OSDN Git Service

Enable to track git://github.com/monaka/binutils.git
[pf3gnuchains/pf3gnuchains3x.git] / tk / generic / tkTrig.c
diff --git a/tk/generic/tkTrig.c b/tk/generic/tkTrig.c
new file mode 100644 (file)
index 0000000..5499821
--- /dev/null
@@ -0,0 +1,1475 @@
+/* 
+ * tkTrig.c --
+ *
+ *     This file contains a collection of trigonometry utility
+ *     routines that are used by Tk and in particular by the
+ *     canvas code.  It also has miscellaneous geometry functions
+ *     used by canvases.
+ *
+ * Copyright (c) 1992-1994 The Regents of the University of California.
+ * Copyright (c) 1994-1997 Sun Microsystems, Inc.
+ *
+ * See the file "license.terms" for information on usage and redistribution
+ * of this file, and for a DISCLAIMER OF ALL WARRANTIES.
+ *
+ * RCS: @(#) $Id$
+ */
+
+#include <stdio.h>
+#include "tkInt.h"
+#include "tkPort.h"
+#include "tkCanvas.h"
+
+#undef MIN
+#define MIN(a,b) (((a) < (b)) ? (a) : (b))
+#undef MAX
+#define MAX(a,b) (((a) > (b)) ? (a) : (b))
+#ifndef PI
+#   define PI 3.14159265358979323846
+#endif /* PI */
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkLineToPoint --
+ *
+ *     Compute the distance from a point to a finite line segment.
+ *
+ * Results:
+ *     The return value is the distance from the line segment
+ *     whose end-points are *end1Ptr and *end2Ptr to the point
+ *     given by *pointPtr.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+double
+TkLineToPoint(end1Ptr, end2Ptr, pointPtr)
+    double end1Ptr[2];         /* Coordinates of first end-point of line. */
+    double end2Ptr[2];         /* Coordinates of second end-point of line. */
+    double pointPtr[2];                /* Points to coords for point. */
+{
+    double x, y;
+
+    /*
+     * Compute the point on the line that is closest to the
+     * point.  This must be done separately for vertical edges,
+     * horizontal edges, and other edges.
+     */
+
+    if (end1Ptr[0] == end2Ptr[0]) {
+
+       /*
+        * Vertical edge.
+        */
+
+       x = end1Ptr[0];
+       if (end1Ptr[1] >= end2Ptr[1]) {
+           y = MIN(end1Ptr[1], pointPtr[1]);
+           y = MAX(y, end2Ptr[1]);
+       } else {
+           y = MIN(end2Ptr[1], pointPtr[1]);
+           y = MAX(y, end1Ptr[1]);
+       }
+    } else if (end1Ptr[1] == end2Ptr[1]) {
+
+       /*
+        * Horizontal edge.
+        */
+
+       y = end1Ptr[1];
+       if (end1Ptr[0] >= end2Ptr[0]) {
+           x = MIN(end1Ptr[0], pointPtr[0]);
+           x = MAX(x, end2Ptr[0]);
+       } else {
+           x = MIN(end2Ptr[0], pointPtr[0]);
+           x = MAX(x, end1Ptr[0]);
+       }
+    } else {
+       double m1, b1, m2, b2;
+
+       /*
+        * The edge is neither horizontal nor vertical.  Convert the
+        * edge to a line equation of the form y = m1*x + b1.  Then
+        * compute a line perpendicular to this edge but passing
+        * through the point, also in the form y = m2*x + b2.
+        */
+
+       m1 = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
+       b1 = end1Ptr[1] - m1*end1Ptr[0];
+       m2 = -1.0/m1;
+       b2 = pointPtr[1] - m2*pointPtr[0];
+       x = (b2 - b1)/(m1 - m2);
+       y = m1*x + b1;
+       if (end1Ptr[0] > end2Ptr[0]) {
+           if (x > end1Ptr[0]) {
+               x = end1Ptr[0];
+               y = end1Ptr[1];
+           } else if (x < end2Ptr[0]) {
+               x = end2Ptr[0];
+               y = end2Ptr[1];
+           }
+       } else {
+           if (x > end2Ptr[0]) {
+               x = end2Ptr[0];
+               y = end2Ptr[1];
+           } else if (x < end1Ptr[0]) {
+               x = end1Ptr[0];
+               y = end1Ptr[1];
+           }
+       }
+    }
+
+    /*
+     * Compute the distance to the closest point.
+     */
+
+    return hypot(pointPtr[0] - x, pointPtr[1] - y);
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkLineToArea --
+ *
+ *     Determine whether a line lies entirely inside, entirely
+ *     outside, or overlapping a given rectangular area.
+ *
+ * Results:
+ *     -1 is returned if the line given by end1Ptr and end2Ptr
+ *     is entirely outside the rectangle given by rectPtr.  0 is
+ *     returned if the polygon overlaps the rectangle, and 1 is
+ *     returned if the polygon is entirely inside the rectangle.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkLineToArea(end1Ptr, end2Ptr, rectPtr)
+    double end1Ptr[2];         /* X and y coordinates for one endpoint
+                                * of line. */
+    double end2Ptr[2];         /* X and y coordinates for other endpoint
+                                * of line. */
+    double rectPtr[4];         /* Points to coords for rectangle, in the
+                                * order x1, y1, x2, y2.  X1 must be no
+                                * larger than x2, and y1 no larger than y2. */
+{
+    int inside1, inside2;
+
+    /*
+     * First check the two points individually to see whether they
+     * are inside the rectangle or not.
+     */
+
+    inside1 = (end1Ptr[0] >= rectPtr[0]) && (end1Ptr[0] <= rectPtr[2])
+           && (end1Ptr[1] >= rectPtr[1]) && (end1Ptr[1] <= rectPtr[3]);
+    inside2 = (end2Ptr[0] >= rectPtr[0]) && (end2Ptr[0] <= rectPtr[2])
+           && (end2Ptr[1] >= rectPtr[1]) && (end2Ptr[1] <= rectPtr[3]);
+    if (inside1 != inside2) {
+       return 0;
+    }
+    if (inside1 & inside2) {
+       return 1;
+    }
+
+    /*
+     * Both points are outside the rectangle, but still need to check
+     * for intersections between the line and the rectangle.  Horizontal
+     * and vertical lines are particularly easy, so handle them
+     * separately.
+     */
+
+    if (end1Ptr[0] == end2Ptr[0]) {
+       /*
+        * Vertical line.
+        */
+    
+       if (((end1Ptr[1] >= rectPtr[1]) ^ (end2Ptr[1] >= rectPtr[1]))
+               && (end1Ptr[0] >= rectPtr[0])
+               && (end1Ptr[0] <= rectPtr[2])) {
+           return 0;
+       }
+    } else if (end1Ptr[1] == end2Ptr[1]) {
+       /*
+        * Horizontal line.
+        */
+    
+       if (((end1Ptr[0] >= rectPtr[0]) ^ (end2Ptr[0] >= rectPtr[0]))
+               && (end1Ptr[1] >= rectPtr[1])
+               && (end1Ptr[1] <= rectPtr[3])) {
+           return 0;
+       }
+    } else {
+       double m, x, y, low, high;
+    
+       /*
+        * Diagonal line.  Compute slope of line and use
+        * for intersection checks against each of the
+        * sides of the rectangle: left, right, bottom, top.
+        */
+    
+       m = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
+       if (end1Ptr[0] < end2Ptr[0]) {
+           low = end1Ptr[0];  high = end2Ptr[0];
+       } else {
+           low = end2Ptr[0]; high = end1Ptr[0];
+       }
+    
+       /*
+        * Left edge.
+        */
+    
+       y = end1Ptr[1] + (rectPtr[0] - end1Ptr[0])*m;
+       if ((rectPtr[0] >= low) && (rectPtr[0] <= high)
+               && (y >= rectPtr[1]) && (y <= rectPtr[3])) {
+           return 0;
+       }
+    
+       /*
+        * Right edge.
+        */
+    
+       y += (rectPtr[2] - rectPtr[0])*m;
+       if ((y >= rectPtr[1]) && (y <= rectPtr[3])
+               && (rectPtr[2] >= low) && (rectPtr[2] <= high)) {
+           return 0;
+       }
+    
+       /*
+        * Bottom edge.
+        */
+    
+       if (end1Ptr[1] < end2Ptr[1]) {
+           low = end1Ptr[1];  high = end2Ptr[1];
+       } else {
+           low = end2Ptr[1]; high = end1Ptr[1];
+       }
+       x = end1Ptr[0] + (rectPtr[1] - end1Ptr[1])/m;
+       if ((x >= rectPtr[0]) && (x <= rectPtr[2])
+               && (rectPtr[1] >= low) && (rectPtr[1] <= high)) {
+           return 0;
+       }
+    
+       /*
+        * Top edge.
+        */
+    
+       x += (rectPtr[3] - rectPtr[1])/m;
+       if ((x >= rectPtr[0]) && (x <= rectPtr[2])
+               && (rectPtr[3] >= low) && (rectPtr[3] <= high)) {
+           return 0;
+       }
+    }
+    return -1;
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkThickPolyLineToArea --
+ *
+ *     This procedure is called to determine whether a connected
+ *     series of line segments lies entirely inside, entirely
+ *     outside, or overlapping a given rectangular area.
+ *
+ * Results:
+ *     -1 is returned if the lines are entirely outside the area,
+ *     0 if they overlap, and 1 if they are entirely inside the
+ *     given area.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+       /* ARGSUSED */
+int
+TkThickPolyLineToArea(coordPtr, numPoints, width, capStyle, joinStyle, rectPtr)
+    double *coordPtr;          /* Points to an array of coordinates for
+                                * the polyline:  x0, y0, x1, y1, ... */
+    int numPoints;             /* Total number of points at *coordPtr. */
+    double width;              /* Width of each line segment. */
+    int capStyle;              /* How are end-points of polyline drawn?
+                                * CapRound, CapButt, or CapProjecting. */
+    int joinStyle;             /* How are joints in polyline drawn?
+                                * JoinMiter, JoinRound, or JoinBevel. */
+    double *rectPtr;           /* Rectangular area to check against. */
+{
+    double radius, poly[10];
+    int count;
+    int changedMiterToBevel;   /* Non-zero means that a mitered corner
+                                * had to be treated as beveled after all
+                                * because the angle was < 11 degrees. */
+    int inside;                        /* Tentative guess about what to return,
+                                * based on all points seen so far:  one
+                                * means everything seen so far was
+                                * inside the area;  -1 means everything
+                                * was outside the area.  0 means overlap
+                                * has been found. */ 
+
+    radius = width/2.0;
+    inside = -1;
+
+    if ((coordPtr[0] >= rectPtr[0]) && (coordPtr[0] <= rectPtr[2])
+           && (coordPtr[1] >= rectPtr[1]) && (coordPtr[1] <= rectPtr[3])) {
+       inside = 1;
+    }
+
+    /*
+     * Iterate through all of the edges of the line, computing a polygon
+     * for each edge and testing the area against that polygon.  In
+     * addition, there are additional tests to deal with rounded joints
+     * and caps.
+     */
+
+    changedMiterToBevel = 0;
+    for (count = numPoints; count >= 2; count--, coordPtr += 2) {
+
+       /*
+        * If rounding is done around the first point of the edge
+        * then test a circular region around the point with the
+        * area.
+        */
+
+       if (((capStyle == CapRound) && (count == numPoints))
+               || ((joinStyle == JoinRound) && (count != numPoints))) {
+           poly[0] = coordPtr[0] - radius;
+           poly[1] = coordPtr[1] - radius;
+           poly[2] = coordPtr[0] + radius;
+           poly[3] = coordPtr[1] + radius;
+           if (TkOvalToArea(poly, rectPtr) != inside) {
+               return 0;
+           }
+       }
+
+       /*
+        * Compute the polygonal shape corresponding to this edge,
+        * consisting of two points for the first point of the edge
+        * and two points for the last point of the edge.
+        */
+
+       if (count == numPoints) {
+           TkGetButtPoints(coordPtr+2, coordPtr, width,
+                   capStyle == CapProjecting, poly, poly+2);
+       } else if ((joinStyle == JoinMiter) && !changedMiterToBevel) {
+           poly[0] = poly[6];
+           poly[1] = poly[7];
+           poly[2] = poly[4];
+           poly[3] = poly[5];
+       } else {
+           TkGetButtPoints(coordPtr+2, coordPtr, width, 0, poly, poly+2);
+
+           /*
+            * If the last joint was beveled, then also check a
+            * polygon comprising the last two points of the previous
+            * polygon and the first two from this polygon;  this checks
+            * the wedges that fill the beveled joint.
+            */
+
+           if ((joinStyle == JoinBevel) || changedMiterToBevel) {
+               poly[8] = poly[0];
+               poly[9] = poly[1];
+               if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
+                   return 0;
+               }
+               changedMiterToBevel = 0;
+           }
+       }
+       if (count == 2) {
+           TkGetButtPoints(coordPtr, coordPtr+2, width,
+                   capStyle == CapProjecting, poly+4, poly+6);
+       } else if (joinStyle == JoinMiter) {
+           if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4,
+                   (double) width, poly+4, poly+6) == 0) {
+               changedMiterToBevel = 1;
+               TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4,
+                       poly+6);
+           }
+       } else {
+           TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6);
+       }
+       poly[8] = poly[0];
+       poly[9] = poly[1];
+       if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
+           return 0;
+       }
+    }
+
+    /*
+     * If caps are rounded, check the cap around the final point
+     * of the line.
+     */
+
+    if (capStyle == CapRound) {
+       poly[0] = coordPtr[0] - radius;
+       poly[1] = coordPtr[1] - radius;
+       poly[2] = coordPtr[0] + radius;
+       poly[3] = coordPtr[1] + radius;
+       if (TkOvalToArea(poly, rectPtr) != inside) {
+           return 0;
+       }
+    }
+
+    return inside;
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkPolygonToPoint --
+ *
+ *     Compute the distance from a point to a polygon.
+ *
+ * Results:
+ *     The return value is 0.0 if the point referred to by
+ *     pointPtr is within the polygon referred to by polyPtr
+ *     and numPoints.  Otherwise the return value is the
+ *     distance of the point from the polygon.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+double
+TkPolygonToPoint(polyPtr, numPoints, pointPtr)
+    double *polyPtr;           /* Points to an array coordinates for
+                                * closed polygon:  x0, y0, x1, y1, ...
+                                * The polygon may be self-intersecting. */
+    int numPoints;             /* Total number of points at *polyPtr. */
+    double *pointPtr;          /* Points to coords for point. */
+{
+    double bestDist;           /* Closest distance between point and
+                                * any edge in polygon. */
+    int intersections;         /* Number of edges in the polygon that
+                                * intersect a ray extending vertically
+                                * upwards from the point to infinity. */
+    int count;
+    register double *pPtr;
+
+    /*
+     * Iterate through all of the edges in the polygon, updating
+     * bestDist and intersections.
+     *
+     * TRICKY POINT:  when computing intersections, include left
+     * x-coordinate of line within its range, but not y-coordinate.
+     * Otherwise if the point lies exactly below a vertex we'll
+     * count it as two intersections.
+     */
+
+    bestDist = 1.0e36;
+    intersections = 0;
+
+    for (count = numPoints, pPtr = polyPtr; count > 1; count--, pPtr += 2) {
+       double x, y, dist;
+
+       /*
+        * Compute the point on the current edge closest to the point
+        * and update the intersection count.  This must be done
+        * separately for vertical edges, horizontal edges, and
+        * other edges.
+        */
+
+       if (pPtr[2] == pPtr[0]) {
+
+           /*
+            * Vertical edge.
+            */
+
+           x = pPtr[0];
+           if (pPtr[1] >= pPtr[3]) {
+               y = MIN(pPtr[1], pointPtr[1]);
+               y = MAX(y, pPtr[3]);
+           } else {
+               y = MIN(pPtr[3], pointPtr[1]);
+               y = MAX(y, pPtr[1]);
+           }
+       } else if (pPtr[3] == pPtr[1]) {
+
+           /*
+            * Horizontal edge.
+            */
+
+           y = pPtr[1];
+           if (pPtr[0] >= pPtr[2]) {
+               x = MIN(pPtr[0], pointPtr[0]);
+               x = MAX(x, pPtr[2]);
+               if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0])
+                       && (pointPtr[0] >= pPtr[2])) {
+                   intersections++;
+               }
+           } else {
+               x = MIN(pPtr[2], pointPtr[0]);
+               x = MAX(x, pPtr[0]);
+               if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2])
+                       && (pointPtr[0] >= pPtr[0])) {
+                   intersections++;
+               }
+           }
+       } else {
+           double m1, b1, m2, b2;
+           int lower;                  /* Non-zero means point below line. */
+
+           /*
+            * The edge is neither horizontal nor vertical.  Convert the
+            * edge to a line equation of the form y = m1*x + b1.  Then
+            * compute a line perpendicular to this edge but passing
+            * through the point, also in the form y = m2*x + b2.
+            */
+
+           m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]);
+           b1 = pPtr[1] - m1*pPtr[0];
+           m2 = -1.0/m1;
+           b2 = pointPtr[1] - m2*pointPtr[0];
+           x = (b2 - b1)/(m1 - m2);
+           y = m1*x + b1;
+           if (pPtr[0] > pPtr[2]) {
+               if (x > pPtr[0]) {
+                   x = pPtr[0];
+                   y = pPtr[1];
+               } else if (x < pPtr[2]) {
+                   x = pPtr[2];
+                   y = pPtr[3];
+               }
+           } else {
+               if (x > pPtr[2]) {
+                   x = pPtr[2];
+                   y = pPtr[3];
+               } else if (x < pPtr[0]) {
+                   x = pPtr[0];
+                   y = pPtr[1];
+               }
+           }
+           lower = (m1*pointPtr[0] + b1) > pointPtr[1];
+           if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2]))
+                   && (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) {
+               intersections++;
+           }
+       }
+
+       /*
+        * Compute the distance to the closest point, and see if that
+        * is the best distance seen so far.
+        */
+
+       dist = hypot(pointPtr[0] - x, pointPtr[1] - y);
+       if (dist < bestDist) {
+           bestDist = dist;
+       }
+    }
+
+    /*
+     * We've processed all of the points.  If the number of intersections
+     * is odd, the point is inside the polygon.
+     */
+
+    if (intersections & 0x1) {
+       return 0.0;
+    }
+    return bestDist;
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkPolygonToArea --
+ *
+ *     Determine whether a polygon lies entirely inside, entirely
+ *     outside, or overlapping a given rectangular area.
+ *
+ * Results:
+ *     -1 is returned if the polygon given by polyPtr and numPoints
+ *     is entirely outside the rectangle given by rectPtr.  0 is
+ *     returned if the polygon overlaps the rectangle, and 1 is
+ *     returned if the polygon is entirely inside the rectangle.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkPolygonToArea(polyPtr, numPoints, rectPtr)
+    double *polyPtr;           /* Points to an array coordinates for
+                                * closed polygon:  x0, y0, x1, y1, ...
+                                * The polygon may be self-intersecting. */
+    int numPoints;             /* Total number of points at *polyPtr. */
+    register double *rectPtr;  /* Points to coords for rectangle, in the
+                                * order x1, y1, x2, y2.  X1 and y1 must
+                                * be lower-left corner. */
+{
+    int state;                 /* State of all edges seen so far (-1 means
+                                * outside, 1 means inside, won't ever be
+                                * 0). */
+    int count;
+    register double *pPtr;
+
+    /*
+     * Iterate over all of the edges of the polygon and test them
+     * against the rectangle.  Can quit as soon as the state becomes
+     * "intersecting".
+     */
+
+    state = TkLineToArea(polyPtr, polyPtr+2, rectPtr);
+    if (state == 0) {
+       return 0;
+    }
+    for (pPtr = polyPtr+2, count = numPoints-1; count >= 2;
+           pPtr += 2, count--) {
+       if (TkLineToArea(pPtr, pPtr+2, rectPtr) != state) {
+           return 0;
+       }
+    }
+
+    /*
+     * If all of the edges were inside the rectangle we're done.
+     * If all of the edges were outside, then the rectangle could
+     * still intersect the polygon (if it's entirely enclosed).
+     * Call TkPolygonToPoint to figure this out.
+     */
+
+    if (state == 1) {
+       return 1;
+    }
+    if (TkPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) {
+       return 0;
+    }
+    return -1;
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkOvalToPoint --
+ *
+ *     Computes the distance from a given point to a given
+ *     oval, in canvas units.
+ *
+ * Results:
+ *     The return value is 0 if the point given by *pointPtr is
+ *     inside the oval.  If the point isn't inside the
+ *     oval then the return value is approximately the distance
+ *     from the point to the oval.  If the oval is filled, then
+ *     anywhere in the interior is considered "inside";  if
+ *     the oval isn't filled, then "inside" means only the area
+ *     occupied by the outline.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+       /* ARGSUSED */
+double
+TkOvalToPoint(ovalPtr, width, filled, pointPtr)
+    double ovalPtr[4];         /* Pointer to array of four coordinates
+                                * (x1, y1, x2, y2) defining oval's bounding
+                                * box. */
+    double width;              /* Width of outline for oval. */
+    int filled;                        /* Non-zero means oval should be treated as
+                                * filled;  zero means only consider outline. */
+    double pointPtr[2];                /* Coordinates of point. */
+{
+    double xDelta, yDelta, scaledDistance, distToOutline, distToCenter;
+    double xDiam, yDiam;
+
+    /*
+     * Compute the distance between the center of the oval and the
+     * point in question, using a coordinate system where the oval
+     * has been transformed to a circle with unit radius.
+     */
+
+    xDelta = (pointPtr[0] - (ovalPtr[0] + ovalPtr[2])/2.0);
+    yDelta = (pointPtr[1] - (ovalPtr[1] + ovalPtr[3])/2.0);
+    distToCenter = hypot(xDelta, yDelta);
+    scaledDistance = hypot(xDelta / ((ovalPtr[2] + width - ovalPtr[0])/2.0),
+           yDelta / ((ovalPtr[3] + width - ovalPtr[1])/2.0));
+
+
+    /*
+     * If the scaled distance is greater than 1 then it means no
+     * hit.  Compute the distance from the point to the edge of
+     * the circle, then scale this distance back to the original
+     * coordinate system.
+     *
+     * Note: this distance isn't completely accurate.  It's only
+     * an approximation, and it can overestimate the correct
+     * distance when the oval is eccentric.
+     */
+
+    if (scaledDistance > 1.0) {
+       return (distToCenter/scaledDistance) * (scaledDistance - 1.0);
+    }
+
+    /*
+     * Scaled distance less than 1 means the point is inside the
+     * outer edge of the oval.  If this is a filled oval, then we
+     * have a hit.  Otherwise, do the same computation as above
+     * (scale back to original coordinate system), but also check
+     * to see if the point is within the width of the outline.
+     */
+
+    if (filled) {
+       return 0.0;
+    }
+    if (scaledDistance > 1E-10) {
+       distToOutline = (distToCenter/scaledDistance) * (1.0 - scaledDistance)
+               - width;
+    } else {
+       /*
+        * Avoid dividing by a very small number (it could cause an
+        * arithmetic overflow).  This problem occurs if the point is
+        * very close to the center of the oval.
+        */
+
+       xDiam = ovalPtr[2] - ovalPtr[0];
+       yDiam = ovalPtr[3] - ovalPtr[1];
+       if (xDiam < yDiam) {
+           distToOutline = (xDiam - width)/2;
+       } else {
+           distToOutline = (yDiam - width)/2;
+       }
+    }
+
+    if (distToOutline < 0.0) {
+       return 0.0;
+    }
+    return distToOutline;
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkOvalToArea --
+ *
+ *     Determine whether an oval lies entirely inside, entirely
+ *     outside, or overlapping a given rectangular area.
+ *
+ * Results:
+ *     -1 is returned if the oval described by ovalPtr is entirely
+ *     outside the rectangle given by rectPtr.  0 is returned if the
+ *     oval overlaps the rectangle, and 1 is returned if the oval
+ *     is entirely inside the rectangle.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkOvalToArea(ovalPtr, rectPtr)
+    register double *ovalPtr;  /* Points to coordinates definining the
+                                * bounding rectangle for the oval: x1, y1,
+                                * x2, y2.  X1 must be less than x2 and y1
+                                * less than y2. */
+    register double *rectPtr;  /* Points to coords for rectangle, in the
+                                * order x1, y1, x2, y2.  X1 and y1 must
+                                * be lower-left corner. */
+{
+    double centerX, centerY, radX, radY, deltaX, deltaY;
+
+    /*
+     * First, see if oval is entirely inside rectangle or entirely
+     * outside rectangle.
+     */
+
+    if ((rectPtr[0] <= ovalPtr[0]) && (rectPtr[2] >= ovalPtr[2])
+           && (rectPtr[1] <= ovalPtr[1]) && (rectPtr[3] >= ovalPtr[3])) {
+       return 1;
+    }
+    if ((rectPtr[2] < ovalPtr[0]) || (rectPtr[0] > ovalPtr[2])
+           || (rectPtr[3] < ovalPtr[1]) || (rectPtr[1] > ovalPtr[3])) {
+       return -1;
+    }
+
+    /*
+     * Next, go through the rectangle side by side.  For each side
+     * of the rectangle, find the point on the side that is closest
+     * to the oval's center, and see if that point is inside the
+     * oval.  If at least one such point is inside the oval, then
+     * the rectangle intersects the oval.
+     */
+
+    centerX = (ovalPtr[0] + ovalPtr[2])/2;
+    centerY = (ovalPtr[1] + ovalPtr[3])/2;
+    radX = (ovalPtr[2] - ovalPtr[0])/2;
+    radY = (ovalPtr[3] - ovalPtr[1])/2;
+
+    deltaY = rectPtr[1] - centerY;
+    if (deltaY < 0.0) {
+       deltaY = centerY - rectPtr[3];
+       if (deltaY < 0.0) {
+           deltaY = 0;
+       }
+    }
+    deltaY /= radY;
+    deltaY *= deltaY;
+
+    /*
+     * Left side:
+     */
+
+    deltaX = (rectPtr[0] - centerX)/radX;
+    deltaX *= deltaX;
+    if ((deltaX + deltaY) <= 1.0) {
+       return 0;
+    }
+
+    /*
+     * Right side:
+     */
+
+    deltaX = (rectPtr[2] - centerX)/radX;
+    deltaX *= deltaX;
+    if ((deltaX + deltaY) <= 1.0) {
+       return 0;
+    }
+
+    deltaX = rectPtr[0] - centerX;
+    if (deltaX < 0.0) {
+       deltaX = centerX - rectPtr[2];
+       if (deltaX < 0.0) {
+           deltaX = 0;
+       }
+    }
+    deltaX /= radX;
+    deltaX *= deltaX;
+
+    /*
+     * Bottom side:
+     */
+
+    deltaY = (rectPtr[1] - centerY)/radY;
+    deltaY *= deltaY;
+    if ((deltaX + deltaY) < 1.0) {
+       return 0;
+    }
+
+    /*
+     * Top side:
+     */
+
+    deltaY = (rectPtr[3] - centerY)/radY;
+    deltaY *= deltaY;
+    if ((deltaX + deltaY) < 1.0) {
+       return 0;
+    }
+
+    return -1;
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkIncludePoint --
+ *
+ *     Given a point and a generic canvas item header, expand
+ *     the item's bounding box if needed to include the point.
+ *
+ * Results:
+ *     None.
+ *
+ * Side effects:
+ *     The boudn.
+ *
+ *--------------------------------------------------------------
+ */
+
+       /* ARGSUSED */
+void
+TkIncludePoint(itemPtr, pointPtr)
+    register Tk_Item *itemPtr;         /* Item whose bounding box is
+                                        * being calculated. */
+    double *pointPtr;                  /* Address of two doubles giving
+                                        * x and y coordinates of point. */
+{
+    int tmp;
+
+    tmp = (int) (pointPtr[0] + 0.5);
+    if (tmp < itemPtr->x1) {
+       itemPtr->x1 = tmp;
+    }
+    if (tmp > itemPtr->x2) {
+       itemPtr->x2 = tmp;
+    }
+    tmp = (int) (pointPtr[1] + 0.5);
+    if (tmp < itemPtr->y1) {
+       itemPtr->y1 = tmp;
+    }
+    if (tmp > itemPtr->y2) {
+       itemPtr->y2 = tmp;
+    }
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkBezierScreenPoints --
+ *
+ *     Given four control points, create a larger set of XPoints
+ *     for a Bezier spline based on the points.
+ *
+ * Results:
+ *     The array at *xPointPtr gets filled in with numSteps XPoints
+ *     corresponding to the Bezier spline defined by the four 
+ *     control points.  Note:  no output point is generated for the
+ *     first input point, but an output point *is* generated for
+ *     the last input point.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+void
+TkBezierScreenPoints(canvas, control, numSteps, xPointPtr)
+    Tk_Canvas canvas;                  /* Canvas in which curve is to be
+                                        * drawn. */
+    double control[];                  /* Array of coordinates for four
+                                        * control points:  x0, y0, x1, y1,
+                                        * ... x3 y3. */
+    int numSteps;                      /* Number of curve points to
+                                        * generate.  */
+    register XPoint *xPointPtr;                /* Where to put new points. */
+{
+    int i;
+    double u, u2, u3, t, t2, t3;
+
+    for (i = 1; i <= numSteps; i++, xPointPtr++) {
+       t = ((double) i)/((double) numSteps);
+       t2 = t*t;
+       t3 = t2*t;
+       u = 1.0 - t;
+       u2 = u*u;
+       u3 = u2*u;
+       Tk_CanvasDrawableCoords(canvas,
+               (control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u)
+                   + control[6]*t3),
+               (control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u)
+                   + control[7]*t3),
+               &xPointPtr->x, &xPointPtr->y);
+    }
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkBezierPoints --
+ *
+ *     Given four control points, create a larger set of points
+ *     for a Bezier spline based on the points.
+ *
+ * Results:
+ *     The array at *coordPtr gets filled in with 2*numSteps
+ *     coordinates, which correspond to the Bezier spline defined
+ *     by the four control points.  Note:  no output point is
+ *     generated for the first input point, but an output point
+ *     *is* generated for the last input point.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+void
+TkBezierPoints(control, numSteps, coordPtr)
+    double control[];                  /* Array of coordinates for four
+                                        * control points:  x0, y0, x1, y1,
+                                        * ... x3 y3. */
+    int numSteps;                      /* Number of curve points to
+                                        * generate.  */
+    register double *coordPtr;         /* Where to put new points. */
+{
+    int i;
+    double u, u2, u3, t, t2, t3;
+
+    for (i = 1; i <= numSteps; i++, coordPtr += 2) {
+       t = ((double) i)/((double) numSteps);
+       t2 = t*t;
+       t3 = t2*t;
+       u = 1.0 - t;
+       u2 = u*u;
+       u3 = u2*u;
+       coordPtr[0] = control[0]*u3
+               + 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3;
+       coordPtr[1] = control[1]*u3
+               + 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3;
+    }
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkMakeBezierCurve --
+ *
+ *     Given a set of points, create a new set of points that fit
+ *     parabolic splines to the line segments connecting the original
+ *     points.  Produces output points in either of two forms.
+ *
+ *     Note: in spite of this procedure's name, it does *not* generate
+ *     Bezier curves.  Since only three control points are used for
+ *     each curve segment, not four, the curves are actually just
+ *     parabolic.
+ *
+ * Results:
+ *     Either or both of the xPoints or dblPoints arrays are filled
+ *     in.  The return value is the number of points placed in the
+ *     arrays.  Note:  if the first and last points are the same, then
+ *     a closed curve is generated.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkMakeBezierCurve(canvas, pointPtr, numPoints, numSteps, xPoints, dblPoints)
+    Tk_Canvas canvas;                  /* Canvas in which curve is to be
+                                        * drawn. */
+    double *pointPtr;                  /* Array of input coordinates:  x0,
+                                        * y0, x1, y1, etc.. */
+    int numPoints;                     /* Number of points at pointPtr. */
+    int numSteps;                      /* Number of steps to use for each
+                                        * spline segments (determines
+                                        * smoothness of curve). */
+    XPoint xPoints[];                  /* Array of XPoints to fill in (e.g.
+                                        * for display.  NULL means don't
+                                        * fill in any XPoints. */
+    double dblPoints[];                        /* Array of points to fill in as
+                                        * doubles, in the form x0, y0,
+                                        * x1, y1, ....  NULL means don't
+                                        * fill in anything in this form. 
+                                        * Caller must make sure that this
+                                        * array has enough space. */
+{
+    int closed, outputPoints, i;
+    int numCoords = numPoints*2;
+    double control[8];
+
+    /*
+     * If the curve is a closed one then generate a special spline
+     * that spans the last points and the first ones.  Otherwise
+     * just put the first point into the output.
+     */
+
+    if (!pointPtr) {
+       /* Of pointPtr == NULL, this function returns an upper limit.
+        * of the array size to store the coordinates. This can be
+        * used to allocate storage, before the actual coordinates
+        * are calculated. */
+       return 1 + numPoints * numSteps;
+    }
+
+    outputPoints = 0;
+    if ((pointPtr[0] == pointPtr[numCoords-2])
+           && (pointPtr[1] == pointPtr[numCoords-1])) {
+       closed = 1;
+       control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
+       control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
+       control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
+       control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
+       control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
+       control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
+       control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
+       control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
+       if (xPoints != NULL) {
+           Tk_CanvasDrawableCoords(canvas, control[0], control[1],
+                   &xPoints->x, &xPoints->y);
+           TkBezierScreenPoints(canvas, control, numSteps, xPoints+1);
+           xPoints += numSteps+1;
+       }
+       if (dblPoints != NULL) {
+           dblPoints[0] = control[0];
+           dblPoints[1] = control[1];
+           TkBezierPoints(control, numSteps, dblPoints+2);
+           dblPoints += 2*(numSteps+1);
+       }
+       outputPoints += numSteps+1;
+    } else {
+       closed = 0;
+       if (xPoints != NULL) {
+           Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1],
+                   &xPoints->x, &xPoints->y);
+           xPoints += 1;
+       }
+       if (dblPoints != NULL) {
+           dblPoints[0] = pointPtr[0];
+           dblPoints[1] = pointPtr[1];
+           dblPoints += 2;
+       }
+       outputPoints += 1;
+    }
+
+    for (i = 2; i < numPoints; i++, pointPtr += 2) {
+       /*
+        * Set up the first two control points.  This is done
+        * differently for the first spline of an open curve
+        * than for other cases.
+        */
+
+       if ((i == 2) && !closed) {
+           control[0] = pointPtr[0];
+           control[1] = pointPtr[1];
+           control[2] = 0.333*pointPtr[0] + 0.667*pointPtr[2];
+           control[3] = 0.333*pointPtr[1] + 0.667*pointPtr[3];
+       } else {
+           control[0] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
+           control[1] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
+           control[2] = 0.167*pointPtr[0] + 0.833*pointPtr[2];
+           control[3] = 0.167*pointPtr[1] + 0.833*pointPtr[3];
+       }
+
+       /*
+        * Set up the last two control points.  This is done
+        * differently for the last spline of an open curve
+        * than for other cases.
+        */
+
+       if ((i == (numPoints-1)) && !closed) {
+           control[4] = .667*pointPtr[2] + .333*pointPtr[4];
+           control[5] = .667*pointPtr[3] + .333*pointPtr[5];
+           control[6] = pointPtr[4];
+           control[7] = pointPtr[5];
+       } else {
+           control[4] = .833*pointPtr[2] + .167*pointPtr[4];
+           control[5] = .833*pointPtr[3] + .167*pointPtr[5];
+           control[6] = 0.5*pointPtr[2] + 0.5*pointPtr[4];
+           control[7] = 0.5*pointPtr[3] + 0.5*pointPtr[5];
+       }
+
+       /*
+        * If the first two points coincide, or if the last
+        * two points coincide, then generate a single
+        * straight-line segment by outputting the last control
+        * point.
+        */
+
+       if (((pointPtr[0] == pointPtr[2]) && (pointPtr[1] == pointPtr[3]))
+               || ((pointPtr[2] == pointPtr[4])
+               && (pointPtr[3] == pointPtr[5]))) {
+           if (xPoints != NULL) {
+               Tk_CanvasDrawableCoords(canvas, control[6], control[7],
+                       &xPoints[0].x, &xPoints[0].y);
+               xPoints++;
+           }
+           if (dblPoints != NULL) {
+               dblPoints[0] = control[6];
+               dblPoints[1] = control[7];
+               dblPoints += 2;
+           }
+           outputPoints += 1;
+           continue;
+       }
+
+       /*
+        * Generate a Bezier spline using the control points.
+        */
+
+
+       if (xPoints != NULL) {
+           TkBezierScreenPoints(canvas, control, numSteps, xPoints);
+           xPoints += numSteps;
+       }
+       if (dblPoints != NULL) {
+           TkBezierPoints(control, numSteps, dblPoints);
+           dblPoints += 2*numSteps;
+       }
+       outputPoints += numSteps;
+    }
+    return outputPoints;
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkMakeBezierPostscript --
+ *
+ *     This procedure generates Postscript commands that create
+ *     a path corresponding to a given Bezier curve.
+ *
+ * Results:
+ *     None.  Postscript commands to generate the path are appended
+ *     to the interp's result.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+void
+TkMakeBezierPostscript(interp, canvas, pointPtr, numPoints)
+    Tcl_Interp *interp;                        /* Interpreter in whose result the
+                                        * Postscript is to be stored. */
+    Tk_Canvas canvas;                  /* Canvas widget for which the
+                                        * Postscript is being generated. */
+    double *pointPtr;                  /* Array of input coordinates:  x0,
+                                        * y0, x1, y1, etc.. */
+    int numPoints;                     /* Number of points at pointPtr. */
+{
+    int closed, i;
+    int numCoords = numPoints*2;
+    double control[8];
+    char buffer[200];
+
+    /*
+     * If the curve is a closed one then generate a special spline
+     * that spans the last points and the first ones.  Otherwise
+     * just put the first point into the path.
+     */
+
+    if ((pointPtr[0] == pointPtr[numCoords-2])
+           && (pointPtr[1] == pointPtr[numCoords-1])) {
+       closed = 1;
+       control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
+       control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
+       control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
+       control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
+       control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
+       control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
+       control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
+       control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
+       sprintf(buffer, "%.15g %.15g moveto\n%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
+               control[0], Tk_CanvasPsY(canvas, control[1]),
+               control[2], Tk_CanvasPsY(canvas, control[3]),
+               control[4], Tk_CanvasPsY(canvas, control[5]),
+               control[6], Tk_CanvasPsY(canvas, control[7]));
+    } else {
+       closed = 0;
+       control[6] = pointPtr[0];
+       control[7] = pointPtr[1];
+       sprintf(buffer, "%.15g %.15g moveto\n",
+               control[6], Tk_CanvasPsY(canvas, control[7]));
+    }
+    Tcl_AppendResult(interp, buffer, (char *) NULL);
+
+    /*
+     * Cycle through all the remaining points in the curve, generating
+     * a curve section for each vertex in the linear path.
+     */
+
+    for (i = numPoints-2, pointPtr += 2; i > 0; i--, pointPtr += 2) {
+       control[2] = 0.333*control[6] + 0.667*pointPtr[0];
+       control[3] = 0.333*control[7] + 0.667*pointPtr[1];
+
+       /*
+        * Set up the last two control points.  This is done
+        * differently for the last spline of an open curve
+        * than for other cases.
+        */
+
+       if ((i == 1) && !closed) {
+           control[6] = pointPtr[2];
+           control[7] = pointPtr[3];
+       } else {
+           control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
+           control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
+       }
+       control[4] = 0.333*control[6] + 0.667*pointPtr[0];
+       control[5] = 0.333*control[7] + 0.667*pointPtr[1];
+
+       sprintf(buffer, "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
+               control[2], Tk_CanvasPsY(canvas, control[3]),
+               control[4], Tk_CanvasPsY(canvas, control[5]),
+               control[6], Tk_CanvasPsY(canvas, control[7]));
+       Tcl_AppendResult(interp, buffer, (char *) NULL);
+    }
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkGetMiterPoints --
+ *
+ *     Given three points forming an angle, compute the
+ *     coordinates of the inside and outside points of
+ *     the mitered corner formed by a line of a given
+ *     width at that angle.
+ *
+ * Results:
+ *     If the angle formed by the three points is less than
+ *     11 degrees then 0 is returned and m1 and m2 aren't
+ *     modified.  Otherwise 1 is returned and the points at
+ *     m1 and m2 are filled in with the positions of the points
+ *     of the mitered corner.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkGetMiterPoints(p1, p2, p3, width, m1, m2)
+    double p1[];               /* Points to x- and y-coordinates of point
+                                * before vertex. */
+    double p2[];               /* Points to x- and y-coordinates of vertex
+                                * for mitered joint. */
+    double p3[];               /* Points to x- and y-coordinates of point
+                                * after vertex. */
+    double width;              /* Width of line.  */
+    double m1[];               /* Points to place to put "left" vertex
+                                * point (see as you face from p1 to p2). */
+    double m2[];               /* Points to place to put "right" vertex
+                                * point. */
+{
+    double theta1;             /* Angle of segment p2-p1. */
+    double theta2;             /* Angle of segment p2-p3. */
+    double theta;              /* Angle between line segments (angle
+                                * of joint). */
+    double theta3;             /* Angle that bisects theta1 and
+                                * theta2 and points to m1. */
+    double dist;               /* Distance of miter points from p2. */
+    double deltaX, deltaY;     /* X and y offsets cooresponding to
+                                * dist (fudge factors for bounding
+                                * box). */
+    double p1x, p1y, p2x, p2y, p3x, p3y;
+    static double elevenDegrees = (11.0*2.0*PI)/360.0;
+
+    /*
+     * Round the coordinates to integers to mimic what happens when the
+     * line segments are displayed; without this code, the bounding box
+     * of a mitered line can be miscomputed greatly.
+     */
+
+    p1x = floor(p1[0]+0.5);
+    p1y = floor(p1[1]+0.5);
+    p2x = floor(p2[0]+0.5);
+    p2y = floor(p2[1]+0.5);
+    p3x = floor(p3[0]+0.5);
+    p3y = floor(p3[1]+0.5);
+
+    if (p2y == p1y) {
+       theta1 = (p2x < p1x) ? 0 : PI;
+    } else if (p2x == p1x) {
+       theta1 = (p2y < p1y) ? PI/2.0 : -PI/2.0;
+    } else {
+       theta1 = atan2(p1y - p2y, p1x - p2x);
+    }
+    if (p3y == p2y) {
+       theta2 = (p3x > p2x) ? 0 : PI;
+    } else if (p3x == p2x) {
+       theta2 = (p3y > p2y) ? PI/2.0 : -PI/2.0;
+    } else {
+       theta2 = atan2(p3y - p2y, p3x - p2x);
+    }
+    theta = theta1 - theta2;
+    if (theta > PI) {
+       theta -= 2*PI;
+    } else if (theta < -PI) {
+       theta += 2*PI;
+    }
+    if ((theta < elevenDegrees) && (theta > -elevenDegrees)) {
+       return 0;
+    }
+    dist = 0.5*width/sin(0.5*theta);
+    if (dist < 0.0) {
+       dist = -dist;
+    }
+
+    /*
+     * Compute theta3 (make sure that it points to the left when
+     * looking from p1 to p2).
+     */
+
+    theta3 = (theta1 + theta2)/2.0;
+    if (sin(theta3 - (theta1 + PI)) < 0.0) {
+       theta3 += PI;
+    }
+    deltaX = dist*cos(theta3);
+    m1[0] = p2x + deltaX;
+    m2[0] = p2x - deltaX;
+    deltaY = dist*sin(theta3);
+    m1[1] = p2y + deltaY;
+    m2[1] = p2y - deltaY;
+    return 1;
+}
+\f
+/*
+ *--------------------------------------------------------------
+ *
+ * TkGetButtPoints --
+ *
+ *     Given two points forming a line segment, compute the
+ *     coordinates of two endpoints of a rectangle formed by
+ *     bloating the line segment until it is width units wide.
+ *
+ * Results:
+ *     There is no return value.  M1 and m2 are filled in to
+ *     correspond to m1 and m2 in the diagram below:
+ *
+ *                ----------------* m1
+ *                                |
+ *             p1 *---------------* p2
+ *                                |
+ *                ----------------* m2
+ *
+ *     M1 and m2 will be W units apart, with p2 centered between
+ *     them and m1-m2 perpendicular to p1-p2.  However, if
+ *     "project" is true then m1 and m2 will be as follows:
+ *
+ *                -------------------* m1
+ *                               p2  |
+ *             p1 *---------------*  |
+ *                                   |
+ *                -------------------* m2
+ *
+ *     In this case p2 will be width/2 units from the segment m1-m2.
+ *
+ * Side effects:
+ *     None.
+ *
+ *--------------------------------------------------------------
+ */
+
+void
+TkGetButtPoints(p1, p2, width, project, m1, m2)
+    double p1[];               /* Points to x- and y-coordinates of point
+                                * before vertex. */
+    double p2[];               /* Points to x- and y-coordinates of vertex
+                                * for mitered joint. */
+    double width;              /* Width of line.  */
+    int project;               /* Non-zero means project p2 by an additional
+                                * width/2 before computing m1 and m2. */
+    double m1[];               /* Points to place to put "left" result
+                                * point, as you face from p1 to p2. */
+    double m2[];               /* Points to place to put "right" result
+                                * point. */
+{
+    double length;             /* Length of p1-p2 segment. */
+    double deltaX, deltaY;     /* Increments in coords. */
+
+    width *= 0.5;
+    length = hypot(p2[0] - p1[0], p2[1] - p1[1]);
+    if (length == 0.0) {
+       m1[0] = m2[0] = p2[0];
+       m1[1] = m2[1] = p2[1];
+    } else {
+       deltaX = -width * (p2[1] - p1[1]) / length;
+       deltaY = width * (p2[0] - p1[0]) / length;
+       m1[0] = p2[0] + deltaX;
+       m2[0] = p2[0] - deltaX;
+       m1[1] = p2[1] + deltaY;
+       m2[1] = p2[1] - deltaY;
+       if (project) {
+           m1[0] += deltaY;
+           m2[0] += deltaY;
+           m1[1] -= deltaX;
+           m2[1] -= deltaX;
+       }
+    }
+}