but only if processing a file with suffix @code{S}.
3444
3445 @item %@{!.@code{S}:@code{X}@}
3446 Substitutes @code{X}, but only if @emph{not} processing a file with suffix @code{S}.
3447
3448 @item %@{@code{S}|@code{P}:@code{X}@}
3449 Substitutes @code{X} if either @code{-S} or @code{-P} was given to GCC.  This may be
3450 combined with @samp{!} and @samp{.} sequences as well, although they
3451 have a stronger binding than the @samp{|}.  For example a spec string
3452 like this:
3453
3454 @smallexample
3455 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
3456 @end smallexample
3457
3458 will output the following command-line options from the following input
3459 command-line options:
3460
3461 @smallexample
3462 fred.c        -foo -baz
3463 jim.d         -bar -boggle
3464 -d fred.c     -foo -baz -boggle
3465 -d jim.d      -bar -baz -boggle
3466 @end smallexample
3467
3468 @end table
3469
3470 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or
3471 %@{!@code{S}:@code{X}@} construct may contain other nested @samp{%} constructs
3472 or spaces, or even newlines.  They are processed as usual, as described
3473 above. 
3474
3475 The @samp{-O, -f, -m, and -W} switches are handled specifically in these
3476 constructs.  If another value of @samp{-O} or the negated form of a @samp{-f, -m, or
3477 -W} switch is found later in the command line, the earlier switch
3478 value is ignored, except with @{@code{S}*@} where @code{S} is just one
3479 letter, which passes all matching options.
3480
3481 The character @samp{|} at the beginning of the predicate text is used to indicate
3482 that a command should be piped to the following command, but only if @samp{-pipe}
3483 is specified.
3484
3485 It is built into GCC which switches take arguments and which do not.
3486 (You might think it would be useful to generalize this to allow each
3487 compiler's spec to say which switches take arguments.  But this cannot
3488 be done in a consistent fashion.  GCC cannot even decide which input
3489 files have been specified without knowing which switches take arguments,
3490 and it must know which input files to compile in order to tell which
3491 compilers to run). 
3492
3493 GCC also knows implicitly that arguments starting in @samp{-l} are to be
3494 treated as compiler output files, and passed to the linker in their
3495 proper position among the other output files.
3496
3497 @node Target Options
3498 @section Specifying Target Machine and Compiler Version
3499 @cindex target options
3500 @cindex cross compiling
3501 @cindex specifying machine version
3502 @cindex specifying compiler version and target machine
3503 @cindex compiler version, specifying
3504 @cindex target machine, specifying
3505
3506 By default, GCC compiles code for the same type of machine that you
3507 are using.  However, it can also be installed as a cross-compiler, to
3508 compile for some other type of machine.  In fact, several different
3509 configurations of GCC, for different target machines, can be
3510 installed side by side.  Then you specify which one to use with the
3511 @samp{-b} option.
3512
3513 In addition, older and newer versions of GCC can be installed side
3514 by side.  One of them (probably the newest) will be the default, but
3515 you may sometimes wish to use another.
3516
3517 @table @code
3518 @item -b @var{machine}
3519 The argument @var{machine} specifies the target machine for compilation.
3520 This is useful when you have installed GCC as a cross-compiler.
3521
3522 The value to use for @var{machine} is the same as was specified as the
3523 machine type when configuring GCC as a cross-compiler.  For
3524 example, if a cross-compiler was configured with @samp{configure
3525 i386v}, meaning to compile for an 80386 running System V, then you
3526 would specify @samp{-b i386v} to run that cross compiler.
3527
3528 When you do not specify @samp{-b}, it normally means to compile for
3529 the same type of machine that you are using.
3530
3531 @item -V @var{version}
3532 The argument @var{version} specifies which version of GCC to run.
3533 This is useful when multiple versions are installed.  For example,
3534 @var{version} might be @samp{2.0}, meaning to run GCC version 2.0.
3535
3536 The default version, when you do not specify @samp{-V}, is the last
3537 version of GCC that you installed.
3538 @end table
3539
3540 The @samp{-b} and @samp{-V} options actually work by controlling part of
3541 the file name used for the executable files and libraries used for
3542 compilation.  A given version of GCC, for a given target machine, is
3543 normally kept in the directory @file{/usr/local/lib/gcc-lib/@var{machine}/@var{version}}.@refill
3544
3545 Thus, sites can customize the effect of @samp{-b} or @samp{-V} either by
3546 changing the names of these directories or adding alternate names (or
3547 symbolic links).  If in directory @file{/usr/local/lib/gcc-lib/} the
3548 file @file{80386} is a link to the file @file{i386v}, then @samp{-b
3549 80386} becomes an alias for @samp{-b i386v}.
3550
3551 In one respect, the @samp{-b} or @samp{-V} do not completely change
3552 to a different compiler: the top-level driver program @code{gcc}
3553 that you originally invoked continues to run and invoke the other
3554 executables (preprocessor, compiler per se, assembler and linker)
3555 that do the real work.  However, since no real work is done in the
3556 driver program, it usually does not matter that the driver program
3557 in use is not the one for the specified target and version.
3558
3559 The only way that the driver program depends on the target machine is
3560 in the parsing and handling of special machine-specific options.
3561 However, this is controlled by a file which is found, along with the
3562 other executables, in the directory for the specified version and
3563 target machine.  As a result, a single installed driver program adapts
3564 to any specified target machine and compiler version.
3565
3566 The driver program executable does control one significant thing,
3567 however: the default version and target machine.  Therefore, you can
3568 install different instances of the driver program, compiled for
3569 different targets or versions, under different names.
3570
3571 For example, if the driver for version 2.0 is installed as @code{ogcc}
3572 and that for version 2.1 is installed as @code{gcc}, then the command
3573 @code{gcc} will use version 2.1 by default, while @code{ogcc} will use
3574 2.0 by default.  However, you can choose either version with either
3575 command with the @samp{-V} option.
3576
3577 @node Submodel Options
3578 @section Hardware Models and Configurations
3579 @cindex submodel options
3580 @cindex specifying hardware config
3581 @cindex hardware models and configurations, specifying
3582 @cindex machine dependent options
3583
3584 Earlier we discussed the standard option @samp{-b} which chooses among
3585 different installed compilers for completely different target
3586 machines, such as Vax vs. 68000 vs. 80386.
3587
3588 In addition, each of these target machine types can have its own
3589 special options, starting with @samp{-m}, to choose among various
3590 hardware models or configurations---for example, 68010 vs 68020,
3591 floating coprocessor or none.  A single installed version of the
3592 compiler can compile for any model or configuration, according to the
3593 options specified.
3594
3595 Some configurations of the compiler also support additional special
3596 options, usually for compatibility with other compilers on the same
3597 platform.
3598
3599 @ifset INTERNALS
3600 These options are defined by the macro @code{TARGET_SWITCHES} in the
3601 machine description.  The default for the options is also defined by
3602 that macro, which enables you to change the defaults.
3603 @end ifset
3604
3605 @menu
3606 * M680x0 Options::
3607 * VAX Options::
3608 * SPARC Options::
3609 * Convex Options::
3610 * AMD29K Options::
3611 * ARM Options::
3612 * Thumb Options::
3613 * MN10200 Options::
3614 * MN10300 Options::
3615 * M32R/D Options::
3616 * M88K Options::
3617 * RS/6000 and PowerPC Options::
3618 * RT Options::
3619 * MIPS Options::
3620 * i386 Options::
3621 * HPPA Options::
3622 * Intel 960 Options::
3623 * DEC Alpha Options::
3624 * Clipper Options::
3625 * H8/300 Options::
3626 * SH Options::
3627 * System V Options::
3628 * TMS320C3x/C4x Options::
3629 * V850 Options::
3630 * ARC Options::
3631 * NS32K Options::
3632 @end menu
3633
3634 @node M680x0 Options
3635 @subsection M680x0 Options
3636 @cindex M680x0 options
3637
3638 These are the @samp{-m} options defined for the 68000 series.  The default
3639 values for these options depends on which style of 68000 was selected when
3640 the compiler was configured; the defaults for the most common choices are
3641 given below.
3642
3643 @table @code
3644 @item -m68000
3645 @itemx -mc68000
3646 Generate output for a 68000.  This is the default
3647 when the compiler is configured for 68000-based systems.
3648
3649 Use this option for microcontrollers with a 68000 or EC000 core,
3650 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
3651
3652 @item -m68020
3653 @itemx -mc68020
3654 Generate output for a 68020.  This is the default
3655 when the compiler is configured for 68020-based systems.
3656
3657 @item -m68881
3658 Generate output containing 68881 instructions for floating point.
3659 This is the default for most 68020 systems unless @samp{-nfp} was
3660 specified when the compiler was configured.
3661
3662 @item -m68030
3663 Generate output for a 68030.  This is the default when the compiler is
3664 configured for 68030-based systems.
3665
3666 @item -m68040
3667 Generate output for a 68040.  This is the default when the compiler is
3668 configured for 68040-based systems.
3669
3670 This option inhibits the use of 68881/68882 instructions that have to be
3671 emulated by software on the 68040.  Use this option if your 68040 does not
3672 have code to emulate those instructions.
3673
3674 @item -m68060
3675 Generate output for a 68060.  This is the default when the compiler is
3676 configured for 68060-based systems.
3677
3678 This option inhibits the use of 68020 and 68881/68882 instructions that
3679 have to be emulated by software on the 68060.  Use this option if your 68060
3680 does not have code to emulate those instructions.
3681
3682 @item -mcpu32
3683 Generate output for a CPU32. This is the default
3684 when the compiler is configured for CPU32-based systems.
3685
3686 Use this option for microcontrollers with a
3687 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
3688 68336, 68340, 68341, 68349 and 68360.
3689
3690 @item -m5200
3691 Generate output for a 520X "coldfire" family cpu.  This is the default
3692 when the compiler is configured for 520X-based systems.
3693
3694 Use this option for microcontroller with a 5200 core, including 
3695 the MCF5202, MCF5203, MCF5204 and MCF5202.
3696
3697
3698 @item -m68020-40
3699 Generate output for a 68040, without using any of the new instructions.
3700 This results in code which can run relatively efficiently on either a
3701 68020/68881 or a 68030 or a 68040.  The generated code does use the
3702 68881 instructions that are emulated on the 68040.
3703
3704 @item -m68020-60
3705 Generate output for a 68060, without using any of the new instructions.
3706 This results in code which can run relatively efficiently on either a
3707 68020/68881 or a 68030 or a 68040.  The generated code does use the
3708 68881 instructions that are emulated on the 68060.
3709
3710 @item -mfpa
3711 Generate output containing Sun FPA instructions for floating point.
3712
3713 @item -msoft-float
3714 Generate output containing library calls for floating point.
3715 @strong{Warning:} the requisite libraries are not available for all m68k
3716 targets.  Normally the facilities of the machine's usual C compiler are
3717 used, but this can't be done directly in cross-compilation.  You must
3718 make your own arrangements to provide suitable library functions for
3719 cross-compilation.  The embedded targets @samp{m68k-*-aout} and
3720 @samp{m68k-*-coff} do provide software floating point support.
3721
3722 @item -mshort
3723 Consider type @code{int} to be 16 bits wide, like @code{short int}.
3724
3725 @item -mnobitfield
3726 Do not use the bit-field instructions.  The @samp{-m68000}, @samp{-mcpu32}
3727 and @samp{-m5200} options imply @w{@samp{-mnobitfield}}.
3728
3729 @item -mbitfield
3730 Do use the bit-field instructions.  The @samp{-m68020} option implies
3731 @samp{-mbitfield}.  This is the default if you use a configuration
3732 designed for a 68020.
3733
3734 @item -mrtd
3735 Use a different function-calling convention, in which functions
3736 that take a fixed number of arguments return with the @code{rtd}
3737 instruction, which pops their arguments while returning.  This
3738 saves one instruction in the caller since there is no need to pop
3739 the arguments there.
3740
3741 This calling convention is incompatible with the one normally
3742 used on Unix, so you cannot use it if you need to call libraries
3743 compiled with the Unix compiler.
3744
3745 Also, you must provide function prototypes for all functions that
3746 take variable numbers of arguments (including @code{printf});
3747 otherwise incorrect code will be generated for calls to those
3748 functions.
3749
3750 In addition, seriously incorrect code will result if you call a
3751 function with too many arguments.  (Normally, extra arguments are
3752 harmlessly ignored.)
3753
3754 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
3755 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
3756
3757 @item -malign-int
3758 @itemx -mno-align-int
3759 Control whether GCC aligns @code{int}, @code{long}, @code{long long}, 
3760 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
3761 boundary (@samp{-malign-int}) or a 16-bit boundary (@samp{-mno-align-int}).
3762 Aligning variables on 32-bit boundaries produces code that runs somewhat
3763 faster on processors with 32-bit busses at the expense of more memory.
3764
3765 @strong{Warning:} if you use the @samp{-malign-int} switch, GCC will
3766 align structures containing the above types  differently than
3767 most published application binary interface specifications for the m68k.
3768
3769 @item -mpcrel
3770 Use the pc-relative addressing mode of the 68000 directly, instead of
3771 using a global offset table.  At present, this option implies -fpic,
3772 allowing at most a 16-bit offset for pc-relative addressing.  -fPIC is
3773 not presently supported with -mpcrel, though this could be supported for
3774 68020 and higher processors.
3775
3776 @end table
3777
3778 @node VAX Options
3779 @subsection VAX Options
3780 @cindex VAX options
3781
3782 These @samp{-m} options are defined for the Vax:
3783
3784 @table @code
3785 @item -munix
3786 Do not output certain jump instructions (@code{aobleq} and so on)
3787 that the Unix assembler for the Vax cannot handle across long
3788 ranges.
3789
3790 @item -mgnu
3791 Do output those jump instructions, on the assumption that you
3792 will assemble with the GNU assembler.
3793
3794 @item -mg
3795 Output code for g-format floating point numbers instead of d-format.
3796 @end table
3797
3798 @node SPARC Options
3799 @subsection SPARC Options
3800 @cindex SPARC options
3801
3802 These @samp{-m} switches are supported on the SPARC:
3803
3804 @table @code
3805 @item -mno-app-regs
3806 @itemx -mapp-regs
3807 Specify @samp{-mapp-regs} to generate output using the global registers
3808 2 through 4, which the SPARC SVR4 ABI reserves for applications.  This
3809 is the default.
3810
3811 To be fully SVR4 ABI compliant at the cost of some performance loss,
3812 specify @samp{-mno-app-regs}.  You should compile libraries and system
3813 software with this option.
3814
3815 @item -mfpu
3816 @itemx -mhard-float
3817 Generate output containing floating point instructions.  This is the
3818 default.
3819
3820 @item -mno-fpu
3821 @itemx -msoft-float
3822 Generate output containing library calls for floating point.
3823 @strong{Warning:} the requisite libraries are not available for all SPARC
3824 targets.  Normally the facilities of the machine's usual C compiler are
3825 used, but this cannot be done directly in cross-compilation.  You must make
3826 your own arrangements to provide suitable library functions for
3827 cross-compilation.  The embedded targets @samp{sparc-*-aout} and
3828 @samp{sparclite-*-*} do provide software floating point support.
3829
3830 @samp{-msoft-float} changes the calling convention in the output file;
3831 therefore, it is only useful if you compile @emph{all} of a program with
3832 this option.  In particular, you need to compile @file{libgcc.a}, the
3833 library that comes with GCC, with @samp{-msoft-float} in order for
3834 this to work.
3835
3836 @item -mhard-quad-float
3837 Generate output containing quad-word (long double) floating point
3838 instructions.
3839
3840 @item -msoft-quad-float
3841 Generate output containing library calls for quad-word (long double)
3842 floating point instructions.  The functions called are those specified
3843 in the SPARC ABI.  This is the default.
3844
3845 As of this writing, there are no sparc implementations that have hardware
3846 support for the quad-word floating point instructions.  They all invoke
3847 a trap handler for one of these instructions, and then the trap handler
3848 emulates the effect of the instruction.  Because of the trap handler overhead,
3849 this is much slower than calling the ABI library routines.  Thus the
3850 @samp{-msoft-quad-float} option is the default.
3851
3852 @item -mno-epilogue
3853 @itemx -mepilogue
3854 With @samp{-mepilogue} (the default), the compiler always emits code for
3855 function exit at the end of each function.  Any function exit in
3856 the middle of the function (such as a return statement in C) will
3857 generate a jump to the exit code at the end of the function.
3858
3859 With @samp{-mno-epilogue}, the compiler tries to emit exit code inline
3860 at every function exit.
3861
3862 @item -mno-flat
3863 @itemx -mflat
3864 With @samp{-mflat}, the compiler does not generate save/restore instructions
3865 and will use a "flat" or single register window calling convention.
3866 This model uses %i7 as the frame pointer and is compatible with the normal
3867 register window model.  Code from either may be intermixed.
3868 The local registers and the input registers (0-5) are still treated as
3869 "call saved" registers and will be saved on the stack as necessary.
3870
3871 With @samp{-mno-flat} (the default), the compiler emits save/restore
3872 instructions (except for leaf functions) and is the normal mode of operation.
3873
3874 @item -mno-unaligned-doubles
3875 @itemx -munaligned-doubles
3876 Assume that doubles have 8 byte alignment.  This is the default.
3877
3878 With @samp{-munaligned-doubles}, GCC assumes that doubles have 8 byte
3879 alignment only if they are contained in another type, or if they have an
3880 absolute address.  Otherwise, it assumes they have 4 byte alignment.
3881 Specifying this option avoids some rare compatibility problems with code
3882 generated by other compilers.  It is not the default because it results
3883 in a performance loss, especially for floating point code.
3884
3885 @item -mv8
3886 @itemx -msparclite
3887 These two options select variations on the SPARC architecture.
3888
3889 By default (unless specifically configured for the Fujitsu SPARClite),
3890 GCC generates code for the v7 variant of the SPARC architecture.
3891
3892 @samp{-mv8} will give you SPARC v8 code.  The only difference from v7
3893 code is that the compiler emits the integer multiply and integer
3894 divide instructions which exist in SPARC v8 but not in SPARC v7.
3895
3896 @samp{-msparclite} will give you SPARClite code.  This adds the integer
3897 multiply, integer divide step and scan (@code{ffs}) instructions which
3898 exist in SPARClite but not in SPARC v7.
3899
3900 These options are deprecated and will be deleted in a future GCC release.
3901 They have been replaced with @samp{-mcpu=xxx}.
3902
3903 @item -mcypress
3904 @itemx -msupersparc
3905 These two options select the processor for which the code is optimised.
3906
3907 With @samp{-mcypress} (the default), the compiler optimizes code for the
3908 Cypress CY7C602 chip, as used in the SparcStation/SparcServer 3xx series.
3909 This is also appropriate for the older SparcStation 1, 2, IPX etc.
3910
3911 With @samp{-msupersparc} the compiler optimizes code for the SuperSparc cpu, as
3912 used in the SparcStation 10, 1000 and 2000 series. This flag also enables use
3913 of the full SPARC v8 instruction set.
3914
3915 These options are deprecated and will be deleted in a future GCC release.
3916 They have been replaced with @samp{-mcpu=xxx}.
3917
3918 @item -mcpu=@var{cpu_type}
3919 Set the instruction set, register set, and instruction scheduling parameters
3920 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
3921 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{sparclite},
3922 @samp{hypersparc}, @samp{sparclite86x}, @samp{f930}, @samp{f934},
3923 @samp{sparclet}, @samp{tsc701}, @samp{v9}, and @samp{ultrasparc}.
3924
3925 Default instruction scheduling parameters are used for values that select
3926 an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
3927 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
3928
3929 Here is a list of each supported architecture and their supported
3930 implementations.
3931
3932 @smallexample
3933     v7:             cypress
3934     v8:             supersparc, hypersparc
3935     sparclite:      f930, f934, sparclite86x
3936     sparclet:       tsc701
3937     v9:             ultrasparc
3938 @end smallexample
3939
3940 @item -mtune=@var{cpu_type}
3941 Set the instruction scheduling parameters for machine type
3942 @var{cpu_type}, but do not set the instruction set or register set that the
3943 option @samp{-mcpu=}@var{cpu_type} would.
3944
3945 The same values for @samp{-mcpu=}@var{cpu_type} are used for
3946 @samp{-mtune=}@*@var{cpu_type}, though the only useful values are those that
3947 select a particular cpu implementation: @samp{cypress}, @samp{supersparc},
3948 @samp{hypersparc}, @samp{f930}, @samp{f934}, @samp{sparclite86x},
3949 @samp{tsc701}, @samp{ultrasparc}.
3950
3951 @end table
3952
3953 These @samp{-m} switches are supported in addition to the above
3954 on the SPARCLET processor.
3955
3956 @table @code
3957 @item -mlittle-endian
3958 Generate code for a processor running in little-endian mode.
3959
3960 @item -mlive-g0
3961 Treat register @code{%g0} as a normal register.
3962 GCC will continue to clobber it as necessary but will not assume
3963 it always reads as 0.
3964
3965 @item -mbroken-saverestore
3966 Generate code that does not use non-trivial forms of the @code{save} and
3967 @code{restore} instructions.  Early versions of the SPARCLET processor do
3968 not correctly handle @code{save} and @code{restore} instructions used with
3969 arguments.  They correctly handle them used without arguments.  A @code{save}
3970 instruction used without arguments increments the current window pointer
3971 but does not allocate a new stack frame.  It is assumed that the window
3972 overflow trap handler will properly handle this case as will interrupt
3973 handlers.
3974 @end table
3975
3976 These @samp{-m} switches are supported in addition to the above
3977 on SPARC V9 processors in 64 bit environments.
3978
3979 @table @code
3980 @item -mlittle-endian
3981 Generate code for a processor running in little-endian mode.
3982
3983 @item -m32
3984 @itemx -m64
3985 Generate code for a 32 bit or 64 bit environment.
3986 The 32 bit environment sets int, long and pointer to 32 bits.
3987 The 64 bit environment sets int to 32 bits and long and pointer
3988 to 64 bits.
3989
3990 @item -mcmodel=medlow
3991 Generate code for the Medium/Low code model: the program must be linked
3992 in the low 32 bits of the address space.  Pointers are 64 bits.
3993 Programs can be statically or dynamically linked.
3994
3995 @item -mcmodel=medmid
3996 Generate code for the Medium/Middle code model: the program must be linked
3997 in the low 44 bits of the address space, the text segment must be less than
3998 2G bytes, and data segment must be within 2G of the text segment.
3999 Pointers are 64 bits.
4000
4001 @item -mcmodel=medany
4002 Generate code for the Medium/Anywhere code model: the program may be linked
4003 anywhere in the address space, the text segment must be less than
4004 2G bytes, and data segment must be within 2G of the text segment.
4005 Pointers are 64 bits.
4006
4007 @item -mcmodel=embmedany
4008 Generate code for the Medium/Anywhere code model for embedded systems:
4009 assume a 32 bit text and a 32 bit data segment, both starting anywhere
4010 (determined at link time).  Register %g4 points to the base of the
4011 data segment.  Pointers still 64 bits.
4012 Programs are statically linked, PIC is not supported.
4013
4014 @item -mstack-bias
4015 @itemx -mno-stack-bias
4016 With @samp{-mstack-bias}, GCC assumes that the stack pointer, and
4017 frame pointer if present, are offset by -2047 which must be added back
4018 when making stack frame references.
4019 Otherwise, assume no such offset is present.
4020 @end table
4021
4022 @node Convex Options
4023 @subsection Convex Options
4024 @cindex Convex options
4025
4026 These @samp{-m} options are defined for Convex:
4027
4028 @table @code
4029 @item -mc1
4030 Generate output for C1.  The code will run on any Convex machine.
4031 The preprocessor symbol @code{__convex__c1__} is defined.
4032
4033 @item -mc2
4034 Generate output for C2.  Uses instructions not available on C1.
4035 Scheduling and other optimizations are chosen for max performance on C2.
4036 The preprocessor symbol @code{__convex_c2__} is defined.
4037
4038 @item -mc32
4039 Generate output for C32xx.  Uses instructions not available on C1.
4040 Scheduling and other optimizations are chosen for max performance on C32.
4041 The preprocessor symbol @code{__convex_c32__} is defined.
4042
4043 @item -mc34
4044 Generate output for C34xx.  Uses instructions not available on C1.
4045 Scheduling and other optimizations are chosen for max performance on C34.
4046 The preprocessor symbol @code{__convex_c34__} is defined.
4047
4048 @item -mc38
4049 Generate output for C38xx.  Uses instructions not available on C1.
4050 Scheduling and other optimizations are chosen for max performance on C38.
4051 The preprocessor symbol @code{__convex_c38__} is defined.
4052
4053 @item -margcount
4054 Generate code which puts an argument count in the word preceding each
4055 argument list.  This is compatible with regular CC, and a few programs
4056 may need the argument count word.  GDB and other source-level debuggers
4057 do not need it; this info is in the symbol table.
4058
4059 @item -mnoargcount
4060 Omit the argument count word.  This is the default.
4061
4062 @item -mvolatile-cache
4063 Allow volatile references to be cached.  This is the default.
4064
4065 @item -mvolatile-nocache
4066 Volatile references bypass the data cache, going all the way to memory.
4067 This is only needed for multi-processor code that does not use standard
4068 synchronization instructions.  Making non-volatile references to volatile
4069 locations will not necessarily work.
4070
4071 @item -mlong32
4072 Type long is 32 bits, the same as type int.  This is the default.
4073
4074 @item -mlong64
4075 Type long is 64 bits, the same as type long long.  This option is useless,
4076 because no library support exists for it.
4077 @end table
4078
4079 @node AMD29K Options
4080 @subsection AMD29K Options
4081 @cindex AMD29K options
4082
4083 These @samp{-m} options are defined for the AMD Am29000:
4084
4085 @table @code
4086 @item -mdw
4087 @kindex -mdw
4088 @cindex DW bit (29k)
4089 Generate code that assumes the @code{DW} bit is set, i.e., that byte and
4090 halfword operations are directly supported by the hardware.  This is the
4091 default.
4092
4093 @item -mndw
4094 @kindex -mndw
4095 Generate code that assumes the @code{DW} bit is not set.
4096
4097 @item -mbw
4098 @kindex -mbw
4099 @cindex byte writes (29k)
4100 Generate code that assumes the system supports byte and halfword write
4101 operations.  This is the default.
4102
4103 @item -mnbw
4104 @kindex -mnbw
4105 Generate code that assumes the systems does not support byte and
4106 halfword write operations.  @samp{-mnbw} implies @samp{-mndw}.
4107
4108 @item -msmall
4109 @kindex -msmall
4110 @cindex memory model (29k)
4111 Use a small memory model that assumes that all function addresses are
4112 either within a single 256 KB segment or at an absolute address of less
4113 than 256k.  This allows the @code{call} instruction to be used instead
4114 of a @code{const}, @code{consth}, @code{calli} sequence.
4115
4116 @item -mnormal
4117 @kindex -mnormal
4118 Use the normal memory model: Generate @code{call} instructions only when
4119 calling functions in the same file and @code{calli} instructions
4120 otherwise.  This works if each file occupies less than 256 KB but allows
4121 the entire executable to be larger than 256 KB.  This is the default.
4122
4123 @item -mlarge
4124 Always use @code{calli} instructions.  Specify this option if you expect
4125 a single file to compile into more than 256 KB of code.
4126
4127 @item -m29050
4128 @kindex -m29050
4129 @cindex processor selection (29k)
4130 Generate code for the Am29050.
4131
4132 @item -m29000
4133 @kindex -m29000
4134 Generate code for the Am29000.  This is the default.
4135
4136 @item -mkernel-registers
4137 @kindex -mkernel-registers
4138 @cindex kernel and user registers (29k)
4139 Generate references to registers @code{gr64-gr95} instead of to
4140 registers @code{gr96-gr127}.  This option can be used when compiling
4141 kernel code that wants a set of global registers disjoint from that used
4142 by user-mode code.
4143
4144 Note that when this option is used, register names in @samp{-f} flags
4145 must use the normal, user-mode, names.
4146
4147 @item -muser-registers
4148 @kindex -muser-registers
4149 Use the normal set of global registers, @code{gr96-gr127}.  This is the
4150 default.
4151
4152 @item -mstack-check
4153 @itemx -mno-stack-check
4154 @kindex -mstack-check
4155 @cindex stack checks (29k)
4156 Insert (or do not insert) a call to @code{__msp_check} after each stack
4157 adjustment.  This is often used for kernel code.
4158
4159 @item -mstorem-bug
4160 @itemx -mno-storem-bug
4161 @kindex -mstorem-bug
4162 @cindex storem bug (29k)
4163 @samp{-mstorem-bug} handles 29k processors which cannot handle the
4164 separation of a mtsrim insn and a storem instruction (most 29000 chips
4165 to date, but not the 29050).
4166
4167 @item -mno-reuse-arg-regs
4168 @itemx -mreuse-arg-regs
4169 @kindex -mreuse-arg-regs
4170 @samp{-mno-reuse-arg-regs} tells the compiler to only use incoming argument
4171 registers for copying out arguments.  This helps detect calling a function
4172 with fewer arguments than it was declared with.
4173
4174 @item -mno-impure-text
4175 @itemx -mimpure-text
4176 @kindex -mimpure-text
4177 @samp{-mimpure-text}, used in addition to @samp{-shared}, tells the compiler to
4178 not pass @samp{-assert pure-text} to the linker when linking a shared object.
4179
4180 @item -msoft-float
4181 @kindex -msoft-float
4182 Generate output containing library calls for floating point.
4183 @strong{Warning:} the requisite libraries are not part of GCC.
4184 Normally the facilities of the machine's usual C compiler are used, but
4185 this can't be done directly in cross-compilation.  You must make your
4186 own arrangements to provide suitable library functions for
4187 cross-compilation.
4188
4189 @item -mno-multm
4190 @kindex -mno-multm
4191 Do not generate multm or multmu instructions.  This is useful for some embedded
4192 systems which do not have trap handlers for these instructions.
4193 @end table
4194
4195 @node ARM Options
4196 @subsection ARM Options
4197 @cindex ARM options
4198
4199 These @samp{-m} options are defined for Advanced RISC Machines (ARM)
4200 architectures:
4201
4202 @table @code
4203 @item -mapcs-frame
4204 @kindex -mapcs-frame
4205 Generate a stack frame that is compliant with the ARM Procedure Call
4206 Standard for all functions, even if this is not strictly necessary for
4207 correct execution of the code.  Specifying @samp{-fomit-frame-pointer}
4208 with this option will cause the stack frames not to be generated for
4209 leaf functions.  The default is @samp{-mno-apcs-frame}.
4210
4211 @item -mapcs
4212 @kindex -mapcs
4213 This is a synonym for @samp{-mapcs-frame}.
4214
4215 @item -mapcs-26
4216 @kindex -mapcs-26
4217 Generate code for a processor running with a 26-bit program counter,
4218 and conforming to the function calling standards for the APCS 26-bit
4219 option.  This option replaces the @samp{-m2} and @samp{-m3} options
4220 of previous releases of the compiler.
4221
4222 @item -mapcs-32
4223 @kindex -mapcs-32
4224 Generate code for a processor running with a 32-bit program counter,
4225 and conforming to the function calling standards for the APCS 32-bit
4226 option.  This option replaces the @samp{-m6} option of previous releases
4227 of the compiler.
4228
4229 @item -mapcs-stack-check
4230 @kindex -mapcs-stack-check
4231 @kindex -mno-apcs-stack-check
4232 Generate code to check the amount of stack space available upon entry to
4233 every function (that actually uses some stack space).  If there is
4234 insufficient space available then either the function
4235 @samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} will be
4236 called, depending upon the amount of stack space required.  The run time
4237 system is required to provide these functions.  The default is
4238 @samp{-mno-apcs-stack-check}, since this produces smaller code.
4239
4240 @item -mapcs-float
4241 @kindex -mapcs-float
4242 @kindex -mno-apcs-float
4243 Pass floating point arguments using the float point registers.  This is
4244 one of the variants of the APCS.  This option is recommended if the
4245 target hardware has a floating point unit or if a lot of floating point
4246 arithmetic is going to be performed by the code.  The default is
4247 @samp{-mno-apcs-float}, since integer only code is slightly increased in
4248 size if @samp{-mapcs-float} is used.
4249
4250 @item -mapcs-reentrant
4251 @kindex -mapcs-reentrant
4252 @kindex -mno-apcs-reentrant
4253 Generate reentrant, position independent code.  This is the equivalent
4254 to specifying the @samp{-fpic} option.  The default is
4255 @samp{-mno-apcs-reentrant}.
4256
4257 @item -mthumb-interwork
4258 @kindex -mthumb-interwork
4259 @kindex -mno-thumb-interwork
4260 Generate code which supports calling between the ARM and THUMB
4261 instruction sets.  Without this option the two instruction sets cannot
4262 be reliably used inside one program.  The default is
4263 @samp{-mno-thumb-interwork}, since slightly larger code is generated
4264 when @samp{-mthumb-interwork} is specified.
4265
4266 @item -mno-sched-prolog
4267 @kindex -mno-sched-prolog
4268 @kindex -msched-prolog
4269 Prevent the reordering of instructions in the function prolog, or the
4270 merging of those instruction with the instructions in the function's
4271 body.  This means that all functions will start with a recognizable set
4272 of instructions (or in fact one of a choice from a small set of
4273 different function prologues), and this information can be used to
4274 locate the start if functions inside an executable piece of code.  The
4275 default is @samp{-msched-prolog}.
4276
4277 @item -mhard-float
4278 Generate output containing floating point instructions.  This is the
4279 default.
4280
4281 @item -msoft-float
4282 Generate output containing library calls for floating point.
4283 @strong{Warning:} the requisite libraries are not available for all ARM
4284 targets.  Normally the facilities of the machine's usual C compiler are
4285 used, but this cannot be done directly in cross-compilation.  You must make
4286 your own arrangements to provide suitable library functions for
4287 cross-compilation.
4288
4289 @samp{-msoft-float} changes the calling convention in the output file;
4290 therefore, it is only useful if you compile @emph{all} of a program with
4291 this option.  In particular, you need to compile @file{libgcc.a}, the
4292 library that comes with GCC, with @samp{-msoft-float} in order for
4293 this to work.
4294
4295 @item -mlittle-endian
4296 Generate code for a processor running in little-endian mode.  This is
4297 the default for all standard configurations.
4298
4299 @item -mbig-endian
4300 Generate code for a processor running in big-endian mode; the default is
4301 to compile code for a little-endian processor.
4302
4303 @item -mwords-little-endian
4304 This option only applies when generating code for big-endian processors.
4305 Generate code for a little-endian word order but a big-endian byte
4306 order.  That is, a byte order of the form @samp{32107654}.  Note: this
4307 option should only be used if you require compatibility with code for
4308 big-endian ARM processors generated by versions of the compiler prior to
4309 2.8.
4310
4311 @item -mshort-load-bytes
4312 @kindex -mshort-load-bytes
4313 Do not try to load half-words (eg @samp{short}s) by loading a word from
4314 an unaligned address.  For some targets the MMU is configured to trap
4315 unaligned loads; use this option to generate code that is safe in these
4316 environments.
4317
4318 @item -mno-short-load-bytes
4319 @kindex -mno-short-load-bytes
4320 Use unaligned word loads to load half-words (eg @samp{short}s).  This
4321 option produces more efficient code, but the MMU is sometimes configured
4322 to trap these instructions.
4323
4324 @item -mshort-load-words
4325 @kindex -mshort-load-words
4326 This is a synonym for @samp{-mno-short-load-bytes}.
4327
4328 @item -mno-short-load-words
4329 @kindex -mno-short-load-words
4330 This is a synonym for @samp{-mshort-load-bytes}.
4331
4332 @item -mbsd
4333 @kindex -mbsd
4334 This option only applies to RISC iX.  Emulate the native BSD-mode
4335 compiler.  This is the default if @samp{-ansi} is not specified.
4336
4337 @item -mxopen
4338 @kindex -mxopen
4339 This option only applies to RISC iX.  Emulate the native X/Open-mode
4340 compiler.
4341
4342 @item -mno-symrename
4343 @kindex -mno-symrename
4344 This option only applies to RISC iX.  Do not run the assembler
4345 post-processor, @samp{symrename}, after code has been assembled.
4346 Normally it is necessary to modify some of the standard symbols in
4347 preparation for linking with the RISC iX C library; this option
4348 suppresses this pass.  The post-processor is never run when the
4349 compiler is built for cross-compilation.
4350
4351 @item -mcpu=<name>
4352 @kindex -mcpu=
4353 This specifies the name of the target ARM processor.  GCC uses this name
4354 to determine what kind of instructions it can use when generating
4355 assembly code.  Permissible names are: arm2, arm250, arm3, arm6, arm60,
4356 arm600, arm610, arm620, arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi,
4357 arm70, arm700, arm700i, arm710, arm710c, arm7100, arm7500, arm7500fe,
4358 arm7tdmi, arm8, strongarm, strongarm110, strongarm1100, arm8, arm810,
4359 arm9, arm920, arm920t, arm9tdmi.
4360
4361 @itemx -mtune=<name>
4362 @kindex -mtune=
4363 This option is very similar to the @samp{-mcpu=} option, except that
4364 instead of specifying the actual target processor type, and hence
4365 restricting which instructions can be used, it specifies that GCC should
4366 tune the performance of the code as if the target were of the type
4367 specified in this option, but still choosing the instructions that it
4368 will generate based on the cpu specified by a @samp{-mcpu=} option.
4369 For some arm implementations better performance can be obtained by using
4370 this option.
4371
4372 @item -march=<name>
4373 @kindex -march=
4374 This specifies the name of the target ARM architecture.  GCC uses this
4375 name to determine what kind of instructions it can use when generating
4376 assembly code.  This option can be used in conjunction with or instead
4377 of the @samp{-mcpu=} option.  Permissible names are: armv2, armv2a,
4378 armv3, armv3m, armv4, armv4t, armv5.
4379
4380 @item -mfpe=<number>
4381 @itemx -mfp=<number>
4382 @kindex -mfpe=
4383 @kindex -mfp=
4384 This specifes the version of the floating point emulation available on
4385 the target.  Permissible values are 2 and 3.  @samp{-mfp=} is a synonym
4386 for @samp{-mfpe=} to support older versions of GCC.
4387
4388 @item -mstructure-size-boundary=<n>
4389 @kindex -mstructure-size-boundary
4390 The size of all structures and unions will be rounded up to a multiple
4391 of the number of bits set by this option.  Permissible values are 8 and
4392 32.  The default value varies for different toolchains.  For the COFF
4393 targeted toolchain the default value is 8.  Specifying the larger number
4394 can produce faster, more efficient code, but can also increase the size
4395 of the program.  The two values are potentially incompatible.  Code
4396 compiled with one value cannot necessarily expect to work with code or
4397 libraries compiled with the other value, if they exchange information
4398 using structures or unions.  Programmers are encouraged to use the 32
4399 value as future versions of the toolchain may default to this value.
4400
4401 @item -mabort-on-noreturn
4402 @kindex -mabort-on-noreturn
4403 @kindex -mnoabort-on-noreturn
4404 Generate a call to the function abort at the end of a noreturn function.
4405 It will be executed if the function tries to return.
4406
4407 @item -mnop-fun-dllimport
4408 @kindex -mnop-fun-dllimport
4409 Disable the support for the @emph{dllimport} attribute.
4410
4411 @item -msingle-pic-base
4412 @kindex -msingle-pic-base
4413 Treat the register used for PIC addressing as read-only, rather than
4414 loading it in the prologue for each function.  The run-time system is
4415 responsible for initialising this register with an appropriate value
4416 before execution begins.
4417
4418 @item -mpic-register=<reg>
4419 @kindex -mpic-register=
4420 Specify the register to be used for PIC addressing.  The default is R10
4421 unless stack-checking is enabled, when R9 is used.
4422
4423 @end table
4424
4425 @node Thumb Options
4426 @subsection Thumb Options
4427 @cindex Thumb Options
4428
4429 @table @code
4430
4431 @item -mthumb-interwork
4432 @kindex -mthumb-interwork
4433 @kindex -mno-thumb-interwork
4434 Generate code which supports calling between the THUMB and ARM
4435 instruction sets.  Without this option the two instruction sets cannot
4436 be reliably used inside one program.  The default is
4437 @samp{-mno-thumb-interwork}, since slightly smaller code is generated
4438 with this option.
4439
4440 @item -mtpcs-frame
4441 @kindex -mtpcs-frame
4442 @kindex -mno-tpcs-frame
4443 Generate a stack frame that is compliant with the Thumb Procedure Call
4444 Standard for all non-leaf functions.  (A leaf function is one that does
4445 not call any other functions).  The default is @samp{-mno-apcs-frame}. 
4446
4447 @item -mtpcs-leaf-frame
4448 @kindex -mtpcs-leaf-frame
4449 @kindex -mno-tpcs-leaf-frame
4450 Generate a stack frame that is compliant with the Thumb Procedure Call
4451 Standard for all leaf functions.  (A leaf function is one that does
4452 not call any other functions).  The default is @samp{-mno-apcs-leaf-frame}. 
4453
4454 @item -mlittle-endian
4455 @kindex -mlittle-endian
4456 Generate code for a processor running in little-endian mode.  This is
4457 the default for all standard configurations.
4458
4459 @item -mbig-endian
4460 @kindex -mbig-endian
4461 Generate code for a processor running in big-endian mode.
4462
4463 @item -mstructure-size-boundary=<n>
4464 @kindex -mstructure-size-boundary
4465 The size of all structures and unions will be rounded up to a multiple
4466 of the number of bits set by this option.  Permissible values are 8 and
4467 32.  The default value varies for different toolchains.  For the COFF
4468 targeted toolchain the default value is 8.  Specifying the larger number
4469 can produced faster, more efficient code, but can also increase the size
4470 of the program.  The two values are potentially incompatible.  Code
4471 compiled with one value cannot necessarily expect to work with code or
4472 libraries compiled with the other value, if they exchange information
4473 using structures or unions.  Programmers are encouraged to use the 32
4474 value as future versions of the toolchain may default to this value.
4475
4476 @item -mnop-fun-dllimport
4477 @kindex -mnop-fun-dllimport
4478 Disable the support for the @emph{dllimport} attribute.
4479
4480 @item -mcallee-super-interworking
4481 @kindex -mcallee-super-interworking
4482 Gives all externally visible functions in the file being compiled an ARM
4483 instruction set header which switches to Thumb mode before executing the
4484 rest of the function.  This allows these functions to be called from
4485 non-interworking code.
4486
4487 @item -mcaller-super-interworking
4488 @kindex -mcaller-super-interworking
4489 Allows calls via function pointers (including virtual functions) to
4490 execute correctly regardless of whether the target code has been
4491 compiled for interworking or not.  There is a small overhead in the cost
4492 of executing a function pointer if this option is enabled.
4493
4494 @item -msingle-pic-base
4495 @kindex -msingle-pic-base
4496 Treat the register used for PIC addressing as read-only, rather than
4497 loading it in the prologue for each function.  The run-time system is
4498 responsible for initialising this register with an appropriate value
4499 before execution begins.
4500
4501 @item -mpic-register=<reg>
4502 @kindex -mpic-register=
4503 Specify the register to be used for PIC addressing.  The default is R10.
4504
4505 @end table
4506
4507 @node MN10200 Options
4508 @subsection MN10200 Options
4509 @cindex MN10200 options
4510 These @samp{-m} options are defined for Matsushita MN10200 architectures:
4511 @table @code
4512
4513 @item -mrelax
4514 Indicate to the linker that it should perform a relaxation optimization pass
4515 to shorten branches, calls and absolute memory addresses.  This option only
4516 has an effect when used on the command line for the final link step.
4517
4518 This option makes symbolic debugging impossible. 
4519 @end table
4520
4521 @node MN10300 Options
4522 @subsection MN10300 Options
4523 @cindex MN10300 options
4524 These @samp{-m} options are defined for Matsushita MN10300 architectures:
4525
4526 @table @code
4527 @item -mmult-bug
4528 Generate code to avoid bugs in the multiply instructions for the MN10300
4529 processors.  This is the default.
4530
4531 @item -mno-mult-bug
4532 Do not generate code to avoid bugs in the multiply instructions for the
4533 MN10300 processors.
4534
4535 @item -mrelax
4536 Indicate to the linker that it should perform a relaxation optimization pass
4537 to shorten branches, calls and absolute memory addresses.  This option only
4538 has an effect when used on the command line for the final link step.
4539
4540 This option makes symbolic debugging impossible. 
4541 @end table
4542
4543
4544 @node M32R/D Options
4545 @subsection M32R/D Options
4546 @cindex M32R/D options
4547
4548 These @samp{-m} options are defined for Mitsubishi M32R/D architectures:
4549
4550 @table @code
4551 @item -mcode-model=small
4552 Assume all objects live in the lower 16MB of memory (so that their addresses
4553 can be loaded with the @code{ld24} instruction), and assume all subroutines
4554 are reachable with the @code{bl} instruction.
4555 This is the default.
4556
4557 The addressability of a particular object can be set with the
4558 @code{model} attribute.
4559
4560 @item -mcode-model=medium
4561 Assume objects may be anywhere in the 32 bit address space (the compiler
4562 will generate @code{seth/add3} instructions to load their addresses), and
4563 assume all subroutines are reachable with the @code{bl} instruction.
4564
4565 @item -mcode-model=large
4566 Assume objects may be anywhere in the 32 bit address space (the compiler
4567 will generate @code{seth/add3} instructions to load their addresses), and
4568 assume subroutines may not be reachable with the @code{bl} instruction
4569 (the compiler will generate the much slower @code{seth/add3/jl}
4570 instruction sequence).
4571
4572 @item -msdata=none
4573 Disable use of the small data area.  Variables will be put into
4574 one of @samp{.data}, @samp{bss}, or @samp{.rodata} (unless the
4575 @code{section} attribute has been specified).
4576 This is the default.
4577
4578 The small data area consists of sections @samp{.sdata} and @samp{.sbss}.
4579 Objects may be explicitly put in the small data area with the
4580 @code{section} attribute using one of these sections.
4581
4582 @item -msdata=sdata
4583 Put small global and static data in the small data area, but do not
4584 generate special code to reference them.
4585
4586 @item -msdata=use
4587 Put small global and static data in the small data area, and generate
4588 special instructions to reference them.
4589
4590 @item -G @var{num}
4591 @cindex smaller data references
4592 Put global and static objects less than or equal to @var{num} bytes
4593 into the small data or bss sections instead of the normal data or bss
4594 sections.  The default value of @var{num} is 8.
4595 The @samp{-msdata} option must be set to one of @samp{sdata} or @samp{use}
4596 for this option to have any effect.
4597
4598 All modules should be compiled with the same @samp{-G @var{num}} value.
4599 Compiling with different values of @var{num} may or may not work; if it
4600 doesn't the linker will give an error message - incorrect code will not be
4601 generated.
4602
4603 @end table
4604
4605 @node M88K Options
4606 @subsection M88K Options
4607 @cindex M88k options
4608
4609 These @samp{-m} options are defined for Motorola 88k architectures:
4610
4611 @table @code
4612 @item -m88000
4613 @kindex -m88000
4614 Generate code that works well on both the m88100 and the
4615 m88110.
4616
4617 @item -m88100
4618 @kindex -m88100
4619 Generate code that works best for the m88100, but that also
4620 runs on the m88110.
4621
4622 @item -m88110
4623 @kindex -m88110
4624 Generate code that works best for the m88110, and may not run
4625 on the m88100.
4626
4627 @item -mbig-pic
4628 @kindex -mbig-pic
4629 Obsolete option to be removed from the next revision.
4630 Use @samp{-fPIC}.
4631
4632 @item -midentify-revision
4633 @kindex -midentify-revision
4634 @kindex ident
4635 @cindex identifying source, compiler (88k)
4636 Include an @code{ident} directive in the assembler output recording the
4637 source file name, compiler name and version, timestamp, and compilation
4638 flags used.
4639
4640 @item -mno-underscores
4641 @kindex -mno-underscores
4642 @cindex underscores, avoiding (88k)
4643 In assembler output, emit symbol names without adding an underscore
4644 character at the beginning of each name.  The default is to use an
4645 underscore as prefix on each name.
4646
4647 @item -mocs-debug-info
4648 @itemx -mno-ocs-debug-info
4649 @kindex -mocs-debug-info
4650 @kindex -mno-ocs-debug-info
4651 @cindex OCS (88k)
4652 @cindex debugging, 88k OCS
4653 Include (or omit) additional debugging information (about registers used
4654 in each stack frame) as specified in the 88open Object Compatibility
4655 Standard, ``OCS''.  This extra information allows debugging of code that
4656 has had the frame pointer eliminated.  The default for DG/UX, SVr4, and
4657 Delta 88 SVr3.2 is to include this information; other 88k configurations
4658 omit this information by default.
4659
4660 @item -mocs-frame-position
4661 @kindex -mocs-frame-position
4662 @cindex register positions in frame (88k)
4663 When emitting COFF debugging information for automatic variables and
4664 parameters stored on the stack, use the offset from the canonical frame
4665 address, which is the stack pointer (register 31) on entry to the
4666 function.  The DG/UX, SVr4, Delta88 SVr3.2, and BCS configurations use
4667 @samp{-mocs-frame-position}; other 88k configurations have the default
4668 @samp{-mno-ocs-frame-position}.
4669
4670 @item -mno-ocs-frame-position
4671 @kindex -mno-ocs-frame-position
4672 @cindex register positions in frame (88k)
4673 When emitting COFF debugging information for automatic variables and
4674 parameters stored on the stack, use the offset from the frame pointer
4675 register (register 30).  When this option is in effect, the frame
4676 pointer is not eliminated when debugging information is selected by the
4677 -g switch.
4678
4679 @item -moptimize-arg-area
4680 @itemx -mno-optimize-arg-area
4681 @kindex -moptimize-arg-area
4682 @kindex -mno-optimize-arg-area
4683 @cindex arguments in frame (88k)
4684 Control how function arguments are stored in stack frames.
4685 @samp{-moptimize-arg-area} saves space by optimizing them, but this
4686 conflicts with the 88open specifications.  The opposite alternative,
4687 @samp{-mno-optimize-arg-area}, agrees with 88open standards.  By default
4688 GCC does not optimize the argument area.
4689
4690 @item -mshort-data-@var{num}
4691 @kindex -mshort-data-@var{num}
4692 @cindex smaller data references (88k)
4693 @cindex r0-relative references (88k)
4694 Generate smaller data references by making them relative to @code{r0},
4695 which allows loading a value using a single instruction (rather than the
4696 usual two).  You control which data references are affected by
4697 specifying @var{num} with this option.  For example, if you specify
4698 @samp{-mshort-data-512}, then the data references affected are those
4699 involving displacements of less than 512 bytes.
4700 @samp{-mshort-data-@var{num}} is not effective for @var{num} greater
4701 than 64k.
4702
4703 @item -mserialize-volatile
4704 @kindex -mserialize-volatile
4705 @itemx -mno-serialize-volatile
4706 @kindex -mno-serialize-volatile
4707 @cindex sequential consistency on 88k
4708 Do, or don't, generate code to guarantee sequential consistency
4709 of volatile memory references.  By default, consistency is
4710 guaranteed.
4711
4712 The order of memory references made by the MC88110 processor does
4713 not always match the order of the instructions requesting those
4714 references.  In particular, a load instruction may execute before
4715 a preceding store instruction.  Such reordering violates
4716 sequential consistency of volatile memory references, when there
4717 are multiple processors.   When consistency must be guaranteed,
4718 GNU C generates special instructions, as needed, to force
4719 execution in the proper order.
4720
4721 The MC88100 processor does not reorder memory references and so
4722 always provides sequential consistency.  However, by default, GNU
4723 C generates the special instructions to guarantee consistency
4724 even when you use @samp{-m88100}, so that the code may be run on an
4725 MC88110 processor.  If you intend to run your code only on the
4726 MC88100 processor, you may use @samp{-mno-serialize-volatile}.
4727
4728 The extra code generated to guarantee consistency may affect the
4729 performance of your application.  If you know that you can safely
4730 forgo this guarantee, you may use @samp{-mno-serialize-volatile}.
4731
4732 @item -msvr4
4733 @itemx -msvr3
4734 @kindex -msvr4
4735 @kindex -msvr3
4736 @cindex assembler syntax, 88k
4737 @cindex SVr4
4738 Turn on (@samp{-msvr4}) or off (@samp{-msvr3}) compiler extensions
4739 related to System V release 4 (SVr4).  This controls the following:
4740
4741 @enumerate
4742 @item
4743 Which variant of the assembler syntax to emit.
4744 @item
4745 @samp{-msvr4} makes the C preprocessor recognize @samp{#pragma weak}
4746 that is used on System V release 4.
4747 @item
4748 @samp{-msvr4} makes GCC issue additional declaration directives used in
4749 SVr4.
4750 @end enumerate
4751
4752 @samp{-msvr4} is the default for the m88k-motorola-sysv4 and
4753 m88k-dg-dgux m88k configurations. @samp{-msvr3} is the default for all
4754 other m88k configurations.
4755
4756 @item -mversion-03.00
4757 @kindex -mversion-03.00
4758 This option is obsolete, and is ignored.
4759 @c ??? which asm syntax better for GAS?  option there too?
4760
4761 @item -mno-check-zero-division
4762 @itemx -mcheck-zero-division
4763 @kindex -mno-check-zero-division
4764 @kindex -mcheck-zero-division
4765 @cindex zero division on 88k
4766 Do, or don't, generate code to guarantee that integer division by
4767 zero will be detected.  By default, detection is guaranteed.
4768
4769 Some models of the MC88100 processor fail to trap upon integer
4770 division by zero under certain conditions.  By default, when
4771 compiling code that might be run on such a processor, GNU C
4772 generates code that explicitly checks for zero-valued divisors
4773 and traps with exception number 503 when one is detected.  Use of
4774 mno-check-zero-division suppresses such checking for code
4775 generated to run on an MC88100 processor.
4776
4777 GNU C assumes that the MC88110 processor correctly detects all
4778 instances of integer division by zero.  When @samp{-m88110} is
4779 specified, both @samp{-mcheck-zero-division} and
4780 @samp{-mno-check-zero-division} are ignored, and no explicit checks for
4781 zero-valued divisors are generated.
4782
4783 @item -muse-div-instruction
4784 @kindex -muse-div-instruction
4785 @cindex divide instruction, 88k
4786 Use the div instruction for signed integer division on the
4787 MC88100 processor.  By default, the div instruction is not used.
4788
4789 On the MC88100 processor the signed integer division instruction
4790 div) traps to the operating system on a negative operand.  The
4791 operating system transparently completes the operation, but at a
4792 large cost in execution time.  By default, when compiling code
4793 that might be run on an MC88100 processor, GNU C emulates signed
4794 integer division using the unsigned integer division instruction
4795 divu), thereby avoiding the large penalty of a trap to the
4796 operating system.  Such emulation has its own, smaller, execution
4797 cost in both time and space.  To the extent that your code's
4798 important signed integer division operations are performed on two
4799 nonnegative operands, it may be desirable to use the div
4800 instruction directly.
4801
4802 On the MC88110 processor the div instruction (also known as the
4803 divs instruction) processes negative operands without trapping to
4804 the operating system.  When @samp{-m88110} is specified,
4805 @samp{-muse-div-instruction} is ignored, and the div instruction is used
4806 for signed integer division.
4807
4808 Note that the result of dividing INT_MIN by -1 is undefined.  In
4809 particular, the behavior of such a division with and without
4810 @samp{-muse-div-instruction}  may differ.
4811
4812 @item -mtrap-large-shift
4813 @itemx -mhandle-large-shift
4814 @kindex -mtrap-large-shift
4815 @kindex -mhandle-large-shift
4816 @cindex bit shift overflow (88k)
4817 @cindex large bit shifts (88k)
4818 Include code to detect bit-shifts of more than 31 bits; respectively,
4819 trap such shifts or emit code to handle them properly.  By default GCC
4820 makes no special provision for large bit shifts.
4821
4822 @item -mwarn-passed-structs
4823 @kindex -mwarn-passed-structs
4824 @cindex structure passing (88k)
4825 Warn when a function passes a struct as an argument or result.
4826 Structure-passing conventions have changed during the evolution of the C
4827 language, and are often the source of portability problems.  By default,
4828 GCC issues no such warning.
4829 @end table
4830
4831 @node RS/6000 and PowerPC Options
4832 @subsection IBM RS/6000 and PowerPC Options
4833 @cindex RS/6000 and PowerPC Options
4834 @cindex IBM RS/6000 and PowerPC Options
4835
4836 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
4837 @table @code
4838 @item -mpower
4839 @itemx -mno-power
4840 @itemx -mpower2
4841 @itemx -mno-power2
4842 @itemx -mpowerpc
4843 @itemx -mno-powerpc
4844 @itemx -mpowerpc-gpopt
4845 @itemx -mno-powerpc-gpopt
4846 @itemx -mpowerpc-gfxopt
4847 @itemx -mno-powerpc-gfxopt
4848 @itemx -mpowerpc64
4849 @itemx -mno-powerpc64
4850 @kindex -mpower
4851 @kindex -mpower2
4852 @kindex -mpowerpc
4853 @kindex -mpowerpc-gpopt
4854 @kindex -mpowerpc-gfxopt
4855 @kindex -mpowerpc64
4856 GCC supports two related instruction set architectures for the
4857 RS/6000 and PowerPC.  The @dfn{POWER} instruction set are those
4858 instructions supported by the @samp{rios} chip set used in the original
4859 RS/6000 systems and the @dfn{PowerPC} instruction set is the
4860 architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and
4861 the IBM 4xx microprocessors.
4862
4863 Neither architecture is a subset of the other.  However there is a
4864 large common subset of instructions supported by both.  An MQ
4865 register is included in processors supporting the POWER architecture.
4866
4867 You use these options to specify which instructions are available on the
4868 processor you are using.  The default value of these options is
4869 determined when configuring GCC.  Specifying the
4870 @samp{-mcpu=@var{cpu_type}} overrides the specification of these
4871 options.  We recommend you use the @samp{-mcpu=@var{cpu_type}} option
4872 rather than the options listed above.
4873
4874 The @samp{-mpower} option allows GCC to generate instructions that
4875 are found only in the POWER architecture and to use the MQ register.
4876 Specifying @samp{-mpower2} implies @samp{-power} and also allows GCC
4877 to generate instructions that are present in the POWER2 architecture but
4878 not the original POWER architecture.
4879
4880 The @samp{-mpowerpc} option allows GCC to generate instructions that
4881 are found only in the 32-bit subset of the PowerPC architecture.
4882 Specifying @samp{-mpowerpc-gpopt} implies @samp{-mpowerpc} and also allows
4883 GCC to use the optional PowerPC architecture instructions in the
4884 General Purpose group, including floating-point square root.  Specifying
4885 @samp{-mpowerpc-gfxopt} implies @samp{-mpowerpc} and also allows GCC to
4886 use the optional PowerPC architecture instructions in the Graphics
4887 group, including floating-point select.
4888
4889 The @samp{-mpowerpc64} option allows GCC to generate the additional
4890 64-bit instructions that are found in the full PowerPC64 architecture
4891 and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
4892 @samp{-mno-powerpc64}.
4893
4894 If you specify both @samp{-mno-power} and @samp{-mno-powerpc}, GCC
4895 will use only the instructions in the common subset of both
4896 architectures plus some special AIX common-mode calls, and will not use
4897 the MQ register.  Specifying both @samp{-mpower} and @samp{-mpowerpc}
4898 permits GCC to use any instruction from either architecture and to
4899 allow use of the MQ register; specify this for the Motorola MPC601.
4900
4901 @item -mnew-mnemonics
4902 @itemx -mold-mnemonics
4903 @kindex -mnew-mnemonics
4904 @kindex -mold-mnemonics
4905 Select which mnemonics to use in the generated assembler code.
4906 @samp{-mnew-mnemonics} requests output that uses the assembler mnemonics
4907 defined for the PowerPC architecture, while @samp{-mold-mnemonics}
4908 requests the assembler mnemonics defined for the POWER architecture.
4909 Instructions defined in only one architecture have only one mnemonic;
4910 GCC uses that mnemonic irrespective of which of these options is
4911 specified.
4912
4913 GCC defaults to the mnemonics appropriate for the architecture in
4914 use.  Specifying @samp{-mcpu=@var{cpu_type}} sometimes overrides the
4915 value of these option.  Unless you are building a cross-compiler, you
4916 should normally not specify either @samp{-mnew-mnemonics} or
4917 @samp{-mold-mnemonics}, but should instead accept the default.
4918
4919 @item -mcpu=@var{cpu_type}
4920 @kindex -mcpu
4921 Set architecture type, register usage, choice of mnemonics, and
4922 instruction scheduling parameters for machine type @var{cpu_type}.
4923 Supported values for @var{cpu_type} are @samp{rios}, @samp{rios1},
4924 @samp{rsc}, @samp{rios2}, @samp{rs64a}, @samp{601}, @samp{602},
4925 @samp{603}, @samp{603e}, @samp{604}, @samp{604e}, @samp{620},
4926 @samp{630}, @samp{740}, @samp{750}, @samp{power}, @samp{power2},
4927 @samp{powerpc}, @samp{403}, @samp{505}, @samp{801}, @samp{821},
4928 @samp{823}, and @samp{860} and @samp{common}.  @samp{-mcpu=power},
4929 @samp{-mcpu=power2}, @samp{-mcpu=powerpc}, and @samp{-mcpu=powerpc64}
4930 specify generic POWER, POWER2, pure 32-bit PowerPC (i.e., not MPC601),
4931 and 64-bit PowerPC architecture machine types, with an appropriate,
4932 generic processor model assumed for scheduling purposes.@refill
4933
4934 Specifying any of the following options: 
4935 @samp{-mcpu=rios1}, @samp{-mcpu=rios2}, @samp{-mcpu=rsc},
4936 @samp{-mcpu=power}, or @samp{-mcpu=power2}  
4937 enables the @samp{-mpower} option and disables the @samp{-mpowerpc} option; 
4938 @samp{-mcpu=601} enables both the @samp{-mpower} and @samp{-mpowerpc} options.
4939 All of @samp{-mcpu=rs64a}, @samp{-mcpu=602}, @samp{-mcpu=603},
4940 @samp{-mcpu=603e}, @samp{-mcpu=604}, @samp{-mcpu=620}, @samp{-mcpu=630},
4941 @samp{-mcpu=740}, and @samp{-mcpu=750}
4942 enable the @samp{-mpowerpc} option and disable the @samp{-mpower} option.  
4943 Exactly similarly, all of @samp{-mcpu=403},
4944 @samp{-mcpu=505}, @samp{-mcpu=821}, @samp{-mcpu=860} and @samp{-mcpu=powerpc} 
4945 enable the @samp{-mpowerpc} option and disable the @samp{-mpower} option.
4946 @samp{-mcpu=common} disables both the 
4947 @samp{-mpower} and @samp{-mpowerpc} options.@refill
4948
4949 AIX versions 4 or greater selects @samp{-mcpu=common} by default, so
4950 that code will operate on all members of the RS/6000 POWER and PowerPC
4951 families.  In that case, GCC will use only the instructions in the
4952 common subset of both architectures plus some special AIX common-mode
4953 calls, and will not use the MQ register.  GCC assumes a generic
4954 processor model for scheduling purposes.
4955
4956 Specifying any of the options @samp{-mcpu=rios1}, @samp{-mcpu=rios2},
4957 @samp{-mcpu=rsc}, @samp{-mcpu=power}, or @samp{-mcpu=power2} also
4958 disables the @samp{new-mnemonics} option.  Specifying @samp{-mcpu=601},
4959 @samp{-mcpu=602}, @samp{-mcpu=603}, @samp{-mcpu=603e}, @samp{-mcpu=604},
4960 @samp{-mcpu=620}, @samp{-mcpu=630}, @samp{-mcpu=403}, @samp{-mcpu=505},
4961 @samp{-mcpu=821}, @samp{-mcpu=860} or @samp{-mcpu=powerpc} also enables
4962 the @samp{new-mnemonics} option.@refill
4963
4964 Specifying @samp{-mcpu=403}, @samp{-mcpu=821}, or @samp{-mcpu=860} also
4965 enables the @samp{-msoft-float} option.
4966
4967 @item -mtune=@var{cpu_type}
4968 Set the instruction scheduling parameters for machine type
4969 @var{cpu_type}, but do not set the architecture type, register usage,
4970 choice of mnemonics like @samp{-mcpu=}@var{cpu_type} would.  The same
4971 values for @var{cpu_type} are used for @samp{-mtune=}@var{cpu_type} as
4972 for @samp{-mcpu=}@var{cpu_type}.  The @samp{-mtune=}@var{cpu_type}
4973 option overrides the @samp{-mcpu=}@var{cpu_type} option in terms of
4974 instruction scheduling parameters.
4975
4976 @item -mfull-toc
4977 @itemx -mno-fp-in-toc
4978 @itemx -mno-sum-in-toc
4979 @itemx -mminimal-toc
4980 @kindex -mminimal-toc
4981 Modify generation of the TOC (Table Of Contents), which is created for
4982 every executable file.  The @samp{-mfull-toc} option is selected by
4983 default.  In that case, GCC will allocate at least one TOC entry for
4984 each unique non-automatic variable reference in your program.  GCC
4985 will also place floating-point constants in the TOC.  However, only
4986 16,384 entries are available in the TOC.
4987
4988 If you receive a linker error message that saying you have overflowed
4989 the available TOC space, you can reduce the amount of TOC space used
4990 with the @samp{-mno-fp-in-toc} and @samp{-mno-sum-in-toc} options.
4991 @samp{-mno-fp-in-toc} prevents GCC from putting floating-point
4992 constants in the TOC and @samp{-mno-sum-in-toc} forces GCC to
4993 generate code to calculate the sum of an address and a constant at
4994 run-time instead of putting that sum into the TOC.  You may specify one
4995 or both of these options.  Each causes GCC to produce very slightly
4996 slower and larger code at the expense of conserving TOC space.
4997
4998 If you still run out of space in the TOC even when you specify both of
4999 these options, specify @samp{-mminimal-toc} instead.  This option causes
5000 GCC to make only one TOC entry for every file.  When you specify this
5001 option, GCC will produce code that is slower and larger but which
5002 uses extremely little TOC space.  You may wish to use this option
5003 only on files that contain less frequently executed code. @refill
5004
5005 @item -m64
5006 @itemx -m32
5007 @kindex -m64
5008 @kindex -m32
5009 Enable 64-bit PowerPC ABI and calling convention: 64-bit pointers, 64-bit
5010 @code{long} type, and the infrastructure needed to support them.
5011 Specifying @samp{-m64} implies @samp{-mpowerpc64} and
5012 @samp{-mpowerpc}, while @samp{-m32} disables the 64-bit ABI and
5013 implies @samp{-mno-powerpc64}.  GCC defaults to @samp{-m32}.
5014
5015 @item -mxl-call
5016 @itemx -mno-xl-call
5017 @kindex -mxl-call
5018 On AIX, pass floating-point arguments to prototyped functions beyond the
5019 register save area (RSA) on the stack in addition to argument FPRs.  The
5020 AIX calling convention was extended but not initially documented to
5021 handle an obscure K&R C case of calling a function that takes the
5022 address of its arguments with fewer arguments than declared.  AIX XL
5023 compilers access floating point arguments which do not fit in the
5024 RSA from the stack when a subroutine is compiled without
5025 optimization.  Because always storing floating-point arguments on the
5026 stack is inefficient and rarely needed, this option is not enabled by
5027 default and only is necessary when calling subroutines compiled by AIX
5028 XL compilers without optimization.
5029
5030 @item -mthreads
5031 @kindex -mthreads
5032 Support @dfn{AIX Threads}.  Link an application written to use
5033 @dfn{pthreads} with special libraries and startup code to enable the
5034 application to run.
5035
5036 @item -mpe
5037 @kindex -mpe
5038 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE).  Link an
5039 application written to use message passing with special startup code to
5040 enable the application to run.  The system must have PE installed in the
5041 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
5042 must be overridden with the @samp{-specs=} option to specify the
5043 appropriate directory location.  The Parallel Environment does not
5044 support threads, so the @samp{-mpe} option and the @samp{-mthreads}
5045 option are incompatible.
5046
5047 @item -msoft-float
5048 @itemx -mhard-float
5049 @kindex -msoft-float
5050 Generate code that does not use (uses) the floating-point register set.
5051 Software floating point emulation is provided if you use the
5052 @samp{-msoft-float} option, and pass the option to GCC when linking.
5053
5054 @item -mmultiple
5055 @itemx -mno-multiple
5056 Generate code that uses (does not use) the load multiple word
5057 instructions and the store multiple word instructions.  These
5058 instructions are generated by default on POWER systems, and not
5059 generated on PowerPC systems.  Do not use @samp{-mmultiple} on little
5060 endian PowerPC systems, since those instructions do not work when the
5061 processor is in little endian mode.  The exceptions are PPC740 and
5062 PPC750 which permit the instructions usage in little endian mode.
5063
5064 @item -mstring
5065 @itemx -mno-string
5066 @kindex -mstring
5067 Generate code that uses (does not use) the load string instructions
5068 and the store string word instructions to save multiple registers and
5069 do small block moves.  These instructions are generated by default on
5070 POWER systems, and not generated on PowerPC systems.  Do not use
5071 @samp{-mstring} on little endian PowerPC systems, since those
5072 instructions do not work when the processor is in little endian mode.
5073 The exceptions are PPC740 and PPC750 which permit the instructions
5074 usage in little endian mode.
5075
5076 @item -mupdate
5077 @itemx -mno-update
5078 @kindex -mupdate
5079 Generate code that uses (does not use) the load or store instructions
5080 that update the base register to the address of the calculated memory
5081 location.  These instructions are generated by default.  If you use
5082 @samp{-mno-update}, there is a small window between the time that the
5083 stack pointer is updated and the address of the previous frame is
5084 stored, which means code that walks the stack frame across interrupts or
5085 signals may get corrupted data.
5086
5087 @item -mfused-madd
5088 @itemx -mno-fused-madd
5089 @kindex -mfused-madd
5090 Generate code that uses (does not use) the floating point multiply and
5091 accumulate instructions.  These instructions are generated by default if
5092 hardware floating is used.
5093
5094 @item -mno-bit-align
5095 @itemx -mbit-align
5096 @kindex -mbit-align
5097 On System V.4 and embedded PowerPC systems do not (do) force structures
5098 and unions that contain bit fields to be aligned to the base type of the
5099 bit field.
5100
5101 For example, by default a structure containing nothing but 8
5102 @code{unsigned} bitfields of length 1 would be aligned to a 4 byte
5103 boundary and have a size of 4 bytes.  By using @samp{-mno-bit-align},
5104 the structure would be aligned to a 1 byte boundary and be one byte in
5105 size.
5106
5107 @item -mno-strict-align
5108 @itemx -mstrict-align
5109 @kindex -mstrict-align
5110 On System V.4 and embedded PowerPC systems do not (do) assume that
5111 unaligned memory references will be handled by the system.
5112
5113 @item -mrelocatable
5114 @itemx -mno-relocatable
5115 @kindex -mrelocatable
5116 On embedded PowerPC systems generate code that allows (does not allow)
5117 the program to be relocated to a different address at runtime.  If you
5118 use @samp{-mrelocatable} on any module, all objects linked together must
5119 be compiled with @samp{-mrelocatable} or @samp{-mrelocatable-lib}.
5120
5121 @item -mrelocatable-lib
5122 @itemx -mno-relocatable-lib
5123 On embedded PowerPC systems generate code that allows (does not allow)
5124 the program to be relocated to a different address at runtime.  Modules
5125 compiled with @samp{-mrelocatable-lib} can be linked with either modules
5126 compiled without @samp{-mrelocatable} and @samp{-mrelocatable-lib} or
5127 with modules compiled with the @samp{-mrelocatable} options.
5128
5129 @item -mno-toc
5130 @itemx -mtoc
5131 On System V.4 and embedded PowerPC systems do not (do) assume that
5132 register 2 contains a pointer to a global area pointing to the addresses
5133 used in the program.
5134
5135 @item -mlittle
5136 @itemx -mlittle-endian
5137 On System V.4 and embedded PowerPC systems compile code for the
5138 processor in little endian mode.  The @samp{-mlittle-endian} option is
5139 the same as @samp{-mlittle}.
5140
5141 @item -mbig
5142 @itemx -mbig-endian
5143 On System V.4 and embedded PowerPC systems compile code for the
5144 processor in big endian mode.  The @samp{-mbig-endian} option is
5145 the same as @samp{-mbig}.
5146
5147 @item -mcall-sysv
5148 On System V.4 and embedded PowerPC systems compile code using calling
5149 conventions that adheres to the March 1995 draft of the System V
5150 Application Binary Interface, PowerPC processor supplement.  This is the
5151 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
5152
5153 @item -mcall-sysv-eabi
5154 Specify both @samp{-mcall-sysv} and @samp{-meabi} options.
5155
5156 @item -mcall-sysv-noeabi
5157 Specify both @samp{-mcall-sysv} and @samp{-mno-eabi} options.
5158
5159 @item -mcall-aix
5160 On System V.4 and embedded PowerPC systems compile code using calling
5161 conventions that are similar to those used on AIX.  This is the
5162 default if you configured GCC using @samp{powerpc-*-eabiaix}.
5163
5164 @item -mcall-solaris
5165 On System V.4 and embedded PowerPC systems compile code for the Solaris
5166 operating system.
5167
5168 @item -mcall-linux
5169 On System V.4 and embedded PowerPC systems compile code for the
5170 Linux-based GNU system.
5171
5172 @item -mprototype
5173 @itemx -mno-prototype
5174 On System V.4 and embedded PowerPC systems assume that all calls to
5175 variable argument functions are properly prototyped.  Otherwise, the
5176 compiler must insert an instruction before every non prototyped call to
5177 set or clear bit 6 of the condition code register (@var{CR}) to
5178 indicate whether floating point values were passed in the floating point
5179 registers in case the function takes a variable arguments.  With
5180 @samp{-mprototype}, only calls to prototyped variable argument functions
5181 will set or clear the bit.
5182
5183 @item -msim
5184 On embedded PowerPC systems, assume that the startup module is called
5185 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
5186 @file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}.
5187 configurations.
5188
5189 @item -mmvme
5190 On embedded PowerPC systems, assume that the startup module is called
5191 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
5192 @file{libc.a}.
5193
5194 @item -mads
5195 On embedded PowerPC systems, assume that the startup module is called
5196 @file{crt0.o} and the standard C libraries are @file{libads.a} and
5197 @file{libc.a}.
5198
5199 @item -myellowknife
5200 On embedded PowerPC systems, assume that the startup module is called
5201 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
5202 @file{libc.a}.
5203
5204 @item -memb
5205 On embedded PowerPC systems, set the @var{PPC_EMB} bit in the ELF flags
5206 header to indicate that @samp{eabi} extended relocations are used.
5207
5208 @item -meabi
5209 @itemx -mno-eabi
5210 On System V.4 and embedded PowerPC systems do (do not) adhere to the
5211 Embedded Applications Binary Interface (eabi) which is a set of
5212 modifications to the System V.4 specifications.  Selecting @code{-meabi}
5213 means that the stack is aligned to an 8 byte boundary, a function
5214 @code{__eabi} is called to from @code{main} to set up the eabi
5215 environment, and the @samp{-msdata} option can use both @code{r2} and
5216 @code{r13} to point to two separate small data areas.  Selecting
5217 @code{-mno-eabi} means that the stack is aligned to a 16 byte boundary,
5218 do not call an initialization function from @code{main}, and the
5219 @samp{-msdata} option will only use @code{r13} to point to a single
5220 small data area.  The @samp{-meabi} option is on by default if you
5221 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
5222
5223 @item -msdata=eabi
5224 On System V.4 and embedded PowerPC systems, put small initialized
5225 @code{const} global and static data in the @samp{.sdata2} section, which
5226 is pointed to by register @code{r2}.  Put small initialized
5227 non-@code{const} global and static data in the @samp{.sdata} section,
5228 which is pointed to by register @code{r13}.  Put small uninitialized
5229 global and static data in the @samp{.sbss} section, which is adjacent to
5230 the @samp{.sdata} section.  The @samp{-msdata=eabi} option is
5231 incompatible with the @samp{-mrelocatable} option.  The
5232 @samp{-msdata=eabi} option also sets the @samp{-memb} option.
5233
5234 @item -msdata=sysv
5235 On System V.4 and embedded PowerPC systems, put small global and static
5236 data in the @samp{.sdata} section, which is pointed to by register
5237 @code{r13}.  Put small uninitialized global and static data in the
5238 @samp{.sbss} section, which is adjacent to the @samp{.sdata} section.
5239 The @samp{-msdata=sysv} option is incompatible with the
5240 @samp{-mrelocatable} option.
5241
5242 @item -msdata=default
5243 @itemx -msdata
5244 On System V.4 and embedded PowerPC systems, if @samp{-meabi} is used,
5245 compile code the same as @samp{-msdata=eabi}, otherwise compile code the
5246 same as @samp{-msdata=sysv}.
5247
5248 @item -msdata-data
5249 On System V.4 and embedded PowerPC systems, put small global and static
5250 data in the @samp{.sdata} section.  Put small uninitialized global and
5251 static data in the @samp{.sbss} section.  Do not use register @code{r13}
5252 to address small data however.  This is the default behavior unless
5253 other @samp{-msdata} options are used.
5254
5255 @item -msdata=none
5256 @itemx -mno-sdata
5257 On embedded PowerPC systems, put all initialized global and static data
5258 in the @samp{.data} section, and all uninitialized data in the
5259 @samp{.bss} section.
5260
5261 @item -G @var{num}
5262 @cindex smaller data references (PowerPC)
5263 @cindex .sdata/.sdata2 references (PowerPC)
5264 On embedded PowerPC systems, put global and static items less than or
5265 equal to @var{num} bytes into the small data or bss sections instead of
5266 the normal data or bss section.  By default, @var{num} is 8.  The
5267 @samp{-G @var{num}} switch is also passed to the linker.
5268 All modules should be compiled with the same @samp{-G @var{num}} value.
5269
5270 @item -mregnames
5271 @itemx -mno-regnames
5272 On System V.4 and embedded PowerPC systems do (do not) emit register
5273 names in the assembly language output using symbolic forms.
5274
5275 @end table
5276
5277 @node RT Options
5278 @subsection IBM RT Options
5279 @cindex RT options
5280 @cindex IBM RT options
5281
5282 These @samp{-m} options are defined for the IBM RT PC:
5283
5284 @table @code
5285 @item -min-line-mul
5286 Use an in-line code sequence for integer multiplies.  This is the
5287 default.
5288
5289 @item -mcall-lib-mul
5290 Call @code{lmul$$} for integer multiples.
5291
5292 @item -mfull-fp-blocks
5293 Generate full-size floating point data blocks, including the minimum
5294 amount of scratch space recommended by IBM.  This is the default.
5295
5296 @item -mminimum-fp-blocks
5297 Do not include extra scratch space in floating point data blocks.  This
5298 results in smaller code, but slower execution, since scratch space must
5299 be allocated dynamically.
5300
5301 @cindex @file{varargs.h} and RT PC
5302 @cindex @file{stdarg.h} and RT PC
5303 @item -mfp-arg-in-fpregs
5304 Use a calling sequence incompatible with the IBM calling convention in
5305 which floating point arguments are passed in floating point registers.
5306 Note that @code{varargs.h} and @code{stdargs.h} will not work with
5307 floating point operands if this option is specified.
5308
5309 @item -mfp-arg-in-gregs
5310 Use the normal calling convention for floating point arguments.  This is
5311 the default.
5312
5313 @item -mhc-struct-return
5314 Return structures of more than one word in memory, rather than in a
5315 register.  This provides compatibility with the MetaWare HighC (hc)
5316 compiler.  Use the option @samp{-fpcc-struct-return} for compatibility
5317 with the Portable C Compiler (pcc).
5318
5319 @item -mnohc-struct-return
5320 Return some structures of more than one word in registers, when
5321 convenient.  This is the default.  For compatibility with the
5322 IBM-supplied compilers, use the option @samp{-fpcc-struct-return} or the
5323 option @samp{-mhc-struct-return}.
5324 @end table
5325
5326 @node MIPS Options
5327 @subsection MIPS Options
5328 @cindex MIPS options
5329
5330 These @samp{-m} options are defined for the MIPS family of computers:
5331
5332 @table @code
5333 @item -mcpu=@var{cpu type}
5334 Assume the defaults for the machine type @var{cpu type} when scheduling
5335 instructions.  The choices for @var{cpu type} are @samp{r2000}, @samp{r3000},
5336 @samp{r3900}, @samp{r4000}, @samp{r4100}, @samp{r4300}, @samp{r4400},
5337 @samp{r4600}, @samp{r4650}, @samp{r5000}, @samp{r6000}, @samp{r8000},
5338 and @samp{orion}.  Additionally, the @samp{r2000}, @samp{r3000},
5339 @samp{r4000}, @samp{r5000}, and @samp{r6000} can be abbreviated as
5340 @samp{r2k} (or @samp{r2K}), @samp{r3k}, etc.  While picking a specific
5341 @var{cpu type} will schedule things appropriately for that particular
5342 chip, the compiler will not generate any code that does not meet level 1
5343 of the MIPS ISA (instruction set architecture) without a @samp{-mipsX}
5344 or @samp{-mabi} switch being used.
5345
5346 @item -mips1
5347 Issue instructions from level 1 of the MIPS ISA.  This is the default.
5348 @samp{r3000} is the default @var{cpu type} at this ISA level.
5349
5350 @item -mips2
5351 Issue instructions from level 2 of the MIPS ISA (branch likely, square
5352 root instructions).  @samp{r6000} is the default @var{cpu type} at this
5353 ISA level.
5354
5355 @item -mips3
5356 Issue instructions from level 3 of the MIPS ISA (64 bit instructions).
5357 @samp{r4000} is the default @var{cpu type} at this ISA level.
5358
5359 @item -mips4
5360 Issue instructions from level 4 of the MIPS ISA (conditional move,
5361 prefetch, enhanced FPU instructions).  @samp{r8000} is the default
5362 @var{cpu type} at this ISA level.
5363
5364 @item -mfp32
5365 Assume that 32 32-bit floating point registers are available.  This is
5366 the default.
5367
5368 @item -mfp64
5369 Assume that 32 64-bit floating point registers are available.  This is
5370 the default when the @samp{-mips3} option is used.
5371
5372 @item -mgp32
5373 Assume that 32 32-bit general purpose registers are available.  This is
5374 the default.
5375
5376 @item -mgp64
5377 Assume that 32 64-bit general purpose registers are available.  This is
5378 the default when the @samp{-mips3} option is used.
5379
5380 @item -mint64
5381 Force int and long types to be 64 bits wide.  See @samp{-mlong32} for an
5382 explanation of the default, and the width of pointers.
5383
5384 @item -mlong64
5385 Force long types to be 64 bits wide.  See @samp{-mlong32} for an
5386 explanation of the default, and the width of pointers.
5387
5388 @item -mlong32
5389 Force long, int, and pointer types to be 32 bits wide.
5390
5391 If none of @samp{-mlong32}, @samp{-mlong64}, or @samp{-mint64} are set,
5392 the size of ints, longs, and pointers depends on the ABI and ISA choosen.
5393 For @samp{-mabi=32}, and @samp{-mabi=n32}, ints and longs are 32 bits
5394 wide.  For @samp{-mabi=64}, ints are 32 bits, and longs are 64 bits wide.
5395 For @samp{-mabi=eabi} and either @samp{-mips1} or @samp{-mips2}, ints
5396 and longs are 32 bits wide.  For @samp{-mabi=eabi} and higher ISAs, ints
5397 are 32 bits, and longs are 64 bits wide.  The width of pointer types is
5398 the smaller of the width of longs or the width of general purpose
5399 registers (which in turn depends on the ISA).
5400
5401 @item -mabi=32
5402 @itemx -mabi=o64
5403 @itemx -mabi=n32
5404 @itemx -mabi=64
5405 @itemx -mabi=eabi
5406 Generate code for the indicated ABI.  The default instruction level is
5407 @samp{-mips1} for @samp{32}, @samp{-mips3} for @samp{n32}, and
5408 @samp{-mips4} otherwise.  Conversely, with @samp{-mips1} or
5409 @samp{-mips2}, the default ABI is @samp{32}; otherwise, the default ABI
5410 is @samp{64}.
5411
5412 @item -mmips-as
5413 Generate code for the MIPS assembler, and invoke @file{mips-tfile} to
5414 add normal debug information.  This is the default for all
5415 platforms except for the OSF/1 reference platform, using the OSF/rose
5416 object format.  If the either of the @samp{-gstabs} or @samp{-gstabs+}
5417 switches are used, the @file{mips-tfile} program will encapsulate the
5418 stabs within MIPS ECOFF.
5419
5420 @item -mgas
5421 Generate code for the GNU assembler.  This is the default on the OSF/1
5422 reference platform, using the OSF/rose object format.  Also, this is
5423 the default if the configure option @samp{--with-gnu-as} is used.
5424
5425 @item -msplit-addresses
5426 @itemx -mno-split-addresses
5427 Generate code to load the high and low parts of address constants separately.
5428 This allows @code{gcc} to optimize away redundant loads of the high order
5429 bits of addresses.  This optimization requires GNU as and GNU ld.
5430 This optimization is enabled by default for some embedded targets where
5431 GNU as and GNU ld are standard.
5432
5433 @item -mrnames
5434 @itemx -mno-rnames
5435 The @samp{-mrnames} switch says to output code using the MIPS software
5436 names for the registers, instead of the hardware names (ie, @var{a0}
5437 instead of @var{$4}).  The only known assembler that supports this option
5438 is the Algorithmics assembler.
5439
5440 @item -mgpopt
5441 @itemx -mno-gpopt
5442 The @samp{-mgpopt} switch says to write all of the data declarations
5443 before the instructions in the text section, this allows the MIPS
5444 assembler to generate one word memory references instead of using two
5445 words for short global or static data items.  This is on by default if
5446 optimization is selected.
5447
5448 @item -mstats
5449 @itemx -mno-stats
5450 For each non-inline function processed, the @samp{-mstats} switch
5451 causes the compiler to emit one line to the standard error file to
5452 print statistics about the program (number of registers saved, stack
5453 size, etc.).
5454
5455 @item -mmemcpy
5456 @itemx -mno-memcpy
5457 The @samp{-mmemcpy} switch makes all block moves call the appropriate
5458 string function (@samp{memcpy} or @samp{bcopy}) instead of possibly
5459 generating inline code.
5460
5461 @item -mmips-tfile
5462 @itemx -mno-mips-tfile
5463 The @samp{-mno-mips-tfile} switch causes the compiler not
5464 postprocess the object file with the @file{mips-tfile} program,
5465 after the MIPS assembler has generated it to add debug support.  If
5466 @file{mips-tfile} is not run, then no local variables will be
5467 available to the debugger.  In addition, @file{stage2} and
5468 @file{stage3} objects will have the temporary file names passed to the
5469 assembler embedded in the object file, which means the objects will
5470 not compare the same.  The @samp{-mno-mips-tfile} switch should only
5471 be used when there are bugs in the @file{mips-tfile} program that
5472 prevents compilation.
5473
5474 @item -msoft-float
5475 Generate output containing library calls for floating point.
5476 @strong{Warning:} the requisite libraries are not part of GCC.
5477 Normally the facilities of the machine's usual C compiler are used, but
5478 this can't be done directly in cross-compilation.  You must make your
5479 own arrangements to provide suitable library functions for
5480 cross-compilation.
5481
5482 @item -mhard-float
5483 Generate output containing floating point instructions.  This is the
5484 default if you use the unmodified sources.
5485
5486 @item -mabicalls
5487 @itemx -mno-abicalls
5488 Emit (or do not emit) the pseudo operations @samp{.abicalls},
5489 @samp{.cpload}, and @samp{.cprestore} that some System V.4 ports use for
5490 position independent code.
5491
5492 @item -mlong-calls
5493 @itemx -mno-long-calls
5494 Do all calls with the @samp{JALR} instruction, which requires
5495 loading up a function's address into a register before the call.
5496 You need to use this switch, if you call outside of the current
5497 512 megabyte segment to functions that are not through pointers.
5498
5499 @item -mhalf-pic
5500 @itemx -mno-half-pic
5501 Put pointers to extern references into the data section and load them
5502 up, rather than put the references in the text section.
5503
5504 @item -membedded-pic
5505 @itemx -mno-embedded-pic
5506 Generate PIC code suitable for some embedded systems.  All calls are
5507 made using PC relative address, and all data is addressed using the $gp
5508 register.  No more than 65536 bytes of global data may be used.  This
5509 requires GNU as and GNU ld which do most of the work.  This currently
5510 only works on targets which use ECOFF; it does not work with ELF.
5511
5512 @item -membedded-data
5513 @itemx -mno-embedded-data
5514 Allocate variables to the read-only data section first if possible, then
5515 next in the small data section if possible, otherwise in data.  This gives
5516 slightly slower code than the default, but reduces the amount of RAM required
5517 when executing, and thus may be preferred for some embedded systems.
5518
5519 @item -msingle-float
5520 @itemx -mdouble-float
5521 The @samp{-msingle-float} switch tells gcc to assume that the floating
5522 point coprocessor only supports single precision operations, as on the
5523 @samp{r4650} chip.  The @samp{-mdouble-float} switch permits gcc to use
5524 double precision operations.  This is the default.
5525
5526 @item -mmad
5527 @itemx -mno-mad
5528 Permit use of the @samp{mad}, @samp{madu} and @samp{mul} instructions,
5529 as on the @samp{r4650} chip.
5530
5531 @item -m4650
5532 Turns on @samp{-msingle-float}, @samp{-mmad}, and, at least for now,
5533 @samp{-mcpu=r4650}.
5534
5535 @item -mips16
5536 @itemx -mno-mips16
5537 Enable 16-bit instructions.
5538
5539 @item -mentry
5540 Use the entry and exit pseudo ops.  This option can only be used with
5541 @samp{-mips16}.
5542
5543 @item -EL
5544 Compile code for the processor in little endian mode.
5545 The requisite libraries are assumed to exist.
5546
5547 @item -EB
5548 Compile code for the processor in big endian mode.
5549 The requisite libraries are assumed to exist.
5550
5551 @item -G @var{num}
5552 @cindex smaller data references (MIPS)
5553 @cindex gp-relative references (MIPS)
5554 Put global and static items less than or equal to @var{num} bytes into
5555 the small data or bss sections instead of the normal data or bss
5556 section.  This allows the assembler to emit one word memory reference
5557 instructions based on the global pointer (@var{gp} or @var{$28}),
5558 instead of the normal two words used.  By default, @var{num} is 8 when
5559 the MIPS assembler is used, and 0 when the GNU assembler is used.  The
5560 @samp{-G @var{num}} switch is also passed to the assembler and linker.
5561 All modules should be compiled with the same @samp{-G @var{num}}
5562 value.
5563
5564 @item -nocpp
5565 Tell the MIPS assembler to not run its preprocessor over user
5566 assembler files (with a @samp{.s} suffix) when assembling them.
5567 @end table
5568
5569 @ifset INTERNALS
5570 These options are defined by the macro
5571 @code{TARGET_SWITCHES} in the machine description.  The default for the
5572 options is also defined by that macro, which enables you to change the
5573 defaults.
5574 @end ifset
5575
5576 @node i386 Options
5577 @subsection Intel 386 Options
5578 @cindex i386 Options
5579 @cindex Intel 386 Options
5580
5581 These @samp{-m} options are defined for the i386 family of computers:
5582
5583 @table @code
5584 @item -mcpu=@var{cpu type}
5585 Assume the defaults for the machine type @var{cpu type} when scheduling
5586 instructions.  The choices for @var{cpu type} are:
5587
5588 @multitable @columnfractions .20 .20 .20 .20
5589 @item @samp{i386} @tab @samp{i486} @tab @samp{i586} @tab @samp{i686}
5590 @item @samp{pentium} @tab @samp{pentiumpro} @tab @samp{k6}
5591 @end multitable
5592
5593 While picking a specific @var{cpu type} will schedule things appropriately
5594 for that particular chip, the compiler will not generate any code that
5595 does not run on the i386 without the @samp{-march=@var{cpu type}} option
5596 being used.  @samp{i586} is equivalent to @samp{pentium} and @samp{i686}
5597 is equivalent to @samp{pentiumpro}.  @samp{k6} is the AMD chip as
5598 opposed to the Intel ones.
5599
5600 @item -march=@var{cpu type}
5601 Generate instructions for the machine type @var{cpu type}.  The choices
5602 for @var{cpu type} are the same as for @samp{-mcpu}.  Moreover, 
5603 specifying @samp{-march=@var{cpu type}} implies @samp{-mcpu=@var{cpu type}}.
5604
5605 @item -m386
5606 @itemx -m486
5607 @itemx -mpentium
5608 @itemx -mpentiumpro
5609 Synonyms for -mcpu=i386, -mcpu=i486, -mcpu=pentium, and -mcpu=pentiumpro
5610 respectively.  These synonyms are deprecated.
5611
5612 @item -mieee-fp
5613 @itemx -mno-ieee-fp
5614 Control whether or not the compiler uses IEEE floating point
5615 comparisons.  These handle correctly the case where the result of a
5616 comparison is unordered.
5617
5618 @item -msoft-float
5619 Generate output containing library calls for floating point.
5620 @strong{Warning:} the requisite libraries are not part of GCC.
5621 Normally the facilities of the machine's usual C compiler are used, but
5622 this can't be done directly in cross-compilation.  You must make your
5623 own arrangements to provide suitable library functions for
5624 cross-compilation.
5625
5626 On machines where a function returns floating point results in the 80387
5627 register stack, some floating point opcodes may be emitted even if
5628 @samp{-msoft-float} is used.
5629
5630 @item -mno-fp-ret-in-387
5631 Do not use the FPU registers for return values of functions.
5632
5633 The usual calling convention has functions return values of types
5634 @code{float} and @code{double} in an FPU register, even if there
5635 is no FPU.  The idea is that the operating system should emulate
5636 an FPU.
5637
5638 The option @samp{-mno-fp-ret-in-387} causes such values to be returned
5639 in ordinary CPU registers instead.
5640
5641 @item -mno-fancy-math-387
5642 Some 387 emulators do not support the @code{sin}, @code{cos} and
5643 @code{sqrt} instructions for the 387.  Specify this option to avoid
5644 generating those instructions. This option is the default on FreeBSD.
5645 As of revision 2.6.1, these instructions are not generated unless you
5646 also use the @samp{-ffast-math} switch.
5647
5648 @item -malign-double
5649 @itemx -mno-align-double
5650 Control whether GCC aligns @code{double}, @code{long double}, and
5651 @code{long long} variables on a two word boundary or a one word
5652 boundary.  Aligning @code{double} variables on a two word boundary will
5653 produce code that runs somewhat faster on a @samp{Pentium} at the
5654 expense of more memory.
5655
5656 @strong{Warning:} if you use the @samp{-malign-double} switch,
5657 structures containing the above types will be aligned differently than
5658 the published application binary interface specifications for the 386.
5659
5660 @item -msvr3-shlib
5661 @itemx -mno-svr3-shlib
5662 Control whether GCC places uninitialized locals into @code{bss} or
5663 @code{data}.  @samp{-msvr3-shlib} places these locals into @code{bss}.
5664 These options are meaningful only on System V Release 3.
5665
5666 @item -mno-wide-multiply
5667 @itemx -mwide-multiply
5668 Control whether GCC uses the @code{mul} and @code{imul} that produce
5669 64 bit results in @code{eax:edx} from 32 bit operands to do @code{long
5670 long} multiplies and 32-bit division by constants.
5671
5672 @item -mrtd
5673 Use a different function-calling convention, in which functions that
5674 take a fixed number of arguments return with the @code{ret} @var{num}
5675 instruction, which pops their arguments while returning.  This saves one
5676 instruction in the caller since there is no need to pop the arguments
5677 there.
5678
5679 You can specify that an individual function is called with this calling
5680 sequence with the function attribute @samp{stdcall}.  You can also
5681 override the @samp{-mrtd} option by using the function attribute
5682 @samp{cdecl}.  @xref{Function Attributes}.
5683
5684 @strong{Warning:} this calling convention is incompatible with the one
5685 normally used on Unix, so you cannot use it if you need to call
5686 libraries compiled with the Unix compiler.
5687
5688 Also, you must provide function prototypes for all functions that
5689 take variable numbers of arguments (including @code{printf});
5690 otherwise incorrect code will be generated for calls to those
5691 functions.
5692
5693 In addition, seriously incorrect code will result if you call a
5694 function with too many arguments.  (Normally, extra arguments are
5695 harmlessly ignored.)
5696
5697 @item -mreg-alloc=@var{regs}
5698 Control the default allocation order of integer registers.  The
5699 string @var{regs} is a series of letters specifying a register.  The
5700 supported letters are: @code{a} allocate EAX; @code{b} allocate EBX;
5701 @code{c} allocate ECX; @code{d} allocate EDX; @code{S} allocate ESI;
5702 @code{D} allocate EDI; @code{B} allocate EBP.
5703
5704 @item -mregparm=@var{num}
5705 Control how many registers are used to pass integer arguments.  By
5706 default, no registers are used to pass arguments, and at most 3
5707 registers can be used.  You can control this behavior for a specific
5708 function by using the function attribute @samp{regparm}.
5709 @xref{Function Attributes}.
5710
5711 @strong{Warning:} if you use this switch, and
5712 @var{num} is nonzero, then you must build all modules with the same
5713 value, including any libraries.  This includes the system libraries and
5714 startup modules.
5715
5716 @item -malign-loops=@var{num}
5717 Align loops to a 2 raised to a @var{num} byte boundary.  If
5718 @samp{-malign-loops} is not specified, the default is 2 unless
5719 gas 2.8 (or later) is being used in which case the default is
5720 to align the loop on a 16 byte boundary if it is less than 8
5721 bytes away.
5722
5723 @item -malign-jumps=@var{num}
5724 Align instructions that are only jumped to to a 2 raised to a @var{num}
5725 byte boundary.  If @samp{-malign-jumps} is not specified, the default is
5726 2 if optimizing for a 386, and 4 if optimizing for a 486 unless
5727 gas 2.8 (or later) is being used in which case the default is
5728 to align the instruction on a 16 byte boundary if it is less
5729 than 8 bytes away.
5730
5731 @item -malign-functions=@var{num}
5732 Align the start of functions to a 2 raised to @var{num} byte boundary.
5733 If @samp{-malign-functions} is not specified, the default is 2 if optimizing
5734 for a 386, and 4 if optimizing for a 486.
5735
5736 @item -mpreferred-stack-boundary=@var{num}
5737 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
5738 byte boundary.  If @samp{-mpreferred-stack-boundary} is not specified,
5739 the default is 4 (16 bytes or 128 bits).
5740
5741 The stack is required to be aligned on a 4 byte boundary.  On Pentium
5742 and PentiumPro, @code{double} and @code{long double} values should be
5743 aligned to an 8 byte boundary (see @samp{-malign-double}) or suffer
5744 significant run time performance penalties.  On Pentium III, the
5745 Streaming SIMD Extention (SSE) data type @code{__m128} suffers similar
5746 penalties if it is not 16 byte aligned.
5747
5748 To ensure proper alignment of this values on the stack, the stack boundary
5749 must be as aligned as that required by any value stored on the stack. 
5750 Further, every function must be generated such that it keeps the stack
5751 aligned.  Thus calling a function compiled with a higher preferred
5752 stack boundary from a function compiled with a lower preferred stack
5753 boundary will most likely misalign the stack.  It is recommended that
5754 libraries that use callbacks always use the default setting.
5755
5756 This extra alignment does consume extra stack space.  Code that is sensitive
5757 to stack space usage, such as embedded systems and operating system kernels,
5758 may want to reduce the preferred alignment to
5759 @samp{-mpreferred-stack-boundary=2}.
5760 @end table
5761
5762 @node HPPA Options
5763 @subsection HPPA Options
5764 @cindex HPPA Options
5765
5766 These @samp{-m} options are defined for the HPPA family of computers:
5767
5768 @table @code
5769 @item -march=@var{architecture type}
5770 Generate code for the specified architecture.  The choices for
5771 @var{architecture type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
5772 1.1, and @samp{2.0} for PA 2.0 processors.  Refer to
5773 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
5774 architecture option for your machine.  Code compiled for lower numbered
5775 architectures will run on higher numbered architectures, but not the
5776 other way around.
5777
5778 PA 2.0 support currently requires gas snapshot 19990413 or later.  The
5779 next release of binutils (current is 2.9.1) will probably contain PA 2.0
5780 support.  
5781
5782 @item -mpa-risc-1-0
5783 @itemx -mpa-risc-1-1
5784 @itemx -mpa-risc-2-0
5785 Synonyms for -march=1.0, -march=1.1, and -march=2.0 respectively.
5786
5787 @item -mbig-switch
5788 Generate code suitable for big switch tables.  Use this option only if
5789 the assembler/linker complain about out of range branches within a switch
5790 table.
5791
5792 @item -mjump-in-delay
5793 Fill delay slots of function calls with unconditional jump instructions
5794 by modifying the return pointer for the function call to be the target
5795 of the conditional jump.
5796
5797 @item -mdisable-fpregs
5798 Prevent floating point registers from being used in any manner.  This is
5799 necessary for compiling kernels which perform lazy context switching of
5800 floating point registers.  If you use this option and attempt to perform
5801 floating point operations, the compiler will abort.
5802
5803 @item -mdisable-indexing
5804 Prevent the compiler from using indexing address modes.  This avoids some
5805 rather obscure problems when compiling MIG generated code under MACH.
5806
5807 @item -mno-space-regs
5808 Generate code that assumes the target has no space registers.  This allows
5809 GCC to generate faster indirect calls and use unscaled index address modes.
5810
5811 Such code is suitable for level 0 PA systems and kernels.
5812
5813 @item -mfast-indirect-calls
5814 Generate code that assumes calls never cross space boundaries.  This
5815 allows GCC to emit code which performs faster indirect calls.
5816
5817 This option will not work in the presense of shared libraries or nested
5818 functions.
5819
5820 @item -mlong-load-store
5821 Generate 3-instruction load and store sequences as sometimes required by
5822 the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
5823 the HP compilers.
5824
5825 @item -mportable-runtime
5826 Use the portable calling conventions proposed by HP for ELF systems.
5827
5828 @item -mgas
5829 Enable the use of assembler directives only GAS understands.
5830
5831 @item -mschedule=@var{cpu type}
5832 Schedule code according to the constraints for the machine type
5833 @var{cpu type}.  The choices for @var{cpu type} are @samp{700} 
5834 @samp{7100}, @samp{7100LC}, @samp{7200}, and @samp{8000}.  Refer to 
5835 @file{/usr/lib/sched.models} on an HP-UX system to determine the
5836 proper scheduling option for your machine.
5837
5838 @item -mlinker-opt
5839 Enable the optimization pass in the HPUX linker.  Note this makes symbolic
5840 debugging impossible.  It also triggers a bug in the HPUX 8 and HPUX 9 linkers
5841 in which they give bogus error messages when linking some programs.
5842
5843 @item -msoft-float
5844 Generate output containing library calls for floating point.
5845 @strong{Warning:} the requisite libraries are not available for all HPPA
5846 targets.  Normally the facilities of the machine's usual C compiler are
5847 used, but this cannot be done directly in cross-compilation.  You must make
5848 your own arrangements to provide suitable library functions for
5849 cross-compilation.  The embedded target @samp{hppa1.1-*-pro}
5850 does provide software floating point support.
5851
5852 @samp{-msoft-float} changes the calling convention in the output file;
5853 therefore, it is only useful if you compile @emph{all} of a program with
5854 this option.  In particular, you need to compile @file{libgcc.a}, the
5855 library that comes with GCC, with @samp{-msoft-float} in order for
5856 this to work.
5857 @end table
5858
5859 @node Intel 960 Options
5860 @subsection Intel 960 Options
5861
5862 These @samp{-m} options are defined for the Intel 960 implementations:
5863
5864 @table @code
5865 @item -m@var{cpu type}
5866 Assume the defaults for the machine type @var{cpu type} for some of
5867 the other options, including instruction scheduling, floating point
5868 support, and addressing modes.  The choices for @var{cpu type} are
5869 @samp{ka}, @samp{kb}, @samp{mc}, @samp{ca}, @samp{cf},
5870 @samp{sa}, and @samp{sb}.
5871 The default is
5872 @samp{kb}.
5873
5874 @item -mnumerics
5875 @itemx -msoft-float
5876 The @samp{-mnumerics} option indicates that the processor does support
5877 floating-point instructions.  The @samp{-msoft-float} option indicates
5878 that floating-point support should not be assumed.
5879
5880 @item -mleaf-procedures
5881 @itemx -mno-leaf-procedures
5882 Do (or do not) attempt to alter leaf procedures to be callable with the
5883 @code{bal} instruction as well as @code{call}.  This will result in more
5884 efficient code for explicit calls when the @code{bal} instruction can be
5885 substituted by the assembler or linker, but less efficient code in other
5886 cases, such as calls via function pointers, or using a linker that doesn't
5887 support this optimization.
5888
5889 @item -mtail-call
5890 @itemx -mno-tail-call
5891 Do (or do not) make additional attempts (beyond those of the
5892 machine-independent portions of the compiler) to optimize tail-recursive
5893 calls into branches.  You may not want to do this because the detection of
5894 cases where this is not valid is not totally complete.  The default is
5895 @samp{-mno-tail-call}.
5896
5897 @item -mcomplex-addr
5898 @itemx -mno-complex-addr
5899 Assume (or do not assume) that the use of a complex addressing mode is a
5900 win on this implementation of the i960.  Complex addressing modes may not
5901 be worthwhile on the K-series, but they definitely are on the C-series.
5902 The default is currently @samp{-mcomplex-addr} for all processors except
5903 the CB and CC.
5904
5905 @item -mcode-align
5906 @itemx -mno-code-align
5907 Align code to 8-byte boundaries for faster fetching (or don't bother).
5908 Currently turned on by default for C-series implementations only.
5909
5910 @ignore
5911 @item -mclean-linkage
5912 @itemx -mno-clean-linkage
5913 These options are not fully implemented.
5914 @end ignore
5915
5916 @item -mic-compat
5917 @itemx -mic2.0-compat
5918 @itemx -mic3.0-compat
5919 Enable compatibility with iC960 v2.0 or v3.0.
5920
5921 @item -masm-compat
5922 @itemx -mintel-asm
5923 Enable compatibility with the iC960 assembler.
5924
5925 @item -mstrict-align
5926 @itemx -mno-strict-align
5927 Do not permit (do permit) unaligned accesses.
5928
5929 @item -mold-align
5930 Enable structure-alignment compatibility with Intel's gcc release version
5931 1.3 (based on gcc 1.37).  This option implies @samp{-mstrict-align}.
5932
5933 @item -mlong-double-64
5934 Implement type @samp{long double} as 64-bit floating point numbers.
5935 Without the option @samp{long double} is implemented by 80-bit
5936 floating point numbers.  The only reason we have it because there is
5937 no 128-bit @samp{long double} support in @samp{fp-bit.c} yet.  So it
5938 is only useful for people using soft-float targets.  Otherwise, we
5939 should recommend against use of it.
5940
5941 @end table
5942
5943 @node DEC Alpha Options
5944 @subsection DEC Alpha Options
5945
5946 These @samp{-m} options are defined for the DEC Alpha implementations:
5947
5948 @table @code
5949 @item -mno-soft-float
5950 @itemx -msoft-float
5951 Use (do not use) the hardware floating-point instructions for
5952 floating-point operations.  When @code{-msoft-float} is specified,
5953 functions in @file{libgcc1.c} will be used to perform floating-point
5954 operations.  Unless they are replaced by routines that emulate the
5955 floating-point operations, or compiled in such a way as to call such
5956 emulations routines, these routines will issue floating-point
5957 operations.   If you are compiling for an Alpha without floating-point
5958 operations, you must ensure that the library is built so as not to call
5959 them.
5960
5961 Note that Alpha implementations without floating-point operations are
5962 required to have floating-point registers.
5963
5964 @item -mfp-reg
5965 @itemx -mno-fp-regs
5966 Generate code that uses (does not use) the floating-point register set.
5967 @code{-mno-fp-regs} implies @code{-msoft-float}.  If the floating-point
5968 register set is not used, floating point operands are passed in integer
5969 registers as if they were integers and floating-point results are passed
5970 in $0 instead of $f0.  This is a non-standard calling sequence, so any
5971 function with a floating-point argument or return value called by code
5972 compiled with @code{-mno-fp-regs} must also be compiled with that
5973 option.
5974
5975 A typical use of this option is building a kernel that does not use,
5976 and hence need not save and restore, any floating-point registers.
5977
5978 @item -mieee
5979 The Alpha architecture implements floating-point hardware optimized for
5980 maximum performance.  It is mostly compliant with the IEEE floating
5981 point standard.  However, for full compliance, software assistance is
5982 required.  This option generates code fully IEEE compliant code
5983 @emph{except} that the @var{inexact flag} is not maintained (see below).
5984 If this option is turned on, the CPP macro @code{_IEEE_FP} is defined
5985 during compilation.  The option is a shorthand for: @samp{-D_IEEE_FP
5986 -mfp-trap-mode=su -mtrap-precision=i -mieee-conformant}.  The resulting
5987 code is less efficient but is able to correctly support denormalized
5988 numbers and exceptional IEEE values such as not-a-number and plus/minus
5989 infinity.  Other Alpha compilers call this option
5990 @code{-ieee_with_no_inexact}.
5991
5992 @item -mieee-with-inexact
5993 @c overfull hbox here --bob 22 jul96
5994 @c original text between ignore ... end ignore
5995 @ignore
5996 This is like @samp{-mieee} except the generated code also maintains the
5997 IEEE @var{inexact flag}.  Turning on this option causes the generated
5998 code to implement fully-compliant IEEE math.  The option is a shorthand
5999 for @samp{-D_IEEE_FP -D_IEEE_FP_INEXACT} plus @samp{-mieee-conformant},
6000 @samp{-mfp-trap-mode=sui}, and @samp{-mtrap-precision=i}.  On some Alpha
6001 implementations the resulting code may execute significantly slower than
6002 the code generated by default.  Since there is very little code that
6003 depends on the @var{inexact flag}, you should normally not specify this
6004 option.  Other Alpha compilers call this option
6005 @samp{-ieee_with_inexact}.
6006 @end ignore
6007 @c            changed paragraph
6008 This is like @samp{-mieee} except the generated code also maintains the
6009 IEEE @var{inexact flag}.  Turning on this option causes the generated
6010 code to implement fully-compliant IEEE math.  The option is a shorthand
6011 for @samp{-D_IEEE_FP -D_IEEE_FP_INEXACT} plus the three following:
6012 @samp{-mieee-conformant},
6013 @samp{-mfp-trap-mode=sui}, 
6014 and @samp{-mtrap-precision=i}.  
6015 On some Alpha implementations the resulting code may execute
6016 significantly slower than the code generated by default.  Since there
6017 is very little code that depends on the @var{inexact flag}, you should
6018 normally not specify this option.  Other Alpha compilers call this
6019 option @samp{-ieee_with_inexact}.
6020 @c             end changes to prevent overfull hboxes
6021
6022 @item -mfp-trap-mode=@var{trap mode}
6023 This option controls what floating-point related traps are enabled.
6024 Other Alpha compilers call this option @samp{-fptm }@var{trap mode}.
6025 The trap mode can be set to one of four values:
6026
6027 @table @samp
6028 @item n
6029 This is the default (normal) setting.  The only traps that are enabled
6030 are the ones that cannot be disabled in software (e.g., division by zero
6031 trap).
6032
6033 @item u
6034 In addition to the traps enabled by @samp{n}, underflow traps are enabled
6035 as well.
6036
6037 @item su
6038 Like @samp{su}, but the instructions are marked to be safe for software
6039 completion (see Alpha architecture manual for details).
6040
6041 @item sui
6042 Like @samp{su}, but inexact traps are enabled as well.
6043 @end table
6044
6045 @item -mfp-rounding-mode=@var{rounding mode}
6046 Selects the IEEE rounding mode.  Other Alpha compilers call this option
6047 @samp{-fprm }@var{rounding mode}.  The @var{rounding mode} can be one
6048 of:
6049
6050 @table @samp
6051 @item n
6052 Normal IEEE rounding mode.  Floating point numbers are rounded towards
6053 the nearest machine number or towards the even machine number in case
6054 of a tie.
6055
6056 @item m
6057 Round towards minus infinity.
6058
6059 @item c
6060 Chopped rounding mode.  Floating point numbers are rounded towards zero.
6061
6062 @item d
6063 Dynamic rounding mode.  A field in the floating point control register
6064 (@var{fpcr}, see Alpha architecture reference manual) controls the
6065 rounding mode in effect.  The C library initializes this register for
6066 rounding towards plus infinity.  Thus, unless your program modifies the
6067 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
6068 @end table
6069
6070 @item -mtrap-precision=@var{trap precision}
6071 In the Alpha architecture, floating point traps are imprecise.  This
6072 means without software assistance it is impossible to recover from a
6073 floating trap and program execution normally needs to be terminated.
6074 GCC can generate code that can assist operating system trap handlers
6075 in determining the exact location that caused a floating point trap.
6076 Depending on the requirements of an application, different levels of
6077 precisions can be selected:
6078
6079 @table @samp
6080 @item p
6081 Program precision.  This option is the default and means a trap handler
6082 can only identify which program caused a floating point exception.
6083
6084 @item f
6085 Function precision.  The trap handler can determine the function that
6086 caused a floating point exception.
6087
6088 @item i
6089 Instruction precision.  The trap handler can determine the exact
6090 instruction that caused a floating point exception.
6091 @end table
6092
6093 Other Alpha compilers provide the equivalent options called
6094 @samp{-scope_safe} and @samp{-resumption_safe}.
6095
6096 @item -mieee-conformant
6097 This option marks the generated code as IEEE conformant.  You must not
6098 use this option unless you also specify @samp{-mtrap-precision=i} and either
6099 @samp{-mfp-trap-mode=su} or @samp{-mfp-trap-mode=sui}.  Its only effect
6100 is to emit the line @samp{.eflag 48} in the function prologue of the
6101 generated assembly file.  Under DEC Unix, this has the effect that
6102 IEEE-conformant math library routines will be linked in.
6103
6104 @item -mbuild-constants
6105 Normally GCC examines a 32- or 64-bit integer constant to
6106 see if it can construct it from smaller constants in two or three
6107 instructions.  If it cannot, it will output the constant as a literal and
6108 generate code to load it from the data segment at runtime.
6109
6110 Use this option to require GCC to construct @emph{all} integer constants
6111 using code, even if it takes more instructions (the maximum is six).
6112
6113 You would typically use this option to build a shared library dynamic
6114 loader.  Itself a shared library, it must relocate itself in memory
6115 before it can find the variables and constants in its own data segment.
6116
6117 @item -malpha-as
6118 @itemx -mgas
6119 Select whether to generate code to be assembled by the vendor-supplied
6120 assembler (@samp{-malpha-as}) or by the GNU assembler @samp{-mgas}.
6121
6122 @item -mbwx
6123 @itemx -mno-bwx
6124 @itemx -mcix
6125 @itemx -mno-cix
6126 @itemx -mmax
6127 @itemx -mno-max
6128 Indicate whether GCC should generate code to use the optional BWX,
6129 CIX, and MAX instruction sets.  The default is to use the instruction sets
6130 supported by the CPU type specified via @samp{-mcpu=} option or that
6131 of the CPU on which GCC was built if none was specified.
6132
6133 @item -mcpu=@var{cpu_type}
6134 Set the instruction set, register set, and instruction scheduling
6135 parameters for machine type @var{cpu_type}.  You can specify either the
6136 @samp{EV} style name or the corresponding chip number.  GCC
6137 supports scheduling parameters for the EV4 and EV5 family of processors
6138 and will choose the default values for the instruction set from
6139 the processor you specify.  If you do not specify a processor type,
6140 GCC will default to the processor on which the compiler was built.
6141
6142 Supported values for @var{cpu_type} are
6143
6144 @table @samp
6145 @item ev4
6146 @itemx 21064
6147 Schedules as an EV4 and has no instruction set extensions.
6148
6149 @item ev5
6150 @itemx 21164
6151 Schedules as an EV5 and has no instruction set extensions.
6152
6153 @item ev56
6154 @itemx 21164a
6155 Schedules as an EV5 and supports the BWX extension.
6156
6157 @item pca56
6158 @itemx 21164pc
6159 @itemx 21164PC
6160 Schedules as an EV5 and supports the BWX and MAX extensions.
6161
6162 @item ev6
6163 @itemx 21264
6164 Schedules as an EV5 (until Digital releases the scheduling parameters
6165 for the EV6) and supports the BWX, CIX, and MAX extensions.
6166 @end table
6167
6168 @item -mmemory-latency=@var{time}
6169 Sets the latency the scheduler should assume for typical memory
6170 references as seen by the application.  This number is highly
6171 dependant on the memory access patterns used by the application
6172 and the size of the external cache on the machine.
6173
6174 Valid options for @var{time} are
6175
6176 @table @samp
6177 @item @var{number}
6178 A decimal number representing clock cycles.
6179
6180 @item L1
6181 @itemx L2
6182 @itemx L3
6183 @itemx main
6184 The compiler contains estimates of the number of clock cycles for
6185 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
6186 (also called Dcache, Scache, and Bcache), as well as to main memory.
6187 Note that L3 is only valid for EV5.
6188
6189 @end table
6190 @end table
6191
6192 @node Clipper Options
6193 @subsection Clipper Options
6194
6195 These @samp{-m} options are defined for the Clipper implementations:
6196
6197 @table @code
6198 @item -mc300
6199 Produce code for a C300 Clipper processor. This is the default.
6200
6201 @item -mc400
6202 Produce code for a C400 Clipper processor i.e. use floating point
6203 registers f8..f15.
6204 @end table
6205
6206 @node H8/300 Options
6207 @subsection H8/300 Options
6208
6209 These @samp{-m} options are defined for the H8/300 implementations:
6210
6211 @table @code
6212 @item -mrelax
6213 Shorten some address references at link time, when possible; uses the
6214 linker option @samp{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
6215 ld.info, Using ld}, for a fuller description.
6216
6217 @item -mh
6218 Generate code for the H8/300H.
6219
6220 @item -ms
6221 Generate code for the H8/S.
6222
6223 @item -mint32
6224 Make @code{int} data 32 bits by default.
6225
6226 @item -malign-300
6227 On the h8/300h, use the same alignment rules as for the h8/300.
6228 The default for the h8/300h is to align longs and floats on 4 byte boundaries.
6229 @samp{-malign-300} causes them to be aligned on 2 byte boundaries.
6230 This option has no effect on the h8/300.
6231 @end table
6232
6233 @node SH Options
6234 @subsection SH Options
6235
6236 These @samp{-m} options are defined for the SH implementations:
6237
6238 @table @code
6239 @item -m1
6240 Generate code for the SH1.
6241
6242 @item -m2
6243 Generate code for the SH2.
6244
6245 @item -m3
6246 Generate code for the SH3.
6247
6248 @item -m3e
6249 Generate code for the SH3e.
6250
6251 @item -mb
6252 Compile code for the processor in big endian mode.
6253
6254 @item -ml
6255 Compile code for the processor in little endian mode.
6256
6257 @item -mdalign
6258 Align doubles at 64 bit boundaries.  Note that this changes the calling
6259 conventions, and thus some functions from the standard C library will
6260 not work unless you recompile it first with -mdalign.
6261
6262 @item -mrelax
6263 Shorten some address references at link time, when possible; uses the
6264 linker option @samp{-relax}.
6265 @end table
6266
6267 @node System V Options
6268 @subsection Options for System V
6269
6270 These additional options are available on System V Release 4 for
6271 compatibility with other compilers on those systems:
6272
6273 @table @code
6274 @item -G
6275 Create a shared object.
6276 It is recommended that @samp{-symbolic} or @samp{-shared} be used instead.
6277
6278 @item -Qy
6279 Identify the versions of each tool used by the compiler, in a
6280 @code{.ident} assembler directive in the output.
6281
6282 @item -Qn
6283 Refrain from adding @code{.ident} directives to the output file (this is
6284 the default).
6285
6286 @item -YP,@var{dirs}
6287 Search the directories @var{dirs}, and no others, for libraries
6288 specified with @samp{-l}.
6289
6290 @item -Ym,@var{dir}
6291 Look in the directory @var{dir} to find the M4 preprocessor.
6292 The assembler uses this option.
6293 @c This is supposed to go with a -Yd for predefined M4 macro files, but
6294 @c the generic assembler that comes with Solaris takes just -Ym.
6295 @end table
6296
6297 @node TMS320C3x/C4x Options
6298 @subsection TMS320C3x/C4x Options
6299 @cindex TMS320C3x/C4x Options
6300
6301 These @samp{-m} options are defined for TMS320C3x/C4x implementations:
6302
6303 @table @code
6304
6305 @item -mcpu=@var{cpu_type}
6306 Set the instruction set, register set, and instruction scheduling
6307 parameters for machine type @var{cpu_type}.  Supported values for
6308 @var{cpu_type} are @samp{c30}, @samp{c31}, @samp{c32}, @samp{c40}, and
6309 @samp{c44}.  The default is @samp{c40} to generate code for the
6310 TMS320C40.
6311
6312 @item -mbig-memory
6313 @item -mbig
6314 @itemx -msmall-memory
6315 @itemx -msmall
6316 Generates code for the big or small memory model.  The small memory
6317 model assumed that all data fits into one 64K word page.  At run-time
6318 the data page (DP) register must be set to point to the 64K page
6319 containing the .bss and .data program sections.  The big memory model is
6320 the default and requires reloading of the DP register for every direct
6321 memory access.
6322
6323 @item -mbk
6324 @itemx -mno-bk
6325 Allow (disallow) allocation of general integer operands into the block
6326 count register BK. 
6327
6328 @item -mdb
6329 @itemx -mno-db
6330 Enable (disable) generation of code using decrement and branch,
6331 DBcond(D), instructions.  This is enabled by default for the C4x.  To be
6332 on the safe side, this is disabled for the C3x, since the maximum
6333 iteration count on the C3x is 2^23 + 1 (but who iterates loops more than
6334 2^23 times on the C3x?).  Note that GCC will try to reverse a loop so
6335 that it can utilise the decrement and branch instruction, but will give
6336 up if there is more than one memory reference in the loop.  Thus a loop
6337 where the loop counter is decremented can generate slightly more
6338 efficient code, in cases where the RPTB instruction cannot be utilised.
6339
6340 @item -mdp-isr-reload
6341 @itemx -mparanoid
6342 Force the DP register to be saved on entry to an interrupt service
6343 routine (ISR), reloaded to point to the data section, and restored on
6344 exit from the ISR.  This should not be required unless someone has
6345 violated the small memory model by modifying the DP register, say within
6346 an object library.
6347
6348 @item -mmpyi
6349 @itemx -mno-mpyi
6350 For the C3x use the 24-bit MPYI instruction for integer multiplies
6351 instead of a library call to guarantee 32-bit results.  Note that if one
6352 of the operands is a constant, then the multiplication will be performed
6353 using shifts and adds.  If the -mmpyi option is not specified for the C3x,
6354 then squaring operations are performed inline instead of a library call.
6355
6356 @item -mfast-fix
6357 @itemx -mno-fast-fix
6358 The C3x/C4x FIX instruction to convert a floating point value to an
6359 integer value chooses the nearest integer less than or equal to the
6360 floating point value rather than to the nearest integer.  Thus if the
6361 floating point number is negative, the result will be incorrectly
6362 truncated an additional code is necessary to detect and correct this
6363 case.  This option can be used to disable generation of the additional
6364 code required to correct the result.
6365
6366 @item -mrptb
6367 @itemx -mno-rptb
6368 Enable (disable) generation of repeat block sequences using the RPTB
6369 instruction for zero overhead looping.  The RPTB construct is only used
6370 for innermost loops that do not call functions or jump across the loop
6371 boundaries.  There is no advantage having nested RPTB loops due to the
6372 overhead required to save and restore the RC, RS, and RE registers.
6373 This is enabled by default with -O2.
6374
6375 @item -mrpts=@var{count}
6376 @itemx -mno-rpts
6377 Enable (disable) the use of the single instruction repeat instruction
6378 RPTS.  If a repeat block contains a single instruction, and the loop
6379 count can be guaranteed to be less than the value @var{count}, GCC will
6380 emit a RPTS instruction instead of a RPTB.  If no value is specified,
6381 then a RPTS will be emitted even if the loop count cannot be determined
6382 at compile time.  Note that the repeated instruction following RPTS does
6383 not have to be reloaded from memory each iteration, thus freeing up the
6384 CPU buses for oeprands.  However, since interrupts are blocked by this
6385 instruction, it is disabled by default.
6386
6387 @item -mloop-unsigned
6388 @itemx -mno-loop-unsigned
6389 The maximum iteration count when using RPTS and RPTB (and DB on the C40)
6390 is 2^31 + 1 since these instructions test if the iteration count is
6391 negative to terminate the loop.  If the iteration count is unsigned
6392 there is a possibility than the 2^31 + 1 maximum iteration count may be
6393 exceeded.  This switch allows an unsigned iteration count.
6394
6395 @item -mti
6396 Try to emit an assembler syntax that the TI assembler (asm30) is happy
6397 with.  This also enforces compatibility with the API employed by the TI
6398 C3x C compiler.  For example, long doubles are passed as structures
6399 rather than in floating point registers.
6400
6401 @item -mregparm
6402 @itemx -mmemparm
6403 Generate code that uses registers (stack) for passing arguments to functions.
6404 By default, arguments are passed in registers where possible rather
6405 than by pushing arguments on to the stack.
6406
6407 @item -mparallel-insns
6408 @itemx -mno-parallel-insns
6409 Allow the generation of parallel instructions.  This is enabled by
6410 default with -O2.
6411
6412 @item -mparallel-mpy
6413 @itemx -mno-parallel-mpy
6414 Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
6415 provided -mparallel-insns is also specified.  These instructions have
6416 tight register constraints which can pessimize the code generation
6417 of large functions.
6418
6419 @end table
6420
6421 @node V850 Options
6422 @subsection V850 Options
6423 @cindex V850 Options
6424
6425 These @samp{-m} options are defined for V850 implementations:
6426
6427 @table @code
6428 @item -mlong-calls
6429 @itemx -mno-long-calls
6430 Treat all calls as being far away (near).  If calls are assumed to be
6431 far away, the compiler will always load the functions address up into a
6432 register, and call indirect through the pointer.
6433
6434 @item -mno-ep
6435 @itemx -mep
6436 Do not optimize (do optimize) basic blocks that use the same index
6437 pointer 4 or more times to copy pointer into the @code{ep} register, and
6438 use the shorter @code{sld} and @code{sst} instructions.  The @samp{-mep}
6439 option is on by default if you optimize.
6440
6441 @item -mno-prolog-function
6442 @itemx -mprolog-function
6443 Do not use (do use) external functions to save and restore registers at
6444 the prolog and epilog of a function.  The external functions are slower,
6445 but use less code space if more than one function saves the same number
6446 of registers.  The @samp{-mprolog-function} option is on by default if
6447 you optimize.
6448
6449 @item -mspace
6450 Try to make the code as small as possible.  At present, this just turns
6451 on the @samp{-mep} and @samp{-mprolog-function} options.
6452
6453 @item -mtda=@var{n}
6454 Put static or global variables whose size is @var{n} bytes or less into
6455 the tiny data area that register @code{ep} points to.  The tiny data
6456 area can hold up to 256 bytes in total (128 bytes for byte references).
6457
6458 @item -msda=@var{n}
6459 Put static or global variables whose size is @var{n} bytes or less into
6460 the small data area that register @code{gp} points to.  The small data
6461 area can hold up to 64 kilobytes.
6462
6463 @item -mzda=@var{n}
6464 Put static or global variables whose size is @var{n} bytes or less into
6465 the first 32 kilobytes of memory.
6466  
6467 @item -mv850
6468 Specify that the target processor is the V850.
6469
6470 @item -mbig-switch
6471 Generate code suitable for big switch tables.  Use this option only if
6472 the assembler/linker complain about out of range branches within a switch
6473 table.
6474 @end table
6475
6476 @node ARC Options
6477 @subsection ARC Options
6478 @cindex ARC Options
6479
6480 These options are defined for ARC implementations:
6481
6482 @table @code
6483 @item -EL
6484 Compile code for little endian mode.  This is the default.
6485
6486 @item -EB
6487 Compile code for big endian mode.
6488
6489 @item -mmangle-cpu
6490 Prepend the name of the cpu to all public symbol names.
6491 In multiple-processor systems, there are many ARC variants with different
6492 instruction and register set characteristics.  This flag prevents code
6493 compiled for one cpu to be linked with code compiled for another.
6494 No facility exists for handling variants that are "almost identical".
6495 This is an all or nothing option.
6496
6497 @item -mcpu=@var{cpu}
6498 Compile code for ARC variant @var{cpu}.
6499 Which variants are supported depend on the configuration.
6500 All variants support @samp{-mcpu=base}, this is the default.
6501
6502 @item -mtext=@var{text section}
6503 @itemx -mdata=@var{data section}
6504 @itemx -mrodata=@var{readonly data section}
6505 Put functions, data, and readonly data in @var{text section},
6506 @var{data section}, and @var{readonly data section} respectively
6507 by default.  This can be overridden with the @code{section} attribute.
6508 @xref{Variable Attributes}.
6509
6510 @end table
6511
6512 @node NS32K Options
6513 @subsection NS32K Options
6514 @cindex NS32K options
6515
6516 These are the @samp{-m} options defined for the 32000 series.  The default
6517 values for these options depends on which style of 32000 was selected when
6518 the compiler was configured; the defaults for the most common choices are
6519 given below.
6520
6521 @table @code
6522 @item -m32032
6523 @itemx -m32032
6524 Generate output for a 32032.  This is the default
6525 when the compiler is configured for 32032 and 32016 based systems.
6526
6527 @item -m32332
6528 @itemx -m32332
6529 Generate output for a 32332.  This is the default
6530 when the compiler is configured for 32332-based systems.
6531
6532 @item -m32532
6533 @itemx -m32532
6534 Generate output for a 32532.  This is the default
6535 when the compiler is configured for 32532-based systems.
6536
6537 @item -m32081
6538 Generate output containing 32081 instructions for floating point.
6539 This is the default for all systems.
6540
6541 @item -m32381
6542 Generate output containing 32381 instructions for floating point.  This
6543 also implies @samp{-m32081}. The 32381 is only compatible with the 32332
6544 and 32532 cpus. This is the default for the pc532-netbsd configuration.
6545
6546 @item -mmulti-add
6547 Try and generate multiply-add floating point instructions @code{polyF}
6548 and @code{dotF}. This option is only available if the @samp{-m32381}
6549 option is in effect. Using these instructions requires changes to to
6550 register allocation which generally has a negative impact on
6551 performance.  This option should only be enabled when compiling code
6552 particularly likely to make heavy use of multiply-add instructions.
6553
6554 @item -mnomulti-add
6555 Do not try and generate multiply-add floating point instructions
6556 @code{polyF} and @code{dotF}. This is the default on all platforms.
6557
6558 @item -msoft-float
6559 Generate output containing library calls for floating point.
6560 @strong{Warning:} the requisite libraries may not be available.
6561
6562 @item -mnobitfield
6563 Do not use the bit-field instructions. On some machines it is faster to
6564 use shifting and masking operations. This is the default for the pc532.
6565
6566 @item -mbitfield
6567 Do use the bit-field instructions. This is the default for all platforms
6568 except the pc532.
6569
6570 @item -mrtd
6571 Use a different function-calling convention, in which functions
6572 that take a fixed number of arguments return pop their
6573 arguments on return with the @code{ret} instruction.
6574
6575 This calling convention is incompatible with the one normally
6576 used on Unix, so you cannot use it if you need to call libraries
6577 compiled with the Unix compiler.
6578
6579 Also, you must provide function prototypes for all functions that
6580 take variable numbers of arguments (including @code{printf});
6581 otherwise incorrect code will be generated for calls to those
6582 functions.
6583
6584 In addition, seriously incorrect code will result if you call a
6585 function with too many arguments.  (Normally, extra arguments are
6586 harmlessly ignored.)
6587
6588 This option takes its name from the 680x0 @code{rtd} instruction.
6589
6590
6591 @item -mregparam
6592 Use a different function-calling convention where the first two arguments
6593 are passed in registers.
6594
6595 This calling convention is incompatible with the one normally
6596 used on Unix, so you cannot use it if you need to call libraries
6597 compiled with the Unix compiler.
6598
6599 @item -mnoregparam
6600 Do not pass any arguments in registers. This is the default for all
6601 targets.
6602
6603 @item -msb
6604 It is OK to use the sb as an index register which is always loaded with
6605 zero. This is the default for the pc532-netbsd target.
6606
6607 @item -mnosb
6608 The sb register is not available for use or has not been initialized to
6609 zero by the run time system. This is the default for all targets except
6610 the pc532-netbsd. It is also implied whenever @samp{-mhimem} or
6611 @samp{-fpic} is set.
6612
6613 @item -mhimem
6614 Many ns32000 series addressing modes use displacements of up to 512MB.
6615 If an address is above 512MB then displacements from zero can not be used.
6616 This option causes code to be generated which can be loaded above 512MB.
6617 This may be useful for operating systems or ROM code.
6618
6619 @item -mnohimem
6620 Assume code will be loaded in the first 512MB of virtual address space.
6621 This is the default for all platforms.
6622
6623
6624 @end table
6625
6626
6627
6628 @node Code Gen Options
6629 @section Options for Code Generation Conventions
6630 @cindex code generation conventions
6631 @cindex options, code generation
6632 @cindex run-time options
6633
6634 These machine-independent options control the interface conventions
6635 used in code generation.
6636
6637 Most of them have both positive and negative forms; the negative form
6638 of @samp{-ffoo} would be @samp{-fno-foo}.  In the table below, only
6639 one of the forms is listed---the one which is not the default.  You
6640 can figure out the other form by either removing @samp{no-} or adding
6641 it.
6642
6643 @table @code
6644 @item -fexceptions
6645 Enable exception handling. Generates extra code needed to propagate
6646 exceptions.  For some targets, this implies GNU CC will generate frame
6647 unwind information for all functions, which can produce significant data
6648 size overhead, although it does not affect execution.  If you do not
6649 specify this option, GNU CC will enable it by default for languages like
6650 C++ which normally require exception handling, and disable itfor
6651 languages like C that do not normally require it.  However, you may need
6652 to enable this option when compiling C code that needs to interoperate
6653 properly with exception handlers written in C++.  You may also wish to
6654 disable this option if you are compiling older C++ programs that don't
6655 use exception handling.
6656
6657 @item -fpcc-struct-return
6658 Return ``short'' @code{struct} and @code{union} values in memory like
6659 longer ones, rather than in registers.  This convention is less
6660 efficient, but it has the advantage of allowing intercallability between
6661 GCC-compiled files and files compiled with other compilers.
6662
6663 The precise convention for returning structures in memory depends
6664 on the target configuration macros.
6665
6666 Short structures and unions are those whose size and alignment match
6667 that of some integer type.
6668
6669 @item -freg-struct-return
6670 Use the convention that @code{struct} and @code{union} values are
6671 returned in registers when possible.  This is more efficient for small
6672 structures than @samp{-fpcc-struct-return}.
6673
6674 If you specify neither @samp{-fpcc-struct-return} nor its contrary
6675 @samp{-freg-struct-return}, GCC defaults to whichever convention is
6676 standard for the target.  If there is no standard convention, GCC
6677 defaults to @samp{-fpcc-struct-return}, except on targets where GCC
6678 is the principal compiler.  In those cases, we can choose the standard,
6679 and we chose the more efficient register return alternative.
6680
6681 @item -fshort-enums
6682 Allocate to an @code{enum} type only as many bytes as it needs for the
6683 declared range of possible values.  Specifically, the @code{enum} type
6684 will be equivalent to the smallest integer type which has enough room.
6685
6686 @item -fshort-double
6687 Use the same size for @code{double} as for @code{float}.
6688
6689 @item -fshared-data
6690 Requests that the data and non-@code{const} variables of this
6691 compilation be shared data rather than private data.  The distinction
6692 makes sense only on certain operating systems, where shared data is
6693 shared between processes running the same program, while private data
6694 exists in one copy per process.
6695
6696 @item -fno-common
6697 Allocate even uninitialized global variables in the data section of the
6698 object file, rather than generating them as common blocks.  This has the
6699 effect that if the same variable is declared (without @code{extern}) in
6700 two different compilations, you will get an error when you link them.
6701 The only reason this might be useful is if you wish to verify that the
6702 program will work on other systems which always work this way.
6703
6704 @item -fno-ident
6705 Ignore the @samp{#ident} directive.
6706
6707 @item -fno-gnu-linker
6708 Do not output global initializations (such as C++ constructors and
6709 destructors) in the form used by the GNU linker (on systems where the GNU
6710 linker is the standard method of handling them).  Use this option when
6711 you want to use a non-GNU linker, which also requires using the
6712 @code{collect2} program to make sure the system linker includes
6713 constructors and destructors.  (@code{collect2} is included in the GCC
6714 distribution.)  For systems which @emph{must} use @code{collect2}, the
6715 compiler driver @code{gcc} is configured to do this automatically.
6716
6717 @item -finhibit-size-directive
6718 Don't output a @code{.size} assembler directive, or anything else that
6719 would cause trouble if the function is split in the middle, and the
6720 two halves are placed at locations far apart in memory.  This option is
6721 used when compiling @file{crtstuff.c}; you should not need to use it
6722 for anything else.
6723
6724 @item -fverbose-asm
6725 Put extra commentary information in the generated assembly code to
6726 make it more readable.  This option is generally only of use to those
6727 who actually need to read the generated assembly code (perhaps while
6728 debugging the compiler itself).
6729
6730 @samp{-fno-verbose-asm}, the default, causes the
6731 extra information to be omitted and is useful when comparing two assembler
6732 files.
6733
6734 @item -fvolatile
6735 Consider all memory references through pointers to be volatile.
6736
6737 @item -fvolatile-global
6738 Consider all memory references to extern and global data items to
6739 be volatile.  GCC does not consider static data items to be volatile
6740 because of this switch.
6741
6742 @item -fvolatile-static
6743 Consider all memory references to static data to be volatile.
6744
6745 @item -fpic
6746 @cindex global offset table
6747 @cindex PIC
6748 Generate position-independent code (PIC) suitable for use in a shared
6749 library, if supported for the target machine.  Such code accesses all
6750 constant addresses through a global offset table (GOT).  The dynamic
6751 loader resolves the GOT entries when the program starts (the dynamic
6752 loader is not part of GCC; it is part of the operating system).  If
6753 the GOT size for the linked executable exceeds a machine-specific
6754 maximum size, you get an error message from the linker indicating that
6755 @samp{-fpic} does not work; in that case, recompile with @samp{-fPIC}
6756 instead.  (These maximums are 16k on the m88k, 8k on the Sparc, and 32k
6757 on the m68k and RS/6000.  The 386 has no such limit.)
6758
6759 Position-independent code requires special support, and therefore works
6760 only on certain machines.  For the 386, GCC supports PIC for System V
6761 but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
6762 position-independent.
6763
6764 @item -fPIC
6765 If supported for the target machine, emit position-independent code,
6766 suitable for dynamic linking and avoiding any limit on the size of the
6767 global offset table.  This option makes a difference on the m68k, m88k,
6768 and the Sparc.
6769
6770 Position-independent code requires special support, and therefore works
6771 only on certain machines.
6772
6773 @item -ffixed-@var{reg}
6774 Treat the register named @var{reg} as a fixed register; generated code
6775 should never refer to it (except perhaps as a stack pointer, frame
6776 pointer or in some other fixed role).
6777
6778 @var{reg} must be the name of a register.  The register names accepted
6779 are machine-specific and are defined in the @code{REGISTER_NAMES}
6780 macro in the machine description macro file.
6781
6782 This flag does not have a negative form, because it specifies a
6783 three-way choice.
6784
6785 @item -fcall-used-@var{reg}
6786 Treat the register named @var{reg} as an allocable register that is
6787 clobbered by function calls.  It may be allocated for temporaries or
6788 variables that do not live across a call.  Functions compiled this way
6789 will not save and restore the register @var{reg}.
6790
6791 It is an error to used this flag with the frame pointer or stack pointer.
6792 Use of this flag for other registers that have fixed pervasive roles in
6793 the machine's execution model will produce disastrous results.
6794
6795 This flag does not have a negative form, because it specifies a
6796 three-way choice.
6797
6798 @item -fcall-saved-@var{reg}
6799 Treat the register named @var{reg} as an allocable register saved by
6800 functions.  It may be allocated even for temporaries or variables that
6801 live across a call.  Functions compiled this way will save and restore
6802 the register @var{reg} if they use it.
6803
6804 It is an error to used this flag with the frame pointer or stack pointer.
6805 Use of this flag for other registers that have fixed pervasive roles in
6806 the machine's execution model will produce disastrous results.
6807
6808 A different sort of disaster will result from the use of this flag for
6809 a register in which function values may be returned.
6810
6811 This flag does not have a negative form, because it specifies a
6812 three-way choice.
6813
6814 @item -fpack-struct
6815 Pack all structure members together without holes.  Usually you would
6816 not want to use this option, since it makes the code suboptimal, and
6817 the offsets of structure members won't agree with system libraries.
6818
6819 @item -fcheck-memory-usage
6820 Generate extra code to check each memory access.  GCC will generate
6821 code that is suitable for a detector of bad memory accesses such as
6822 @file{Checker}.
6823
6824 Normally, you should compile all, or none, of your code with this option.
6825
6826 If you do mix code compiled with and without this option,
6827 you must ensure that all code that has side effects
6828 and that is called by code compiled with this option
6829 is, itself, compiled with this option.
6830 If you do not, you might get erroneous messages from the detector.
6831
6832 If you use functions from a library that have side-effects (such as
6833 @code{read}), you might not be able to recompile the library and
6834 specify this option.  In that case, you can enable the
6835 @samp{-fprefix-function-name} option, which requests GCC to encapsulate
6836 your code and make other functions look as if they were compiled with
6837 @samp{-fcheck-memory-usage}.  This is done by calling ``stubs'',
6838 which are provided by the detector.  If you cannot find or build
6839 stubs for every function you call, you might have to specify
6840 @samp{-fcheck-memory-usage} without @samp{-fprefix-function-name}.
6841
6842 If you specify this option, you can not use the @code{asm} or
6843 @code{__asm__} keywords in functions with memory checking enabled.  GNU
6844 CC cannot understand what the @code{asm} statement may do, and therefore
6845 cannot generate the appropriate code, so it will reject it.  However, if
6846 you specify the function attribute @code{no_check_memory_usage} (see
6847 @pxref{Function Attributes}, GNU CC will disable memory checking within a
6848 function; you may use @code{asm} statements inside such functions.  You
6849 may have an inline expansion of a non-checked function within a checked
6850 function; in that case GNU CC will not generate checks for the inlined
6851 function's memory accesses.
6852
6853 If you move your @code{asm} statements to non-checked inline functions
6854 and they do access memory, you can add calls to the support code in your
6855 inline function, to indicate any reads, writes, or copies being done.
6856 These calls would be similar to those done in the stubs described above.
6857
6858 @item -fprefix-function-name
6859 Request GCC to add a prefix to the symbols generated for function names.
6860 GCC adds a prefix to the names of functions defined as well as
6861 functions called.  Code compiled with this option and code compiled
6862 without the option can't be linked together, unless stubs are used.
6863
6864 If you compile the following code with @samp{-fprefix-function-name}
6865 @example
6866 extern void bar (int);
6867 void
6868 foo (int a)
6869 @{
6870   return bar (a + 5);
6871 @}
6872 @end example
6873
6874 @noindent
6875 GCC will compile the code as if it was written:
6876 @example
6877 extern void prefix_bar (int);
6878 void
6879 prefix_foo (int a)
6880 @{
6881   return prefix_bar (a + 5);
6882 @}
6883 @end example
6884 This option is designed to be used with @samp{-fcheck-memory-usage}.
6885
6886 @item -finstrument-functions
6887 Generate instrumentation calls for entry and exit to functions.  Just
6888 after function entry and just before function exit, the following
6889 profiling functions will be called with the address of the current
6890 function and its call site.  (On some platforms,
6891 @code{__builtin_return_address} does not work beyond the current
6892 function, so the call site information may not be available to the
6893 profiling functions otherwise.)
6894
6895 @example
6896 void __cyg_profile_func_enter (void *this_fn, void *call_site);
6897 void __cyg_profile_func_exit  (void *this_fn, void *call_site);
6898 @end example
6899
6900 The first argument is the address of the start of the current function,
6901 which may be looked up exactly in the symbol table.
6902
6903 This instrumentation is also done for functions expanded inline in other
6904 functions.  The profiling calls will indicate where, conceptually, the
6905 inline function is entered and exited.  This means that addressable
6906 versions of such functions must be available.  If all your uses of a
6907 function are expanded inline, this may mean an additional expansion of
6908 code size.  If you use @samp{extern inline} in your C code, an
6909 addressable version of such functions must be provided.  (This is
6910 normally the case anyways, but if you get lucky and the optimizer always
6911 expands the functions inline, you might have gotten away without
6912 providing static copies.)
6913
6914 A function may be given the attribute @code{no_instrument_function}, in
6915 which case this instrumentation will not be done.  This can be used, for
6916 example, for the profiling functions listed above, high-priority
6917 interrupt routines, and any functions from which the profiling functions
6918 cannot safely be called (perhaps signal handlers, if the profiling
6919 routines generate output or allocate memory).
6920
6921 @item -fstack-check
6922 Generate code to verify that you do not go beyond the boundary of the
6923 stack.  You should specify this flag if you are running in an
6924 environment with multiple threads, but only rarely need to specify it in
6925 a single-threaded environment since stack overflow is automatically
6926 detected on nearly all systems if there is only one stack.
6927
6928 @cindex aliasing of parameters
6929 @cindex parameters, aliased
6930 @item -fargument-alias
6931 @itemx -fargument-noalias
6932 @itemx -fargument-noalias-global
6933 Specify the possible relationships among parameters and between
6934 parameters and global data.
6935
6936 @samp{-fargument-alias} specifies that arguments (parameters) may
6937 alias each other and may alias global storage.
6938 @samp{-fargument-noalias} specifies that arguments do not alias
6939 each other, but may alias global storage.
6940 @samp{-fargument-noalias-global} specifies that arguments do not
6941 alias each other and do not alias global storage.
6942
6943 Each language will automatically use whatever option is required by
6944 the language standard.  You should not need to use these options yourself.
6945
6946 @item -fleading-underscore
6947 This option and its counterpart, -fno-leading-underscore, forcibly
6948 change the way C symbols are represented in the object file.  One use
6949 is to help link with legacy assembly code.
6950
6951 Be warned that you should know what you are doing when invoking this
6952 option, and that not all targets provide complete support for it.
6953 @end table
6954
6955 @node Environment Variables
6956 @section Environment Variables Affecting GCC
6957 @cindex environment variables
6958
6959 This section describes several environment variables that affect how GCC
6960 operates.  Some of them work by specifying directories or prefixes to use
6961 when searching for various kinds of files. Some are used to specify other
6962 aspects of the compilation environment.
6963
6964 @ifclear INTERNALS
6965 Note that you can also specify places to search using options such as
6966 @samp{-B}, @samp{-I} and @samp{-L} (@pxref{Directory Options}).  These
6967 take precedence over places specified using environment variables, which
6968 in turn take precedence over those specified by the configuration of GCC.
6969
6970 @end ifclear
6971 @ifset INTERNALS
6972 Note that you can also specify places to search using options such as
6973 @samp{-B}, @samp{-I} and @samp{-L} (@pxref{Directory Options}).  These
6974 take precedence over places specified using environment variables, which
6975 in turn take precedence over those specified by the configuration of GCC.
6976 @xref{Driver}.
6977 @end ifset
6978
6979 @table @code
6980 @item LANG
6981 @itemx LC_CTYPE
6982 @c @itemx LC_COLLATE
6983 @itemx LC_MESSAGES
6984 @c @itemx LC_MONETARY
6985 @c @itemx LC_NUMERIC
6986 @c @itemx LC_TIME
6987 @itemx LC_ALL
6988 @findex LANG
6989 @findex LC_CTYPE
6990 @c @findex LC_COLLATE
6991 @findex LC_MESSAGES
6992 @c @findex LC_MONETARY
6993 @c @findex LC_NUMERIC
6994 @c @findex LC_TIME
6995 @findex LC_ALL
6996 @cindex locale
6997 These environment variables control the way that GCC uses
6998 localization information that allow GCC to work with different
6999 national conventions.  GCC inspects the locale categories
7000 @code{LC_CTYPE} and @code{LC_MESSAGES} if it has been configured to do
7001 so.  These locale categories can be set to any value supported by your
7002 installation.  A typical value is @samp{en_UK} for English in the United
7003 Kingdom.
7004
7005 The @code{LC_CTYPE} environment variable specifies character
7006 classification.  GCC uses it to determine the character boundaries in
7007 a string; this is needed for some multibyte encodings that contain quote
7008 and escape characters that would otherwise be interpreted as a string
7009 end or escape.
7010
7011 The @code{LC_MESSAGES} environment variable specifies the language to
7012 use in diagnostic messages.
7013
7014 If the @code{LC_ALL} environment variable is set, it overrides the value
7015 of @code{LC_CTYPE} and @code{LC_MESSAGES}; otherwise, @code{LC_CTYPE}
7016 and @code{LC_MESSAGES} default to the value of the @code{LANG}
7017 environment variable.  If none of these variables are set, GCC
7018 defaults to traditional C English behavior.
7019
7020 @item TMPDIR
7021 @findex TMPDIR
7022 If @code{TMPDIR} is set, it specifies the directory to use for temporary
7023 files.  GCC uses temporary files to hold the output of one stage of
7024 compilation which is to be used as input to the next stage: for example,
7025 the output of the preprocessor, which is the input to the compiler
7026 proper.
7027
7028 @item GCC_EXEC_PREFIX
7029 @findex GCC_EXEC_PREFIX
7030 If @code{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
7031 names of the subprograms executed by the compiler.  No slash is added
7032 when this prefix is combined with the name of a subprogram, but you can
7033 specify a prefix that ends with a slash if you wish.
7034
7035 If GCC cannot find the subprogram using the specified prefix, it
7036 tries looking in the usual places for the subprogram.
7037
7038 The default value of @code{GCC_EXEC_PREFIX} is
7039 @file{@var{prefix}/lib/gcc-lib/} where @var{prefix} is the value
7040 of @code{prefix} when you ran the @file{configure} script.
7041
7042 Other prefixes specified with @samp{-B} take precedence over this prefix.
7043
7044 This prefix is also used for finding files such as @file{crt0.o} that are
7045 used for linking.
7046
7047 In addition, the prefix is used in an unusual way in finding the
7048 directories to search for header files.  For each of the standard
7049 directories whose name normally begins with @samp{/usr/local/lib/gcc-lib}
7050 (more precisely, with the value of @code{GCC_INCLUDE_DIR}), GCC tries
7051 replacing that beginning with the specified prefix to produce an
7052 alternate directory name.  Thus, with @samp{-Bfoo/}, GCC will search
7053 @file{foo/bar} where it would normally search @file{/usr/local/lib/bar}.
7054 These alternate directories are searched first; the standard directories
7055 come next.
7056
7057 @item COMPILER_PATH
7058 @findex COMPILER_PATH
7059 The value of @code{COMPILER_PATH} is a colon-separated list of
7060 directories, much like @code{PATH}.  GCC tries the directories thus
7061 specified when searching for subprograms, if it can't find the
7062 subprograms using @code{GCC_EXEC_PREFIX}.
7063
7064 @item LIBRARY_PATH
7065 @findex LIBRARY_PATH
7066 The value of @code{LIBRARY_PATH} is a colon-separated list of
7067 directories, much like @code{PATH}.  When configured as a native compiler,
7068 GCC tries the directories thus specified when searching for special
7069 linker files, if it can't find them using @code{GCC_EXEC_PREFIX}.  Linking
7070 using GCC also uses these directories when searching for ordinary
7071 libraries for the @samp{-l} option (but directories specified with
7072 @samp{-L} come first).
7073
7074 @item C_INCLUDE_PATH
7075 @itemx CPLUS_INCLUDE_PATH
7076 @itemx OBJC_INCLUDE_PATH
7077 @findex C_INCLUDE_PATH
7078 @findex CPLUS_INCLUDE_PATH
7079 @findex OBJC_INCLUDE_PATH
7080 @c @itemx OBJCPLUS_INCLUDE_PATH
7081 These environment variables pertain to particular languages.  Each
7082 variable's value is a colon-separated list of directories, much like
7083 @code{PATH}.  When GCC searches for header files, it tries the
7084 directories listed in the variable for the language you are using, after
7085 the directories specified with @samp{-I} but before the standard header
7086 file directories.
7087
7088 @item DEPENDENCIES_OUTPUT
7089 @findex DEPENDENCIES_OUTPUT
7090 @cindex dependencies for make as output
7091 If this variable is set, its value specifies how to output dependencies
7092 for Make based on the header files processed by the compiler.  This
7093 output looks much like the output from the @samp{-M} option
7094 (@pxref{Preprocessor Options}), but it goes to a separate file, and is
7095 in addition to the usual results of compilation.
7096
7097 The value of @code{DEPENDENCIES_OUTPUT} can be just a file name, in
7098 which case the Make rules are written to that file, guessing the target
7099 name from the source file name.  Or the value can have the form
7100 @samp{@var{file} @var{target}}, in which case the rules are written to
7101 file @var{file} using @var{target} as the target name.
7102
7103 @item LANG
7104 @findex LANG
7105 @cindex locale definition
7106 This variable is used to pass locale information to the compiler. One way in
7107 which this information is used is to determine the character set to be used
7108 when character literals, string literals and comments are parsed in C and C++.
7109 When the compiler is configured to allow multibyte characters,
7110 the following values for @code{LANG} are recognized:
7111
7112 @table @code
7113 @item C-JIS
7114 Recognize JIS characters.
7115 @item C-SJIS
7116 Recognize SJIS characters.
7117 @item C-EUCJP
7118 Recognize EUCJP characters.
7119 @end table
7120
7121 If @code{LANG} is not defined, or if it has some other value, then the
7122 compiler will use mblen and mbtowc as defined by the default locale to
7123 recognize and translate multibyte characters.
7124 @end table
7125
7126 @node Running Protoize
7127 @section Running Protoize
7128
7129 The program @code{protoize} is an optional part of GNU C.  You can use
7130 it to add prototypes to a program, thus converting the program to ANSI
7131 C in one respect.  The companion program @code{unprotoize} does the
7132 reverse: it removes argument types from any prototypes that are found.
7133
7134 When you run these programs, you must specify a set of source files as
7135 command line arguments.  The conversion programs start out by compiling
7136 these files to see what functions they define.  The information gathered
7137 about a file @var{foo} is saved in a file named @file{@var{foo}.X}.
7138
7139 After scanning comes actual conversion.  The specified files are all
7140 eligible to be converted; any files they include (whether sources or
7141 just headers) are eligible as well.
7142
7143 But not all the eligible files are converted.  By default,
7144 @code{protoize} and @code{unprotoize} convert only source and header
7145 files in the current directory.  You can specify additional directories
7146 whose files should be converted with the @samp{-d @var{directory}}
7147 option.  You can also specify particular files to exclude with the
7148 @samp{-x @var{file}} option.  A file is converted if it is eligible, its
7149 directory name matches one of the specified directory names, and its
7150 name within the directory has not been excluded.
7151
7152 Basic conversion with @code{protoize} consists of rewriting most
7153 function definitions and function declarations to specify the types of
7154 the arguments.  The only ones not rewritten are those for varargs
7155 functions.
7156
7157 @code{protoize} optionally inserts prototype declarations at the
7158 beginning of the source file, to make them available for any calls that
7159 precede the function's definition.  Or it can insert prototype
7160 declarations with block scope in the blocks where undeclared functions
7161 are called.
7162
7163 Basic conversion with @code{unprotoize} consists of rewriting most
7164 function declarations to remove any argument types, and rewriting
7165 function definitions to the old-style pre-ANSI form.
7166
7167 Both conversion programs print a warning for any function declaration or
7168 definition that they can't convert.  You can suppress these warnings
7169 with @samp{-q}.
7170
7171 The output from @code{protoize} or @code{unprotoize} replaces the
7172 original source file.  The original file is renamed to a name ending
7173 with @samp{.save}.  If the @samp{.save} file already exists, then
7174 the source file is simply discarded.
7175
7176 @code{protoize} and @code{unprotoize} both depend on GCC itself to
7177 scan the program and collect information about the functions it uses.
7178 So neither of these programs will work until GCC is installed.
7179
7180 Here is a table of the options you can use with @code{protoize} and
7181 @code{unprotoize}.  Each option works with both programs unless
7182 otherwise stated.
7183
7184 @table @code
7185 @item -B @var{directory}
7186 Look for the file @file{SYSCALLS.c.X} in @var{directory}, instead of the
7187 usual directory (normally @file{/usr/local/lib}).  This file contains
7188 prototype information about standard system functions.  This option
7189 applies only to @code{protoize}.
7190
7191 @item -c @var{compilation-options}
7192 Use  @var{compilation-options} as the options when running @code{gcc} to
7193 produce the @samp{.X} files.  The special option @samp{-aux-info} is
7194 always passed in addition, to tell @code{gcc} to write a @samp{.X} file.
7195
7196 Note that the compilation options must be given as a single argument to
7197 @code{protoize} or @code{unprotoize}.  If you want to specify several
7198 @code{gcc} options, you must quote the entire set of compilation options
7199 to make them a single word in the shell.
7200
7201 There are certain @code{gcc} arguments that you cannot use, because they
7202 would produce the wrong kind of output.  These include @samp{-g},
7203 @samp{-O}, @samp{-c}, @samp{-S}, and @samp{-o} If you include these in
7204 the @var{compilation-options}, they are ignored.
7205
7206 @item -C
7207 Rename files to end in @samp{.C} instead of @samp{.c}.
7208 This is convenient if you are converting a C program to C++.
7209 This option applies only to @code{protoize}.
7210
7211 @item -g
7212 Add explicit global declarations.  This means inserting explicit
7213 declarations at the beginning of each source file for each function
7214 that is called in the file and was not declared.  These declarations
7215 precede the first function definition that contains a call to an
7216 undeclared function.  This option applies only to @code{protoize}.
7217
7218 @item -i @var{string}
7219 Indent old-style parameter declarations with the string @var{string}.
7220 This option applies only to @code{protoize}.
7221
7222 @code{unprotoize} converts prototyped function definitions to old-style
7223 function definitions, where the arguments are declared between the
7224 argument list and the initial @samp{@{}.  By default, @code{unprotoize}
7225 uses five spaces as the indentation.  If you want to indent with just
7226 one space instead, use @samp{-i " "}.
7227
7228 @item -k
7229 Keep the @samp{.X} files.  Normally, they are deleted after conversion
7230 is finished.
7231
7232 @item -l
7233 Add explicit local declarations.  @code{protoize} with @samp{-l} inserts
7234 a prototype declaration for each function in each block which calls the
7235 function without any declaration.  This option applies only to
7236 @code{protoize}.
7237
7238 @item -n
7239 Make no real changes.  This mode just prints information about the conversions
7240 that would have been done without @samp{-n}.
7241
7242 @item -N
7243 Make no @samp{.save} files.  The original files are simply deleted.
7244 Use this option with caution.
7245
7246 @item -p @var{program}
7247 Use the program @var{program} as the compiler.  Normally, the name
7248 @file{gcc} is used.
7249
7250 @item -q
7251 Work quietly.  Most warnings are suppressed.
7252
7253 @item -v
7254 Print the version number, just like @samp{-v} for @code{gcc}.
7255 @end table
7256
7257 If you need special compiler options to compile one of your program's
7258 source files, then you should generate that file's @samp{.X} file
7259 specially, by running @code{gcc} on that source file with the
7260 appropriate options and the option @samp{-aux-info}.  Then run
7261 @code{protoize} on the entire set of files.  @code{protoize} will use
7262 the existing @samp{.X} file because it is newer than the source file.
7263 For example:
7264
7265 @example
7266 gcc -Dfoo=bar file1.c -aux-info
7267 protoize *.c
7268 @end example
7269
7270 @noindent
7271 You need to include the special files along with the rest in the
7272 @code{protoize} command, even though their @samp{.X} files already
7273 exist, because otherwise they won't get converted.
7274
7275 @xref{Protoize Caveats}, for more information on how to use
7276 @code{protoize} successfully.
7277