OSDN Git Service

* pex-win32.c (pex_win32_pipe): Add _O_NOINHERIT.
[pf3gnuchains/gcc-fork.git] / libiberty / splay-tree.c
index ed48116..d7ed868 100644 (file)
 /* A splay-tree datatype.  
-   Copyright (C) 1998 Free Software Foundation, Inc.
+   Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
    Contributed by Mark Mitchell (mark@markmitchell.com).
 
-   This file is part of GNU CC.
+This file is part of GNU CC.
    
-   GNU CC is free software; you can redistribute it and/or modify it
-   under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2, or (at your option)
-   any later version.
+GNU CC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
 
-   GNU CC is distributed in the hope that it will be useful, but
-   WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   General Public License for more details.
+GNU CC is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+General Public License for more details.
 
-   You should have received a copy of the GNU General Public License
-   along with GNU CC; see the file COPYING.  If not, write to the Free
-   Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING.  If not, write to
+the Free Software Foundation, 51 Franklin Street - Fifth Floor,
+Boston, MA 02110-1301, USA.  */
 
-   For an easily readable description of splay-trees, see:
+/* For an easily readable description of splay-trees, see:
 
      Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
      Algorithms.  Harper-Collins, Inc.  1991.  */
 
-#ifndef IN_GCC
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#include <stdio.h>
+
 #include "libiberty.h"
-#endif /* IN_GCC */
 #include "splay-tree.h"
 
-static void splay_tree_delete_helper    PARAMS((splay_tree, 
-                                               splay_tree_node));
-static void splay_tree_splay            PARAMS((splay_tree,
-                                               splay_tree_key));
-static splay_tree_node splay_tree_splay_helper     
-                                        PARAMS((splay_tree,
-                                               splay_tree_key,
-                                               splay_tree_node*,
-                                               splay_tree_node*,
-                                               splay_tree_node*));
-static int splay_tree_foreach_helper    PARAMS((splay_tree,
-                                               splay_tree_node,
-                                               splay_tree_foreach_fn,
-                                               void*));
+static void splay_tree_delete_helper (splay_tree, splay_tree_node);
+static inline void rotate_left (splay_tree_node *,
+                               splay_tree_node, splay_tree_node);
+static inline void rotate_right (splay_tree_node *,
+                               splay_tree_node, splay_tree_node);
+static void splay_tree_splay (splay_tree, splay_tree_key);
+static int splay_tree_foreach_helper (splay_tree, splay_tree_node,
+                                      splay_tree_foreach_fn, void*);
 
 /* Deallocate NODE (a member of SP), and all its sub-trees.  */
 
 static void 
-splay_tree_delete_helper (sp, node)
-     splay_tree sp;
-     splay_tree_node node;
+splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
 {
+  splay_tree_node pending = 0;
+  splay_tree_node active = 0;
+
   if (!node)
     return;
 
-  splay_tree_delete_helper (sp, node->left);
-  splay_tree_delete_helper (sp, node->right);
+#define KDEL(x)  if (sp->delete_key) (*sp->delete_key)(x);
+#define VDEL(x)  if (sp->delete_value) (*sp->delete_value)(x);
 
-  if (sp->delete_key)
-    (*sp->delete_key)(node->key);
-  if (sp->delete_value)
-    (*sp->delete_value)(node->value);
+  KDEL (node->key);
+  VDEL (node->value);
 
-  free ((char*) node);
-}
+  /* We use the "key" field to hold the "next" pointer.  */
+  node->key = (splay_tree_key)pending;
+  pending = (splay_tree_node)node;
 
-/* Help splay SP around KEY.  PARENT and GRANDPARENT are the parent
-   and grandparent, respectively, of NODE.  */
+  /* Now, keep processing the pending list until there aren't any
+     more.  This is a little more complicated than just recursing, but
+     it doesn't toast the stack for large trees.  */
 
-static splay_tree_node
-splay_tree_splay_helper (sp, key, node, parent, grandparent)
-     splay_tree sp;
-     splay_tree_key key;
-     splay_tree_node *node;
-     splay_tree_node *parent;
-     splay_tree_node *grandparent;
-{
-  splay_tree_node *next;
-  splay_tree_node n;
-  int comparison;
-  
-  n = *node;
-
-  if (!n)
-    return *parent;
-
-  comparison = (*sp->comp) (key, n->key);
-
-  if (comparison == 0)
-    /* We've found the target.  */
-    next = 0;
-  else if (comparison < 0)
-    /* The target is to the left.  */
-    next = &n->left;
-  else 
-    /* The target is to the right.  */
-    next = &n->right;
-
-  if (next)
+  while (pending)
     {
-      /* Continue down the tree.  */
-      n = splay_tree_splay_helper (sp, key, next, node, parent);
-
-      /* The recursive call will change the place to which NODE
-        points.  */
-      if (*node != n)
-       return n;
-    }
-
-  if (!parent)
-    /* NODE is the root.  We are done.  */
-    return n;
-
-  /* First, handle the case where there is no grandparent (i.e.,
-     *PARENT is the root of the tree.)  */
-  if (!grandparent) 
-    {
-      if (n == (*parent)->left)
-       {
-         *node = n->right;
-         n->right = *parent;
-       }
-      else
+      active = pending;
+      pending = 0;
+      while (active)
        {
-         *node = n->left;
-         n->left = *parent;
+         splay_tree_node temp;
+
+         /* active points to a node which has its key and value
+            deallocated, we just need to process left and right.  */
+
+         if (active->left)
+           {
+             KDEL (active->left->key);
+             VDEL (active->left->value);
+             active->left->key = (splay_tree_key)pending;
+             pending = (splay_tree_node)(active->left);
+           }
+         if (active->right)
+           {
+             KDEL (active->right->key);
+             VDEL (active->right->value);
+             active->right->key = (splay_tree_key)pending;
+             pending = (splay_tree_node)(active->right);
+           }
+
+         temp = active;
+         active = (splay_tree_node)(temp->key);
+         (*sp->deallocate) ((char*) temp, sp->allocate_data);
        }
-      *parent = n;
-      return n;
     }
+#undef KDEL
+#undef VDEL
+}
 
-  /* Next handle the cases where both N and *PARENT are left children,
-     or where both are right children.  */
-  if (n == (*parent)->left && *parent == (*grandparent)->left)
-    {
-      splay_tree_node p = *parent;
-
-      (*grandparent)->left = p->right;
-      p->right = *grandparent;
-      p->left = n->right;
-      n->right = p;
-      *grandparent = n;
-      return n; 
-    }
-  else if  (n == (*parent)->right && *parent == (*grandparent)->right)
-    {
-      splay_tree_node p = *parent;
-
-      (*grandparent)->right = p->left;
-      p->left = *grandparent;
-      p->right = n->left;
-      n->left = p;
-      *grandparent = n;
-      return n;
-    }
+/* Rotate the edge joining the left child N with its parent P.  PP is the
+   grandparents' pointer to P.  */
 
-  /* Finally, deal with the case where N is a left child, but *PARENT
-     is a right child, or vice versa.  */
-  if (n == (*parent)->left) 
-    {
-      (*parent)->left = n->right;
-      n->right = *parent;
-      (*grandparent)->right = n->left;
-      n->left = *grandparent;
-      *grandparent = n;
-      return n;
-    } 
-  else
-    {
-      (*parent)->right = n->left;
-      n->left = *parent;
-      (*grandparent)->left = n->right;
-      n->right = *grandparent;
-      *grandparent = n;
-      return n;
-    }
+static inline void
+rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
+{
+  splay_tree_node tmp;
+  tmp = n->right;
+  n->right = p;
+  p->left = tmp;
+  *pp = n;
+}
+
+/* Rotate the edge joining the right child N with its parent P.  PP is the
+   grandparents' pointer to P.  */
+
+static inline void
+rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
+{
+  splay_tree_node tmp;
+  tmp = n->left;
+  n->left = p;
+  p->right = tmp;
+  *pp = n;
 }
 
-/* Splay SP around KEY.  */
+/* Bottom up splay of key.  */
 
 static void
-splay_tree_splay (sp, key)
-     splay_tree sp;
-     splay_tree_key key;
+splay_tree_splay (splay_tree sp, splay_tree_key key)
 {
   if (sp->root == 0)
     return;
 
-  splay_tree_splay_helper (sp, key, &sp->root, 
-                          /*grandparent=*/0, /*parent=*/0); 
+  do {
+    int cmp1, cmp2;
+    splay_tree_node n, c;
+
+    n = sp->root;
+    cmp1 = (*sp->comp) (key, n->key);
+
+    /* Found.  */
+    if (cmp1 == 0)
+      return;
+
+    /* Left or right?  If no child, then we're done.  */
+    if (cmp1 < 0)
+      c = n->left;
+    else
+      c = n->right;
+    if (!c)
+      return;
+
+    /* Next one left or right?  If found or no child, we're done
+       after one rotation.  */
+    cmp2 = (*sp->comp) (key, c->key);
+    if (cmp2 == 0
+        || (cmp2 < 0 && !c->left)
+        || (cmp2 > 0 && !c->right))
+      {
+       if (cmp1 < 0)
+         rotate_left (&sp->root, n, c);
+       else
+         rotate_right (&sp->root, n, c);
+        return;
+      }
+
+    /* Now we have the four cases of double-rotation.  */
+    if (cmp1 < 0 && cmp2 < 0)
+      {
+       rotate_left (&n->left, c, c->left);
+       rotate_left (&sp->root, n, n->left);
+      }
+    else if (cmp1 > 0 && cmp2 > 0)
+      {
+       rotate_right (&n->right, c, c->right);
+       rotate_right (&sp->root, n, n->right);
+      }
+    else if (cmp1 < 0 && cmp2 > 0)
+      {
+       rotate_right (&n->left, c, c->right);
+       rotate_left (&sp->root, n, n->left);
+      }
+    else if (cmp1 > 0 && cmp2 < 0)
+      {
+       rotate_left (&n->right, c, c->left);
+       rotate_right (&sp->root, n, n->right);
+      }
+  } while (1);
 }
 
 /* Call FN, passing it the DATA, for every node below NODE, all of
@@ -195,12 +202,9 @@ splay_tree_splay (sp, key)
    returns a non-zero value, the iteration ceases immediately, and the
    value is returned.  Otherwise, this function returns 0.  */
 
-int
-splay_tree_foreach_helper (sp, node, fn, data)
-     splay_tree sp;
-     splay_tree_node node;
-     splay_tree_foreach_fn fn;
-     void* data;
+static int
+splay_tree_foreach_helper (splay_tree sp, splay_tree_node node,
+                           splay_tree_foreach_fn fn, void *data)
 {
   int val;
 
@@ -218,21 +222,58 @@ splay_tree_foreach_helper (sp, node, fn, data)
   return splay_tree_foreach_helper (sp, node->right, fn, data);
 }
 
+
+/* An allocator and deallocator based on xmalloc.  */
+static void *
+splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
+{
+  return (void *) xmalloc (size);
+}
+
+static void
+splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
+{
+  free (object);
+}
+
+
+/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
+   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
+   values.  Use xmalloc to allocate the splay tree structure, and any
+   nodes added.  */
+
+splay_tree 
+splay_tree_new (splay_tree_compare_fn compare_fn,
+                splay_tree_delete_key_fn delete_key_fn,
+                splay_tree_delete_value_fn delete_value_fn)
+{
+  return (splay_tree_new_with_allocator
+          (compare_fn, delete_key_fn, delete_value_fn,
+           splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
+}
+
+
 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
    DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
    values.  */
 
 splay_tree 
-splay_tree_new (compare_fn, delete_key_fn, delete_value_fn)
-     splay_tree_compare_fn compare_fn;
-     splay_tree_delete_key_fn delete_key_fn;
-     splay_tree_delete_value_fn delete_value_fn;
+splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
+                               splay_tree_delete_key_fn delete_key_fn,
+                               splay_tree_delete_value_fn delete_value_fn,
+                               splay_tree_allocate_fn allocate_fn,
+                               splay_tree_deallocate_fn deallocate_fn,
+                               void *allocate_data)
 {
-  splay_tree sp = (splay_tree) xmalloc (sizeof (struct splay_tree));
+  splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
+                                               allocate_data);
   sp->root = 0;
   sp->comp = compare_fn;
   sp->delete_key = delete_key_fn;
   sp->delete_value = delete_value_fn;
+  sp->allocate = allocate_fn;
+  sp->deallocate = deallocate_fn;
+  sp->allocate_data = allocate_data;
 
   return sp;
 }
@@ -240,24 +281,20 @@ splay_tree_new (compare_fn, delete_key_fn, delete_value_fn)
 /* Deallocate SP.  */
 
 void 
-splay_tree_delete (sp)
-     splay_tree sp;
+splay_tree_delete (splay_tree sp)
 {
   splay_tree_delete_helper (sp, sp->root);
-  free ((char*) sp);
+  (*sp->deallocate) ((char*) sp, sp->allocate_data);
 }
 
 /* Insert a new node (associating KEY with DATA) into SP.  If a
    previous node with the indicated KEY exists, its data is replaced
-   with the new value.  */
+   with the new value.  Returns the new node.  */
 
-void 
-splay_tree_insert (sp, key, value)
-     splay_tree sp;
-     splay_tree_key key;
-     splay_tree_value value;
+splay_tree_node
+splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
 {
-  int comparison;
+  int comparison = 0;
 
   splay_tree_splay (sp, key);
 
@@ -277,7 +314,9 @@ splay_tree_insert (sp, key, value)
       /* Create a new node, and insert it at the root.  */
       splay_tree_node node;
       
-      node = (splay_tree_node) xmalloc (sizeof (struct splay_tree_node));
+      node = ((splay_tree_node)
+              (*sp->allocate) (sizeof (struct splay_tree_node_s),
+                               sp->allocate_data));
       node->key = key;
       node->value = value;
       
@@ -296,17 +335,56 @@ splay_tree_insert (sp, key, value)
          node->right->left = 0;
        }
 
-    sp->root = node;
-  }
+      sp->root = node;
+    }
+
+  return sp->root;
+}
+
+/* Remove KEY from SP.  It is not an error if it did not exist.  */
+
+void
+splay_tree_remove (splay_tree sp, splay_tree_key key)
+{
+  splay_tree_splay (sp, key);
+
+  if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
+    {
+      splay_tree_node left, right;
+
+      left = sp->root->left;
+      right = sp->root->right;
+
+      /* Delete the root node itself.  */
+      if (sp->delete_value)
+       (*sp->delete_value) (sp->root->value);
+      (*sp->deallocate) (sp->root, sp->allocate_data);
+
+      /* One of the children is now the root.  Doesn't matter much
+        which, so long as we preserve the properties of the tree.  */
+      if (left)
+       {
+         sp->root = left;
+
+         /* If there was a right child as well, hang it off the 
+            right-most leaf of the left child.  */
+         if (right)
+           {
+             while (left->right)
+               left = left->right;
+             left->right = right;
+           }
+       }
+      else
+       sp->root = right;
+    }
 }
 
 /* Lookup KEY in SP, returning VALUE if present, and NULL 
    otherwise.  */
 
 splay_tree_node
-splay_tree_lookup (sp, key)
-     splay_tree sp;
-     splay_tree_key key;
+splay_tree_lookup (splay_tree sp, splay_tree_key key)
 {
   splay_tree_splay (sp, key);
 
@@ -316,16 +394,133 @@ splay_tree_lookup (sp, key)
     return 0;
 }
 
+/* Return the node in SP with the greatest key.  */
+
+splay_tree_node
+splay_tree_max (splay_tree sp)
+{
+  splay_tree_node n = sp->root;
+
+  if (!n)
+    return NULL;
+
+  while (n->right)
+    n = n->right;
+
+  return n;
+}
+
+/* Return the node in SP with the smallest key.  */
+
+splay_tree_node
+splay_tree_min (splay_tree sp)
+{
+  splay_tree_node n = sp->root;
+
+  if (!n)
+    return NULL;
+
+  while (n->left)
+    n = n->left;
+
+  return n;
+}
+
+/* Return the immediate predecessor KEY, or NULL if there is no
+   predecessor.  KEY need not be present in the tree.  */
+
+splay_tree_node
+splay_tree_predecessor (splay_tree sp, splay_tree_key key)
+{
+  int comparison;
+  splay_tree_node node;
+
+  /* If the tree is empty, there is certainly no predecessor.  */
+  if (!sp->root)
+    return NULL;
+
+  /* Splay the tree around KEY.  That will leave either the KEY
+     itself, its predecessor, or its successor at the root.  */
+  splay_tree_splay (sp, key);
+  comparison = (*sp->comp)(sp->root->key, key);
+
+  /* If the predecessor is at the root, just return it.  */
+  if (comparison < 0)
+    return sp->root;
+
+  /* Otherwise, find the rightmost element of the left subtree.  */
+  node = sp->root->left;
+  if (node)
+    while (node->right)
+      node = node->right;
+
+  return node;
+}
+
+/* Return the immediate successor KEY, or NULL if there is no
+   successor.  KEY need not be present in the tree.  */
+
+splay_tree_node
+splay_tree_successor (splay_tree sp, splay_tree_key key)
+{
+  int comparison;
+  splay_tree_node node;
+
+  /* If the tree is empty, there is certainly no successor.  */
+  if (!sp->root)
+    return NULL;
+
+  /* Splay the tree around KEY.  That will leave either the KEY
+     itself, its predecessor, or its successor at the root.  */
+  splay_tree_splay (sp, key);
+  comparison = (*sp->comp)(sp->root->key, key);
+
+  /* If the successor is at the root, just return it.  */
+  if (comparison > 0)
+    return sp->root;
+
+  /* Otherwise, find the leftmost element of the right subtree.  */
+  node = sp->root->right;
+  if (node)
+    while (node->left)
+      node = node->left;
+
+  return node;
+}
+
 /* Call FN, passing it the DATA, for every node in SP, following an
    in-order traversal.  If FN every returns a non-zero value, the
    iteration ceases immediately, and the value is returned.
    Otherwise, this function returns 0.  */
 
 int
-splay_tree_foreach (sp, fn, data)
-     splay_tree sp;
-     splay_tree_foreach_fn fn;
-     void *data;
+splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
 {
   return splay_tree_foreach_helper (sp, sp->root, fn, data);
 }
+
+/* Splay-tree comparison function, treating the keys as ints.  */
+
+int
+splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
+{
+  if ((int) k1 < (int) k2)
+    return -1;
+  else if ((int) k1 > (int) k2)
+    return 1;
+  else 
+    return 0;
+}
+
+/* Splay-tree comparison function, treating the keys as pointers.  */
+
+int
+splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
+{
+  if ((char*) k1 < (char*) k2)
+    return -1;
+  else if ((char*) k1 > (char*) k2)
+    return 1;
+  else 
+    return 0;
+}