OSDN Git Service

a8a5b4c978fbd1f31e31d8334e9360b8cea35075
[pf3gnuchains/gcc-fork.git] / gcc / go / gofrontend / gogo-tree.cc
1 // gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "tree.h"
18 #include "gimple.h"
19 #include "tree-iterator.h"
20 #include "cgraph.h"
21 #include "langhooks.h"
22 #include "convert.h"
23 #include "output.h"
24 #include "diagnostic.h"
25
26 #ifndef ENABLE_BUILD_WITH_CXX
27 }
28 #endif
29
30 #include "go-c.h"
31 #include "types.h"
32 #include "expressions.h"
33 #include "statements.h"
34 #include "gogo.h"
35
36 // Whether we have seen any errors.
37
38 bool
39 saw_errors()
40 {
41   return errorcount != 0 || sorrycount != 0;
42 }
43
44 // A helper function.
45
46 static inline tree
47 get_identifier_from_string(const std::string& str)
48 {
49   return get_identifier_with_length(str.data(), str.length());
50 }
51
52 // Builtin functions.
53
54 static std::map<std::string, tree> builtin_functions;
55
56 // Define a builtin function.  BCODE is the builtin function code
57 // defined by builtins.def.  NAME is the name of the builtin function.
58 // LIBNAME is the name of the corresponding library function, and is
59 // NULL if there isn't one.  FNTYPE is the type of the function.
60 // CONST_P is true if the function has the const attribute.
61
62 static void
63 define_builtin(built_in_function bcode, const char* name, const char* libname,
64                tree fntype, bool const_p)
65 {
66   tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
67                                    libname, NULL_TREE);
68   if (const_p)
69     TREE_READONLY(decl) = 1;
70   built_in_decls[bcode] = decl;
71   implicit_built_in_decls[bcode] = decl;
72   builtin_functions[name] = decl;
73   if (libname != NULL)
74     {
75       decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
76                                   NULL, NULL_TREE);
77       if (const_p)
78         TREE_READONLY(decl) = 1;
79       builtin_functions[libname] = decl;
80     }
81 }
82
83 // Create trees for implicit builtin functions.
84
85 void
86 Gogo::define_builtin_function_trees()
87 {
88   /* We need to define the fetch_and_add functions, since we use them
89      for ++ and --.  */
90   tree t = go_type_for_size(BITS_PER_UNIT, 1);
91   tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
92   define_builtin(BUILT_IN_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
93                  build_function_type_list(t, p, t, NULL_TREE), false);
94
95   t = go_type_for_size(BITS_PER_UNIT * 2, 1);
96   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
97   define_builtin (BUILT_IN_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
98                   build_function_type_list(t, p, t, NULL_TREE), false);
99
100   t = go_type_for_size(BITS_PER_UNIT * 4, 1);
101   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
102   define_builtin(BUILT_IN_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
103                  build_function_type_list(t, p, t, NULL_TREE), false);
104
105   t = go_type_for_size(BITS_PER_UNIT * 8, 1);
106   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
107   define_builtin(BUILT_IN_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
108                  build_function_type_list(t, p, t, NULL_TREE), false);
109
110   // We use __builtin_expect for magic import functions.
111   define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
112                  build_function_type_list(long_integer_type_node,
113                                           long_integer_type_node,
114                                           long_integer_type_node,
115                                           NULL_TREE),
116                  true);
117
118   // We use __builtin_memmove for the predeclared copy function.
119   define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
120                  build_function_type_list(ptr_type_node,
121                                           ptr_type_node,
122                                           const_ptr_type_node,
123                                           size_type_node,
124                                           NULL_TREE),
125                  false);
126
127   // We provide sqrt for the math library.
128   define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
129                  build_function_type_list(double_type_node,
130                                           double_type_node,
131                                           NULL_TREE),
132                  true);
133   define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
134                  build_function_type_list(long_double_type_node,
135                                           long_double_type_node,
136                                           NULL_TREE),
137                  true);
138
139   // We use __builtin_return_address in the thunk we build for
140   // functions which call recover.
141   define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
142                  build_function_type_list(ptr_type_node,
143                                           unsigned_type_node,
144                                           NULL_TREE),
145                  false);
146
147   // The compiler uses __builtin_trap for some exception handling
148   // cases.
149   define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
150                  build_function_type(void_type_node, void_list_node),
151                  false);
152 }
153
154 // Get the name to use for the import control function.  If there is a
155 // global function or variable, then we know that that name must be
156 // unique in the link, and we use it as the basis for our name.
157
158 const std::string&
159 Gogo::get_init_fn_name()
160 {
161   if (this->init_fn_name_.empty())
162     {
163       gcc_assert(this->package_ != NULL);
164       if (this->is_main_package())
165         {
166           // Use a name which the runtime knows.
167           this->init_fn_name_ = "__go_init_main";
168         }
169       else
170         {
171           std::string s = this->unique_prefix();
172           s.append(1, '.');
173           s.append(this->package_name());
174           s.append("..import");
175           this->init_fn_name_ = s;
176         }
177     }
178
179   return this->init_fn_name_;
180 }
181
182 // Add statements to INIT_STMT_LIST which run the initialization
183 // functions for imported packages.  This is only used for the "main"
184 // package.
185
186 void
187 Gogo::init_imports(tree* init_stmt_list)
188 {
189   gcc_assert(this->is_main_package());
190
191   if (this->imported_init_fns_.empty())
192     return;
193
194   tree fntype = build_function_type(void_type_node, void_list_node);
195
196   // We must call them in increasing priority order.
197   std::vector<Import_init> v;
198   for (std::set<Import_init>::const_iterator p =
199          this->imported_init_fns_.begin();
200        p != this->imported_init_fns_.end();
201        ++p)
202     v.push_back(*p);
203   std::sort(v.begin(), v.end());
204
205   for (std::vector<Import_init>::const_iterator p = v.begin();
206        p != v.end();
207        ++p)
208     {
209       std::string user_name = p->package_name() + ".init";
210       tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
211                              get_identifier_from_string(user_name),
212                              fntype);
213       const std::string& init_name(p->init_name());
214       SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
215       TREE_PUBLIC(decl) = 1;
216       DECL_EXTERNAL(decl) = 1;
217       append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
218     }
219 }
220
221 // Register global variables with the garbage collector.  We need to
222 // register all variables which can hold a pointer value.  They become
223 // roots during the mark phase.  We build a struct that is easy to
224 // hook into a list of roots.
225
226 // struct __go_gc_root_list
227 // {
228 //   struct __go_gc_root_list* __next;
229 //   struct __go_gc_root
230 //   {
231 //     void* __decl;
232 //     size_t __size;
233 //   } __roots[];
234 // };
235
236 // The last entry in the roots array has a NULL decl field.
237
238 void
239 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
240                        tree* init_stmt_list)
241 {
242   if (var_gc.empty())
243     return;
244
245   size_t count = var_gc.size();
246
247   tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
248                                         "__next",
249                                         ptr_type_node,
250                                         "__size",
251                                         sizetype);
252
253   tree index_type = build_index_type(size_int(count));
254   tree array_type = build_array_type(root_type, index_type);
255
256   tree root_list_type = make_node(RECORD_TYPE);
257   root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
258                                         root_list_type, 2,
259                                         "__next",
260                                         build_pointer_type(root_list_type),
261                                         "__roots",
262                                         array_type);
263
264   // Build an initialier for the __roots array.
265
266   VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
267                                                   count + 1);
268
269   size_t i = 0;
270   for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
271        p != var_gc.end();
272        ++p, ++i)
273     {
274       VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
275
276       constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
277       tree field = TYPE_FIELDS(root_type);
278       elt->index = field;
279       tree decl = (*p)->get_tree(this, NULL);
280       gcc_assert(TREE_CODE(decl) == VAR_DECL);
281       elt->value = build_fold_addr_expr(decl);
282
283       elt = VEC_quick_push(constructor_elt, init, NULL);
284       field = DECL_CHAIN(field);
285       elt->index = field;
286       elt->value = DECL_SIZE_UNIT(decl);
287
288       elt = VEC_quick_push(constructor_elt, roots_init, NULL);
289       elt->index = size_int(i);
290       elt->value = build_constructor(root_type, init);
291     }
292
293   // The list ends with a NULL entry.
294
295   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
296
297   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
298   tree field = TYPE_FIELDS(root_type);
299   elt->index = field;
300   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
301
302   elt = VEC_quick_push(constructor_elt, init, NULL);
303   field = DECL_CHAIN(field);
304   elt->index = field;
305   elt->value = size_zero_node;
306
307   elt = VEC_quick_push(constructor_elt, roots_init, NULL);
308   elt->index = size_int(i);
309   elt->value = build_constructor(root_type, init);
310
311   // Build a constructor for the struct.
312
313   VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
314
315   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
316   field = TYPE_FIELDS(root_list_type);
317   elt->index = field;
318   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
319
320   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
321   field = DECL_CHAIN(field);
322   elt->index = field;
323   elt->value = build_constructor(array_type, roots_init);
324
325   // Build a decl to register.
326
327   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
328                          create_tmp_var_name("gc"), root_list_type);
329   DECL_EXTERNAL(decl) = 0;
330   TREE_PUBLIC(decl) = 0;
331   TREE_STATIC(decl) = 1;
332   DECL_ARTIFICIAL(decl) = 1;
333   DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
334   rest_of_decl_compilation(decl, 1, 0);
335
336   static tree register_gc_fndecl;
337   tree call = Gogo::call_builtin(&register_gc_fndecl, BUILTINS_LOCATION,
338                                  "__go_register_gc_roots",
339                                  1,
340                                  void_type_node,
341                                  build_pointer_type(root_list_type),
342                                  build_fold_addr_expr(decl));
343   if (call != error_mark_node)
344     append_to_statement_list(call, init_stmt_list);
345 }
346
347 // Build the decl for the initialization function.
348
349 tree
350 Gogo::initialization_function_decl()
351 {
352   // The tedious details of building your own function.  There doesn't
353   // seem to be a helper function for this.
354   std::string name = this->package_name() + ".init";
355   tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
356                            get_identifier_from_string(name),
357                            build_function_type(void_type_node,
358                                                void_list_node));
359   const std::string& asm_name(this->get_init_fn_name());
360   SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
361
362   tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
363                             void_type_node);
364   DECL_ARTIFICIAL(resdecl) = 1;
365   DECL_CONTEXT(resdecl) = fndecl;
366   DECL_RESULT(fndecl) = resdecl;
367
368   TREE_STATIC(fndecl) = 1;
369   TREE_USED(fndecl) = 1;
370   DECL_ARTIFICIAL(fndecl) = 1;
371   TREE_PUBLIC(fndecl) = 1;
372
373   DECL_INITIAL(fndecl) = make_node(BLOCK);
374   TREE_USED(DECL_INITIAL(fndecl)) = 1;
375
376   return fndecl;
377 }
378
379 // Create the magic initialization function.  INIT_STMT_LIST is the
380 // code that it needs to run.
381
382 void
383 Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
384 {
385   // Make sure that we thought we needed an initialization function,
386   // as otherwise we will not have reported it in the export data.
387   gcc_assert(this->is_main_package() || this->need_init_fn_);
388
389   if (fndecl == NULL_TREE)
390     fndecl = this->initialization_function_decl();
391
392   DECL_SAVED_TREE(fndecl) = init_stmt_list;
393
394   current_function_decl = fndecl;
395   if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
396     push_struct_function(fndecl);
397   else
398     push_cfun(DECL_STRUCT_FUNCTION(fndecl));
399   cfun->function_end_locus = BUILTINS_LOCATION;
400
401   gimplify_function_tree(fndecl);
402
403   cgraph_add_new_function(fndecl, false);
404   cgraph_mark_needed_node(cgraph_get_node(fndecl));
405
406   current_function_decl = NULL_TREE;
407   pop_cfun();
408 }
409
410 // Search for references to VAR in any statements or called functions.
411
412 class Find_var : public Traverse
413 {
414  public:
415   // A hash table we use to avoid looping.  The index is the name of a
416   // named object.  We only look through objects defined in this
417   // package.
418   typedef Unordered_set(std::string) Seen_objects;
419
420   Find_var(Named_object* var, Seen_objects* seen_objects)
421     : Traverse(traverse_expressions),
422       var_(var), seen_objects_(seen_objects), found_(false)
423   { }
424
425   // Whether the variable was found.
426   bool
427   found() const
428   { return this->found_; }
429
430   int
431   expression(Expression**);
432
433  private:
434   // The variable we are looking for.
435   Named_object* var_;
436   // Names of objects we have already seen.
437   Seen_objects* seen_objects_;
438   // True if the variable was found.
439   bool found_;
440 };
441
442 // See if EXPR refers to VAR, looking through function calls and
443 // variable initializations.
444
445 int
446 Find_var::expression(Expression** pexpr)
447 {
448   Expression* e = *pexpr;
449
450   Var_expression* ve = e->var_expression();
451   if (ve != NULL)
452     {
453       Named_object* v = ve->named_object();
454       if (v == this->var_)
455         {
456           this->found_ = true;
457           return TRAVERSE_EXIT;
458         }
459
460       if (v->is_variable() && v->package() == NULL)
461         {
462           Expression* init = v->var_value()->init();
463           if (init != NULL)
464             {
465               std::pair<Seen_objects::iterator, bool> ins =
466                 this->seen_objects_->insert(v->name());
467               if (ins.second)
468                 {
469                   // This is the first time we have seen this name.
470                   if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
471                     return TRAVERSE_EXIT;
472                 }
473             }
474         }
475     }
476
477   // We traverse the code of any function we see.  Note that this
478   // means that we will traverse the code of a function whose address
479   // is taken even if it is not called.
480   Func_expression* fe = e->func_expression();
481   if (fe != NULL)
482     {
483       const Named_object* f = fe->named_object();
484       if (f->is_function() && f->package() == NULL)
485         {
486           std::pair<Seen_objects::iterator, bool> ins =
487             this->seen_objects_->insert(f->name());
488           if (ins.second)
489             {
490               // This is the first time we have seen this name.
491               if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
492                 return TRAVERSE_EXIT;
493             }
494         }
495     }
496
497   return TRAVERSE_CONTINUE;
498 }
499
500 // Return true if EXPR refers to VAR.
501
502 static bool
503 expression_requires(Expression* expr, Block* preinit, Named_object* var)
504 {
505   Find_var::Seen_objects seen_objects;
506   Find_var find_var(var, &seen_objects);
507   if (expr != NULL)
508     Expression::traverse(&expr, &find_var);
509   if (preinit != NULL)
510     preinit->traverse(&find_var);
511   
512   return find_var.found();
513 }
514
515 // Sort variable initializations.  If the initialization expression
516 // for variable A refers directly or indirectly to the initialization
517 // expression for variable B, then we must initialize B before A.
518
519 class Var_init
520 {
521  public:
522   Var_init()
523     : var_(NULL), init_(NULL_TREE), waiting_(0)
524   { }
525
526   Var_init(Named_object* var, tree init)
527     : var_(var), init_(init), waiting_(0)
528   { }
529
530   // Return the variable.
531   Named_object*
532   var() const
533   { return this->var_; }
534
535   // Return the initialization expression.
536   tree
537   init() const
538   { return this->init_; }
539
540   // Return the number of variables waiting for this one to be
541   // initialized.
542   size_t
543   waiting() const
544   { return this->waiting_; }
545
546   // Increment the number waiting.
547   void
548   increment_waiting()
549   { ++this->waiting_; }
550
551  private:
552   // The variable being initialized.
553   Named_object* var_;
554   // The initialization expression to run.
555   tree init_;
556   // The number of variables which are waiting for this one.
557   size_t waiting_;
558 };
559
560 typedef std::list<Var_init> Var_inits;
561
562 // Sort the variable initializations.  The rule we follow is that we
563 // emit them in the order they appear in the array, except that if the
564 // initialization expression for a variable V1 depends upon another
565 // variable V2 then we initialize V1 after V2.
566
567 static void
568 sort_var_inits(Var_inits* var_inits)
569 {
570   Var_inits ready;
571   while (!var_inits->empty())
572     {
573       Var_inits::iterator p1 = var_inits->begin();
574       Named_object* var = p1->var();
575       Expression* init = var->var_value()->init();
576       Block* preinit = var->var_value()->preinit();
577
578       // Start walking through the list to see which variables VAR
579       // needs to wait for.  We can skip P1->WAITING variables--that
580       // is the number we've already checked.
581       Var_inits::iterator p2 = p1;
582       ++p2;
583       for (size_t i = p1->waiting(); i > 0; --i)
584         ++p2;
585
586       for (; p2 != var_inits->end(); ++p2)
587         {
588           if (expression_requires(init, preinit, p2->var()))
589             {
590               // Check for cycles.
591               if (expression_requires(p2->var()->var_value()->init(),
592                                       p2->var()->var_value()->preinit(),
593                                       var))
594                 {
595                   error_at(var->location(),
596                            ("initialization expressions for %qs and "
597                             "%qs depend upon each other"),
598                            var->message_name().c_str(),
599                            p2->var()->message_name().c_str());
600                   inform(p2->var()->location(), "%qs defined here",
601                          p2->var()->message_name().c_str());
602                   p2 = var_inits->end();
603                 }
604               else
605                 {
606                   // We can't emit P1 until P2 is emitted.  Move P1.
607                   // Note that the WAITING loop always executes at
608                   // least once, which is what we want.
609                   p2->increment_waiting();
610                   Var_inits::iterator p3 = p2;
611                   for (size_t i = p2->waiting(); i > 0; --i)
612                     ++p3;
613                   var_inits->splice(p3, *var_inits, p1);
614                 }
615               break;
616             }
617         }
618
619       if (p2 == var_inits->end())
620         {
621           // VAR does not depends upon any other initialization expressions.
622
623           // Check for a loop of VAR on itself.  We only do this if
624           // INIT is not NULL; when INIT is NULL, it means that
625           // PREINIT sets VAR, which we will interpret as a loop.
626           if (init != NULL && expression_requires(init, preinit, var))
627             error_at(var->location(),
628                      "initialization expression for %qs depends upon itself",
629                      var->message_name().c_str());
630           ready.splice(ready.end(), *var_inits, p1);
631         }
632     }
633
634   // Now READY is the list in the desired initialization order.
635   var_inits->swap(ready);
636 }
637
638 // Write out the global definitions.
639
640 void
641 Gogo::write_globals()
642 {
643   this->convert_named_types();
644   this->build_interface_method_tables();
645
646   Bindings* bindings = this->current_bindings();
647   size_t count = bindings->size_definitions();
648
649   tree* vec = new tree[count];
650
651   tree init_fndecl = NULL_TREE;
652   tree init_stmt_list = NULL_TREE;
653
654   if (this->is_main_package())
655     this->init_imports(&init_stmt_list);
656
657   // A list of variable initializations.
658   Var_inits var_inits;
659
660   // A list of variables which need to be registered with the garbage
661   // collector.
662   std::vector<Named_object*> var_gc;
663   var_gc.reserve(count);
664
665   tree var_init_stmt_list = NULL_TREE;
666   size_t i = 0;
667   for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
668        p != bindings->end_definitions();
669        ++p, ++i)
670     {
671       Named_object* no = *p;
672
673       gcc_assert(!no->is_type_declaration() && !no->is_function_declaration());
674       // There is nothing to do for a package.
675       if (no->is_package())
676         {
677           --i;
678           --count;
679           continue;
680         }
681
682       // There is nothing to do for an object which was imported from
683       // a different package into the global scope.
684       if (no->package() != NULL)
685         {
686           --i;
687           --count;
688           continue;
689         }
690
691       // There is nothing useful we can output for constants which
692       // have ideal or non-integeral type.
693       if (no->is_const())
694         {
695           Type* type = no->const_value()->type();
696           if (type == NULL)
697             type = no->const_value()->expr()->type();
698           if (type->is_abstract() || type->integer_type() == NULL)
699             {
700               --i;
701               --count;
702               continue;
703             }
704         }
705
706       vec[i] = no->get_tree(this, NULL);
707
708       if (vec[i] == error_mark_node)
709         {
710           gcc_assert(saw_errors());
711           --i;
712           --count;
713           continue;
714         }
715
716       // If a variable is initialized to a non-constant value, do the
717       // initialization in an initialization function.
718       if (TREE_CODE(vec[i]) == VAR_DECL)
719         {
720           gcc_assert(no->is_variable());
721
722           // Check for a sink variable, which may be used to run
723           // an initializer purely for its side effects.
724           bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
725
726           tree var_init_tree = NULL_TREE;
727           if (!no->var_value()->has_pre_init())
728             {
729               tree init = no->var_value()->get_init_tree(this, NULL);
730               if (init == error_mark_node)
731                 gcc_assert(saw_errors());
732               else if (init == NULL_TREE)
733                 ;
734               else if (TREE_CONSTANT(init))
735                 DECL_INITIAL(vec[i]) = init;
736               else if (is_sink)
737                 var_init_tree = init;
738               else
739                 var_init_tree = fold_build2_loc(no->location(), MODIFY_EXPR,
740                                                 void_type_node, vec[i], init);
741             }
742           else
743             {
744               // We are going to create temporary variables which
745               // means that we need an fndecl.
746               if (init_fndecl == NULL_TREE)
747                 init_fndecl = this->initialization_function_decl();
748               current_function_decl = init_fndecl;
749               if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
750                 push_struct_function(init_fndecl);
751               else
752                 push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
753
754               tree var_decl = is_sink ? NULL_TREE : vec[i];
755               var_init_tree = no->var_value()->get_init_block(this, NULL,
756                                                               var_decl);
757
758               current_function_decl = NULL_TREE;
759               pop_cfun();
760             }
761
762           if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
763             {
764               if (no->var_value()->init() == NULL
765                   && !no->var_value()->has_pre_init())
766                 append_to_statement_list(var_init_tree, &var_init_stmt_list);
767               else
768                 var_inits.push_back(Var_init(no, var_init_tree));
769             }
770
771           if (!is_sink && no->var_value()->type()->has_pointer())
772             var_gc.push_back(no);
773         }
774     }
775
776   // Register global variables with the garbage collector.
777   this->register_gc_vars(var_gc, &init_stmt_list);
778
779   // Simple variable initializations, after all variables are
780   // registered.
781   append_to_statement_list(var_init_stmt_list, &init_stmt_list);
782
783   // Complex variable initializations, first sorting them into a
784   // workable order.
785   if (!var_inits.empty())
786     {
787       sort_var_inits(&var_inits);
788       for (Var_inits::const_iterator p = var_inits.begin();
789            p != var_inits.end();
790            ++p)
791         append_to_statement_list(p->init(), &init_stmt_list);
792     }
793
794   // After all the variables are initialized, call the "init"
795   // functions if there are any.
796   for (std::vector<Named_object*>::const_iterator p =
797          this->init_functions_.begin();
798        p != this->init_functions_.end();
799        ++p)
800     {
801       tree decl = (*p)->get_tree(this, NULL);
802       tree call = build_call_expr(decl, 0);
803       append_to_statement_list(call, &init_stmt_list);
804     }
805
806   // Set up a magic function to do all the initialization actions.
807   // This will be called if this package is imported.
808   if (init_stmt_list != NULL_TREE
809       || this->need_init_fn_
810       || this->is_main_package())
811     this->write_initialization_function(init_fndecl, init_stmt_list);
812
813   // Pass everything back to the middle-end.
814
815   wrapup_global_declarations(vec, count);
816
817   cgraph_finalize_compilation_unit();
818
819   check_global_declarations(vec, count);
820   emit_debug_global_declarations(vec, count);
821
822   delete[] vec;
823 }
824
825 // Get a tree for the identifier for a named object.
826
827 tree
828 Named_object::get_id(Gogo* gogo)
829 {
830   std::string decl_name;
831   if (this->is_function_declaration()
832       && !this->func_declaration_value()->asm_name().empty())
833     decl_name = this->func_declaration_value()->asm_name();
834   else if ((this->is_variable() && !this->var_value()->is_global())
835            || (this->is_type()
836                && this->type_value()->location() == BUILTINS_LOCATION))
837     {
838       // We don't need the package name for local variables or builtin
839       // types.
840       decl_name = Gogo::unpack_hidden_name(this->name_);
841     }
842   else
843     {
844       std::string package_name;
845       if (this->package_ == NULL)
846         package_name = gogo->package_name();
847       else
848         package_name = this->package_->name();
849
850       decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
851
852       Function_type* fntype;
853       if (this->is_function())
854         fntype = this->func_value()->type();
855       else if (this->is_function_declaration())
856         fntype = this->func_declaration_value()->type();
857       else
858         fntype = NULL;
859       if (fntype != NULL && fntype->is_method())
860         {
861           decl_name.push_back('.');
862           decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
863         }
864     }
865   if (this->is_type())
866     {
867       const Named_object* in_function = this->type_value()->in_function();
868       if (in_function != NULL)
869         decl_name += '$' + in_function->name();
870     }
871   return get_identifier_from_string(decl_name);
872 }
873
874 // Get a tree for a named object.
875
876 tree
877 Named_object::get_tree(Gogo* gogo, Named_object* function)
878 {
879   if (this->tree_ != NULL_TREE)
880     {
881       // If this is a variable whose address is taken, we must rebuild
882       // the INDIRECT_REF each time to avoid invalid sharing.
883       tree ret = this->tree_;
884       if (((this->classification_ == NAMED_OBJECT_VAR
885             && this->var_value()->is_in_heap())
886            || (this->classification_ == NAMED_OBJECT_RESULT_VAR
887                && this->result_var_value()->is_in_heap()))
888           && ret != error_mark_node)
889         {
890           gcc_assert(TREE_CODE(ret) == INDIRECT_REF);
891           ret = build_fold_indirect_ref(TREE_OPERAND(ret, 0));
892           TREE_THIS_NOTRAP(ret) = 1;
893         }
894       return ret;
895     }
896
897   tree name;
898   if (this->classification_ == NAMED_OBJECT_TYPE)
899     name = NULL_TREE;
900   else
901     name = this->get_id(gogo);
902   tree decl;
903   switch (this->classification_)
904     {
905     case NAMED_OBJECT_CONST:
906       {
907         Named_constant* named_constant = this->u_.const_value;
908         Translate_context subcontext(gogo, function, NULL, NULL_TREE);
909         tree expr_tree = named_constant->expr()->get_tree(&subcontext);
910         if (expr_tree == error_mark_node)
911           decl = error_mark_node;
912         else
913           {
914             Type* type = named_constant->type();
915             if (type != NULL && !type->is_abstract())
916               {
917                 if (!type->is_error())
918                   expr_tree = fold_convert(type->get_tree(gogo), expr_tree);
919                 else
920                   expr_tree = error_mark_node;
921               }
922             if (expr_tree == error_mark_node)
923               decl = error_mark_node;
924             else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
925               {
926                 decl = build_decl(named_constant->location(), CONST_DECL,
927                                   name, TREE_TYPE(expr_tree));
928                 DECL_INITIAL(decl) = expr_tree;
929                 TREE_CONSTANT(decl) = 1;
930                 TREE_READONLY(decl) = 1;
931               }
932             else
933               {
934                 // A CONST_DECL is only for an enum constant, so we
935                 // shouldn't use for non-integral types.  Instead we
936                 // just return the constant itself, rather than a
937                 // decl.
938                 decl = expr_tree;
939               }
940           }
941       }
942       break;
943
944     case NAMED_OBJECT_TYPE:
945       {
946         Named_type* named_type = this->u_.type_value;
947         tree type_tree = named_type->get_tree(gogo);
948         if (type_tree == error_mark_node)
949           decl = error_mark_node;
950         else
951           {
952             decl = TYPE_NAME(type_tree);
953             gcc_assert(decl != NULL_TREE);
954
955             // We need to produce a type descriptor for every named
956             // type, and for a pointer to every named type, since
957             // other files or packages might refer to them.  We need
958             // to do this even for hidden types, because they might
959             // still be returned by some function.  Simply calling the
960             // type_descriptor method is enough to create the type
961             // descriptor, even though we don't do anything with it.
962             if (this->package_ == NULL)
963               {
964                 named_type->type_descriptor_pointer(gogo);
965                 Type* pn = Type::make_pointer_type(named_type);
966                 pn->type_descriptor_pointer(gogo);
967               }
968           }
969       }
970       break;
971
972     case NAMED_OBJECT_TYPE_DECLARATION:
973       error("reference to undefined type %qs",
974             this->message_name().c_str());
975       return error_mark_node;
976
977     case NAMED_OBJECT_VAR:
978       {
979         Variable* var = this->u_.var_value;
980         Type* type = var->type();
981         if (type->is_error_type()
982             || (type->is_undefined()
983                 && (!var->is_global() || this->package() == NULL)))
984           {
985             // Force the error for an undefined type, just in case.
986             type->base();
987             decl = error_mark_node;
988           }
989         else
990           {
991             tree var_type = type->get_tree(gogo);
992             bool is_parameter = var->is_parameter();
993             if (var->is_receiver() && type->points_to() == NULL)
994               is_parameter = false;
995             if (var->is_in_heap())
996               {
997                 is_parameter = false;
998                 var_type = build_pointer_type(var_type);
999               }
1000             decl = build_decl(var->location(),
1001                               is_parameter ? PARM_DECL : VAR_DECL,
1002                               name, var_type);
1003             if (!var->is_global())
1004               {
1005                 tree fnid = function->get_id(gogo);
1006                 tree fndecl = function->func_value()->get_or_make_decl(gogo,
1007                                                                        function,
1008                                                                        fnid);
1009                 DECL_CONTEXT(decl) = fndecl;
1010               }
1011             if (is_parameter)
1012               DECL_ARG_TYPE(decl) = TREE_TYPE(decl);
1013
1014             if (var->is_global())
1015               {
1016                 const Package* package = this->package();
1017                 if (package == NULL)
1018                   TREE_STATIC(decl) = 1;
1019                 else
1020                   DECL_EXTERNAL(decl) = 1;
1021                 if (!Gogo::is_hidden_name(this->name_))
1022                   {
1023                     TREE_PUBLIC(decl) = 1;
1024                     std::string asm_name = (package == NULL
1025                                             ? gogo->unique_prefix()
1026                                             : package->unique_prefix());
1027                     asm_name.append(1, '.');
1028                     asm_name.append(IDENTIFIER_POINTER(name),
1029                                     IDENTIFIER_LENGTH(name));
1030                     tree asm_id = get_identifier_from_string(asm_name);
1031                     SET_DECL_ASSEMBLER_NAME(decl, asm_id);
1032                   }
1033               }
1034
1035             // FIXME: We should only set this for variables which are
1036             // actually used somewhere.
1037             TREE_USED(decl) = 1;
1038           }
1039       }
1040       break;
1041
1042     case NAMED_OBJECT_RESULT_VAR:
1043       {
1044         Result_variable* result = this->u_.result_var_value;
1045         Type* type = result->type();
1046         if (type->is_error())
1047           decl = error_mark_node;
1048         else
1049           {
1050             gcc_assert(result->function() == function->func_value());
1051             source_location loc = function->location();
1052             tree result_type = type->get_tree(gogo);
1053             tree init;
1054             if (!result->is_in_heap())
1055               init = type->get_init_tree(gogo, false);
1056             else
1057               {
1058                 tree space = gogo->allocate_memory(type,
1059                                                    TYPE_SIZE_UNIT(result_type),
1060                                                    loc);
1061                 result_type = build_pointer_type(result_type);
1062                 tree subinit = type->get_init_tree(gogo, true);
1063                 if (subinit == NULL_TREE)
1064                   init = fold_convert_loc(loc, result_type, space);
1065                 else
1066                   {
1067                     space = save_expr(space);
1068                     space = fold_convert_loc(loc, result_type, space);
1069                     tree spaceref = build_fold_indirect_ref_loc(loc, space);
1070                     TREE_THIS_NOTRAP(spaceref) = 1;
1071                     tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1072                                                spaceref, subinit);
1073                     init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1074                                            set, space);
1075                   }
1076               }
1077             decl = build_decl(loc, VAR_DECL, name, result_type);
1078             tree fnid = function->get_id(gogo);
1079             tree fndecl = function->func_value()->get_or_make_decl(gogo,
1080                                                                    function,
1081                                                                    fnid);
1082             DECL_CONTEXT(decl) = fndecl;
1083             DECL_INITIAL(decl) = init;
1084             TREE_USED(decl) = 1;
1085           }
1086       }
1087       break;
1088
1089     case NAMED_OBJECT_SINK:
1090       gcc_unreachable();
1091
1092     case NAMED_OBJECT_FUNC:
1093       {
1094         Function* func = this->u_.func_value;
1095         decl = func->get_or_make_decl(gogo, this, name);
1096         if (decl != error_mark_node)
1097           {
1098             if (func->block() != NULL)
1099               {
1100                 if (DECL_STRUCT_FUNCTION(decl) == NULL)
1101                   push_struct_function(decl);
1102                 else
1103                   push_cfun(DECL_STRUCT_FUNCTION(decl));
1104
1105                 cfun->function_end_locus = func->block()->end_location();
1106
1107                 current_function_decl = decl;
1108
1109                 func->build_tree(gogo, this);
1110
1111                 gimplify_function_tree(decl);
1112
1113                 cgraph_finalize_function(decl, true);
1114
1115                 current_function_decl = NULL_TREE;
1116                 pop_cfun();
1117               }
1118           }
1119       }
1120       break;
1121
1122     default:
1123       gcc_unreachable();
1124     }
1125
1126   if (TREE_TYPE(decl) == error_mark_node)
1127     decl = error_mark_node;
1128
1129   tree ret = decl;
1130
1131   // If this is a local variable whose address is taken, then we
1132   // actually store it in the heap.  For uses of the variable we need
1133   // to return a reference to that heap location.
1134   if (((this->classification_ == NAMED_OBJECT_VAR
1135         && this->var_value()->is_in_heap())
1136        || (this->classification_ == NAMED_OBJECT_RESULT_VAR
1137            && this->result_var_value()->is_in_heap()))
1138       && ret != error_mark_node)
1139     {
1140       gcc_assert(POINTER_TYPE_P(TREE_TYPE(ret)));
1141       ret = build_fold_indirect_ref(ret);
1142       TREE_THIS_NOTRAP(ret) = 1;
1143     }
1144
1145   this->tree_ = ret;
1146
1147   if (ret != error_mark_node)
1148     go_preserve_from_gc(ret);
1149
1150   return ret;
1151 }
1152
1153 // Get the initial value of a variable as a tree.  This does not
1154 // consider whether the variable is in the heap--it returns the
1155 // initial value as though it were always stored in the stack.
1156
1157 tree
1158 Variable::get_init_tree(Gogo* gogo, Named_object* function)
1159 {
1160   gcc_assert(this->preinit_ == NULL);
1161   if (this->init_ == NULL)
1162     {
1163       gcc_assert(!this->is_parameter_);
1164       return this->type_->get_init_tree(gogo, this->is_global_);
1165     }
1166   else
1167     {
1168       Translate_context context(gogo, function, NULL, NULL_TREE);
1169       tree rhs_tree = this->init_->get_tree(&context);
1170       return Expression::convert_for_assignment(&context, this->type(),
1171                                                 this->init_->type(),
1172                                                 rhs_tree, this->location());
1173     }
1174 }
1175
1176 // Get the initial value of a variable when a block is required.
1177 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
1178
1179 tree
1180 Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
1181 {
1182   gcc_assert(this->preinit_ != NULL);
1183
1184   // We want to add the variable assignment to the end of the preinit
1185   // block.  The preinit block may have a TRY_FINALLY_EXPR and a
1186   // TRY_CATCH_EXPR; if it does, we want to add to the end of the
1187   // regular statements.
1188
1189   Translate_context context(gogo, function, NULL, NULL_TREE);
1190   tree block_tree = this->preinit_->get_tree(&context);
1191   if (block_tree == error_mark_node)
1192     return error_mark_node;
1193   gcc_assert(TREE_CODE(block_tree) == BIND_EXPR);
1194   tree statements = BIND_EXPR_BODY(block_tree);
1195   while (statements != NULL_TREE
1196          && (TREE_CODE(statements) == TRY_FINALLY_EXPR
1197              || TREE_CODE(statements) == TRY_CATCH_EXPR))
1198     statements = TREE_OPERAND(statements, 0);
1199
1200   // It's possible to have pre-init statements without an initializer
1201   // if the pre-init statements set the variable.
1202   if (this->init_ != NULL)
1203     {
1204       tree rhs_tree = this->init_->get_tree(&context);
1205       if (rhs_tree == error_mark_node)
1206         return error_mark_node;
1207       if (var_decl == NULL_TREE)
1208         append_to_statement_list(rhs_tree, &statements);
1209       else
1210         {
1211           tree val = Expression::convert_for_assignment(&context, this->type(),
1212                                                         this->init_->type(),
1213                                                         rhs_tree,
1214                                                         this->location());
1215           if (val == error_mark_node)
1216             return error_mark_node;
1217           tree set = fold_build2_loc(this->location(), MODIFY_EXPR,
1218                                      void_type_node, var_decl, val);
1219           append_to_statement_list(set, &statements);
1220         }
1221     }
1222
1223   return block_tree;
1224 }
1225
1226 // Get a tree for a function decl.
1227
1228 tree
1229 Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1230 {
1231   if (this->fndecl_ == NULL_TREE)
1232     {
1233       tree functype = this->type_->get_tree(gogo);
1234       if (functype == error_mark_node)
1235         this->fndecl_ = error_mark_node;
1236       else
1237         {
1238           // The type of a function comes back as a pointer, but we
1239           // want the real function type for a function declaration.
1240           gcc_assert(POINTER_TYPE_P(functype));
1241           functype = TREE_TYPE(functype);
1242           tree decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1243
1244           this->fndecl_ = decl;
1245
1246           if (no->package() != NULL)
1247             ;
1248           else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
1249             ;
1250           else if (Gogo::unpack_hidden_name(no->name()) == "init"
1251                    && !this->type_->is_method())
1252             ;
1253           else if (Gogo::unpack_hidden_name(no->name()) == "main"
1254                    && gogo->is_main_package())
1255             TREE_PUBLIC(decl) = 1;
1256           // Methods have to be public even if they are hidden because
1257           // they can be pulled into type descriptors when using
1258           // anonymous fields.
1259           else if (!Gogo::is_hidden_name(no->name())
1260                    || this->type_->is_method())
1261             {
1262               TREE_PUBLIC(decl) = 1;
1263               std::string asm_name = gogo->unique_prefix();
1264               asm_name.append(1, '.');
1265               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1266               SET_DECL_ASSEMBLER_NAME(decl,
1267                                       get_identifier_from_string(asm_name));
1268             }
1269
1270           // Why do we have to do this in the frontend?
1271           tree restype = TREE_TYPE(functype);
1272           tree resdecl = build_decl(this->location(), RESULT_DECL, NULL_TREE,
1273                                     restype);
1274           DECL_ARTIFICIAL(resdecl) = 1;
1275           DECL_IGNORED_P(resdecl) = 1;
1276           DECL_CONTEXT(resdecl) = decl;
1277           DECL_RESULT(decl) = resdecl;
1278
1279           if (this->enclosing_ != NULL)
1280             DECL_STATIC_CHAIN(decl) = 1;
1281
1282           // If a function calls the predeclared recover function, we
1283           // can't inline it, because recover behaves differently in a
1284           // function passed directly to defer.
1285           if (this->calls_recover_ && !this->is_recover_thunk_)
1286             DECL_UNINLINABLE(decl) = 1;
1287
1288           // If this is a thunk created to call a function which calls
1289           // the predeclared recover function, we need to disable
1290           // stack splitting for the thunk.
1291           if (this->is_recover_thunk_)
1292             {
1293               tree attr = get_identifier("__no_split_stack__");
1294               DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
1295             }
1296
1297           go_preserve_from_gc(decl);
1298
1299           if (this->closure_var_ != NULL)
1300             {
1301               push_struct_function(decl);
1302
1303               tree closure_decl = this->closure_var_->get_tree(gogo, no);
1304               if (closure_decl == error_mark_node)
1305                 this->fndecl_ = error_mark_node;
1306               else
1307                 {
1308                   DECL_ARTIFICIAL(closure_decl) = 1;
1309                   DECL_IGNORED_P(closure_decl) = 1;
1310                   TREE_USED(closure_decl) = 1;
1311                   DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
1312                   TREE_READONLY(closure_decl) = 1;
1313
1314                   DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
1315                 }
1316
1317               pop_cfun();
1318             }
1319         }
1320     }
1321   return this->fndecl_;
1322 }
1323
1324 // Get a tree for a function declaration.
1325
1326 tree
1327 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1328 {
1329   if (this->fndecl_ == NULL_TREE)
1330     {
1331       // Let Go code use an asm declaration to pick up a builtin
1332       // function.
1333       if (!this->asm_name_.empty())
1334         {
1335           std::map<std::string, tree>::const_iterator p =
1336             builtin_functions.find(this->asm_name_);
1337           if (p != builtin_functions.end())
1338             {
1339               this->fndecl_ = p->second;
1340               return this->fndecl_;
1341             }
1342         }
1343
1344       tree functype = this->fntype_->get_tree(gogo);
1345       tree decl;
1346       if (functype == error_mark_node)
1347         decl = error_mark_node;
1348       else
1349         {
1350           // The type of a function comes back as a pointer, but we
1351           // want the real function type for a function declaration.
1352           gcc_assert(POINTER_TYPE_P(functype));
1353           functype = TREE_TYPE(functype);
1354           decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1355           TREE_PUBLIC(decl) = 1;
1356           DECL_EXTERNAL(decl) = 1;
1357
1358           if (this->asm_name_.empty())
1359             {
1360               std::string asm_name = (no->package() == NULL
1361                                       ? gogo->unique_prefix()
1362                                       : no->package()->unique_prefix());
1363               asm_name.append(1, '.');
1364               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1365               SET_DECL_ASSEMBLER_NAME(decl,
1366                                       get_identifier_from_string(asm_name));
1367             }
1368         }
1369       this->fndecl_ = decl;
1370       go_preserve_from_gc(decl);
1371     }
1372   return this->fndecl_;
1373 }
1374
1375 // We always pass the receiver to a method as a pointer.  If the
1376 // receiver is actually declared as a non-pointer type, then we copy
1377 // the value into a local variable, so that it has the right type.  In
1378 // this function we create the real PARM_DECL to use, and set
1379 // DEC_INITIAL of the var_decl to be the value passed in.
1380
1381 tree
1382 Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
1383 {
1384   if (var_decl == error_mark_node)
1385     return error_mark_node;
1386   // If the function takes the address of a receiver which is passed
1387   // by value, then we will have an INDIRECT_REF here.  We need to get
1388   // the real variable.
1389   bool is_in_heap = no->var_value()->is_in_heap();
1390   tree val_type;
1391   if (TREE_CODE(var_decl) != INDIRECT_REF)
1392     {
1393       gcc_assert(!is_in_heap);
1394       val_type = TREE_TYPE(var_decl);
1395     }
1396   else
1397     {
1398       gcc_assert(is_in_heap);
1399       var_decl = TREE_OPERAND(var_decl, 0);
1400       if (var_decl == error_mark_node)
1401         return error_mark_node;
1402       gcc_assert(POINTER_TYPE_P(TREE_TYPE(var_decl)));
1403       val_type = TREE_TYPE(TREE_TYPE(var_decl));
1404     }
1405   gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1406   source_location loc = DECL_SOURCE_LOCATION(var_decl);
1407   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1408   name += ".pointer";
1409   tree id = get_identifier_from_string(name);
1410   tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
1411   DECL_CONTEXT(parm_decl) = current_function_decl;
1412   DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
1413
1414   gcc_assert(DECL_INITIAL(var_decl) == NULL_TREE);
1415   // The receiver might be passed as a null pointer.
1416   tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node, parm_decl,
1417                                fold_convert_loc(loc, TREE_TYPE(parm_decl),
1418                                                 null_pointer_node));
1419   tree ind = build_fold_indirect_ref_loc(loc, parm_decl);
1420   TREE_THIS_NOTRAP(ind) = 1;
1421   tree zero_init = no->var_value()->type()->get_init_tree(gogo, false);
1422   tree init = fold_build3_loc(loc, COND_EXPR, TREE_TYPE(ind),
1423                               check, ind, zero_init);
1424
1425   if (is_in_heap)
1426     {
1427       tree size = TYPE_SIZE_UNIT(val_type);
1428       tree space = gogo->allocate_memory(no->var_value()->type(), size,
1429                                          no->location());
1430       space = save_expr(space);
1431       space = fold_convert(build_pointer_type(val_type), space);
1432       tree spaceref = build_fold_indirect_ref_loc(no->location(), space);
1433       TREE_THIS_NOTRAP(spaceref) = 1;
1434       tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node,
1435                                    parm_decl,
1436                                    fold_convert_loc(loc, TREE_TYPE(parm_decl),
1437                                                     null_pointer_node));
1438       tree parmref = build_fold_indirect_ref_loc(no->location(), parm_decl);
1439       TREE_THIS_NOTRAP(parmref) = 1;
1440       tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1441                                  spaceref, parmref);
1442       init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1443                              build3(COND_EXPR, void_type_node,
1444                                     check, set, NULL_TREE),
1445                              space);
1446     }
1447
1448   DECL_INITIAL(var_decl) = init;
1449
1450   return parm_decl;
1451 }
1452
1453 // If we take the address of a parameter, then we need to copy it into
1454 // the heap.  We will access it as a local variable via an
1455 // indirection.
1456
1457 tree
1458 Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree ref)
1459 {
1460   if (ref == error_mark_node)
1461     return error_mark_node;
1462
1463   gcc_assert(TREE_CODE(ref) == INDIRECT_REF);
1464
1465   tree var_decl = TREE_OPERAND(ref, 0);
1466   if (var_decl == error_mark_node)
1467     return error_mark_node;
1468   gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1469   source_location loc = DECL_SOURCE_LOCATION(var_decl);
1470
1471   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1472   name += ".param";
1473   tree id = get_identifier_from_string(name);
1474
1475   tree type = TREE_TYPE(var_decl);
1476   gcc_assert(POINTER_TYPE_P(type));
1477   type = TREE_TYPE(type);
1478
1479   tree parm_decl = build_decl(loc, PARM_DECL, id, type);
1480   DECL_CONTEXT(parm_decl) = current_function_decl;
1481   DECL_ARG_TYPE(parm_decl) = type;
1482
1483   tree size = TYPE_SIZE_UNIT(type);
1484   tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
1485   space = save_expr(space);
1486   space = fold_convert(TREE_TYPE(var_decl), space);
1487   tree spaceref = build_fold_indirect_ref_loc(loc, space);
1488   TREE_THIS_NOTRAP(spaceref) = 1;
1489   tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
1490                      build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
1491                      space);
1492   DECL_INITIAL(var_decl) = init;
1493
1494   return parm_decl;
1495 }
1496
1497 // Get a tree for function code.
1498
1499 void
1500 Function::build_tree(Gogo* gogo, Named_object* named_function)
1501 {
1502   tree fndecl = this->fndecl_;
1503   gcc_assert(fndecl != NULL_TREE);
1504
1505   tree params = NULL_TREE;
1506   tree* pp = &params;
1507
1508   tree declare_vars = NULL_TREE;
1509   for (Bindings::const_definitions_iterator p =
1510          this->block_->bindings()->begin_definitions();
1511        p != this->block_->bindings()->end_definitions();
1512        ++p)
1513     {
1514       if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
1515         {
1516           *pp = (*p)->get_tree(gogo, named_function);
1517
1518           // We always pass the receiver to a method as a pointer.  If
1519           // the receiver is declared as a non-pointer type, then we
1520           // copy the value into a local variable.
1521           if ((*p)->var_value()->is_receiver()
1522               && (*p)->var_value()->type()->points_to() == NULL)
1523             {
1524               tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
1525               tree var = *pp;
1526               if (TREE_CODE(var) == INDIRECT_REF)
1527                 var = TREE_OPERAND(var, 0);
1528               if (var != error_mark_node)
1529                 {
1530                   gcc_assert(TREE_CODE(var) == VAR_DECL);
1531                   DECL_CHAIN(var) = declare_vars;
1532                   declare_vars = var;
1533                 }
1534               *pp = parm_decl;
1535             }
1536           else if ((*p)->var_value()->is_in_heap())
1537             {
1538               // If we take the address of a parameter, then we need
1539               // to copy it into the heap.
1540               tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
1541               if (*pp != error_mark_node)
1542                 {
1543                   gcc_assert(TREE_CODE(*pp) == INDIRECT_REF);
1544                   tree var_decl = TREE_OPERAND(*pp, 0);
1545                   if (var_decl != error_mark_node)
1546                     {
1547                       gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1548                       DECL_CHAIN(var_decl) = declare_vars;
1549                       declare_vars = var_decl;
1550                     }
1551                 }
1552               *pp = parm_decl;
1553             }
1554
1555           if (*pp != error_mark_node)
1556             {
1557               gcc_assert(TREE_CODE(*pp) == PARM_DECL);
1558               pp = &DECL_CHAIN(*pp);
1559             }
1560         }
1561       else if ((*p)->is_result_variable())
1562         {
1563           tree var_decl = (*p)->get_tree(gogo, named_function);
1564           if (var_decl != error_mark_node
1565               && (*p)->result_var_value()->is_in_heap())
1566             {
1567               gcc_assert(TREE_CODE(var_decl) == INDIRECT_REF);
1568               var_decl = TREE_OPERAND(var_decl, 0);
1569             }
1570           if (var_decl != error_mark_node)
1571             {
1572               gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1573               DECL_CHAIN(var_decl) = declare_vars;
1574               declare_vars = var_decl;
1575             }
1576         }
1577     }
1578   *pp = NULL_TREE;
1579
1580   DECL_ARGUMENTS(fndecl) = params;
1581
1582   if (this->block_ != NULL)
1583     {
1584       gcc_assert(DECL_INITIAL(fndecl) == NULL_TREE);
1585
1586       // Declare variables if necessary.
1587       tree bind = NULL_TREE;
1588       if (declare_vars != NULL_TREE)
1589         {
1590           tree block = make_node(BLOCK);
1591           BLOCK_SUPERCONTEXT(block) = fndecl;
1592           DECL_INITIAL(fndecl) = block;
1593           BLOCK_VARS(block) = declare_vars;
1594           TREE_USED(block) = 1;
1595           bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
1596                         NULL_TREE, block);
1597           TREE_SIDE_EFFECTS(bind) = 1;
1598         }
1599
1600       // Build the trees for all the statements in the function.
1601       Translate_context context(gogo, named_function, NULL, NULL_TREE);
1602       tree code = this->block_->get_tree(&context);
1603
1604       tree init = NULL_TREE;
1605       tree except = NULL_TREE;
1606       tree fini = NULL_TREE;
1607
1608       // Initialize variables if necessary.
1609       for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
1610         {
1611           tree dv = build1(DECL_EXPR, void_type_node, v);
1612           SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
1613           append_to_statement_list(dv, &init);
1614         }
1615
1616       // If we have a defer stack, initialize it at the start of a
1617       // function.
1618       if (this->defer_stack_ != NULL_TREE)
1619         {
1620           tree defer_init = build1(DECL_EXPR, void_type_node,
1621                                    this->defer_stack_);
1622           SET_EXPR_LOCATION(defer_init, this->block_->start_location());
1623           append_to_statement_list(defer_init, &init);
1624
1625           // Clean up the defer stack when we leave the function.
1626           this->build_defer_wrapper(gogo, named_function, &except, &fini);
1627         }
1628
1629       if (code != NULL_TREE && code != error_mark_node)
1630         {
1631           if (init != NULL_TREE)
1632             code = build2(COMPOUND_EXPR, void_type_node, init, code);
1633           if (except != NULL_TREE)
1634             code = build2(TRY_CATCH_EXPR, void_type_node, code,
1635                           build2(CATCH_EXPR, void_type_node, NULL, except));
1636           if (fini != NULL_TREE)
1637             code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
1638         }
1639
1640       // Stick the code into the block we built for the receiver, if
1641       // we built on.
1642       if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
1643         {
1644           BIND_EXPR_BODY(bind) = code;
1645           code = bind;
1646         }
1647
1648       DECL_SAVED_TREE(fndecl) = code;
1649     }
1650 }
1651
1652 // Build the wrappers around function code needed if the function has
1653 // any defer statements.  This sets *EXCEPT to an exception handler
1654 // and *FINI to a finally handler.
1655
1656 void
1657 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
1658                               tree *except, tree *fini)
1659 {
1660   source_location end_loc = this->block_->end_location();
1661
1662   // Add an exception handler.  This is used if a panic occurs.  Its
1663   // purpose is to stop the stack unwinding if a deferred function
1664   // calls recover.  There are more details in
1665   // libgo/runtime/go-unwind.c.
1666   tree stmt_list = NULL_TREE;
1667   static tree check_fndecl;
1668   tree call = Gogo::call_builtin(&check_fndecl,
1669                                  end_loc,
1670                                  "__go_check_defer",
1671                                  1,
1672                                  void_type_node,
1673                                  ptr_type_node,
1674                                  this->defer_stack(end_loc));
1675   if (call != error_mark_node)
1676     append_to_statement_list(call, &stmt_list);
1677
1678   tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
1679   tree set;
1680   if (retval == NULL_TREE)
1681     set = NULL_TREE;
1682   else
1683     set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1684                           DECL_RESULT(this->fndecl_), retval);
1685   tree ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1686   append_to_statement_list(ret_stmt, &stmt_list);
1687
1688   gcc_assert(*except == NULL_TREE);
1689   *except = stmt_list;
1690
1691   // Add some finally code to run the defer functions.  This is used
1692   // both in the normal case, when no panic occurs, and also if a
1693   // panic occurs to run any further defer functions.  Of course, it
1694   // is possible for a defer function to call panic which should be
1695   // caught by another defer function.  To handle that we use a loop.
1696   //  finish:
1697   //   try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
1698   //   if (return values are named) return named_vals;
1699
1700   stmt_list = NULL;
1701
1702   tree label = create_artificial_label(end_loc);
1703   tree define_label = fold_build1_loc(end_loc, LABEL_EXPR, void_type_node,
1704                                       label);
1705   append_to_statement_list(define_label, &stmt_list);
1706
1707   static tree undefer_fndecl;
1708   tree undefer = Gogo::call_builtin(&undefer_fndecl,
1709                                     end_loc,
1710                                     "__go_undefer",
1711                                     1,
1712                                     void_type_node,
1713                                     ptr_type_node,
1714                                     this->defer_stack(end_loc));
1715   if (undefer_fndecl != NULL_TREE)
1716     TREE_NOTHROW(undefer_fndecl) = 0;
1717
1718   tree defer = Gogo::call_builtin(&check_fndecl,
1719                                   end_loc,
1720                                   "__go_check_defer",
1721                                   1,
1722                                   void_type_node,
1723                                   ptr_type_node,
1724                                   this->defer_stack(end_loc));
1725   tree jump = fold_build1_loc(end_loc, GOTO_EXPR, void_type_node, label);
1726   tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
1727   catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
1728   tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
1729
1730   append_to_statement_list(try_catch, &stmt_list);
1731
1732   if (this->type_->results() != NULL
1733       && !this->type_->results()->empty()
1734       && !this->type_->results()->front().name().empty())
1735     {
1736       // If the result variables are named, we need to return them
1737       // again, because they might have been changed by a defer
1738       // function.
1739       retval = this->return_value(gogo, named_function, end_loc,
1740                                   &stmt_list);
1741       set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1742                             DECL_RESULT(this->fndecl_), retval);
1743       ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1744       append_to_statement_list(ret_stmt, &stmt_list);
1745     }
1746   
1747   gcc_assert(*fini == NULL_TREE);
1748   *fini = stmt_list;
1749 }
1750
1751 // Return the value to assign to DECL_RESULT(this->fndecl_).  This may
1752 // also add statements to STMT_LIST, which need to be executed before
1753 // the assignment.  This is used for a return statement with no
1754 // explicit values.
1755
1756 tree
1757 Function::return_value(Gogo* gogo, Named_object* named_function,
1758                        source_location location, tree* stmt_list) const
1759 {
1760   const Typed_identifier_list* results = this->type_->results();
1761   if (results == NULL || results->empty())
1762     return NULL_TREE;
1763
1764   gcc_assert(this->results_ != NULL);
1765   if (this->results_->size() != results->size())
1766     {
1767       gcc_assert(saw_errors());
1768       return error_mark_node;
1769     }
1770
1771   tree retval;
1772   if (results->size() == 1)
1773     return this->results_->front()->get_tree(gogo, named_function);
1774   else
1775     {
1776       tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
1777       retval = create_tmp_var(rettype, "RESULT");
1778       tree field = TYPE_FIELDS(rettype);
1779       int index = 0;
1780       for (Typed_identifier_list::const_iterator pr = results->begin();
1781            pr != results->end();
1782            ++pr, ++index, field = DECL_CHAIN(field))
1783         {
1784           gcc_assert(field != NULL);
1785           tree val;
1786           val = (*this->results_)[index]->get_tree(gogo, named_function);
1787           tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
1788                                      build3(COMPONENT_REF, TREE_TYPE(field),
1789                                             retval, field, NULL_TREE),
1790                                      val);
1791           append_to_statement_list(set, stmt_list);
1792         }
1793       return retval;
1794     }
1795 }
1796
1797 // Get the tree for the variable holding the defer stack for this
1798 // function.  At least at present, the value of this variable is not
1799 // used.  However, a pointer to this variable is used as a marker for
1800 // the functions on the defer stack associated with this function.
1801 // Doing things this way permits inlining a function which uses defer.
1802
1803 tree
1804 Function::defer_stack(source_location location)
1805 {
1806   if (this->defer_stack_ == NULL_TREE)
1807     {
1808       tree var = create_tmp_var(ptr_type_node, "DEFER");
1809       DECL_INITIAL(var) = null_pointer_node;
1810       DECL_SOURCE_LOCATION(var) = location;
1811       TREE_ADDRESSABLE(var) = 1;
1812       this->defer_stack_ = var;
1813     }
1814   return fold_convert_loc(location, ptr_type_node,
1815                           build_fold_addr_expr_loc(location,
1816                                                    this->defer_stack_));
1817 }
1818
1819 // Get a tree for the statements in a block.
1820
1821 tree
1822 Block::get_tree(Translate_context* context)
1823 {
1824   Gogo* gogo = context->gogo();
1825
1826   tree block = make_node(BLOCK);
1827
1828   // Put the new block into the block tree.
1829
1830   if (context->block() == NULL)
1831     {
1832       tree fndecl;
1833       if (context->function() != NULL)
1834         fndecl = context->function()->func_value()->get_decl();
1835       else
1836         fndecl = current_function_decl;
1837       gcc_assert(fndecl != NULL_TREE);
1838
1839       // We may have already created a block for the receiver.
1840       if (DECL_INITIAL(fndecl) == NULL_TREE)
1841         {
1842           BLOCK_SUPERCONTEXT(block) = fndecl;
1843           DECL_INITIAL(fndecl) = block;
1844         }
1845       else
1846         {
1847           tree superblock_tree = DECL_INITIAL(fndecl);
1848           BLOCK_SUPERCONTEXT(block) = superblock_tree;
1849           gcc_assert(BLOCK_CHAIN(block) == NULL_TREE);
1850           BLOCK_CHAIN(block) = block;
1851         }
1852     }
1853   else
1854     {
1855       tree superblock_tree = context->block_tree();
1856       BLOCK_SUPERCONTEXT(block) = superblock_tree;
1857       tree* pp;
1858       for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
1859            *pp != NULL_TREE;
1860            pp = &BLOCK_CHAIN(*pp))
1861         ;
1862       *pp = block;
1863     }
1864
1865   // Expand local variables in the block.
1866
1867   tree* pp = &BLOCK_VARS(block);
1868   for (Bindings::const_definitions_iterator pv =
1869          this->bindings_->begin_definitions();
1870        pv != this->bindings_->end_definitions();
1871        ++pv)
1872     {
1873       if ((!(*pv)->is_variable() || !(*pv)->var_value()->is_parameter())
1874           && !(*pv)->is_result_variable()
1875           && !(*pv)->is_const())
1876         {
1877           tree var = (*pv)->get_tree(gogo, context->function());
1878           if (var != error_mark_node && TREE_TYPE(var) != error_mark_node)
1879             {
1880               if ((*pv)->is_variable() && (*pv)->var_value()->is_in_heap())
1881                 {
1882                   gcc_assert(TREE_CODE(var) == INDIRECT_REF);
1883                   var = TREE_OPERAND(var, 0);
1884                   gcc_assert(TREE_CODE(var) == VAR_DECL);
1885                 }
1886               *pp = var;
1887               pp = &DECL_CHAIN(*pp);
1888             }
1889         }
1890     }
1891   *pp = NULL_TREE;
1892
1893   Translate_context subcontext(context->gogo(), context->function(),
1894                                this, block);
1895
1896   tree statements = NULL_TREE;
1897
1898   // Expand the statements.
1899
1900   for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
1901        p != this->statements_.end();
1902        ++p)
1903     {
1904       tree statement = (*p)->get_tree(&subcontext);
1905       if (statement != error_mark_node)
1906         append_to_statement_list(statement, &statements);
1907     }
1908
1909   TREE_USED(block) = 1;
1910
1911   tree bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block), statements,
1912                      block);
1913   TREE_SIDE_EFFECTS(bind) = 1;
1914
1915   return bind;
1916 }
1917
1918 // Return the integer type to use for a size.
1919
1920 GO_EXTERN_C
1921 tree
1922 go_type_for_size(unsigned int bits, int unsignedp)
1923 {
1924   const char* name;
1925   switch (bits)
1926     {
1927     case 8:
1928       name = unsignedp ? "uint8" : "int8";
1929       break;
1930     case 16:
1931       name = unsignedp ? "uint16" : "int16";
1932       break;
1933     case 32:
1934       name = unsignedp ? "uint32" : "int32";
1935       break;
1936     case 64:
1937       name = unsignedp ? "uint64" : "int64";
1938       break;
1939     default:
1940       if (bits == POINTER_SIZE && unsignedp)
1941         name = "uintptr";
1942       else
1943         return NULL_TREE;
1944     }
1945   Type* type = Type::lookup_integer_type(name);
1946   return type->get_tree(go_get_gogo());
1947 }
1948
1949 // Return the type to use for a mode.
1950
1951 GO_EXTERN_C
1952 tree
1953 go_type_for_mode(enum machine_mode mode, int unsignedp)
1954 {
1955   // FIXME: This static_cast should be in machmode.h.
1956   enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
1957   if (mc == MODE_INT)
1958     return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
1959   else if (mc == MODE_FLOAT)
1960     {
1961       Type* type;
1962       switch (GET_MODE_BITSIZE (mode))
1963         {
1964         case 32:
1965           type = Type::lookup_float_type("float32");
1966           break;
1967         case 64:
1968           type = Type::lookup_float_type("float64");
1969           break;
1970         default:
1971           // We have to check for long double in order to support
1972           // i386 excess precision.
1973           if (mode == TYPE_MODE(long_double_type_node))
1974             return long_double_type_node;
1975           return NULL_TREE;
1976         }
1977       return type->float_type()->type_tree();
1978     }
1979   else if (mc == MODE_COMPLEX_FLOAT)
1980     {
1981       Type *type;
1982       switch (GET_MODE_BITSIZE (mode))
1983         {
1984         case 64:
1985           type = Type::lookup_complex_type("complex64");
1986           break;
1987         case 128:
1988           type = Type::lookup_complex_type("complex128");
1989           break;
1990         default:
1991           // We have to check for long double in order to support
1992           // i386 excess precision.
1993           if (mode == TYPE_MODE(complex_long_double_type_node))
1994             return complex_long_double_type_node;
1995           return NULL_TREE;
1996         }
1997       return type->complex_type()->type_tree();
1998     }
1999   else
2000     return NULL_TREE;
2001 }
2002
2003 // Return a tree which allocates SIZE bytes which will holds value of
2004 // type TYPE.
2005
2006 tree
2007 Gogo::allocate_memory(Type* type, tree size, source_location location)
2008 {
2009   // If the package imports unsafe, then it may play games with
2010   // pointers that look like integers.
2011   if (this->imported_unsafe_ || type->has_pointer())
2012     {
2013       static tree new_fndecl;
2014       return Gogo::call_builtin(&new_fndecl,
2015                                 location,
2016                                 "__go_new",
2017                                 1,
2018                                 ptr_type_node,
2019                                 sizetype,
2020                                 size);
2021     }
2022   else
2023     {
2024       static tree new_nopointers_fndecl;
2025       return Gogo::call_builtin(&new_nopointers_fndecl,
2026                                 location,
2027                                 "__go_new_nopointers",
2028                                 1,
2029                                 ptr_type_node,
2030                                 sizetype,
2031                                 size);
2032     }
2033 }
2034
2035 // Build a builtin struct with a list of fields.  The name is
2036 // STRUCT_NAME.  STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
2037 // node; this exists so that the struct can have fields which point to
2038 // itself.  If PTYPE is not NULL, store the result in *PTYPE.  There
2039 // are NFIELDS fields.  Each field is a name (a const char*) followed
2040 // by a type (a tree).
2041
2042 tree
2043 Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
2044                      int nfields, ...)
2045 {
2046   if (ptype != NULL && *ptype != NULL_TREE)
2047     return *ptype;
2048
2049   va_list ap;
2050   va_start(ap, nfields);
2051
2052   tree fields = NULL_TREE;
2053   for (int i = 0; i < nfields; ++i)
2054     {
2055       const char* field_name = va_arg(ap, const char*);
2056       tree type = va_arg(ap, tree);
2057       if (type == error_mark_node)
2058         {
2059           if (ptype != NULL)
2060             *ptype = error_mark_node;
2061           return error_mark_node;
2062         }
2063       tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
2064                               get_identifier(field_name), type);
2065       DECL_CHAIN(field) = fields;
2066       fields = field;
2067     }
2068
2069   va_end(ap);
2070
2071   if (struct_type == NULL_TREE)
2072     struct_type = make_node(RECORD_TYPE);
2073   finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
2074
2075   if (ptype != NULL)
2076     {
2077       go_preserve_from_gc(struct_type);
2078       *ptype = struct_type;
2079     }
2080
2081   return struct_type;
2082 }
2083
2084 // Return a type to use for pointer to const char for a string.
2085
2086 tree
2087 Gogo::const_char_pointer_type_tree()
2088 {
2089   static tree type;
2090   if (type == NULL_TREE)
2091     {
2092       tree const_char_type = build_qualified_type(unsigned_char_type_node,
2093                                                   TYPE_QUAL_CONST);
2094       type = build_pointer_type(const_char_type);
2095       go_preserve_from_gc(type);
2096     }
2097   return type;
2098 }
2099
2100 // Return a tree for a string constant.
2101
2102 tree
2103 Gogo::string_constant_tree(const std::string& val)
2104 {
2105   tree index_type = build_index_type(size_int(val.length()));
2106   tree const_char_type = build_qualified_type(unsigned_char_type_node,
2107                                               TYPE_QUAL_CONST);
2108   tree string_type = build_array_type(const_char_type, index_type);
2109   string_type = build_variant_type_copy(string_type);
2110   TYPE_STRING_FLAG(string_type) = 1;
2111   tree string_val = build_string(val.length(), val.data());
2112   TREE_TYPE(string_val) = string_type;
2113   return string_val;
2114 }
2115
2116 // Return a tree for a Go string constant.
2117
2118 tree
2119 Gogo::go_string_constant_tree(const std::string& val)
2120 {
2121   tree string_type = Type::make_string_type()->get_tree(this);
2122
2123   VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2124
2125   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2126   tree field = TYPE_FIELDS(string_type);
2127   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
2128   elt->index = field;
2129   tree str = Gogo::string_constant_tree(val);
2130   elt->value = fold_convert(TREE_TYPE(field),
2131                             build_fold_addr_expr(str));
2132
2133   elt = VEC_quick_push(constructor_elt, init, NULL);
2134   field = DECL_CHAIN(field);
2135   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
2136   elt->index = field;
2137   elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
2138
2139   tree constructor = build_constructor(string_type, init);
2140   TREE_READONLY(constructor) = 1;
2141   TREE_CONSTANT(constructor) = 1;
2142
2143   return constructor;
2144 }
2145
2146 // Return a tree for a pointer to a Go string constant.  This is only
2147 // used for type descriptors, so we return a pointer to a constant
2148 // decl.
2149
2150 tree
2151 Gogo::ptr_go_string_constant_tree(const std::string& val)
2152 {
2153   tree pval = this->go_string_constant_tree(val);
2154
2155   tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
2156                          create_tmp_var_name("SP"), TREE_TYPE(pval));
2157   DECL_EXTERNAL(decl) = 0;
2158   TREE_PUBLIC(decl) = 0;
2159   TREE_USED(decl) = 1;
2160   TREE_READONLY(decl) = 1;
2161   TREE_CONSTANT(decl) = 1;
2162   TREE_STATIC(decl) = 1;
2163   DECL_ARTIFICIAL(decl) = 1;
2164   DECL_INITIAL(decl) = pval;
2165   rest_of_decl_compilation(decl, 1, 0);
2166
2167   return build_fold_addr_expr(decl);
2168 }
2169
2170 // Build the type of the struct that holds a slice for the given
2171 // element type.
2172
2173 tree
2174 Gogo::slice_type_tree(tree element_type_tree)
2175 {
2176   // We use int for the count and capacity fields in a slice header.
2177   // This matches 6g.  The language definition guarantees that we
2178   // can't allocate space of a size which does not fit in int
2179   // anyhow. FIXME: integer_type_node is the the C type "int" but is
2180   // not necessarily the Go type "int".  They will differ when the C
2181   // type "int" has fewer than 32 bits.
2182   return Gogo::builtin_struct(NULL, "__go_slice", NULL_TREE, 3,
2183                               "__values",
2184                               build_pointer_type(element_type_tree),
2185                               "__count",
2186                               integer_type_node,
2187                               "__capacity",
2188                               integer_type_node);
2189 }
2190
2191 // Given the tree for a slice type, return the tree for the type of
2192 // the elements of the slice.
2193
2194 tree
2195 Gogo::slice_element_type_tree(tree slice_type_tree)
2196 {
2197   gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE
2198              && POINTER_TYPE_P(TREE_TYPE(TYPE_FIELDS(slice_type_tree))));
2199   return TREE_TYPE(TREE_TYPE(TYPE_FIELDS(slice_type_tree)));
2200 }
2201
2202 // Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
2203 // the slice.  VALUES is the value pointer and COUNT is the number of
2204 // entries.  If CAPACITY is not NULL, it is the capacity; otherwise
2205 // the capacity and the count are the same.
2206
2207 tree
2208 Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
2209                         tree capacity)
2210 {
2211   gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
2212
2213   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
2214
2215   tree field = TYPE_FIELDS(slice_type_tree);
2216   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
2217   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2218   elt->index = field;
2219   gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
2220              == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
2221   elt->value = values;
2222
2223   count = fold_convert(sizetype, count);
2224   if (capacity == NULL_TREE)
2225     {
2226       count = save_expr(count);
2227       capacity = count;
2228     }
2229
2230   field = DECL_CHAIN(field);
2231   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
2232   elt = VEC_quick_push(constructor_elt, init, NULL);
2233   elt->index = field;
2234   elt->value = fold_convert(TREE_TYPE(field), count);
2235
2236   field = DECL_CHAIN(field);
2237   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
2238   elt = VEC_quick_push(constructor_elt, init, NULL);
2239   elt->index = field;
2240   elt->value = fold_convert(TREE_TYPE(field), capacity);
2241
2242   return build_constructor(slice_type_tree, init);
2243 }
2244
2245 // Build a constructor for an empty slice.
2246
2247 tree
2248 Gogo::empty_slice_constructor(tree slice_type_tree)
2249 {
2250   tree element_field = TYPE_FIELDS(slice_type_tree);
2251   tree ret = Gogo::slice_constructor(slice_type_tree,
2252                                      fold_convert(TREE_TYPE(element_field),
2253                                                   null_pointer_node),
2254                                      size_zero_node,
2255                                      size_zero_node);
2256   TREE_CONSTANT(ret) = 1;
2257   return ret;
2258 }
2259
2260 // Build a map descriptor for a map of type MAPTYPE.
2261
2262 tree
2263 Gogo::map_descriptor(Map_type* maptype)
2264 {
2265   if (this->map_descriptors_ == NULL)
2266     this->map_descriptors_ = new Map_descriptors(10);
2267
2268   std::pair<const Map_type*, tree> val(maptype, NULL);
2269   std::pair<Map_descriptors::iterator, bool> ins =
2270     this->map_descriptors_->insert(val);
2271   Map_descriptors::iterator p = ins.first;
2272   if (!ins.second)
2273     {
2274       if (p->second == error_mark_node)
2275         return error_mark_node;
2276       gcc_assert(p->second != NULL_TREE && DECL_P(p->second));
2277       return build_fold_addr_expr(p->second);
2278     }
2279
2280   Type* keytype = maptype->key_type();
2281   Type* valtype = maptype->val_type();
2282
2283   std::string mangled_name = ("__go_map_" + maptype->mangled_name(this));
2284
2285   tree id = get_identifier_from_string(mangled_name);
2286
2287   // Get the type of the map descriptor.  This is __go_map_descriptor
2288   // in libgo/map.h.
2289
2290   tree struct_type = this->map_descriptor_type();
2291
2292   // The map entry type is a struct with three fields.  This struct is
2293   // specific to MAPTYPE.  Build it.
2294
2295   tree map_entry_type = make_node(RECORD_TYPE);
2296
2297   map_entry_type = Gogo::builtin_struct(NULL, "__map", map_entry_type, 3,
2298                                         "__next",
2299                                         build_pointer_type(map_entry_type),
2300                                         "__key",
2301                                         keytype->get_tree(this),
2302                                         "__val",
2303                                         valtype->get_tree(this));
2304   if (map_entry_type == error_mark_node)
2305     {
2306       p->second = error_mark_node;
2307       return error_mark_node;
2308     }
2309
2310   tree map_entry_key_field = DECL_CHAIN(TYPE_FIELDS(map_entry_type));
2311   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_key_field)),
2312                     "__key") == 0);
2313
2314   tree map_entry_val_field = DECL_CHAIN(map_entry_key_field);
2315   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_val_field)),
2316                     "__val") == 0);
2317
2318   // Initialize the entries.
2319
2320   tree map_descriptor_field = TYPE_FIELDS(struct_type);
2321   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_descriptor_field)),
2322                     "__map_descriptor") == 0);
2323   tree entry_size_field = DECL_CHAIN(map_descriptor_field);
2324   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(entry_size_field)),
2325                     "__entry_size") == 0);
2326   tree key_offset_field = DECL_CHAIN(entry_size_field);
2327   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(key_offset_field)),
2328                     "__key_offset") == 0);
2329   tree val_offset_field = DECL_CHAIN(key_offset_field);
2330   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(val_offset_field)),
2331                     "__val_offset") == 0);
2332
2333   VEC(constructor_elt, gc)* descriptor = VEC_alloc(constructor_elt, gc, 6);
2334
2335   constructor_elt* elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2336   elt->index = map_descriptor_field;
2337   elt->value = maptype->type_descriptor_pointer(this);
2338
2339   elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2340   elt->index = entry_size_field;
2341   elt->value = TYPE_SIZE_UNIT(map_entry_type);
2342
2343   elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2344   elt->index = key_offset_field;
2345   elt->value = byte_position(map_entry_key_field);
2346
2347   elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2348   elt->index = val_offset_field;
2349   elt->value = byte_position(map_entry_val_field);
2350
2351   tree constructor = build_constructor(struct_type, descriptor);
2352
2353   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, struct_type);
2354   TREE_STATIC(decl) = 1;
2355   TREE_USED(decl) = 1;
2356   TREE_READONLY(decl) = 1;
2357   TREE_CONSTANT(decl) = 1;
2358   DECL_INITIAL(decl) = constructor;
2359   make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2360   resolve_unique_section(decl, 1, 0);
2361
2362   rest_of_decl_compilation(decl, 1, 0);
2363
2364   go_preserve_from_gc(decl);
2365   p->second = decl;
2366
2367   return build_fold_addr_expr(decl);
2368 }
2369
2370 // Return a tree for the type of a map descriptor.  This is struct
2371 // __go_map_descriptor in libgo/runtime/map.h.  This is the same for
2372 // all map types.
2373
2374 tree
2375 Gogo::map_descriptor_type()
2376 {
2377   static tree struct_type;
2378   tree dtype = Type::make_type_descriptor_type()->get_tree(this);
2379   dtype = build_qualified_type(dtype, TYPE_QUAL_CONST);
2380   return Gogo::builtin_struct(&struct_type, "__go_map_descriptor", NULL_TREE,
2381                               4,
2382                               "__map_descriptor",
2383                               build_pointer_type(dtype),
2384                               "__entry_size",
2385                               sizetype,
2386                               "__key_offset",
2387                               sizetype,
2388                               "__val_offset",
2389                               sizetype);
2390 }
2391
2392 // Return the name to use for a type descriptor decl for TYPE.  This
2393 // is used when TYPE does not have a name.
2394
2395 std::string
2396 Gogo::unnamed_type_descriptor_decl_name(const Type* type)
2397 {
2398   return "__go_td_" + type->mangled_name(this);
2399 }
2400
2401 // Return the name to use for a type descriptor decl for a type named
2402 // NAME, defined in the function IN_FUNCTION.  IN_FUNCTION will
2403 // normally be NULL.
2404
2405 std::string
2406 Gogo::type_descriptor_decl_name(const Named_object* no,
2407                                 const Named_object* in_function)
2408 {
2409   std::string ret = "__go_tdn_";
2410   if (no->type_value()->is_builtin())
2411     gcc_assert(in_function == NULL);
2412   else
2413     {
2414       const std::string& unique_prefix(no->package() == NULL
2415                                        ? this->unique_prefix()
2416                                        : no->package()->unique_prefix());
2417       const std::string& package_name(no->package() == NULL
2418                                       ? this->package_name()
2419                                       : no->package()->name());
2420       ret.append(unique_prefix);
2421       ret.append(1, '.');
2422       ret.append(package_name);
2423       ret.append(1, '.');
2424       if (in_function != NULL)
2425         {
2426           ret.append(Gogo::unpack_hidden_name(in_function->name()));
2427           ret.append(1, '.');
2428         }
2429     }
2430   ret.append(no->name());
2431   return ret;
2432 }
2433
2434 // Where a type descriptor decl should be defined.
2435
2436 Gogo::Type_descriptor_location
2437 Gogo::type_descriptor_location(const Type* type)
2438 {
2439   const Named_type* name = type->named_type();
2440   if (name != NULL)
2441     {
2442       if (name->named_object()->package() != NULL)
2443         {
2444           // This is a named type defined in a different package.  The
2445           // descriptor should be defined in that package.
2446           return TYPE_DESCRIPTOR_UNDEFINED;
2447         }
2448       else if (name->is_builtin())
2449         {
2450           // We create the descriptor for a builtin type whenever we
2451           // need it.
2452           return TYPE_DESCRIPTOR_COMMON;
2453         }
2454       else
2455         {
2456           // This is a named type defined in this package.  The
2457           // descriptor should be defined here.
2458           return TYPE_DESCRIPTOR_DEFINED;
2459         }
2460     }
2461   else
2462     {
2463       if (type->points_to() != NULL
2464           && type->points_to()->named_type() != NULL
2465           && type->points_to()->named_type()->named_object()->package() != NULL)
2466         {
2467           // This is an unnamed pointer to a named type defined in a
2468           // different package.  The descriptor should be defined in
2469           // that package.
2470           return TYPE_DESCRIPTOR_UNDEFINED;
2471         }
2472       else
2473         {
2474           // This is an unnamed type.  The descriptor could be defined
2475           // in any package where it is needed, and the linker will
2476           // pick one descriptor to keep.
2477           return TYPE_DESCRIPTOR_COMMON;
2478         }
2479     }
2480 }
2481
2482 // Build a type descriptor decl for TYPE.  INITIALIZER is a struct
2483 // composite literal which initializers the type descriptor.
2484
2485 void
2486 Gogo::build_type_descriptor_decl(const Type* type, Expression* initializer,
2487                                  tree* pdecl)
2488 {
2489   const Named_type* name = type->named_type();
2490
2491   // We can have multiple instances of unnamed types, but we only want
2492   // to emit the type descriptor once.  We use a hash table to handle
2493   // this.  This is not necessary for named types, as they are unique,
2494   // and we store the type descriptor decl in the type itself.
2495   tree* phash = NULL;
2496   if (name == NULL)
2497     {
2498       if (this->type_descriptor_decls_ == NULL)
2499         this->type_descriptor_decls_ = new Type_descriptor_decls(10);
2500
2501       std::pair<Type_descriptor_decls::iterator, bool> ins =
2502         this->type_descriptor_decls_->insert(std::make_pair(type, NULL_TREE));
2503       if (!ins.second)
2504         {
2505           // We've already built a type descriptor for this type.
2506           *pdecl = ins.first->second;
2507           return;
2508         }
2509       phash = &ins.first->second;
2510     }
2511
2512   std::string decl_name;
2513   if (name == NULL)
2514     decl_name = this->unnamed_type_descriptor_decl_name(type);
2515   else
2516     decl_name = this->type_descriptor_decl_name(name->named_object(),
2517                                                 name->in_function());
2518   tree id = get_identifier_from_string(decl_name);
2519   tree descriptor_type_tree = initializer->type()->get_tree(this);
2520   if (descriptor_type_tree == error_mark_node)
2521     {
2522       *pdecl = error_mark_node;
2523       return;
2524     }
2525   tree decl = build_decl(name == NULL ? BUILTINS_LOCATION : name->location(),
2526                          VAR_DECL, id,
2527                          build_qualified_type(descriptor_type_tree,
2528                                               TYPE_QUAL_CONST));
2529   TREE_READONLY(decl) = 1;
2530   TREE_CONSTANT(decl) = 1;
2531   DECL_ARTIFICIAL(decl) = 1;
2532
2533   go_preserve_from_gc(decl);
2534   if (phash != NULL)
2535     *phash = decl;
2536
2537   // We store the new DECL now because we may need to refer to it when
2538   // expanding INITIALIZER.
2539   *pdecl = decl;
2540
2541   // If appropriate, just refer to the exported type identifier.
2542   Gogo::Type_descriptor_location type_descriptor_location =
2543     this->type_descriptor_location(type);
2544   if (type_descriptor_location == TYPE_DESCRIPTOR_UNDEFINED)
2545     {
2546       TREE_PUBLIC(decl) = 1;
2547       DECL_EXTERNAL(decl) = 1;
2548       return;
2549     }
2550
2551   TREE_STATIC(decl) = 1;
2552   TREE_USED(decl) = 1;
2553
2554   Translate_context context(this, NULL, NULL, NULL);
2555   context.set_is_const();
2556   tree constructor = initializer->get_tree(&context);
2557
2558   if (constructor == error_mark_node)
2559     gcc_assert(saw_errors());
2560
2561   DECL_INITIAL(decl) = constructor;
2562
2563   if (type_descriptor_location == TYPE_DESCRIPTOR_DEFINED)
2564     TREE_PUBLIC(decl) = 1;
2565   else
2566     {
2567       gcc_assert(type_descriptor_location == TYPE_DESCRIPTOR_COMMON);
2568       make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2569       resolve_unique_section(decl, 1, 0);
2570     }
2571
2572   rest_of_decl_compilation(decl, 1, 0);
2573 }
2574
2575 // Build an interface method table for a type: a list of function
2576 // pointers, one for each interface method.  This is used for
2577 // interfaces.
2578
2579 tree
2580 Gogo::interface_method_table_for_type(const Interface_type* interface,
2581                                       Named_type* type,
2582                                       bool is_pointer)
2583 {
2584   const Typed_identifier_list* interface_methods = interface->methods();
2585   gcc_assert(!interface_methods->empty());
2586
2587   std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
2588                               + interface->mangled_name(this)
2589                               + "__"
2590                               + type->mangled_name(this));
2591
2592   tree id = get_identifier_from_string(mangled_name);
2593
2594   // See whether this interface has any hidden methods.
2595   bool has_hidden_methods = false;
2596   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2597        p != interface_methods->end();
2598        ++p)
2599     {
2600       if (Gogo::is_hidden_name(p->name()))
2601         {
2602           has_hidden_methods = true;
2603           break;
2604         }
2605     }
2606
2607   // We already know that the named type is convertible to the
2608   // interface.  If the interface has hidden methods, and the named
2609   // type is defined in a different package, then the interface
2610   // conversion table will be defined by that other package.
2611   if (has_hidden_methods && type->named_object()->package() != NULL)
2612     {
2613       tree array_type = build_array_type(const_ptr_type_node, NULL);
2614       tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2615       TREE_READONLY(decl) = 1;
2616       TREE_CONSTANT(decl) = 1;
2617       TREE_PUBLIC(decl) = 1;
2618       DECL_EXTERNAL(decl) = 1;
2619       go_preserve_from_gc(decl);
2620       return decl;
2621     }
2622
2623   size_t count = interface_methods->size();
2624   VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
2625                                                  count + 1);
2626
2627   // The first element is the type descriptor.
2628   constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
2629   elt->index = size_zero_node;
2630   Type* td_type;
2631   if (!is_pointer)
2632     td_type = type;
2633   else
2634     td_type = Type::make_pointer_type(type);
2635   elt->value = fold_convert(const_ptr_type_node,
2636                             td_type->type_descriptor_pointer(this));
2637
2638   size_t i = 1;
2639   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2640        p != interface_methods->end();
2641        ++p, ++i)
2642     {
2643       bool is_ambiguous;
2644       Method* m = type->method_function(p->name(), &is_ambiguous);
2645       gcc_assert(m != NULL);
2646
2647       Named_object* no = m->named_object();
2648
2649       tree fnid = no->get_id(this);
2650
2651       tree fndecl;
2652       if (no->is_function())
2653         fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
2654       else if (no->is_function_declaration())
2655         fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
2656                                                                 fnid);
2657       else
2658         gcc_unreachable();
2659       fndecl = build_fold_addr_expr(fndecl);
2660
2661       elt = VEC_quick_push(constructor_elt, pointers, NULL);
2662       elt->index = size_int(i);
2663       elt->value = fold_convert(const_ptr_type_node, fndecl);
2664     }
2665   gcc_assert(i == count + 1);
2666
2667   tree array_type = build_array_type(const_ptr_type_node,
2668                                      build_index_type(size_int(count)));
2669   tree constructor = build_constructor(array_type, pointers);
2670
2671   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2672   TREE_STATIC(decl) = 1;
2673   TREE_USED(decl) = 1;
2674   TREE_READONLY(decl) = 1;
2675   TREE_CONSTANT(decl) = 1;
2676   DECL_INITIAL(decl) = constructor;
2677
2678   // If the interface type has hidden methods, then this is the only
2679   // definition of the table.  Otherwise it is a comdat table which
2680   // may be defined in multiple packages.
2681   if (has_hidden_methods)
2682     TREE_PUBLIC(decl) = 1;
2683   else
2684     {
2685       make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2686       resolve_unique_section(decl, 1, 0);
2687     }
2688
2689   rest_of_decl_compilation(decl, 1, 0);
2690
2691   go_preserve_from_gc(decl);
2692
2693   return decl;
2694 }
2695
2696 // Mark a function as a builtin library function.
2697
2698 void
2699 Gogo::mark_fndecl_as_builtin_library(tree fndecl)
2700 {
2701   DECL_EXTERNAL(fndecl) = 1;
2702   TREE_PUBLIC(fndecl) = 1;
2703   DECL_ARTIFICIAL(fndecl) = 1;
2704   TREE_NOTHROW(fndecl) = 1;
2705   DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
2706   DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
2707 }
2708
2709 // Build a call to a builtin function.
2710
2711 tree
2712 Gogo::call_builtin(tree* pdecl, source_location location, const char* name,
2713                    int nargs, tree rettype, ...)
2714 {
2715   if (rettype == error_mark_node)
2716     return error_mark_node;
2717
2718   tree* types = new tree[nargs];
2719   tree* args = new tree[nargs];
2720
2721   va_list ap;
2722   va_start(ap, rettype);
2723   for (int i = 0; i < nargs; ++i)
2724     {
2725       types[i] = va_arg(ap, tree);
2726       args[i] = va_arg(ap, tree);
2727       if (types[i] == error_mark_node || args[i] == error_mark_node)
2728         {
2729           delete[] types;
2730           delete[] args;
2731           return error_mark_node;
2732         }
2733     }
2734   va_end(ap);
2735
2736   if (*pdecl == NULL_TREE)
2737     {
2738       tree fnid = get_identifier(name);
2739
2740       tree argtypes = NULL_TREE;
2741       tree* pp = &argtypes;
2742       for (int i = 0; i < nargs; ++i)
2743         {
2744           *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
2745           pp = &TREE_CHAIN(*pp);
2746         }
2747       *pp = void_list_node;
2748
2749       tree fntype = build_function_type(rettype, argtypes);
2750
2751       *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
2752       Gogo::mark_fndecl_as_builtin_library(*pdecl);
2753       go_preserve_from_gc(*pdecl);
2754     }
2755
2756   tree fnptr = build_fold_addr_expr(*pdecl);
2757   if (CAN_HAVE_LOCATION_P(fnptr))
2758     SET_EXPR_LOCATION(fnptr, location);
2759
2760   tree ret = build_call_array(rettype, fnptr, nargs, args);
2761   SET_EXPR_LOCATION(ret, location);
2762
2763   delete[] types;
2764   delete[] args;
2765
2766   return ret;
2767 }
2768
2769 // Build a call to the runtime error function.
2770
2771 tree
2772 Gogo::runtime_error(int code, source_location location)
2773 {
2774   static tree runtime_error_fndecl;
2775   tree ret = Gogo::call_builtin(&runtime_error_fndecl,
2776                                 location,
2777                                 "__go_runtime_error",
2778                                 1,
2779                                 void_type_node,
2780                                 integer_type_node,
2781                                 build_int_cst(integer_type_node, code));
2782   if (ret == error_mark_node)
2783     return error_mark_node;
2784   // The runtime error function panics and does not return.
2785   TREE_NOTHROW(runtime_error_fndecl) = 0;
2786   TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
2787   return ret;
2788 }
2789
2790 // Send VAL on CHANNEL.  If BLOCKING is true, the resulting tree has a
2791 // void type.  If BLOCKING is false, the resulting tree has a boolean
2792 // type, and it will evaluate as true if the value was sent.  If
2793 // FOR_SELECT is true, this is being done because it was chosen in a
2794 // select statement.
2795
2796 tree
2797 Gogo::send_on_channel(tree channel, tree val, bool blocking, bool for_select,
2798                       source_location location)
2799 {
2800   if (channel == error_mark_node || val == error_mark_node)
2801     return error_mark_node;
2802
2803   if (int_size_in_bytes(TREE_TYPE(val)) <= 8
2804       && !AGGREGATE_TYPE_P(TREE_TYPE(val))
2805       && !FLOAT_TYPE_P(TREE_TYPE(val)))
2806     {
2807       val = convert_to_integer(uint64_type_node, val);
2808       if (blocking)
2809         {
2810           static tree send_small_fndecl;
2811           tree ret = Gogo::call_builtin(&send_small_fndecl,
2812                                         location,
2813                                         "__go_send_small",
2814                                         3,
2815                                         void_type_node,
2816                                         ptr_type_node,
2817                                         channel,
2818                                         uint64_type_node,
2819                                         val,
2820                                         boolean_type_node,
2821                                         (for_select
2822                                          ? boolean_true_node
2823                                          : boolean_false_node));
2824           if (ret == error_mark_node)
2825             return error_mark_node;
2826           // This can panic if there are too many operations on a
2827           // closed channel.
2828           TREE_NOTHROW(send_small_fndecl) = 0;
2829           return ret;
2830         }
2831       else
2832         {
2833           gcc_assert(!for_select);
2834           static tree send_nonblocking_small_fndecl;
2835           tree ret = Gogo::call_builtin(&send_nonblocking_small_fndecl,
2836                                         location,
2837                                         "__go_send_nonblocking_small",
2838                                         2,
2839                                         boolean_type_node,
2840                                         ptr_type_node,
2841                                         channel,
2842                                         uint64_type_node,
2843                                         val);
2844           if (ret == error_mark_node)
2845             return error_mark_node;
2846           // This can panic if there are too many operations on a
2847           // closed channel.
2848           TREE_NOTHROW(send_nonblocking_small_fndecl) = 0;
2849           return ret;
2850         }
2851     }
2852   else
2853     {
2854       tree make_tmp;
2855       if (TREE_ADDRESSABLE(TREE_TYPE(val)) || TREE_CODE(val) == VAR_DECL)
2856         {
2857           make_tmp = NULL_TREE;
2858           val = build_fold_addr_expr(val);
2859           if (DECL_P(val))
2860             TREE_ADDRESSABLE(val) = 1;
2861         }
2862       else
2863         {
2864           tree tmp = create_tmp_var(TREE_TYPE(val), get_name(val));
2865           DECL_IGNORED_P(tmp) = 0;
2866           DECL_INITIAL(tmp) = val;
2867           TREE_ADDRESSABLE(tmp) = 1;
2868           make_tmp = build1(DECL_EXPR, void_type_node, tmp);
2869           SET_EXPR_LOCATION(make_tmp, location);
2870           val = build_fold_addr_expr(tmp);
2871         }
2872       val = fold_convert(ptr_type_node, val);
2873
2874       tree call;
2875       if (blocking)
2876         {
2877           static tree send_big_fndecl;
2878           call = Gogo::call_builtin(&send_big_fndecl,
2879                                     location,
2880                                     "__go_send_big",
2881                                     3,
2882                                     void_type_node,
2883                                     ptr_type_node,
2884                                     channel,
2885                                     ptr_type_node,
2886                                     val,
2887                                     boolean_type_node,
2888                                     (for_select
2889                                      ? boolean_true_node
2890                                      : boolean_false_node));
2891           if (call == error_mark_node)
2892             return error_mark_node;
2893           // This can panic if there are too many operations on a
2894           // closed channel.
2895           TREE_NOTHROW(send_big_fndecl) = 0;
2896         }
2897       else
2898         {
2899           gcc_assert(!for_select);
2900           static tree send_nonblocking_big_fndecl;
2901           call = Gogo::call_builtin(&send_nonblocking_big_fndecl,
2902                                     location,
2903                                     "__go_send_nonblocking_big",
2904                                     2,
2905                                     boolean_type_node,
2906                                     ptr_type_node,
2907                                     channel,
2908                                     ptr_type_node,
2909                                     val);
2910           if (call == error_mark_node)
2911             return error_mark_node;
2912           // This can panic if there are too many operations on a
2913           // closed channel.
2914           TREE_NOTHROW(send_nonblocking_big_fndecl) = 0;
2915         }
2916
2917       if (make_tmp == NULL_TREE)
2918         return call;
2919       else
2920         {
2921           tree ret = build2(COMPOUND_EXPR, TREE_TYPE(call), make_tmp, call);
2922           SET_EXPR_LOCATION(ret, location);
2923           return ret;
2924         }
2925     }
2926 }
2927
2928 // Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
2929 // This does a blocking receive and returns the value read from the
2930 // channel.  If FOR_SELECT is true, this is being done because it was
2931 // chosen in a select statement.
2932
2933 tree
2934 Gogo::receive_from_channel(tree type_tree, tree channel, bool for_select,
2935                            source_location location)
2936 {
2937   if (type_tree == error_mark_node || channel == error_mark_node)
2938     return error_mark_node;
2939
2940   if (int_size_in_bytes(type_tree) <= 8
2941       && !AGGREGATE_TYPE_P(type_tree)
2942       && !FLOAT_TYPE_P(type_tree))
2943     {
2944       static tree receive_small_fndecl;
2945       tree call = Gogo::call_builtin(&receive_small_fndecl,
2946                                      location,
2947                                      "__go_receive_small",
2948                                      2,
2949                                      uint64_type_node,
2950                                      ptr_type_node,
2951                                      channel,
2952                                      boolean_type_node,
2953                                      (for_select
2954                                       ? boolean_true_node
2955                                       : boolean_false_node));
2956       if (call == error_mark_node)
2957         return error_mark_node;
2958       // This can panic if there are too many operations on a closed
2959       // channel.
2960       TREE_NOTHROW(receive_small_fndecl) = 0;
2961       int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
2962       tree int_type_tree = go_type_for_size(bitsize, 1);
2963       return fold_convert_loc(location, type_tree,
2964                               fold_convert_loc(location, int_type_tree,
2965                                                call));
2966     }
2967   else
2968     {
2969       tree tmp = create_tmp_var(type_tree, get_name(type_tree));
2970       DECL_IGNORED_P(tmp) = 0;
2971       TREE_ADDRESSABLE(tmp) = 1;
2972       tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
2973       SET_EXPR_LOCATION(make_tmp, location);
2974       tree tmpaddr = build_fold_addr_expr(tmp);
2975       tmpaddr = fold_convert(ptr_type_node, tmpaddr);
2976       static tree receive_big_fndecl;
2977       tree call = Gogo::call_builtin(&receive_big_fndecl,
2978                                      location,
2979                                      "__go_receive_big",
2980                                      3,
2981                                      boolean_type_node,
2982                                      ptr_type_node,
2983                                      channel,
2984                                      ptr_type_node,
2985                                      tmpaddr,
2986                                      boolean_type_node,
2987                                      (for_select
2988                                       ? boolean_true_node
2989                                       : boolean_false_node));
2990       if (call == error_mark_node)
2991         return error_mark_node;
2992       // This can panic if there are too many operations on a closed
2993       // channel.
2994       TREE_NOTHROW(receive_big_fndecl) = 0;
2995       return build2(COMPOUND_EXPR, type_tree, make_tmp,
2996                     build2(COMPOUND_EXPR, type_tree, call, tmp));
2997     }
2998 }
2999
3000 // Return the type of a function trampoline.  This is like
3001 // get_trampoline_type in tree-nested.c.
3002
3003 tree
3004 Gogo::trampoline_type_tree()
3005 {
3006   static tree type_tree;
3007   if (type_tree == NULL_TREE)
3008     {
3009       unsigned int size;
3010       unsigned int align;
3011       go_trampoline_info(&size, &align);
3012       tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
3013       t = build_array_type(char_type_node, t);
3014
3015       type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
3016                                        "__data", t);
3017       t = TYPE_FIELDS(type_tree);
3018       DECL_ALIGN(t) = align;
3019       DECL_USER_ALIGN(t) = 1;
3020
3021       go_preserve_from_gc(type_tree);
3022     }
3023   return type_tree;
3024 }
3025
3026 // Make a trampoline which calls FNADDR passing CLOSURE.
3027
3028 tree
3029 Gogo::make_trampoline(tree fnaddr, tree closure, source_location location)
3030 {
3031   tree trampoline_type = Gogo::trampoline_type_tree();
3032   tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
3033
3034   closure = save_expr(closure);
3035
3036   // We allocate the trampoline using a special function which will
3037   // mark it as executable.
3038   static tree trampoline_fndecl;
3039   tree x = Gogo::call_builtin(&trampoline_fndecl,
3040                               location,
3041                               "__go_allocate_trampoline",
3042                               2,
3043                               ptr_type_node,
3044                               size_type_node,
3045                               trampoline_size,
3046                               ptr_type_node,
3047                               fold_convert_loc(location, ptr_type_node,
3048                                                closure));
3049   if (x == error_mark_node)
3050     return error_mark_node;
3051
3052   x = save_expr(x);
3053
3054   // Initialize the trampoline.
3055   tree ini = build_call_expr(implicit_built_in_decls[BUILT_IN_INIT_TRAMPOLINE],
3056                              3, x, fnaddr, closure);
3057
3058   // On some targets the trampoline address needs to be adjusted.  For
3059   // example, when compiling in Thumb mode on the ARM, the address
3060   // needs to have the low bit set.
3061   x = build_call_expr(implicit_built_in_decls[BUILT_IN_ADJUST_TRAMPOLINE],
3062                       1, x);
3063   x = fold_convert(TREE_TYPE(fnaddr), x);
3064
3065   return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
3066 }