OSDN Git Service

d20358ab1e6a7ffdb828552d1c554416289d6716
[pf3gnuchains/gcc-fork.git] / gcc / doc / gimple.texi
1 @c Copyright (c) 2008, 2009, 2010 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node GIMPLE
7 @chapter GIMPLE
8 @cindex GIMPLE
9
10 GIMPLE is a three-address representation derived from GENERIC by
11 breaking down GENERIC expressions into tuples of no more than 3
12 operands (with some exceptions like function calls).  GIMPLE was
13 heavily influenced by the SIMPLE IL used by the McCAT compiler
14 project at McGill University, though we have made some different
15 choices.  For one thing, SIMPLE doesn't support @code{goto}.
16
17 Temporaries are introduced to hold intermediate values needed to
18 compute complex expressions. Additionally, all the control
19 structures used in GENERIC are lowered into conditional jumps,
20 lexical scopes are removed and exception regions are converted
21 into an on the side exception region tree.
22
23 The compiler pass which converts GENERIC into GIMPLE is referred to as
24 the @samp{gimplifier}.  The gimplifier works recursively, generating
25 GIMPLE tuples out of the original GENERIC expressions.
26
27 One of the early implementation strategies used for the GIMPLE
28 representation was to use the same internal data structures used
29 by front ends to represent parse trees. This simplified
30 implementation because we could leverage existing functionality
31 and interfaces. However, GIMPLE is a much more restrictive
32 representation than abstract syntax trees (AST), therefore it
33 does not require the full structural complexity provided by the
34 main tree data structure.
35
36 The GENERIC representation of a function is stored in the
37 @code{DECL_SAVED_TREE} field of the associated @code{FUNCTION_DECL}
38 tree node.  It is converted to GIMPLE by a call to
39 @code{gimplify_function_tree}.
40
41 If a front end wants to include language-specific tree codes in the tree
42 representation which it provides to the back end, it must provide a
43 definition of @code{LANG_HOOKS_GIMPLIFY_EXPR} which knows how to
44 convert the front end trees to GIMPLE@.  Usually such a hook will involve
45 much of the same code for expanding front end trees to RTL@.  This function
46 can return fully lowered GIMPLE, or it can return GENERIC trees and let the
47 main gimplifier lower them the rest of the way; this is often simpler.
48 GIMPLE that is not fully lowered is known as ``High GIMPLE'' and
49 consists of the IL before the pass @code{pass_lower_cf}.  High GIMPLE
50 contains some container statements like lexical scopes
51 (represented by @code{GIMPLE_BIND}) and nested expressions (e.g.,
52 @code{GIMPLE_TRY}), while ``Low GIMPLE'' exposes all of the
53 implicit jumps for control and exception expressions directly in
54 the IL and EH region trees.
55
56 The C and C++ front ends currently convert directly from front end
57 trees to GIMPLE, and hand that off to the back end rather than first
58 converting to GENERIC@.  Their gimplifier hooks know about all the
59 @code{_STMT} nodes and how to convert them to GENERIC forms.  There
60 was some work done on a genericization pass which would run first, but
61 the existence of @code{STMT_EXPR} meant that in order to convert all
62 of the C statements into GENERIC equivalents would involve walking the
63 entire tree anyway, so it was simpler to lower all the way.  This
64 might change in the future if someone writes an optimization pass
65 which would work better with higher-level trees, but currently the
66 optimizers all expect GIMPLE@.
67
68 You can request to dump a C-like representation of the GIMPLE form
69 with the flag @option{-fdump-tree-gimple}.
70
71 @menu
72 * Tuple representation::
73 * GIMPLE instruction set::
74 * GIMPLE Exception Handling::
75 * Temporaries::
76 * Operands::
77 * Manipulating GIMPLE statements::
78 * Tuple specific accessors::
79 * GIMPLE sequences::
80 * Sequence iterators::
81 * Adding a new GIMPLE statement code::
82 * Statement and operand traversals::
83 @end menu
84
85 @node Tuple representation
86 @section Tuple representation
87 @cindex tuples
88
89 GIMPLE instructions are tuples of variable size divided in two
90 groups: a header describing the instruction and its locations,
91 and a variable length body with all the operands. Tuples are
92 organized into a hierarchy with 3 main classes of tuples.
93
94 @subsection @code{gimple_statement_base} (gsbase)
95 @cindex gimple_statement_base
96
97 This is the root of the hierarchy, it holds basic information
98 needed by most GIMPLE statements. There are some fields that
99 may not be relevant to every GIMPLE statement, but those were
100 moved into the base structure to take advantage of holes left by
101 other fields (thus making the structure more compact).  The
102 structure takes 4 words (32 bytes) on 64 bit hosts:
103
104 @multitable {@code{references_memory_p}} {Size (bits)}
105 @item Field                             @tab Size (bits)
106 @item @code{code}                       @tab 8
107 @item @code{subcode}                    @tab 16
108 @item @code{no_warning}                 @tab 1
109 @item @code{visited}                    @tab 1
110 @item @code{nontemporal_move}           @tab 1
111 @item @code{plf}                        @tab 2
112 @item @code{modified}                   @tab 1
113 @item @code{has_volatile_ops}           @tab 1
114 @item @code{references_memory_p}        @tab 1
115 @item @code{uid}                        @tab 32
116 @item @code{location}                   @tab 32
117 @item @code{num_ops}                    @tab 32
118 @item @code{bb}                         @tab 64
119 @item @code{block}                      @tab 63
120 @item Total size                        @tab 32 bytes   
121 @end multitable
122
123 @itemize @bullet
124 @item @code{code}
125 Main identifier for a GIMPLE instruction. 
126
127 @item @code{subcode}
128 Used to distinguish different variants of the same basic
129 instruction or provide flags applicable to a given code. The
130 @code{subcode} flags field has different uses depending on the code of
131 the instruction, but mostly it distinguishes instructions of the
132 same family. The most prominent use of this field is in
133 assignments, where subcode indicates the operation done on the
134 RHS of the assignment. For example, a = b + c is encoded as
135 @code{GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>}.
136
137 @item @code{no_warning}
138 Bitflag to indicate whether a warning has already been issued on
139 this statement.
140
141 @item @code{visited}
142 General purpose ``visited'' marker. Set and cleared by each pass
143 when needed.
144
145 @item @code{nontemporal_move}
146 Bitflag used in assignments that represent non-temporal moves.
147 Although this bitflag is only used in assignments, it was moved
148 into the base to take advantage of the bit holes left by the
149 previous fields.
150
151 @item @code{plf}
152 Pass Local Flags. This 2-bit mask can be used as general purpose
153 markers by any pass. Passes are responsible for clearing and
154 setting these two flags accordingly.
155
156 @item @code{modified}
157 Bitflag to indicate whether the statement has been modified.
158 Used mainly by the operand scanner to determine when to re-scan a
159 statement for operands.
160
161 @item @code{has_volatile_ops}
162 Bitflag to indicate whether this statement contains operands that
163 have been marked volatile.
164
165 @item @code{references_memory_p}
166 Bitflag to indicate whether this statement contains memory
167 references (i.e., its operands are either global variables, or
168 pointer dereferences or anything that must reside in memory).
169
170 @item @code{uid}
171 This is an unsigned integer used by passes that want to assign
172 IDs to every statement. These IDs must be assigned and used by
173 each pass.
174
175 @item @code{location}
176 This is a @code{location_t} identifier to specify source code
177 location for this statement. It is inherited from the front
178 end.
179
180 @item @code{num_ops}
181 Number of operands that this statement has. This specifies the
182 size of the operand vector embedded in the tuple. Only used in
183 some tuples, but it is declared in the base tuple to take
184 advantage of the 32-bit hole left by the previous fields.
185
186 @item @code{bb}
187 Basic block holding the instruction.
188  
189 @item @code{block}
190 Lexical block holding this statement.  Also used for debug
191 information generation.
192 @end itemize
193
194 @subsection @code{gimple_statement_with_ops}
195 @cindex gimple_statement_with_ops
196
197 This tuple is actually split in two:
198 @code{gimple_statement_with_ops_base} and
199 @code{gimple_statement_with_ops}. This is needed to accommodate the
200 way the operand vector is allocated. The operand vector is
201 defined to be an array of 1 element. So, to allocate a dynamic
202 number of operands, the memory allocator (@code{gimple_alloc}) simply
203 allocates enough memory to hold the structure itself plus @code{N
204 - 1} operands which run ``off the end'' of the structure. For
205 example, to allocate space for a tuple with 3 operands,
206 @code{gimple_alloc} reserves @code{sizeof (struct
207 gimple_statement_with_ops) + 2 * sizeof (tree)} bytes.
208
209 On the other hand, several fields in this tuple need to be shared
210 with the @code{gimple_statement_with_memory_ops} tuple. So, these
211 common fields are placed in @code{gimple_statement_with_ops_base} which
212 is then inherited from the other two tuples.
213
214
215 @multitable {@code{def_ops}}    {48 + 8 * @code{num_ops} bytes}
216 @item   @code{gsbase}           @tab 256        
217 @item   @code{def_ops}          @tab 64 
218 @item   @code{use_ops}          @tab 64 
219 @item   @code{op}               @tab @code{num_ops} * 64        
220 @item   Total size              @tab 48 + 8 * @code{num_ops} bytes
221 @end multitable
222
223 @itemize @bullet
224 @item @code{gsbase}
225 Inherited from @code{struct gimple_statement_base}.
226
227 @item @code{def_ops}
228 Array of pointers into the operand array indicating all the slots that
229 contain a variable written-to by the statement. This array is
230 also used for immediate use chaining. Note that it would be
231 possible to not rely on this array, but the changes required to
232 implement this are pretty invasive.
233
234 @item @code{use_ops}
235 Similar to @code{def_ops} but for variables read by the statement.
236
237 @item @code{op}
238 Array of trees with @code{num_ops} slots.
239 @end itemize
240
241 @subsection @code{gimple_statement_with_memory_ops}
242
243 This tuple is essentially identical to @code{gimple_statement_with_ops},
244 except that it contains 4 additional fields to hold vectors
245 related memory stores and loads.  Similar to the previous case,
246 the structure is split in two to accommodate for the operand
247 vector (@code{gimple_statement_with_memory_ops_base} and
248 @code{gimple_statement_with_memory_ops}).
249
250
251 @multitable {@code{vdef_ops}}   {80 + 8 * @code{num_ops} bytes}
252 @item Field                     @tab Size (bits)
253 @item @code{gsbase}             @tab 256
254 @item @code{def_ops}            @tab 64
255 @item @code{use_ops}            @tab 64
256 @item @code{vdef_ops}           @tab 64
257 @item @code{vuse_ops}           @tab 64
258 @item @code{stores}             @tab 64 
259 @item @code{loads}              @tab 64 
260 @item @code{op}                 @tab @code{num_ops} * 64        
261 @item Total size                @tab 80 + 8 * @code{num_ops} bytes
262 @end multitable
263
264 @itemize @bullet
265 @item @code{vdef_ops}
266 Similar to @code{def_ops} but for @code{VDEF} operators. There is
267 one entry per memory symbol written by this statement. This is
268 used to maintain the memory SSA use-def and def-def chains.
269
270 @item @code{vuse_ops}
271 Similar to @code{use_ops} but for @code{VUSE} operators. There is
272 one entry per memory symbol loaded by this statement. This is
273 used to maintain the memory SSA use-def chains.
274
275 @item @code{stores}
276 Bitset with all the UIDs for the symbols written-to by the
277 statement.  This is different than @code{vdef_ops} in that all the
278 affected symbols are mentioned in this set.  If memory
279 partitioning is enabled, the @code{vdef_ops} vector will refer to memory
280 partitions. Furthermore, no SSA information is stored in this
281 set.
282
283 @item @code{loads}
284 Similar to @code{stores}, but for memory loads. (Note that there
285 is some amount of redundancy here, it should be possible to
286 reduce memory utilization further by removing these sets).
287 @end itemize
288
289 All the other tuples are defined in terms of these three basic
290 ones. Each tuple will add some fields. The main gimple type
291 is defined to be the union of all these structures (@code{GTY} markers
292 elided for clarity):
293
294 @smallexample
295 union gimple_statement_d
296 @{
297   struct gimple_statement_base gsbase;
298   struct gimple_statement_with_ops gsops;
299   struct gimple_statement_with_memory_ops gsmem;
300   struct gimple_statement_omp omp;
301   struct gimple_statement_bind gimple_bind;
302   struct gimple_statement_catch gimple_catch;
303   struct gimple_statement_eh_filter gimple_eh_filter;
304   struct gimple_statement_phi gimple_phi;
305   struct gimple_statement_resx gimple_resx;
306   struct gimple_statement_try gimple_try;
307   struct gimple_statement_wce gimple_wce;
308   struct gimple_statement_asm gimple_asm;
309   struct gimple_statement_omp_critical gimple_omp_critical;
310   struct gimple_statement_omp_for gimple_omp_for;
311   struct gimple_statement_omp_parallel gimple_omp_parallel;
312   struct gimple_statement_omp_task gimple_omp_task;
313   struct gimple_statement_omp_sections gimple_omp_sections;
314   struct gimple_statement_omp_single gimple_omp_single;
315   struct gimple_statement_omp_continue gimple_omp_continue;
316   struct gimple_statement_omp_atomic_load gimple_omp_atomic_load;
317   struct gimple_statement_omp_atomic_store gimple_omp_atomic_store;
318 @};
319 @end smallexample
320
321  
322 @node GIMPLE instruction set
323 @section GIMPLE instruction set
324 @cindex GIMPLE instruction set
325
326 The following table briefly describes the GIMPLE instruction set.
327
328 @multitable {@code{GIMPLE_OMP_SECTIONS_SWITCH}} {High GIMPLE} {Low GIMPLE}
329 @item Instruction                       @tab High GIMPLE        @tab Low GIMPLE
330 @item @code{GIMPLE_ASM}                 @tab x                  @tab x
331 @item @code{GIMPLE_ASSIGN}              @tab x                  @tab x
332 @item @code{GIMPLE_BIND}                @tab x                  @tab
333 @item @code{GIMPLE_CALL}                @tab x                  @tab x
334 @item @code{GIMPLE_CATCH}               @tab x                  @tab
335 @item @code{GIMPLE_COND}                @tab x                  @tab x
336 @item @code{GIMPLE_DEBUG}               @tab x                  @tab x
337 @item @code{GIMPLE_EH_FILTER}           @tab x                  @tab
338 @item @code{GIMPLE_GOTO}                @tab x                  @tab x
339 @item @code{GIMPLE_LABEL}               @tab x                  @tab x
340 @item @code{GIMPLE_NOP}                 @tab x                  @tab x
341 @item @code{GIMPLE_OMP_ATOMIC_LOAD}     @tab x                  @tab x
342 @item @code{GIMPLE_OMP_ATOMIC_STORE}    @tab x                  @tab x
343 @item @code{GIMPLE_OMP_CONTINUE}        @tab x                  @tab x
344 @item @code{GIMPLE_OMP_CRITICAL}        @tab x                  @tab x
345 @item @code{GIMPLE_OMP_FOR}             @tab x                  @tab x
346 @item @code{GIMPLE_OMP_MASTER}          @tab x                  @tab x
347 @item @code{GIMPLE_OMP_ORDERED}         @tab x                  @tab x
348 @item @code{GIMPLE_OMP_PARALLEL}        @tab x                  @tab x
349 @item @code{GIMPLE_OMP_RETURN}          @tab x                  @tab x
350 @item @code{GIMPLE_OMP_SECTION}         @tab x                  @tab x
351 @item @code{GIMPLE_OMP_SECTIONS}        @tab x                  @tab x
352 @item @code{GIMPLE_OMP_SECTIONS_SWITCH} @tab x                  @tab x
353 @item @code{GIMPLE_OMP_SINGLE}          @tab x                  @tab x
354 @item @code{GIMPLE_PHI}                 @tab                    @tab x
355 @item @code{GIMPLE_RESX}                @tab                    @tab x
356 @item @code{GIMPLE_RETURN}              @tab x                  @tab x
357 @item @code{GIMPLE_SWITCH}              @tab x                  @tab x
358 @item @code{GIMPLE_TRY}                 @tab x                  @tab
359 @end multitable
360
361 @node GIMPLE Exception Handling
362 @section Exception Handling
363 @cindex GIMPLE Exception Handling
364
365 Other exception handling constructs are represented using
366 @code{GIMPLE_TRY_CATCH}.  @code{GIMPLE_TRY_CATCH} has two operands.  The
367 first operand is a sequence of statements to execute.  If executing
368 these statements does not throw an exception, then the second operand
369 is ignored.  Otherwise, if an exception is thrown, then the second
370 operand of the @code{GIMPLE_TRY_CATCH} is checked.  The second
371 operand may have the following forms:
372
373 @enumerate
374
375 @item A sequence of statements to execute.  When an exception occurs,
376 these statements are executed, and then the exception is rethrown.
377
378 @item A sequence of @code{GIMPLE_CATCH} statements.  Each
379 @code{GIMPLE_CATCH} has a list of applicable exception types and
380 handler code.  If the thrown exception matches one of the caught
381 types, the associated handler code is executed.  If the handler
382 code falls off the bottom, execution continues after the original
383 @code{GIMPLE_TRY_CATCH}.
384
385 @item A @code{GIMPLE_EH_FILTER} statement.  This has a list of
386 permitted exception types, and code to handle a match failure.  If the
387 thrown exception does not match one of the allowed types, the
388 associated match failure code is executed.  If the thrown exception
389 does match, it continues unwinding the stack looking for the next
390 handler.
391
392 @end enumerate
393
394 Currently throwing an exception is not directly represented in
395 GIMPLE, since it is implemented by calling a function.  At some
396 point in the future we will want to add some way to express that
397 the call will throw an exception of a known type.
398
399 Just before running the optimizers, the compiler lowers the
400 high-level EH constructs above into a set of @samp{goto}s, magic
401 labels, and EH regions.  Continuing to unwind at the end of a
402 cleanup is represented with a @code{GIMPLE_RESX}.
403
404
405 @node Temporaries
406 @section Temporaries
407 @cindex Temporaries
408
409 When gimplification encounters a subexpression that is too
410 complex, it creates a new temporary variable to hold the value of
411 the subexpression, and adds a new statement to initialize it
412 before the current statement. These special temporaries are known
413 as @samp{expression temporaries}, and are allocated using
414 @code{get_formal_tmp_var}.  The compiler tries to always evaluate
415 identical expressions into the same temporary, to simplify
416 elimination of redundant calculations.
417
418 We can only use expression temporaries when we know that it will
419 not be reevaluated before its value is used, and that it will not
420 be otherwise modified@footnote{These restrictions are derived
421 from those in Morgan 4.8.}. Other temporaries can be allocated
422 using @code{get_initialized_tmp_var} or @code{create_tmp_var}.
423
424 Currently, an expression like @code{a = b + 5} is not reduced any
425 further.  We tried converting it to something like
426 @smallexample
427 T1 = b + 5;
428 a = T1;
429 @end smallexample
430 but this bloated the representation for minimal benefit.  However, a
431 variable which must live in memory cannot appear in an expression; its
432 value is explicitly loaded into a temporary first.  Similarly, storing
433 the value of an expression to a memory variable goes through a
434 temporary.
435
436 @node Operands
437 @section Operands
438 @cindex Operands
439
440 In general, expressions in GIMPLE consist of an operation and the
441 appropriate number of simple operands; these operands must either be a
442 GIMPLE rvalue (@code{is_gimple_val}), i.e.@: a constant or a register
443 variable.  More complex operands are factored out into temporaries, so
444 that
445 @smallexample
446 a = b + c + d
447 @end smallexample
448 becomes
449 @smallexample
450 T1 = b + c;
451 a = T1 + d;
452 @end smallexample
453
454 The same rule holds for arguments to a @code{GIMPLE_CALL}.
455
456 The target of an assignment is usually a variable, but can also be a
457 @code{MEM_REF} or a compound lvalue as described below.
458
459 @menu
460 * Compound Expressions::
461 * Compound Lvalues::
462 * Conditional Expressions::
463 * Logical Operators::
464 @end menu
465
466 @node Compound Expressions
467 @subsection Compound Expressions
468 @cindex Compound Expressions
469
470 The left-hand side of a C comma expression is simply moved into a separate
471 statement.
472
473 @node Compound Lvalues
474 @subsection Compound Lvalues
475 @cindex Compound Lvalues
476
477 Currently compound lvalues involving array and structure field references
478 are not broken down; an expression like @code{a.b[2] = 42} is not reduced
479 any further (though complex array subscripts are).  This restriction is a
480 workaround for limitations in later optimizers; if we were to convert this
481 to
482
483 @smallexample
484 T1 = &a.b;
485 T1[2] = 42;
486 @end smallexample
487
488 alias analysis would not remember that the reference to @code{T1[2]} came
489 by way of @code{a.b}, so it would think that the assignment could alias
490 another member of @code{a}; this broke @code{struct-alias-1.c}.  Future
491 optimizer improvements may make this limitation unnecessary.
492
493 @node Conditional Expressions
494 @subsection Conditional Expressions
495 @cindex Conditional Expressions
496
497 A C @code{?:} expression is converted into an @code{if} statement with
498 each branch assigning to the same temporary.  So,
499
500 @smallexample
501 a = b ? c : d;
502 @end smallexample
503 becomes
504 @smallexample
505 if (b == 1)
506   T1 = c;
507 else
508   T1 = d;
509 a = T1;
510 @end smallexample
511
512 The GIMPLE level if-conversion pass re-introduces @code{?:}
513 expression, if appropriate. It is used to vectorize loops with
514 conditions using vector conditional operations.
515
516 Note that in GIMPLE, @code{if} statements are represented using
517 @code{GIMPLE_COND}, as described below.
518
519 @node Logical Operators
520 @subsection Logical Operators
521 @cindex Logical Operators
522
523 Except when they appear in the condition operand of a
524 @code{GIMPLE_COND}, logical `and' and `or' operators are simplified
525 as follows: @code{a = b && c} becomes
526
527 @smallexample
528 T1 = (bool)b;
529 if (T1 == true)
530   T1 = (bool)c;
531 a = T1;
532 @end smallexample
533
534 Note that @code{T1} in this example cannot be an expression temporary,
535 because it has two different assignments.
536
537 @subsection Manipulating operands
538
539 All gimple operands are of type @code{tree}.  But only certain
540 types of trees are allowed to be used as operand tuples.  Basic
541 validation is controlled by the function
542 @code{get_gimple_rhs_class}, which given a tree code, returns an
543 @code{enum} with the following values of type @code{enum
544 gimple_rhs_class}
545
546 @itemize @bullet
547 @item @code{GIMPLE_INVALID_RHS}
548 The tree cannot be used as a GIMPLE operand.
549
550 @item @code{GIMPLE_TERNARY_RHS}
551 The tree is a valid GIMPLE ternary operation.
552
553 @item @code{GIMPLE_BINARY_RHS}
554 The tree is a valid GIMPLE binary operation.
555
556 @item @code{GIMPLE_UNARY_RHS}
557 The tree is a valid GIMPLE unary operation.
558
559 @item @code{GIMPLE_SINGLE_RHS}
560 The tree is a single object, that cannot be split into simpler
561 operands (for instance, @code{SSA_NAME}, @code{VAR_DECL}, @code{COMPONENT_REF}, etc).
562
563 This operand class also acts as an escape hatch for tree nodes
564 that may be flattened out into the operand vector, but would need
565 more than two slots on the RHS.  For instance, a @code{COND_EXPR}
566 expression of the form @code{(a op b) ? x : y} could be flattened
567 out on the operand vector using 4 slots, but it would also
568 require additional processing to distinguish @code{c = a op b}
569 from @code{c = a op b ? x : y}.  Something similar occurs with
570 @code{ASSERT_EXPR}.   In time, these special case tree
571 expressions should be flattened into the operand vector.
572 @end itemize
573
574 For tree nodes in the categories @code{GIMPLE_TERNARY_RHS},
575 @code{GIMPLE_BINARY_RHS} and @code{GIMPLE_UNARY_RHS}, they cannot be
576 stored inside tuples directly.  They first need to be flattened and
577 separated into individual components.  For instance, given the GENERIC
578 expression
579
580 @smallexample
581 a = b + c
582 @end smallexample
583
584 its tree representation is:
585
586 @smallexample
587 MODIFY_EXPR <VAR_DECL  <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
588 @end smallexample
589
590 In this case, the GIMPLE form for this statement is logically
591 identical to its GENERIC form but in GIMPLE, the @code{PLUS_EXPR}
592 on the RHS of the assignment is not represented as a tree,
593 instead the two operands are taken out of the @code{PLUS_EXPR} sub-tree
594 and flattened into the GIMPLE tuple as follows:
595
596 @smallexample
597 GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
598 @end smallexample
599
600 @subsection Operand vector allocation
601
602 The operand vector is stored at the bottom of the three tuple
603 structures that accept operands. This means, that depending on
604 the code of a given statement, its operand vector will be at
605 different offsets from the base of the structure.  To access
606 tuple operands use the following accessors
607
608 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
609 Returns the number of operands in statement G.
610 @end deftypefn
611
612 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
613 Returns operand @code{I} from statement @code{G}.
614 @end deftypefn
615
616 @deftypefn {GIMPLE function} tree *gimple_ops (gimple g)
617 Returns a pointer into the operand vector for statement @code{G}.  This
618 is computed using an internal table called @code{gimple_ops_offset_}[].
619 This table is indexed by the gimple code of @code{G}.
620
621 When the compiler is built, this table is filled-in using the
622 sizes of the structures used by each statement code defined in
623 gimple.def.  Since the operand vector is at the bottom of the
624 structure, for a gimple code @code{C} the offset is computed as sizeof
625 (struct-of @code{C}) - sizeof (tree).
626
627 This mechanism adds one memory indirection to every access when
628 using @code{gimple_op}(), if this becomes a bottleneck, a pass can
629 choose to memoize the result from @code{gimple_ops}() and use that to
630 access the operands.
631 @end deftypefn
632
633 @subsection Operand validation
634
635 When adding a new operand to a gimple statement, the operand will
636 be validated according to what each tuple accepts in its operand
637 vector.  These predicates are called by the
638 @code{gimple_@var{name}_set_...()}.  Each tuple will use one of the
639 following predicates (Note, this list is not exhaustive):
640
641 @deftypefn {GIMPLE function} is_gimple_operand (tree t)
642 This is the most permissive of the predicates.  It essentially
643 checks whether t has a @code{gimple_rhs_class} of @code{GIMPLE_SINGLE_RHS}.
644 @end deftypefn
645
646
647 @deftypefn {GIMPLE function} is_gimple_val (tree t)
648 Returns true if t is a "GIMPLE value", which are all the
649 non-addressable stack variables (variables for which
650 @code{is_gimple_reg} returns true) and constants (expressions for which
651 @code{is_gimple_min_invariant} returns true).
652 @end deftypefn
653
654 @deftypefn {GIMPLE function} is_gimple_addressable (tree t)
655 Returns true if t is a symbol or memory reference whose address
656 can be taken.
657 @end deftypefn
658
659 @deftypefn {GIMPLE function} is_gimple_asm_val (tree t)
660 Similar to @code{is_gimple_val} but it also accepts hard registers.
661 @end deftypefn
662
663 @deftypefn {GIMPLE function} is_gimple_call_addr (tree t)
664 Return true if t is a valid expression to use as the function
665 called by a @code{GIMPLE_CALL}.
666 @end deftypefn
667
668 @deftypefn {GIMPLE function} is_gimple_mem_ref_addr (tree t)
669 Return true if t is a valid expression to use as first operand
670 of a @code{MEM_REF} expression.
671 @end deftypefn
672
673 @deftypefn {GIMPLE function} is_gimple_constant (tree t)
674 Return true if t is a valid gimple constant.
675 @end deftypefn
676
677 @deftypefn {GIMPLE function} is_gimple_min_invariant (tree t)
678 Return true if t is a valid minimal invariant.  This is different
679 from constants, in that the specific value of t may not be known
680 at compile time, but it is known that it doesn't change (e.g.,
681 the address of a function local variable).
682 @end deftypefn
683
684 @deftypefn {GIMPLE function} is_gimple_min_invariant_address (tree t)
685 Return true if t is an @code{ADDR_EXPR} that does not change once a
686 function is running.
687 @end deftypefn
688
689 @deftypefn {GIMPLE function} is_gimple_ip_invariant (tree t)
690 Return true if t is an interprocedural invariant.  This means that t
691 is a valid invariant in all functions (e.g. it can be an address of a
692 global variable but not of a local one).
693 @end deftypefn
694
695 @deftypefn {GIMPLE function} is_gimple_ip_invariant_address (tree t)
696 Return true if t is an @code{ADDR_EXPR} that does not change once the
697 program is running (and which is valid in all functions).
698 @end deftypefn
699
700
701 @subsection Statement validation
702
703 @deftypefn {GIMPLE function} is_gimple_assign (gimple g)
704 Return true if the code of g is @code{GIMPLE_ASSIGN}.
705 @end deftypefn
706  
707 @deftypefn {GIMPLE function} is_gimple_call (gimple g)
708 Return true if the code of g is @code{GIMPLE_CALL}.
709 @end deftypefn
710  
711 @deftypefn {GIMPLE function} is_gimple_debug (gimple g)
712 Return true if the code of g is @code{GIMPLE_DEBUG}.
713 @end deftypefn
714
715 @deftypefn {GIMPLE function} gimple_assign_cast_p (gimple g)
716 Return true if g is a @code{GIMPLE_ASSIGN} that performs a type cast
717 operation.
718 @end deftypefn
719
720 @deftypefn {GIMPLE function} gimple_debug_bind_p (gimple g)
721 Return true if g is a @code{GIMPLE_DEBUG} that binds the value of an
722 expression to a variable.
723 @end deftypefn
724
725 @node Manipulating GIMPLE statements
726 @section Manipulating GIMPLE statements
727 @cindex Manipulating GIMPLE statements
728
729 This section documents all the functions available to handle each
730 of the GIMPLE instructions.
731
732 @subsection Common accessors 
733 The following are common accessors for gimple statements.
734
735 @deftypefn {GIMPLE function} enum gimple_code gimple_code (gimple g)
736 Return the code for statement @code{G}.
737 @end deftypefn
738  
739 @deftypefn {GIMPLE function} basic_block gimple_bb (gimple g)
740 Return the basic block to which statement @code{G} belongs to.
741 @end deftypefn
742  
743 @deftypefn {GIMPLE function} tree gimple_block (gimple g)
744 Return the lexical scope block holding statement @code{G}.
745 @end deftypefn
746  
747 @deftypefn {GIMPLE function} tree gimple_expr_type (gimple stmt)
748 Return the type of the main expression computed by @code{STMT}. Return
749 @code{void_type_node} if @code{STMT} computes nothing. This will only return
750 something meaningful for @code{GIMPLE_ASSIGN}, @code{GIMPLE_COND} and
751 @code{GIMPLE_CALL}.  For all other tuple codes, it will return
752 @code{void_type_node}.
753 @end deftypefn
754
755 @deftypefn {GIMPLE function} enum tree_code gimple_expr_code (gimple stmt)
756 Return the tree code for the expression computed by @code{STMT}.  This
757 is only meaningful for @code{GIMPLE_CALL}, @code{GIMPLE_ASSIGN} and
758 @code{GIMPLE_COND}.  If @code{STMT} is @code{GIMPLE_CALL}, it will return @code{CALL_EXPR}.
759 For @code{GIMPLE_COND}, it returns the code of the comparison predicate.
760 For @code{GIMPLE_ASSIGN} it returns the code of the operation performed
761 by the @code{RHS} of the assignment.
762 @end deftypefn
763
764 @deftypefn {GIMPLE function} void gimple_set_block (gimple g, tree block)
765 Set the lexical scope block of @code{G} to @code{BLOCK}.
766 @end deftypefn
767  
768 @deftypefn {GIMPLE function} location_t gimple_locus (gimple g)
769 Return locus information for statement @code{G}.
770 @end deftypefn
771  
772 @deftypefn {GIMPLE function} void gimple_set_locus (gimple g, location_t locus)
773 Set locus information for statement @code{G}.
774 @end deftypefn
775  
776 @deftypefn {GIMPLE function} bool gimple_locus_empty_p (gimple g)
777 Return true if @code{G} does not have locus information.
778 @end deftypefn
779  
780 @deftypefn {GIMPLE function} bool gimple_no_warning_p (gimple stmt)
781 Return true if no warnings should be emitted for statement @code{STMT}.
782 @end deftypefn
783  
784 @deftypefn {GIMPLE function} void gimple_set_visited (gimple stmt, bool visited_p)
785 Set the visited status on statement @code{STMT} to @code{VISITED_P}.
786 @end deftypefn
787  
788 @deftypefn {GIMPLE function} bool gimple_visited_p (gimple stmt)
789 Return the visited status on statement @code{STMT}.
790 @end deftypefn
791  
792 @deftypefn {GIMPLE function} void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p)
793 Set pass local flag @code{PLF} on statement @code{STMT} to @code{VAL_P}.
794 @end deftypefn
795  
796 @deftypefn {GIMPLE function} unsigned int gimple_plf (gimple stmt, enum plf_mask plf)
797 Return the value of pass local flag @code{PLF} on statement @code{STMT}.
798 @end deftypefn
799  
800 @deftypefn {GIMPLE function} bool gimple_has_ops (gimple g)
801 Return true if statement @code{G} has register or memory operands.
802 @end deftypefn
803  
804 @deftypefn {GIMPLE function} bool gimple_has_mem_ops (gimple g)
805 Return true if statement @code{G} has memory operands.
806 @end deftypefn
807  
808 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
809 Return the number of operands for statement @code{G}.
810 @end deftypefn
811  
812 @deftypefn {GIMPLE function} tree *gimple_ops (gimple g)
813 Return the array of operands for statement @code{G}.
814 @end deftypefn
815  
816 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
817 Return operand @code{I} for statement @code{G}.
818 @end deftypefn
819  
820 @deftypefn {GIMPLE function} tree *gimple_op_ptr (gimple g, unsigned i)
821 Return a pointer to operand @code{I} for statement @code{G}.
822 @end deftypefn
823  
824 @deftypefn {GIMPLE function} void gimple_set_op (gimple g, unsigned i, tree op)
825 Set operand @code{I} of statement @code{G} to @code{OP}.
826 @end deftypefn
827  
828 @deftypefn {GIMPLE function} bitmap gimple_addresses_taken (gimple stmt)
829 Return the set of symbols that have had their address taken by
830 @code{STMT}.
831 @end deftypefn
832  
833 @deftypefn {GIMPLE function} struct def_optype_d *gimple_def_ops (gimple g)
834 Return the set of @code{DEF} operands for statement @code{G}.
835 @end deftypefn
836  
837 @deftypefn {GIMPLE function} void gimple_set_def_ops (gimple g, struct def_optype_d *def)
838 Set @code{DEF} to be the set of @code{DEF} operands for statement @code{G}.
839 @end deftypefn
840  
841 @deftypefn {GIMPLE function} struct use_optype_d *gimple_use_ops (gimple g)
842 Return the set of @code{USE} operands for statement @code{G}.
843 @end deftypefn
844  
845 @deftypefn {GIMPLE function} void gimple_set_use_ops (gimple g, struct use_optype_d *use)
846 Set @code{USE} to be the set of @code{USE} operands for statement @code{G}.
847 @end deftypefn
848  
849 @deftypefn {GIMPLE function} struct voptype_d *gimple_vuse_ops (gimple g)
850 Return the set of @code{VUSE} operands for statement @code{G}.
851 @end deftypefn
852  
853 @deftypefn {GIMPLE function} void gimple_set_vuse_ops (gimple g, struct voptype_d *ops)
854 Set @code{OPS} to be the set of @code{VUSE} operands for statement @code{G}.
855 @end deftypefn
856  
857 @deftypefn {GIMPLE function} struct voptype_d *gimple_vdef_ops (gimple g)
858 Return the set of @code{VDEF} operands for statement @code{G}.
859 @end deftypefn
860  
861 @deftypefn {GIMPLE function} void gimple_set_vdef_ops (gimple g, struct voptype_d *ops)
862 Set @code{OPS} to be the set of @code{VDEF} operands for statement @code{G}.
863 @end deftypefn
864  
865 @deftypefn {GIMPLE function} bitmap gimple_loaded_syms (gimple g)
866 Return the set of symbols loaded by statement @code{G}.  Each element of
867 the set is the @code{DECL_UID} of the corresponding symbol.
868 @end deftypefn
869  
870 @deftypefn {GIMPLE function} bitmap gimple_stored_syms (gimple g)
871 Return the set of symbols stored by statement @code{G}.  Each element of
872 the set is the @code{DECL_UID} of the corresponding symbol.
873 @end deftypefn
874  
875 @deftypefn {GIMPLE function} bool gimple_modified_p (gimple g)
876 Return true if statement @code{G} has operands and the modified field
877 has been set.
878 @end deftypefn
879  
880 @deftypefn {GIMPLE function} bool gimple_has_volatile_ops (gimple stmt)
881 Return true if statement @code{STMT} contains volatile operands.
882 @end deftypefn
883  
884 @deftypefn {GIMPLE function} void gimple_set_has_volatile_ops (gimple stmt, bool volatilep)
885 Return true if statement @code{STMT} contains volatile operands.
886 @end deftypefn
887  
888 @deftypefn {GIMPLE function} void update_stmt (gimple s)
889 Mark statement @code{S} as modified, and update it.
890 @end deftypefn
891  
892 @deftypefn {GIMPLE function} void update_stmt_if_modified (gimple s)
893 Update statement @code{S} if it has been marked modified.
894 @end deftypefn
895  
896 @deftypefn {GIMPLE function} gimple gimple_copy (gimple stmt)
897 Return a deep copy of statement @code{STMT}.
898 @end deftypefn
899
900 @node Tuple specific accessors
901 @section Tuple specific accessors
902 @cindex Tuple specific accessors
903
904 @menu
905 * @code{GIMPLE_ASM}::
906 * @code{GIMPLE_ASSIGN}::
907 * @code{GIMPLE_BIND}::
908 * @code{GIMPLE_CALL}::
909 * @code{GIMPLE_CATCH}::
910 * @code{GIMPLE_COND}::
911 * @code{GIMPLE_DEBUG}::
912 * @code{GIMPLE_EH_FILTER}::
913 * @code{GIMPLE_LABEL}::
914 * @code{GIMPLE_NOP}::
915 * @code{GIMPLE_OMP_ATOMIC_LOAD}::
916 * @code{GIMPLE_OMP_ATOMIC_STORE}::
917 * @code{GIMPLE_OMP_CONTINUE}::
918 * @code{GIMPLE_OMP_CRITICAL}::
919 * @code{GIMPLE_OMP_FOR}::
920 * @code{GIMPLE_OMP_MASTER}::
921 * @code{GIMPLE_OMP_ORDERED}::
922 * @code{GIMPLE_OMP_PARALLEL}::
923 * @code{GIMPLE_OMP_RETURN}::
924 * @code{GIMPLE_OMP_SECTION}::
925 * @code{GIMPLE_OMP_SECTIONS}::
926 * @code{GIMPLE_OMP_SINGLE}::
927 * @code{GIMPLE_PHI}::
928 * @code{GIMPLE_RESX}::
929 * @code{GIMPLE_RETURN}::
930 * @code{GIMPLE_SWITCH}::
931 * @code{GIMPLE_TRY}::
932 * @code{GIMPLE_WITH_CLEANUP_EXPR}::
933 @end menu
934
935
936 @node @code{GIMPLE_ASM}
937 @subsection @code{GIMPLE_ASM}
938 @cindex @code{GIMPLE_ASM}
939
940 @deftypefn {GIMPLE function} gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...)
941 Build a @code{GIMPLE_ASM} statement.  This statement is used for
942 building in-line assembly constructs.  @code{STRING} is the assembly
943 code.  @code{NINPUT} is the number of register inputs.  @code{NOUTPUT} is the
944 number of register outputs.  @code{NCLOBBERS} is the number of clobbered
945 registers.  The rest of the arguments trees for each input,
946 output, and clobbered registers.
947 @end deftypefn
948
949 @deftypefn {GIMPLE function} gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *)
950 Identical to gimple_build_asm, but the arguments are passed in
951 VECs.
952 @end deftypefn
953
954 @deftypefn {GIMPLE function} gimple_asm_ninputs (gimple g)
955 Return the number of input operands for @code{GIMPLE_ASM} @code{G}. 
956 @end deftypefn
957
958 @deftypefn {GIMPLE function} gimple_asm_noutputs (gimple g)
959 Return the number of output operands for @code{GIMPLE_ASM} @code{G}. 
960 @end deftypefn
961
962 @deftypefn {GIMPLE function} gimple_asm_nclobbers (gimple g)
963 Return the number of clobber operands for @code{GIMPLE_ASM} @code{G}. 
964 @end deftypefn
965
966 @deftypefn {GIMPLE function} tree gimple_asm_input_op (gimple g, unsigned index)
967 Return input operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}. 
968 @end deftypefn
969
970 @deftypefn {GIMPLE function} void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op)
971 Set @code{IN_OP} to be input operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}. 
972 @end deftypefn
973
974 @deftypefn {GIMPLE function} tree gimple_asm_output_op (gimple g, unsigned index)
975 Return output operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}. 
976 @end deftypefn
977
978 @deftypefn {GIMPLE function} void gimple_asm_set_output_op (gimple g, @
979 unsigned index, tree out_op)
980 Set @code{OUT_OP} to be output operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}. 
981 @end deftypefn
982
983 @deftypefn {GIMPLE function} tree gimple_asm_clobber_op (gimple g, unsigned index)
984 Return clobber operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}. 
985 @end deftypefn
986
987 @deftypefn {GIMPLE function} void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op)
988 Set @code{CLOBBER_OP} to be clobber operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}. 
989 @end deftypefn
990
991 @deftypefn {GIMPLE function} const char *gimple_asm_string (gimple g)
992 Return the string representing the assembly instruction in
993 @code{GIMPLE_ASM} @code{G}. 
994 @end deftypefn
995
996 @deftypefn {GIMPLE function} bool gimple_asm_volatile_p (gimple g)
997 Return true if @code{G} is an asm statement marked volatile. 
998 @end deftypefn
999
1000 @deftypefn {GIMPLE function} void gimple_asm_set_volatile (gimple g)
1001 Mark asm statement @code{G} as volatile. 
1002 @end deftypefn
1003
1004 @deftypefn {GIMPLE function} void gimple_asm_clear_volatile (gimple g)
1005 Remove volatile marker from asm statement @code{G}. 
1006 @end deftypefn
1007
1008 @node @code{GIMPLE_ASSIGN}
1009 @subsection @code{GIMPLE_ASSIGN}
1010 @cindex @code{GIMPLE_ASSIGN}
1011
1012 @deftypefn {GIMPLE function} gimple gimple_build_assign (tree lhs, tree rhs)
1013 Build a @code{GIMPLE_ASSIGN} statement.  The left-hand side is an lvalue
1014 passed in lhs.  The right-hand side can be either a unary or
1015 binary tree expression.  The expression tree rhs will be
1016 flattened and its operands assigned to the corresponding operand
1017 slots in the new statement.  This function is useful when you
1018 already have a tree expression that you want to convert into a
1019 tuple.  However, try to avoid building expression trees for the
1020 sole purpose of calling this function.  If you already have the
1021 operands in separate trees, it is better to use
1022 @code{gimple_build_assign_with_ops}.
1023 @end deftypefn
1024
1025
1026 @deftypefn {GIMPLE function} gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
1027 Build a new @code{GIMPLE_ASSIGN} tuple and append it to the end of
1028 @code{*SEQ_P}.
1029 @end deftypefn
1030
1031 @code{DST}/@code{SRC} are the destination and source respectively.  You can
1032 pass ungimplified trees in @code{DST} or @code{SRC}, in which
1033 case they will be converted to a gimple operand if necessary.
1034
1035 This function returns the newly created @code{GIMPLE_ASSIGN} tuple.
1036
1037 @deftypefn {GIMPLE function} gimple gimple_build_assign_with_ops @
1038 (enum tree_code subcode, tree lhs, tree op1, tree op2)
1039 This function is similar to @code{gimple_build_assign}, but is used to
1040 build a @code{GIMPLE_ASSIGN} statement when the operands of the
1041 right-hand side of the assignment are already split into
1042 different operands.
1043
1044 The left-hand side is an lvalue passed in lhs.  Subcode is the
1045 @code{tree_code} for the right-hand side of the assignment.  Op1 and op2
1046 are the operands.  If op2 is null, subcode must be a @code{tree_code}
1047 for a unary expression.
1048 @end deftypefn
1049
1050 @deftypefn {GIMPLE function} enum tree_code gimple_assign_rhs_code (gimple g)
1051 Return the code of the expression computed on the @code{RHS} of
1052 assignment statement @code{G}.
1053 @end deftypefn
1054  
1055
1056 @deftypefn {GIMPLE function} enum gimple_rhs_class gimple_assign_rhs_class (gimple g)
1057 Return the gimple rhs class of the code for the expression
1058 computed on the rhs of assignment statement @code{G}.  This will never
1059 return @code{GIMPLE_INVALID_RHS}.
1060 @end deftypefn
1061
1062 @deftypefn {GIMPLE function} tree gimple_assign_lhs (gimple g)
1063 Return the @code{LHS} of assignment statement @code{G}.
1064 @end deftypefn
1065  
1066 @deftypefn {GIMPLE function} tree *gimple_assign_lhs_ptr (gimple g)
1067 Return a pointer to the @code{LHS} of assignment statement @code{G}.
1068 @end deftypefn
1069  
1070 @deftypefn {GIMPLE function} tree gimple_assign_rhs1 (gimple g)
1071 Return the first operand on the @code{RHS} of assignment statement @code{G}.
1072 @end deftypefn
1073  
1074 @deftypefn {GIMPLE function} tree *gimple_assign_rhs1_ptr (gimple g)
1075 Return the address of the first operand on the @code{RHS} of assignment
1076 statement @code{G}.
1077 @end deftypefn
1078  
1079 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1080 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1081 @end deftypefn
1082  
1083 @deftypefn {GIMPLE function} tree *gimple_assign_rhs2_ptr (gimple g)
1084 Return the address of the second operand on the @code{RHS} of assignment
1085 statement @code{G}.
1086 @end deftypefn
1087
1088 @deftypefn {GIMPLE function} tree gimple_assign_rhs3 (gimple g)
1089 Return the third operand on the @code{RHS} of assignment statement @code{G}.
1090 @end deftypefn
1091  
1092 @deftypefn {GIMPLE function} tree *gimple_assign_rhs3_ptr (gimple g)
1093 Return the address of the third operand on the @code{RHS} of assignment
1094 statement @code{G}.
1095 @end deftypefn
1096
1097 @deftypefn {GIMPLE function} void gimple_assign_set_lhs (gimple g, tree lhs)
1098 Set @code{LHS} to be the @code{LHS} operand of assignment statement @code{G}.
1099 @end deftypefn
1100  
1101 @deftypefn {GIMPLE function} void gimple_assign_set_rhs1 (gimple g, tree rhs)
1102 Set @code{RHS} to be the first operand on the @code{RHS} of assignment
1103 statement @code{G}.
1104 @end deftypefn
1105  
1106 @deftypefn {GIMPLE function} void gimple_assign_set_rhs2 (gimple g, tree rhs)
1107 Set @code{RHS} to be the second operand on the @code{RHS} of assignment
1108 statement @code{G}.
1109 @end deftypefn
1110  
1111 @deftypefn {GIMPLE function} void gimple_assign_set_rhs3 (gimple g, tree rhs)
1112 Set @code{RHS} to be the third operand on the @code{RHS} of assignment
1113 statement @code{G}.
1114 @end deftypefn
1115  
1116 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (gimple s)
1117 Return true if @code{S} is a type-cast assignment.
1118 @end deftypefn
1119
1120
1121 @node @code{GIMPLE_BIND}
1122 @subsection @code{GIMPLE_BIND}
1123 @cindex @code{GIMPLE_BIND}
1124
1125 @deftypefn {GIMPLE function} gimple gimple_build_bind (tree vars, gimple_seq body)
1126 Build a @code{GIMPLE_BIND} statement with a list of variables in @code{VARS}
1127 and a body of statements in sequence @code{BODY}.
1128 @end deftypefn
1129
1130 @deftypefn {GIMPLE function} tree gimple_bind_vars (gimple g)
1131 Return the variables declared in the @code{GIMPLE_BIND} statement @code{G}. 
1132 @end deftypefn
1133
1134 @deftypefn {GIMPLE function} void gimple_bind_set_vars (gimple g, tree vars)
1135 Set @code{VARS} to be the set of variables declared in the @code{GIMPLE_BIND}
1136 statement @code{G}. 
1137 @end deftypefn
1138
1139 @deftypefn {GIMPLE function} void gimple_bind_append_vars (gimple g, tree vars)
1140 Append @code{VARS} to the set of variables declared in the @code{GIMPLE_BIND}
1141 statement @code{G}.
1142 @end deftypefn
1143
1144 @deftypefn {GIMPLE function} gimple_seq gimple_bind_body (gimple g)
1145 Return the GIMPLE sequence contained in the @code{GIMPLE_BIND} statement
1146 @code{G}. 
1147 @end deftypefn
1148
1149 @deftypefn {GIMPLE function} void gimple_bind_set_body (gimple g, gimple_seq seq)
1150 Set @code{SEQ} to be sequence contained in the @code{GIMPLE_BIND} statement @code{G}.
1151 @end deftypefn
1152
1153 @deftypefn {GIMPLE function} void gimple_bind_add_stmt (gimple gs, gimple stmt)
1154 Append a statement to the end of a @code{GIMPLE_BIND}'s body. 
1155 @end deftypefn
1156
1157 @deftypefn {GIMPLE function} void gimple_bind_add_seq (gimple gs, gimple_seq seq)
1158 Append a sequence of statements to the end of a @code{GIMPLE_BIND}'s
1159 body.
1160 @end deftypefn
1161
1162 @deftypefn {GIMPLE function} tree gimple_bind_block (gimple g)
1163 Return the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND} statement
1164 @code{G}. This is analogous to the @code{BIND_EXPR_BLOCK} field in trees. 
1165 @end deftypefn
1166
1167 @deftypefn {GIMPLE function} void gimple_bind_set_block (gimple g, tree block)
1168 Set @code{BLOCK} to be the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND}
1169 statement @code{G}. 
1170 @end deftypefn
1171
1172
1173 @node @code{GIMPLE_CALL}
1174 @subsection @code{GIMPLE_CALL}
1175 @cindex @code{GIMPLE_CALL}
1176
1177 @deftypefn {GIMPLE function} gimple gimple_build_call (tree fn, unsigned nargs, ...)
1178 Build a @code{GIMPLE_CALL} statement to function @code{FN}.  The argument @code{FN}
1179 must be either a @code{FUNCTION_DECL} or a gimple call address as
1180 determined by @code{is_gimple_call_addr}.  @code{NARGS} are the number of
1181 arguments.  The rest of the arguments follow the argument @code{NARGS},
1182 and must be trees that are valid as rvalues in gimple (i.e., each
1183 operand is validated with @code{is_gimple_operand}).
1184 @end deftypefn
1185
1186
1187 @deftypefn {GIMPLE function} gimple gimple_build_call_from_tree (tree call_expr)
1188 Build a @code{GIMPLE_CALL} from a @code{CALL_EXPR} node.  The arguments and the
1189 function are taken from the expression directly.  This routine
1190 assumes that @code{call_expr} is already in GIMPLE form.  That is, its
1191 operands are GIMPLE values and the function call needs no further
1192 simplification.  All the call flags in @code{call_expr} are copied over
1193 to the new @code{GIMPLE_CALL}.
1194 @end deftypefn
1195
1196 @deftypefn {GIMPLE function} gimple gimple_build_call_vec (tree fn, @code{VEC}(tree, heap) *args)
1197 Identical to @code{gimple_build_call} but the arguments are stored in a
1198 @code{VEC}().
1199 @end deftypefn
1200
1201 @deftypefn {GIMPLE function} tree gimple_call_lhs (gimple g)
1202 Return the @code{LHS} of call statement @code{G}.
1203 @end deftypefn
1204  
1205 @deftypefn {GIMPLE function} tree *gimple_call_lhs_ptr (gimple g)
1206 Return a pointer to the @code{LHS} of call statement @code{G}.
1207 @end deftypefn
1208  
1209 @deftypefn {GIMPLE function} void gimple_call_set_lhs (gimple g, tree lhs)
1210 Set @code{LHS} to be the @code{LHS} operand of call statement @code{G}.
1211 @end deftypefn
1212  
1213 @deftypefn {GIMPLE function} tree gimple_call_fn (gimple g)
1214 Return the tree node representing the function called by call
1215 statement @code{G}.
1216 @end deftypefn
1217  
1218 @deftypefn {GIMPLE function} void gimple_call_set_fn (gimple g, tree fn)
1219 Set @code{FN} to be the function called by call statement @code{G}.  This has
1220 to be a gimple value specifying the address of the called
1221 function.
1222 @end deftypefn
1223  
1224 @deftypefn {GIMPLE function} tree gimple_call_fndecl (gimple g)
1225 If a given @code{GIMPLE_CALL}'s callee is a @code{FUNCTION_DECL}, return it.
1226 Otherwise return @code{NULL}.  This function is analogous to
1227 @code{get_callee_fndecl} in @code{GENERIC}.
1228 @end deftypefn
1229  
1230 @deftypefn {GIMPLE function} tree gimple_call_set_fndecl (gimple g, tree fndecl)
1231 Set the called function to @code{FNDECL}.
1232 @end deftypefn
1233
1234 @deftypefn {GIMPLE function} tree gimple_call_return_type (gimple g)
1235 Return the type returned by call statement @code{G}.
1236 @end deftypefn
1237  
1238 @deftypefn {GIMPLE function} tree gimple_call_chain (gimple g)
1239 Return the static chain for call statement @code{G}. 
1240 @end deftypefn
1241
1242 @deftypefn {GIMPLE function} void gimple_call_set_chain (gimple g, tree chain)
1243 Set @code{CHAIN} to be the static chain for call statement @code{G}. 
1244 @end deftypefn
1245
1246 @deftypefn {GIMPLE function} gimple_call_num_args (gimple g)
1247 Return the number of arguments used by call statement @code{G}. 
1248 @end deftypefn
1249
1250 @deftypefn {GIMPLE function} tree gimple_call_arg (gimple g, unsigned index)
1251 Return the argument at position @code{INDEX} for call statement @code{G}.  The
1252 first argument is 0.
1253 @end deftypefn
1254  
1255 @deftypefn {GIMPLE function} tree *gimple_call_arg_ptr (gimple g, unsigned index)
1256 Return a pointer to the argument at position @code{INDEX} for call
1257 statement @code{G}. 
1258 @end deftypefn
1259
1260 @deftypefn {GIMPLE function} void gimple_call_set_arg (gimple g, unsigned index, tree arg)
1261 Set @code{ARG} to be the argument at position @code{INDEX} for call statement
1262 @code{G}. 
1263 @end deftypefn
1264
1265 @deftypefn {GIMPLE function} void gimple_call_set_tail (gimple s)
1266 Mark call statement @code{S} as being a tail call (i.e., a call just
1267 before the exit of a function). These calls are candidate for
1268 tail call optimization. 
1269 @end deftypefn
1270
1271 @deftypefn {GIMPLE function} bool gimple_call_tail_p (gimple s)
1272 Return true if @code{GIMPLE_CALL} @code{S} is marked as a tail call. 
1273 @end deftypefn
1274
1275 @deftypefn {GIMPLE function} void gimple_call_mark_uninlinable (gimple s)
1276 Mark @code{GIMPLE_CALL} @code{S} as being uninlinable. 
1277 @end deftypefn
1278
1279 @deftypefn {GIMPLE function} bool gimple_call_cannot_inline_p (gimple s)
1280 Return true if @code{GIMPLE_CALL} @code{S} cannot be inlined. 
1281 @end deftypefn
1282
1283 @deftypefn {GIMPLE function} bool gimple_call_noreturn_p (gimple s)
1284 Return true if @code{S} is a noreturn call. 
1285 @end deftypefn
1286
1287 @deftypefn {GIMPLE function} gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
1288 Build a @code{GIMPLE_CALL} identical to @code{STMT} but skipping the arguments
1289 in the positions marked by the set @code{ARGS_TO_SKIP}.
1290 @end deftypefn
1291
1292
1293 @node @code{GIMPLE_CATCH}
1294 @subsection @code{GIMPLE_CATCH}
1295 @cindex @code{GIMPLE_CATCH}
1296
1297 @deftypefn {GIMPLE function} gimple gimple_build_catch (tree types, gimple_seq handler)
1298 Build a @code{GIMPLE_CATCH} statement.  @code{TYPES} are the tree types this
1299 catch handles.  @code{HANDLER} is a sequence of statements with the code
1300 for the handler.
1301 @end deftypefn
1302
1303 @deftypefn {GIMPLE function} tree gimple_catch_types (gimple g)
1304 Return the types handled by @code{GIMPLE_CATCH} statement @code{G}. 
1305 @end deftypefn
1306
1307 @deftypefn {GIMPLE function} tree *gimple_catch_types_ptr (gimple g)
1308 Return a pointer to the types handled by @code{GIMPLE_CATCH} statement
1309 @code{G}. 
1310 @end deftypefn
1311
1312 @deftypefn {GIMPLE function} gimple_seq gimple_catch_handler (gimple g)
1313 Return the GIMPLE sequence representing the body of the handler
1314 of @code{GIMPLE_CATCH} statement @code{G}. 
1315 @end deftypefn
1316
1317 @deftypefn {GIMPLE function} void gimple_catch_set_types (gimple g, tree t)
1318 Set @code{T} to be the set of types handled by @code{GIMPLE_CATCH} @code{G}. 
1319 @end deftypefn
1320
1321 @deftypefn {GIMPLE function} void gimple_catch_set_handler (gimple g, gimple_seq handler)
1322 Set @code{HANDLER} to be the body of @code{GIMPLE_CATCH} @code{G}. 
1323 @end deftypefn
1324
1325
1326 @node @code{GIMPLE_COND}
1327 @subsection @code{GIMPLE_COND}
1328 @cindex @code{GIMPLE_COND}
1329
1330 @deftypefn {GIMPLE function} gimple gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, tree t_label, tree f_label)
1331 Build a @code{GIMPLE_COND} statement.  @code{A} @code{GIMPLE_COND} statement compares
1332 @code{LHS} and @code{RHS} and if the condition in @code{PRED_CODE} is true, jump to
1333 the label in @code{t_label}, otherwise jump to the label in @code{f_label}.
1334 @code{PRED_CODE} are relational operator tree codes like @code{EQ_EXPR},
1335 @code{LT_EXPR}, @code{LE_EXPR}, @code{NE_EXPR}, etc.
1336 @end deftypefn
1337
1338
1339 @deftypefn {GIMPLE function} gimple gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
1340 Build a @code{GIMPLE_COND} statement from the conditional expression
1341 tree @code{COND}.  @code{T_LABEL} and @code{F_LABEL} are as in @code{gimple_build_cond}.
1342 @end deftypefn
1343
1344 @deftypefn {GIMPLE function} enum tree_code gimple_cond_code (gimple g)
1345 Return the code of the predicate computed by conditional
1346 statement @code{G}. 
1347 @end deftypefn
1348
1349 @deftypefn {GIMPLE function} void gimple_cond_set_code (gimple g, enum tree_code code)
1350 Set @code{CODE} to be the predicate code for the conditional statement
1351 @code{G}. 
1352 @end deftypefn
1353
1354 @deftypefn {GIMPLE function} tree gimple_cond_lhs (gimple g)
1355 Return the @code{LHS} of the predicate computed by conditional statement
1356 @code{G}. 
1357 @end deftypefn
1358
1359 @deftypefn {GIMPLE function} void gimple_cond_set_lhs (gimple g, tree lhs)
1360 Set @code{LHS} to be the @code{LHS} operand of the predicate computed by
1361 conditional statement @code{G}. 
1362 @end deftypefn
1363
1364 @deftypefn {GIMPLE function} tree gimple_cond_rhs (gimple g)
1365 Return the @code{RHS} operand of the predicate computed by conditional
1366 @code{G}. 
1367 @end deftypefn
1368
1369 @deftypefn {GIMPLE function} void gimple_cond_set_rhs (gimple g, tree rhs)
1370 Set @code{RHS} to be the @code{RHS} operand of the predicate computed by
1371 conditional statement @code{G}. 
1372 @end deftypefn
1373
1374 @deftypefn {GIMPLE function} tree gimple_cond_true_label (gimple g)
1375 Return the label used by conditional statement @code{G} when its
1376 predicate evaluates to true. 
1377 @end deftypefn
1378
1379 @deftypefn {GIMPLE function} void gimple_cond_set_true_label (gimple g, tree label)
1380 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1381 its predicate evaluates to true. 
1382 @end deftypefn
1383
1384 @deftypefn {GIMPLE function} void gimple_cond_set_false_label (gimple g, tree label)
1385 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1386 its predicate evaluates to false. 
1387 @end deftypefn
1388
1389 @deftypefn {GIMPLE function} tree gimple_cond_false_label (gimple g)
1390 Return the label used by conditional statement @code{G} when its
1391 predicate evaluates to false. 
1392 @end deftypefn
1393
1394 @deftypefn {GIMPLE function} void gimple_cond_make_false (gimple g)
1395 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 0)'. 
1396 @end deftypefn
1397
1398 @deftypefn {GIMPLE function} void gimple_cond_make_true (gimple g)
1399 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 1)'. 
1400 @end deftypefn
1401
1402 @node @code{GIMPLE_DEBUG}
1403 @subsection @code{GIMPLE_DEBUG}
1404 @cindex @code{GIMPLE_DEBUG}
1405 @cindex @code{GIMPLE_DEBUG_BIND}
1406
1407 @deftypefn {GIMPLE function} gimple gimple_build_debug_bind (tree var, tree value, gimple stmt)
1408 Build a @code{GIMPLE_DEBUG} statement with @code{GIMPLE_DEBUG_BIND} of
1409 @code{subcode}.  The effect of this statement is to tell debug
1410 information generation machinery that the value of user variable
1411 @code{var} is given by @code{value} at that point, and to remain with
1412 that value until @code{var} runs out of scope, a
1413 dynamically-subsequent debug bind statement overrides the binding, or
1414 conflicting values reach a control flow merge point.  Even if
1415 components of the @code{value} expression change afterwards, the
1416 variable is supposed to retain the same value, though not necessarily
1417 the same location.
1418
1419 It is expected that @code{var} be most often a tree for automatic user
1420 variables (@code{VAR_DECL} or @code{PARM_DECL}) that satisfy the
1421 requirements for gimple registers, but it may also be a tree for a
1422 scalarized component of a user variable (@code{ARRAY_REF},
1423 @code{COMPONENT_REF}), or a debug temporary (@code{DEBUG_EXPR_DECL}).
1424
1425 As for @code{value}, it can be an arbitrary tree expression, but it is
1426 recommended that it be in a suitable form for a gimple assignment
1427 @code{RHS}.  It is not expected that user variables that could appear
1428 as @code{var} ever appear in @code{value}, because in the latter we'd
1429 have their @code{SSA_NAME}s instead, but even if they were not in SSA
1430 form, user variables appearing in @code{value} are to be regarded as
1431 part of the executable code space, whereas those in @code{var} are to
1432 be regarded as part of the source code space.  There is no way to
1433 refer to the value bound to a user variable within a @code{value}
1434 expression.
1435
1436 If @code{value} is @code{GIMPLE_DEBUG_BIND_NOVALUE}, debug information
1437 generation machinery is informed that the variable @code{var} is
1438 unbound, i.e., that its value is indeterminate, which sometimes means
1439 it is really unavailable, and other times that the compiler could not
1440 keep track of it.
1441
1442 Block and location information for the newly-created stmt are
1443 taken from @code{stmt}, if given.
1444 @end deftypefn
1445
1446 @deftypefn {GIMPLE function} tree gimple_debug_bind_get_var (gimple stmt)
1447 Return the user variable @var{var} that is bound at @code{stmt}.
1448 @end deftypefn
1449
1450 @deftypefn {GIMPLE function} tree gimple_debug_bind_get_value (gimple stmt)
1451 Return the value expression that is bound to a user variable at
1452 @code{stmt}.
1453 @end deftypefn
1454
1455 @deftypefn {GIMPLE function} tree *gimple_debug_bind_get_value_ptr (gimple stmt)
1456 Return a pointer to the value expression that is bound to a user
1457 variable at @code{stmt}.
1458 @end deftypefn
1459
1460 @deftypefn {GIMPLE function} void gimple_debug_bind_set_var (gimple stmt, tree var)
1461 Modify the user variable bound at @code{stmt} to @var{var}.
1462 @end deftypefn
1463
1464 @deftypefn {GIMPLE function} void gimple_debug_bind_set_value (gimple stmt, tree var)
1465 Modify the value bound to the user variable bound at @code{stmt} to
1466 @var{value}.
1467 @end deftypefn
1468
1469 @deftypefn {GIMPLE function} void gimple_debug_bind_reset_value (gimple stmt)
1470 Modify the value bound to the user variable bound at @code{stmt} so
1471 that the variable becomes unbound.
1472 @end deftypefn
1473
1474 @deftypefn {GIMPLE function} bool gimple_debug_bind_has_value_p (gimple stmt)
1475 Return @code{TRUE} if @code{stmt} binds a user variable to a value,
1476 and @code{FALSE} if it unbinds the variable.
1477 @end deftypefn
1478
1479 @node @code{GIMPLE_EH_FILTER}
1480 @subsection @code{GIMPLE_EH_FILTER}
1481 @cindex @code{GIMPLE_EH_FILTER}
1482
1483 @deftypefn {GIMPLE function} gimple gimple_build_eh_filter (tree types, gimple_seq failure)
1484 Build a @code{GIMPLE_EH_FILTER} statement.  @code{TYPES} are the filter's
1485 types.  @code{FAILURE} is a sequence with the filter's failure action.
1486 @end deftypefn
1487
1488 @deftypefn {GIMPLE function} tree gimple_eh_filter_types (gimple g)
1489 Return the types handled by @code{GIMPLE_EH_FILTER} statement @code{G}. 
1490 @end deftypefn
1491
1492 @deftypefn {GIMPLE function} tree *gimple_eh_filter_types_ptr (gimple g)
1493 Return a pointer to the types handled by @code{GIMPLE_EH_FILTER}
1494 statement @code{G}. 
1495 @end deftypefn
1496
1497 @deftypefn {GIMPLE function} gimple_seq gimple_eh_filter_failure (gimple g)
1498 Return the sequence of statement to execute when @code{GIMPLE_EH_FILTER}
1499 statement fails. 
1500 @end deftypefn
1501
1502 @deftypefn {GIMPLE function} void gimple_eh_filter_set_types (gimple g, tree types)
1503 Set @code{TYPES} to be the set of types handled by @code{GIMPLE_EH_FILTER} @code{G}. 
1504 @end deftypefn
1505
1506 @deftypefn {GIMPLE function} void gimple_eh_filter_set_failure (gimple g, gimple_seq failure)
1507 Set @code{FAILURE} to be the sequence of statements to execute on
1508 failure for @code{GIMPLE_EH_FILTER} @code{G}. 
1509 @end deftypefn
1510
1511 @deftypefn {GIMPLE function} bool gimple_eh_filter_must_not_throw (gimple g)
1512 Return the @code{EH_FILTER_MUST_NOT_THROW} flag. 
1513 @end deftypefn
1514
1515 @deftypefn {GIMPLE function} void gimple_eh_filter_set_must_not_throw (gimple g, bool mntp)
1516 Set the @code{EH_FILTER_MUST_NOT_THROW} flag. 
1517 @end deftypefn
1518
1519
1520 @node @code{GIMPLE_LABEL}
1521 @subsection @code{GIMPLE_LABEL}
1522 @cindex @code{GIMPLE_LABEL}
1523
1524 @deftypefn {GIMPLE function} gimple gimple_build_label (tree label)
1525 Build a @code{GIMPLE_LABEL} statement with corresponding to the tree
1526 label, @code{LABEL}.
1527 @end deftypefn
1528
1529 @deftypefn {GIMPLE function} tree gimple_label_label (gimple g)
1530 Return the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL} statement @code{G}. 
1531 @end deftypefn
1532
1533 @deftypefn {GIMPLE function} void gimple_label_set_label (gimple g, tree label)
1534 Set @code{LABEL} to be the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL}
1535 statement @code{G}. 
1536 @end deftypefn
1537
1538
1539 @deftypefn {GIMPLE function} gimple gimple_build_goto (tree dest)
1540 Build a @code{GIMPLE_GOTO} statement to label @code{DEST}.
1541 @end deftypefn
1542
1543 @deftypefn {GIMPLE function} tree gimple_goto_dest (gimple g)
1544 Return the destination of the unconditional jump @code{G}. 
1545 @end deftypefn
1546
1547 @deftypefn {GIMPLE function} void gimple_goto_set_dest (gimple g, tree dest)
1548 Set @code{DEST} to be the destination of the unconditional jump @code{G}.
1549 @end deftypefn
1550
1551
1552 @node @code{GIMPLE_NOP}
1553 @subsection @code{GIMPLE_NOP}
1554 @cindex @code{GIMPLE_NOP}
1555
1556 @deftypefn {GIMPLE function} gimple gimple_build_nop (void)
1557 Build a @code{GIMPLE_NOP} statement.
1558 @end deftypefn
1559
1560 @deftypefn {GIMPLE function} bool gimple_nop_p (gimple g)
1561 Returns @code{TRUE} if statement @code{G} is a @code{GIMPLE_NOP}. 
1562 @end deftypefn
1563
1564 @node @code{GIMPLE_OMP_ATOMIC_LOAD}
1565 @subsection @code{GIMPLE_OMP_ATOMIC_LOAD}
1566 @cindex @code{GIMPLE_OMP_ATOMIC_LOAD}
1567
1568 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_load (tree lhs, tree rhs)
1569 Build a @code{GIMPLE_OMP_ATOMIC_LOAD} statement.  @code{LHS} is the left-hand
1570 side of the assignment.  @code{RHS} is the right-hand side of the
1571 assignment.
1572 @end deftypefn
1573
1574 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_lhs (gimple g, tree lhs)
1575 Set the @code{LHS} of an atomic load. 
1576 @end deftypefn
1577
1578 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_lhs (gimple g)
1579 Get the @code{LHS} of an atomic load. 
1580 @end deftypefn
1581
1582 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_rhs (gimple g, tree rhs)
1583 Set the @code{RHS} of an atomic set. 
1584 @end deftypefn
1585
1586 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_rhs (gimple g)
1587 Get the @code{RHS} of an atomic set. 
1588 @end deftypefn
1589
1590
1591 @node @code{GIMPLE_OMP_ATOMIC_STORE}
1592 @subsection @code{GIMPLE_OMP_ATOMIC_STORE}
1593 @cindex @code{GIMPLE_OMP_ATOMIC_STORE}
1594
1595 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_store (tree val)
1596 Build a @code{GIMPLE_OMP_ATOMIC_STORE} statement. @code{VAL} is the value to be
1597 stored.
1598 @end deftypefn
1599
1600 @deftypefn {GIMPLE function} void gimple_omp_atomic_store_set_val (gimple g, tree val)
1601 Set the value being stored in an atomic store. 
1602 @end deftypefn
1603
1604 @deftypefn {GIMPLE function} tree gimple_omp_atomic_store_val (gimple g)
1605 Return the value being stored in an atomic store. 
1606 @end deftypefn
1607
1608 @node @code{GIMPLE_OMP_CONTINUE}
1609 @subsection @code{GIMPLE_OMP_CONTINUE}
1610 @cindex @code{GIMPLE_OMP_CONTINUE}
1611
1612 @deftypefn {GIMPLE function} gimple gimple_build_omp_continue (tree control_def, tree control_use)
1613 Build a @code{GIMPLE_OMP_CONTINUE} statement.  @code{CONTROL_DEF} is the
1614 definition of the control variable.  @code{CONTROL_USE} is the use of
1615 the control variable.
1616 @end deftypefn
1617
1618 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def (gimple s)
1619 Return the definition of the control variable on a
1620 @code{GIMPLE_OMP_CONTINUE} in @code{S}.
1621 @end deftypefn
1622  
1623 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def_ptr (gimple s)
1624 Same as above, but return the pointer.
1625 @end deftypefn
1626  
1627 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_def (gimple s)
1628 Set the control variable definition for a @code{GIMPLE_OMP_CONTINUE}
1629 statement in @code{S}.
1630 @end deftypefn
1631  
1632 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use (gimple s)
1633 Return the use of the control variable on a @code{GIMPLE_OMP_CONTINUE}
1634 in @code{S}.
1635 @end deftypefn
1636  
1637 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use_ptr (gimple s)
1638 Same as above, but return the pointer.
1639 @end deftypefn
1640  
1641 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_use (gimple s)
1642 Set the control variable use for a @code{GIMPLE_OMP_CONTINUE} statement
1643 in @code{S}.
1644 @end deftypefn
1645
1646
1647 @node @code{GIMPLE_OMP_CRITICAL}
1648 @subsection @code{GIMPLE_OMP_CRITICAL}
1649 @cindex @code{GIMPLE_OMP_CRITICAL}
1650
1651 @deftypefn {GIMPLE function} gimple gimple_build_omp_critical (gimple_seq body, tree name)
1652 Build a @code{GIMPLE_OMP_CRITICAL} statement. @code{BODY} is the sequence of
1653 statements for which only one thread can execute.  @code{NAME} is an
1654 optional identifier for this critical block.
1655 @end deftypefn
1656
1657 @deftypefn {GIMPLE function} tree gimple_omp_critical_name (gimple g)
1658 Return the name associated with @code{OMP_CRITICAL} statement @code{G}. 
1659 @end deftypefn
1660
1661 @deftypefn {GIMPLE function} tree *gimple_omp_critical_name_ptr (gimple g)
1662 Return a pointer to the name associated with @code{OMP} critical
1663 statement @code{G}. 
1664 @end deftypefn
1665
1666 @deftypefn {GIMPLE function} void gimple_omp_critical_set_name (gimple g, tree name)
1667 Set @code{NAME} to be the name associated with @code{OMP} critical statement @code{G}. 
1668 @end deftypefn
1669
1670 @node @code{GIMPLE_OMP_FOR}
1671 @subsection @code{GIMPLE_OMP_FOR}
1672 @cindex @code{GIMPLE_OMP_FOR}
1673
1674 @deftypefn {GIMPLE function} gimple gimple_build_omp_for (gimple_seq body, @
1675 tree clauses, tree index, tree initial, tree final, tree incr, @
1676 gimple_seq pre_body, enum tree_code omp_for_cond)
1677 Build a @code{GIMPLE_OMP_FOR} statement. @code{BODY} is sequence of statements
1678 inside the for loop.  @code{CLAUSES}, are any of the @code{OMP} loop
1679 construct's clauses: private, firstprivate,  lastprivate,
1680 reductions, ordered, schedule, and nowait.  @code{PRE_BODY} is the
1681 sequence of statements that are loop invariant.  @code{INDEX} is the
1682 index variable.  @code{INITIAL} is the initial value of @code{INDEX}.  @code{FINAL} is
1683 final value of @code{INDEX}.  OMP_FOR_COND is the predicate used to
1684 compare @code{INDEX} and @code{FINAL}.  @code{INCR} is the increment expression.
1685 @end deftypefn
1686
1687 @deftypefn {GIMPLE function} tree gimple_omp_for_clauses (gimple g)
1688 Return the clauses associated with @code{OMP_FOR} @code{G}. 
1689 @end deftypefn
1690
1691 @deftypefn {GIMPLE function} tree *gimple_omp_for_clauses_ptr (gimple g)
1692 Return a pointer to the @code{OMP_FOR} @code{G}. 
1693 @end deftypefn
1694
1695 @deftypefn {GIMPLE function} void gimple_omp_for_set_clauses (gimple g, tree clauses)
1696 Set @code{CLAUSES} to be the list of clauses associated with @code{OMP_FOR} @code{G}. 
1697 @end deftypefn
1698
1699 @deftypefn {GIMPLE function} tree gimple_omp_for_index (gimple g)
1700 Return the index variable for @code{OMP_FOR} @code{G}. 
1701 @end deftypefn
1702
1703 @deftypefn {GIMPLE function} tree *gimple_omp_for_index_ptr (gimple g)
1704 Return a pointer to the index variable for @code{OMP_FOR} @code{G}. 
1705 @end deftypefn
1706
1707 @deftypefn {GIMPLE function} void gimple_omp_for_set_index (gimple g, tree index)
1708 Set @code{INDEX} to be the index variable for @code{OMP_FOR} @code{G}. 
1709 @end deftypefn
1710
1711 @deftypefn {GIMPLE function} tree gimple_omp_for_initial (gimple g)
1712 Return the initial value for @code{OMP_FOR} @code{G}. 
1713 @end deftypefn
1714
1715 @deftypefn {GIMPLE function} tree *gimple_omp_for_initial_ptr (gimple g)
1716 Return a pointer to the initial value for @code{OMP_FOR} @code{G}. 
1717 @end deftypefn
1718
1719 @deftypefn {GIMPLE function} void gimple_omp_for_set_initial (gimple g, tree initial)
1720 Set @code{INITIAL} to be the initial value for @code{OMP_FOR} @code{G}.
1721 @end deftypefn
1722
1723 @deftypefn {GIMPLE function} tree gimple_omp_for_final (gimple g)
1724 Return the final value for @code{OMP_FOR} @code{G}. 
1725 @end deftypefn
1726
1727 @deftypefn {GIMPLE function} tree *gimple_omp_for_final_ptr (gimple g)
1728 turn a pointer to the final value for @code{OMP_FOR} @code{G}. 
1729 @end deftypefn
1730
1731 @deftypefn {GIMPLE function} void gimple_omp_for_set_final (gimple g, tree final)
1732 Set @code{FINAL} to be the final value for @code{OMP_FOR} @code{G}. 
1733 @end deftypefn
1734
1735 @deftypefn {GIMPLE function} tree gimple_omp_for_incr (gimple g)
1736 Return the increment value for @code{OMP_FOR} @code{G}. 
1737 @end deftypefn
1738
1739 @deftypefn {GIMPLE function} tree *gimple_omp_for_incr_ptr (gimple g)
1740 Return a pointer to the increment value for @code{OMP_FOR} @code{G}. 
1741 @end deftypefn
1742
1743 @deftypefn {GIMPLE function} void gimple_omp_for_set_incr (gimple g, tree incr)
1744 Set @code{INCR} to be the increment value for @code{OMP_FOR} @code{G}. 
1745 @end deftypefn
1746
1747 @deftypefn {GIMPLE function} gimple_seq gimple_omp_for_pre_body (gimple g)
1748 Return the sequence of statements to execute before the @code{OMP_FOR}
1749 statement @code{G} starts. 
1750 @end deftypefn
1751
1752 @deftypefn {GIMPLE function} void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body)
1753 Set @code{PRE_BODY} to be the sequence of statements to execute before
1754 the @code{OMP_FOR} statement @code{G} starts.
1755 @end deftypefn
1756  
1757 @deftypefn {GIMPLE function} void gimple_omp_for_set_cond (gimple g, enum tree_code cond)
1758 Set @code{COND} to be the condition code for @code{OMP_FOR} @code{G}. 
1759 @end deftypefn
1760
1761 @deftypefn {GIMPLE function} enum tree_code gimple_omp_for_cond (gimple g)
1762 Return the condition code associated with @code{OMP_FOR} @code{G}. 
1763 @end deftypefn
1764
1765
1766 @node @code{GIMPLE_OMP_MASTER}
1767 @subsection @code{GIMPLE_OMP_MASTER}
1768 @cindex @code{GIMPLE_OMP_MASTER}
1769
1770 @deftypefn {GIMPLE function} gimple gimple_build_omp_master (gimple_seq body)
1771 Build a @code{GIMPLE_OMP_MASTER} statement. @code{BODY} is the sequence of
1772 statements to be executed by just the master.
1773 @end deftypefn
1774
1775
1776 @node @code{GIMPLE_OMP_ORDERED}
1777 @subsection @code{GIMPLE_OMP_ORDERED}
1778 @cindex @code{GIMPLE_OMP_ORDERED}
1779
1780 @deftypefn {GIMPLE function} gimple gimple_build_omp_ordered (gimple_seq body)
1781 Build a @code{GIMPLE_OMP_ORDERED} statement.
1782 @end deftypefn
1783
1784 @code{BODY} is the sequence of statements inside a loop that will
1785 executed in sequence.
1786
1787
1788 @node @code{GIMPLE_OMP_PARALLEL}
1789 @subsection @code{GIMPLE_OMP_PARALLEL}
1790 @cindex @code{GIMPLE_OMP_PARALLEL}
1791
1792 @deftypefn {GIMPLE function} gimple gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, tree data_arg)
1793 Build a @code{GIMPLE_OMP_PARALLEL} statement.
1794 @end deftypefn
1795
1796 @code{BODY} is sequence of statements which are executed in parallel.
1797 @code{CLAUSES}, are the @code{OMP} parallel construct's clauses.  @code{CHILD_FN} is
1798 the function created for the parallel threads to execute.
1799 @code{DATA_ARG} are the shared data argument(s).
1800
1801 @deftypefn {GIMPLE function} bool gimple_omp_parallel_combined_p (gimple g)
1802 Return true if @code{OMP} parallel statement @code{G} has the
1803 @code{GF_OMP_PARALLEL_COMBINED} flag set.
1804 @end deftypefn
1805  
1806 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_combined_p (gimple g)
1807 Set the @code{GF_OMP_PARALLEL_COMBINED} field in @code{OMP} parallel statement
1808 @code{G}.
1809 @end deftypefn
1810  
1811 @deftypefn {GIMPLE function} gimple_seq gimple_omp_body (gimple g)
1812 Return the body for the @code{OMP} statement @code{G}. 
1813 @end deftypefn
1814
1815 @deftypefn {GIMPLE function} void gimple_omp_set_body (gimple g, gimple_seq body)
1816 Set @code{BODY} to be the body for the @code{OMP} statement @code{G}. 
1817 @end deftypefn
1818
1819 @deftypefn {GIMPLE function} tree gimple_omp_parallel_clauses (gimple g)
1820 Return the clauses associated with @code{OMP_PARALLEL} @code{G}. 
1821 @end deftypefn
1822
1823 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_clauses_ptr (gimple g)
1824 Return a pointer to the clauses associated with @code{OMP_PARALLEL} @code{G}. 
1825 @end deftypefn
1826
1827 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_clauses (gimple g, tree clauses)
1828 Set @code{CLAUSES} to be the list of clauses associated with
1829 @code{OMP_PARALLEL} @code{G}. 
1830 @end deftypefn
1831
1832 @deftypefn {GIMPLE function} tree gimple_omp_parallel_child_fn (gimple g)
1833 Return the child function used to hold the body of @code{OMP_PARALLEL}
1834 @code{G}. 
1835 @end deftypefn
1836
1837 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_child_fn_ptr (gimple g)
1838 Return a pointer to the child function used to hold the body of
1839 @code{OMP_PARALLEL} @code{G}. 
1840 @end deftypefn
1841
1842 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn)
1843 Set @code{CHILD_FN} to be the child function for @code{OMP_PARALLEL} @code{G}. 
1844 @end deftypefn
1845
1846 @deftypefn {GIMPLE function} tree gimple_omp_parallel_data_arg (gimple g)
1847 Return the artificial argument used to send variables and values
1848 from the parent to the children threads in @code{OMP_PARALLEL} @code{G}. 
1849 @end deftypefn
1850
1851 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_data_arg_ptr (gimple g)
1852 Return a pointer to the data argument for @code{OMP_PARALLEL} @code{G}. 
1853 @end deftypefn
1854
1855 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg)
1856 Set @code{DATA_ARG} to be the data argument for @code{OMP_PARALLEL} @code{G}. 
1857 @end deftypefn
1858
1859 @deftypefn {GIMPLE function} bool is_gimple_omp (gimple stmt)
1860 Returns true when the gimple statement @code{STMT} is any of the OpenMP
1861 types. 
1862 @end deftypefn
1863
1864
1865 @node @code{GIMPLE_OMP_RETURN}
1866 @subsection @code{GIMPLE_OMP_RETURN}
1867 @cindex @code{GIMPLE_OMP_RETURN}
1868
1869 @deftypefn {GIMPLE function} gimple gimple_build_omp_return (bool wait_p)
1870 Build a @code{GIMPLE_OMP_RETURN} statement. @code{WAIT_P} is true if this is a
1871 non-waiting return.
1872 @end deftypefn
1873
1874 @deftypefn {GIMPLE function} void gimple_omp_return_set_nowait (gimple s)
1875 Set the nowait flag on @code{GIMPLE_OMP_RETURN} statement @code{S}.
1876 @end deftypefn
1877  
1878
1879 @deftypefn {GIMPLE function} bool gimple_omp_return_nowait_p (gimple g)
1880 Return true if @code{OMP} return statement @code{G} has the
1881 @code{GF_OMP_RETURN_NOWAIT} flag set.
1882 @end deftypefn
1883
1884 @node @code{GIMPLE_OMP_SECTION}
1885 @subsection @code{GIMPLE_OMP_SECTION}
1886 @cindex @code{GIMPLE_OMP_SECTION}
1887
1888 @deftypefn {GIMPLE function} gimple gimple_build_omp_section (gimple_seq body)
1889 Build a @code{GIMPLE_OMP_SECTION} statement for a sections statement.
1890 @end deftypefn
1891
1892 @code{BODY} is the sequence of statements in the section.
1893
1894 @deftypefn {GIMPLE function} bool gimple_omp_section_last_p (gimple g)
1895 Return true if @code{OMP} section statement @code{G} has the
1896 @code{GF_OMP_SECTION_LAST} flag set.
1897 @end deftypefn
1898  
1899 @deftypefn {GIMPLE function} void gimple_omp_section_set_last (gimple g)
1900 Set the @code{GF_OMP_SECTION_LAST} flag on @code{G}.
1901 @end deftypefn
1902
1903 @node @code{GIMPLE_OMP_SECTIONS}
1904 @subsection @code{GIMPLE_OMP_SECTIONS}
1905 @cindex @code{GIMPLE_OMP_SECTIONS}
1906
1907 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections (gimple_seq body, tree clauses)
1908 Build a @code{GIMPLE_OMP_SECTIONS} statement. @code{BODY} is a sequence of
1909 section statements.  @code{CLAUSES} are any of the @code{OMP} sections
1910 construct's clauses: private, firstprivate, lastprivate,
1911 reduction, and nowait.
1912 @end deftypefn
1913
1914
1915 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections_switch (void)
1916 Build a @code{GIMPLE_OMP_SECTIONS_SWITCH} statement.
1917 @end deftypefn
1918
1919 @deftypefn {GIMPLE function} tree gimple_omp_sections_control (gimple g)
1920 Return the control variable associated with the
1921 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1922 @end deftypefn
1923  
1924 @deftypefn {GIMPLE function} tree *gimple_omp_sections_control_ptr (gimple g)
1925 Return a pointer to the clauses associated with the
1926 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1927 @end deftypefn
1928  
1929 @deftypefn {GIMPLE function} void gimple_omp_sections_set_control (gimple g, tree control)
1930 Set @code{CONTROL} to be the set of clauses associated with the
1931 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1932 @end deftypefn
1933  
1934 @deftypefn {GIMPLE function} tree gimple_omp_sections_clauses (gimple g)
1935 Return the clauses associated with @code{OMP_SECTIONS} @code{G}. 
1936 @end deftypefn
1937
1938 @deftypefn {GIMPLE function} tree *gimple_omp_sections_clauses_ptr (gimple g)
1939 Return a pointer to the clauses associated with @code{OMP_SECTIONS} @code{G}. 
1940 @end deftypefn
1941
1942 @deftypefn {GIMPLE function} void gimple_omp_sections_set_clauses (gimple g, tree clauses)
1943 Set @code{CLAUSES} to be the set of clauses associated with @code{OMP_SECTIONS}
1944 @code{G}. 
1945 @end deftypefn
1946
1947
1948 @node @code{GIMPLE_OMP_SINGLE}
1949 @subsection @code{GIMPLE_OMP_SINGLE}
1950 @cindex @code{GIMPLE_OMP_SINGLE}
1951
1952 @deftypefn {GIMPLE function} gimple gimple_build_omp_single (gimple_seq body, tree clauses)
1953 Build a @code{GIMPLE_OMP_SINGLE} statement. @code{BODY} is the sequence of
1954 statements that will be executed once.  @code{CLAUSES} are any of the
1955 @code{OMP} single construct's clauses: private, firstprivate,
1956 copyprivate, nowait.
1957 @end deftypefn
1958
1959 @deftypefn {GIMPLE function} tree gimple_omp_single_clauses (gimple g)
1960 Return the clauses associated with @code{OMP_SINGLE} @code{G}. 
1961 @end deftypefn
1962
1963 @deftypefn {GIMPLE function} tree *gimple_omp_single_clauses_ptr (gimple g)
1964 Return a pointer to the clauses associated with @code{OMP_SINGLE} @code{G}. 
1965 @end deftypefn
1966
1967 @deftypefn {GIMPLE function} void gimple_omp_single_set_clauses (gimple g, tree clauses)
1968 Set @code{CLAUSES} to be the clauses associated with @code{OMP_SINGLE} @code{G}. 
1969 @end deftypefn
1970
1971
1972 @node @code{GIMPLE_PHI}
1973 @subsection @code{GIMPLE_PHI}
1974 @cindex @code{GIMPLE_PHI}
1975
1976 @deftypefn {GIMPLE function} gimple make_phi_node (tree var, int len)
1977 Build a @code{PHI} node with len argument slots for variable var.
1978 @end deftypefn
1979
1980 @deftypefn {GIMPLE function} unsigned gimple_phi_capacity (gimple g)
1981 Return the maximum number of arguments supported by @code{GIMPLE_PHI} @code{G}. 
1982 @end deftypefn
1983
1984 @deftypefn {GIMPLE function} unsigned gimple_phi_num_args (gimple g)
1985 Return the number of arguments in @code{GIMPLE_PHI} @code{G}. This must always
1986 be exactly the number of incoming edges for the basic block
1987 holding @code{G}. 
1988 @end deftypefn
1989
1990 @deftypefn {GIMPLE function} tree gimple_phi_result (gimple g)
1991 Return the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}. 
1992 @end deftypefn
1993
1994 @deftypefn {GIMPLE function} tree *gimple_phi_result_ptr (gimple g)
1995 Return a pointer to the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}. 
1996 @end deftypefn
1997
1998 @deftypefn {GIMPLE function} void gimple_phi_set_result (gimple g, tree result)
1999 Set @code{RESULT} to be the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}. 
2000 @end deftypefn
2001
2002 @deftypefn {GIMPLE function} struct phi_arg_d *gimple_phi_arg (gimple g, index)
2003 Return the @code{PHI} argument corresponding to incoming edge @code{INDEX} for
2004 @code{GIMPLE_PHI} @code{G}. 
2005 @end deftypefn
2006
2007 @deftypefn {GIMPLE function} void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg)
2008 Set @code{PHIARG} to be the argument corresponding to incoming edge
2009 @code{INDEX} for @code{GIMPLE_PHI} @code{G}. 
2010 @end deftypefn
2011
2012 @node @code{GIMPLE_RESX}
2013 @subsection @code{GIMPLE_RESX}
2014 @cindex @code{GIMPLE_RESX}
2015
2016 @deftypefn {GIMPLE function} gimple gimple_build_resx (int region)
2017 Build a @code{GIMPLE_RESX} statement which is a statement.  This
2018 statement is a placeholder for _Unwind_Resume before we know if a
2019 function call or a branch is needed.  @code{REGION} is the exception
2020 region from which control is flowing.
2021 @end deftypefn
2022
2023 @deftypefn {GIMPLE function} int gimple_resx_region (gimple g)
2024 Return the region number for @code{GIMPLE_RESX} @code{G}. 
2025 @end deftypefn
2026
2027 @deftypefn {GIMPLE function} void gimple_resx_set_region (gimple g, int region)
2028 Set @code{REGION} to be the region number for @code{GIMPLE_RESX} @code{G}. 
2029 @end deftypefn
2030
2031 @node @code{GIMPLE_RETURN}
2032 @subsection @code{GIMPLE_RETURN}
2033 @cindex @code{GIMPLE_RETURN}
2034
2035 @deftypefn {GIMPLE function} gimple gimple_build_return (tree retval)
2036 Build a @code{GIMPLE_RETURN} statement whose return value is retval.
2037 @end deftypefn
2038
2039 @deftypefn {GIMPLE function} tree gimple_return_retval (gimple g)
2040 Return the return value for @code{GIMPLE_RETURN} @code{G}. 
2041 @end deftypefn
2042
2043 @deftypefn {GIMPLE function} void gimple_return_set_retval (gimple g, tree retval)
2044 Set @code{RETVAL} to be the return value for @code{GIMPLE_RETURN} @code{G}. 
2045 @end deftypefn
2046
2047 @node @code{GIMPLE_SWITCH}
2048 @subsection @code{GIMPLE_SWITCH}
2049 @cindex @code{GIMPLE_SWITCH}
2050
2051 @deftypefn {GIMPLE function} gimple gimple_build_switch ( nlabels, tree index, tree default_label, ...)
2052 Build a @code{GIMPLE_SWITCH} statement.  @code{NLABELS} are the number of
2053 labels excluding the default label.  The default label is passed
2054 in @code{DEFAULT_LABEL}.  The rest of the arguments are trees
2055 representing the labels.  Each label is a tree of code
2056 @code{CASE_LABEL_EXPR}.
2057 @end deftypefn
2058
2059 @deftypefn {GIMPLE function} gimple gimple_build_switch_vec (tree index, tree default_label, @code{VEC}(tree,heap) *args)
2060 This function is an alternate way of building @code{GIMPLE_SWITCH}
2061 statements.  @code{INDEX} and @code{DEFAULT_LABEL} are as in
2062 gimple_build_switch.  @code{ARGS} is a vector of @code{CASE_LABEL_EXPR} trees
2063 that contain the labels.
2064 @end deftypefn
2065
2066 @deftypefn {GIMPLE function} unsigned gimple_switch_num_labels (gimple g)
2067 Return the number of labels associated with the switch statement
2068 @code{G}. 
2069 @end deftypefn
2070
2071 @deftypefn {GIMPLE function} void gimple_switch_set_num_labels (gimple g, unsigned nlabels)
2072 Set @code{NLABELS} to be the number of labels for the switch statement
2073 @code{G}. 
2074 @end deftypefn
2075
2076 @deftypefn {GIMPLE function} tree gimple_switch_index (gimple g)
2077 Return the index variable used by the switch statement @code{G}. 
2078 @end deftypefn
2079
2080 @deftypefn {GIMPLE function} void gimple_switch_set_index (gimple g, tree index)
2081 Set @code{INDEX} to be the index variable for switch statement @code{G}. 
2082 @end deftypefn
2083
2084 @deftypefn {GIMPLE function} tree gimple_switch_label (gimple g, unsigned index)
2085 Return the label numbered @code{INDEX}. The default label is 0, followed
2086 by any labels in a switch statement. 
2087 @end deftypefn
2088
2089 @deftypefn {GIMPLE function} void gimple_switch_set_label (gimple g, unsigned index, tree label)
2090 Set the label number @code{INDEX} to @code{LABEL}. 0 is always the default
2091 label. 
2092 @end deftypefn
2093
2094 @deftypefn {GIMPLE function} tree gimple_switch_default_label (gimple g)
2095 Return the default label for a switch statement. 
2096 @end deftypefn
2097
2098 @deftypefn {GIMPLE function} void gimple_switch_set_default_label (gimple g, tree label)
2099 Set the default label for a switch statement. 
2100 @end deftypefn
2101
2102
2103 @node @code{GIMPLE_TRY}
2104 @subsection @code{GIMPLE_TRY}
2105 @cindex @code{GIMPLE_TRY}
2106
2107 @deftypefn {GIMPLE function} gimple gimple_build_try (gimple_seq eval, gimple_seq cleanup, unsigned int kind)
2108 Build a @code{GIMPLE_TRY} statement.  @code{EVAL} is a sequence with the
2109 expression to evaluate.  @code{CLEANUP} is a sequence of statements to
2110 run at clean-up time.  @code{KIND} is the enumeration value
2111 @code{GIMPLE_TRY_CATCH} if this statement denotes a try/catch construct
2112 or @code{GIMPLE_TRY_FINALLY} if this statement denotes a try/finally
2113 construct.
2114 @end deftypefn
2115
2116 @deftypefn {GIMPLE function} enum gimple_try_flags gimple_try_kind (gimple g)
2117 Return the kind of try block represented by @code{GIMPLE_TRY} @code{G}. This is
2118 either @code{GIMPLE_TRY_CATCH} or @code{GIMPLE_TRY_FINALLY}. 
2119 @end deftypefn
2120
2121 @deftypefn {GIMPLE function} bool gimple_try_catch_is_cleanup (gimple g)
2122 Return the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag. 
2123 @end deftypefn
2124
2125 @deftypefn {GIMPLE function} gimple_seq gimple_try_eval (gimple g)
2126 Return the sequence of statements used as the body for @code{GIMPLE_TRY}
2127 @code{G}. 
2128 @end deftypefn
2129
2130 @deftypefn {GIMPLE function} gimple_seq gimple_try_cleanup (gimple g)
2131 Return the sequence of statements used as the cleanup body for
2132 @code{GIMPLE_TRY} @code{G}. 
2133 @end deftypefn
2134
2135 @deftypefn {GIMPLE function} void gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup)
2136 Set the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag. 
2137 @end deftypefn
2138
2139 @deftypefn {GIMPLE function} void gimple_try_set_eval (gimple g, gimple_seq eval)
2140 Set @code{EVAL} to be the sequence of statements to use as the body for
2141 @code{GIMPLE_TRY} @code{G}. 
2142 @end deftypefn
2143
2144 @deftypefn {GIMPLE function} void gimple_try_set_cleanup (gimple g, gimple_seq cleanup)
2145 Set @code{CLEANUP} to be the sequence of statements to use as the
2146 cleanup body for @code{GIMPLE_TRY} @code{G}. 
2147 @end deftypefn
2148
2149 @node @code{GIMPLE_WITH_CLEANUP_EXPR}
2150 @subsection @code{GIMPLE_WITH_CLEANUP_EXPR}
2151 @cindex @code{GIMPLE_WITH_CLEANUP_EXPR}
2152
2153 @deftypefn {GIMPLE function} gimple gimple_build_wce (gimple_seq cleanup)
2154 Build a @code{GIMPLE_WITH_CLEANUP_EXPR} statement.  @code{CLEANUP} is the
2155 clean-up expression.
2156 @end deftypefn
2157
2158 @deftypefn {GIMPLE function} gimple_seq gimple_wce_cleanup (gimple g)
2159 Return the cleanup sequence for cleanup statement @code{G}. 
2160 @end deftypefn
2161
2162 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup)
2163 Set @code{CLEANUP} to be the cleanup sequence for @code{G}. 
2164 @end deftypefn
2165
2166 @deftypefn {GIMPLE function} bool gimple_wce_cleanup_eh_only (gimple g)
2167 Return the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple. 
2168 @end deftypefn
2169
2170 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup_eh_only (gimple g, bool eh_only_p)
2171 Set the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple. 
2172 @end deftypefn
2173
2174
2175 @node GIMPLE sequences 
2176 @section GIMPLE sequences 
2177 @cindex GIMPLE sequences 
2178
2179 GIMPLE sequences are the tuple equivalent of @code{STATEMENT_LIST}'s
2180 used in @code{GENERIC}.  They are used to chain statements together, and
2181 when used in conjunction with sequence iterators, provide a
2182 framework for iterating through statements.
2183
2184 GIMPLE sequences are of type struct @code{gimple_sequence}, but are more
2185 commonly passed by reference to functions dealing with sequences.
2186 The type for a sequence pointer is @code{gimple_seq} which is the same
2187 as struct @code{gimple_sequence} *.  When declaring a local sequence,
2188 you can define a local variable of type struct @code{gimple_sequence}.
2189 When declaring a sequence allocated on the garbage collected
2190 heap, use the function @code{gimple_seq_alloc} documented below.
2191
2192 There are convenience functions for iterating through sequences
2193 in the section entitled Sequence Iterators.
2194
2195 Below is a list of functions to manipulate and query sequences.
2196
2197 @deftypefn {GIMPLE function} void gimple_seq_add_stmt (gimple_seq *seq, gimple g)
2198 Link a gimple statement to the end of the sequence *@code{SEQ} if @code{G} is
2199 not @code{NULL}.  If *@code{SEQ} is @code{NULL}, allocate a sequence before linking.
2200 @end deftypefn
2201
2202 @deftypefn {GIMPLE function} void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src)
2203 Append sequence @code{SRC} to the end of sequence *@code{DEST} if @code{SRC} is not
2204 @code{NULL}.  If *@code{DEST} is @code{NULL}, allocate a new sequence before
2205 appending.
2206 @end deftypefn
2207
2208 @deftypefn {GIMPLE function} gimple_seq gimple_seq_deep_copy (gimple_seq src)
2209 Perform a deep copy of sequence @code{SRC} and return the result.
2210 @end deftypefn
2211
2212 @deftypefn {GIMPLE function} gimple_seq gimple_seq_reverse (gimple_seq seq)
2213 Reverse the order of the statements in the sequence @code{SEQ}.  Return
2214 @code{SEQ}.
2215 @end deftypefn
2216
2217 @deftypefn {GIMPLE function} gimple gimple_seq_first (gimple_seq s)
2218 Return the first statement in sequence @code{S}.
2219 @end deftypefn
2220
2221 @deftypefn {GIMPLE function} gimple gimple_seq_last (gimple_seq s)
2222 Return the last statement in sequence @code{S}.
2223 @end deftypefn
2224
2225 @deftypefn {GIMPLE function} void gimple_seq_set_last (gimple_seq s, gimple last)
2226 Set the last statement in sequence @code{S} to the statement in @code{LAST}.
2227 @end deftypefn
2228
2229 @deftypefn {GIMPLE function} void gimple_seq_set_first (gimple_seq s, gimple first)
2230 Set the first statement in sequence @code{S} to the statement in @code{FIRST}.
2231 @end deftypefn
2232
2233 @deftypefn {GIMPLE function} void gimple_seq_init (gimple_seq s)
2234 Initialize sequence @code{S} to an empty sequence.
2235 @end deftypefn
2236
2237 @deftypefn {GIMPLE function} gimple_seq gimple_seq_alloc (void)
2238 Allocate a new sequence in the garbage collected store and return
2239 it.
2240 @end deftypefn
2241
2242 @deftypefn {GIMPLE function} void gimple_seq_copy (gimple_seq dest, gimple_seq src)
2243 Copy the sequence @code{SRC} into the sequence @code{DEST}.
2244 @end deftypefn
2245
2246 @deftypefn {GIMPLE function} bool gimple_seq_empty_p (gimple_seq s)
2247 Return true if the sequence @code{S} is empty.
2248 @end deftypefn
2249
2250 @deftypefn {GIMPLE function} gimple_seq bb_seq (basic_block bb)
2251 Returns the sequence of statements in @code{BB}.
2252 @end deftypefn
2253
2254 @deftypefn {GIMPLE function} void set_bb_seq (basic_block bb, gimple_seq seq)
2255 Sets the sequence of statements in @code{BB} to @code{SEQ}.
2256 @end deftypefn
2257
2258 @deftypefn {GIMPLE function} bool gimple_seq_singleton_p (gimple_seq seq)
2259 Determine whether @code{SEQ} contains exactly one statement.
2260 @end deftypefn
2261
2262 @node Sequence iterators 
2263 @section Sequence iterators 
2264 @cindex Sequence iterators 
2265
2266 Sequence iterators are convenience constructs for iterating
2267 through statements in a sequence.  Given a sequence @code{SEQ}, here is
2268 a typical use of gimple sequence iterators:
2269
2270 @smallexample
2271 gimple_stmt_iterator gsi;
2272
2273 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2274   @{
2275     gimple g = gsi_stmt (gsi);
2276     /* Do something with gimple statement @code{G}.  */
2277   @}
2278 @end smallexample
2279
2280 Backward iterations are possible:
2281
2282 @smallexample
2283         for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
2284 @end smallexample
2285
2286 Forward and backward iterations on basic blocks are possible with
2287 @code{gsi_start_bb} and @code{gsi_last_bb}.
2288
2289 In the documentation below we sometimes refer to enum
2290 @code{gsi_iterator_update}.  The valid options for this enumeration are:
2291
2292 @itemize @bullet
2293 @item @code{GSI_NEW_STMT}
2294 Only valid when a single statement is added.  Move the iterator to it.
2295
2296 @item @code{GSI_SAME_STMT}
2297 Leave the iterator at the same statement.
2298
2299 @item @code{GSI_CONTINUE_LINKING}
2300 Move iterator to whatever position is suitable for linking other
2301 statements in the same direction.
2302 @end itemize
2303
2304 Below is a list of the functions used to manipulate and use
2305 statement iterators.
2306
2307 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start (gimple_seq seq)
2308 Return a new iterator pointing to the sequence @code{SEQ}'s first
2309 statement.  If @code{SEQ} is empty, the iterator's basic block is @code{NULL}.
2310 Use @code{gsi_start_bb} instead when the iterator needs to always have
2311 the correct basic block set.
2312 @end deftypefn
2313
2314 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start_bb (basic_block bb)
2315 Return a new iterator pointing to the first statement in basic
2316 block @code{BB}.
2317 @end deftypefn
2318
2319 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last (gimple_seq seq)
2320 Return a new iterator initially pointing to the last statement of
2321 sequence @code{SEQ}.  If @code{SEQ} is empty, the iterator's basic block is
2322 @code{NULL}.  Use @code{gsi_last_bb} instead when the iterator needs to always
2323 have the correct basic block set.
2324 @end deftypefn
2325
2326 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last_bb (basic_block bb)
2327 Return a new iterator pointing to the last statement in basic
2328 block @code{BB}.
2329 @end deftypefn
2330
2331 @deftypefn {GIMPLE function} bool gsi_end_p (gimple_stmt_iterator i)
2332 Return @code{TRUE} if at the end of @code{I}.
2333 @end deftypefn
2334
2335 @deftypefn {GIMPLE function} bool gsi_one_before_end_p (gimple_stmt_iterator i)
2336 Return @code{TRUE} if we're one statement before the end of @code{I}.
2337 @end deftypefn
2338
2339 @deftypefn {GIMPLE function} void gsi_next (gimple_stmt_iterator *i)
2340 Advance the iterator to the next gimple statement.
2341 @end deftypefn
2342
2343 @deftypefn {GIMPLE function} void gsi_prev (gimple_stmt_iterator *i)
2344 Advance the iterator to the previous gimple statement.
2345 @end deftypefn
2346
2347 @deftypefn {GIMPLE function} gimple gsi_stmt (gimple_stmt_iterator i)
2348 Return the current stmt.
2349 @end deftypefn
2350
2351 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_after_labels (basic_block bb)
2352 Return a block statement iterator that points to the first
2353 non-label statement in block @code{BB}.
2354 @end deftypefn
2355
2356 @deftypefn {GIMPLE function} gimple *gsi_stmt_ptr (gimple_stmt_iterator *i)
2357 Return a pointer to the current stmt.
2358 @end deftypefn
2359
2360 @deftypefn {GIMPLE function} basic_block gsi_bb (gimple_stmt_iterator i)
2361 Return the basic block associated with this iterator.
2362 @end deftypefn
2363
2364 @deftypefn {GIMPLE function} gimple_seq gsi_seq (gimple_stmt_iterator i)
2365 Return the sequence associated with this iterator.
2366 @end deftypefn
2367
2368 @deftypefn {GIMPLE function} void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info)
2369 Remove the current stmt from the sequence.  The iterator is
2370 updated to point to the next statement.  When @code{REMOVE_EH_INFO} is
2371 true we remove the statement pointed to by iterator @code{I} from the @code{EH}
2372 tables.  Otherwise we do not modify the @code{EH} tables.  Generally,
2373 @code{REMOVE_EH_INFO} should be true when the statement is going to be
2374 removed from the @code{IL} and not reinserted elsewhere.
2375 @end deftypefn
2376
2377 @deftypefn {GIMPLE function} void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2378 Links the sequence of statements @code{SEQ} before the statement pointed
2379 by iterator @code{I}.  @code{MODE} indicates what to do with the iterator
2380 after insertion (see @code{enum gsi_iterator_update} above).
2381 @end deftypefn
2382
2383 @deftypefn {GIMPLE function} void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2384 Links statement @code{G} before the statement pointed-to by iterator @code{I}.
2385 Updates iterator @code{I} according to @code{MODE}.
2386 @end deftypefn
2387
2388 @deftypefn {GIMPLE function} void gsi_link_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2389 Links sequence @code{SEQ} after the statement pointed-to by iterator @code{I}.
2390 @code{MODE} is as in @code{gsi_insert_after}.
2391 @end deftypefn
2392
2393 @deftypefn {GIMPLE function} void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2394 Links statement @code{G} after the statement pointed-to by iterator @code{I}.
2395 @code{MODE} is as in @code{gsi_insert_after}.
2396 @end deftypefn
2397
2398 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_after (gimple_stmt_iterator i)
2399 Move all statements in the sequence after @code{I} to a new sequence.
2400 Return this new sequence.
2401 @end deftypefn
2402
2403 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i)
2404 Move all statements in the sequence before @code{I} to a new sequence.
2405 Return this new sequence.
2406 @end deftypefn
2407
2408 @deftypefn {GIMPLE function} void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool update_eh_info)
2409 Replace the statement pointed-to by @code{I} to @code{STMT}.  If @code{UPDATE_EH_INFO}
2410 is true, the exception handling information of the original
2411 statement is moved to the new statement.
2412 @end deftypefn
2413
2414 @deftypefn {GIMPLE function} void gsi_insert_before (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)
2415 Insert statement @code{STMT} before the statement pointed-to by iterator
2416 @code{I}, update @code{STMT}'s basic block and scan it for new operands.  @code{MODE}
2417 specifies how to update iterator @code{I} after insertion (see enum
2418 @code{gsi_iterator_update}).
2419 @end deftypefn
2420
2421 @deftypefn {GIMPLE function} void gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2422 Like @code{gsi_insert_before}, but for all the statements in @code{SEQ}.
2423 @end deftypefn
2424
2425 @deftypefn {GIMPLE function} void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)
2426 Insert statement @code{STMT} after the statement pointed-to by iterator
2427 @code{I}, update @code{STMT}'s basic block and scan it for new operands.  @code{MODE}
2428 specifies how to update iterator @code{I} after insertion (see enum
2429 @code{gsi_iterator_update}).
2430 @end deftypefn
2431
2432 @deftypefn {GIMPLE function} void gsi_insert_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2433 Like @code{gsi_insert_after}, but for all the statements in @code{SEQ}.
2434 @end deftypefn
2435
2436 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_for_stmt (gimple stmt)
2437 Finds iterator for @code{STMT}.
2438 @end deftypefn
2439
2440 @deftypefn {GIMPLE function} void gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
2441 Move the statement at @code{FROM} so it comes right after the statement
2442 at @code{TO}.
2443 @end deftypefn
2444
2445 @deftypefn {GIMPLE function} void gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
2446 Move the statement at @code{FROM} so it comes right before the statement
2447 at @code{TO}.
2448 @end deftypefn
2449
2450 @deftypefn {GIMPLE function} void gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb)
2451 Move the statement at @code{FROM} to the end of basic block @code{BB}.
2452 @end deftypefn
2453
2454 @deftypefn {GIMPLE function} void gsi_insert_on_edge (edge e, gimple stmt)
2455 Add @code{STMT} to the pending list of edge @code{E}.  No actual insertion is
2456 made until a call to @code{gsi_commit_edge_inserts}() is made.
2457 @end deftypefn
2458
2459 @deftypefn {GIMPLE function} void gsi_insert_seq_on_edge (edge e, gimple_seq seq)
2460 Add the sequence of statements in @code{SEQ} to the pending list of edge
2461 @code{E}.  No actual insertion is made until a call to
2462 @code{gsi_commit_edge_inserts}() is made.
2463 @end deftypefn
2464
2465 @deftypefn {GIMPLE function} basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt)
2466 Similar to @code{gsi_insert_on_edge}+@code{gsi_commit_edge_inserts}.  If a new
2467 block has to be created, it is returned.
2468 @end deftypefn
2469
2470 @deftypefn {GIMPLE function} void gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
2471 Commit insertions pending at edge @code{E}.  If a new block is created,
2472 set @code{NEW_BB} to this block, otherwise set it to @code{NULL}.
2473 @end deftypefn
2474
2475 @deftypefn {GIMPLE function} void gsi_commit_edge_inserts (void)
2476 This routine will commit all pending edge insertions, creating
2477 any new basic blocks which are necessary.
2478 @end deftypefn
2479
2480
2481 @node Adding a new GIMPLE statement code
2482 @section Adding a new GIMPLE statement code
2483 @cindex Adding a new GIMPLE statement code
2484
2485 The first step in adding a new GIMPLE statement code, is
2486 modifying the file @code{gimple.def}, which contains all the GIMPLE
2487 codes.  Then you must add a corresponding structure, and an entry
2488 in @code{union gimple_statement_d}, both of which are located in
2489 @code{gimple.h}.  This in turn, will require you to add a corresponding
2490 @code{GTY} tag in @code{gsstruct.def}, and code to handle this tag in
2491 @code{gss_for_code} which is located in @code{gimple.c}.
2492
2493 In order for the garbage collector to know the size of the
2494 structure you created in @code{gimple.h}, you need to add a case to
2495 handle your new GIMPLE statement in @code{gimple_size} which is located
2496 in @code{gimple.c}.
2497
2498 You will probably want to create a function to build the new
2499 gimple statement in @code{gimple.c}.  The function should be called
2500 @code{gimple_build_@var{new-tuple-name}}, and should return the new tuple
2501 of type gimple.
2502
2503 If your new statement requires accessors for any members or
2504 operands it may have, put simple inline accessors in
2505 @code{gimple.h} and any non-trivial accessors in @code{gimple.c} with a
2506 corresponding prototype in @code{gimple.h}.
2507
2508
2509 @node Statement and operand traversals
2510 @section Statement and operand traversals
2511 @cindex Statement and operand traversals
2512  
2513 There are two functions available for walking statements and
2514 sequences: @code{walk_gimple_stmt} and @code{walk_gimple_seq},
2515 accordingly, and a third function for walking the operands in a
2516 statement: @code{walk_gimple_op}.
2517
2518 @deftypefn {GIMPLE function} tree walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2519 This function is used to walk the current statement in @code{GSI},
2520 optionally using traversal state stored in @code{WI}.  If @code{WI} is @code{NULL}, no
2521 state is kept during the traversal.
2522
2523 The callback @code{CALLBACK_STMT} is called.  If @code{CALLBACK_STMT} returns
2524 true, it means that the callback function has handled all the
2525 operands of the statement and it is not necessary to walk its
2526 operands.
2527
2528 If @code{CALLBACK_STMT} is @code{NULL} or it returns false, @code{CALLBACK_OP} is
2529 called on each operand of the statement via @code{walk_gimple_op}.  If
2530 @code{walk_gimple_op} returns non-@code{NULL} for any operand, the remaining
2531 operands are not scanned.
2532
2533 The return value is that returned by the last call to
2534 @code{walk_gimple_op}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is specified.
2535 @end deftypefn
2536
2537
2538 @deftypefn {GIMPLE function} tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2539 Use this function to walk the operands of statement @code{STMT}.  Every
2540 operand is walked via @code{walk_tree} with optional state information
2541 in @code{WI}.
2542
2543 @code{CALLBACK_OP} is called on each operand of @code{STMT} via @code{walk_tree}.
2544 Additional parameters to @code{walk_tree} must be stored in @code{WI}.  For
2545 each operand @code{OP}, @code{walk_tree} is called as:
2546
2547 @smallexample
2548 walk_tree (&@code{OP}, @code{CALLBACK_OP}, @code{WI}, @code{PSET})
2549 @end smallexample
2550
2551 If @code{CALLBACK_OP} returns non-@code{NULL} for an operand, the remaining
2552 operands are not scanned.  The return value is that returned by
2553 the last call to @code{walk_tree}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is
2554 specified.
2555 @end deftypefn
2556
2557
2558 @deftypefn {GIMPLE function} tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2559 This function walks all the statements in the sequence @code{SEQ}
2560 calling @code{walk_gimple_stmt} on each one.  @code{WI} is as in
2561 @code{walk_gimple_stmt}.  If @code{walk_gimple_stmt} returns non-@code{NULL}, the walk
2562 is stopped and the value returned.  Otherwise, all the statements
2563 are walked and @code{NULL_TREE} returned.
2564 @end deftypefn