OSDN Git Service

PR/21391
[pf3gnuchains/gcc-fork.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4    Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA.  */
22
23
24 /* Middle-to-low level generation of rtx code and insns.
25
26    This file contains support functions for creating rtl expressions
27    and manipulating them in the doubly-linked chain of insns.
28
29    The patterns of the insns are created by machine-dependent
30    routines in insn-emit.c, which is generated automatically from
31    the machine description.  These routines make the individual rtx's
32    of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33    which are automatically generated from rtl.def; what is machine
34    dependent is the kind of rtx's they make and what arguments they
35    use.  */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "toplev.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "real.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60
61 /* Commonly used modes.  */
62
63 enum machine_mode byte_mode;    /* Mode whose width is BITS_PER_UNIT.  */
64 enum machine_mode word_mode;    /* Mode whose width is BITS_PER_WORD.  */
65 enum machine_mode double_mode;  /* Mode whose width is DOUBLE_TYPE_SIZE.  */
66 enum machine_mode ptr_mode;     /* Mode whose width is POINTER_SIZE.  */
67
68
69 /* This is *not* reset after each function.  It gives each CODE_LABEL
70    in the entire compilation a unique label number.  */
71
72 static GTY(()) int label_num = 1;
73
74 /* Nonzero means do not generate NOTEs for source line numbers.  */
75
76 static int no_line_numbers;
77
78 /* Commonly used rtx's, so that we only need space for one copy.
79    These are initialized once for the entire compilation.
80    All of these are unique; no other rtx-object will be equal to any
81    of these.  */
82
83 rtx global_rtl[GR_MAX];
84
85 /* Commonly used RTL for hard registers.  These objects are not necessarily
86    unique, so we allocate them separately from global_rtl.  They are
87    initialized once per compilation unit, then copied into regno_reg_rtx
88    at the beginning of each function.  */
89 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
90
91 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
92    the values of 0, 1, and 2.  For the integer entries and VOIDmode, we
93    record a copy of const[012]_rtx.  */
94
95 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
96
97 rtx const_true_rtx;
98
99 REAL_VALUE_TYPE dconst0;
100 REAL_VALUE_TYPE dconst1;
101 REAL_VALUE_TYPE dconst2;
102 REAL_VALUE_TYPE dconst3;
103 REAL_VALUE_TYPE dconst10;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconstm2;
106 REAL_VALUE_TYPE dconsthalf;
107 REAL_VALUE_TYPE dconstthird;
108 REAL_VALUE_TYPE dconstpi;
109 REAL_VALUE_TYPE dconste;
110
111 /* All references to the following fixed hard registers go through
112    these unique rtl objects.  On machines where the frame-pointer and
113    arg-pointer are the same register, they use the same unique object.
114
115    After register allocation, other rtl objects which used to be pseudo-regs
116    may be clobbered to refer to the frame-pointer register.
117    But references that were originally to the frame-pointer can be
118    distinguished from the others because they contain frame_pointer_rtx.
119
120    When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
121    tricky: until register elimination has taken place hard_frame_pointer_rtx
122    should be used if it is being set, and frame_pointer_rtx otherwise.  After
123    register elimination hard_frame_pointer_rtx should always be used.
124    On machines where the two registers are same (most) then these are the
125    same.
126
127    In an inline procedure, the stack and frame pointer rtxs may not be
128    used for anything else.  */
129 rtx static_chain_rtx;           /* (REG:Pmode STATIC_CHAIN_REGNUM) */
130 rtx static_chain_incoming_rtx;  /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
131 rtx pic_offset_table_rtx;       /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
132
133 /* This is used to implement __builtin_return_address for some machines.
134    See for instance the MIPS port.  */
135 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
136
137 /* We make one copy of (const_int C) where C is in
138    [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
139    to save space during the compilation and simplify comparisons of
140    integers.  */
141
142 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
143
144 /* A hash table storing CONST_INTs whose absolute value is greater
145    than MAX_SAVED_CONST_INT.  */
146
147 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
148      htab_t const_int_htab;
149
150 /* A hash table storing memory attribute structures.  */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
152      htab_t mem_attrs_htab;
153
154 /* A hash table storing register attribute structures.  */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
156      htab_t reg_attrs_htab;
157
158 /* A hash table storing all CONST_DOUBLEs.  */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160      htab_t const_double_htab;
161
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_location (cfun->emit->x_last_location)
166 #define first_label_num (cfun->emit->x_first_label_num)
167
168 static rtx make_call_insn_raw (rtx);
169 static rtx find_line_note (rtx);
170 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
171 static void unshare_all_decls (tree);
172 static void reset_used_decls (tree);
173 static void mark_label_nuses (rtx);
174 static hashval_t const_int_htab_hash (const void *);
175 static int const_int_htab_eq (const void *, const void *);
176 static hashval_t const_double_htab_hash (const void *);
177 static int const_double_htab_eq (const void *, const void *);
178 static rtx lookup_const_double (rtx);
179 static hashval_t mem_attrs_htab_hash (const void *);
180 static int mem_attrs_htab_eq (const void *, const void *);
181 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
182                                  enum machine_mode);
183 static hashval_t reg_attrs_htab_hash (const void *);
184 static int reg_attrs_htab_eq (const void *, const void *);
185 static reg_attrs *get_reg_attrs (tree, int);
186 static tree component_ref_for_mem_expr (tree);
187 static rtx gen_const_vector (enum machine_mode, int);
188 static void copy_rtx_if_shared_1 (rtx *orig);
189
190 /* Probability of the conditional branch currently proceeded by try_split.
191    Set to -1 otherwise.  */
192 int split_branch_probability = -1;
193 \f
194 /* Returns a hash code for X (which is a really a CONST_INT).  */
195
196 static hashval_t
197 const_int_htab_hash (const void *x)
198 {
199   return (hashval_t) INTVAL ((rtx) x);
200 }
201
202 /* Returns nonzero if the value represented by X (which is really a
203    CONST_INT) is the same as that given by Y (which is really a
204    HOST_WIDE_INT *).  */
205
206 static int
207 const_int_htab_eq (const void *x, const void *y)
208 {
209   return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
210 }
211
212 /* Returns a hash code for X (which is really a CONST_DOUBLE).  */
213 static hashval_t
214 const_double_htab_hash (const void *x)
215 {
216   rtx value = (rtx) x;
217   hashval_t h;
218
219   if (GET_MODE (value) == VOIDmode)
220     h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
221   else
222     {
223       h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
224       /* MODE is used in the comparison, so it should be in the hash.  */
225       h ^= GET_MODE (value);
226     }
227   return h;
228 }
229
230 /* Returns nonzero if the value represented by X (really a ...)
231    is the same as that represented by Y (really a ...) */
232 static int
233 const_double_htab_eq (const void *x, const void *y)
234 {
235   rtx a = (rtx)x, b = (rtx)y;
236
237   if (GET_MODE (a) != GET_MODE (b))
238     return 0;
239   if (GET_MODE (a) == VOIDmode)
240     return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
241             && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
242   else
243     return real_identical (CONST_DOUBLE_REAL_VALUE (a),
244                            CONST_DOUBLE_REAL_VALUE (b));
245 }
246
247 /* Returns a hash code for X (which is a really a mem_attrs *).  */
248
249 static hashval_t
250 mem_attrs_htab_hash (const void *x)
251 {
252   mem_attrs *p = (mem_attrs *) x;
253
254   return (p->alias ^ (p->align * 1000)
255           ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
256           ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
257           ^ (size_t) iterative_hash_expr (p->expr, 0));
258 }
259
260 /* Returns nonzero if the value represented by X (which is really a
261    mem_attrs *) is the same as that given by Y (which is also really a
262    mem_attrs *).  */
263
264 static int
265 mem_attrs_htab_eq (const void *x, const void *y)
266 {
267   mem_attrs *p = (mem_attrs *) x;
268   mem_attrs *q = (mem_attrs *) y;
269
270   return (p->alias == q->alias && p->offset == q->offset
271           && p->size == q->size && p->align == q->align
272           && (p->expr == q->expr
273               || (p->expr != NULL_TREE && q->expr != NULL_TREE
274                   && operand_equal_p (p->expr, q->expr, 0))));
275 }
276
277 /* Allocate a new mem_attrs structure and insert it into the hash table if
278    one identical to it is not already in the table.  We are doing this for
279    MEM of mode MODE.  */
280
281 static mem_attrs *
282 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
283                unsigned int align, enum machine_mode mode)
284 {
285   mem_attrs attrs;
286   void **slot;
287
288   /* If everything is the default, we can just return zero.
289      This must match what the corresponding MEM_* macros return when the
290      field is not present.  */
291   if (alias == 0 && expr == 0 && offset == 0
292       && (size == 0
293           || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
294       && (STRICT_ALIGNMENT && mode != BLKmode
295           ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
296     return 0;
297
298   attrs.alias = alias;
299   attrs.expr = expr;
300   attrs.offset = offset;
301   attrs.size = size;
302   attrs.align = align;
303
304   slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
305   if (*slot == 0)
306     {
307       *slot = ggc_alloc (sizeof (mem_attrs));
308       memcpy (*slot, &attrs, sizeof (mem_attrs));
309     }
310
311   return *slot;
312 }
313
314 /* Returns a hash code for X (which is a really a reg_attrs *).  */
315
316 static hashval_t
317 reg_attrs_htab_hash (const void *x)
318 {
319   reg_attrs *p = (reg_attrs *) x;
320
321   return ((p->offset * 1000) ^ (long) p->decl);
322 }
323
324 /* Returns nonzero if the value represented by X (which is really a
325    reg_attrs *) is the same as that given by Y (which is also really a
326    reg_attrs *).  */
327
328 static int
329 reg_attrs_htab_eq (const void *x, const void *y)
330 {
331   reg_attrs *p = (reg_attrs *) x;
332   reg_attrs *q = (reg_attrs *) y;
333
334   return (p->decl == q->decl && p->offset == q->offset);
335 }
336 /* Allocate a new reg_attrs structure and insert it into the hash table if
337    one identical to it is not already in the table.  We are doing this for
338    MEM of mode MODE.  */
339
340 static reg_attrs *
341 get_reg_attrs (tree decl, int offset)
342 {
343   reg_attrs attrs;
344   void **slot;
345
346   /* If everything is the default, we can just return zero.  */
347   if (decl == 0 && offset == 0)
348     return 0;
349
350   attrs.decl = decl;
351   attrs.offset = offset;
352
353   slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
354   if (*slot == 0)
355     {
356       *slot = ggc_alloc (sizeof (reg_attrs));
357       memcpy (*slot, &attrs, sizeof (reg_attrs));
358     }
359
360   return *slot;
361 }
362
363 /* Generate a new REG rtx.  Make sure ORIGINAL_REGNO is set properly, and
364    don't attempt to share with the various global pieces of rtl (such as
365    frame_pointer_rtx).  */
366
367 rtx
368 gen_raw_REG (enum machine_mode mode, int regno)
369 {
370   rtx x = gen_rtx_raw_REG (mode, regno);
371   ORIGINAL_REGNO (x) = regno;
372   return x;
373 }
374
375 /* There are some RTL codes that require special attention; the generation
376    functions do the raw handling.  If you add to this list, modify
377    special_rtx in gengenrtl.c as well.  */
378
379 rtx
380 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
381 {
382   void **slot;
383
384   if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
385     return const_int_rtx[arg + MAX_SAVED_CONST_INT];
386
387 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
388   if (const_true_rtx && arg == STORE_FLAG_VALUE)
389     return const_true_rtx;
390 #endif
391
392   /* Look up the CONST_INT in the hash table.  */
393   slot = htab_find_slot_with_hash (const_int_htab, &arg,
394                                    (hashval_t) arg, INSERT);
395   if (*slot == 0)
396     *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
397
398   return (rtx) *slot;
399 }
400
401 rtx
402 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
403 {
404   return GEN_INT (trunc_int_for_mode (c, mode));
405 }
406
407 /* CONST_DOUBLEs might be created from pairs of integers, or from
408    REAL_VALUE_TYPEs.  Also, their length is known only at run time,
409    so we cannot use gen_rtx_raw_CONST_DOUBLE.  */
410
411 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
412    hash table.  If so, return its counterpart; otherwise add it
413    to the hash table and return it.  */
414 static rtx
415 lookup_const_double (rtx real)
416 {
417   void **slot = htab_find_slot (const_double_htab, real, INSERT);
418   if (*slot == 0)
419     *slot = real;
420
421   return (rtx) *slot;
422 }
423
424 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
425    VALUE in mode MODE.  */
426 rtx
427 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
428 {
429   rtx real = rtx_alloc (CONST_DOUBLE);
430   PUT_MODE (real, mode);
431
432   real->u.rv = value;
433
434   return lookup_const_double (real);
435 }
436
437 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
438    of ints: I0 is the low-order word and I1 is the high-order word.
439    Do not use this routine for non-integer modes; convert to
440    REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE.  */
441
442 rtx
443 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
444 {
445   rtx value;
446   unsigned int i;
447
448   /* There are the following cases (note that there are no modes with
449      HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
450
451      1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
452         gen_int_mode.
453      2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
454         the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
455         from copies of the sign bit, and sign of i0 and i1 are the same),  then 
456         we return a CONST_INT for i0.
457      3) Otherwise, we create a CONST_DOUBLE for i0 and i1.  */
458   if (mode != VOIDmode)
459     {
460       gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
461                   || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
462                   /* We can get a 0 for an error mark.  */
463                   || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
464                   || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
465
466       if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
467         return gen_int_mode (i0, mode);
468
469       gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
470     }
471
472   /* If this integer fits in one word, return a CONST_INT.  */
473   if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
474     return GEN_INT (i0);
475
476   /* We use VOIDmode for integers.  */
477   value = rtx_alloc (CONST_DOUBLE);
478   PUT_MODE (value, VOIDmode);
479
480   CONST_DOUBLE_LOW (value) = i0;
481   CONST_DOUBLE_HIGH (value) = i1;
482
483   for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
484     XWINT (value, i) = 0;
485
486   return lookup_const_double (value);
487 }
488
489 rtx
490 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
491 {
492   /* In case the MD file explicitly references the frame pointer, have
493      all such references point to the same frame pointer.  This is
494      used during frame pointer elimination to distinguish the explicit
495      references to these registers from pseudos that happened to be
496      assigned to them.
497
498      If we have eliminated the frame pointer or arg pointer, we will
499      be using it as a normal register, for example as a spill
500      register.  In such cases, we might be accessing it in a mode that
501      is not Pmode and therefore cannot use the pre-allocated rtx.
502
503      Also don't do this when we are making new REGs in reload, since
504      we don't want to get confused with the real pointers.  */
505
506   if (mode == Pmode && !reload_in_progress)
507     {
508       if (regno == FRAME_POINTER_REGNUM
509           && (!reload_completed || frame_pointer_needed))
510         return frame_pointer_rtx;
511 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
512       if (regno == HARD_FRAME_POINTER_REGNUM
513           && (!reload_completed || frame_pointer_needed))
514         return hard_frame_pointer_rtx;
515 #endif
516 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
517       if (regno == ARG_POINTER_REGNUM)
518         return arg_pointer_rtx;
519 #endif
520 #ifdef RETURN_ADDRESS_POINTER_REGNUM
521       if (regno == RETURN_ADDRESS_POINTER_REGNUM)
522         return return_address_pointer_rtx;
523 #endif
524       if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
525           && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
526         return pic_offset_table_rtx;
527       if (regno == STACK_POINTER_REGNUM)
528         return stack_pointer_rtx;
529     }
530
531 #if 0
532   /* If the per-function register table has been set up, try to re-use
533      an existing entry in that table to avoid useless generation of RTL.
534
535      This code is disabled for now until we can fix the various backends
536      which depend on having non-shared hard registers in some cases.   Long
537      term we want to re-enable this code as it can significantly cut down
538      on the amount of useless RTL that gets generated.
539
540      We'll also need to fix some code that runs after reload that wants to
541      set ORIGINAL_REGNO.  */
542
543   if (cfun
544       && cfun->emit
545       && regno_reg_rtx
546       && regno < FIRST_PSEUDO_REGISTER
547       && reg_raw_mode[regno] == mode)
548     return regno_reg_rtx[regno];
549 #endif
550
551   return gen_raw_REG (mode, regno);
552 }
553
554 rtx
555 gen_rtx_MEM (enum machine_mode mode, rtx addr)
556 {
557   rtx rt = gen_rtx_raw_MEM (mode, addr);
558
559   /* This field is not cleared by the mere allocation of the rtx, so
560      we clear it here.  */
561   MEM_ATTRS (rt) = 0;
562
563   return rt;
564 }
565
566 /* Generate a memory referring to non-trapping constant memory.  */
567
568 rtx
569 gen_const_mem (enum machine_mode mode, rtx addr)
570 {
571   rtx mem = gen_rtx_MEM (mode, addr);
572   MEM_READONLY_P (mem) = 1;
573   MEM_NOTRAP_P (mem) = 1;
574   return mem;
575 }
576
577 /* Generate a MEM referring to fixed portions of the frame, e.g., register
578    save areas.  */
579
580 rtx
581 gen_frame_mem (enum machine_mode mode, rtx addr)
582 {
583   rtx mem = gen_rtx_MEM (mode, addr);
584   MEM_NOTRAP_P (mem) = 1;
585   set_mem_alias_set (mem, get_frame_alias_set ());
586   return mem;
587 }
588
589 /* Generate a MEM referring to a temporary use of the stack, not part
590     of the fixed stack frame.  For example, something which is pushed
591     by a target splitter.  */
592 rtx
593 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
594 {
595   rtx mem = gen_rtx_MEM (mode, addr);
596   MEM_NOTRAP_P (mem) = 1;
597   if (!current_function_calls_alloca)
598     set_mem_alias_set (mem, get_frame_alias_set ());
599   return mem;
600 }
601
602 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET).  Return true if
603    this construct would be valid, and false otherwise.  */
604
605 bool
606 validate_subreg (enum machine_mode omode, enum machine_mode imode,
607                  rtx reg, unsigned int offset)
608 {
609   unsigned int isize = GET_MODE_SIZE (imode);
610   unsigned int osize = GET_MODE_SIZE (omode);
611
612   /* All subregs must be aligned.  */
613   if (offset % osize != 0)
614     return false;
615
616   /* The subreg offset cannot be outside the inner object.  */
617   if (offset >= isize)
618     return false;
619
620   /* ??? This should not be here.  Temporarily continue to allow word_mode
621      subregs of anything.  The most common offender is (subreg:SI (reg:DF)).
622      Generally, backends are doing something sketchy but it'll take time to
623      fix them all.  */
624   if (omode == word_mode)
625     ;
626   /* ??? Similarly, e.g. with (subreg:DF (reg:TI)).  Though store_bit_field
627      is the culprit here, and not the backends.  */
628   else if (osize >= UNITS_PER_WORD && isize >= osize)
629     ;
630   /* Allow component subregs of complex and vector.  Though given the below
631      extraction rules, it's not always clear what that means.  */
632   else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
633            && GET_MODE_INNER (imode) == omode)
634     ;
635   /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
636      i.e. (subreg:V4SF (reg:SF) 0).  This surely isn't the cleanest way to
637      represent this.  It's questionable if this ought to be represented at
638      all -- why can't this all be hidden in post-reload splitters that make
639      arbitrarily mode changes to the registers themselves.  */
640   else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
641     ;
642   /* Subregs involving floating point modes are not allowed to
643      change size.  Therefore (subreg:DI (reg:DF) 0) is fine, but
644      (subreg:SI (reg:DF) 0) isn't.  */
645   else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
646     {
647       if (isize != osize)
648         return false;
649     }
650
651   /* Paradoxical subregs must have offset zero.  */
652   if (osize > isize)
653     return offset == 0;
654
655   /* This is a normal subreg.  Verify that the offset is representable.  */
656
657   /* For hard registers, we already have most of these rules collected in
658      subreg_offset_representable_p.  */
659   if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
660     {
661       unsigned int regno = REGNO (reg);
662
663 #ifdef CANNOT_CHANGE_MODE_CLASS
664       if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
665           && GET_MODE_INNER (imode) == omode)
666         ;
667       else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
668         return false;
669 #endif
670
671       return subreg_offset_representable_p (regno, imode, offset, omode);
672     }
673
674   /* For pseudo registers, we want most of the same checks.  Namely:
675      If the register no larger than a word, the subreg must be lowpart.
676      If the register is larger than a word, the subreg must be the lowpart
677      of a subword.  A subreg does *not* perform arbitrary bit extraction.
678      Given that we've already checked mode/offset alignment, we only have
679      to check subword subregs here.  */
680   if (osize < UNITS_PER_WORD)
681     {
682       enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
683       unsigned int low_off = subreg_lowpart_offset (omode, wmode);
684       if (offset % UNITS_PER_WORD != low_off)
685         return false;
686     }
687   return true;
688 }
689
690 rtx
691 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
692 {
693   gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
694   return gen_rtx_raw_SUBREG (mode, reg, offset);
695 }
696
697 /* Generate a SUBREG representing the least-significant part of REG if MODE
698    is smaller than mode of REG, otherwise paradoxical SUBREG.  */
699
700 rtx
701 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
702 {
703   enum machine_mode inmode;
704
705   inmode = GET_MODE (reg);
706   if (inmode == VOIDmode)
707     inmode = mode;
708   return gen_rtx_SUBREG (mode, reg,
709                          subreg_lowpart_offset (mode, inmode));
710 }
711 \f
712 /* gen_rtvec (n, [rt1, ..., rtn])
713 **
714 **          This routine creates an rtvec and stores within it the
715 **      pointers to rtx's which are its arguments.
716 */
717
718 /*VARARGS1*/
719 rtvec
720 gen_rtvec (int n, ...)
721 {
722   int i, save_n;
723   rtx *vector;
724   va_list p;
725
726   va_start (p, n);
727
728   if (n == 0)
729     return NULL_RTVEC;          /* Don't allocate an empty rtvec...     */
730
731   vector = alloca (n * sizeof (rtx));
732
733   for (i = 0; i < n; i++)
734     vector[i] = va_arg (p, rtx);
735
736   /* The definition of VA_* in K&R C causes `n' to go out of scope.  */
737   save_n = n;
738   va_end (p);
739
740   return gen_rtvec_v (save_n, vector);
741 }
742
743 rtvec
744 gen_rtvec_v (int n, rtx *argp)
745 {
746   int i;
747   rtvec rt_val;
748
749   if (n == 0)
750     return NULL_RTVEC;          /* Don't allocate an empty rtvec...     */
751
752   rt_val = rtvec_alloc (n);     /* Allocate an rtvec...                 */
753
754   for (i = 0; i < n; i++)
755     rt_val->elem[i] = *argp++;
756
757   return rt_val;
758 }
759 \f
760 /* Generate a REG rtx for a new pseudo register of mode MODE.
761    This pseudo is assigned the next sequential register number.  */
762
763 rtx
764 gen_reg_rtx (enum machine_mode mode)
765 {
766   struct function *f = cfun;
767   rtx val;
768
769   /* Don't let anything called after initial flow analysis create new
770      registers.  */
771   gcc_assert (!no_new_pseudos);
772
773   if (generating_concat_p
774       && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
775           || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
776     {
777       /* For complex modes, don't make a single pseudo.
778          Instead, make a CONCAT of two pseudos.
779          This allows noncontiguous allocation of the real and imaginary parts,
780          which makes much better code.  Besides, allocating DCmode
781          pseudos overstrains reload on some machines like the 386.  */
782       rtx realpart, imagpart;
783       enum machine_mode partmode = GET_MODE_INNER (mode);
784
785       realpart = gen_reg_rtx (partmode);
786       imagpart = gen_reg_rtx (partmode);
787       return gen_rtx_CONCAT (mode, realpart, imagpart);
788     }
789
790   /* Make sure regno_pointer_align, and regno_reg_rtx are large
791      enough to have an element for this pseudo reg number.  */
792
793   if (reg_rtx_no == f->emit->regno_pointer_align_length)
794     {
795       int old_size = f->emit->regno_pointer_align_length;
796       char *new;
797       rtx *new1;
798
799       new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
800       memset (new + old_size, 0, old_size);
801       f->emit->regno_pointer_align = (unsigned char *) new;
802
803       new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
804                           old_size * 2 * sizeof (rtx));
805       memset (new1 + old_size, 0, old_size * sizeof (rtx));
806       regno_reg_rtx = new1;
807
808       f->emit->regno_pointer_align_length = old_size * 2;
809     }
810
811   val = gen_raw_REG (mode, reg_rtx_no);
812   regno_reg_rtx[reg_rtx_no++] = val;
813   return val;
814 }
815
816 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
817    Do the big endian correction if needed.  */
818
819 rtx
820 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
821 {
822   rtx new = gen_rtx_REG (mode, regno);
823   tree decl;
824   HOST_WIDE_INT var_size;
825
826   /* PR middle-end/14084
827      The problem appears when a variable is stored in a larger register
828      and later it is used in the original mode or some mode in between
829      or some part of variable is accessed.
830
831      On little endian machines there is no problem because
832      the REG_OFFSET of the start of the variable is the same when
833      accessed in any mode (it is 0).
834
835      However, this is not true on big endian machines.
836      The offset of the start of the variable is different when accessed
837      in different modes.
838      When we are taking a part of the REG we have to change the OFFSET
839      from offset WRT size of mode of REG to offset WRT size of variable.
840
841      If we would not do the big endian correction the resulting REG_OFFSET
842      would be larger than the size of the DECL.
843
844      Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
845
846      REG.mode  MODE  DECL size  old offset  new offset  description
847      DI        SI    4          4           0           int32 in SImode
848      DI        SI    1          4           0           char in SImode
849      DI        QI    1          7           0           char in QImode
850      DI        QI    4          5           1           1st element in QImode
851                                                         of char[4]
852      DI        HI    4          6           2           1st element in HImode
853                                                         of int16[2]
854
855      If the size of DECL is equal or greater than the size of REG
856      we can't do this correction because the register holds the
857      whole variable or a part of the variable and thus the REG_OFFSET
858      is already correct.  */
859
860   decl = REG_EXPR (reg);
861   if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
862       && decl != NULL
863       && offset > 0
864       && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
865       && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
866           && var_size < GET_MODE_SIZE (GET_MODE (reg))))
867     {
868       int offset_le;
869
870       /* Convert machine endian to little endian WRT size of mode of REG.  */
871       if (WORDS_BIG_ENDIAN)
872         offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
873                      / UNITS_PER_WORD) * UNITS_PER_WORD;
874       else
875         offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
876
877       if (BYTES_BIG_ENDIAN)
878         offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
879                       % UNITS_PER_WORD);
880       else
881         offset_le += offset % UNITS_PER_WORD;
882
883       if (offset_le >= var_size)
884         {
885           /* MODE is wider than the variable so the new reg will cover
886              the whole variable so the resulting OFFSET should be 0.  */
887           offset = 0;
888         }
889       else
890         {
891           /* Convert little endian to machine endian WRT size of variable.  */
892           if (WORDS_BIG_ENDIAN)
893             offset = ((var_size - 1 - offset_le)
894                       / UNITS_PER_WORD) * UNITS_PER_WORD;
895           else
896             offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
897
898           if (BYTES_BIG_ENDIAN)
899             offset += ((var_size - 1 - offset_le)
900                        % UNITS_PER_WORD);
901           else
902             offset += offset_le % UNITS_PER_WORD;
903         }
904     }
905
906   REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
907                                    REG_OFFSET (reg) + offset);
908   return new;
909 }
910
911 /* Set the decl for MEM to DECL.  */
912
913 void
914 set_reg_attrs_from_mem (rtx reg, rtx mem)
915 {
916   if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
917     REG_ATTRS (reg)
918       = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
919 }
920
921 /* Set the register attributes for registers contained in PARM_RTX.
922    Use needed values from memory attributes of MEM.  */
923
924 void
925 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
926 {
927   if (REG_P (parm_rtx))
928     set_reg_attrs_from_mem (parm_rtx, mem);
929   else if (GET_CODE (parm_rtx) == PARALLEL)
930     {
931       /* Check for a NULL entry in the first slot, used to indicate that the
932          parameter goes both on the stack and in registers.  */
933       int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
934       for (; i < XVECLEN (parm_rtx, 0); i++)
935         {
936           rtx x = XVECEXP (parm_rtx, 0, i);
937           if (REG_P (XEXP (x, 0)))
938             REG_ATTRS (XEXP (x, 0))
939               = get_reg_attrs (MEM_EXPR (mem),
940                                INTVAL (XEXP (x, 1)));
941         }
942     }
943 }
944
945 /* Assign the RTX X to declaration T.  */
946 void
947 set_decl_rtl (tree t, rtx x)
948 {
949   DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
950
951   if (!x)
952     return;
953   /* For register, we maintain the reverse information too.  */
954   if (REG_P (x))
955     REG_ATTRS (x) = get_reg_attrs (t, 0);
956   else if (GET_CODE (x) == SUBREG)
957     REG_ATTRS (SUBREG_REG (x))
958       = get_reg_attrs (t, -SUBREG_BYTE (x));
959   if (GET_CODE (x) == CONCAT)
960     {
961       if (REG_P (XEXP (x, 0)))
962         REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
963       if (REG_P (XEXP (x, 1)))
964         REG_ATTRS (XEXP (x, 1))
965           = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
966     }
967   if (GET_CODE (x) == PARALLEL)
968     {
969       int i;
970       for (i = 0; i < XVECLEN (x, 0); i++)
971         {
972           rtx y = XVECEXP (x, 0, i);
973           if (REG_P (XEXP (y, 0)))
974             REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
975         }
976     }
977 }
978
979 /* Assign the RTX X to parameter declaration T.  */
980 void
981 set_decl_incoming_rtl (tree t, rtx x)
982 {
983   DECL_INCOMING_RTL (t) = x;
984
985   if (!x)
986     return;
987   /* For register, we maintain the reverse information too.  */
988   if (REG_P (x))
989     REG_ATTRS (x) = get_reg_attrs (t, 0);
990   else if (GET_CODE (x) == SUBREG)
991     REG_ATTRS (SUBREG_REG (x))
992       = get_reg_attrs (t, -SUBREG_BYTE (x));
993   if (GET_CODE (x) == CONCAT)
994     {
995       if (REG_P (XEXP (x, 0)))
996         REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
997       if (REG_P (XEXP (x, 1)))
998         REG_ATTRS (XEXP (x, 1))
999           = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1000     }
1001   if (GET_CODE (x) == PARALLEL)
1002     {
1003       int i, start;
1004
1005       /* Check for a NULL entry, used to indicate that the parameter goes
1006          both on the stack and in registers.  */
1007       if (XEXP (XVECEXP (x, 0, 0), 0))
1008         start = 0;
1009       else
1010         start = 1;
1011
1012       for (i = start; i < XVECLEN (x, 0); i++)
1013         {
1014           rtx y = XVECEXP (x, 0, i);
1015           if (REG_P (XEXP (y, 0)))
1016             REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1017         }
1018     }
1019 }
1020
1021 /* Identify REG (which may be a CONCAT) as a user register.  */
1022
1023 void
1024 mark_user_reg (rtx reg)
1025 {
1026   if (GET_CODE (reg) == CONCAT)
1027     {
1028       REG_USERVAR_P (XEXP (reg, 0)) = 1;
1029       REG_USERVAR_P (XEXP (reg, 1)) = 1;
1030     }
1031   else
1032     {
1033       gcc_assert (REG_P (reg));
1034       REG_USERVAR_P (reg) = 1;
1035     }
1036 }
1037
1038 /* Identify REG as a probable pointer register and show its alignment
1039    as ALIGN, if nonzero.  */
1040
1041 void
1042 mark_reg_pointer (rtx reg, int align)
1043 {
1044   if (! REG_POINTER (reg))
1045     {
1046       REG_POINTER (reg) = 1;
1047
1048       if (align)
1049         REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1050     }
1051   else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1052     /* We can no-longer be sure just how aligned this pointer is.  */
1053     REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1054 }
1055
1056 /* Return 1 plus largest pseudo reg number used in the current function.  */
1057
1058 int
1059 max_reg_num (void)
1060 {
1061   return reg_rtx_no;
1062 }
1063
1064 /* Return 1 + the largest label number used so far in the current function.  */
1065
1066 int
1067 max_label_num (void)
1068 {
1069   return label_num;
1070 }
1071
1072 /* Return first label number used in this function (if any were used).  */
1073
1074 int
1075 get_first_label_num (void)
1076 {
1077   return first_label_num;
1078 }
1079
1080 /* If the rtx for label was created during the expansion of a nested
1081    function, then first_label_num won't include this label number.
1082    Fix this now so that array indicies work later.  */
1083
1084 void
1085 maybe_set_first_label_num (rtx x)
1086 {
1087   if (CODE_LABEL_NUMBER (x) < first_label_num)
1088     first_label_num = CODE_LABEL_NUMBER (x);
1089 }
1090 \f
1091 /* Return a value representing some low-order bits of X, where the number
1092    of low-order bits is given by MODE.  Note that no conversion is done
1093    between floating-point and fixed-point values, rather, the bit
1094    representation is returned.
1095
1096    This function handles the cases in common between gen_lowpart, below,
1097    and two variants in cse.c and combine.c.  These are the cases that can
1098    be safely handled at all points in the compilation.
1099
1100    If this is not a case we can handle, return 0.  */
1101
1102 rtx
1103 gen_lowpart_common (enum machine_mode mode, rtx x)
1104 {
1105   int msize = GET_MODE_SIZE (mode);
1106   int xsize;
1107   int offset = 0;
1108   enum machine_mode innermode;
1109
1110   /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1111      so we have to make one up.  Yuk.  */
1112   innermode = GET_MODE (x);
1113   if (GET_CODE (x) == CONST_INT
1114       && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1115     innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1116   else if (innermode == VOIDmode)
1117     innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1118   
1119   xsize = GET_MODE_SIZE (innermode);
1120
1121   gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1122
1123   if (innermode == mode)
1124     return x;
1125
1126   /* MODE must occupy no more words than the mode of X.  */
1127   if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1128       > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1129     return 0;
1130
1131   /* Don't allow generating paradoxical FLOAT_MODE subregs.  */
1132   if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1133     return 0;
1134
1135   offset = subreg_lowpart_offset (mode, innermode);
1136
1137   if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1138       && (GET_MODE_CLASS (mode) == MODE_INT
1139           || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1140     {
1141       /* If we are getting the low-order part of something that has been
1142          sign- or zero-extended, we can either just use the object being
1143          extended or make a narrower extension.  If we want an even smaller
1144          piece than the size of the object being extended, call ourselves
1145          recursively.
1146
1147          This case is used mostly by combine and cse.  */
1148
1149       if (GET_MODE (XEXP (x, 0)) == mode)
1150         return XEXP (x, 0);
1151       else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1152         return gen_lowpart_common (mode, XEXP (x, 0));
1153       else if (msize < xsize)
1154         return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1155     }
1156   else if (GET_CODE (x) == SUBREG || REG_P (x)
1157            || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1158            || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1159     return simplify_gen_subreg (mode, x, innermode, offset);
1160
1161   /* Otherwise, we can't do this.  */
1162   return 0;
1163 }
1164 \f
1165 rtx
1166 gen_highpart (enum machine_mode mode, rtx x)
1167 {
1168   unsigned int msize = GET_MODE_SIZE (mode);
1169   rtx result;
1170
1171   /* This case loses if X is a subreg.  To catch bugs early,
1172      complain if an invalid MODE is used even in other cases.  */
1173   gcc_assert (msize <= UNITS_PER_WORD
1174               || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1175
1176   result = simplify_gen_subreg (mode, x, GET_MODE (x),
1177                                 subreg_highpart_offset (mode, GET_MODE (x)));
1178   gcc_assert (result);
1179   
1180   /* simplify_gen_subreg is not guaranteed to return a valid operand for
1181      the target if we have a MEM.  gen_highpart must return a valid operand,
1182      emitting code if necessary to do so.  */
1183   if (MEM_P (result))
1184     {
1185       result = validize_mem (result);
1186       gcc_assert (result);
1187     }
1188   
1189   return result;
1190 }
1191
1192 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1193    be VOIDmode constant.  */
1194 rtx
1195 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1196 {
1197   if (GET_MODE (exp) != VOIDmode)
1198     {
1199       gcc_assert (GET_MODE (exp) == innermode);
1200       return gen_highpart (outermode, exp);
1201     }
1202   return simplify_gen_subreg (outermode, exp, innermode,
1203                               subreg_highpart_offset (outermode, innermode));
1204 }
1205
1206 /* Return offset in bytes to get OUTERMODE low part
1207    of the value in mode INNERMODE stored in memory in target format.  */
1208
1209 unsigned int
1210 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1211 {
1212   unsigned int offset = 0;
1213   int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1214
1215   if (difference > 0)
1216     {
1217       if (WORDS_BIG_ENDIAN)
1218         offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1219       if (BYTES_BIG_ENDIAN)
1220         offset += difference % UNITS_PER_WORD;
1221     }
1222
1223   return offset;
1224 }
1225
1226 /* Return offset in bytes to get OUTERMODE high part
1227    of the value in mode INNERMODE stored in memory in target format.  */
1228 unsigned int
1229 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1230 {
1231   unsigned int offset = 0;
1232   int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1233
1234   gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1235
1236   if (difference > 0)
1237     {
1238       if (! WORDS_BIG_ENDIAN)
1239         offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1240       if (! BYTES_BIG_ENDIAN)
1241         offset += difference % UNITS_PER_WORD;
1242     }
1243
1244   return offset;
1245 }
1246
1247 /* Return 1 iff X, assumed to be a SUBREG,
1248    refers to the least significant part of its containing reg.
1249    If X is not a SUBREG, always return 1 (it is its own low part!).  */
1250
1251 int
1252 subreg_lowpart_p (rtx x)
1253 {
1254   if (GET_CODE (x) != SUBREG)
1255     return 1;
1256   else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1257     return 0;
1258
1259   return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1260           == SUBREG_BYTE (x));
1261 }
1262 \f
1263 /* Return subword OFFSET of operand OP.
1264    The word number, OFFSET, is interpreted as the word number starting
1265    at the low-order address.  OFFSET 0 is the low-order word if not
1266    WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1267
1268    If we cannot extract the required word, we return zero.  Otherwise,
1269    an rtx corresponding to the requested word will be returned.
1270
1271    VALIDATE_ADDRESS is nonzero if the address should be validated.  Before
1272    reload has completed, a valid address will always be returned.  After
1273    reload, if a valid address cannot be returned, we return zero.
1274
1275    If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1276    it is the responsibility of the caller.
1277
1278    MODE is the mode of OP in case it is a CONST_INT.
1279
1280    ??? This is still rather broken for some cases.  The problem for the
1281    moment is that all callers of this thing provide no 'goal mode' to
1282    tell us to work with.  This exists because all callers were written
1283    in a word based SUBREG world.
1284    Now use of this function can be deprecated by simplify_subreg in most
1285    cases.
1286  */
1287
1288 rtx
1289 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1290 {
1291   if (mode == VOIDmode)
1292     mode = GET_MODE (op);
1293
1294   gcc_assert (mode != VOIDmode);
1295
1296   /* If OP is narrower than a word, fail.  */
1297   if (mode != BLKmode
1298       && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1299     return 0;
1300
1301   /* If we want a word outside OP, return zero.  */
1302   if (mode != BLKmode
1303       && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1304     return const0_rtx;
1305
1306   /* Form a new MEM at the requested address.  */
1307   if (MEM_P (op))
1308     {
1309       rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1310
1311       if (! validate_address)
1312         return new;
1313
1314       else if (reload_completed)
1315         {
1316           if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1317             return 0;
1318         }
1319       else
1320         return replace_equiv_address (new, XEXP (new, 0));
1321     }
1322
1323   /* Rest can be handled by simplify_subreg.  */
1324   return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1325 }
1326
1327 /* Similar to `operand_subword', but never return 0.  If we can't
1328    extract the required subword, put OP into a register and try again.
1329    The second attempt must succeed.  We always validate the address in
1330    this case.
1331
1332    MODE is the mode of OP, in case it is CONST_INT.  */
1333
1334 rtx
1335 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1336 {
1337   rtx result = operand_subword (op, offset, 1, mode);
1338
1339   if (result)
1340     return result;
1341
1342   if (mode != BLKmode && mode != VOIDmode)
1343     {
1344       /* If this is a register which can not be accessed by words, copy it
1345          to a pseudo register.  */
1346       if (REG_P (op))
1347         op = copy_to_reg (op);
1348       else
1349         op = force_reg (mode, op);
1350     }
1351
1352   result = operand_subword (op, offset, 1, mode);
1353   gcc_assert (result);
1354
1355   return result;
1356 }
1357 \f
1358 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1359    or (2) a component ref of something variable.  Represent the later with
1360    a NULL expression.  */
1361
1362 static tree
1363 component_ref_for_mem_expr (tree ref)
1364 {
1365   tree inner = TREE_OPERAND (ref, 0);
1366
1367   if (TREE_CODE (inner) == COMPONENT_REF)
1368     inner = component_ref_for_mem_expr (inner);
1369   else
1370     {
1371       /* Now remove any conversions: they don't change what the underlying
1372          object is.  Likewise for SAVE_EXPR.  */
1373       while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1374              || TREE_CODE (inner) == NON_LVALUE_EXPR
1375              || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1376              || TREE_CODE (inner) == SAVE_EXPR)
1377         inner = TREE_OPERAND (inner, 0);
1378
1379       if (! DECL_P (inner))
1380         inner = NULL_TREE;
1381     }
1382
1383   if (inner == TREE_OPERAND (ref, 0))
1384     return ref;
1385   else
1386     return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1387                    TREE_OPERAND (ref, 1), NULL_TREE);
1388 }
1389
1390 /* Returns 1 if both MEM_EXPR can be considered equal
1391    and 0 otherwise.  */
1392
1393 int
1394 mem_expr_equal_p (tree expr1, tree expr2)
1395 {
1396   if (expr1 == expr2)
1397     return 1;
1398
1399   if (! expr1 || ! expr2)
1400     return 0;
1401
1402   if (TREE_CODE (expr1) != TREE_CODE (expr2))
1403     return 0;
1404
1405   if (TREE_CODE (expr1) == COMPONENT_REF)
1406     return 
1407       mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1408                         TREE_OPERAND (expr2, 0))
1409       && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1410                            TREE_OPERAND (expr2, 1));
1411   
1412   if (INDIRECT_REF_P (expr1))
1413     return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1414                              TREE_OPERAND (expr2, 0));
1415
1416   /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1417               have been resolved here.  */
1418   gcc_assert (DECL_P (expr1));
1419   
1420   /* Decls with different pointers can't be equal.  */
1421   return 0;
1422 }
1423
1424 /* Given REF, a MEM, and T, either the type of X or the expression
1425    corresponding to REF, set the memory attributes.  OBJECTP is nonzero
1426    if we are making a new object of this type.  BITPOS is nonzero if
1427    there is an offset outstanding on T that will be applied later.  */
1428
1429 void
1430 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1431                                  HOST_WIDE_INT bitpos)
1432 {
1433   HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1434   tree expr = MEM_EXPR (ref);
1435   rtx offset = MEM_OFFSET (ref);
1436   rtx size = MEM_SIZE (ref);
1437   unsigned int align = MEM_ALIGN (ref);
1438   HOST_WIDE_INT apply_bitpos = 0;
1439   tree type;
1440
1441   /* It can happen that type_for_mode was given a mode for which there
1442      is no language-level type.  In which case it returns NULL, which
1443      we can see here.  */
1444   if (t == NULL_TREE)
1445     return;
1446
1447   type = TYPE_P (t) ? t : TREE_TYPE (t);
1448   if (type == error_mark_node)
1449     return;
1450
1451   /* If we have already set DECL_RTL = ref, get_alias_set will get the
1452      wrong answer, as it assumes that DECL_RTL already has the right alias
1453      info.  Callers should not set DECL_RTL until after the call to
1454      set_mem_attributes.  */
1455   gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1456
1457   /* Get the alias set from the expression or type (perhaps using a
1458      front-end routine) and use it.  */
1459   alias = get_alias_set (t);
1460
1461   MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1462   MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1463   MEM_POINTER (ref) = POINTER_TYPE_P (type);
1464
1465   /* If we are making an object of this type, or if this is a DECL, we know
1466      that it is a scalar if the type is not an aggregate.  */
1467   if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1468     MEM_SCALAR_P (ref) = 1;
1469
1470   /* We can set the alignment from the type if we are making an object,
1471      this is an INDIRECT_REF, or if TYPE_ALIGN_OK.  */
1472   if (objectp || TREE_CODE (t) == INDIRECT_REF 
1473       || TREE_CODE (t) == ALIGN_INDIRECT_REF 
1474       || TYPE_ALIGN_OK (type))
1475     align = MAX (align, TYPE_ALIGN (type));
1476   else 
1477     if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1478       {
1479         if (integer_zerop (TREE_OPERAND (t, 1)))
1480           /* We don't know anything about the alignment.  */
1481           align = BITS_PER_UNIT;
1482         else
1483           align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1484       }
1485
1486   /* If the size is known, we can set that.  */
1487   if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1488     size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1489
1490   /* If T is not a type, we may be able to deduce some more information about
1491      the expression.  */
1492   if (! TYPE_P (t))
1493     {
1494       tree base;
1495
1496       if (TREE_THIS_VOLATILE (t))
1497         MEM_VOLATILE_P (ref) = 1;
1498
1499       /* Now remove any conversions: they don't change what the underlying
1500          object is.  Likewise for SAVE_EXPR.  */
1501       while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1502              || TREE_CODE (t) == NON_LVALUE_EXPR
1503              || TREE_CODE (t) == VIEW_CONVERT_EXPR
1504              || TREE_CODE (t) == SAVE_EXPR)
1505         t = TREE_OPERAND (t, 0);
1506
1507       /* We may look through structure-like accesses for the purposes of
1508          examining TREE_THIS_NOTRAP, but not array-like accesses.  */
1509       base = t;
1510       while (TREE_CODE (base) == COMPONENT_REF
1511              || TREE_CODE (base) == REALPART_EXPR
1512              || TREE_CODE (base) == IMAGPART_EXPR
1513              || TREE_CODE (base) == BIT_FIELD_REF)
1514         base = TREE_OPERAND (base, 0);
1515
1516       if (DECL_P (base))
1517         {
1518           if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1519             MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1520           else
1521             MEM_NOTRAP_P (ref) = 1;
1522         }
1523       else
1524         MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1525
1526       base = get_base_address (base);
1527       if (base && DECL_P (base)
1528           && TREE_READONLY (base)
1529           && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1530         {
1531           tree base_type = TREE_TYPE (base);
1532           gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1533                       || DECL_ARTIFICIAL (base));
1534           MEM_READONLY_P (ref) = 1;
1535         }
1536
1537       /* If this expression uses it's parent's alias set, mark it such
1538          that we won't change it.  */
1539       if (component_uses_parent_alias_set (t))
1540         MEM_KEEP_ALIAS_SET_P (ref) = 1;
1541
1542       /* If this is a decl, set the attributes of the MEM from it.  */
1543       if (DECL_P (t))
1544         {
1545           expr = t;
1546           offset = const0_rtx;
1547           apply_bitpos = bitpos;
1548           size = (DECL_SIZE_UNIT (t)
1549                   && host_integerp (DECL_SIZE_UNIT (t), 1)
1550                   ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1551           align = DECL_ALIGN (t);
1552         }
1553
1554       /* If this is a constant, we know the alignment.  */
1555       else if (CONSTANT_CLASS_P (t))
1556         {
1557           align = TYPE_ALIGN (type);
1558 #ifdef CONSTANT_ALIGNMENT
1559           align = CONSTANT_ALIGNMENT (t, align);
1560 #endif
1561         }
1562
1563       /* If this is a field reference and not a bit-field, record it.  */
1564       /* ??? There is some information that can be gleened from bit-fields,
1565          such as the word offset in the structure that might be modified.
1566          But skip it for now.  */
1567       else if (TREE_CODE (t) == COMPONENT_REF
1568                && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1569         {
1570           expr = component_ref_for_mem_expr (t);
1571           offset = const0_rtx;
1572           apply_bitpos = bitpos;
1573           /* ??? Any reason the field size would be different than
1574              the size we got from the type?  */
1575         }
1576
1577       /* If this is an array reference, look for an outer field reference.  */
1578       else if (TREE_CODE (t) == ARRAY_REF)
1579         {
1580           tree off_tree = size_zero_node;
1581           /* We can't modify t, because we use it at the end of the
1582              function.  */
1583           tree t2 = t;
1584
1585           do
1586             {
1587               tree index = TREE_OPERAND (t2, 1);
1588               tree low_bound = array_ref_low_bound (t2);
1589               tree unit_size = array_ref_element_size (t2);
1590
1591               /* We assume all arrays have sizes that are a multiple of a byte.
1592                  First subtract the lower bound, if any, in the type of the
1593                  index, then convert to sizetype and multiply by the size of
1594                  the array element.  */
1595               if (! integer_zerop (low_bound))
1596                 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1597                                      index, low_bound);
1598
1599               off_tree = size_binop (PLUS_EXPR,
1600                                      size_binop (MULT_EXPR,
1601                                                  fold_convert (sizetype,
1602                                                                index),
1603                                                  unit_size),
1604                                      off_tree);
1605               t2 = TREE_OPERAND (t2, 0);
1606             }
1607           while (TREE_CODE (t2) == ARRAY_REF);
1608
1609           if (DECL_P (t2))
1610             {
1611               expr = t2;
1612               offset = NULL;
1613               if (host_integerp (off_tree, 1))
1614                 {
1615                   HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1616                   HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1617                   align = DECL_ALIGN (t2);
1618                   if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1619                     align = aoff;
1620                   offset = GEN_INT (ioff);
1621                   apply_bitpos = bitpos;
1622                 }
1623             }
1624           else if (TREE_CODE (t2) == COMPONENT_REF)
1625             {
1626               expr = component_ref_for_mem_expr (t2);
1627               if (host_integerp (off_tree, 1))
1628                 {
1629                   offset = GEN_INT (tree_low_cst (off_tree, 1));
1630                   apply_bitpos = bitpos;
1631                 }
1632               /* ??? Any reason the field size would be different than
1633                  the size we got from the type?  */
1634             }
1635           else if (flag_argument_noalias > 1
1636                    && (INDIRECT_REF_P (t2))
1637                    && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1638             {
1639               expr = t2;
1640               offset = NULL;
1641             }
1642         }
1643
1644       /* If this is a Fortran indirect argument reference, record the
1645          parameter decl.  */
1646       else if (flag_argument_noalias > 1
1647                && (INDIRECT_REF_P (t))
1648                && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1649         {
1650           expr = t;
1651           offset = NULL;
1652         }
1653     }
1654
1655   /* If we modified OFFSET based on T, then subtract the outstanding
1656      bit position offset.  Similarly, increase the size of the accessed
1657      object to contain the negative offset.  */
1658   if (apply_bitpos)
1659     {
1660       offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1661       if (size)
1662         size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1663     }
1664
1665   if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1666     {
1667       /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1668          we're overlapping.  */
1669       offset = NULL;
1670       expr = NULL;
1671     }
1672
1673   /* Now set the attributes we computed above.  */
1674   MEM_ATTRS (ref)
1675     = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1676
1677   /* If this is already known to be a scalar or aggregate, we are done.  */
1678   if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1679     return;
1680
1681   /* If it is a reference into an aggregate, this is part of an aggregate.
1682      Otherwise we don't know.  */
1683   else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1684            || TREE_CODE (t) == ARRAY_RANGE_REF
1685            || TREE_CODE (t) == BIT_FIELD_REF)
1686     MEM_IN_STRUCT_P (ref) = 1;
1687 }
1688
1689 void
1690 set_mem_attributes (rtx ref, tree t, int objectp)
1691 {
1692   set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1693 }
1694
1695 /* Set the decl for MEM to DECL.  */
1696
1697 void
1698 set_mem_attrs_from_reg (rtx mem, rtx reg)
1699 {
1700   MEM_ATTRS (mem)
1701     = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1702                      GEN_INT (REG_OFFSET (reg)),
1703                      MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1704 }
1705
1706 /* Set the alias set of MEM to SET.  */
1707
1708 void
1709 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1710 {
1711 #ifdef ENABLE_CHECKING
1712   /* If the new and old alias sets don't conflict, something is wrong.  */
1713   gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1714 #endif
1715
1716   MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1717                                    MEM_SIZE (mem), MEM_ALIGN (mem),
1718                                    GET_MODE (mem));
1719 }
1720
1721 /* Set the alignment of MEM to ALIGN bits.  */
1722
1723 void
1724 set_mem_align (rtx mem, unsigned int align)
1725 {
1726   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1727                                    MEM_OFFSET (mem), MEM_SIZE (mem), align,
1728                                    GET_MODE (mem));
1729 }
1730
1731 /* Set the expr for MEM to EXPR.  */
1732
1733 void
1734 set_mem_expr (rtx mem, tree expr)
1735 {
1736   MEM_ATTRS (mem)
1737     = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1738                      MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1739 }
1740
1741 /* Set the offset of MEM to OFFSET.  */
1742
1743 void
1744 set_mem_offset (rtx mem, rtx offset)
1745 {
1746   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1747                                    offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1748                                    GET_MODE (mem));
1749 }
1750
1751 /* Set the size of MEM to SIZE.  */
1752
1753 void
1754 set_mem_size (rtx mem, rtx size)
1755 {
1756   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1757                                    MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1758                                    GET_MODE (mem));
1759 }
1760 \f
1761 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1762    and its address changed to ADDR.  (VOIDmode means don't change the mode.
1763    NULL for ADDR means don't change the address.)  VALIDATE is nonzero if the
1764    returned memory location is required to be valid.  The memory
1765    attributes are not changed.  */
1766
1767 static rtx
1768 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1769 {
1770   rtx new;
1771
1772   gcc_assert (MEM_P (memref));
1773   if (mode == VOIDmode)
1774     mode = GET_MODE (memref);
1775   if (addr == 0)
1776     addr = XEXP (memref, 0);
1777   if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1778       && (!validate || memory_address_p (mode, addr)))
1779     return memref;
1780
1781   if (validate)
1782     {
1783       if (reload_in_progress || reload_completed)
1784         gcc_assert (memory_address_p (mode, addr));
1785       else
1786         addr = memory_address (mode, addr);
1787     }
1788
1789   if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1790     return memref;
1791
1792   new = gen_rtx_MEM (mode, addr);
1793   MEM_COPY_ATTRIBUTES (new, memref);
1794   return new;
1795 }
1796
1797 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1798    way we are changing MEMREF, so we only preserve the alias set.  */
1799
1800 rtx
1801 change_address (rtx memref, enum machine_mode mode, rtx addr)
1802 {
1803   rtx new = change_address_1 (memref, mode, addr, 1), size;
1804   enum machine_mode mmode = GET_MODE (new);
1805   unsigned int align;
1806
1807   size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1808   align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1809
1810   /* If there are no changes, just return the original memory reference.  */
1811   if (new == memref)
1812     {
1813       if (MEM_ATTRS (memref) == 0
1814           || (MEM_EXPR (memref) == NULL
1815               && MEM_OFFSET (memref) == NULL
1816               && MEM_SIZE (memref) == size
1817               && MEM_ALIGN (memref) == align))
1818         return new;
1819
1820       new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1821       MEM_COPY_ATTRIBUTES (new, memref);
1822     }
1823
1824   MEM_ATTRS (new)
1825     = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1826
1827   return new;
1828 }
1829
1830 /* Return a memory reference like MEMREF, but with its mode changed
1831    to MODE and its address offset by OFFSET bytes.  If VALIDATE is
1832    nonzero, the memory address is forced to be valid.
1833    If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1834    and caller is responsible for adjusting MEMREF base register.  */
1835
1836 rtx
1837 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1838                   int validate, int adjust)
1839 {
1840   rtx addr = XEXP (memref, 0);
1841   rtx new;
1842   rtx memoffset = MEM_OFFSET (memref);
1843   rtx size = 0;
1844   unsigned int memalign = MEM_ALIGN (memref);
1845
1846   /* If there are no changes, just return the original memory reference.  */
1847   if (mode == GET_MODE (memref) && !offset
1848       && (!validate || memory_address_p (mode, addr)))
1849     return memref;
1850
1851   /* ??? Prefer to create garbage instead of creating shared rtl.
1852      This may happen even if offset is nonzero -- consider
1853      (plus (plus reg reg) const_int) -- so do this always.  */
1854   addr = copy_rtx (addr);
1855
1856   if (adjust)
1857     {
1858       /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1859          object, we can merge it into the LO_SUM.  */
1860       if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1861           && offset >= 0
1862           && (unsigned HOST_WIDE_INT) offset
1863               < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1864         addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1865                                plus_constant (XEXP (addr, 1), offset));
1866       else
1867         addr = plus_constant (addr, offset);
1868     }
1869
1870   new = change_address_1 (memref, mode, addr, validate);
1871
1872   /* Compute the new values of the memory attributes due to this adjustment.
1873      We add the offsets and update the alignment.  */
1874   if (memoffset)
1875     memoffset = GEN_INT (offset + INTVAL (memoffset));
1876
1877   /* Compute the new alignment by taking the MIN of the alignment and the
1878      lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1879      if zero.  */
1880   if (offset != 0)
1881     memalign
1882       = MIN (memalign,
1883              (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1884
1885   /* We can compute the size in a number of ways.  */
1886   if (GET_MODE (new) != BLKmode)
1887     size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1888   else if (MEM_SIZE (memref))
1889     size = plus_constant (MEM_SIZE (memref), -offset);
1890
1891   MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1892                                    memoffset, size, memalign, GET_MODE (new));
1893
1894   /* At some point, we should validate that this offset is within the object,
1895      if all the appropriate values are known.  */
1896   return new;
1897 }
1898
1899 /* Return a memory reference like MEMREF, but with its mode changed
1900    to MODE and its address changed to ADDR, which is assumed to be
1901    MEMREF offseted by OFFSET bytes.  If VALIDATE is
1902    nonzero, the memory address is forced to be valid.  */
1903
1904 rtx
1905 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1906                              HOST_WIDE_INT offset, int validate)
1907 {
1908   memref = change_address_1 (memref, VOIDmode, addr, validate);
1909   return adjust_address_1 (memref, mode, offset, validate, 0);
1910 }
1911
1912 /* Return a memory reference like MEMREF, but whose address is changed by
1913    adding OFFSET, an RTX, to it.  POW2 is the highest power of two factor
1914    known to be in OFFSET (possibly 1).  */
1915
1916 rtx
1917 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1918 {
1919   rtx new, addr = XEXP (memref, 0);
1920
1921   new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1922
1923   /* At this point we don't know _why_ the address is invalid.  It
1924      could have secondary memory references, multiplies or anything.
1925
1926      However, if we did go and rearrange things, we can wind up not
1927      being able to recognize the magic around pic_offset_table_rtx.
1928      This stuff is fragile, and is yet another example of why it is
1929      bad to expose PIC machinery too early.  */
1930   if (! memory_address_p (GET_MODE (memref), new)
1931       && GET_CODE (addr) == PLUS
1932       && XEXP (addr, 0) == pic_offset_table_rtx)
1933     {
1934       addr = force_reg (GET_MODE (addr), addr);
1935       new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1936     }
1937
1938   update_temp_slot_address (XEXP (memref, 0), new);
1939   new = change_address_1 (memref, VOIDmode, new, 1);
1940
1941   /* If there are no changes, just return the original memory reference.  */
1942   if (new == memref)
1943     return new;
1944
1945   /* Update the alignment to reflect the offset.  Reset the offset, which
1946      we don't know.  */
1947   MEM_ATTRS (new)
1948     = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1949                      MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1950                      GET_MODE (new));
1951   return new;
1952 }
1953
1954 /* Return a memory reference like MEMREF, but with its address changed to
1955    ADDR.  The caller is asserting that the actual piece of memory pointed
1956    to is the same, just the form of the address is being changed, such as
1957    by putting something into a register.  */
1958
1959 rtx
1960 replace_equiv_address (rtx memref, rtx addr)
1961 {
1962   /* change_address_1 copies the memory attribute structure without change
1963      and that's exactly what we want here.  */
1964   update_temp_slot_address (XEXP (memref, 0), addr);
1965   return change_address_1 (memref, VOIDmode, addr, 1);
1966 }
1967
1968 /* Likewise, but the reference is not required to be valid.  */
1969
1970 rtx
1971 replace_equiv_address_nv (rtx memref, rtx addr)
1972 {
1973   return change_address_1 (memref, VOIDmode, addr, 0);
1974 }
1975
1976 /* Return a memory reference like MEMREF, but with its mode widened to
1977    MODE and offset by OFFSET.  This would be used by targets that e.g.
1978    cannot issue QImode memory operations and have to use SImode memory
1979    operations plus masking logic.  */
1980
1981 rtx
1982 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1983 {
1984   rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1985   tree expr = MEM_EXPR (new);
1986   rtx memoffset = MEM_OFFSET (new);
1987   unsigned int size = GET_MODE_SIZE (mode);
1988
1989   /* If there are no changes, just return the original memory reference.  */
1990   if (new == memref)
1991     return new;
1992
1993   /* If we don't know what offset we were at within the expression, then
1994      we can't know if we've overstepped the bounds.  */
1995   if (! memoffset)
1996     expr = NULL_TREE;
1997
1998   while (expr)
1999     {
2000       if (TREE_CODE (expr) == COMPONENT_REF)
2001         {
2002           tree field = TREE_OPERAND (expr, 1);
2003           tree offset = component_ref_field_offset (expr);
2004
2005           if (! DECL_SIZE_UNIT (field))
2006             {
2007               expr = NULL_TREE;
2008               break;
2009             }
2010
2011           /* Is the field at least as large as the access?  If so, ok,
2012              otherwise strip back to the containing structure.  */
2013           if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2014               && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2015               && INTVAL (memoffset) >= 0)
2016             break;
2017
2018           if (! host_integerp (offset, 1))
2019             {
2020               expr = NULL_TREE;
2021               break;
2022             }
2023
2024           expr = TREE_OPERAND (expr, 0);
2025           memoffset
2026             = (GEN_INT (INTVAL (memoffset)
2027                         + tree_low_cst (offset, 1)
2028                         + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2029                            / BITS_PER_UNIT)));
2030         }
2031       /* Similarly for the decl.  */
2032       else if (DECL_P (expr)
2033                && DECL_SIZE_UNIT (expr)
2034                && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2035                && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2036                && (! memoffset || INTVAL (memoffset) >= 0))
2037         break;
2038       else
2039         {
2040           /* The widened memory access overflows the expression, which means
2041              that it could alias another expression.  Zap it.  */
2042           expr = NULL_TREE;
2043           break;
2044         }
2045     }
2046
2047   if (! expr)
2048     memoffset = NULL_RTX;
2049
2050   /* The widened memory may alias other stuff, so zap the alias set.  */
2051   /* ??? Maybe use get_alias_set on any remaining expression.  */
2052
2053   MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2054                                    MEM_ALIGN (new), mode);
2055
2056   return new;
2057 }
2058 \f
2059 /* Return a newly created CODE_LABEL rtx with a unique label number.  */
2060
2061 rtx
2062 gen_label_rtx (void)
2063 {
2064   return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2065                              NULL, label_num++, NULL);
2066 }
2067 \f
2068 /* For procedure integration.  */
2069
2070 /* Install new pointers to the first and last insns in the chain.
2071    Also, set cur_insn_uid to one higher than the last in use.
2072    Used for an inline-procedure after copying the insn chain.  */
2073
2074 void
2075 set_new_first_and_last_insn (rtx first, rtx last)
2076 {
2077   rtx insn;
2078
2079   first_insn = first;
2080   last_insn = last;
2081   cur_insn_uid = 0;
2082
2083   for (insn = first; insn; insn = NEXT_INSN (insn))
2084     cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2085
2086   cur_insn_uid++;
2087 }
2088 \f
2089 /* Go through all the RTL insn bodies and copy any invalid shared
2090    structure.  This routine should only be called once.  */
2091
2092 static void
2093 unshare_all_rtl_1 (tree fndecl, rtx insn)
2094 {
2095   tree decl;
2096
2097   /* Make sure that virtual parameters are not shared.  */
2098   for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2099     SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2100
2101   /* Make sure that virtual stack slots are not shared.  */
2102   unshare_all_decls (DECL_INITIAL (fndecl));
2103
2104   /* Unshare just about everything else.  */
2105   unshare_all_rtl_in_chain (insn);
2106
2107   /* Make sure the addresses of stack slots found outside the insn chain
2108      (such as, in DECL_RTL of a variable) are not shared
2109      with the insn chain.
2110
2111      This special care is necessary when the stack slot MEM does not
2112      actually appear in the insn chain.  If it does appear, its address
2113      is unshared from all else at that point.  */
2114   stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2115 }
2116
2117 /* Go through all the RTL insn bodies and copy any invalid shared
2118    structure, again.  This is a fairly expensive thing to do so it
2119    should be done sparingly.  */
2120
2121 void
2122 unshare_all_rtl_again (rtx insn)
2123 {
2124   rtx p;
2125   tree decl;
2126
2127   for (p = insn; p; p = NEXT_INSN (p))
2128     if (INSN_P (p))
2129       {
2130         reset_used_flags (PATTERN (p));
2131         reset_used_flags (REG_NOTES (p));
2132         reset_used_flags (LOG_LINKS (p));
2133       }
2134
2135   /* Make sure that virtual stack slots are not shared.  */
2136   reset_used_decls (DECL_INITIAL (cfun->decl));
2137
2138   /* Make sure that virtual parameters are not shared.  */
2139   for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2140     reset_used_flags (DECL_RTL (decl));
2141
2142   reset_used_flags (stack_slot_list);
2143
2144   unshare_all_rtl_1 (cfun->decl, insn);
2145 }
2146
2147 unsigned int
2148 unshare_all_rtl (void)
2149 {
2150   unshare_all_rtl_1 (current_function_decl, get_insns ());
2151   return 0;
2152 }
2153
2154 struct tree_opt_pass pass_unshare_all_rtl =
2155 {
2156   "unshare",                            /* name */
2157   NULL,                                 /* gate */
2158   unshare_all_rtl,                      /* execute */
2159   NULL,                                 /* sub */
2160   NULL,                                 /* next */
2161   0,                                    /* static_pass_number */
2162   0,                                    /* tv_id */
2163   0,                                    /* properties_required */
2164   0,                                    /* properties_provided */
2165   0,                                    /* properties_destroyed */
2166   0,                                    /* todo_flags_start */
2167   TODO_dump_func,                       /* todo_flags_finish */
2168   0                                     /* letter */
2169 };
2170
2171
2172 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2173    Recursively does the same for subexpressions.  */
2174
2175 static void
2176 verify_rtx_sharing (rtx orig, rtx insn)
2177 {
2178   rtx x = orig;
2179   int i;
2180   enum rtx_code code;
2181   const char *format_ptr;
2182
2183   if (x == 0)
2184     return;
2185
2186   code = GET_CODE (x);
2187
2188   /* These types may be freely shared.  */
2189
2190   switch (code)
2191     {
2192     case REG:
2193     case CONST_INT:
2194     case CONST_DOUBLE:
2195     case CONST_VECTOR:
2196     case SYMBOL_REF:
2197     case LABEL_REF:
2198     case CODE_LABEL:
2199     case PC:
2200     case CC0:
2201     case SCRATCH:
2202       return;
2203       /* SCRATCH must be shared because they represent distinct values.  */
2204     case CLOBBER:
2205       if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2206         return;
2207       break;
2208
2209     case CONST:
2210       /* CONST can be shared if it contains a SYMBOL_REF.  If it contains
2211          a LABEL_REF, it isn't sharable.  */
2212       if (GET_CODE (XEXP (x, 0)) == PLUS
2213           && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2214           && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2215         return;
2216       break;
2217
2218     case MEM:
2219       /* A MEM is allowed to be shared if its address is constant.  */
2220       if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2221           || reload_completed || reload_in_progress)
2222         return;
2223
2224       break;
2225
2226     default:
2227       break;
2228     }
2229
2230   /* This rtx may not be shared.  If it has already been seen,
2231      replace it with a copy of itself.  */
2232 #ifdef ENABLE_CHECKING
2233   if (RTX_FLAG (x, used))
2234     {
2235       error ("invalid rtl sharing found in the insn");
2236       debug_rtx (insn);
2237       error ("shared rtx");
2238       debug_rtx (x);
2239       internal_error ("internal consistency failure");
2240     }
2241 #endif
2242   gcc_assert (!RTX_FLAG (x, used));
2243   
2244   RTX_FLAG (x, used) = 1;
2245
2246   /* Now scan the subexpressions recursively.  */
2247
2248   format_ptr = GET_RTX_FORMAT (code);
2249
2250   for (i = 0; i < GET_RTX_LENGTH (code); i++)
2251     {
2252       switch (*format_ptr++)
2253         {
2254         case 'e':
2255           verify_rtx_sharing (XEXP (x, i), insn);
2256           break;
2257
2258         case 'E':
2259           if (XVEC (x, i) != NULL)
2260             {
2261               int j;
2262               int len = XVECLEN (x, i);
2263
2264               for (j = 0; j < len; j++)
2265                 {
2266                   /* We allow sharing of ASM_OPERANDS inside single
2267                      instruction.  */
2268                   if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2269                       && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2270                           == ASM_OPERANDS))
2271                     verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2272                   else
2273                     verify_rtx_sharing (XVECEXP (x, i, j), insn);
2274                 }
2275             }
2276           break;
2277         }
2278     }
2279   return;
2280 }
2281
2282 /* Go through all the RTL insn bodies and check that there is no unexpected
2283    sharing in between the subexpressions.  */
2284
2285 void
2286 verify_rtl_sharing (void)
2287 {
2288   rtx p;
2289
2290   for (p = get_insns (); p; p = NEXT_INSN (p))
2291     if (INSN_P (p))
2292       {
2293         reset_used_flags (PATTERN (p));
2294         reset_used_flags (REG_NOTES (p));
2295         reset_used_flags (LOG_LINKS (p));
2296       }
2297
2298   for (p = get_insns (); p; p = NEXT_INSN (p))
2299     if (INSN_P (p))
2300       {
2301         verify_rtx_sharing (PATTERN (p), p);
2302         verify_rtx_sharing (REG_NOTES (p), p);
2303         verify_rtx_sharing (LOG_LINKS (p), p);
2304       }
2305 }
2306
2307 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2308    Assumes the mark bits are cleared at entry.  */
2309
2310 void
2311 unshare_all_rtl_in_chain (rtx insn)
2312 {
2313   for (; insn; insn = NEXT_INSN (insn))
2314     if (INSN_P (insn))
2315       {
2316         PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2317         REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2318         LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2319       }
2320 }
2321
2322 /* Go through all virtual stack slots of a function and copy any
2323    shared structure.  */
2324 static void
2325 unshare_all_decls (tree blk)
2326 {
2327   tree t;
2328
2329   /* Copy shared decls.  */
2330   for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2331     if (DECL_RTL_SET_P (t))
2332       SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2333
2334   /* Now process sub-blocks.  */
2335   for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2336     unshare_all_decls (t);
2337 }
2338
2339 /* Go through all virtual stack slots of a function and mark them as
2340    not shared.  */
2341 static void
2342 reset_used_decls (tree blk)
2343 {
2344   tree t;
2345
2346   /* Mark decls.  */
2347   for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2348     if (DECL_RTL_SET_P (t))
2349       reset_used_flags (DECL_RTL (t));
2350
2351   /* Now process sub-blocks.  */
2352   for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2353     reset_used_decls (t);
2354 }
2355
2356 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2357    Recursively does the same for subexpressions.  Uses
2358    copy_rtx_if_shared_1 to reduce stack space.  */
2359
2360 rtx
2361 copy_rtx_if_shared (rtx orig)
2362 {
2363   copy_rtx_if_shared_1 (&orig);
2364   return orig;
2365 }
2366
2367 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2368    use.  Recursively does the same for subexpressions.  */
2369
2370 static void
2371 copy_rtx_if_shared_1 (rtx *orig1)
2372 {
2373   rtx x;
2374   int i;
2375   enum rtx_code code;
2376   rtx *last_ptr;
2377   const char *format_ptr;
2378   int copied = 0;
2379   int length;
2380
2381   /* Repeat is used to turn tail-recursion into iteration.  */
2382 repeat:
2383   x = *orig1;
2384
2385   if (x == 0)
2386     return;
2387
2388   code = GET_CODE (x);
2389
2390   /* These types may be freely shared.  */
2391
2392   switch (code)
2393     {
2394     case REG:
2395     case CONST_INT:
2396     case CONST_DOUBLE:
2397     case CONST_VECTOR:
2398     case SYMBOL_REF:
2399     case LABEL_REF:
2400     case CODE_LABEL:
2401     case PC:
2402     case CC0:
2403     case SCRATCH:
2404       /* SCRATCH must be shared because they represent distinct values.  */
2405       return;
2406     case CLOBBER:
2407       if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2408         return;
2409       break;
2410
2411     case CONST:
2412       /* CONST can be shared if it contains a SYMBOL_REF.  If it contains
2413          a LABEL_REF, it isn't sharable.  */
2414       if (GET_CODE (XEXP (x, 0)) == PLUS
2415           && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2416           && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2417         return;
2418       break;
2419
2420     case INSN:
2421     case JUMP_INSN:
2422     case CALL_INSN:
2423     case NOTE:
2424     case BARRIER:
2425       /* The chain of insns is not being copied.  */
2426       return;
2427
2428     default:
2429       break;
2430     }
2431
2432   /* This rtx may not be shared.  If it has already been seen,
2433      replace it with a copy of itself.  */
2434
2435   if (RTX_FLAG (x, used))
2436     {
2437       x = shallow_copy_rtx (x);
2438       copied = 1;
2439     }
2440   RTX_FLAG (x, used) = 1;
2441
2442   /* Now scan the subexpressions recursively.
2443      We can store any replaced subexpressions directly into X
2444      since we know X is not shared!  Any vectors in X
2445      must be copied if X was copied.  */
2446
2447   format_ptr = GET_RTX_FORMAT (code);
2448   length = GET_RTX_LENGTH (code);
2449   last_ptr = NULL;
2450   
2451   for (i = 0; i < length; i++)
2452     {
2453       switch (*format_ptr++)
2454         {
2455         case 'e':
2456           if (last_ptr)
2457             copy_rtx_if_shared_1 (last_ptr);
2458           last_ptr = &XEXP (x, i);
2459           break;
2460
2461         case 'E':
2462           if (XVEC (x, i) != NULL)
2463             {
2464               int j;
2465               int len = XVECLEN (x, i);
2466               
2467               /* Copy the vector iff I copied the rtx and the length
2468                  is nonzero.  */
2469               if (copied && len > 0)
2470                 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2471               
2472               /* Call recursively on all inside the vector.  */
2473               for (j = 0; j < len; j++)
2474                 {
2475                   if (last_ptr)
2476                     copy_rtx_if_shared_1 (last_ptr);
2477                   last_ptr = &XVECEXP (x, i, j);
2478                 }
2479             }
2480           break;
2481         }
2482     }
2483   *orig1 = x;
2484   if (last_ptr)
2485     {
2486       orig1 = last_ptr;
2487       goto repeat;
2488     }
2489   return;
2490 }
2491
2492 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2493    to look for shared sub-parts.  */
2494
2495 void
2496 reset_used_flags (rtx x)
2497 {
2498   int i, j;
2499   enum rtx_code code;
2500   const char *format_ptr;
2501   int length;
2502
2503   /* Repeat is used to turn tail-recursion into iteration.  */
2504 repeat:
2505   if (x == 0)
2506     return;
2507
2508   code = GET_CODE (x);
2509
2510   /* These types may be freely shared so we needn't do any resetting
2511      for them.  */
2512
2513   switch (code)
2514     {
2515     case REG:
2516     case CONST_INT:
2517     case CONST_DOUBLE:
2518     case CONST_VECTOR:
2519     case SYMBOL_REF:
2520     case CODE_LABEL:
2521     case PC:
2522     case CC0:
2523       return;
2524
2525     case INSN:
2526     case JUMP_INSN:
2527     case CALL_INSN:
2528     case NOTE:
2529     case LABEL_REF:
2530     case BARRIER:
2531       /* The chain of insns is not being copied.  */
2532       return;
2533
2534     default:
2535       break;
2536     }
2537
2538   RTX_FLAG (x, used) = 0;
2539
2540   format_ptr = GET_RTX_FORMAT (code);
2541   length = GET_RTX_LENGTH (code);
2542   
2543   for (i = 0; i < length; i++)
2544     {
2545       switch (*format_ptr++)
2546         {
2547         case 'e':
2548           if (i == length-1)
2549             {
2550               x = XEXP (x, i);
2551               goto repeat;
2552             }
2553           reset_used_flags (XEXP (x, i));
2554           break;
2555
2556         case 'E':
2557           for (j = 0; j < XVECLEN (x, i); j++)
2558             reset_used_flags (XVECEXP (x, i, j));
2559           break;
2560         }
2561     }
2562 }
2563
2564 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2565    to look for shared sub-parts.  */
2566
2567 void
2568 set_used_flags (rtx x)
2569 {
2570   int i, j;
2571   enum rtx_code code;
2572   const char *format_ptr;
2573
2574   if (x == 0)
2575     return;
2576
2577   code = GET_CODE (x);
2578
2579   /* These types may be freely shared so we needn't do any resetting
2580      for them.  */
2581
2582   switch (code)
2583     {
2584     case REG:
2585     case CONST_INT:
2586     case CONST_DOUBLE:
2587     case CONST_VECTOR:
2588     case SYMBOL_REF:
2589     case CODE_LABEL:
2590     case PC:
2591     case CC0:
2592       return;
2593
2594     case INSN:
2595     case JUMP_INSN:
2596     case CALL_INSN:
2597     case NOTE:
2598     case LABEL_REF:
2599     case BARRIER:
2600       /* The chain of insns is not being copied.  */
2601       return;
2602
2603     default:
2604       break;
2605     }
2606
2607   RTX_FLAG (x, used) = 1;
2608
2609   format_ptr = GET_RTX_FORMAT (code);
2610   for (i = 0; i < GET_RTX_LENGTH (code); i++)
2611     {
2612       switch (*format_ptr++)
2613         {
2614         case 'e':
2615           set_used_flags (XEXP (x, i));
2616           break;
2617
2618         case 'E':
2619           for (j = 0; j < XVECLEN (x, i); j++)
2620             set_used_flags (XVECEXP (x, i, j));
2621           break;
2622         }
2623     }
2624 }
2625 \f
2626 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2627    Return X or the rtx for the pseudo reg the value of X was copied into.
2628    OTHER must be valid as a SET_DEST.  */
2629
2630 rtx
2631 make_safe_from (rtx x, rtx other)
2632 {
2633   while (1)
2634     switch (GET_CODE (other))
2635       {
2636       case SUBREG:
2637         other = SUBREG_REG (other);
2638         break;
2639       case STRICT_LOW_PART:
2640       case SIGN_EXTEND:
2641       case ZERO_EXTEND:
2642         other = XEXP (other, 0);
2643         break;
2644       default:
2645         goto done;
2646       }
2647  done:
2648   if ((MEM_P (other)
2649        && ! CONSTANT_P (x)
2650        && !REG_P (x)
2651        && GET_CODE (x) != SUBREG)
2652       || (REG_P (other)
2653           && (REGNO (other) < FIRST_PSEUDO_REGISTER
2654               || reg_mentioned_p (other, x))))
2655     {
2656       rtx temp = gen_reg_rtx (GET_MODE (x));
2657       emit_move_insn (temp, x);
2658       return temp;
2659     }
2660   return x;
2661 }
2662 \f
2663 /* Emission of insns (adding them to the doubly-linked list).  */
2664
2665 /* Return the first insn of the current sequence or current function.  */
2666
2667 rtx
2668 get_insns (void)
2669 {
2670   return first_insn;
2671 }
2672
2673 /* Specify a new insn as the first in the chain.  */
2674
2675 void
2676 set_first_insn (rtx insn)
2677 {
2678   gcc_assert (!PREV_INSN (insn));
2679   first_insn = insn;
2680 }
2681
2682 /* Return the last insn emitted in current sequence or current function.  */
2683
2684 rtx
2685 get_last_insn (void)
2686 {
2687   return last_insn;
2688 }
2689
2690 /* Specify a new insn as the last in the chain.  */
2691
2692 void
2693 set_last_insn (rtx insn)
2694 {
2695   gcc_assert (!NEXT_INSN (insn));
2696   last_insn = insn;
2697 }
2698
2699 /* Return the last insn emitted, even if it is in a sequence now pushed.  */
2700
2701 rtx
2702 get_last_insn_anywhere (void)
2703 {
2704   struct sequence_stack *stack;
2705   if (last_insn)
2706     return last_insn;
2707   for (stack = seq_stack; stack; stack = stack->next)
2708     if (stack->last != 0)
2709       return stack->last;
2710   return 0;
2711 }
2712
2713 /* Return the first nonnote insn emitted in current sequence or current
2714    function.  This routine looks inside SEQUENCEs.  */
2715
2716 rtx
2717 get_first_nonnote_insn (void)
2718 {
2719   rtx insn = first_insn;
2720
2721   if (insn)
2722     {
2723       if (NOTE_P (insn))
2724         for (insn = next_insn (insn);
2725              insn && NOTE_P (insn);
2726              insn = next_insn (insn))
2727           continue;
2728       else
2729         {
2730           if (NONJUMP_INSN_P (insn)
2731               && GET_CODE (PATTERN (insn)) == SEQUENCE)
2732             insn = XVECEXP (PATTERN (insn), 0, 0);
2733         }
2734     }
2735
2736   return insn;
2737 }
2738
2739 /* Return the last nonnote insn emitted in current sequence or current
2740    function.  This routine looks inside SEQUENCEs.  */
2741
2742 rtx
2743 get_last_nonnote_insn (void)
2744 {
2745   rtx insn = last_insn;
2746
2747   if (insn)
2748     {
2749       if (NOTE_P (insn))
2750         for (insn = previous_insn (insn);
2751              insn && NOTE_P (insn);
2752              insn = previous_insn (insn))
2753           continue;
2754       else
2755         {
2756           if (NONJUMP_INSN_P (insn)
2757               && GET_CODE (PATTERN (insn)) == SEQUENCE)
2758             insn = XVECEXP (PATTERN (insn), 0,
2759                             XVECLEN (PATTERN (insn), 0) - 1);
2760         }
2761     }
2762
2763   return insn;
2764 }
2765
2766 /* Return a number larger than any instruction's uid in this function.  */
2767
2768 int
2769 get_max_uid (void)
2770 {
2771   return cur_insn_uid;
2772 }
2773
2774 /* Renumber instructions so that no instruction UIDs are wasted.  */
2775
2776 void
2777 renumber_insns (void)
2778 {
2779   rtx insn;
2780
2781   /* If we're not supposed to renumber instructions, don't.  */
2782   if (!flag_renumber_insns)
2783     return;
2784
2785   /* If there aren't that many instructions, then it's not really
2786      worth renumbering them.  */
2787   if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2788     return;
2789
2790   cur_insn_uid = 1;
2791
2792   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2793     {
2794       if (dump_file)
2795         fprintf (dump_file, "Renumbering insn %d to %d\n",
2796                  INSN_UID (insn), cur_insn_uid);
2797       INSN_UID (insn) = cur_insn_uid++;
2798     }
2799 }
2800 \f
2801 /* Return the next insn.  If it is a SEQUENCE, return the first insn
2802    of the sequence.  */
2803
2804 rtx
2805 next_insn (rtx insn)
2806 {
2807   if (insn)
2808     {
2809       insn = NEXT_INSN (insn);
2810       if (insn && NONJUMP_INSN_P (insn)
2811           && GET_CODE (PATTERN (insn)) == SEQUENCE)
2812         insn = XVECEXP (PATTERN (insn), 0, 0);
2813     }
2814
2815   return insn;
2816 }
2817
2818 /* Return the previous insn.  If it is a SEQUENCE, return the last insn
2819    of the sequence.  */
2820
2821 rtx
2822 previous_insn (rtx insn)
2823 {
2824   if (insn)
2825     {
2826       insn = PREV_INSN (insn);
2827       if (insn && NONJUMP_INSN_P (insn)
2828           && GET_CODE (PATTERN (insn)) == SEQUENCE)
2829         insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2830     }
2831
2832   return insn;
2833 }
2834
2835 /* Return the next insn after INSN that is not a NOTE.  This routine does not
2836    look inside SEQUENCEs.  */
2837
2838 rtx
2839 next_nonnote_insn (rtx insn)
2840 {
2841   while (insn)
2842     {
2843       insn = NEXT_INSN (insn);
2844       if (insn == 0 || !NOTE_P (insn))
2845         break;
2846     }
2847
2848   return insn;
2849 }
2850
2851 /* Return the previous insn before INSN that is not a NOTE.  This routine does
2852    not look inside SEQUENCEs.  */
2853
2854 rtx
2855 prev_nonnote_insn (rtx insn)
2856 {
2857   while (insn)
2858     {
2859       insn = PREV_INSN (insn);
2860       if (insn == 0 || !NOTE_P (insn))
2861         break;
2862     }
2863
2864   return insn;
2865 }
2866
2867 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2868    or 0, if there is none.  This routine does not look inside
2869    SEQUENCEs.  */
2870
2871 rtx
2872 next_real_insn (rtx insn)
2873 {
2874   while (insn)
2875     {
2876       insn = NEXT_INSN (insn);
2877       if (insn == 0 || INSN_P (insn))
2878         break;
2879     }
2880
2881   return insn;
2882 }
2883
2884 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2885    or 0, if there is none.  This routine does not look inside
2886    SEQUENCEs.  */
2887
2888 rtx
2889 prev_real_insn (rtx insn)
2890 {
2891   while (insn)
2892     {
2893       insn = PREV_INSN (insn);
2894       if (insn == 0 || INSN_P (insn))
2895         break;
2896     }
2897
2898   return insn;
2899 }
2900
2901 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2902    This routine does not look inside SEQUENCEs.  */
2903
2904 rtx
2905 last_call_insn (void)
2906 {
2907   rtx insn;
2908
2909   for (insn = get_last_insn ();
2910        insn && !CALL_P (insn);
2911        insn = PREV_INSN (insn))
2912     ;
2913
2914   return insn;
2915 }
2916
2917 /* Find the next insn after INSN that really does something.  This routine
2918    does not look inside SEQUENCEs.  Until reload has completed, this is the
2919    same as next_real_insn.  */
2920
2921 int
2922 active_insn_p (rtx insn)
2923 {
2924   return (CALL_P (insn) || JUMP_P (insn)
2925           || (NONJUMP_INSN_P (insn)
2926               && (! reload_completed
2927                   || (GET_CODE (PATTERN (insn)) != USE
2928                       && GET_CODE (PATTERN (insn)) != CLOBBER))));
2929 }
2930
2931 rtx
2932 next_active_insn (rtx insn)
2933 {
2934   while (insn)
2935     {
2936       insn = NEXT_INSN (insn);
2937       if (insn == 0 || active_insn_p (insn))
2938         break;
2939     }
2940
2941   return insn;
2942 }
2943
2944 /* Find the last insn before INSN that really does something.  This routine
2945    does not look inside SEQUENCEs.  Until reload has completed, this is the
2946    same as prev_real_insn.  */
2947
2948 rtx
2949 prev_active_insn (rtx insn)
2950 {
2951   while (insn)
2952     {
2953       insn = PREV_INSN (insn);
2954       if (insn == 0 || active_insn_p (insn))
2955         break;
2956     }
2957
2958   return insn;
2959 }
2960
2961 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none.  */
2962
2963 rtx
2964 next_label (rtx insn)
2965 {
2966   while (insn)
2967     {
2968       insn = NEXT_INSN (insn);
2969       if (insn == 0 || LABEL_P (insn))
2970         break;
2971     }
2972
2973   return insn;
2974 }
2975
2976 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none.  */
2977
2978 rtx
2979 prev_label (rtx insn)
2980 {
2981   while (insn)
2982     {
2983       insn = PREV_INSN (insn);
2984       if (insn == 0 || LABEL_P (insn))
2985         break;
2986     }
2987
2988   return insn;
2989 }
2990
2991 /* Return the last label to mark the same position as LABEL.  Return null
2992    if LABEL itself is null.  */
2993
2994 rtx
2995 skip_consecutive_labels (rtx label)
2996 {
2997   rtx insn;
2998
2999   for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3000     if (LABEL_P (insn))
3001       label = insn;
3002
3003   return label;
3004 }
3005 \f
3006 #ifdef HAVE_cc0
3007 /* INSN uses CC0 and is being moved into a delay slot.  Set up REG_CC_SETTER
3008    and REG_CC_USER notes so we can find it.  */
3009
3010 void
3011 link_cc0_insns (rtx insn)
3012 {
3013   rtx user = next_nonnote_insn (insn);
3014
3015   if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3016     user = XVECEXP (PATTERN (user), 0, 0);
3017
3018   REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3019                                         REG_NOTES (user));
3020   REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3021 }
3022
3023 /* Return the next insn that uses CC0 after INSN, which is assumed to
3024    set it.  This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3025    applied to the result of this function should yield INSN).
3026
3027    Normally, this is simply the next insn.  However, if a REG_CC_USER note
3028    is present, it contains the insn that uses CC0.
3029
3030    Return 0 if we can't find the insn.  */
3031
3032 rtx
3033 next_cc0_user (rtx insn)
3034 {
3035   rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3036
3037   if (note)
3038     return XEXP (note, 0);
3039
3040   insn = next_nonnote_insn (insn);
3041   if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3042     insn = XVECEXP (PATTERN (insn), 0, 0);
3043
3044   if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3045     return insn;
3046
3047   return 0;
3048 }
3049
3050 /* Find the insn that set CC0 for INSN.  Unless INSN has a REG_CC_SETTER
3051    note, it is the previous insn.  */
3052
3053 rtx
3054 prev_cc0_setter (rtx insn)
3055 {
3056   rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3057
3058   if (note)
3059     return XEXP (note, 0);
3060
3061   insn = prev_nonnote_insn (insn);
3062   gcc_assert (sets_cc0_p (PATTERN (insn)));
3063
3064   return insn;
3065 }
3066 #endif
3067
3068 /* Increment the label uses for all labels present in rtx.  */
3069
3070 static void
3071 mark_label_nuses (rtx x)
3072 {
3073   enum rtx_code code;
3074   int i, j;
3075   const char *fmt;
3076
3077   code = GET_CODE (x);
3078   if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3079     LABEL_NUSES (XEXP (x, 0))++;
3080
3081   fmt = GET_RTX_FORMAT (code);
3082   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3083     {
3084       if (fmt[i] == 'e')
3085         mark_label_nuses (XEXP (x, i));
3086       else if (fmt[i] == 'E')
3087         for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3088           mark_label_nuses (XVECEXP (x, i, j));
3089     }
3090 }
3091
3092 \f
3093 /* Try splitting insns that can be split for better scheduling.
3094    PAT is the pattern which might split.
3095    TRIAL is the insn providing PAT.
3096    LAST is nonzero if we should return the last insn of the sequence produced.
3097
3098    If this routine succeeds in splitting, it returns the first or last
3099    replacement insn depending on the value of LAST.  Otherwise, it
3100    returns TRIAL.  If the insn to be returned can be split, it will be.  */
3101
3102 rtx
3103 try_split (rtx pat, rtx trial, int last)
3104 {
3105   rtx before = PREV_INSN (trial);
3106   rtx after = NEXT_INSN (trial);
3107   int has_barrier = 0;
3108   rtx tem;
3109   rtx note, seq;
3110   int probability;
3111   rtx insn_last, insn;
3112   int njumps = 0;
3113
3114   if (any_condjump_p (trial)
3115       && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3116     split_branch_probability = INTVAL (XEXP (note, 0));
3117   probability = split_branch_probability;
3118
3119   seq = split_insns (pat, trial);
3120
3121   split_branch_probability = -1;
3122
3123   /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3124      We may need to handle this specially.  */
3125   if (after && BARRIER_P (after))
3126     {
3127       has_barrier = 1;
3128       after = NEXT_INSN (after);
3129     }
3130
3131   if (!seq)
3132     return trial;
3133
3134   /* Avoid infinite loop if any insn of the result matches
3135      the original pattern.  */
3136   insn_last = seq;
3137   while (1)
3138     {
3139       if (INSN_P (insn_last)
3140           && rtx_equal_p (PATTERN (insn_last), pat))
3141         return trial;
3142       if (!NEXT_INSN (insn_last))
3143         break;
3144       insn_last = NEXT_INSN (insn_last);
3145     }
3146
3147   /* Mark labels.  */
3148   for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3149     {
3150       if (JUMP_P (insn))
3151         {
3152           mark_jump_label (PATTERN (insn), insn, 0);
3153           njumps++;
3154           if (probability != -1
3155               && any_condjump_p (insn)
3156               && !find_reg_note (insn, REG_BR_PROB, 0))
3157             {
3158               /* We can preserve the REG_BR_PROB notes only if exactly
3159                  one jump is created, otherwise the machine description
3160                  is responsible for this step using
3161                  split_branch_probability variable.  */
3162               gcc_assert (njumps == 1);
3163               REG_NOTES (insn)
3164                 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3165                                      GEN_INT (probability),
3166                                      REG_NOTES (insn));
3167             }
3168         }
3169     }
3170
3171   /* If we are splitting a CALL_INSN, look for the CALL_INSN
3172      in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it.  */
3173   if (CALL_P (trial))
3174     {
3175       for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3176         if (CALL_P (insn))
3177           {
3178             rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3179             while (*p)
3180               p = &XEXP (*p, 1);
3181             *p = CALL_INSN_FUNCTION_USAGE (trial);
3182             SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3183           }
3184     }
3185
3186   /* Copy notes, particularly those related to the CFG.  */
3187   for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3188     {
3189       switch (REG_NOTE_KIND (note))
3190         {
3191         case REG_EH_REGION:
3192           insn = insn_last;
3193           while (insn != NULL_RTX)
3194             {
3195               if (CALL_P (insn)
3196                   || (flag_non_call_exceptions && INSN_P (insn)
3197                       && may_trap_p (PATTERN (insn))))
3198                 REG_NOTES (insn)
3199                   = gen_rtx_EXPR_LIST (REG_EH_REGION,
3200                                        XEXP (note, 0),
3201                                        REG_NOTES (insn));
3202               insn = PREV_INSN (insn);
3203             }
3204           break;
3205
3206         case REG_NORETURN:
3207         case REG_SETJMP:
3208           insn = insn_last;
3209           while (insn != NULL_RTX)
3210             {
3211               if (CALL_P (insn))
3212                 REG_NOTES (insn)
3213                   = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3214                                        XEXP (note, 0),
3215                                        REG_NOTES (insn));
3216               insn = PREV_INSN (insn);
3217             }
3218           break;
3219
3220         case REG_NON_LOCAL_GOTO:
3221           insn = insn_last;
3222           while (insn != NULL_RTX)
3223             {
3224               if (JUMP_P (insn))
3225                 REG_NOTES (insn)
3226                   = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3227                                        XEXP (note, 0),
3228                                        REG_NOTES (insn));
3229               insn = PREV_INSN (insn);
3230             }
3231           break;
3232
3233         default:
3234           break;
3235         }
3236     }
3237
3238   /* If there are LABELS inside the split insns increment the
3239      usage count so we don't delete the label.  */
3240   if (NONJUMP_INSN_P (trial))
3241     {
3242       insn = insn_last;
3243       while (insn != NULL_RTX)
3244         {
3245           if (NONJUMP_INSN_P (insn))
3246             mark_label_nuses (PATTERN (insn));
3247
3248           insn = PREV_INSN (insn);
3249         }
3250     }
3251
3252   tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3253
3254   delete_insn (trial);
3255   if (has_barrier)
3256     emit_barrier_after (tem);
3257
3258   /* Recursively call try_split for each new insn created; by the
3259      time control returns here that insn will be fully split, so
3260      set LAST and continue from the insn after the one returned.
3261      We can't use next_active_insn here since AFTER may be a note.
3262      Ignore deleted insns, which can be occur if not optimizing.  */
3263   for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3264     if (! INSN_DELETED_P (tem) && INSN_P (tem))
3265       tem = try_split (PATTERN (tem), tem, 1);
3266
3267   /* Return either the first or the last insn, depending on which was
3268      requested.  */
3269   return last
3270     ? (after ? PREV_INSN (after) : last_insn)
3271     : NEXT_INSN (before);
3272 }
3273 \f
3274 /* Make and return an INSN rtx, initializing all its slots.
3275    Store PATTERN in the pattern slots.  */
3276
3277 rtx
3278 make_insn_raw (rtx pattern)
3279 {
3280   rtx insn;
3281
3282   insn = rtx_alloc (INSN);
3283
3284   INSN_UID (insn) = cur_insn_uid++;
3285   PATTERN (insn) = pattern;
3286   INSN_CODE (insn) = -1;
3287   LOG_LINKS (insn) = NULL;
3288   REG_NOTES (insn) = NULL;
3289   INSN_LOCATOR (insn) = 0;
3290   BLOCK_FOR_INSN (insn) = NULL;
3291
3292 #ifdef ENABLE_RTL_CHECKING
3293   if (insn
3294       && INSN_P (insn)
3295       && (returnjump_p (insn)
3296           || (GET_CODE (insn) == SET
3297               && SET_DEST (insn) == pc_rtx)))
3298     {
3299       warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3300       debug_rtx (insn);
3301     }
3302 #endif
3303
3304   return insn;
3305 }
3306
3307 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn.  */
3308
3309 rtx
3310 make_jump_insn_raw (rtx pattern)
3311 {
3312   rtx insn;
3313
3314   insn = rtx_alloc (JUMP_INSN);
3315   INSN_UID (insn) = cur_insn_uid++;
3316
3317   PATTERN (insn) = pattern;
3318   INSN_CODE (insn) = -1;
3319   LOG_LINKS (insn) = NULL;
3320   REG_NOTES (insn) = NULL;
3321   JUMP_LABEL (insn) = NULL;
3322   INSN_LOCATOR (insn) = 0;
3323   BLOCK_FOR_INSN (insn) = NULL;
3324
3325   return insn;
3326 }
3327
3328 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn.  */
3329
3330 static rtx
3331 make_call_insn_raw (rtx pattern)
3332 {
3333   rtx insn;
3334
3335   insn = rtx_alloc (CALL_INSN);
3336   INSN_UID (insn) = cur_insn_uid++;
3337
3338   PATTERN (insn) = pattern;
3339   INSN_CODE (insn) = -1;
3340   LOG_LINKS (insn) = NULL;
3341   REG_NOTES (insn) = NULL;
3342   CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3343   INSN_LOCATOR (insn) = 0;
3344   BLOCK_FOR_INSN (insn) = NULL;
3345
3346   return insn;
3347 }
3348 \f
3349 /* Add INSN to the end of the doubly-linked list.
3350    INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE.  */
3351
3352 void
3353 add_insn (rtx insn)
3354 {
3355   PREV_INSN (insn) = last_insn;
3356   NEXT_INSN (insn) = 0;
3357
3358   if (NULL != last_insn)
3359     NEXT_INSN (last_insn) = insn;
3360
3361   if (NULL == first_insn)
3362     first_insn = insn;
3363
3364   last_insn = insn;
3365 }
3366
3367 /* Add INSN into the doubly-linked list after insn AFTER.  This and
3368    the next should be the only functions called to insert an insn once
3369    delay slots have been filled since only they know how to update a
3370    SEQUENCE.  */
3371
3372 void
3373 add_insn_after (rtx insn, rtx after)
3374 {
3375   rtx next = NEXT_INSN (after);
3376   basic_block bb;
3377
3378   gcc_assert (!optimize || !INSN_DELETED_P (after));
3379
3380   NEXT_INSN (insn) = next;
3381   PREV_INSN (insn) = after;
3382
3383   if (next)
3384     {
3385       PREV_INSN (next) = insn;
3386       if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3387         PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3388     }
3389   else if (last_insn == after)
3390     last_insn = insn;
3391   else
3392     {
3393       struct sequence_stack *stack = seq_stack;
3394       /* Scan all pending sequences too.  */
3395       for (; stack; stack = stack->next)
3396         if (after == stack->last)
3397           {
3398             stack->last = insn;
3399             break;
3400           }
3401
3402       gcc_assert (stack);
3403     }
3404
3405   if (!BARRIER_P (after)
3406       && !BARRIER_P (insn)
3407       && (bb = BLOCK_FOR_INSN (after)))
3408     {
3409       set_block_for_insn (insn, bb);
3410       if (INSN_P (insn))
3411         bb->flags |= BB_DIRTY;
3412       /* Should not happen as first in the BB is always
3413          either NOTE or LABEL.  */
3414       if (BB_END (bb) == after
3415           /* Avoid clobbering of structure when creating new BB.  */
3416           && !BARRIER_P (insn)
3417           && (!NOTE_P (insn)
3418               || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3419         BB_END (bb) = insn;
3420     }
3421
3422   NEXT_INSN (after) = insn;
3423   if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3424     {
3425       rtx sequence = PATTERN (after);
3426       NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3427     }
3428 }
3429
3430 /* Add INSN into the doubly-linked list before insn BEFORE.  This and
3431    the previous should be the only functions called to insert an insn once
3432    delay slots have been filled since only they know how to update a
3433    SEQUENCE.  */
3434
3435 void
3436 add_insn_before (rtx insn, rtx before)
3437 {
3438   rtx prev = PREV_INSN (before);
3439   basic_block bb;
3440
3441   gcc_assert (!optimize || !INSN_DELETED_P (before));
3442
3443   PREV_INSN (insn) = prev;
3444   NEXT_INSN (insn) = before;
3445
3446   if (prev)
3447     {
3448       NEXT_INSN (prev) = insn;
3449       if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3450         {
3451           rtx sequence = PATTERN (prev);
3452           NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3453         }
3454     }
3455   else if (first_insn == before)
3456     first_insn = insn;
3457   else
3458     {
3459       struct sequence_stack *stack = seq_stack;
3460       /* Scan all pending sequences too.  */
3461       for (; stack; stack = stack->next)
3462         if (before == stack->first)
3463           {
3464             stack->first = insn;
3465             break;
3466           }
3467
3468       gcc_assert (stack);
3469     }
3470
3471   if (!BARRIER_P (before)
3472       && !BARRIER_P (insn)
3473       && (bb = BLOCK_FOR_INSN (before)))
3474     {
3475       set_block_for_insn (insn, bb);
3476       if (INSN_P (insn))
3477         bb->flags |= BB_DIRTY;
3478       /* Should not happen as first in the BB is always either NOTE or
3479          LABEL.  */
3480       gcc_assert (BB_HEAD (bb) != insn
3481                   /* Avoid clobbering of structure when creating new BB.  */
3482                   || BARRIER_P (insn)
3483                   || (NOTE_P (insn)
3484                       && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3485     }
3486
3487   PREV_INSN (before) = insn;
3488   if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3489     PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3490 }
3491
3492 /* Remove an insn from its doubly-linked list.  This function knows how
3493    to handle sequences.  */
3494 void
3495 remove_insn (rtx insn)
3496 {
3497   rtx next = NEXT_INSN (insn);
3498   rtx prev = PREV_INSN (insn);
3499   basic_block bb;
3500
3501   if (prev)
3502     {
3503       NEXT_INSN (prev) = next;
3504       if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3505         {
3506           rtx sequence = PATTERN (prev);
3507           NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3508         }
3509     }
3510   else if (first_insn == insn)
3511     first_insn = next;
3512   else
3513     {
3514       struct sequence_stack *stack = seq_stack;
3515       /* Scan all pending sequences too.  */
3516       for (; stack; stack = stack->next)
3517         if (insn == stack->first)
3518           {
3519             stack->first = next;
3520             break;
3521           }
3522
3523       gcc_assert (stack);
3524     }
3525
3526   if (next)
3527     {
3528       PREV_INSN (next) = prev;
3529       if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3530         PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3531     }
3532   else if (last_insn == insn)
3533     last_insn = prev;
3534   else
3535     {
3536       struct sequence_stack *stack = seq_stack;
3537       /* Scan all pending sequences too.  */
3538       for (; stack; stack = stack->next)
3539         if (insn == stack->last)
3540           {
3541             stack->last = prev;
3542             break;
3543           }
3544
3545       gcc_assert (stack);
3546     }
3547   if (!BARRIER_P (insn)
3548       && (bb = BLOCK_FOR_INSN (insn)))
3549     {
3550       if (INSN_P (insn))
3551         bb->flags |= BB_DIRTY;
3552       if (BB_HEAD (bb) == insn)
3553         {
3554           /* Never ever delete the basic block note without deleting whole
3555              basic block.  */
3556           gcc_assert (!NOTE_P (insn));
3557           BB_HEAD (bb) = next;
3558         }
3559       if (BB_END (bb) == insn)
3560         BB_END (bb) = prev;
3561     }
3562 }
3563
3564 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN.  */
3565
3566 void
3567 add_function_usage_to (rtx call_insn, rtx call_fusage)
3568 {
3569   gcc_assert (call_insn && CALL_P (call_insn));
3570
3571   /* Put the register usage information on the CALL.  If there is already
3572      some usage information, put ours at the end.  */
3573   if (CALL_INSN_FUNCTION_USAGE (call_insn))
3574     {
3575       rtx link;
3576
3577       for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3578            link = XEXP (link, 1))
3579         ;
3580
3581       XEXP (link, 1) = call_fusage;
3582     }
3583   else
3584     CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3585 }
3586
3587 /* Delete all insns made since FROM.
3588    FROM becomes the new last instruction.  */
3589
3590 void
3591 delete_insns_since (rtx from)
3592 {
3593   if (from == 0)
3594     first_insn = 0;
3595   else
3596     NEXT_INSN (from) = 0;
3597   last_insn = from;
3598 }
3599
3600 /* This function is deprecated, please use sequences instead.
3601
3602    Move a consecutive bunch of insns to a different place in the chain.
3603    The insns to be moved are those between FROM and TO.
3604    They are moved to a new position after the insn AFTER.
3605    AFTER must not be FROM or TO or any insn in between.
3606
3607    This function does not know about SEQUENCEs and hence should not be
3608    called after delay-slot filling has been done.  */
3609
3610 void
3611 reorder_insns_nobb (rtx from, rtx to, rtx after)
3612 {
3613   /* Splice this bunch out of where it is now.  */
3614   if (PREV_INSN (from))
3615     NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3616   if (NEXT_INSN (to))
3617     PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3618   if (last_insn == to)
3619     last_insn = PREV_INSN (from);
3620   if (first_insn == from)
3621     first_insn = NEXT_INSN (to);
3622
3623   /* Make the new neighbors point to it and it to them.  */
3624   if (NEXT_INSN (after))
3625     PREV_INSN (NEXT_INSN (after)) = to;
3626
3627   NEXT_INSN (to) = NEXT_INSN (after);
3628   PREV_INSN (from) = after;
3629   NEXT_INSN (after) = from;
3630   if (after == last_insn)
3631     last_insn = to;
3632 }
3633
3634 /* Same as function above, but take care to update BB boundaries.  */
3635 void
3636 reorder_insns (rtx from, rtx to, rtx after)
3637 {
3638   rtx prev = PREV_INSN (from);
3639   basic_block bb, bb2;
3640
3641   reorder_insns_nobb (from, to, after);
3642
3643   if (!BARRIER_P (after)
3644       && (bb = BLOCK_FOR_INSN (after)))
3645     {
3646       rtx x;
3647       bb->flags |= BB_DIRTY;
3648
3649       if (!BARRIER_P (from)
3650           && (bb2 = BLOCK_FOR_INSN (from)))
3651         {
3652           if (BB_END (bb2) == to)
3653             BB_END (bb2) = prev;
3654           bb2->flags |= BB_DIRTY;
3655         }
3656
3657       if (BB_END (bb) == after)
3658         BB_END (bb) = to;
3659
3660       for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3661         if (!BARRIER_P (x))
3662           set_block_for_insn (x, bb);
3663     }
3664 }
3665
3666 /* Return the line note insn preceding INSN.  */
3667
3668 static rtx
3669 find_line_note (rtx insn)
3670 {
3671   if (no_line_numbers)
3672     return 0;
3673
3674   for (; insn; insn = PREV_INSN (insn))
3675     if (NOTE_P (insn)
3676         && NOTE_LINE_NUMBER (insn) >= 0)
3677       break;
3678
3679   return insn;
3680 }
3681
3682 \f
3683 /* Emit insn(s) of given code and pattern
3684    at a specified place within the doubly-linked list.
3685
3686    All of the emit_foo global entry points accept an object
3687    X which is either an insn list or a PATTERN of a single
3688    instruction.
3689
3690    There are thus a few canonical ways to generate code and
3691    emit it at a specific place in the instruction stream.  For
3692    example, consider the instruction named SPOT and the fact that
3693    we would like to emit some instructions before SPOT.  We might
3694    do it like this:
3695
3696         start_sequence ();
3697         ... emit the new instructions ...
3698         insns_head = get_insns ();
3699         end_sequence ();
3700
3701         emit_insn_before (insns_head, SPOT);
3702
3703    It used to be common to generate SEQUENCE rtl instead, but that
3704    is a relic of the past which no longer occurs.  The reason is that
3705    SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3706    generated would almost certainly die right after it was created.  */
3707
3708 /* Make X be output before the instruction BEFORE.  */
3709
3710 rtx
3711 emit_insn_before_noloc (rtx x, rtx before)
3712 {
3713   rtx last = before;
3714   rtx insn;
3715
3716   gcc_assert (before);
3717
3718   if (x == NULL_RTX)
3719     return last;
3720
3721   switch (GET_CODE (x))
3722     {
3723     case INSN:
3724     case JUMP_INSN:
3725     case CALL_INSN:
3726     case CODE_LABEL:
3727     case BARRIER:
3728     case NOTE:
3729       insn = x;
3730       while (insn)
3731         {
3732           rtx next = NEXT_INSN (insn);
3733           add_insn_before (insn, before);
3734           last = insn;
3735           insn = next;
3736         }
3737       break;
3738
3739 #ifdef ENABLE_RTL_CHECKING
3740     case SEQUENCE:
3741       gcc_unreachable ();
3742       break;
3743 #endif
3744
3745     default:
3746       last = make_insn_raw (x);
3747       add_insn_before (last, before);
3748       break;
3749     }
3750
3751   return last;
3752 }
3753
3754 /* Make an instruction with body X and code JUMP_INSN
3755    and output it before the instruction BEFORE.  */
3756
3757 rtx
3758 emit_jump_insn_before_noloc (rtx x, rtx before)
3759 {
3760   rtx insn, last = NULL_RTX;
3761
3762   gcc_assert (before);
3763
3764   switch (GET_CODE (x))
3765     {
3766     case INSN:
3767     case JUMP_INSN:
3768     case CALL_INSN:
3769     case CODE_LABEL:
3770     case BARRIER:
3771     case NOTE:
3772       insn = x;
3773       while (insn)
3774         {
3775           rtx next = NEXT_INSN (insn);
3776           add_insn_before (insn, before);
3777           last = insn;
3778           insn = next;
3779         }
3780       break;
3781
3782 #ifdef ENABLE_RTL_CHECKING
3783     case SEQUENCE:
3784       gcc_unreachable ();
3785       break;
3786 #endif
3787
3788     default:
3789       last = make_jump_insn_raw (x);
3790       add_insn_before (last, before);
3791       break;
3792     }
3793
3794   return last;
3795 }
3796
3797 /* Make an instruction with body X and code CALL_INSN
3798    and output it before the instruction BEFORE.  */
3799
3800 rtx
3801 emit_call_insn_before_noloc (rtx x, rtx before)
3802 {
3803   rtx last = NULL_RTX, insn;
3804
3805   gcc_assert (before);
3806
3807   switch (GET_CODE (x))
3808     {
3809     case INSN:
3810     case JUMP_INSN:
3811     case CALL_INSN:
3812     case CODE_LABEL:
3813     case BARRIER:
3814     case NOTE:
3815       insn = x;
3816       while (insn)
3817         {
3818           rtx next = NEXT_INSN (insn);
3819           add_insn_before (insn, before);
3820           last = insn;
3821           insn = next;
3822         }
3823       break;
3824
3825 #ifdef ENABLE_RTL_CHECKING
3826     case SEQUENCE:
3827       gcc_unreachable ();
3828       break;
3829 #endif
3830
3831     default:
3832       last = make_call_insn_raw (x);
3833       add_insn_before (last, before);
3834       break;
3835     }
3836
3837   return last;
3838 }
3839
3840 /* Make an insn of code BARRIER
3841    and output it before the insn BEFORE.  */
3842
3843 rtx
3844 emit_barrier_before (rtx before)
3845 {
3846   rtx insn = rtx_alloc (BARRIER);
3847
3848   INSN_UID (insn) = cur_insn_uid++;
3849
3850   add_insn_before (insn, before);
3851   return insn;
3852 }
3853
3854 /* Emit the label LABEL before the insn BEFORE.  */
3855
3856 rtx
3857 emit_label_before (rtx label, rtx before)
3858 {
3859   /* This can be called twice for the same label as a result of the
3860      confusion that follows a syntax error!  So make it harmless.  */
3861   if (INSN_UID (label) == 0)
3862     {
3863       INSN_UID (label) = cur_insn_uid++;
3864       add_insn_before (label, before);
3865     }
3866
3867   return label;
3868 }
3869
3870 /* Emit a note of subtype SUBTYPE before the insn BEFORE.  */
3871
3872 rtx
3873 emit_note_before (int subtype, rtx before)
3874 {
3875   rtx note = rtx_alloc (NOTE);
3876   INSN_UID (note) = cur_insn_uid++;
3877 #ifndef USE_MAPPED_LOCATION
3878   NOTE_SOURCE_FILE (note) = 0;
3879 #endif
3880   NOTE_LINE_NUMBER (note) = subtype;
3881   BLOCK_FOR_INSN (note) = NULL;
3882
3883   add_insn_before (note, before);
3884   return note;
3885 }
3886 \f
3887 /* Helper for emit_insn_after, handles lists of instructions
3888    efficiently.  */
3889
3890 static rtx emit_insn_after_1 (rtx, rtx);
3891
3892 static rtx
3893 emit_insn_after_1 (rtx first, rtx after)
3894 {
3895   rtx last;
3896   rtx after_after;
3897   basic_block bb;
3898
3899   if (!BARRIER_P (after)
3900       && (bb = BLOCK_FOR_INSN (after)))
3901     {
3902       bb->flags |= BB_DIRTY;
3903       for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3904         if (!BARRIER_P (last))
3905           set_block_for_insn (last, bb);
3906       if (!BARRIER_P (last))
3907         set_block_for_insn (last, bb);
3908       if (BB_END (bb) == after)
3909         BB_END (bb) = last;
3910     }
3911   else
3912     for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3913       continue;
3914
3915   after_after = NEXT_INSN (after);
3916
3917   NEXT_INSN (after) = first;
3918   PREV_INSN (first) = after;
3919   NEXT_INSN (last) = after_after;
3920   if (after_after)
3921     PREV_INSN (after_after) = last;
3922
3923   if (after == last_insn)
3924     last_insn = last;
3925   return last;
3926 }
3927
3928 /* Make X be output after the insn AFTER.  */
3929
3930 rtx
3931 emit_insn_after_noloc (rtx x, rtx after)
3932 {
3933   rtx last = after;
3934
3935   gcc_assert (after);
3936
3937   if (x == NULL_RTX)
3938     return last;
3939
3940   switch (GET_CODE (x))
3941     {
3942     case INSN:
3943     case JUMP_INSN:
3944     case CALL_INSN:
3945     case CODE_LABEL:
3946     case BARRIER:
3947     case NOTE:
3948       last = emit_insn_after_1 (x, after);
3949       break;
3950
3951 #ifdef ENABLE_RTL_CHECKING
3952     case SEQUENCE:
3953       gcc_unreachable ();
3954       break;
3955 #endif
3956
3957     default:
3958       last = make_insn_raw (x);
3959       add_insn_after (last, after);
3960       break;
3961     }
3962
3963   return last;
3964 }
3965
3966 /* Similar to emit_insn_after, except that line notes are to be inserted so
3967    as to act as if this insn were at FROM.  */
3968
3969 void
3970 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
3971 {
3972   rtx from_line = find_line_note (from);
3973   rtx after_line = find_line_note (after);
3974   rtx insn = emit_insn_after (x, after);
3975
3976   if (from_line)
3977     emit_note_copy_after (from_line, after);
3978
3979   if (after_line)
3980     emit_note_copy_after (after_line, insn);
3981 }
3982
3983 /* Make an insn of code JUMP_INSN with body X
3984    and output it after the insn AFTER.  */
3985
3986 rtx
3987 emit_jump_insn_after_noloc (rtx x, rtx after)
3988 {
3989   rtx last;
3990
3991   gcc_assert (after);
3992
3993   switch (GET_CODE (x))
3994     {
3995     case INSN:
3996     case JUMP_INSN:
3997     case CALL_INSN:
3998     case CODE_LABEL:
3999     case BARRIER:
4000     case NOTE:
4001       last = emit_insn_after_1 (x, after);
4002       break;
4003
4004 #ifdef ENABLE_RTL_CHECKING
4005     case SEQUENCE:
4006       gcc_unreachable ();
4007       break;
4008 #endif
4009
4010     default:
4011       last = make_jump_insn_raw (x);
4012       add_insn_after (last, after);
4013       break;
4014     }
4015
4016   return last;
4017 }
4018
4019 /* Make an instruction with body X and code CALL_INSN
4020    and output it after the instruction AFTER.  */
4021
4022 rtx
4023 emit_call_insn_after_noloc (rtx x, rtx after)
4024 {
4025   rtx last;
4026
4027   gcc_assert (after);
4028
4029   switch (GET_CODE (x))
4030     {
4031     case INSN:
4032     case JUMP_INSN:
4033     case CALL_INSN:
4034     case CODE_LABEL:
4035     case BARRIER:
4036     case NOTE:
4037       last = emit_insn_after_1 (x, after);
4038       break;
4039
4040 #ifdef ENABLE_RTL_CHECKING
4041     case SEQUENCE:
4042       gcc_unreachable ();
4043       break;
4044 #endif
4045
4046     default:
4047       last = make_call_insn_raw (x);
4048       add_insn_after (last, after);
4049       break;
4050     }
4051
4052   return last;
4053 }
4054
4055 /* Make an insn of code BARRIER
4056    and output it after the insn AFTER.  */
4057
4058 rtx
4059 emit_barrier_after (rtx after)
4060 {
4061   rtx insn = rtx_alloc (BARRIER);
4062
4063   INSN_UID (insn) = cur_insn_uid++;
4064
4065   add_insn_after (insn, after);
4066   return insn;
4067 }
4068
4069 /* Emit the label LABEL after the insn AFTER.  */
4070
4071 rtx
4072 emit_label_after (rtx label, rtx after)
4073 {
4074   /* This can be called twice for the same label
4075      as a result of the confusion that follows a syntax error!
4076      So make it harmless.  */
4077   if (INSN_UID (label) == 0)
4078     {
4079       INSN_UID (label) = cur_insn_uid++;
4080       add_insn_after (label, after);
4081     }
4082
4083   return label;
4084 }
4085
4086 /* Emit a note of subtype SUBTYPE after the insn AFTER.  */
4087
4088 rtx
4089 emit_note_after (int subtype, rtx after)
4090 {
4091   rtx note = rtx_alloc (NOTE);
4092   INSN_UID (note) = cur_insn_uid++;
4093 #ifndef USE_MAPPED_LOCATION
4094   NOTE_SOURCE_FILE (note) = 0;
4095 #endif
4096   NOTE_LINE_NUMBER (note) = subtype;
4097   BLOCK_FOR_INSN (note) = NULL;
4098   add_insn_after (note, after);
4099   return note;
4100 }
4101
4102 /* Emit a copy of note ORIG after the insn AFTER.  */
4103
4104 rtx
4105 emit_note_copy_after (rtx orig, rtx after)
4106 {
4107   rtx note;
4108
4109   if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4110     {
4111       cur_insn_uid++;
4112       return 0;
4113     }
4114
4115   note = rtx_alloc (NOTE);
4116   INSN_UID (note) = cur_insn_uid++;
4117   NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4118   NOTE_DATA (note) = NOTE_DATA (orig);
4119   BLOCK_FOR_INSN (note) = NULL;
4120   add_insn_after (note, after);
4121   return note;
4122 }
4123 \f
4124 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4125 rtx
4126 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4127 {
4128   rtx last = emit_insn_after_noloc (pattern, after);
4129
4130   if (pattern == NULL_RTX || !loc)
4131     return last;
4132
4133   after = NEXT_INSN (after);
4134   while (1)
4135     {
4136       if (active_insn_p (after) && !INSN_LOCATOR (after))
4137         INSN_LOCATOR (after) = loc;
4138       if (after == last)
4139         break;
4140       after = NEXT_INSN (after);
4141     }
4142   return last;
4143 }
4144
4145 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4146 rtx
4147 emit_insn_after (rtx pattern, rtx after)
4148 {
4149   if (INSN_P (after))
4150     return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4151   else
4152     return emit_insn_after_noloc (pattern, after);
4153 }
4154
4155 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4156 rtx
4157 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4158 {
4159   rtx last = emit_jump_insn_after_noloc (pattern, after);
4160
4161   if (pattern == NULL_RTX || !loc)
4162     return last;
4163
4164   after = NEXT_INSN (after);
4165   while (1)
4166     {
4167       if (active_insn_p (after) && !INSN_LOCATOR (after))
4168         INSN_LOCATOR (after) = loc;
4169       if (after == last)
4170         break;
4171       after = NEXT_INSN (after);
4172     }
4173   return last;
4174 }
4175
4176 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4177 rtx
4178 emit_jump_insn_after (rtx pattern, rtx after)
4179 {
4180   if (INSN_P (after))
4181     return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4182   else
4183     return emit_jump_insn_after_noloc (pattern, after);
4184 }
4185
4186 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4187 rtx
4188 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4189 {
4190   rtx last = emit_call_insn_after_noloc (pattern, after);
4191
4192   if (pattern == NULL_RTX || !loc)
4193     return last;
4194
4195   after = NEXT_INSN (after);
4196   while (1)
4197     {
4198       if (active_insn_p (after) && !INSN_LOCATOR (after))
4199         INSN_LOCATOR (after) = loc;
4200       if (after == last)
4201         break;
4202       after = NEXT_INSN (after);
4203     }
4204   return last;
4205 }
4206
4207 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4208 rtx
4209 emit_call_insn_after (rtx pattern, rtx after)
4210 {
4211   if (INSN_P (after))
4212     return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4213   else
4214     return emit_call_insn_after_noloc (pattern, after);
4215 }
4216
4217 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE.  */
4218 rtx
4219 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4220 {
4221   rtx first = PREV_INSN (before);
4222   rtx last = emit_insn_before_noloc (pattern, before);
4223
4224   if (pattern == NULL_RTX || !loc)
4225     return last;
4226
4227   first = NEXT_INSN (first);
4228   while (1)
4229     {
4230       if (active_insn_p (first) && !INSN_LOCATOR (first))
4231         INSN_LOCATOR (first) = loc;
4232       if (first == last)
4233         break;
4234       first = NEXT_INSN (first);
4235     }
4236   return last;
4237 }
4238
4239 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4240 rtx
4241 emit_insn_before (rtx pattern, rtx before)
4242 {
4243   if (INSN_P (before))
4244     return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4245   else
4246     return emit_insn_before_noloc (pattern, before);
4247 }
4248
4249 /* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4250 rtx
4251 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4252 {
4253   rtx first = PREV_INSN (before);
4254   rtx last = emit_jump_insn_before_noloc (pattern, before);
4255
4256   if (pattern == NULL_RTX)
4257     return last;
4258
4259   first = NEXT_INSN (first);
4260   while (1)
4261     {
4262       if (active_insn_p (first) && !INSN_LOCATOR (first))
4263         INSN_LOCATOR (first) = loc;
4264       if (first == last)
4265         break;
4266       first = NEXT_INSN (first);
4267     }
4268   return last;
4269 }
4270
4271 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4272 rtx
4273 emit_jump_insn_before (rtx pattern, rtx before)
4274 {
4275   if (INSN_P (before))
4276     return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4277   else
4278     return emit_jump_insn_before_noloc (pattern, before);
4279 }
4280
4281 /* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4282 rtx
4283 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4284 {
4285   rtx first = PREV_INSN (before);
4286   rtx last = emit_call_insn_before_noloc (pattern, before);
4287
4288   if (pattern == NULL_RTX)
4289     return last;
4290
4291   first = NEXT_INSN (first);
4292   while (1)
4293     {
4294       if (active_insn_p (first) && !INSN_LOCATOR (first))
4295         INSN_LOCATOR (first) = loc;
4296       if (first == last)
4297         break;
4298       first = NEXT_INSN (first);
4299     }
4300   return last;
4301 }
4302
4303 /* like emit_call_insn_before_noloc,
4304    but set insn_locator according to before.  */
4305 rtx
4306 emit_call_insn_before (rtx pattern, rtx before)
4307 {
4308   if (INSN_P (before))
4309     return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4310   else
4311     return emit_call_insn_before_noloc (pattern, before);
4312 }
4313 \f
4314 /* Take X and emit it at the end of the doubly-linked
4315    INSN list.
4316
4317    Returns the last insn emitted.  */
4318
4319 rtx
4320 emit_insn (rtx x)
4321 {
4322   rtx last = last_insn;
4323   rtx insn;
4324
4325   if (x == NULL_RTX)
4326     return last;
4327
4328   switch (GET_CODE (x))
4329     {
4330     case INSN:
4331     case JUMP_INSN:
4332     case CALL_INSN:
4333     case CODE_LABEL:
4334     case BARRIER:
4335     case NOTE:
4336       insn = x;
4337       while (insn)
4338         {
4339           rtx next = NEXT_INSN (insn);
4340           add_insn (insn);
4341           last = insn;
4342           insn = next;
4343         }
4344       break;
4345
4346 #ifdef ENABLE_RTL_CHECKING
4347     case SEQUENCE:
4348       gcc_unreachable ();
4349       break;
4350 #endif
4351
4352     default:
4353       last = make_insn_raw (x);
4354       add_insn (last);
4355       break;
4356     }
4357
4358   return last;
4359 }
4360
4361 /* Make an insn of code JUMP_INSN with pattern X
4362    and add it to the end of the doubly-linked list.  */
4363
4364 rtx
4365 emit_jump_insn (rtx x)
4366 {
4367   rtx last = NULL_RTX, insn;
4368
4369   switch (GET_CODE (x))
4370     {
4371     case INSN:
4372     case JUMP_INSN:
4373     case CALL_INSN:
4374     case CODE_LABEL:
4375     case BARRIER:
4376     case NOTE:
4377       insn = x;
4378       while (insn)
4379         {
4380           rtx next = NEXT_INSN (insn);
4381           add_insn (insn);
4382           last = insn;
4383           insn = next;
4384         }
4385       break;
4386
4387 #ifdef ENABLE_RTL_CHECKING
4388     case SEQUENCE:
4389       gcc_unreachable ();
4390       break;
4391 #endif
4392
4393     default:
4394       last = make_jump_insn_raw (x);
4395       add_insn (last);
4396       break;
4397     }
4398
4399   return last;
4400 }
4401
4402 /* Make an insn of code CALL_INSN with pattern X
4403    and add it to the end of the doubly-linked list.  */
4404
4405 rtx
4406 emit_call_insn (rtx x)
4407 {
4408   rtx insn;
4409
4410   switch (GET_CODE (x))
4411     {
4412     case INSN:
4413     case JUMP_INSN:
4414     case CALL_INSN:
4415     case CODE_LABEL:
4416     case BARRIER:
4417     case NOTE:
4418       insn = emit_insn (x);
4419       break;
4420
4421 #ifdef ENABLE_RTL_CHECKING
4422     case SEQUENCE:
4423       gcc_unreachable ();
4424       break;
4425 #endif
4426
4427     default:
4428       insn = make_call_insn_raw (x);
4429       add_insn (insn);
4430       break;
4431     }
4432
4433   return insn;
4434 }
4435
4436 /* Add the label LABEL to the end of the doubly-linked list.  */
4437
4438 rtx
4439 emit_label (rtx label)
4440 {
4441   /* This can be called twice for the same label
4442      as a result of the confusion that follows a syntax error!
4443      So make it harmless.  */
4444   if (INSN_UID (label) == 0)
4445     {
4446       INSN_UID (label) = cur_insn_uid++;
4447       add_insn (label);
4448     }
4449   return label;
4450 }
4451
4452 /* Make an insn of code BARRIER
4453    and add it to the end of the doubly-linked list.  */
4454
4455 rtx
4456 emit_barrier (void)
4457 {
4458   rtx barrier = rtx_alloc (BARRIER);
4459   INSN_UID (barrier) = cur_insn_uid++;
4460   add_insn (barrier);
4461   return barrier;
4462 }
4463
4464 /* Make line numbering NOTE insn for LOCATION add it to the end
4465    of the doubly-linked list, but only if line-numbers are desired for
4466    debugging info and it doesn't match the previous one.  */
4467
4468 rtx
4469 emit_line_note (location_t location)
4470 {
4471   rtx note;
4472   
4473 #ifdef USE_MAPPED_LOCATION
4474   if (location == last_location)
4475     return NULL_RTX;
4476 #else
4477   if (location.file && last_location.file
4478       && !strcmp (location.file, last_location.file)
4479       && location.line == last_location.line)
4480     return NULL_RTX;
4481 #endif
4482   last_location = location;
4483   
4484   if (no_line_numbers)
4485     {
4486       cur_insn_uid++;
4487       return NULL_RTX;
4488     }
4489
4490 #ifdef USE_MAPPED_LOCATION
4491   note = emit_note ((int) location);
4492 #else
4493   note = emit_note (location.line);
4494   NOTE_SOURCE_FILE (note) = location.file;
4495 #endif
4496   
4497   return note;
4498 }
4499
4500 /* Emit a copy of note ORIG.  */
4501
4502 rtx
4503 emit_note_copy (rtx orig)
4504 {
4505   rtx note;
4506   
4507   if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4508     {
4509       cur_insn_uid++;
4510       return NULL_RTX;
4511     }
4512   
4513   note = rtx_alloc (NOTE);
4514   
4515   INSN_UID (note) = cur_insn_uid++;
4516   NOTE_DATA (note) = NOTE_DATA (orig);
4517   NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4518   BLOCK_FOR_INSN (note) = NULL;
4519   add_insn (note);
4520   
4521   return note;
4522 }
4523
4524 /* Make an insn of code NOTE or type NOTE_NO
4525    and add it to the end of the doubly-linked list.  */
4526
4527 rtx
4528 emit_note (int note_no)
4529 {
4530   rtx note;
4531
4532   note = rtx_alloc (NOTE);
4533   INSN_UID (note) = cur_insn_uid++;
4534   NOTE_LINE_NUMBER (note) = note_no;
4535   memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4536   BLOCK_FOR_INSN (note) = NULL;
4537   add_insn (note);
4538   return note;
4539 }
4540
4541 /* Cause next statement to emit a line note even if the line number
4542    has not changed.  */
4543
4544 void
4545 force_next_line_note (void)
4546 {
4547 #ifdef USE_MAPPED_LOCATION
4548   last_location = -1;
4549 #else
4550   last_location.line = -1;
4551 #endif
4552 }
4553
4554 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4555    note of this type already exists, remove it first.  */
4556
4557 rtx
4558 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4559 {
4560   rtx note = find_reg_note (insn, kind, NULL_RTX);
4561
4562   switch (kind)
4563     {
4564     case REG_EQUAL:
4565     case REG_EQUIV:
4566       /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4567          has multiple sets (some callers assume single_set
4568          means the insn only has one set, when in fact it
4569          means the insn only has one * useful * set).  */
4570       if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4571         {
4572           gcc_assert (!note);
4573           return NULL_RTX;
4574         }
4575
4576       /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4577          It serves no useful purpose and breaks eliminate_regs.  */
4578       if (GET_CODE (datum) == ASM_OPERANDS)
4579         return NULL_RTX;
4580       break;
4581
4582     default:
4583       break;
4584     }
4585
4586   if (note)
4587     {
4588       XEXP (note, 0) = datum;
4589       return note;
4590     }
4591
4592   REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4593   return REG_NOTES (insn);
4594 }
4595 \f
4596 /* Return an indication of which type of insn should have X as a body.
4597    The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN.  */
4598
4599 static enum rtx_code
4600 classify_insn (rtx x)
4601 {
4602   if (LABEL_P (x))
4603     return CODE_LABEL;
4604   if (GET_CODE (x) == CALL)
4605     return CALL_INSN;
4606   if (GET_CODE (x) == RETURN)
4607     return JUMP_INSN;
4608   if (GET_CODE (x) == SET)
4609     {
4610       if (SET_DEST (x) == pc_rtx)
4611         return JUMP_INSN;
4612       else if (GET_CODE (SET_SRC (x)) == CALL)
4613         return CALL_INSN;
4614       else
4615         return INSN;
4616     }
4617   if (GET_CODE (x) == PARALLEL)
4618     {
4619       int j;
4620       for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4621         if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4622           return CALL_INSN;
4623         else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4624                  && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4625           return JUMP_INSN;
4626         else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4627                  && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4628           return CALL_INSN;
4629     }
4630   return INSN;
4631 }
4632
4633 /* Emit the rtl pattern X as an appropriate kind of insn.
4634    If X is a label, it is simply added into the insn chain.  */
4635
4636 rtx
4637 emit (rtx x)
4638 {
4639   enum rtx_code code = classify_insn (x);
4640
4641   switch (code)
4642     {
4643     case CODE_LABEL:
4644       return emit_label (x);
4645     case INSN:
4646       return emit_insn (x);
4647     case  JUMP_INSN:
4648       {
4649         rtx insn = emit_jump_insn (x);
4650         if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4651           return emit_barrier ();
4652         return insn;
4653       }
4654     case CALL_INSN:
4655       return emit_call_insn (x);
4656     default:
4657       gcc_unreachable ();
4658     }
4659 }
4660 \f
4661 /* Space for free sequence stack entries.  */
4662 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4663
4664 /* Begin emitting insns to a sequence.  If this sequence will contain
4665    something that might cause the compiler to pop arguments to function
4666    calls (because those pops have previously been deferred; see
4667    INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4668    before calling this function.  That will ensure that the deferred
4669    pops are not accidentally emitted in the middle of this sequence.  */
4670
4671 void
4672 start_sequence (void)
4673 {
4674   struct sequence_stack *tem;
4675
4676   if (free_sequence_stack != NULL)
4677     {
4678       tem = free_sequence_stack;
4679       free_sequence_stack = tem->next;
4680     }
4681   else
4682     tem = ggc_alloc (sizeof (struct sequence_stack));
4683
4684   tem->next = seq_stack;
4685   tem->first = first_insn;
4686   tem->last = last_insn;
4687
4688   seq_stack = tem;
4689
4690   first_insn = 0;
4691   last_insn = 0;
4692 }
4693
4694 /* Set up the insn chain starting with FIRST as the current sequence,
4695    saving the previously current one.  See the documentation for
4696    start_sequence for more information about how to use this function.  */
4697
4698 void
4699 push_to_sequence (rtx first)
4700 {
4701   rtx last;
4702
4703   start_sequence ();
4704
4705   for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4706
4707   first_insn = first;
4708   last_insn = last;
4709 }
4710
4711 /* Set up the outer-level insn chain
4712    as the current sequence, saving the previously current one.  */
4713
4714 void
4715 push_topmost_sequence (void)
4716 {
4717   struct sequence_stack *stack, *top = NULL;
4718
4719   start_sequence ();
4720
4721   for (stack = seq_stack; stack; stack = stack->next)
4722     top = stack;
4723
4724   first_insn = top->first;
4725   last_insn = top->last;
4726 }
4727
4728 /* After emitting to the outer-level insn chain, update the outer-level
4729    insn chain, and restore the previous saved state.  */
4730
4731 void
4732 pop_topmost_sequence (void)
4733 {
4734   struct sequence_stack *stack, *top = NULL;
4735
4736   for (stack = seq_stack; stack; stack = stack->next)
4737     top = stack;
4738
4739   top->first = first_insn;
4740   top->last = last_insn;
4741
4742   end_sequence ();
4743 }
4744
4745 /* After emitting to a sequence, restore previous saved state.
4746
4747    To get the contents of the sequence just made, you must call
4748    `get_insns' *before* calling here.
4749
4750    If the compiler might have deferred popping arguments while
4751    generating this sequence, and this sequence will not be immediately
4752    inserted into the instruction stream, use do_pending_stack_adjust
4753    before calling get_insns.  That will ensure that the deferred
4754    pops are inserted into this sequence, and not into some random
4755    location in the instruction stream.  See INHIBIT_DEFER_POP for more
4756    information about deferred popping of arguments.  */
4757
4758 void
4759 end_sequence (void)
4760 {
4761   struct sequence_stack *tem = seq_stack;
4762
4763   first_insn = tem->first;
4764   last_insn = tem->last;
4765   seq_stack = tem->next;
4766
4767   memset (tem, 0, sizeof (*tem));
4768   tem->next = free_sequence_stack;
4769   free_sequence_stack = tem;
4770 }
4771
4772 /* Return 1 if currently emitting into a sequence.  */
4773
4774 int
4775 in_sequence_p (void)
4776 {
4777   return seq_stack != 0;
4778 }
4779 \f
4780 /* Put the various virtual registers into REGNO_REG_RTX.  */
4781
4782 static void
4783 init_virtual_regs (struct emit_status *es)
4784 {
4785   rtx *ptr = es->x_regno_reg_rtx;
4786   ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4787   ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4788   ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4789   ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4790   ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4791 }
4792
4793 \f
4794 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once.  */
4795 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4796 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4797 static int copy_insn_n_scratches;
4798
4799 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4800    copied an ASM_OPERANDS.
4801    In that case, it is the original input-operand vector.  */
4802 static rtvec orig_asm_operands_vector;
4803
4804 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4805    copied an ASM_OPERANDS.
4806    In that case, it is the copied input-operand vector.  */
4807 static rtvec copy_asm_operands_vector;
4808
4809 /* Likewise for the constraints vector.  */
4810 static rtvec orig_asm_constraints_vector;
4811 static rtvec copy_asm_constraints_vector;
4812
4813 /* Recursively create a new copy of an rtx for copy_insn.
4814    This function differs from copy_rtx in that it handles SCRATCHes and
4815    ASM_OPERANDs properly.
4816    Normally, this function is not used directly; use copy_insn as front end.
4817    However, you could first copy an insn pattern with copy_insn and then use
4818    this function afterwards to properly copy any REG_NOTEs containing
4819    SCRATCHes.  */
4820
4821 rtx
4822 copy_insn_1 (rtx orig)
4823 {
4824   rtx copy;
4825   int i, j;
4826   RTX_CODE code;
4827   const char *format_ptr;
4828
4829   code = GET_CODE (orig);
4830
4831   switch (code)
4832     {
4833     case REG:
4834     case CONST_INT:
4835     case CONST_DOUBLE:
4836     case CONST_VECTOR:
4837     case SYMBOL_REF:
4838     case CODE_LABEL:
4839     case PC:
4840     case CC0:
4841       return orig;
4842     case CLOBBER:
4843       if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4844         return orig;
4845       break;
4846
4847     case SCRATCH:
4848       for (i = 0; i < copy_insn_n_scratches; i++)
4849         if (copy_insn_scratch_in[i] == orig)
4850           return copy_insn_scratch_out[i];
4851       break;
4852
4853     case CONST:
4854       /* CONST can be shared if it contains a SYMBOL_REF.  If it contains
4855          a LABEL_REF, it isn't sharable.  */
4856       if (GET_CODE (XEXP (orig, 0)) == PLUS
4857           && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4858           && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4859         return orig;
4860       break;
4861
4862       /* A MEM with a constant address is not sharable.  The problem is that
4863          the constant address may need to be reloaded.  If the mem is shared,
4864          then reloading one copy of this mem will cause all copies to appear
4865          to have been reloaded.  */
4866
4867     default:
4868       break;
4869     }
4870
4871   /* Copy the various flags, fields, and other information.  We assume
4872      that all fields need copying, and then clear the fields that should
4873      not be copied.  That is the sensible default behavior, and forces
4874      us to explicitly document why we are *not* copying a flag.  */
4875   copy = shallow_copy_rtx (orig);
4876
4877   /* We do not copy the USED flag, which is used as a mark bit during
4878      walks over the RTL.  */
4879   RTX_FLAG (copy, used) = 0;
4880
4881   /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs.  */
4882   if (INSN_P (orig))
4883     {
4884       RTX_FLAG (copy, jump) = 0;
4885       RTX_FLAG (copy, call) = 0;
4886       RTX_FLAG (copy, frame_related) = 0;
4887     }
4888
4889   format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4890
4891   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4892     switch (*format_ptr++)
4893       {
4894       case 'e':
4895         if (XEXP (orig, i) != NULL)
4896           XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4897         break;
4898
4899       case 'E':
4900       case 'V':
4901         if (XVEC (orig, i) == orig_asm_constraints_vector)
4902           XVEC (copy, i) = copy_asm_constraints_vector;
4903         else if (XVEC (orig, i) == orig_asm_operands_vector)
4904           XVEC (copy, i) = copy_asm_operands_vector;
4905         else if (XVEC (orig, i) != NULL)
4906           {
4907             XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4908             for (j = 0; j < XVECLEN (copy, i); j++)
4909               XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4910           }
4911         break;
4912
4913       case 't':
4914       case 'w':
4915       case 'i':
4916       case 's':
4917       case 'S':
4918       case 'u':
4919       case '0':
4920         /* These are left unchanged.  */
4921         break;
4922
4923       default:
4924         gcc_unreachable ();
4925       }
4926
4927   if (code == SCRATCH)
4928     {
4929       i = copy_insn_n_scratches++;
4930       gcc_assert (i < MAX_RECOG_OPERANDS);
4931       copy_insn_scratch_in[i] = orig;
4932       copy_insn_scratch_out[i] = copy;
4933     }
4934   else if (code == ASM_OPERANDS)
4935     {
4936       orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4937       copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4938       orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4939       copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4940     }
4941
4942   return copy;
4943 }
4944
4945 /* Create a new copy of an rtx.
4946    This function differs from copy_rtx in that it handles SCRATCHes and
4947    ASM_OPERANDs properly.
4948    INSN doesn't really have to be a full INSN; it could be just the
4949    pattern.  */
4950 rtx
4951 copy_insn (rtx insn)
4952 {
4953   copy_insn_n_scratches = 0;
4954   orig_asm_operands_vector = 0;
4955   orig_asm_constraints_vector = 0;
4956   copy_asm_operands_vector = 0;
4957   copy_asm_constraints_vector = 0;
4958   return copy_insn_1 (insn);
4959 }
4960
4961 /* Initialize data structures and variables in this file
4962    before generating rtl for each function.  */
4963
4964 void
4965 init_emit (void)
4966 {
4967   struct function *f = cfun;
4968
4969   f->emit = ggc_alloc (sizeof (struct emit_status));
4970   first_insn = NULL;
4971   last_insn = NULL;
4972   cur_insn_uid = 1;
4973   reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4974   last_location = UNKNOWN_LOCATION;
4975   first_label_num = label_num;
4976   seq_stack = NULL;
4977
4978   /* Init the tables that describe all the pseudo regs.  */
4979
4980   f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4981
4982   f->emit->regno_pointer_align
4983     = ggc_alloc_cleared (f->emit->regno_pointer_align_length
4984                          * sizeof (unsigned char));
4985
4986   regno_reg_rtx
4987     = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
4988
4989   /* Put copies of all the hard registers into regno_reg_rtx.  */
4990   memcpy (regno_reg_rtx,
4991           static_regno_reg_rtx,
4992           FIRST_PSEUDO_REGISTER * sizeof (rtx));
4993
4994   /* Put copies of all the virtual register rtx into regno_reg_rtx.  */
4995   init_virtual_regs (f->emit);
4996
4997   /* Indicate that the virtual registers and stack locations are
4998      all pointers.  */
4999   REG_POINTER (stack_pointer_rtx) = 1;
5000   REG_POINTER (frame_pointer_rtx) = 1;
5001   REG_POINTER (hard_frame_pointer_rtx) = 1;
5002   REG_POINTER (arg_pointer_rtx) = 1;
5003
5004   REG_POINTER (virtual_incoming_args_rtx) = 1;
5005   REG_POINTER (virtual_stack_vars_rtx) = 1;
5006   REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5007   REG_POINTER (virtual_outgoing_args_rtx) = 1;
5008   REG_POINTER (virtual_cfa_rtx) = 1;
5009
5010 #ifdef STACK_BOUNDARY
5011   REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5012   REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5013   REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5014   REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5015
5016   REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5017   REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5018   REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5019   REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5020   REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5021 #endif
5022
5023 #ifdef INIT_EXPANDERS
5024   INIT_EXPANDERS;
5025 #endif
5026 }
5027
5028 /* Generate a vector constant for mode MODE and constant value CONSTANT.  */
5029
5030 static rtx
5031 gen_const_vector (enum machine_mode mode, int constant)
5032 {
5033   rtx tem;
5034   rtvec v;
5035   int units, i;
5036   enum machine_mode inner;
5037
5038   units = GET_MODE_NUNITS (mode);
5039   inner = GET_MODE_INNER (mode);
5040
5041   gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5042
5043   v = rtvec_alloc (units);
5044
5045   /* We need to call this function after we set the scalar const_tiny_rtx
5046      entries.  */
5047   gcc_assert (const_tiny_rtx[constant][(int) inner]);
5048
5049   for (i = 0; i < units; ++i)
5050     RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5051
5052   tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5053   return tem;
5054 }
5055
5056 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5057    all elements are zero, and the one vector when all elements are one.  */
5058 rtx
5059 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5060 {
5061   enum machine_mode inner = GET_MODE_INNER (mode);
5062   int nunits = GET_MODE_NUNITS (mode);
5063   rtx x;
5064   int i;
5065
5066   /* Check to see if all of the elements have the same value.  */
5067   x = RTVEC_ELT (v, nunits - 1);
5068   for (i = nunits - 2; i >= 0; i--)
5069     if (RTVEC_ELT (v, i) != x)
5070       break;
5071
5072   /* If the values are all the same, check to see if we can use one of the
5073      standard constant vectors.  */
5074   if (i == -1)
5075     {
5076       if (x == CONST0_RTX (inner))
5077         return CONST0_RTX (mode);
5078       else if (x == CONST1_RTX (inner))
5079         return CONST1_RTX (mode);
5080     }
5081
5082   return gen_rtx_raw_CONST_VECTOR (mode, v);
5083 }
5084
5085 /* Create some permanent unique rtl objects shared between all functions.
5086    LINE_NUMBERS is nonzero if line numbers are to be generated.  */
5087
5088 void
5089 init_emit_once (int line_numbers)
5090 {
5091   int i;
5092   enum machine_mode mode;
5093   enum machine_mode double_mode;
5094
5095   /* We need reg_raw_mode, so initialize the modes now.  */
5096   init_reg_modes_once ();
5097
5098   /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5099      tables.  */
5100   const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5101                                     const_int_htab_eq, NULL);
5102
5103   const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5104                                        const_double_htab_eq, NULL);
5105
5106   mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5107                                     mem_attrs_htab_eq, NULL);
5108   reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5109                                     reg_attrs_htab_eq, NULL);
5110
5111   no_line_numbers = ! line_numbers;
5112
5113   /* Compute the word and byte modes.  */
5114
5115   byte_mode = VOIDmode;
5116   word_mode = VOIDmode;
5117   double_mode = VOIDmode;
5118
5119   for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5120        mode != VOIDmode;
5121        mode = GET_MODE_WIDER_MODE (mode))
5122     {
5123       if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5124           && byte_mode == VOIDmode)
5125         byte_mode = mode;
5126
5127       if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5128           && word_mode == VOIDmode)
5129         word_mode = mode;
5130     }
5131
5132   for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5133        mode != VOIDmode;
5134        mode = GET_MODE_WIDER_MODE (mode))
5135     {
5136       if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5137           && double_mode == VOIDmode)
5138         double_mode = mode;
5139     }
5140
5141   ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5142
5143   /* Assign register numbers to the globally defined register rtx.
5144      This must be done at runtime because the register number field
5145      is in a union and some compilers can't initialize unions.  */
5146
5147   pc_rtx = gen_rtx_PC (VOIDmode);
5148   cc0_rtx = gen_rtx_CC0 (VOIDmode);
5149   stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5150   frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5151   if (hard_frame_pointer_rtx == 0)
5152     hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5153                                           HARD_FRAME_POINTER_REGNUM);
5154   if (arg_pointer_rtx == 0)
5155     arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5156   virtual_incoming_args_rtx =
5157     gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5158   virtual_stack_vars_rtx =
5159     gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5160   virtual_stack_dynamic_rtx =
5161     gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5162   virtual_outgoing_args_rtx =
5163     gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5164   virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5165
5166   /* Initialize RTL for commonly used hard registers.  These are
5167      copied into regno_reg_rtx as we begin to compile each function.  */
5168   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5169     static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5170
5171 #ifdef INIT_EXPANDERS
5172   /* This is to initialize {init|mark|free}_machine_status before the first
5173      call to push_function_context_to.  This is needed by the Chill front
5174      end which calls push_function_context_to before the first call to
5175      init_function_start.  */
5176   INIT_EXPANDERS;
5177 #endif
5178
5179   /* Create the unique rtx's for certain rtx codes and operand values.  */
5180
5181   /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5182      tries to use these variables.  */
5183   for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5184     const_int_rtx[i + MAX_SAVED_CONST_INT] =
5185       gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5186
5187   if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5188       && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5189     const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5190   else
5191     const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5192
5193   REAL_VALUE_FROM_INT (dconst0,   0,  0, double_mode);
5194   REAL_VALUE_FROM_INT (dconst1,   1,  0, double_mode);
5195   REAL_VALUE_FROM_INT (dconst2,   2,  0, double_mode);
5196   REAL_VALUE_FROM_INT (dconst3,   3,  0, double_mode);
5197   REAL_VALUE_FROM_INT (dconst10, 10,  0, double_mode);
5198   REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5199   REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5200
5201   dconsthalf = dconst1;
5202   SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5203
5204   real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5205
5206   /* Initialize mathematical constants for constant folding builtins.
5207      These constants need to be given to at least 160 bits precision.  */
5208   real_from_string (&dconstpi,
5209     "3.1415926535897932384626433832795028841971693993751058209749445923078");
5210   real_from_string (&dconste,
5211     "2.7182818284590452353602874713526624977572470936999595749669676277241");
5212
5213   for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5214     {
5215       REAL_VALUE_TYPE *r =
5216         (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5217
5218       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5219            mode != VOIDmode;
5220            mode = GET_MODE_WIDER_MODE (mode))
5221         const_tiny_rtx[i][(int) mode] =
5222           CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5223
5224       for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5225            mode != VOIDmode;
5226            mode = GET_MODE_WIDER_MODE (mode))
5227         const_tiny_rtx[i][(int) mode] =
5228           CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5229
5230       const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5231
5232       for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5233            mode != VOIDmode;
5234            mode = GET_MODE_WIDER_MODE (mode))
5235         const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5236
5237       for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5238            mode != VOIDmode;
5239            mode = GET_MODE_WIDER_MODE (mode))
5240         const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5241     }
5242
5243   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5244        mode != VOIDmode;
5245        mode = GET_MODE_WIDER_MODE (mode))
5246     {
5247       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5248       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5249     }
5250
5251   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5252        mode != VOIDmode;
5253        mode = GET_MODE_WIDER_MODE (mode))
5254     {
5255       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5256       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5257     }
5258
5259   for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5260     if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5261       const_tiny_rtx[0][i] = const0_rtx;
5262
5263   const_tiny_rtx[0][(int) BImode] = const0_rtx;
5264   if (STORE_FLAG_VALUE == 1)
5265     const_tiny_rtx[1][(int) BImode] = const1_rtx;
5266
5267 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5268   return_address_pointer_rtx
5269     = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5270 #endif
5271
5272 #ifdef STATIC_CHAIN_REGNUM
5273   static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5274
5275 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5276   if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5277     static_chain_incoming_rtx
5278       = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5279   else
5280 #endif
5281     static_chain_incoming_rtx = static_chain_rtx;
5282 #endif
5283
5284 #ifdef STATIC_CHAIN
5285   static_chain_rtx = STATIC_CHAIN;
5286
5287 #ifdef STATIC_CHAIN_INCOMING
5288   static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5289 #else
5290   static_chain_incoming_rtx = static_chain_rtx;
5291 #endif
5292 #endif
5293
5294   if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5295     pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5296 }
5297 \f
5298 /* Produce exact duplicate of insn INSN after AFTER.
5299    Care updating of libcall regions if present.  */
5300
5301 rtx
5302 emit_copy_of_insn_after (rtx insn, rtx after)
5303 {
5304   rtx new;
5305   rtx note1, note2, link;
5306
5307   switch (GET_CODE (insn))
5308     {
5309     case INSN:
5310       new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5311       break;
5312
5313     case JUMP_INSN:
5314       new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5315       break;
5316
5317     case CALL_INSN:
5318       new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5319       if (CALL_INSN_FUNCTION_USAGE (insn))
5320         CALL_INSN_FUNCTION_USAGE (new)
5321           = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5322       SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5323       CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5324       break;
5325
5326     default:
5327       gcc_unreachable ();
5328     }
5329
5330   /* Update LABEL_NUSES.  */
5331   mark_jump_label (PATTERN (new), new, 0);
5332
5333   INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5334
5335   /* If the old insn is frame related, then so is the new one.  This is
5336      primarily needed for IA-64 unwind info which marks epilogue insns,
5337      which may be duplicated by the basic block reordering code.  */
5338   RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5339
5340   /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5341      make them.  */
5342   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5343     if (REG_NOTE_KIND (link) != REG_LABEL)
5344       {
5345         if (GET_CODE (link) == EXPR_LIST)
5346           REG_NOTES (new)
5347             = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5348                                               XEXP (link, 0),
5349                                               REG_NOTES (new)));
5350         else
5351           REG_NOTES (new)
5352             = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5353                                               XEXP (link, 0),
5354                                               REG_NOTES (new)));
5355       }
5356
5357   /* Fix the libcall sequences.  */
5358   if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5359     {
5360       rtx p = new;
5361       while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5362         p = PREV_INSN (p);
5363       XEXP (note1, 0) = p;
5364       XEXP (note2, 0) = new;
5365     }
5366   INSN_CODE (new) = INSN_CODE (insn);
5367   return new;
5368 }
5369
5370 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5371 rtx
5372 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5373 {
5374   if (hard_reg_clobbers[mode][regno])
5375     return hard_reg_clobbers[mode][regno];
5376   else
5377     return (hard_reg_clobbers[mode][regno] =
5378             gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5379 }
5380
5381 #include "gt-emit-rtl.h"