OSDN Git Service

* config/xtensa/xtensa.c (xtensa_expand_builtin): Use CALL_EXPR_FN.
[pf3gnuchains/gcc-fork.git] / gcc / tree-vrp.c
index e9d6c81..9beddbf 100644 (file)
@@ -1,5 +1,5 @@
 /* Support routines for Value Range Propagation (VRP).
-   Copyright (C) 2005 Free Software Foundation, Inc.
+   Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
    Contributed by Diego Novillo <dnovillo@redhat.com>.
 
 This file is part of GCC.
@@ -32,6 +32,8 @@ Boston, MA 02110-1301, USA.  */
 #include "tree-dump.h"
 #include "timevar.h"
 #include "diagnostic.h"
+#include "toplev.h"
+#include "intl.h"
 #include "cfgloop.h"
 #include "tree-scalar-evolution.h"
 #include "tree-ssa-propagate.h"
@@ -41,12 +43,11 @@ Boston, MA 02110-1301, USA.  */
    sub-graph in find_assert_locations.  */
 static sbitmap found_in_subgraph;
 
-/* Loop structure of the program.  Used to analyze scalar evolutions
-   inside adjust_range_with_scev.  */
-static struct loops *cfg_loops;
-
 /* Local functions.  */
 static int compare_values (tree val1, tree val2);
+static int compare_values_warnv (tree val1, tree val2, bool *);
+static void vrp_meet (value_range_t *, value_range_t *);
+static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
 
 /* Location information for ASSERT_EXPRs.  Each instance of this
    structure describes an ASSERT_EXPR for an SSA name.  Since a single
@@ -95,6 +96,107 @@ static sbitmap blocks_visited;
 static value_range_t **vr_value;
 
 
+/* Return whether TYPE should use an overflow infinity distinct from
+   TYPE_{MIN,MAX}_VALUE.  We use an overflow infinity value to
+   represent a signed overflow during VRP computations.  An infinity
+   is distinct from a half-range, which will go from some number to
+   TYPE_{MIN,MAX}_VALUE.  */
+
+static inline bool
+needs_overflow_infinity (tree type)
+{
+  return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
+}
+
+/* Return whether TYPE can support our overflow infinity
+   representation: we use the TREE_OVERFLOW flag, which only exists
+   for constants.  If TYPE doesn't support this, we don't optimize
+   cases which would require signed overflow--we drop them to
+   VARYING.  */
+
+static inline bool
+supports_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+  gcc_assert (needs_overflow_infinity (type));
+#endif
+  return (TYPE_MIN_VALUE (type) != NULL_TREE
+         && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
+         && TYPE_MAX_VALUE (type) != NULL_TREE
+         && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
+}
+
+/* VAL is the maximum or minimum value of a type.  Return a
+   corresponding overflow infinity.  */
+
+static inline tree
+make_overflow_infinity (tree val)
+{
+#ifdef ENABLE_CHECKING
+  gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
+#endif
+  val = copy_node (val);
+  TREE_OVERFLOW (val) = 1;
+  return val;
+}
+
+/* Return a negative overflow infinity for TYPE.  */
+
+static inline tree
+negative_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+  gcc_assert (supports_overflow_infinity (type));
+#endif
+  return make_overflow_infinity (TYPE_MIN_VALUE (type));
+}
+
+/* Return a positive overflow infinity for TYPE.  */
+
+static inline tree
+positive_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+  gcc_assert (supports_overflow_infinity (type));
+#endif
+  return make_overflow_infinity (TYPE_MAX_VALUE (type));
+}
+
+/* Return whether VAL is a negative overflow infinity.  */
+
+static inline bool
+is_negative_overflow_infinity (tree val)
+{
+  return (needs_overflow_infinity (TREE_TYPE (val))
+         && CONSTANT_CLASS_P (val)
+         && TREE_OVERFLOW (val)
+         && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
+}
+
+/* Return whether VAL is a positive overflow infinity.  */
+
+static inline bool
+is_positive_overflow_infinity (tree val)
+{
+  return (needs_overflow_infinity (TREE_TYPE (val))
+         && CONSTANT_CLASS_P (val)
+         && TREE_OVERFLOW (val)
+         && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
+}
+
+/* Return whether VAL is a positive or negative overflow infinity.  */
+
+static inline bool
+is_overflow_infinity (tree val)
+{
+  return (needs_overflow_infinity (TREE_TYPE (val))
+         && CONSTANT_CLASS_P (val)
+         && TREE_OVERFLOW (val)
+         && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
+             || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
+}
+
+
 /* Return true if ARG is marked with the nonnull attribute in the
    current function signature.  */
 
@@ -106,6 +208,10 @@ nonnull_arg_p (tree arg)
 
   gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
 
+  /* The static chain decl is always non null.  */
+  if (arg == cfun->static_chain_decl)
+    return true;
+
   fntype = TREE_TYPE (current_function_decl);
   attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
 
@@ -154,8 +260,10 @@ set_value_range (value_range_t *vr, enum value_range_type t, tree min,
       gcc_assert (min && max);
 
       if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
-       gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
-                   || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
+       gcc_assert ((min != TYPE_MIN_VALUE (TREE_TYPE (min))
+                    && !is_negative_overflow_infinity (min))
+                   || (max != TYPE_MAX_VALUE (TREE_TYPE (max))
+                       && !is_positive_overflow_infinity (max)));
 
       cmp = compare_values (min, max);
       gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
@@ -196,6 +304,43 @@ copy_value_range (value_range_t *to, value_range_t *from)
 }
 
 
+/* Set value range VR to VR_VARYING.  */
+
+static inline void
+set_value_range_to_varying (value_range_t *vr)
+{
+  vr->type = VR_VARYING;
+  vr->min = vr->max = NULL_TREE;
+  if (vr->equiv)
+    bitmap_clear (vr->equiv);
+}
+
+/* Set value range VR to a non-negative range of type TYPE.
+   OVERFLOW_INFINITY indicates whether to use a overflow infinity
+   rather than TYPE_MAX_VALUE; this should be true if we determine
+   that the range is nonnegative based on the assumption that signed
+   overflow does not occur.  */
+
+static inline void
+set_value_range_to_nonnegative (value_range_t *vr, tree type,
+                               bool overflow_infinity)
+{
+  tree zero;
+
+  if (overflow_infinity && !supports_overflow_infinity (type))
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  zero = build_int_cst (type, 0);
+  set_value_range (vr, VR_RANGE, zero,
+                  (overflow_infinity
+                   ? positive_overflow_infinity (type)
+                   : TYPE_MAX_VALUE (type)),
+                  vr->equiv);
+}
+
 /* Set value range VR to a non-NULL range of type TYPE.  */
 
 static inline void
@@ -216,15 +361,17 @@ set_value_range_to_null (value_range_t *vr, tree type)
 }
 
 
-/* Set value range VR to VR_VARYING.  */
+/* Set value range VR to a range of a truthvalue of type TYPE.  */
 
 static inline void
-set_value_range_to_varying (value_range_t *vr)
+set_value_range_to_truthvalue (value_range_t *vr, tree type)
 {
-  vr->type = VR_VARYING;
-  vr->min = vr->max = NULL_TREE;
-  if (vr->equiv)
-    bitmap_clear (vr->equiv);
+  if (TYPE_PRECISION (type) == 1)
+    set_value_range_to_varying (vr);
+  else
+    set_value_range (vr, VR_RANGE,
+                    build_int_cst (type, 0), build_int_cst (type, 1),
+                    vr->equiv);
 }
 
 
@@ -240,8 +387,10 @@ set_value_range_to_undefined (value_range_t *vr)
 }
 
 
-/* Return value range information for VAR.  Create an empty range
-   if none existed.  */
+/* Return value range information for VAR.  
+
+   If we have no values ranges recorded (ie, VRP is not running), then
+   return NULL.  Otherwise create an empty range if none existed for VAR.  */
 
 static value_range_t *
 get_value_range (tree var)
@@ -250,13 +399,16 @@ get_value_range (tree var)
   tree sym;
   unsigned ver = SSA_NAME_VERSION (var);
 
+  /* If we have no recorded ranges, then return NULL.  */
+  if (! vr_value)
+    return NULL;
+
   vr = vr_value[ver];
   if (vr)
     return vr;
 
   /* Create a default value range.  */
-  vr_value[ver] = vr = xmalloc (sizeof (*vr));
-  memset (vr, 0, sizeof (*vr));
+  vr_value[ver] = vr = XCNEW (value_range_t);
 
   /* Allocate an equivalence set.  */
   vr->equiv = BITMAP_ALLOC (NULL);
@@ -264,7 +416,7 @@ get_value_range (tree var)
   /* If VAR is a default definition, the variable can take any value
      in VAR's type.  */
   sym = SSA_NAME_VAR (var);
-  if (var == default_def (sym))
+  if (SSA_NAME_IS_DEFAULT_DEF (var))
     {
       /* Try to use the "nonnull" attribute to create ~[0, 0]
         anti-ranges for pointers.  Note that this is only valid with
@@ -280,6 +432,29 @@ get_value_range (tree var)
   return vr;
 }
 
+/* Return true, if VAL1 and VAL2 are equal values for VRP purposes.  */
+
+static inline bool
+vrp_operand_equal_p (tree val1, tree val2)
+{
+  if (val1 == val2)
+    return true;
+  if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
+    return false;
+  if (is_overflow_infinity (val1))
+    return is_overflow_infinity (val2);
+  return true;
+}
+
+/* Return true, if the bitmaps B1 and B2 are equal.  */
+
+static inline bool
+vrp_bitmap_equal_p (bitmap b1, bitmap b2)
+{
+  return (b1 == b2
+         || (b1 && b2
+             && bitmap_equal_p (b1, b2)));
+}
 
 /* Update the value range and equivalence set for variable VAR to
    NEW_VR.  Return true if NEW_VR is different from VAR's previous
@@ -300,11 +475,9 @@ update_value_range (tree var, value_range_t *new_vr)
   /* Update the value range, if necessary.  */
   old_vr = get_value_range (var);
   is_new = old_vr->type != new_vr->type
-           || old_vr->min != new_vr->min
-          || old_vr->max != new_vr->max
-          || (old_vr->equiv == NULL && new_vr->equiv)
-          || (old_vr->equiv && new_vr->equiv == NULL)
-          || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
+          || !vrp_operand_equal_p (old_vr->min, new_vr->min)
+          || !vrp_operand_equal_p (old_vr->max, new_vr->max)
+          || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
 
   if (is_new)
     set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
@@ -362,14 +535,58 @@ symbolic_range_p (value_range_t *vr)
           || !is_gimple_min_invariant (vr->max));
 }
 
+/* Return true if value range VR uses a overflow infinity.  */
+
+static inline bool
+overflow_infinity_range_p (value_range_t *vr)
+{
+  return (vr->type == VR_RANGE
+         && (is_overflow_infinity (vr->min)
+             || is_overflow_infinity (vr->max)));
+}
+
+/* Return false if we can not make a valid comparison based on VR;
+   this will be the case if it uses an overflow infinity and overflow
+   is not undefined (i.e., -fno-strict-overflow is in effect).
+   Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
+   uses an overflow infinity.  */
+
+static bool
+usable_range_p (value_range_t *vr, bool *strict_overflow_p)
+{
+  gcc_assert (vr->type == VR_RANGE);
+  if (is_overflow_infinity (vr->min))
+    {
+      *strict_overflow_p = true;
+      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
+       return false;
+    }
+  if (is_overflow_infinity (vr->max))
+    {
+      *strict_overflow_p = true;
+      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
+       return false;
+    }
+  return true;
+}
+
+
+/* Like tree_expr_nonnegative_warnv_p, but this function uses value
+   ranges obtained so far.  */
+
+static bool
+vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
+{
+  return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
+}
 
-/* Like tree_expr_nonzero_p, but this function uses value ranges
+/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
    obtained so far.  */
 
 static bool
-vrp_expr_computes_nonzero (tree expr)
+vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
 {
-  if (tree_expr_nonzero_p (expr))
+  if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
     return true;
 
   /* If we have an expression of the form &X->a, then the expression
@@ -391,6 +608,66 @@ vrp_expr_computes_nonzero (tree expr)
   return false;
 }
 
+/* Returns true if EXPR is a valid value (as expected by compare_values) --
+   a gimple invariant, or SSA_NAME +- CST.  */
+
+static bool
+valid_value_p (tree expr)
+{
+  if (TREE_CODE (expr) == SSA_NAME)
+    return true;
+
+  if (TREE_CODE (expr) == PLUS_EXPR
+      || TREE_CODE (expr) == MINUS_EXPR)
+    return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
+           && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
+  
+  return is_gimple_min_invariant (expr);
+}
+
+/* Return 
+   1 if VAL < VAL2
+   0 if !(VAL < VAL2)
+   -2 if those are incomparable.  */
+static inline int
+operand_less_p (tree val, tree val2)
+{
+  /* LT is folded faster than GE and others.  Inline the common case.  */
+  if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
+    {
+      if (TYPE_UNSIGNED (TREE_TYPE (val)))
+       return INT_CST_LT_UNSIGNED (val, val2);
+      else
+       {
+         if (INT_CST_LT (val, val2))
+           return 1;
+       }
+    }
+  else
+    {
+      tree tcmp;
+
+      fold_defer_overflow_warnings ();
+
+      tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
+
+      fold_undefer_and_ignore_overflow_warnings ();
+
+      if (!tcmp)
+       return -2;
+
+      if (!integer_zerop (tcmp))
+       return 1;
+    }
+
+  /* val >= val2, not considering overflow infinity.  */
+  if (is_negative_overflow_infinity (val))
+    return is_negative_overflow_infinity (val2) ? 0 : 1;
+  else if (is_positive_overflow_infinity (val2))
+    return is_positive_overflow_infinity (val) ? 0 : 1;
+
+  return 0;
+}
 
 /* Compare two values VAL1 and VAL2.  Return
    
@@ -401,10 +678,14 @@ vrp_expr_computes_nonzero (tree expr)
        +2 if VAL1 != VAL2
 
    This is similar to tree_int_cst_compare but supports pointer values
-   and values that cannot be compared at compile time.  */
+   and values that cannot be compared at compile time.
+
+   If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
+   true if the return value is only valid if we assume that signed
+   overflow is undefined.  */
 
 static int
-compare_values (tree val1, tree val2)
+compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
 {
   if (val1 == val2)
     return 0;
@@ -414,37 +695,6 @@ compare_values (tree val1, tree val2)
   gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
              == POINTER_TYPE_P (TREE_TYPE (val2)));
 
-  /* Do some limited symbolic comparisons.  */
-  if (!POINTER_TYPE_P (TREE_TYPE (val1)))
-    {
-      /* We can determine some comparisons against +INF and -INF even
-        if the other value is an expression.  */
-      if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
-         && TREE_CODE (val2) == MINUS_EXPR)
-       {
-         /* +INF > NAME - CST.  */
-         return 1;
-       }
-      else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
-              && TREE_CODE (val2) == PLUS_EXPR)
-       {
-         /* -INF < NAME + CST.  */
-         return -1;
-       }
-      else if (TREE_CODE (val1) == MINUS_EXPR
-              && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
-       {
-         /* NAME - CST < +INF.  */
-         return -1;
-       }
-      else if (TREE_CODE (val1) == PLUS_EXPR
-              && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
-       {
-         /* NAME + CST > -INF.  */
-         return 1;
-       }
-    }
-
   if ((TREE_CODE (val1) == SSA_NAME
        || TREE_CODE (val1) == PLUS_EXPR
        || TREE_CODE (val1) == MINUS_EXPR)
@@ -453,72 +703,104 @@ compare_values (tree val1, tree val2)
          || TREE_CODE (val2) == MINUS_EXPR))
     {
       tree n1, c1, n2, c2;
+      enum tree_code code1, code2;
   
       /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
         return -1 or +1 accordingly.  If VAL1 and VAL2 don't use the
         same name, return -2.  */
       if (TREE_CODE (val1) == SSA_NAME)
        {
+         code1 = SSA_NAME;
          n1 = val1;
          c1 = NULL_TREE;
        }
       else
        {
+         code1 = TREE_CODE (val1);
          n1 = TREE_OPERAND (val1, 0);
          c1 = TREE_OPERAND (val1, 1);
+         if (tree_int_cst_sgn (c1) == -1)
+           {
+             if (is_negative_overflow_infinity (c1))
+               return -2;
+             c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
+             if (!c1)
+               return -2;
+             code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
+           }
        }
 
       if (TREE_CODE (val2) == SSA_NAME)
        {
+         code2 = SSA_NAME;
          n2 = val2;
          c2 = NULL_TREE;
        }
       else
        {
+         code2 = TREE_CODE (val2);
          n2 = TREE_OPERAND (val2, 0);
          c2 = TREE_OPERAND (val2, 1);
+         if (tree_int_cst_sgn (c2) == -1)
+           {
+             if (is_negative_overflow_infinity (c2))
+               return -2;
+             c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
+             if (!c2)
+               return -2;
+             code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
+           }
        }
 
       /* Both values must use the same name.  */
       if (n1 != n2)
        return -2;
 
-      if (TREE_CODE (val1) == SSA_NAME)
+      if (code1 == SSA_NAME
+         && code2 == SSA_NAME)
+       /* NAME == NAME  */
+       return 0;
+
+      /* If overflow is defined we cannot simplify more.  */
+      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
+       return -2;
+
+      if (strict_overflow_p != NULL)
+       *strict_overflow_p = true;
+
+      if (code1 == SSA_NAME)
        {
-         if (TREE_CODE (val2) == SSA_NAME)
-           /* NAME == NAME  */
-           return 0;
-         else if (TREE_CODE (val2) == PLUS_EXPR)
+         if (code2 == PLUS_EXPR)
            /* NAME < NAME + CST  */
            return -1;
-         else if (TREE_CODE (val2) == MINUS_EXPR)
+         else if (code2 == MINUS_EXPR)
            /* NAME > NAME - CST  */
            return 1;
        }
-      else if (TREE_CODE (val1) == PLUS_EXPR)
+      else if (code1 == PLUS_EXPR)
        {
-         if (TREE_CODE (val2) == SSA_NAME)
+         if (code2 == SSA_NAME)
            /* NAME + CST > NAME  */
            return 1;
-         else if (TREE_CODE (val2) == PLUS_EXPR)
+         else if (code2 == PLUS_EXPR)
            /* NAME + CST1 > NAME + CST2, if CST1 > CST2  */
-           return compare_values (c1, c2);
-         else if (TREE_CODE (val2) == MINUS_EXPR)
+           return compare_values_warnv (c1, c2, strict_overflow_p);
+         else if (code2 == MINUS_EXPR)
            /* NAME + CST1 > NAME - CST2  */
            return 1;
        }
-      else if (TREE_CODE (val1) == MINUS_EXPR)
+      else if (code1 == MINUS_EXPR)
        {
-         if (TREE_CODE (val2) == SSA_NAME)
+         if (code2 == SSA_NAME)
            /* NAME - CST < NAME  */
            return -1;
-         else if (TREE_CODE (val2) == PLUS_EXPR)
+         else if (code2 == PLUS_EXPR)
            /* NAME - CST1 < NAME + CST2  */
            return -1;
-         else if (TREE_CODE (val2) == MINUS_EXPR)
+         else if (code2 == MINUS_EXPR)
            /* NAME - CST1 > NAME - CST2, if CST1 < CST2.  Notice that
               C1 and C2 are swapped in the call to compare_values.  */
-           return compare_values (c2, c1);
+           return compare_values_warnv (c2, c1, strict_overflow_p);
        }
 
       gcc_unreachable ();
@@ -528,12 +810,27 @@ compare_values (tree val1, tree val2)
   if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
     return -2;
 
-  /* We cannot compare overflowed values.  */
-  if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
-    return -2;
-
   if (!POINTER_TYPE_P (TREE_TYPE (val1)))
-    return tree_int_cst_compare (val1, val2);
+    {
+      /* We cannot compare overflowed values, except for overflow
+        infinities.  */
+      if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
+       {
+         if (strict_overflow_p != NULL)
+           *strict_overflow_p = true;
+         if (is_negative_overflow_infinity (val1))
+           return is_negative_overflow_infinity (val2) ? 0 : -1;
+         else if (is_negative_overflow_infinity (val2))
+           return 1;
+         else if (is_positive_overflow_infinity (val1))
+           return is_positive_overflow_infinity (val2) ? 0 : 1;
+         else if (is_positive_overflow_infinity (val2))
+           return -1;
+         return -2;
+       }
+
+      return tree_int_cst_compare (val1, val2);
+    }
   else
     {
       tree t;
@@ -543,24 +840,46 @@ compare_values (tree val1, tree val2)
        return 0;
       
       /* If VAL1 is a lower address than VAL2, return -1.  */
-      t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
-      if (t == boolean_true_node)
+      if (operand_less_p (val1, val2) == 1)
        return -1;
 
       /* If VAL1 is a higher address than VAL2, return +1.  */
-      t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
-      if (t == boolean_true_node)
+      if (operand_less_p (val2, val1) == 1)
        return 1;
 
-      /* If VAL1 is different than VAL2, return +2.  */
-      t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
-      if (t == boolean_true_node)
-       return 2;
+      /* If VAL1 is different than VAL2, return +2.
+        For integer constants we either have already returned -1 or 1
+        or they are equivalent.  We still might succeed in proving
+        something about non-trivial operands.  */
+      if (TREE_CODE (val1) != INTEGER_CST
+         || TREE_CODE (val2) != INTEGER_CST)
+       {
+          t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
+         if (t && tree_expr_nonzero_p (t))
+           return 2;
+       }
 
       return -2;
     }
 }
 
+/* Compare values like compare_values_warnv, but treat comparisons of
+   nonconstants which rely on undefined overflow as incomparable.  */
+
+static int
+compare_values (tree val1, tree val2)
+{
+  bool sop;
+  int ret;
+
+  sop = false;
+  ret = compare_values_warnv (val1, val2, &sop);
+  if (sop
+      && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
+    ret = -2;
+  return ret;
+}
+
 
 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
           0 if VAL is not inside VR,
@@ -580,35 +899,48 @@ compare_values (tree val1, tree val2)
          This also applies to value_ranges_intersect_p and
          range_includes_zero_p.  The semantics of VR_RANGE and
          VR_ANTI_RANGE should be encoded here, but that also means
-         adapting the users of these functions to the new semantics.  */
+         adapting the users of these functions to the new semantics.  
+
+   Benchmark compile/20001226-1.c compilation time after changing this
+   function.  */
 
 static inline int
-value_inside_range (tree val, value_range_t *vr)
+value_inside_range (tree val, value_range_t * vr)
 {
   int cmp1, cmp2;
 
-  cmp1 = compare_values (val, vr->min);
-  if (cmp1 == -2 || cmp1 == 2)
+  cmp1 = operand_less_p (val, vr->min);
+  if (cmp1 == -2)
     return -2;
+  if (cmp1 == 1)
+    return 0;
 
-  cmp2 = compare_values (val, vr->max);
-  if (cmp2 == -2 || cmp2 == 2)
+  cmp2 = operand_less_p (vr->max, val);
+  if (cmp2 == -2)
     return -2;
 
-  return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
+  return !cmp2;
 }
 
 
 /* Return true if value ranges VR0 and VR1 have a non-empty
-   intersection.  */
+   intersection.  
+   
+   Benchmark compile/20001226-1.c compilation time after changing this
+   function.
+   */
 
 static inline bool
 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
 {
-  return (value_inside_range (vr1->min, vr0) == 1
-         || value_inside_range (vr1->max, vr0) == 1
-         || value_inside_range (vr0->min, vr1) == 1
-         || value_inside_range (vr0->max, vr1) == 1);
+  /* The value ranges do not intersect if the maximum of the first range is
+     less than the minimum of the second range or vice versa.
+     When those relations are unknown, we can't do any better.  */
+  if (operand_less_p (vr0->max, vr1->min) != 0)
+    return false;
+  if (operand_less_p (vr1->max, vr0->min) != 0)
+    return false;
+  return true;
 }
 
 
@@ -631,6 +963,50 @@ range_includes_zero_p (value_range_t *vr)
   return (value_inside_range (zero, vr) == 1);
 }
 
+/* Return true if T, an SSA_NAME, is known to be nonnegative.  Return
+   false otherwise or if no value range information is available.  */
+
+bool
+ssa_name_nonnegative_p (tree t)
+{
+  value_range_t *vr = get_value_range (t);
+
+  if (!vr)
+    return false;
+
+  /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
+     which would return a useful value should be encoded as a VR_RANGE.  */
+  if (vr->type == VR_RANGE)
+    {
+      int result = compare_values (vr->min, integer_zero_node);
+
+      return (result == 0 || result == 1);
+    }
+  return false;
+}
+
+/* Return true if T, an SSA_NAME, is known to be nonzero.  Return
+   false otherwise or if no value range information is available.  */
+
+bool
+ssa_name_nonzero_p (tree t)
+{
+  value_range_t *vr = get_value_range (t);
+
+  if (!vr)
+    return false;
+
+  /* A VR_RANGE which does not include zero is a nonzero value.  */
+  if (vr->type == VR_RANGE && !symbolic_range_p (vr))
+    return ! range_includes_zero_p (vr);
+
+  /* A VR_ANTI_RANGE which does include zero is a nonzero value.  */
+  if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
+    return range_includes_zero_p (vr);
+
+  return false;
+}
+
 
 /* Extract value range information from an ASSERT_EXPR EXPR and store
    it in *VR_P.  */
@@ -687,67 +1063,11 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
          || symbolic_range_p (limit_vr)))
     limit_vr = NULL;
 
-  /* Special handling for integral types with super-types.  Some FEs
-     construct integral types derived from other types and restrict
-     the range of values these new types may take.
-
-     It may happen that LIMIT is actually smaller than TYPE's minimum
-     value.  For instance, the Ada FE is generating code like this
-     during bootstrap:
-
-           D.1480_32 = nam_30 - 300000361;
-           if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
-           <L112>:;
-           D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
-
-     All the names are of type types__name_id___XDLU_300000000__399999999
-     which has min == 300000000 and max == 399999999.  This means that
-     the ASSERT_EXPR would try to create the range [3000000, 1] which
-     is invalid.
-
-     The fact that the type specifies MIN and MAX values does not
-     automatically mean that every variable of that type will always
-     be within that range, so the predicate may well be true at run
-     time.  If we had symbolic -INF and +INF values, we could
-     represent this range, but we currently represent -INF and +INF
-     using the type's min and max values.
-        
-     So, the only sensible thing we can do for now is set the
-     resulting range to VR_VARYING.  TODO, would having symbolic -INF
-     and +INF values be worth the trouble?  */
-  if (TREE_CODE (limit) != SSA_NAME
-      && INTEGRAL_TYPE_P (type)
-      && TREE_TYPE (type))
-    {
-      if (cond_code == LE_EXPR || cond_code == LT_EXPR)
-       {
-         tree type_min = TYPE_MIN_VALUE (type);
-         int cmp = compare_values (limit, type_min);
-
-         /* For < or <= comparisons, if LIMIT is smaller than
-            TYPE_MIN, set the range to VR_VARYING.  */
-         if (cmp == -1 || cmp == 0)
-           {
-             set_value_range_to_varying (vr_p);
-             return;
-           }
-       }
-      else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
-       {
-         tree type_max = TYPE_MIN_VALUE (type);
-         int cmp = compare_values (limit, type_max);
-
-         /* For > or >= comparisons, if LIMIT is bigger than
-            TYPE_MAX, set the range to VR_VARYING.  */
-         if (cmp == 1 || cmp == 0)
-           {
-             set_value_range_to_varying (vr_p);
-             return;
-           }
-       }
-    }
-
-  /* The new range has the same set of equivalences of VAR's range.  */
+  /* Initially, the new range has the same set of equivalences of
+     VAR's range.  This will be revised before returning the final
+     value.  Since assertions may be chained via mutually exclusive
+     predicates, we will need to trim the set of equivalences before
+     we are done.  */
   gcc_assert (vr_p->equiv == NULL);
   vr_p->equiv = BITMAP_ALLOC (NULL);
   add_equivalence (vr_p->equiv, var);
@@ -825,8 +1145,10 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
       /* If MIN and MAX cover the whole range for their type, then
         just use the original LIMIT.  */
       if (INTEGRAL_TYPE_P (type)
-         && min == TYPE_MIN_VALUE (type)
-         && max == TYPE_MAX_VALUE (type))
+         && (min == TYPE_MIN_VALUE (type)
+             || is_negative_overflow_infinity (min))
+         && (max == TYPE_MAX_VALUE (type)
+             || is_positive_overflow_infinity (max)))
        min = max = limit;
 
       set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
@@ -845,14 +1167,24 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
          max = limit_vr->max;
        }
 
-      /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
-      if (cond_code == LT_EXPR)
+      /* If the maximum value forces us to be out of bounds, simply punt.
+        It would be pointless to try and do anything more since this
+        all should be optimized away above us.  */
+      if ((cond_code == LT_EXPR
+          && compare_values (max, min) == 0)
+         || is_overflow_infinity (max))
+       set_value_range_to_varying (vr_p);
+      else
        {
-         tree one = build_int_cst (type, 1);
-         max = fold_build2 (MINUS_EXPR, type, max, one);
-       }
+         /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
+         if (cond_code == LT_EXPR)
+           {
+             tree one = build_int_cst (type, 1);
+             max = fold_build2 (MINUS_EXPR, type, max, one);
+           }
 
-      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+         set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+       }
     }
   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
     {
@@ -868,14 +1200,24 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
          min = limit_vr->min;
        }
 
-      /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
-      if (cond_code == GT_EXPR)
+      /* If the minimum value forces us to be out of bounds, simply punt.
+        It would be pointless to try and do anything more since this
+        all should be optimized away above us.  */
+      if ((cond_code == GT_EXPR
+          && compare_values (min, max) == 0)
+         || is_overflow_infinity (min))
+       set_value_range_to_varying (vr_p);
+      else
        {
-         tree one = build_int_cst (type, 1);
-         min = fold_build2 (PLUS_EXPR, type, min, one);
-       }
+         /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
+         if (cond_code == GT_EXPR)
+           {
+             tree one = build_int_cst (type, 1);
+             min = fold_build2 (PLUS_EXPR, type, min, one);
+           }
 
-      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+         set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+       }
     }
   else
     gcc_unreachable ();
@@ -904,7 +1246,7 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
      anything dominated by 'if (i_5 < 5)' will be optimized away.
      Note, due to the wa in which simulation proceeds, the statement
      i_7 = ASSERT_EXPR <...> we would never be visited because the
-     conditiona 'if (i_5 < 5)' always evaluates to false.  However,
+     conditional 'if (i_5 < 5)' always evaluates to false.  However,
      this extra check does not hurt and may protect against future
      changes to VRP that may get into a situation similar to the
      NULL pointer dereference example.
@@ -967,6 +1309,122 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
       if (compare_values (var_vr->min, vr_p->min) == 0
          && compare_values (var_vr->max, vr_p->max) == 0)
        set_value_range_to_varying (vr_p);
+      else
+       {
+         tree min, max, anti_min, anti_max, real_min, real_max;
+         int cmp;
+
+         /* We want to compute the logical AND of the two ranges;
+            there are three cases to consider.
+
+
+            1. The VR_ANTI_RANGE range is completely within the 
+               VR_RANGE and the endpoints of the ranges are
+               different.  In that case the resulting range
+               should be whichever range is more precise.
+               Typically that will be the VR_RANGE.
+
+            2. The VR_ANTI_RANGE is completely disjoint from
+               the VR_RANGE.  In this case the resulting range
+               should be the VR_RANGE.
+
+            3. There is some overlap between the VR_ANTI_RANGE
+               and the VR_RANGE.
+
+               3a. If the high limit of the VR_ANTI_RANGE resides
+                   within the VR_RANGE, then the result is a new
+                   VR_RANGE starting at the high limit of the
+                   the VR_ANTI_RANGE + 1 and extending to the
+                   high limit of the original VR_RANGE.
+
+               3b. If the low limit of the VR_ANTI_RANGE resides
+                   within the VR_RANGE, then the result is a new
+                   VR_RANGE starting at the low limit of the original
+                   VR_RANGE and extending to the low limit of the
+                   VR_ANTI_RANGE - 1.  */
+         if (vr_p->type == VR_ANTI_RANGE)
+           {
+             anti_min = vr_p->min;
+             anti_max = vr_p->max;
+             real_min = var_vr->min;
+             real_max = var_vr->max;
+           }
+         else
+           {
+             anti_min = var_vr->min;
+             anti_max = var_vr->max;
+             real_min = vr_p->min;
+             real_max = vr_p->max;
+           }
+
+
+         /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
+            not including any endpoints.  */
+         if (compare_values (anti_max, real_max) == -1
+             && compare_values (anti_min, real_min) == 1)
+           {
+             set_value_range (vr_p, VR_RANGE, real_min,
+                              real_max, vr_p->equiv);
+           }
+         /* Case 2, VR_ANTI_RANGE completely disjoint from
+            VR_RANGE.  */
+         else if (compare_values (anti_min, real_max) == 1
+                  || compare_values (anti_max, real_min) == -1)
+           {
+             set_value_range (vr_p, VR_RANGE, real_min,
+                              real_max, vr_p->equiv);
+           }
+         /* Case 3a, the anti-range extends into the low
+            part of the real range.  Thus creating a new
+            low for the real range.  */
+         else if (((cmp = compare_values (anti_max, real_min)) == 1
+                   || cmp == 0)
+                  && compare_values (anti_max, real_max) == -1)
+           {
+             gcc_assert (!is_positive_overflow_infinity (anti_max));
+             if (needs_overflow_infinity (TREE_TYPE (anti_max))
+                 && anti_max == TYPE_MAX_VALUE (TREE_TYPE (anti_max)))
+               {
+                 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
+                   {
+                     set_value_range_to_varying (vr_p);
+                     return;
+                   }
+                 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
+               }
+             else
+               min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
+                                  anti_max,
+                                  build_int_cst (TREE_TYPE (var_vr->min), 1));
+             max = real_max;
+             set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+           }
+         /* Case 3b, the anti-range extends into the high
+            part of the real range.  Thus creating a new
+            higher for the real range.  */
+         else if (compare_values (anti_min, real_min) == 1
+                  && ((cmp = compare_values (anti_min, real_max)) == -1
+                      || cmp == 0))
+           {
+             gcc_assert (!is_negative_overflow_infinity (anti_min));
+             if (needs_overflow_infinity (TREE_TYPE (anti_min))
+                 && anti_min == TYPE_MIN_VALUE (TREE_TYPE (anti_min)))
+               {
+                 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
+                   {
+                     set_value_range_to_varying (vr_p);
+                     return;
+                   }
+                 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
+               }
+             else
+               max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
+                                  anti_min,
+                                  build_int_cst (TREE_TYPE (var_vr->min), 1));
+             min = real_min;
+             set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+           }
+       }
     }
 }
 
@@ -1000,43 +1458,92 @@ extract_range_from_ssa_name (value_range_t *vr, tree var)
 
 /* Wrapper around int_const_binop.  If the operation overflows and we
    are not using wrapping arithmetic, then adjust the result to be
-   -INF or +INF depending on CODE, VAL1 and VAL2.  */
+   -INF or +INF depending on CODE, VAL1 and VAL2.  This can return
+   NULL_TREE if we need to use an overflow infinity representation but
+   the type does not support it.  */
 
-static inline tree
+static tree
 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
 {
   tree res;
 
-  if (flag_wrapv)
-    return int_const_binop (code, val1, val2, 0);
+  res = int_const_binop (code, val1, val2, 0);
 
   /* If we are not using wrapping arithmetic, operate symbolically
      on -INF and +INF.  */
-  res = int_const_binop (code, val1, val2, 0);
-
-  if (TYPE_UNSIGNED (TREE_TYPE (val1)))
+  if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
     {
       int checkz = compare_values (res, val1);
+      bool overflow = false;
 
-      /* Ensure that res = val1 + val2 >= val1
+      /* Ensure that res = val1 [+*] val2 >= val1
          or that res = val1 - val2 <= val1.  */
-      if ((code == PLUS_EXPR && !(checkz == 1 || checkz == 0))
-          || (code == MINUS_EXPR && !(checkz == 0 || checkz == -1)))
+      if ((code == PLUS_EXPR
+          && !(checkz == 1 || checkz == 0))
+          || (code == MINUS_EXPR
+             && !(checkz == 0 || checkz == -1)))
+       {
+         overflow = true;
+       }
+      /* Checking for multiplication overflow is done by dividing the
+        output of the multiplication by the first input of the
+        multiplication.  If the result of that division operation is
+        not equal to the second input of the multiplication, then the
+        multiplication overflowed.  */
+      else if (code == MULT_EXPR && !integer_zerop (val1))
+       {
+         tree tmp = int_const_binop (TRUNC_DIV_EXPR,
+                                     res,
+                                     val1, 0);
+         int check = compare_values (tmp, val2);
+
+         if (check != 0)
+           overflow = true;
+       }
+
+      if (overflow)
        {
          res = copy_node (res);
          TREE_OVERFLOW (res) = 1;
        }
+
     }
-  /* If the operation overflowed but neither VAL1 nor VAL2 are
-     overflown, return -INF or +INF depending on the operation
-     and the combination of signs of the operands.  */
-  else if (TREE_OVERFLOW (res)
-          && !TREE_OVERFLOW (val1)
-          && !TREE_OVERFLOW (val2))
+  else if ((TREE_OVERFLOW (res)
+           && !TREE_OVERFLOW (val1)
+           && !TREE_OVERFLOW (val2))
+          || is_overflow_infinity (val1)
+          || is_overflow_infinity (val2))
     {
+      /* If the operation overflowed but neither VAL1 nor VAL2 are
+        overflown, return -INF or +INF depending on the operation
+        and the combination of signs of the operands.  */
       int sgn1 = tree_int_cst_sgn (val1);
       int sgn2 = tree_int_cst_sgn (val2);
 
+      if (needs_overflow_infinity (TREE_TYPE (res))
+         && !supports_overflow_infinity (TREE_TYPE (res)))
+       return NULL_TREE;
+
+      /* We have to punt on adding infinities of different signs,
+        since we can't tell what the sign of the result should be.
+        Likewise for subtracting infinities of the same sign.  */
+      if (((code == PLUS_EXPR && sgn1 != sgn2)
+          || (code == MINUS_EXPR && sgn1 == sgn2))
+         && is_overflow_infinity (val1)
+         && is_overflow_infinity (val2))
+       return NULL_TREE;
+
+      /* Don't try to handle division or shifting of infinities.  */
+      if ((code == TRUNC_DIV_EXPR
+          || code == FLOOR_DIV_EXPR
+          || code == CEIL_DIV_EXPR
+          || code == EXACT_DIV_EXPR
+          || code == ROUND_DIV_EXPR
+          || code == RSHIFT_EXPR)
+         && (is_overflow_infinity (val1)
+             || is_overflow_infinity (val2)))
+       return NULL_TREE;
+
       /* Notice that we only need to handle the restricted set of
         operations handled by extract_range_from_binary_expr.
         Among them, only multiplication, addition and subtraction
@@ -1050,24 +1557,42 @@ vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
       if ((code == MULT_EXPR && sgn1 == sgn2)
           /* For addition, the operands must be of the same sign
             to yield an overflow.  Its sign is therefore that
-            of one of the operands, for example the first.  */
-         || (code == PLUS_EXPR && sgn1 > 0)
-         /* For subtraction, the operands must be of different
-            signs to yield an overflow.  Its sign is therefore
-            that of the first operand or the opposite of that
-            of the second operand.  A first operand of 0 counts
-            as positive here, for the corner case 0 - (-INF),
-            which overflows, but must yield +INF.  */
-         || (code == MINUS_EXPR && sgn1 >= 0)
+            of one of the operands, for example the first.  For
+            infinite operands X + -INF is negative, not positive.  */
+         || (code == PLUS_EXPR
+             && (sgn1 >= 0
+                 ? !is_negative_overflow_infinity (val2)
+                 : is_positive_overflow_infinity (val2)))
+         /* For subtraction, non-infinite operands must be of
+            different signs to yield an overflow.  Its sign is
+            therefore that of the first operand or the opposite of
+            that of the second operand.  A first operand of 0 counts
+            as positive here, for the corner case 0 - (-INF), which
+            overflows, but must yield +INF.  For infinite operands 0
+            - INF is negative, not positive.  */
+         || (code == MINUS_EXPR
+             && (sgn1 >= 0
+                 ? !is_positive_overflow_infinity (val2)
+                 : is_negative_overflow_infinity (val2)))
+         /* We only get in here with positive shift count, so the
+            overflow direction is the same as the sign of val1.
+            Actually rshift does not overflow at all, but we only
+            handle the case of shifting overflowed -INF and +INF.  */
+         || (code == RSHIFT_EXPR
+             && sgn1 >= 0)
          /* For division, the only case is -INF / -1 = +INF.  */
          || code == TRUNC_DIV_EXPR
          || code == FLOOR_DIV_EXPR
          || code == CEIL_DIV_EXPR
          || code == EXACT_DIV_EXPR
          || code == ROUND_DIV_EXPR)
-       return TYPE_MAX_VALUE (TREE_TYPE (res));
+       return (needs_overflow_infinity (TREE_TYPE (res))
+               ? positive_overflow_infinity (TREE_TYPE (res))
+               : TYPE_MAX_VALUE (TREE_TYPE (res)));
       else
-       return TYPE_MIN_VALUE (TREE_TYPE (res));
+       return (needs_overflow_infinity (TREE_TYPE (res))
+               ? negative_overflow_infinity (TREE_TYPE (res))
+               : TYPE_MIN_VALUE (TREE_TYPE (res)));
     }
 
   return res;
@@ -1081,6 +1606,7 @@ static void
 extract_range_from_binary_expr (value_range_t *vr, tree expr)
 {
   enum tree_code code = TREE_CODE (expr);
+  enum value_range_type type;
   tree op0, op1, min, max;
   int cmp;
   value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
@@ -1096,13 +1622,14 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
       && code != CEIL_DIV_EXPR
       && code != EXACT_DIV_EXPR
       && code != ROUND_DIV_EXPR
+      && code != RSHIFT_EXPR
       && code != MIN_EXPR
       && code != MAX_EXPR
+      && code != BIT_AND_EXPR
       && code != TRUTH_ANDIF_EXPR
       && code != TRUTH_ORIF_EXPR
       && code != TRUTH_AND_EXPR
-      && code != TRUTH_OR_EXPR
-      && code != TRUTH_XOR_EXPR)
+      && code != TRUTH_OR_EXPR)
     {
       set_value_range_to_varying (vr);
       return;
@@ -1133,14 +1660,22 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
       return;
     }
 
+  /* The type of the resulting value range defaults to VR0.TYPE.  */
+  type = vr0.type;
+
   /* Refuse to operate on VARYING ranges, ranges of different kinds
-     and symbolic ranges.  TODO, we may be able to derive anti-ranges
-     in some cases.  */
-  if (vr0.type == VR_VARYING
-      || vr1.type == VR_VARYING
-      || vr0.type != vr1.type
-      || symbolic_range_p (&vr0)
-      || symbolic_range_p (&vr1))
+     and symbolic ranges.  As an exception, we allow BIT_AND_EXPR
+     because we may be able to derive a useful range even if one of
+     the operands is VR_VARYING or symbolic range.  TODO, we may be
+     able to derive anti-ranges in some cases.  */
+  if (code != BIT_AND_EXPR
+      && code != TRUTH_AND_EXPR
+      && code != TRUTH_OR_EXPR
+      && (vr0.type == VR_VARYING
+         || vr1.type == VR_VARYING
+         || vr0.type != vr1.type
+         || symbolic_range_p (&vr0)
+         || symbolic_range_p (&vr1)))
     {
       set_value_range_to_varying (vr);
       return;
@@ -1180,12 +1715,52 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
   if (code == TRUTH_ANDIF_EXPR
       || code == TRUTH_ORIF_EXPR
       || code == TRUTH_AND_EXPR
-      || code == TRUTH_OR_EXPR
-      || code == TRUTH_XOR_EXPR)
+      || code == TRUTH_OR_EXPR)
     {
-      /* Boolean expressions cannot be folded with int_const_binop.  */
-      min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
-      max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
+      /* If one of the operands is zero, we know that the whole
+        expression evaluates zero.  */
+      if (code == TRUTH_AND_EXPR
+         && ((vr0.type == VR_RANGE
+              && integer_zerop (vr0.min)
+              && integer_zerop (vr0.max))
+             || (vr1.type == VR_RANGE
+                 && integer_zerop (vr1.min)
+                 && integer_zerop (vr1.max))))
+       {
+         type = VR_RANGE;
+         min = max = build_int_cst (TREE_TYPE (expr), 0);
+       }
+      /* If one of the operands is one, we know that the whole
+        expression evaluates one.  */
+      else if (code == TRUTH_OR_EXPR
+              && ((vr0.type == VR_RANGE
+                   && integer_onep (vr0.min)
+                   && integer_onep (vr0.max))
+                  || (vr1.type == VR_RANGE
+                      && integer_onep (vr1.min)
+                      && integer_onep (vr1.max))))
+       {
+         type = VR_RANGE;
+         min = max = build_int_cst (TREE_TYPE (expr), 1);
+       }
+      else if (vr0.type != VR_VARYING
+              && vr1.type != VR_VARYING
+              && vr0.type == vr1.type
+              && !symbolic_range_p (&vr0)
+              && !overflow_infinity_range_p (&vr0)
+              && !symbolic_range_p (&vr1)
+              && !overflow_infinity_range_p (&vr1))
+       {
+         /* Boolean expressions cannot be folded with int_const_binop.  */
+         min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
+         max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
+       }
+      else
+       {
+         /* The result of a TRUTH_*_EXPR is always true or false.  */
+         set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
+         return;
+       }
     }
   else if (code == PLUS_EXPR
           || code == MIN_EXPR
@@ -1215,10 +1790,12 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
           || code == FLOOR_DIV_EXPR
           || code == CEIL_DIV_EXPR
           || code == EXACT_DIV_EXPR
-          || code == ROUND_DIV_EXPR)
+          || code == ROUND_DIV_EXPR
+          || code == RSHIFT_EXPR)
     {
       tree val[4];
       size_t i;
+      bool sop;
 
       /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
         drop to VR_VARYING.  It would take more effort to compute a
@@ -1230,12 +1807,31 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
         point.  */
       if (code == MULT_EXPR
          && vr0.type == VR_ANTI_RANGE
-         && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
+         && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
        {
          set_value_range_to_varying (vr);
          return;
        }
 
+      /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
+        then drop to VR_VARYING.  Outside of this range we get undefined
+        behaviour from the shift operation.  We cannot even trust
+        SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
+        shifts, and the operation at the tree level may be widened.  */
+      if (code == RSHIFT_EXPR)
+       {
+         if (vr1.type == VR_ANTI_RANGE
+             || !vrp_expr_computes_nonnegative (op1, &sop)
+             || (operand_less_p
+                 (build_int_cst (TREE_TYPE (vr1.max),
+                                 TYPE_PRECISION (TREE_TYPE (expr)) - 1),
+                  vr1.max) != 0))
+           {
+             set_value_range_to_varying (vr);
+             return;
+           }
+       }
+
       /* Multiplications and divisions are a bit tricky to handle,
         depending on the mix of signs we have in the two ranges, we
         need to operate on different values to get the minimum and
@@ -1250,27 +1846,51 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
         the new range.  */
 
       /* Divisions by zero result in a VARYING value.  */
-      if (code != MULT_EXPR
-         && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
+      else if (code != MULT_EXPR
+              && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
        {
          set_value_range_to_varying (vr);
          return;
        }
 
       /* Compute the 4 cross operations.  */
+      sop = false;
       val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
+      if (val[0] == NULL_TREE)
+       sop = true;
+
+      if (vr1.max == vr1.min)
+       val[1] = NULL_TREE;
+      else
+       {
+         val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
+         if (val[1] == NULL_TREE)
+           sop = true;
+       }
 
-      val[1] = (vr1.max != vr1.min)
-              ? vrp_int_const_binop (code, vr0.min, vr1.max)
-              : NULL_TREE;
+      if (vr0.max == vr0.min)
+       val[2] = NULL_TREE;
+      else
+       {
+         val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
+         if (val[2] == NULL_TREE)
+           sop = true;
+       }
 
-      val[2] = (vr0.max != vr0.min)
-              ? vrp_int_const_binop (code, vr0.max, vr1.min)
-              : NULL_TREE;
+      if (vr0.min == vr0.max || vr1.min == vr1.max)
+       val[3] = NULL_TREE;
+      else
+       {
+         val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
+         if (val[3] == NULL_TREE)
+           sop = true;
+       }
 
-      val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
-              ? vrp_int_const_binop (code, vr0.max, vr1.max)
-              : NULL_TREE;
+      if (sop)
+       {
+         set_value_range_to_varying (vr);
+         return;
+       }
 
       /* Set MIN to the minimum of VAL[i] and MAX to the maximum
         of VAL[i].  */
@@ -1278,12 +1898,17 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
       max = val[0];
       for (i = 1; i < 4; i++)
        {
-         if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
+         if (!is_gimple_min_invariant (min)
+             || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
+             || !is_gimple_min_invariant (max)
+             || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
            break;
 
          if (val[i])
            {
-             if (TREE_OVERFLOW (val[i]))
+             if (!is_gimple_min_invariant (val[i])
+                 || (TREE_OVERFLOW (val[i])
+                     && !is_overflow_infinity (val[i])))
                {
                  /* If we found an overflowed value, set MIN and MAX
                     to it so that we set the resulting range to
@@ -1320,12 +1945,62 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
       min = vrp_int_const_binop (code, vr0.min, vr1.max);
       max = vrp_int_const_binop (code, vr0.max, vr1.min);
     }
+  else if (code == BIT_AND_EXPR)
+    {
+      if (vr0.type == VR_RANGE
+         && vr0.min == vr0.max
+         && TREE_CODE (vr0.max) == INTEGER_CST
+         && !TREE_OVERFLOW (vr0.max)
+         && tree_int_cst_sgn (vr0.max) >= 0)
+       {
+         min = build_int_cst (TREE_TYPE (expr), 0);
+         max = vr0.max;
+       }
+      else if (vr1.type == VR_RANGE
+              && vr1.min == vr1.max
+              && TREE_CODE (vr1.max) == INTEGER_CST
+              && !TREE_OVERFLOW (vr1.max)
+              && tree_int_cst_sgn (vr1.max) >= 0)
+       {
+         type = VR_RANGE;
+         min = build_int_cst (TREE_TYPE (expr), 0);
+         max = vr1.max;
+       }
+      else
+       {
+         set_value_range_to_varying (vr);
+         return;
+       }
+    }
   else
     gcc_unreachable ();
 
   /* If either MIN or MAX overflowed, then set the resulting range to
-     VARYING.  */
-  if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
+     VARYING.  But we do accept an overflow infinity
+     representation.  */
+  if (min == NULL_TREE
+      || !is_gimple_min_invariant (min)
+      || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
+      || max == NULL_TREE
+      || !is_gimple_min_invariant (max)
+      || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  /* We punt if:
+     1) [-INF, +INF]
+     2) [-INF, +-INF(OVF)]
+     3) [+-INF(OVF), +INF]
+     4) [+-INF(OVF), +-INF(OVF)]
+     We learn nothing when we have INF and INF(OVF) on both sides.
+     Note that we do accept [-INF, -INF] and [+INF, +INF] without
+     overflow.  */
+  if ((min == TYPE_MIN_VALUE (TREE_TYPE (min))
+       || is_overflow_infinity (min))
+      && (max == TYPE_MAX_VALUE (TREE_TYPE (max))
+         || is_overflow_infinity (max)))
     {
       set_value_range_to_varying (vr);
       return;
@@ -1340,7 +2015,7 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
       set_value_range_to_varying (vr);
     }
   else
-    set_value_range (vr, vr0.type, min, max, NULL);
+    set_value_range (vr, type, min, max, NULL);
 }
 
 
@@ -1358,9 +2033,6 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
   /* Refuse to operate on certain unary expressions for which we
      cannot easily determine a resulting range.  */
   if (code == FIX_TRUNC_EXPR
-      || code == FIX_CEIL_EXPR
-      || code == FIX_FLOOR_EXPR
-      || code == FIX_ROUND_EXPR
       || code == FLOAT_EXPR
       || code == BIT_NOT_EXPR
       || code == NON_LVALUE_EXPR
@@ -1387,14 +2059,12 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
       return;
     }
 
-  /* Refuse to operate on varying and symbolic ranges.  Also, if the
-     operand is neither a pointer nor an integral type, set the
-     resulting range to VARYING.  TODO, in some cases we may be able
-     to derive anti-ranges (like nonzero values).  */
-  if (vr0.type == VR_VARYING
-      || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
-         && !POINTER_TYPE_P (TREE_TYPE (op0)))
-      || symbolic_range_p (&vr0))
+  /* Refuse to operate on symbolic ranges, or if neither operand is
+     a pointer or integral type.  */
+  if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
+       && !POINTER_TYPE_P (TREE_TYPE (op0)))
+      || (vr0.type != VR_VARYING
+         && symbolic_range_p (&vr0)))
     {
       set_value_range_to_varying (vr);
       return;
@@ -1404,7 +2074,12 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
      determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).  */
   if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
     {
-      if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
+      bool sop;
+
+      sop = false;
+      if (range_is_nonnull (&vr0)
+         || (tree_expr_nonzero_warnv_p (expr, &sop)
+             && !sop))
        set_value_range_to_nonnull (vr, TREE_TYPE (expr));
       else if (range_is_null (&vr0))
        set_value_range_to_null (vr, TREE_TYPE (expr));
@@ -1427,22 +2102,39 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
         or equal to the new max, then we can safely use the newly
         computed range for EXPR.  This allows us to compute
         accurate ranges through many casts.  */
-      if (vr0.type == VR_RANGE)
+      if ((vr0.type == VR_RANGE
+          && !overflow_infinity_range_p (&vr0))
+         || (vr0.type == VR_VARYING
+             && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
        {
-         tree new_min, new_max;
+         tree new_min, new_max, orig_min, orig_max;
+
+         /* Convert the input operand min/max to OUTER_TYPE.   If
+            the input has no range information, then use the min/max
+            for the input's type.  */
+         if (vr0.type == VR_RANGE)
+           {
+             orig_min = vr0.min;
+             orig_max = vr0.max;
+           }
+         else
+           {
+             orig_min = TYPE_MIN_VALUE (inner_type);
+             orig_max = TYPE_MAX_VALUE (inner_type);
+           }
 
-         /* Convert VR0's min/max to OUTER_TYPE.  */
-         new_min = fold_convert (outer_type, vr0.min);
-         new_max = fold_convert (outer_type, vr0.max);
+         new_min = fold_convert (outer_type, orig_min);
+         new_max = fold_convert (outer_type, orig_max);
 
          /* Verify the new min/max values are gimple values and
-            that they compare equal to VR0's min/max values.  */
+            that they compare equal to the original input's
+            min/max values.  */
          if (is_gimple_val (new_min)
              && is_gimple_val (new_max)
-             && tree_int_cst_equal (new_min, vr0.min)
-             && tree_int_cst_equal (new_max, vr0.max)
-             && compare_values (new_min, new_max) <= 0
-             && compare_values (new_min, new_max) >= -1)
+             && tree_int_cst_equal (new_min, orig_min)
+             && tree_int_cst_equal (new_max, orig_max)
+             && (cmp = compare_values (new_min, new_max)) <= 0
+             && cmp >= -1)
            {
              set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
              return;
@@ -1463,26 +2155,84 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
        }
     }
 
+  /* Conversion of a VR_VARYING value to a wider type can result
+     in a usable range.  So wait until after we've handled conversions
+     before dropping the result to VR_VARYING if we had a source
+     operand that is VR_VARYING.  */
+  if (vr0.type == VR_VARYING)
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+
   /* Apply the operation to each end of the range and see what we end
      up with.  */
   if (code == NEGATE_EXPR
       && !TYPE_UNSIGNED (TREE_TYPE (expr)))
     {
-      /* NEGATE_EXPR flips the range around.  */
-      min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
-            ? TYPE_MIN_VALUE (TREE_TYPE (expr))
-            : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
-
-      max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
-            ? TYPE_MAX_VALUE (TREE_TYPE (expr))
-            : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+      /* NEGATE_EXPR flips the range around.  We need to treat
+        TYPE_MIN_VALUE specially.  */
+      if (is_positive_overflow_infinity (vr0.max))
+       min = negative_overflow_infinity (TREE_TYPE (expr));
+      else if (is_negative_overflow_infinity (vr0.max))
+       min = positive_overflow_infinity (TREE_TYPE (expr));
+      else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
+       min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+      else if (needs_overflow_infinity (TREE_TYPE (expr)))
+       {
+         if (supports_overflow_infinity (TREE_TYPE (expr)))
+           min = positive_overflow_infinity (TREE_TYPE (expr));
+         else
+           {
+             set_value_range_to_varying (vr);
+             return;
+           }
+       }
+      else
+       min = TYPE_MIN_VALUE (TREE_TYPE (expr));
+
+      if (is_positive_overflow_infinity (vr0.min))
+       max = negative_overflow_infinity (TREE_TYPE (expr));
+      else if (is_negative_overflow_infinity (vr0.min))
+       max = positive_overflow_infinity (TREE_TYPE (expr));
+      else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
+       max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+      else if (needs_overflow_infinity (TREE_TYPE (expr)))
+       {
+         if (supports_overflow_infinity (TREE_TYPE (expr)))
+           max = positive_overflow_infinity (TREE_TYPE (expr));
+         else
+           {
+             set_value_range_to_varying (vr);
+             return;
+           }
+       }
+      else
+       max = TYPE_MIN_VALUE (TREE_TYPE (expr));
+    }
+  else if (code == NEGATE_EXPR
+          && TYPE_UNSIGNED (TREE_TYPE (expr)))
+    {
+      if (!range_includes_zero_p (&vr0))
+       {
+         max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+         min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+       }
+      else
+       {
+         if (range_is_null (&vr0))
+           set_value_range_to_null (vr, TREE_TYPE (expr));
+         else
+           set_value_range_to_varying (vr);
+         return;
+       }
     }
   else if (code == ABS_EXPR
            && !TYPE_UNSIGNED (TREE_TYPE (expr)))
     {
       /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
          useful range.  */
-      if (flag_wrapv
+      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
          && ((vr0.type == VR_RANGE
               && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
              || (vr0.type == VR_ANTI_RANGE
@@ -1495,11 +2245,33 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
        
       /* ABS_EXPR may flip the range around, if the original range
         included negative values.  */
-      min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
-           ? TYPE_MAX_VALUE (TREE_TYPE (expr))
-           : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+      if (is_overflow_infinity (vr0.min))
+       min = positive_overflow_infinity (TREE_TYPE (expr));
+      else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
+       min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+      else if (!needs_overflow_infinity (TREE_TYPE (expr)))
+       min = TYPE_MAX_VALUE (TREE_TYPE (expr));
+      else if (supports_overflow_infinity (TREE_TYPE (expr)))
+       min = positive_overflow_infinity (TREE_TYPE (expr));
+      else
+       {
+         set_value_range_to_varying (vr);
+         return;
+       }
 
-      max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+      if (is_overflow_infinity (vr0.max))
+       max = positive_overflow_infinity (TREE_TYPE (expr));
+      else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
+       max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+      else if (!needs_overflow_infinity (TREE_TYPE (expr)))
+       max = TYPE_MAX_VALUE (TREE_TYPE (expr));
+      else if (supports_overflow_infinity (TREE_TYPE (expr)))
+       max = positive_overflow_infinity (TREE_TYPE (expr));
+      else
+       {
+         set_value_range_to_varying (vr);
+         return;
+       }
 
       cmp = compare_values (min, max);
 
@@ -1509,8 +2281,6 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
        { 
          if (range_includes_zero_p (&vr0))
            {
-             tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
-
              /* Take the lower of the two values.  */
              if (cmp != 1)
                max = min;
@@ -1519,11 +2289,22 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
                 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
                 flag_wrapv is set and the original anti-range doesn't include
                 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE.  */
-             min = (flag_wrapv && vr0.min != type_min_value
-                    ? int_const_binop (PLUS_EXPR,
-                                       type_min_value,
-                                       integer_one_node, 0)
-                    : type_min_value);
+             if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
+               {
+                 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
+
+                 min = (vr0.min != type_min_value
+                        ? int_const_binop (PLUS_EXPR, type_min_value,
+                                           integer_one_node, 0)
+                        : type_min_value);
+               }
+             else
+               {
+                 if (overflow_infinity_range_p (&vr0))
+                   min = negative_overflow_infinity (TREE_TYPE (expr));
+                 else
+                   min = TYPE_MIN_VALUE (TREE_TYPE (expr));
+               }
            }
          else
            {
@@ -1532,7 +2313,18 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
                 anti-range.  */
              vr0.type = VR_RANGE;
              min = build_int_cst (TREE_TYPE (expr), 0);
-             max = TYPE_MAX_VALUE (TREE_TYPE (expr));
+             if (needs_overflow_infinity (TREE_TYPE (expr)))
+               {
+                 if (supports_overflow_infinity (TREE_TYPE (expr)))
+                   max = positive_overflow_infinity (TREE_TYPE (expr));
+                 else
+                   {
+                     set_value_range_to_varying (vr);
+                     return;
+                   }
+               }
+             else
+               max = TYPE_MAX_VALUE (TREE_TYPE (expr));
            }
        }
 
@@ -1560,6 +2352,40 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
       /* Otherwise, operate on each end of the range.  */
       min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
       max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+
+      if (needs_overflow_infinity (TREE_TYPE (expr)))
+       {
+         gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
+         if (is_overflow_infinity (vr0.min))
+           min = vr0.min;
+         else if (TREE_OVERFLOW (min))
+           {
+             if (supports_overflow_infinity (TREE_TYPE (expr)))
+               min = (tree_int_cst_sgn (min) >= 0
+                      ? positive_overflow_infinity (TREE_TYPE (min))
+                      : negative_overflow_infinity (TREE_TYPE (min)));
+             else
+               {
+                 set_value_range_to_varying (vr);
+                 return;
+               }
+           }
+
+         if (is_overflow_infinity (vr0.max))
+           max = vr0.max;
+         else if (TREE_OVERFLOW (max))
+           {
+             if (supports_overflow_infinity (TREE_TYPE (expr)))
+               max = (tree_int_cst_sgn (max) >= 0
+                      ? positive_overflow_infinity (TREE_TYPE (max))
+                      : negative_overflow_infinity (TREE_TYPE (max)));
+             else
+               {
+                 set_value_range_to_varying (vr);
+                 return;
+               }
+           }
+       }
     }
 
   cmp = compare_values (min, max);
@@ -1575,14 +2401,55 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
 }
 
 
+/* Extract range information from a conditional expression EXPR based on
+   the ranges of each of its operands and the expression code.  */
+
+static void
+extract_range_from_cond_expr (value_range_t *vr, tree expr)
+{
+  tree op0, op1;
+  value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+  value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+  /* Get value ranges for each operand.  For constant operands, create
+     a new value range with the operand to simplify processing.  */
+  op0 = COND_EXPR_THEN (expr);
+  if (TREE_CODE (op0) == SSA_NAME)
+    vr0 = *(get_value_range (op0));
+  else if (is_gimple_min_invariant (op0))
+    set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
+  else
+    set_value_range_to_varying (&vr0);
+
+  op1 = COND_EXPR_ELSE (expr);
+  if (TREE_CODE (op1) == SSA_NAME)
+    vr1 = *(get_value_range (op1));
+  else if (is_gimple_min_invariant (op1))
+    set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
+  else
+    set_value_range_to_varying (&vr1);
+
+  /* The resulting value range is the union of the operand ranges */
+  vrp_meet (&vr0, &vr1);
+  copy_value_range (vr, &vr0);
+}
+
+
 /* Extract range information from a comparison expression EXPR based
    on the range of its operand and the expression code.  */
 
 static void
 extract_range_from_comparison (value_range_t *vr, tree expr)
 {
-  tree val = vrp_evaluate_conditional (expr, false);
-  if (val)
+  bool sop = false;
+  tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
+
+  /* A disadvantage of using a special infinity as an overflow
+     representation is that we lose the ability to record overflow
+     when we don't have an infinity.  So we have to ignore a result
+     which relies on overflow.  */
+
+  if (val && !is_overflow_infinity (val) && !sop)
     {
       /* Since this expression was found on the RHS of an assignment,
         its type may be different from _Bool.  Convert VAL to EXPR's
@@ -1591,7 +2458,8 @@ extract_range_from_comparison (value_range_t *vr, tree expr)
       set_value_range (vr, VR_RANGE, val, val, vr->equiv);
     }
   else
-    set_value_range_to_varying (vr);
+    /* The result of a comparison is always true or false.  */
+    set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
 }
 
 
@@ -1616,14 +2484,31 @@ extract_range_from_expr (value_range_t *vr, tree expr)
     extract_range_from_binary_expr (vr, expr);
   else if (TREE_CODE_CLASS (code) == tcc_unary)
     extract_range_from_unary_expr (vr, expr);
+  else if (code == COND_EXPR)
+    extract_range_from_cond_expr (vr, expr);
   else if (TREE_CODE_CLASS (code) == tcc_comparison)
     extract_range_from_comparison (vr, expr);
   else if (is_gimple_min_invariant (expr))
     set_value_range (vr, VR_RANGE, expr, expr, NULL);
-  else if (vrp_expr_computes_nonzero (expr))
-    set_value_range_to_nonnull (vr, TREE_TYPE (expr));
   else
     set_value_range_to_varying (vr);
+
+  /* If we got a varying range from the tests above, try a final
+     time to derive a nonnegative or nonzero range.  This time
+     relying primarily on generic routines in fold in conjunction
+     with range data.  */
+  if (vr->type == VR_VARYING)
+    {
+      bool sop = false;
+
+      if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
+         && vrp_expr_computes_nonnegative (expr, &sop))
+       set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
+                                       sop || is_overflow_infinity (expr));
+      else if (vrp_expr_computes_nonzero (expr, &sop)
+              && !sop)
+        set_value_range_to_nonnull (vr, TREE_TYPE (expr));
+    }
 }
 
 /* Given a range VR, a LOOP and a variable VAR, determine whether it
@@ -1634,8 +2519,8 @@ static void
 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
                        tree var)
 {
-  tree init, step, chrec;
-  bool init_is_max, unknown_max;
+  tree init, step, chrec, tmin, tmax, min, max, type;
+  enum ev_direction dir;
 
   /* TODO.  Don't adjust anti-ranges.  An anti-range may provide
      better opportunities than a regular range, but I'm not sure.  */
@@ -1650,36 +2535,66 @@ adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
   step = evolution_part_in_loop_num (chrec, loop->num);
 
   /* If STEP is symbolic, we can't know whether INIT will be the
-     minimum or maximum value in the range.  */
+     minimum or maximum value in the range.  Also, unless INIT is
+     a simple expression, compare_values and possibly other functions
+     in tree-vrp won't be able to handle it.  */
   if (step == NULL_TREE
-      || !is_gimple_min_invariant (step))
+      || !is_gimple_min_invariant (step)
+      || !valid_value_p (init))
     return;
 
-  /* Do not adjust ranges when chrec may wrap.  */
-  if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
-                            cfg_loops->parray[CHREC_VARIABLE (chrec)],
-                            &init_is_max, &unknown_max)
-      || unknown_max)
+  dir = scev_direction (chrec);
+  if (/* Do not adjust ranges if we do not know whether the iv increases
+        or decreases,  ... */
+      dir == EV_DIR_UNKNOWN
+      /* ... or if it may wrap.  */
+      || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
+                               true))
     return;
 
-  if (!POINTER_TYPE_P (TREE_TYPE (init))
-      && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
+  /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
+     negative_overflow_infinity and positive_overflow_infinity,
+     because we have concluded that the loop probably does not
+     wrap.  */
+
+  type = TREE_TYPE (var);
+  if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
+    tmin = lower_bound_in_type (type, type);
+  else
+    tmin = TYPE_MIN_VALUE (type);
+  if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
+    tmax = upper_bound_in_type (type, type);
+  else
+    tmax = TYPE_MAX_VALUE (type);
+
+  if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
     {
+      min = tmin;
+      max = tmax;
+
       /* For VARYING or UNDEFINED ranges, just about anything we get
         from scalar evolutions should be better.  */
-      if (init_is_max)
-       set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)),
-                        init, vr->equiv);
+
+      if (dir == EV_DIR_DECREASES)
+       max = init;
       else
-       set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init)),
-                        vr->equiv);
+       min = init;
+
+      /* If we would create an invalid range, then just assume we
+        know absolutely nothing.  This may be over-conservative,
+        but it's clearly safe, and should happen only in unreachable
+         parts of code, or for invalid programs.  */
+      if (compare_values (min, max) == 1)
+       return;
+
+      set_value_range (vr, VR_RANGE, min, max, vr->equiv);
     }
   else if (vr->type == VR_RANGE)
     {
-      tree min = vr->min;
-      tree max = vr->max;
+      min = vr->min;
+      max = vr->max;
 
-      if (init_is_max)
+      if (dir == EV_DIR_DECREASES)
        {
          /* INIT is the maximum value.  If INIT is lower than VR->MAX
             but no smaller than VR->MIN, set VR->MAX to INIT.  */
@@ -1688,10 +2603,11 @@ adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
              max = init;
 
              /* If we just created an invalid range with the minimum
-                greater than the maximum, take the minimum all the
-                way to -INF.  */
+                greater than the maximum, we fail conservatively.
+                This should happen only in unreachable
+                parts of code, or for invalid programs.  */
              if (compare_values (min, max) == 1)
-               min = TYPE_MIN_VALUE (TREE_TYPE (min));
+               return;
            }
        }
       else
@@ -1701,11 +2617,9 @@ adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
            {
              min = init;
 
-             /* If we just created an invalid range with the minimum
-                greater than the maximum, take the maximum all the
-                way to +INF.  */
+             /* Again, avoid creating invalid range by failing.  */
              if (compare_values (min, max) == 1)
-               max = TYPE_MAX_VALUE (TREE_TYPE (max));
+               return;
            }
        }
 
@@ -1722,11 +2636,15 @@ adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
    - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
 
    - Return NULL_TREE if it is not always possible to determine the
-     value of the comparison.  */
+     value of the comparison.
+
+   Also set *STRICT_OVERFLOW_P to indicate whether a range with an
+   overflow infinity was used in the test.  */
 
 
 static tree
-compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
+compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
+               bool *strict_overflow_p)
 {
   /* VARYING or UNDEFINED ranges cannot be compared.  */
   if (vr0->type == VR_VARYING
@@ -1762,13 +2680,17 @@ compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
 
       gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
 
-      if (compare_values (vr0->min, vr1->min) == 0
-         && compare_values (vr0->max, vr1->max) == 0)
+      if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
+         && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
        return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
 
       return NULL_TREE;
     }
 
+  if (!usable_range_p (vr0, strict_overflow_p)
+      || !usable_range_p (vr1, strict_overflow_p))
+    return NULL_TREE;
+
   /* Simplify processing.  If COMP is GT_EXPR or GE_EXPR, switch the
      operands around and change the comparison code.  */
   if (comp == GT_EXPR || comp == GE_EXPR)
@@ -1784,16 +2706,24 @@ compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
     {
       /* Equality may only be computed if both ranges represent
         exactly one value.  */
-      if (compare_values (vr0->min, vr0->max) == 0
-         && compare_values (vr1->min, vr1->max) == 0)
+      if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
+         && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
        {
-         int cmp_min = compare_values (vr0->min, vr1->min);
-         int cmp_max = compare_values (vr0->max, vr1->max);
+         int cmp_min = compare_values_warnv (vr0->min, vr1->min,
+                                             strict_overflow_p);
+         int cmp_max = compare_values_warnv (vr0->max, vr1->max,
+                                             strict_overflow_p);
          if (cmp_min == 0 && cmp_max == 0)
            return boolean_true_node;
          else if (cmp_min != -2 && cmp_max != -2)
            return boolean_false_node;
        }
+      /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1.  */
+      else if (compare_values_warnv (vr0->min, vr1->max,
+                                    strict_overflow_p) == 1
+              || compare_values_warnv (vr1->min, vr0->max,
+                                       strict_overflow_p) == 1)
+       return boolean_false_node;
 
       return NULL_TREE;
     }
@@ -1806,17 +2736,21 @@ compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
         make sure that both comparisons yield similar results to
         avoid comparing values that cannot be compared at
         compile-time.  */
-      cmp1 = compare_values (vr0->max, vr1->min);
-      cmp2 = compare_values (vr0->min, vr1->max);
+      cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
+      cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
       if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
        return boolean_true_node;
 
       /* If VR0 and VR1 represent a single value and are identical,
         return false.  */
-      else if (compare_values (vr0->min, vr0->max) == 0
-              && compare_values (vr1->min, vr1->max) == 0
-              && compare_values (vr0->min, vr1->min) == 0
-              && compare_values (vr0->max, vr1->max) == 0)
+      else if (compare_values_warnv (vr0->min, vr0->max,
+                                    strict_overflow_p) == 0
+              && compare_values_warnv (vr1->min, vr1->max,
+                                       strict_overflow_p) == 0
+              && compare_values_warnv (vr0->min, vr1->min,
+                                       strict_overflow_p) == 0
+              && compare_values_warnv (vr0->max, vr1->max,
+                                       strict_overflow_p) == 0)
        return boolean_false_node;
 
       /* Otherwise, they may or may not be different.  */
@@ -1828,16 +2762,26 @@ compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
       int tst;
 
       /* If VR0 is to the left of VR1, return true.  */
-      tst = compare_values (vr0->max, vr1->min);
+      tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
       if ((comp == LT_EXPR && tst == -1)
          || (comp == LE_EXPR && (tst == -1 || tst == 0)))
-       return boolean_true_node;
+       {
+         if (overflow_infinity_range_p (vr0)
+             || overflow_infinity_range_p (vr1))
+           *strict_overflow_p = true;
+         return boolean_true_node;
+       }
 
       /* If VR0 is to the right of VR1, return false.  */
-      tst = compare_values (vr0->min, vr1->max);
+      tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
          || (comp == LE_EXPR && tst == 1))
-       return boolean_false_node;
+       {
+         if (overflow_infinity_range_p (vr0)
+             || overflow_infinity_range_p (vr1))
+           *strict_overflow_p = true;
+         return boolean_false_node;
+       }
 
       /* Otherwise, we don't know.  */
       return NULL_TREE;
@@ -1851,10 +2795,13 @@ compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
    BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
    values in VR.  Return BOOLEAN_FALSE_NODE if the comparison
    always returns false.  Return NULL_TREE if it is not always
-   possible to determine the value of the comparison.  */
+   possible to determine the value of the comparison.  Also set
+   *STRICT_OVERFLOW_P to indicate whether a range with an overflow
+   infinity was used in the test.  */
 
 static tree
-compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
+compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
+                         bool *strict_overflow_p)
 {
   if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
     return NULL_TREE;
@@ -1877,20 +2824,23 @@ compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
       return NULL_TREE;
     }
 
+  if (!usable_range_p (vr, strict_overflow_p))
+    return NULL_TREE;
+
   if (comp == EQ_EXPR)
     {
       /* EQ_EXPR may only be computed if VR represents exactly
         one value.  */
-      if (compare_values (vr->min, vr->max) == 0)
+      if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
        {
-         int cmp = compare_values (vr->min, val);
+         int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
          if (cmp == 0)
            return boolean_true_node;
          else if (cmp == -1 || cmp == 1 || cmp == 2)
            return boolean_false_node;
        }
-      else if (compare_values (val, vr->min) == -1
-              || compare_values (vr->max, val) == -1)
+      else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
+              || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
        return boolean_false_node;
 
       return NULL_TREE;
@@ -1898,14 +2848,14 @@ compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
   else if (comp == NE_EXPR)
     {
       /* If VAL is not inside VR, then they are always different.  */
-      if (compare_values (vr->max, val) == -1
-         || compare_values (vr->min, val) == 1)
+      if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
+         || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
        return boolean_true_node;
 
       /* If VR represents exactly one value equal to VAL, then return
         false.  */
-      if (compare_values (vr->min, vr->max) == 0
-         && compare_values (vr->min, val) == 0)
+      if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
+         && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
        return boolean_false_node;
 
       /* Otherwise, they may or may not be different.  */
@@ -1916,16 +2866,24 @@ compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
       int tst;
 
       /* If VR is to the left of VAL, return true.  */
-      tst = compare_values (vr->max, val);
+      tst = compare_values_warnv (vr->max, val, strict_overflow_p);
       if ((comp == LT_EXPR && tst == -1)
          || (comp == LE_EXPR && (tst == -1 || tst == 0)))
-       return boolean_true_node;
+       {
+         if (overflow_infinity_range_p (vr))
+           *strict_overflow_p = true;
+         return boolean_true_node;
+       }
 
       /* If VR is to the right of VAL, return false.  */
-      tst = compare_values (vr->min, val);
+      tst = compare_values_warnv (vr->min, val, strict_overflow_p);
       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
          || (comp == LE_EXPR && tst == 1))
-       return boolean_false_node;
+       {
+         if (overflow_infinity_range_p (vr))
+           *strict_overflow_p = true;
+         return boolean_false_node;
+       }
 
       /* Otherwise, we don't know.  */
       return NULL_TREE;
@@ -1935,16 +2893,24 @@ compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
       int tst;
 
       /* If VR is to the right of VAL, return true.  */
-      tst = compare_values (vr->min, val);
+      tst = compare_values_warnv (vr->min, val, strict_overflow_p);
       if ((comp == GT_EXPR && tst == 1)
          || (comp == GE_EXPR && (tst == 0 || tst == 1)))
-       return boolean_true_node;
+       {
+         if (overflow_infinity_range_p (vr))
+           *strict_overflow_p = true;
+         return boolean_true_node;
+       }
 
       /* If VR is to the left of VAL, return false.  */
-      tst = compare_values (vr->max, val);
+      tst = compare_values_warnv (vr->max, val, strict_overflow_p);
       if ((comp == GT_EXPR && (tst == -1 || tst == 0))
          || (comp == GE_EXPR && tst == -1))
-       return boolean_false_node;
+       {
+         if (overflow_infinity_range_p (vr))
+           *strict_overflow_p = true;
+         return boolean_false_node;
+       }
 
       /* Otherwise, we don't know.  */
       return NULL_TREE;
@@ -1983,6 +2949,9 @@ dump_value_range (FILE *file, value_range_t *vr)
          && !TYPE_UNSIGNED (type)
          && vr->min == TYPE_MIN_VALUE (type))
        fprintf (file, "-INF");
+      else if (needs_overflow_infinity (type)
+              && is_negative_overflow_infinity (vr->min))
+       fprintf (file, "-INF(OVF)");
       else
        print_generic_expr (file, vr->min, 0);
 
@@ -1991,6 +2960,9 @@ dump_value_range (FILE *file, value_range_t *vr)
       if (INTEGRAL_TYPE_P (type)
          && vr->max == TYPE_MAX_VALUE (type))
        fprintf (file, "+INF");
+      else if (needs_overflow_infinity (type)
+              && is_positive_overflow_infinity (vr->max))
+       fprintf (file, "+INF(OVF)");
       else
        print_generic_expr (file, vr->max, 0);
 
@@ -2026,6 +2998,7 @@ void
 debug_value_range (value_range_t *vr)
 {
   dump_value_range (stderr, vr);
+  fprintf (stderr, "\n");
 }
 
 
@@ -2074,21 +3047,21 @@ build_assert_expr_for (tree cond, tree v)
 
   if (COMPARISON_CLASS_P (cond))
     {
-      tree a = build (ASSERT_EXPR, TREE_TYPE (v), v, cond); 
-      assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, a);
+      tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond); 
+      assertion = build_gimple_modify_stmt (n, a);
     }
   else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
     {
       /* Given !V, build the assignment N = false.  */
       tree op0 = TREE_OPERAND (cond, 0);
       gcc_assert (op0 == v);
-      assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
+      assertion = build_gimple_modify_stmt (n, boolean_false_node);
     }
   else if (TREE_CODE (cond) == SSA_NAME)
     {
       /* Given V, build the assignment N = true.  */
       gcc_assert (v == cond);
-      assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
+      assertion = build_gimple_modify_stmt (n, boolean_true_node);
     }
   else
     gcc_unreachable ();
@@ -2137,16 +3110,22 @@ infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
   if (tree_could_throw_p (stmt))
     return false;
 
-  if (POINTER_TYPE_P (TREE_TYPE (op)))
+  /* If STMT is the last statement of a basic block with no
+     successors, there is no point inferring anything about any of its
+     operands.  We would not be able to find a proper insertion point
+     for the assertion, anyway.  */
+  if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
+    return false;
+
+  /* We can only assume that a pointer dereference will yield
+     non-NULL if -fdelete-null-pointer-checks is enabled.  */
+  if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
     {
-      bool is_store;
-      unsigned num_uses, num_derefs;
+      unsigned num_uses, num_loads, num_stores;
 
-      count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
-      if (num_derefs > 0 && flag_delete_null_pointer_checks)
+      count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
+      if (num_loads + num_stores > 0)
        {
-         /* We can only assume that a pointer dereference will yield
-            non-NULL if -fdelete-null-pointer-checks is enabled.  */
          *val_p = build_int_cst (TREE_TYPE (op), 0);
          *comp_code_p = NE_EXPR;
          return true;
@@ -2337,7 +3316,7 @@ register_new_assert_for (tree name,
   /* If we didn't find an assertion already registered for
      NAME COMP_CODE VAL, add a new one at the end of the list of
      assertions associated with NAME.  */
-  n = xmalloc (sizeof (*n));
+  n = XNEW (struct assert_locus_d);
   n->bb = dest_bb;
   n->e = e;
   n->si = si;
@@ -2353,109 +3332,285 @@ register_new_assert_for (tree name,
   bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
 }
 
+/* COND is a predicate which uses NAME.  Extract a suitable test code
+   and value and store them into *CODE_P and *VAL_P so the predicate
+   is normalized to NAME *CODE_P *VAL_P.
 
-/* Try to register an edge assertion for SSA name NAME on edge E for
-   the conditional jump pointed to by SI.  Return true if an assertion
-   for NAME could be registered.  */
+   If no extraction was possible, return FALSE, otherwise return TRUE.
+
+   If INVERT is true, then we invert the result stored into *CODE_P.  */
 
 static bool
-register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
+extract_code_and_val_from_cond (tree name, tree cond, bool invert,
+                               enum tree_code *code_p, tree *val_p)
 {
-  tree val, stmt;
   enum tree_code comp_code;
+  tree val;
+
+  /* Predicates may be a single SSA name or NAME OP VAL.  */
+  if (cond == name)
+    {
+      /* If the predicate is a name, it must be NAME, in which
+        case we create the predicate NAME == true or
+        NAME == false accordingly.  */
+      comp_code = EQ_EXPR;
+      val = invert ? boolean_false_node : boolean_true_node;
+    }
+  else
+    {
+      /* Otherwise, we have a comparison of the form NAME COMP VAL
+         or VAL COMP NAME.  */
+      if (name == TREE_OPERAND (cond, 1))
+        {
+         /* If the predicate is of the form VAL COMP NAME, flip
+            COMP around because we need to register NAME as the
+            first operand in the predicate.  */
+         comp_code = swap_tree_comparison (TREE_CODE (cond));
+         val = TREE_OPERAND (cond, 0);
+       }
+      else
+       {
+         /* The comparison is of the form NAME COMP VAL, so the
+            comparison code remains unchanged.  */
+         comp_code = TREE_CODE (cond);
+         val = TREE_OPERAND (cond, 1);
+       }
+
+      /* Invert the comparison code as necessary.  */
+      if (invert)
+       comp_code = invert_tree_comparison (comp_code, 0);
 
-  stmt = bsi_stmt (si);
+      /* VRP does not handle float types.  */
+      if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
+       return false;
+
+      /* Do not register always-false predicates.
+        FIXME:  this works around a limitation in fold() when dealing with
+        enumerations.  Given 'enum { N1, N2 } x;', fold will not
+        fold 'if (x > N2)' to 'if (0)'.  */
+      if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
+         && INTEGRAL_TYPE_P (TREE_TYPE (val)))
+       {
+         tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
+         tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
+
+         if (comp_code == GT_EXPR
+             && (!max
+                 || compare_values (val, max) == 0))
+           return false;
+
+         if (comp_code == LT_EXPR
+             && (!min
+                 || compare_values (val, min) == 0))
+           return false;
+       }
+    }
+  *code_p = comp_code;
+  *val_p = val;
+  return true;
+}
+
+/* OP is an operand of a truth value expression which is known to have
+   a particular value.  Register any asserts for OP and for any
+   operands in OP's defining statement. 
+
+   If CODE is EQ_EXPR, then we want to register OP is zero (false),
+   if CODE is NE_EXPR, then we want to register OP is nonzero (true).   */
+
+static bool
+register_edge_assert_for_1 (tree op, enum tree_code code,
+                           edge e, block_stmt_iterator bsi)
+{
+  bool retval = false;
+  tree op_def, rhs, val;
+
+  /* We only care about SSA_NAMEs.  */
+  if (TREE_CODE (op) != SSA_NAME)
+    return false;
+
+  /* We know that OP will have a zero or nonzero value.  If OP is used
+     more than once go ahead and register an assert for OP. 
+
+     The FOUND_IN_SUBGRAPH support is not helpful in this situation as
+     it will always be set for OP (because OP is used in a COND_EXPR in
+     the subgraph).  */
+  if (!has_single_use (op))
+    {
+      val = build_int_cst (TREE_TYPE (op), 0);
+      register_new_assert_for (op, code, val, NULL, e, bsi);
+      retval = true;
+    }
+
+  /* Now look at how OP is set.  If it's set from a comparison,
+     a truth operation or some bit operations, then we may be able
+     to register information about the operands of that assignment.  */
+  op_def = SSA_NAME_DEF_STMT (op);
+  if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
+    return retval;
+
+  rhs = GIMPLE_STMT_OPERAND (op_def, 1);
+
+  if (COMPARISON_CLASS_P (rhs))
+    {
+      bool invert = (code == EQ_EXPR ? true : false);
+      tree op0 = TREE_OPERAND (rhs, 0);
+      tree op1 = TREE_OPERAND (rhs, 1);
+
+      /* Conditionally register an assert for each SSA_NAME in the
+        comparison.  */
+      if (TREE_CODE (op0) == SSA_NAME
+         && !has_single_use (op0)
+         && extract_code_and_val_from_cond (op0, rhs,
+                                            invert, &code, &val))
+       {
+         register_new_assert_for (op0, code, val, NULL, e, bsi);
+         retval = true;
+       }
+
+      /* Similarly for the second operand of the comparison.  */
+      if (TREE_CODE (op1) == SSA_NAME
+         && !has_single_use (op1)
+         && extract_code_and_val_from_cond (op1, rhs,
+                                            invert, &code, &val))
+       {
+         register_new_assert_for (op1, code, val, NULL, e, bsi);
+         retval = true;
+       }
+    }
+  else if ((code == NE_EXPR
+           && (TREE_CODE (rhs) == TRUTH_AND_EXPR
+               || TREE_CODE (rhs) == BIT_AND_EXPR))
+          || (code == EQ_EXPR
+              && (TREE_CODE (rhs) == TRUTH_OR_EXPR
+                  || TREE_CODE (rhs) == BIT_IOR_EXPR)))
+    {
+      /* Recurse on each operand.  */
+      retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
+                                           code, e, bsi);
+      retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
+                                           code, e, bsi);
+    }
+  else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
+    {
+      /* Recurse, flipping CODE.  */
+      code = invert_tree_comparison (code, false);
+      retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
+                                           code, e, bsi);
+    }
+  else if (TREE_CODE (rhs) == SSA_NAME)
+    {
+      /* Recurse through the copy.  */
+      retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
+    }
+  else if (TREE_CODE (rhs) == NOP_EXPR
+          || TREE_CODE (rhs) == CONVERT_EXPR
+          || TREE_CODE (rhs) == NON_LVALUE_EXPR)
+    { 
+      /* Recurse through the type conversion.  */
+      retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
+                                           code, e, bsi);
+    }
+
+  return retval;
+}
+
+/* Try to register an edge assertion for SSA name NAME on edge E for
+   the condition COND contributing to the conditional jump pointed to by SI.
+   Return true if an assertion for NAME could be registered.  */
+
+static bool
+register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
+{
+  tree val;
+  enum tree_code comp_code;
+  bool retval = false;
+  bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
 
   /* Do not attempt to infer anything in names that flow through
      abnormal edges.  */
   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
     return false;
 
-  /* If NAME was not found in the sub-graph reachable from E, then
-     there's nothing to do.  */
-  if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
+  if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
+                                      &comp_code, &val))
     return false;
 
-  /* We found a use of NAME in the sub-graph rooted at E->DEST.
-     Register an assertion for NAME according to the value that NAME
-     takes on edge E.  */
-  if (TREE_CODE (stmt) == COND_EXPR)
+  /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
+     reachable from E.  */
+  if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
     {
-      /* If BB ends in a COND_EXPR then NAME then we should insert
-        the original predicate on EDGE_TRUE_VALUE and the
-        opposite predicate on EDGE_FALSE_VALUE.  */
-      tree cond = COND_EXPR_COND (stmt);
-      bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
+      register_new_assert_for (name, comp_code, val, NULL, e, si);
+      retval = true;
+    }
 
-      /* Predicates may be a single SSA name or NAME OP VAL.  */
-      if (cond == name)
-       {
-         /* If the predicate is a name, it must be NAME, in which
-            case we create the predicate NAME == true or
-            NAME == false accordingly.  */
-         comp_code = EQ_EXPR;
-         val = (is_else_edge) ? boolean_false_node : boolean_true_node;
-       }
-      else
-       {
-         /* Otherwise, we have a comparison of the form NAME COMP VAL
-            or VAL COMP NAME.  */
-         if (name == TREE_OPERAND (cond, 1))
-           {
-             /* If the predicate is of the form VAL COMP NAME, flip
-                COMP around because we need to register NAME as the
-                first operand in the predicate.  */
-             comp_code = swap_tree_comparison (TREE_CODE (cond));
-             val = TREE_OPERAND (cond, 0);
-           }
-         else
-           {
-             /* The comparison is of the form NAME COMP VAL, so the
-                comparison code remains unchanged.  */
-             comp_code = TREE_CODE (cond);
-             val = TREE_OPERAND (cond, 1);
-           }
+  /* If COND is effectively an equality test of an SSA_NAME against
+     the value zero or one, then we may be able to assert values
+     for SSA_NAMEs which flow into COND.  */
+
+  /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
+     statement of NAME we can assert both operands of the TRUTH_AND_EXPR
+     have nonzero value.  */
+  if (((comp_code == EQ_EXPR && integer_onep (val))
+       || (comp_code == NE_EXPR && integer_zerop (val))))
+    {
+      tree def_stmt = SSA_NAME_DEF_STMT (name);
 
-         /* If we are inserting the assertion on the ELSE edge, we
-            need to invert the sign comparison.  */
-         if (is_else_edge)
-           comp_code = invert_tree_comparison (comp_code, 0);
+      if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
+         && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
+             || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
+       {
+         tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
+         tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
+         retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
+         retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
        }
     }
-  else
+
+  /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
+     statement of NAME we can assert both operands of the TRUTH_OR_EXPR
+     have zero value.  */
+  if (((comp_code == EQ_EXPR && integer_zerop (val))
+       || (comp_code == NE_EXPR && integer_onep (val))))
     {
-      /* FIXME.  Handle SWITCH_EXPR.  */
-      gcc_unreachable ();
+      tree def_stmt = SSA_NAME_DEF_STMT (name);
+
+      if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
+         && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
+             || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
+       {
+         tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
+         tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
+         retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
+         retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
+       }
     }
 
-  register_new_assert_for (name, comp_code, val, NULL, e, si);
-  return true;
+  return retval;
 }
 
 
 static bool find_assert_locations (basic_block bb);
 
 /* Determine whether the outgoing edges of BB should receive an
-   ASSERT_EXPR for each of the operands of BB's last statement.  The
-   last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
+   ASSERT_EXPR for each of the operands of BB's LAST statement.
+   The last statement of BB must be a COND_EXPR.
 
    If any of the sub-graphs rooted at BB have an interesting use of
    the predicate operands, an assert location node is added to the
    list of assertions for the corresponding operands.  */
 
 static bool
-find_conditional_asserts (basic_block bb)
+find_conditional_asserts (basic_block bb, tree last)
 {
   bool need_assert;
-  block_stmt_iterator last_si;
-  tree op, last;
+  block_stmt_iterator bsi;
+  tree op;
   edge_iterator ei;
   edge e;
   ssa_op_iter iter;
 
   need_assert = false;
-  last_si = bsi_last (bb);
-  last = bsi_stmt (last_si);
+  bsi = bsi_for_stmt (last);
 
   /* Look for uses of the operands in each of the sub-graphs
      rooted at BB.  We need to check each of the outgoing edges
@@ -2469,7 +3624,24 @@ find_conditional_asserts (basic_block bb)
       /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
         Otherwise, when we finish traversing each of the sub-graphs, we
         won't know whether the variables were found in the sub-graphs or
-        if they had been found in a block upstream from BB.  */
+        if they had been found in a block upstream from BB. 
+
+        This is actually a bad idea is some cases, particularly jump
+        threading.  Consider a CFG like the following:
+
+                    0
+                   /|
+                  1 |
+                   \|
+                    2
+                   / \
+                  3   4
+
+        Assume that one or more operands in the conditional at the
+        end of block 0 are used in a conditional in block 2, but not
+        anywhere in block 1.  In this case we will not insert any
+        assert statements in block 1, which may cause us to miss
+        opportunities to optimize, particularly for jump threading.  */
       FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
        RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
 
@@ -2482,7 +3654,8 @@ find_conditional_asserts (basic_block bb)
       /* Register the necessary assertions for each operand in the
         conditional predicate.  */
       FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
-       need_assert |= register_edge_assert_for (op, e, last_si);
+       need_assert |= register_edge_assert_for (op, e, bsi,
+                                                COND_EXPR_COND (last));
     }
 
   /* Finally, indicate that we have found the operands in the
@@ -2493,6 +3666,131 @@ find_conditional_asserts (basic_block bb)
   return need_assert;
 }
 
+/* Compare two case labels sorting first by the destination label uid
+   and then by the case value.  */
+
+static int
+compare_case_labels (const void *p1, const void *p2)
+{
+  tree case1 = *(tree *)p1;
+  tree case2 = *(tree *)p2;
+  unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
+  unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
+
+  if (uid1 < uid2)
+    return -1;
+  else if (uid1 == uid2)
+    {
+      /* Make sure the default label is first in a group.  */
+      if (!CASE_LOW (case1))
+       return -1;
+      else if (!CASE_LOW (case2))
+       return 1;
+      else
+        return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
+    }
+  else
+    return 1;
+}
+
+/* Determine whether the outgoing edges of BB should receive an
+   ASSERT_EXPR for each of the operands of BB's LAST statement.
+   The last statement of BB must be a SWITCH_EXPR.
+
+   If any of the sub-graphs rooted at BB have an interesting use of
+   the predicate operands, an assert location node is added to the
+   list of assertions for the corresponding operands.  */
+
+static bool
+find_switch_asserts (basic_block bb, tree last)
+{
+  bool need_assert;
+  block_stmt_iterator bsi;
+  tree op, cond;
+  edge e;
+  tree vec = SWITCH_LABELS (last), vec2;
+  size_t n = TREE_VEC_LENGTH (vec);
+  unsigned int idx;
+
+  need_assert = false;
+  bsi = bsi_for_stmt (last);
+  op = TREE_OPERAND (last, 0);
+  if (TREE_CODE (op) != SSA_NAME)
+    return false;
+
+  /* Build a vector of case labels sorted by destination label.  */
+  vec2 = make_tree_vec (n);
+  for (idx = 0; idx < n; ++idx)
+    TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
+  qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
+
+  for (idx = 0; idx < n; ++idx)
+    {
+      tree min, max;
+      tree cl = TREE_VEC_ELT (vec2, idx);
+
+      min = CASE_LOW (cl);
+      max = CASE_HIGH (cl);
+
+      /* If there are multiple case labels with the same destination
+        we need to combine them to a single value range for the edge.  */
+      if (idx + 1 < n
+         && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
+       {
+         /* Skip labels until the last of the group.  */
+         do {
+           ++idx;
+         } while (idx < n
+                  && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
+         --idx;
+
+         /* Pick up the maximum of the case label range.  */
+         if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
+           max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
+         else
+           max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
+       }
+
+      /* Nothing to do if the range includes the default label until we
+        can register anti-ranges.  */
+      if (min == NULL_TREE)
+       continue;
+
+      /* Find the edge to register the assert expr on.  */
+      e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
+
+      /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
+        Otherwise, when we finish traversing each of the sub-graphs, we
+        won't know whether the variables were found in the sub-graphs or
+        if they had been found in a block upstream from BB.  */
+      RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
+
+      /* Traverse the strictly dominated sub-graph rooted at E->DEST
+        to determine if any of the operands in the conditional
+        predicate are used.  */
+      if (e->dest != bb)
+       need_assert |= find_assert_locations (e->dest);
+
+      /* Register the necessary assertions for the operand in the
+        SWITCH_EXPR.  */
+      cond = build2 (max ? GE_EXPR : EQ_EXPR, boolean_type_node,
+                    op, fold_convert (TREE_TYPE (op), min));
+      need_assert |= register_edge_assert_for (op, e, bsi, cond);
+      if (max)
+       {
+         cond = build2 (LE_EXPR, boolean_type_node,
+                        op, fold_convert (TREE_TYPE (op), max));
+         need_assert |= register_edge_assert_for (op, e, bsi, cond);
+       }
+    }
+
+  /* Finally, indicate that we have found the operand in the
+     SWITCH_EXPR.  */
+  SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
+
+  return need_assert;
+}
+
 
 /* Traverse all the statements in block BB looking for statements that
    may generate useful assertions for the SSA names in their operand.
@@ -2555,9 +3853,7 @@ find_conditional_asserts (basic_block bb)
 
    If this function returns true, then it means that there are names
    for which we need to generate ASSERT_EXPRs.  Those assertions are
-   inserted by process_assert_insertions.
-
-   TODO.  Handle SWITCH_EXPR.  */
+   inserted by process_assert_insertions.  */
 
 static bool
 find_assert_locations (basic_block bb)
@@ -2614,21 +3910,56 @@ find_assert_locations (basic_block bb)
             operands it was looking for was present in the sub-graph.  */
          SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
 
-         /* If OP is used only once, namely in this STMT, don't
-            bother creating an ASSERT_EXPR for it.  Such an
-            ASSERT_EXPR would do nothing but increase compile time.
-            Experiments show that with this simple check, we can save
-            more than 20% of ASSERT_EXPRs.  */
-         if (has_single_use (op))
-           continue;
-
          /* If OP is used in such a way that we can infer a value
             range for it, and we don't find a previous assertion for
             it, create a new assertion location node for OP.  */
          if (infer_value_range (stmt, op, &comp_code, &value))
            {
-             register_new_assert_for (op, comp_code, value, bb, NULL, si);
-             need_assert = true;
+             /* If we are able to infer a nonzero value range for OP,
+                then walk backwards through the use-def chain to see if OP
+                was set via a typecast.
+
+                If so, then we can also infer a nonzero value range
+                for the operand of the NOP_EXPR.  */
+             if (comp_code == NE_EXPR && integer_zerop (value))
+               {
+                 tree t = op;
+                 tree def_stmt = SSA_NAME_DEF_STMT (t);
+       
+                 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
+                        && TREE_CODE
+                            (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
+                        && TREE_CODE
+                            (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
+                                           0)) == SSA_NAME
+                        && POINTER_TYPE_P
+                            (TREE_TYPE (TREE_OPERAND
+                                         (GIMPLE_STMT_OPERAND (def_stmt,
+                                                               1), 0))))
+                   {
+                     t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
+                     def_stmt = SSA_NAME_DEF_STMT (t);
+
+                     /* Note we want to register the assert for the
+                        operand of the NOP_EXPR after SI, not after the
+                        conversion.  */
+                     if (! has_single_use (t))
+                       {
+                         register_new_assert_for (t, comp_code, value,
+                                                  bb, NULL, si);
+                         need_assert = true;
+                       }
+                   }
+               }
+
+             /* If OP is used only once, namely in this STMT, don't
+                bother creating an ASSERT_EXPR for it.  Such an
+                ASSERT_EXPR would do nothing but increase compile time.  */
+             if (!has_single_use (op))
+               {
+                 register_new_assert_for (op, comp_code, value, bb, NULL, si);
+                 need_assert = true;
+               }
            }
        }
 
@@ -2643,7 +3974,12 @@ find_assert_locations (basic_block bb)
       && TREE_CODE (last) == COND_EXPR
       && !fp_predicate (COND_EXPR_COND (last))
       && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
-    need_assert |= find_conditional_asserts (bb);
+    need_assert |= find_conditional_asserts (bb, last);
+
+  if (last
+      && TREE_CODE (last) == SWITCH_EXPR
+      && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
+    need_assert |= find_switch_asserts (bb, last);
 
   /* Recurse into the dominator children of BB.  */
   for (son = first_dom_son (CDI_DOMINATORS, bb);
@@ -2666,7 +4002,7 @@ process_assert_insertions_for (tree name, assert_locus_t loc)
   edge_iterator ei;
   edge e;
 
-  cond = build (loc->comp_code, boolean_type_node, name, loc->val);
+  cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
   assert_expr = build_assert_expr_for (cond, name);
 
   if (loc->e)
@@ -2791,8 +4127,7 @@ insert_range_assertions (void)
   sbitmap_zero (blocks_visited);
 
   need_assert_for = BITMAP_ALLOC (NULL);
-  asserts_for = xmalloc (num_ssa_names * sizeof (assert_locus_t));
-  memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
+  asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
 
   calculate_dominance_info (CDI_DOMINATORS);
 
@@ -2818,6 +4153,171 @@ insert_range_assertions (void)
   BITMAP_FREE (need_assert_for);
 }
 
+/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
+   and "struct" hacks. If VRP can determine that the
+   array subscript is a constant, check if it is outside valid
+   range. If the array subscript is a RANGE, warn if it is
+   non-overlapping with valid range.
+   IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR.  */
+
+static void
+check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
+{
+  value_range_t* vr = NULL;
+  tree low_sub, up_sub;
+  tree low_bound, up_bound = array_ref_up_bound (ref);
+
+  low_sub = up_sub = TREE_OPERAND (ref, 1);
+
+  if (!up_bound || !locus || TREE_NO_WARNING (ref)
+      || TREE_CODE (up_bound) != INTEGER_CST
+      /* Can not check flexible arrays.  */
+      || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
+          && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
+          && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
+      /* Accesses after the end of arrays of size 0 (gcc
+         extension) and 1 are likely intentional ("struct
+         hack").  */
+      || compare_tree_int (up_bound, 1) <= 0)
+    return;
+
+  low_bound = array_ref_low_bound (ref);
+
+  if (TREE_CODE (low_sub) == SSA_NAME)
+    {
+      vr = get_value_range (low_sub);
+      if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
+        {
+          low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
+          up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
+        }
+    }
+
+  if (vr && vr->type == VR_ANTI_RANGE)
+    {
+      if (TREE_CODE (up_sub) == INTEGER_CST
+          && tree_int_cst_lt (up_bound, up_sub)
+          && TREE_CODE (low_sub) == INTEGER_CST
+          && tree_int_cst_lt (low_sub, low_bound))
+        {
+          warning (OPT_Warray_bounds,
+                   "%Harray subscript is outside array bounds", locus);
+          TREE_NO_WARNING (ref) = 1;
+        }
+    }
+  else if (TREE_CODE (up_sub) == INTEGER_CST
+           && tree_int_cst_lt (up_bound, up_sub)
+           && !tree_int_cst_equal (up_bound, up_sub)
+           && (!ignore_off_by_one
+               || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
+                                                        up_bound,
+                                                        integer_one_node,
+                                                        0),
+                                       up_sub)))
+    {
+      warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
+               locus);
+      TREE_NO_WARNING (ref) = 1;
+    }
+  else if (TREE_CODE (low_sub) == INTEGER_CST
+           && tree_int_cst_lt (low_sub, low_bound))
+    {
+      warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
+               locus);
+      TREE_NO_WARNING (ref) = 1;
+    }
+}
+
+/* walk_tree() callback that checks if *TP is
+   an ARRAY_REF inside an ADDR_EXPR (in which an array
+   subscript one outside the valid range is allowed). Call
+   check_array_ref for each ARRAY_REF found. The location is 
+   passed in DATA.  */
+
+static tree
+check_array_bounds (tree *tp, int *walk_subtree, void *data)
+{
+  tree t = *tp;
+  tree stmt = (tree)data;
+  location_t *location = EXPR_LOCUS (stmt);
+
+  *walk_subtree = TRUE;
+
+  if (TREE_CODE (t) == ARRAY_REF)
+    check_array_ref (t, location, false /*ignore_off_by_one*/);
+  else if (TREE_CODE (t) == ADDR_EXPR)
+    {
+       use_operand_p op;
+       tree use_stmt;
+       t = TREE_OPERAND (t, 0);
+
+       /* Don't warn on statements like
+
+          ssa_name = 500 + &array[-200]
+
+          or
+
+          ssa_name = &array[-200]
+          other_name = ssa_name + 300;
+
+          which are sometimes
+          produced by other optimizing passes.  */
+
+       if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
+           && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
+         *walk_subtree = FALSE;
+
+       if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
+           && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME
+           && single_imm_use (GIMPLE_STMT_OPERAND (stmt, 0), &op, &use_stmt)
+           && TREE_CODE (use_stmt) == GIMPLE_MODIFY_STMT
+           && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (use_stmt, 1)))
+         *walk_subtree = FALSE;
+
+       while (*walk_subtree && handled_component_p (t))
+         {
+           if (TREE_CODE (t) == ARRAY_REF)
+             check_array_ref (t, location, true /*ignore_off_by_one*/);
+           t = TREE_OPERAND (t, 0);
+         }
+       *walk_subtree = FALSE;
+    }
+
+  return NULL_TREE;
+}
+
+/* Walk over all statements of all reachable BBs and call check_array_bounds
+   on them.  */
+
+static void
+check_all_array_refs (void)
+{
+  basic_block bb;
+  block_stmt_iterator si;
+
+  FOR_EACH_BB (bb)
+    {
+      /* Skip bb's that are clearly unreachable.  */
+      if (single_pred_p (bb))
+      {
+       basic_block pred_bb = EDGE_PRED (bb, 0)->src;
+       tree ls = NULL_TREE;
+
+       if (!bsi_end_p (bsi_last (pred_bb)))
+         ls = bsi_stmt (bsi_last (pred_bb));
+
+       if (ls && TREE_CODE (ls) == COND_EXPR
+           && ((COND_EXPR_COND (ls) == boolean_false_node
+                && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
+               || (COND_EXPR_COND (ls) == boolean_true_node
+                   && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
+         continue;
+      }
+      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+       walk_tree (bsi_stmt_ptr (si), check_array_bounds,
+                  bsi_stmt (si), NULL);
+    }
+}
 
 /* Convert range assertion expressions into the implied copies and
    copy propagate away the copies.  Doing the trivial copy propagation
@@ -2856,29 +4356,31 @@ remove_range_assertions (void)
     for (si = bsi_start (bb); !bsi_end_p (si);)
       {
        tree stmt = bsi_stmt (si);
+       tree use_stmt;
 
-       if (TREE_CODE (stmt) == MODIFY_EXPR
-           && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
+       if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
+           && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
          {
-           tree rhs = TREE_OPERAND (stmt, 1);
+           tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
            tree cond = fold (ASSERT_EXPR_COND (rhs));
            use_operand_p use_p;
            imm_use_iterator iter;
 
            gcc_assert (cond != boolean_false_node);
-           TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
-           update_stmt (stmt);
 
-           /* The statement is now a copy.  Propagate the RHS into
-              every use of the LHS.  */
-           FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
-             {
-               SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
-               update_stmt (USE_STMT (use_p));
-             }
+           /* Propagate the RHS into every use of the LHS.  */
+           var = ASSERT_EXPR_VAR (rhs);
+           FOR_EACH_IMM_USE_STMT (use_stmt, iter,
+                                  GIMPLE_STMT_OPERAND (stmt, 0))
+             FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
+               {
+                 SET_USE (use_p, var);
+                 gcc_assert (TREE_CODE (var) == SSA_NAME);
+               }
 
            /* And finally, remove the copy, it is not needed.  */
-           bsi_remove (&si);
+           bsi_remove (&si, true);
+           release_defs (stmt); 
          }
        else
          bsi_next (&si);
@@ -2898,14 +4400,22 @@ stmt_interesting_for_vrp (tree stmt)
       && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
          || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
     return true;
-  else if (TREE_CODE (stmt) == MODIFY_EXPR)
+  else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
     {
-      tree lhs = TREE_OPERAND (stmt, 0);
+      tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
+      tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
 
+      /* In general, assignments with virtual operands are not useful
+        for deriving ranges, with the obvious exception of calls to
+        builtin functions.  */
       if (TREE_CODE (lhs) == SSA_NAME
          && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
              || POINTER_TYPE_P (TREE_TYPE (lhs)))
-         && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+         && ((TREE_CODE (rhs) == CALL_EXPR
+              && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
+              && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
+              && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
+             || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
        return true;
     }
   else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
@@ -2922,8 +4432,7 @@ vrp_initialize (void)
 {
   basic_block bb;
 
-  vr_value = xmalloc (num_ssa_names * sizeof (value_range_t *));
-  memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
+  vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
 
   FOR_EACH_BB (bb)
     {
@@ -2972,12 +4481,16 @@ vrp_visit_assignment (tree stmt, tree *output_p)
   tree lhs, rhs, def;
   ssa_op_iter iter;
 
-  lhs = TREE_OPERAND (stmt, 0);
-  rhs = TREE_OPERAND (stmt, 1);
+  lhs = GIMPLE_STMT_OPERAND (stmt, 0);
+  rhs = GIMPLE_STMT_OPERAND (stmt, 1);
 
   /* We only keep track of ranges in integral and pointer types.  */
   if (TREE_CODE (lhs) == SSA_NAME
-      && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+      && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+          /* It is valid to have NULL MIN/MAX values on a type.  See
+             build_range_type.  */
+          && TYPE_MIN_VALUE (TREE_TYPE (lhs))
+          && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
          || POINTER_TYPE_P (TREE_TYPE (lhs))))
     {
       struct loop *l;
@@ -2988,7 +4501,7 @@ vrp_visit_assignment (tree stmt, tree *output_p)
       /* If STMT is inside a loop, we may be able to know something
         else about the range of LHS by examining scalar evolution
         information.  */
-      if (cfg_loops && (l = loop_containing_stmt (stmt)))
+      if (current_loops && (l = loop_containing_stmt (stmt)))
        adjust_range_with_scev (&new_vr, l, stmt, lhs);
 
       if (update_value_range (lhs, &new_vr))
@@ -3023,15 +4536,18 @@ vrp_visit_assignment (tree stmt, tree *output_p)
 
 /* Compare all the value ranges for names equivalent to VAR with VAL
    using comparison code COMP.  Return the same value returned by
-   compare_range_with_value.  */
+   compare_range_with_value, including the setting of
+   *STRICT_OVERFLOW_P.  */
 
 static tree
-compare_name_with_value (enum tree_code comp, tree var, tree val)
+compare_name_with_value (enum tree_code comp, tree var, tree val,
+                        bool *strict_overflow_p)
 {
   bitmap_iterator bi;
   unsigned i;
   bitmap e;
   tree retval, t;
+  int used_strict_overflow;
   
   t = retval = NULL_TREE;
 
@@ -3043,8 +4559,14 @@ compare_name_with_value (enum tree_code comp, tree var, tree val)
      the body of the loop just to check VAR's value range).  */
   bitmap_set_bit (e, SSA_NAME_VERSION (var));
 
+  /* Start at -1.  Set it to 0 if we do a comparison without relying
+     on overflow, or 1 if all comparisons rely on overflow.  */
+  used_strict_overflow = -1;
+
   EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
     {
+      bool sop;
+
       value_range_t equiv_vr = *(vr_value[i]);
 
       /* If name N_i does not have a valid range, use N_i as its own
@@ -3057,12 +4579,26 @@ compare_name_with_value (enum tree_code comp, tree var, tree val)
          equiv_vr.max = ssa_name (i);
        }
 
-      t = compare_range_with_value (comp, &equiv_vr, val);
+      sop = false;
+      t = compare_range_with_value (comp, &equiv_vr, val, &sop);
       if (t)
        {
-         /* All the ranges should compare the same against VAL.  */
-         gcc_assert (retval == NULL || t == retval);
+         /* If we get different answers from different members
+            of the equivalence set this check must be in a dead
+            code region.  Folding it to a trap representation
+            would be correct here.  For now just return don't-know.  */
+         if (retval != NULL
+             && t != retval)
+           {
+             retval = NULL_TREE;
+             break;
+           }
          retval = t;
+
+         if (!sop)
+           used_strict_overflow = 0;
+         else if (used_strict_overflow < 0)
+           used_strict_overflow = 1;
        }
     }
 
@@ -3070,7 +4606,11 @@ compare_name_with_value (enum tree_code comp, tree var, tree val)
   bitmap_clear_bit (e, SSA_NAME_VERSION (var));
 
   if (retval)
-    return retval;
+    {
+      if (used_strict_overflow > 0)
+       *strict_overflow_p = true;
+      return retval;
+    }
 
   /* We couldn't find a non-NULL value for the predicate.  */
   return NULL_TREE;
@@ -3080,15 +4620,19 @@ compare_name_with_value (enum tree_code comp, tree var, tree val)
 /* Given a comparison code COMP and names N1 and N2, compare all the
    ranges equivalent to N1 against all the ranges equivalent to N2
    to determine the value of N1 COMP N2.  Return the same value
-   returned by compare_ranges.  */
+   returned by compare_ranges.  Set *STRICT_OVERFLOW_P to indicate
+   whether we relied on an overflow infinity in the comparison.  */
+
 
 static tree
-compare_names (enum tree_code comp, tree n1, tree n2)
+compare_names (enum tree_code comp, tree n1, tree n2,
+              bool *strict_overflow_p)
 {
   tree t, retval;
   bitmap e1, e2;
   bitmap_iterator bi1, bi2;
   unsigned i1, i2;
+  int used_strict_overflow;
 
   /* Compare the ranges of every name equivalent to N1 against the
      ranges of every name equivalent to N2.  */
@@ -3113,6 +4657,10 @@ compare_names (enum tree_code comp, tree n1, tree n2)
             : boolean_false_node;
     }
 
+  /* Start at -1.  Set it to 0 if we do a comparison without relying
+     on overflow, or 1 if all comparisons rely on overflow.  */
+  used_strict_overflow = -1;
+
   /* Otherwise, compare all the equivalent ranges.  First, add N1 and
      N2 to their own set of equivalences to avoid duplicating the body
      of the loop just to check N1 and N2 ranges.  */
@@ -3131,6 +4679,8 @@ compare_names (enum tree_code comp, tree n1, tree n2)
       t = retval = NULL_TREE;
       EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
        {
+         bool sop;
+
          value_range_t vr2 = *(vr_value[i2]);
 
          if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
@@ -3140,13 +4690,26 @@ compare_names (enum tree_code comp, tree n1, tree n2)
              vr2.max = ssa_name (i2);
            }
 
-         t = compare_ranges (comp, &vr1, &vr2);
+         t = compare_ranges (comp, &vr1, &vr2, &sop);
          if (t)
            {
-             /* All the ranges in the equivalent sets should compare
-                the same.  */
-             gcc_assert (retval == NULL || t == retval);
+             /* If we get different answers from different members
+                of the equivalence set this check must be in a dead
+                code region.  Folding it to a trap representation
+                would be correct here.  For now just return don't-know.  */
+             if (retval != NULL
+                 && t != retval)
+               {
+                 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+                 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+                 return NULL_TREE;
+               }
              retval = t;
+
+             if (!sop)
+               used_strict_overflow = 0;
+             else if (used_strict_overflow < 0)
+               used_strict_overflow = 1;
            }
        }
 
@@ -3154,6 +4717,8 @@ compare_names (enum tree_code comp, tree n1, tree n2)
        {
          bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
          bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+         if (used_strict_overflow > 0)
+           *strict_overflow_p = true;
          return retval;
        }
     }
@@ -3175,10 +4740,14 @@ compare_names (enum tree_code comp, tree n1, tree n2)
    If USE_EQUIV_P is true, the ranges of all the names equivalent with
    the operands in COND are used when trying to compute its value.
    This is only used during final substitution.  During propagation,
-   we only check the range of each variable and not its equivalents.  */
+   we only check the range of each variable and not its equivalents.
 
-tree
-vrp_evaluate_conditional (tree cond, bool use_equiv_p)
+   Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
+   infinity to produce the result.  */
+
+static tree
+vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
+                               bool *strict_overflow_p)
 {
   gcc_assert (TREE_CODE (cond) == SSA_NAME
               || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
@@ -3189,11 +4758,13 @@ vrp_evaluate_conditional (tree cond, bool use_equiv_p)
       tree retval;
 
       if (use_equiv_p)
-       retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
+       retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
+                                         strict_overflow_p);
       else
        {
          value_range_t *vr = get_value_range (cond);
-         retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
+         retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
+                                            strict_overflow_p);
        }
 
       /* If COND has a known boolean range, return it.  */
@@ -3219,12 +4790,15 @@ vrp_evaluate_conditional (tree cond, bool use_equiv_p)
       if (use_equiv_p)
        {
          if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
-           return compare_names (TREE_CODE (cond), op0, op1);
+           return compare_names (TREE_CODE (cond), op0, op1,
+                                 strict_overflow_p);
          else if (TREE_CODE (op0) == SSA_NAME)
-           return compare_name_with_value (TREE_CODE (cond), op0, op1);
+           return compare_name_with_value (TREE_CODE (cond), op0, op1,
+                                           strict_overflow_p);
          else if (TREE_CODE (op1) == SSA_NAME)
-           return compare_name_with_value (
-                   swap_tree_comparison (TREE_CODE (cond)), op1, op0);
+           return (compare_name_with_value
+                   (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
+                    strict_overflow_p));
        }
       else
        {
@@ -3234,12 +4808,15 @@ vrp_evaluate_conditional (tree cond, bool use_equiv_p)
          vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
 
          if (vr0 && vr1)
-           return compare_ranges (TREE_CODE (cond), vr0, vr1);
+           return compare_ranges (TREE_CODE (cond), vr0, vr1,
+                                  strict_overflow_p);
          else if (vr0 && vr1 == NULL)
-           return compare_range_with_value (TREE_CODE (cond), vr0, op1);
+           return compare_range_with_value (TREE_CODE (cond), vr0, op1,
+                                            strict_overflow_p);
          else if (vr0 == NULL && vr1)
-           return compare_range_with_value (
-                   swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
+           return (compare_range_with_value
+                   (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
+                    strict_overflow_p));
        }
     }
 
@@ -3247,6 +4824,55 @@ vrp_evaluate_conditional (tree cond, bool use_equiv_p)
   return NULL_TREE;
 }
 
+/* Given COND within STMT, try to simplify it based on value range
+   information.  Return NULL if the conditional can not be evaluated.
+   The ranges of all the names equivalent with the operands in COND
+   will be used when trying to compute the value.  If the result is
+   based on undefined signed overflow, issue a warning if
+   appropriate.  */
+
+tree
+vrp_evaluate_conditional (tree cond, tree stmt)
+{
+  bool sop;
+  tree ret;
+
+  sop = false;
+  ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
+
+  if (ret && sop)
+    {
+      enum warn_strict_overflow_code wc;
+      const char* warnmsg;
+
+      if (is_gimple_min_invariant (ret))
+       {
+         wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
+         warnmsg = G_("assuming signed overflow does not occur when "
+                      "simplifying conditional to constant");
+       }
+      else
+       {
+         wc = WARN_STRICT_OVERFLOW_COMPARISON;
+         warnmsg = G_("assuming signed overflow does not occur when "
+                      "simplifying conditional");
+       }
+
+      if (issue_strict_overflow_warning (wc))
+       {
+         location_t locus;
+
+         if (!EXPR_HAS_LOCATION (stmt))
+           locus = input_location;
+         else
+           locus = EXPR_LOCATION (stmt);
+         warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
+       }
+    }
+
+  return ret;
+}
+
 
 /* Visit conditional statement STMT.  If we can determine which edge
    will be taken out of STMT's basic block, record it in
@@ -3257,11 +4883,11 @@ static enum ssa_prop_result
 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
 {
   tree cond, val;
+  bool sop;
 
   *taken_edge_p = NULL;
 
-  /* FIXME.  Handle SWITCH_EXPRs.  But first, the assert pass needs to
-     add ASSERT_EXPRs for them.  */
+  /* FIXME.  Handle SWITCH_EXPRs.  */
   if (TREE_CODE (stmt) == SWITCH_EXPR)
     return SSA_PROP_VARYING;
 
@@ -3329,9 +4955,21 @@ vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
      additional checking.  Testing on several code bases (GCC, DLV,
      MICO, TRAMP3D and SPEC2000) showed that doing this results in
      4 more predicates folded in SPEC.  */
-  val = vrp_evaluate_conditional (cond, false);
+  sop = false;
+  val = vrp_evaluate_conditional_warnv (cond, false, &sop);
   if (val)
-    *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
+    {
+      if (!sop)
+       *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
+      else
+       {
+         if (dump_file && (dump_flags & TDF_DETAILS))
+           fprintf (dump_file,
+                    "\nIgnoring predicate evaluation because "
+                    "it assumes that signed overflow is undefined");
+         val = NULL_TREE;
+       }
+    }
 
   if (dump_file && (dump_flags & TDF_DETAILS))
     {
@@ -3370,9 +5008,20 @@ vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
     }
 
   ann = stmt_ann (stmt);
-  if (TREE_CODE (stmt) == MODIFY_EXPR
-      && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
-    return vrp_visit_assignment (stmt, output_p);
+  if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
+    {
+      tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
+
+      /* In general, assignments with virtual operands are not useful
+        for deriving ranges, with the obvious exception of calls to
+        builtin functions.  */
+      if ((TREE_CODE (rhs) == CALL_EXPR
+          && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
+          && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
+          && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
+         || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+       return vrp_visit_assignment (stmt, output_p);
+    }
   else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
     return vrp_visit_cond_stmt (stmt, taken_edge_p);
 
@@ -3386,14 +5035,8 @@ vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
 
 
 /* Meet operation for value ranges.  Given two value ranges VR0 and
-   VR1, store in VR0 the result of meeting VR0 and VR1.
-   
-   The meeting rules are as follows:
-
-   1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
-
-   2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
-      union of VR0 and VR1.  */
+   VR1, store in VR0 a range that contains both VR0 and VR1.  This
+   may not be the smallest possible such range.  */
 
 static void
 vrp_meet (value_range_t *vr0, value_range_t *vr1)
@@ -3424,56 +5067,44 @@ vrp_meet (value_range_t *vr0, value_range_t *vr1)
 
   if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
     {
-      /* If VR0 and VR1 have a non-empty intersection, compute the
-        union of both ranges.  */
-      if (value_ranges_intersect_p (vr0, vr1))
-       {
-         int cmp;
-         tree min, max;
-
-         /* The lower limit of the new range is the minimum of the
-            two ranges.  If they cannot be compared, the result is
-            VARYING.  */
-         cmp = compare_values (vr0->min, vr1->min);
-         if (cmp == 0 || cmp == 1)
-           min = vr1->min;
-         else if (cmp == -1)
-           min = vr0->min;
-         else
-           {
-             set_value_range_to_varying (vr0);
-             return;
-           }
-
-         /* Similarly, the upper limit of the new range is the
-            maximum of the two ranges.  If they cannot be compared,
-            the result is VARYING.  */
-         cmp = compare_values (vr0->max, vr1->max);
-         if (cmp == 0 || cmp == -1)
-           max = vr1->max;
-         else if (cmp == 1)
-           max = vr0->max;
-         else
-           {
-             set_value_range_to_varying (vr0);
-             return;
-           }
+      int cmp;
+      tree min, max;
+
+      /* Compute the convex hull of the ranges.  The lower limit of
+         the new range is the minimum of the two ranges.  If they
+        cannot be compared, then give up.  */
+      cmp = compare_values (vr0->min, vr1->min);
+      if (cmp == 0 || cmp == 1)
+        min = vr1->min;
+      else if (cmp == -1)
+        min = vr0->min;
+      else
+       goto give_up;
+
+      /* Similarly, the upper limit of the new range is the maximum
+         of the two ranges.  If they cannot be compared, then
+        give up.  */
+      cmp = compare_values (vr0->max, vr1->max);
+      if (cmp == 0 || cmp == -1)
+        max = vr1->max;
+      else if (cmp == 1)
+        max = vr0->max;
+      else
+       goto give_up;
 
-         /* The resulting set of equivalences is the intersection of
-            the two sets.  */
-         if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
-           bitmap_and_into (vr0->equiv, vr1->equiv);
-         else if (vr0->equiv && !vr1->equiv)
-           bitmap_clear (vr0->equiv);
+      /* The resulting set of equivalences is the intersection of
+        the two sets.  */
+      if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+        bitmap_and_into (vr0->equiv, vr1->equiv);
+      else if (vr0->equiv && !vr1->equiv)
+        bitmap_clear (vr0->equiv);
 
-         set_value_range (vr0, vr0->type, min, max, vr0->equiv);
-       }
-      else
-       goto no_meet;
+      set_value_range (vr0, vr0->type, min, max, vr0->equiv);
     }
   else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
     {
-      /* Two anti-ranges meet only if they are both identical.  */
+      /* Two anti-ranges meet only if their complements intersect.
+         Only handle the case of identical ranges.  */
       if (compare_values (vr0->min, vr1->min) == 0
          && compare_values (vr0->max, vr1->max) == 0
          && compare_values (vr0->min, vr0->max) == 0)
@@ -3486,19 +5117,22 @@ vrp_meet (value_range_t *vr0, value_range_t *vr1)
            bitmap_clear (vr0->equiv);
        }
       else
-       goto no_meet;
+       goto give_up;
     }
   else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
     {
-      /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
-        meet only if the ranges have an empty intersection.  The
-        result of the meet operation is the anti-range.  */
+      /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
+         only handle the case where the ranges have an empty intersection.
+        The result of the meet operation is the anti-range.  */
       if (!symbolic_range_p (vr0)
          && !symbolic_range_p (vr1)
          && !value_ranges_intersect_p (vr0, vr1))
        {
+         /* Copy most of VR1 into VR0.  Don't copy VR1's equivalence
+            set.  We need to compute the intersection of the two
+            equivalence sets.  */
          if (vr1->type == VR_ANTI_RANGE)
-           copy_value_range (vr0, vr1);
+           set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
 
          /* The resulting set of equivalences is the intersection of
             the two sets.  */
@@ -3508,17 +5142,17 @@ vrp_meet (value_range_t *vr0, value_range_t *vr1)
            bitmap_clear (vr0->equiv);
        }
       else
-       goto no_meet;
+       goto give_up;
     }
   else
     gcc_unreachable ();
 
   return;
 
-no_meet:
-  /* The two range VR0 and VR1 do not meet.  Before giving up and
-     setting the result to VARYING, see if we can at least derive a
-     useful anti-range.  FIXME, all this nonsense about distinguishing
+give_up:
+  /* Failed to find an efficient meet.  Before giving up and setting
+     the result to VARYING, see if we can at least derive a useful
+     anti-range.  FIXME, all this nonsense about distinguishing
      anti-ranges from ranges is necessary because of the odd
      semantics of range_includes_zero_p and friends.  */
   if (!symbolic_range_p (vr0)
@@ -3551,6 +5185,7 @@ vrp_visit_phi_node (tree phi)
   tree lhs = PHI_RESULT (phi);
   value_range_t *lhs_vr = get_value_range (lhs);
   value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+  bool all_const = true;
 
   copy_value_range (&vr_result, lhs_vr);
 
@@ -3578,7 +5213,10 @@ vrp_visit_phi_node (tree phi)
          value_range_t vr_arg;
 
          if (TREE_CODE (arg) == SSA_NAME)
-           vr_arg = *(get_value_range (arg));
+           {
+             vr_arg = *(get_value_range (arg));
+             all_const = false;
+           }
          else
            {
              vr_arg.type = VR_RANGE;
@@ -3609,7 +5247,8 @@ vrp_visit_phi_node (tree phi)
   /* To prevent infinite iterations in the algorithm, derive ranges
      when the new value is slightly bigger or smaller than the
      previous one.  */
-  if (lhs_vr->type == VR_RANGE)
+  if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
+      && !all_const)
     {
       if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
        {
@@ -3622,18 +5261,42 @@ vrp_visit_phi_node (tree phi)
             other case to avoid infinite bouncing between different
             minimums.  */
          if (cmp_min > 0 || cmp_min < 0)
-           vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
+           {
+             /* If we will end up with a (-INF, +INF) range, set it
+                to VARYING.  */
+             if (is_positive_overflow_infinity (vr_result.max)
+                 || (vr_result.max
+                     == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max))))
+               goto varying;
+
+             if (!needs_overflow_infinity (TREE_TYPE (vr_result.min)))
+               vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
+             else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
+               vr_result.min =
+                 negative_overflow_infinity (TREE_TYPE (vr_result.min));
+             else
+               goto varying;
+           }
 
          /* Similarly, if the new maximum is smaller or larger than
             the previous one, go all the way to +INF.  */
          if (cmp_max < 0 || cmp_max > 0)
-           vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
-
-         /* If we ended up with a (-INF, +INF) range, set it to
-            VARYING.  */
-         if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
-             && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
-           goto varying;
+           {
+             /* If we will end up with a (-INF, +INF) range, set it
+                to VARYING.  */
+             if (is_negative_overflow_infinity (vr_result.min)
+                 || (vr_result.min
+                     == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))))
+               goto varying;
+
+             if (!needs_overflow_infinity (TREE_TYPE (vr_result.max)))
+               vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
+             else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
+               vr_result.max =
+                 positive_overflow_infinity (TREE_TYPE (vr_result.max));
+             else
+               goto varying;
+           }
        }
     }
 
@@ -3668,7 +5331,26 @@ simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
     }
   else
     {
-      val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
+      bool sop = false;
+
+      val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
+
+      if (val
+         && sop
+         && integer_onep (val)
+         && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+       {
+         location_t locus;
+
+         if (!EXPR_HAS_LOCATION (stmt))
+           locus = input_location;
+         else
+           locus = EXPR_LOCATION (stmt);
+         warning (OPT_Wstrict_overflow,
+                  ("%Hassuming signed overflow does not occur when "
+                   "simplifying / or %% to >> or &"),
+                  &locus);
+       }
     }
 
   if (val && integer_onep (val))
@@ -3690,7 +5372,7 @@ simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
          t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
        }
 
-      TREE_OPERAND (stmt, 1) = t;
+      GIMPLE_STMT_OPERAND (stmt, 1) = t;
       update_stmt (stmt);
     }
 }
@@ -3713,10 +5395,14 @@ simplify_abs_using_ranges (tree stmt, tree rhs)
     }
   else if (vr)
     {
-      val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
+      bool sop = false;
+
+      val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
       if (!val)
        {
-         val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
+         sop = false;
+         val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
+                                         &sop);
 
          if (val)
            {
@@ -3732,12 +5418,26 @@ simplify_abs_using_ranges (tree stmt, tree rhs)
        {
          tree t;
 
+         if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+           {
+             location_t locus;
+
+             if (!EXPR_HAS_LOCATION (stmt))
+               locus = input_location;
+             else
+               locus = EXPR_LOCATION (stmt);
+             warning (OPT_Wstrict_overflow,
+                      ("%Hassuming signed overflow does not occur when "
+                       "simplifying abs (X) to X or -X"),
+                      &locus);
+           }
+
          if (integer_onep (val))
            t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
          else
            t = op;
 
-         TREE_OPERAND (stmt, 1) = t;
+         GIMPLE_STMT_OPERAND (stmt, 1) = t;
          update_stmt (stmt);
        }
     }
@@ -3760,10 +5460,12 @@ test_for_singularity (enum tree_code cond_code, tree op0,
      the conditional as it was written.  */
   if (cond_code == LE_EXPR || cond_code == LT_EXPR)
     {
+      /* This should not be negative infinity; there is no overflow
+        here.  */
       min = TYPE_MIN_VALUE (TREE_TYPE (op0));
 
       max = op1;
-      if (cond_code == LT_EXPR)
+      if (cond_code == LT_EXPR && !is_overflow_infinity (max))
        {
          tree one = build_int_cst (TREE_TYPE (op0), 1);
          max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
@@ -3771,13 +5473,15 @@ test_for_singularity (enum tree_code cond_code, tree op0,
     }
   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
     {
+      /* This should not be positive infinity; there is no overflow
+        here.  */
       max = TYPE_MAX_VALUE (TREE_TYPE (op0));
 
       min = op1;
-      if (cond_code == GT_EXPR)
+      if (cond_code == GT_EXPR && !is_overflow_infinity (min))
        {
          tree one = build_int_cst (TREE_TYPE (op0), 1);
-         max = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), max, one);
+         min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
        }
     }
 
@@ -3794,10 +5498,10 @@ test_for_singularity (enum tree_code cond_code, tree op0,
       else
        max = vr->max;
 
-      /* If the new min/max values have converged to a
-        single value, then there is only one value which
-        can satisfy the condition, return that value.  */
-      if (min == max && is_gimple_min_invariant (min))
+      /* If the new min/max values have converged to a single value,
+        then there is only one value which can satisfy the condition,
+        return that value.  */
+      if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
        return min;
     }
   return NULL;
@@ -3839,7 +5543,7 @@ simplify_cond_using_ranges (tree stmt)
                }
 
              COND_EXPR_COND (stmt)
-               = build (EQ_EXPR, boolean_type_node, op0, new);
+               = build2 (EQ_EXPR, boolean_type_node, op0, new);
              update_stmt (stmt);
 
              if (dump_file)
@@ -3867,7 +5571,7 @@ simplify_cond_using_ranges (tree stmt)
                }
 
              COND_EXPR_COND (stmt)
-               = build (NE_EXPR, boolean_type_node, op0, new);
+               = build2 (NE_EXPR, boolean_type_node, op0, new);
              update_stmt (stmt);
 
              if (dump_file)
@@ -3887,9 +5591,9 @@ simplify_cond_using_ranges (tree stmt)
 void
 simplify_stmt_using_ranges (tree stmt)
 {
-  if (TREE_CODE (stmt) == MODIFY_EXPR)
+  if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
     {
-      tree rhs = TREE_OPERAND (stmt, 1);
+      tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
       enum tree_code rhs_code = TREE_CODE (rhs);
 
       /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
@@ -3913,6 +5617,156 @@ simplify_stmt_using_ranges (tree stmt)
     }
 }
 
+/* Stack of dest,src equivalency pairs that need to be restored after
+   each attempt to thread a block's incoming edge to an outgoing edge. 
+
+   A NULL entry is used to mark the end of pairs which need to be
+   restored.  */
+static VEC(tree,heap) *stack;
+
+/* A trivial wrapper so that we can present the generic jump threading
+   code with a simple API for simplifying statements.  STMT is the
+   statement we want to simplify, WITHIN_STMT provides the location
+   for any overflow warnings.  */
+
+static tree
+simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
+{
+  /* We only use VRP information to simplify conditionals.  This is
+     overly conservative, but it's unclear if doing more would be
+     worth the compile time cost.  */
+  if (TREE_CODE (stmt) != COND_EXPR)
+    return NULL;
+
+  return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
+}
+
+/* Blocks which have more than one predecessor and more than
+   one successor present jump threading opportunities.  ie,
+   when the block is reached from a specific predecessor, we
+   may be able to determine which of the outgoing edges will
+   be traversed.  When this optimization applies, we are able
+   to avoid conditionals at runtime and we may expose secondary
+   optimization opportunities.
+
+   This routine is effectively a driver for the generic jump
+   threading code.  It basically just presents the generic code
+   with edges that may be suitable for jump threading.
+
+   Unlike DOM, we do not iterate VRP if jump threading was successful.
+   While iterating may expose new opportunities for VRP, it is expected
+   those opportunities would be very limited and the compile time cost
+   to expose those opportunities would be significant. 
+
+   As jump threading opportunities are discovered, they are registered
+   for later realization.  */
+
+static void
+identify_jump_threads (void)
+{
+  basic_block bb;
+  tree dummy;
+
+  /* Ugh.  When substituting values earlier in this pass we can
+     wipe the dominance information.  So rebuild the dominator
+     information as we need it within the jump threading code.  */
+  calculate_dominance_info (CDI_DOMINATORS);
+
+  /* We do not allow VRP information to be used for jump threading
+     across a back edge in the CFG.  Otherwise it becomes too
+     difficult to avoid eliminating loop exit tests.  Of course
+     EDGE_DFS_BACK is not accurate at this time so we have to
+     recompute it.  */
+  mark_dfs_back_edges ();
+
+  /* Allocate our unwinder stack to unwind any temporary equivalences
+     that might be recorded.  */
+  stack = VEC_alloc (tree, heap, 20);
+
+  /* To avoid lots of silly node creation, we create a single
+     conditional and just modify it in-place when attempting to
+     thread jumps.  */
+  dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
+  dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
+
+  /* Walk through all the blocks finding those which present a
+     potential jump threading opportunity.  We could set this up
+     as a dominator walker and record data during the walk, but
+     I doubt it's worth the effort for the classes of jump
+     threading opportunities we are trying to identify at this
+     point in compilation.  */
+  FOR_EACH_BB (bb)
+    {
+      tree last, cond;
+
+      /* If the generic jump threading code does not find this block
+        interesting, then there is nothing to do.  */
+      if (! potentially_threadable_block (bb))
+       continue;
+
+      /* We only care about blocks ending in a COND_EXPR.  While there
+        may be some value in handling SWITCH_EXPR here, I doubt it's
+        terribly important.  */
+      last = bsi_stmt (bsi_last (bb));
+      if (TREE_CODE (last) != COND_EXPR)
+       continue;
+
+      /* We're basically looking for any kind of conditional with
+        integral type arguments.  */
+      cond = COND_EXPR_COND (last);
+      if ((TREE_CODE (cond) == SSA_NAME
+          && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
+         || (COMPARISON_CLASS_P (cond)
+             && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
+             && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
+             && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
+                 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
+             && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
+       {
+         edge_iterator ei;
+         edge e;
+
+         /* We've got a block with multiple predecessors and multiple
+            successors which also ends in a suitable conditional.  For
+            each predecessor, see if we can thread it to a specific
+            successor.  */
+         FOR_EACH_EDGE (e, ei, bb->preds)
+           {
+             /* Do not thread across back edges or abnormal edges
+                in the CFG.  */
+             if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
+               continue;
+
+             thread_across_edge (dummy, e, true,
+                                 &stack,
+                                 simplify_stmt_for_jump_threading);
+           }
+       }
+    }
+
+  /* We do not actually update the CFG or SSA graphs at this point as
+     ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
+     handle ASSERT_EXPRs gracefully.  */
+}
+
+/* We identified all the jump threading opportunities earlier, but could
+   not transform the CFG at that time.  This routine transforms the
+   CFG and arranges for the dominator tree to be rebuilt if necessary.
+
+   Note the SSA graph update will occur during the normal TODO
+   processing by the pass manager.  */
+static void
+finalize_jump_threads (void)
+{
+  bool cfg_altered = false;
+  cfg_altered = thread_through_all_blocks ();
+
+  /* If we threaded jumps, then we need to recompute the dominance
+     information.  */
+  if (cfg_altered)
+    free_dominance_info (CDI_DOMINATORS);
+  VEC_free (tree, heap, stack);
+}
 
 
 /* Traverse all the blocks folding conditionals with known ranges.  */
@@ -3934,8 +5788,7 @@ vrp_finalize (void)
   /* We may have ended with ranges that have exactly one value.  Those
      values can be substituted as any other copy/const propagated
      value using substitute_and_fold.  */
-  single_val_range = xmalloc (num_ssa_names * sizeof (*single_val_range));
-  memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
+  single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
 
   do_value_subst_p = false;
   for (i = 0; i < num_ssa_names; i++)
@@ -3957,6 +5810,13 @@ vrp_finalize (void)
 
   substitute_and_fold (single_val_range, true);
 
+  if (warn_array_bounds)
+      check_all_array_refs ();
+
+  /* We must identify jump threading opportunities before we release
+     the datastructures built by VRP.  */
+  identify_jump_threads ();
+
   /* Free allocated memory.  */
   for (i = 0; i < num_ssa_names; i++)
     if (vr_value[i])
@@ -3967,6 +5827,10 @@ vrp_finalize (void)
 
   free (single_val_range);
   free (vr_value);
+
+  /* So that we can distinguish between VRP data being available
+     and not available.  */
+  vr_value = NULL;
 }
 
 
@@ -4014,27 +5878,39 @@ vrp_finalize (void)
    DON'T KNOW.  In the future, it may be worthwhile to propagate
    probabilities to aid branch prediction.  */
 
-static void
+static unsigned int
 execute_vrp (void)
 {
   insert_range_assertions ();
 
-  cfg_loops = loop_optimizer_init (NULL);
-  if (cfg_loops)
-    scev_initialize (cfg_loops);
+  loop_optimizer_init (LOOPS_NORMAL);
+  if (current_loops)
+    scev_initialize ();
 
   vrp_initialize ();
   ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
   vrp_finalize ();
 
-  if (cfg_loops)
+  if (current_loops)
     {
       scev_finalize ();
-      loop_optimizer_finalize (cfg_loops, NULL);
-      current_loops = NULL;
+      loop_optimizer_finalize ();
     }
 
+  /* ASSERT_EXPRs must be removed before finalizing jump threads
+     as finalizing jump threads calls the CFG cleanup code which
+     does not properly handle ASSERT_EXPRs.  */
   remove_range_assertions ();
+
+  /* If we exposed any new variables, go ahead and put them into
+     SSA form now, before we handle jump threading.  This simplifies
+     interactions between rewriting of _DECL nodes into SSA form
+     and rewriting SSA_NAME nodes into SSA form after block
+     duplication and CFG manipulation.  */
+  update_ssa (TODO_update_ssa);
+
+  finalize_jump_threads ();
+  return 0;
 }
 
 static bool