OSDN Git Service

* MAINTAINERS (Write After Approval): Add myself.
[pf3gnuchains/gcc-fork.git] / gcc / tree-vectorizer.c
index 7f8d84a..ac3f843 100644 (file)
@@ -1,12 +1,12 @@
 /* Loop Vectorization
-   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
+   Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
    Contributed by Dorit Naishlos <dorit@il.ibm.com>
 
 This file is part of GCC.
 
 GCC is free software; you can redistribute it and/or modify it under
 the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
+Software Foundation; either version 3, or (at your option) any later
 version.
 
 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
@@ -15,9 +15,8 @@ FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.
 
 You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING.  If not, write to the Free
-Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-02111-1307, USA.  */
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
 
 /* Loop Vectorization Pass.
 
@@ -91,7 +90,7 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 
    To vectorize stmt S2, the vectorizer first finds the stmt that defines
    the operand 'b' (S1), and gets the relevant vector def 'vb' from the
-   vector stmt VS1 pointed by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
+   vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
    resulting sequence would be:
 
    VS1: vb = px[i];
@@ -112,7 +111,7 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
        Since we only vectorize operations which vector form can be
    expressed using existing tree codes, to verify that an operation is
    supported, the vectorizer checks the relevant optab at the relevant
-   machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
+   machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If
    the value found is CODE_FOR_nothing, then there's no target support, and
    we can't vectorize the stmt.
 
@@ -124,7 +123,6 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 #include "system.h"
 #include "coretypes.h"
 #include "tm.h"
-#include "errors.h"
 #include "ggc.h"
 #include "tree.h"
 #include "target.h"
@@ -137,7 +135,9 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 #include "cfgloop.h"
 #include "cfglayout.h"
 #include "expr.h"
+#include "recog.h"
 #include "optabs.h"
+#include "params.h"
 #include "toplev.h"
 #include "tree-chrec.h"
 #include "tree-data-ref.h"
@@ -147,27 +147,8 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 #include "tree-pass.h"
 
 /*************************************************************************
-  Simple Loop Peeling Utilities
- *************************************************************************/
-static struct loop *slpeel_tree_duplicate_loop_to_edge_cfg 
-  (struct loop *, struct loops *, edge);
-static void slpeel_update_phis_for_duplicate_loop 
-  (struct loop *, struct loop *, bool after);
-static void slpeel_update_phi_nodes_for_guard (edge, struct loop *, bool, bool);
-static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block);
-
-static void allocate_new_names (bitmap);
-static void rename_use_op (use_operand_p);
-static void rename_def_op (def_operand_p, tree);
-static void rename_variables_in_bb (basic_block);
-static void free_new_names (bitmap);
-static void rename_variables_in_loop (struct loop *);
-
-/*************************************************************************
   General Vectorization Utilities
  *************************************************************************/
-static void vect_set_dump_settings (void);
-static bool need_imm_uses_for (tree);
 
 /* vect_dump will be set to stderr or dump_file if exist.  */
 FILE *vect_dump;
@@ -176,7 +157,11 @@ FILE *vect_dump;
    to mark that it's uninitialized.  */
 enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
 
+/* Loop location.  */
+static LOC vect_loop_location;
 
+/* Bitmap of virtual variables to be renamed.  */
+bitmap vect_memsyms_to_rename;
 \f
 /*************************************************************************
   Simple Loop Peeling Utilities
@@ -185,72 +170,25 @@ enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
  *************************************************************************/
 
 
-/* For each definition in DEFINITIONS this function allocates 
-   new ssa name.  */
-
-static void
-allocate_new_names (bitmap definitions)
-{
-  unsigned ver;
-  bitmap_iterator bi;
-
-  EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
-    {
-      tree def = ssa_name (ver);
-      tree *new_name_ptr = xmalloc (sizeof (tree));
-
-      bool abnormal = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def);
-
-      *new_name_ptr = duplicate_ssa_name (def, SSA_NAME_DEF_STMT (def));
-      SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*new_name_ptr) = abnormal;
-
-      SSA_NAME_AUX (def) = new_name_ptr;
-    }
-}
-
-
 /* Renames the use *OP_P.  */
 
 static void
 rename_use_op (use_operand_p op_p)
 {
-  tree *new_name_ptr;
+  tree new_name;
 
   if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
     return;
 
-  new_name_ptr = SSA_NAME_AUX (USE_FROM_PTR (op_p));
+  new_name = get_current_def (USE_FROM_PTR (op_p));
 
   /* Something defined outside of the loop.  */
-  if (!new_name_ptr)
+  if (!new_name)
     return;
 
   /* An ordinary ssa name defined in the loop.  */
 
-  SET_USE (op_p, *new_name_ptr);
-}
-
-
-/* Renames the def *OP_P in statement STMT.  */
-
-static void
-rename_def_op (def_operand_p op_p, tree stmt)
-{
-  tree *new_name_ptr;
-
-  if (TREE_CODE (DEF_FROM_PTR (op_p)) != SSA_NAME)
-    return;
-
-  new_name_ptr = SSA_NAME_AUX (DEF_FROM_PTR (op_p));
-
-  /* Something defined outside of the loop.  */
-  if (!new_name_ptr)
-    return;
-
-  /* An ordinary ssa name defined in the loop.  */
-
-  SET_DEF (op_p, *new_name_ptr);
-  SSA_NAME_DEF_STMT (DEF_FROM_PTR (op_p)) = stmt;
+  SET_USE (op_p, new_name);
 }
 
 
@@ -262,51 +200,17 @@ rename_variables_in_bb (basic_block bb)
   tree phi;
   block_stmt_iterator bsi;
   tree stmt;
-  stmt_ann_t ann;
-  use_optype uses;
-  vuse_optype vuses;
-  def_optype defs;
-  v_may_def_optype v_may_defs;
-  v_must_def_optype v_must_defs;
-  unsigned i;
+  use_operand_p use_p;
+  ssa_op_iter iter;
   edge e;
   edge_iterator ei;
   struct loop *loop = bb->loop_father;
 
-  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
-    rename_def_op (PHI_RESULT_PTR (phi), phi);
-
   for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
     {
       stmt = bsi_stmt (bsi);
-      get_stmt_operands (stmt);
-      ann = stmt_ann (stmt);
-
-      uses = USE_OPS (ann);
-      for (i = 0; i < NUM_USES (uses); i++)
-       rename_use_op (USE_OP_PTR (uses, i));
-
-      defs = DEF_OPS (ann);
-      for (i = 0; i < NUM_DEFS (defs); i++)
-       rename_def_op (DEF_OP_PTR (defs, i), stmt);
-
-      vuses = VUSE_OPS (ann);
-      for (i = 0; i < NUM_VUSES (vuses); i++)
-       rename_use_op (VUSE_OP_PTR (vuses, i));
-
-      v_may_defs = V_MAY_DEF_OPS (ann);
-      for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
-       {
-         rename_use_op (V_MAY_DEF_OP_PTR (v_may_defs, i));
-         rename_def_op (V_MAY_DEF_RESULT_PTR (v_may_defs, i), stmt);
-       }
-
-      v_must_defs = V_MUST_DEF_OPS (ann);
-      for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
-       {
-         rename_use_op (V_MUST_DEF_KILL_PTR (v_must_defs, i));
-         rename_def_op (V_MUST_DEF_RESULT_PTR (v_must_defs, i), stmt);
-       }
+      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
+       rename_use_op (use_p);
     }
 
   FOR_EACH_EDGE (e, ei, bb->succs)
@@ -319,30 +223,9 @@ rename_variables_in_bb (basic_block bb)
 }
 
 
-/* Releases the structures holding the new ssa names.  */
-
-static void
-free_new_names (bitmap definitions)
-{
-  unsigned ver;
-  bitmap_iterator bi;
-
-  EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
-    {
-      tree def = ssa_name (ver);
-
-      if (SSA_NAME_AUX (def))
-       {
-         free (SSA_NAME_AUX (def));
-         SSA_NAME_AUX (def) = NULL;
-       }
-    }
-}
-
-
 /* Renames variables in new generated LOOP.  */
 
-static void
+void
 rename_variables_in_loop (struct loop *loop)
 {
   unsigned i;
@@ -368,12 +251,12 @@ static void
 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
                                       struct loop *new_loop, bool after)
 {
-  tree *new_name_ptr, new_ssa_name;
+  tree new_ssa_name;
   tree phi_new, phi_orig;
   tree def;
   edge orig_loop_latch = loop_latch_edge (orig_loop);
   edge orig_entry_e = loop_preheader_edge (orig_loop);
-  edge new_loop_exit_e = new_loop->single_exit;
+  edge new_loop_exit_e = single_exit (new_loop);
   edge new_loop_entry_e = loop_preheader_edge (new_loop);
   edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
 
@@ -420,13 +303,15 @@ slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
       if (TREE_CODE (def) != SSA_NAME)
         continue;
 
-      new_name_ptr = SSA_NAME_AUX (def);
-      if (!new_name_ptr)
-        /* Something defined outside of the loop.  */
-        continue;
+      new_ssa_name = get_current_def (def);
+      if (!new_ssa_name)
+       {
+         /* This only happens if there are no definitions
+            inside the loop. use the phi_result in this case.  */
+         new_ssa_name = PHI_RESULT (phi_new);
+       }
 
       /* An ordinary ssa name defined in the loop.  */
-      new_ssa_name = *new_name_ptr;
       add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
 
       /* step 3 (case 1).  */
@@ -448,110 +333,403 @@ slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
         controls whether LOOP is to be executed.  GUARD_EDGE is the edge that
         originates from the guard-bb, skips LOOP and reaches the (unique) exit
         bb of LOOP.  This loop-exit-bb is an empty bb with one successor.
-        We denote this bb NEW_MERGE_BB because it had a single predecessor (the
-        LOOP header) before the guard code was added, and now it became a merge
+        We denote this bb NEW_MERGE_BB because before the guard code was added
+        it had a single predecessor (the LOOP header), and now it became a merge
         point of two paths - the path that ends with the LOOP exit-edge, and
         the path that ends with GUARD_EDGE.
+   - NEW_EXIT_BB: New basic block that is added by this function between LOOP
+        and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
 
-        This function creates and updates the relevant phi nodes to account for
-        the new incoming edge (GUARD_EDGE) into NEW_MERGE_BB:
-        1. Create phi nodes at NEW_MERGE_BB.
-        2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
-           UPDATE_BB).  UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
-           was added:
+   ===> The CFG before the guard-code was added:
+        LOOP_header_bb:
+          loop_body
+          if (exit_loop) goto update_bb
+          else           goto LOOP_header_bb
+        update_bb:
 
-        ===> The CFG before the guard-code was added:
+   ==> The CFG after the guard-code was added:
+        guard_bb:
+          if (LOOP_guard_condition) goto new_merge_bb
+          else                      goto LOOP_header_bb
         LOOP_header_bb:
-          if (exit_loop) goto update_bb : LOOP_header_bb
+          loop_body
+          if (exit_loop_condition) goto new_merge_bb
+          else                     goto LOOP_header_bb
+        new_merge_bb:
+          goto update_bb
         update_bb:
 
-        ==> The CFG after the guard-code was added:
-        guard_bb: 
-          if (LOOP_guard_condition) goto new_merge_bb : LOOP_header_bb
+   ==> The CFG after this function:
+        guard_bb:
+          if (LOOP_guard_condition) goto new_merge_bb
+          else                      goto LOOP_header_bb
         LOOP_header_bb:
-          if (exit_loop_condition) goto new_merge_bb : LOOP_header_bb
+          loop_body
+          if (exit_loop_condition) goto new_exit_bb
+          else                     goto LOOP_header_bb
+        new_exit_bb:
         new_merge_bb:
           goto update_bb
         update_bb:
 
-   - ENTRY_PHIS: If ENTRY_PHIS is TRUE, this indicates that the phis in 
-        UPDATE_BB are loop entry phis, like the phis in the LOOP header,
-        organized in the same order. 
-        If ENTRY_PHIs is FALSE, this indicates that the phis in UPDATE_BB are
-        loop exit phis.
-
-   - IS_NEW_LOOP: TRUE if LOOP is a new loop (a duplicated copy of another
-        "original" loop).  FALSE if LOOP is an original loop (not a newly 
-        created copy).  The SSA_NAME_AUX fields of the defs in the original
-        loop are the corresponding new ssa-names used in the new duplicated
-        loop copy.  IS_NEW_LOOP indicates which of the two args of the phi 
-        nodes in UPDATE_BB takes the original ssa-name, and which takes the 
-        new name: If IS_NEW_LOOP is TRUE, the phi-arg that is associated with
-        the LOOP-exit-edge takes the new-name, and the phi-arg that is 
-        associated with GUARD_EDGE takes the original name.  If IS_NEW_LOOP is
-        FALSE, it's the other way around.
+   This function:
+   1. creates and updates the relevant phi nodes to account for the new
+      incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
+      1.1. Create phi nodes at NEW_MERGE_BB.
+      1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
+           UPDATE_BB).  UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
+   2. preserves loop-closed-ssa-form by creating the required phi nodes
+      at the exit of LOOP (i.e, in NEW_EXIT_BB).
+
+   There are two flavors to this function:
+
+   slpeel_update_phi_nodes_for_guard1:
+     Here the guard controls whether we enter or skip LOOP, where LOOP is a
+     prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
+     for variables that have phis in the loop header.
+
+   slpeel_update_phi_nodes_for_guard2:
+     Here the guard controls whether we enter or skip LOOP, where LOOP is an
+     epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
+     for variables that have phis in the loop exit.
+
+   I.E., the overall structure is:
+
+        loop1_preheader_bb:
+                guard1 (goto loop1/merg1_bb)
+        loop1
+        loop1_exit_bb:
+                guard2 (goto merge1_bb/merge2_bb)
+        merge1_bb
+        loop2
+        loop2_exit_bb
+        merge2_bb
+        next_bb
+
+   slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
+   loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
+   that have phis in loop1->header).
+
+   slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
+   loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
+   that have phis in next_bb). It also adds some of these phis to
+   loop1_exit_bb.
+
+   slpeel_update_phi_nodes_for_guard1 is always called before
+   slpeel_update_phi_nodes_for_guard2. They are both needed in order
+   to create correct data-flow and loop-closed-ssa-form.
+
+   Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
+   that change between iterations of a loop (and therefore have a phi-node
+   at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
+   phis for variables that are used out of the loop (and therefore have 
+   loop-closed exit phis). Some variables may be both updated between 
+   iterations and used after the loop. This is why in loop1_exit_bb we
+   may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
+   and exit phis (created by slpeel_update_phi_nodes_for_guard2).
+
+   - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
+     an original loop. i.e., we have:
+
+           orig_loop
+           guard_bb (goto LOOP/new_merge)
+           new_loop <-- LOOP
+           new_exit
+           new_merge
+           next_bb
+
+     If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
+     have:
+
+           new_loop
+           guard_bb (goto LOOP/new_merge)
+           orig_loop <-- LOOP
+           new_exit
+           new_merge
+           next_bb
+
+     The SSA names defined in the original loop have a current
+     reaching definition that that records the corresponding new
+     ssa-name used in the new duplicated loop copy.
   */
 
+/* Function slpeel_update_phi_nodes_for_guard1
+   
+   Input:
+   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
+   - DEFS - a bitmap of ssa names to mark new names for which we recorded
+            information. 
+   
+   In the context of the overall structure, we have:
+
+        loop1_preheader_bb: 
+                guard1 (goto loop1/merg1_bb)
+LOOP->  loop1
+        loop1_exit_bb:
+                guard2 (goto merge1_bb/merge2_bb)
+        merge1_bb
+        loop2
+        loop2_exit_bb
+        merge2_bb
+        next_bb
+
+   For each name updated between loop iterations (i.e - for each name that has
+   an entry (loop-header) phi in LOOP) we create a new phi in:
+   1. merge1_bb (to account for the edge from guard1)
+   2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
+*/
+
 static void
-slpeel_update_phi_nodes_for_guard (edge guard_edge, 
-                                  struct loop *loop,
-                                  bool entry_phis,
-                                  bool is_new_loop)
+slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
+                                    bool is_new_loop, basic_block *new_exit_bb,
+                                    bitmap *defs)
 {
-  tree orig_phi, new_phi, update_phi;
+  tree orig_phi, new_phi;
+  tree update_phi, update_phi2;
   tree guard_arg, loop_arg;
   basic_block new_merge_bb = guard_edge->dest;
   edge e = EDGE_SUCC (new_merge_bb, 0);
   basic_block update_bb = e->dest;
-  basic_block orig_bb = (entry_phis ? loop->header : update_bb);
+  basic_block orig_bb = loop->header;
+  edge new_exit_e;
+  tree current_new_name;
+  tree name;
+
+  /* Create new bb between loop and new_merge_bb.  */
+  *new_exit_bb = split_edge (single_exit (loop));
+
+  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
 
   for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb);
        orig_phi && update_phi;
        orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi))
     {
-      /* 1. Generate new phi node in NEW_MERGE_BB:  */
+      /* Virtual phi; Mark it for renaming. We actually want to call
+        mar_sym_for_renaming, but since all ssa renaming datastructures
+        are going to be freed before we get to call ssa_upate, we just
+        record this name for now in a bitmap, and will mark it for
+        renaming later.  */
+      name = PHI_RESULT (orig_phi);
+      if (!is_gimple_reg (SSA_NAME_VAR (name)))
+        bitmap_set_bit (vect_memsyms_to_rename, DECL_UID (SSA_NAME_VAR (name)));
+
+      /** 1. Handle new-merge-point phis  **/
+
+      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
       new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                  new_merge_bb);
 
-      /* 2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
+      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
             of LOOP. Set the two phi args in NEW_PHI for these edges:  */
-      if (entry_phis)
+      loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
+      guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
+
+      add_phi_arg (new_phi, loop_arg, new_exit_e);
+      add_phi_arg (new_phi, guard_arg, guard_edge);
+
+      /* 1.3. Update phi in successor block.  */
+      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
+                  || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
+      SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
+      update_phi2 = new_phi;
+
+
+      /** 2. Handle loop-closed-ssa-form phis  **/
+
+      if (!is_gimple_reg (PHI_RESULT (orig_phi)))
+       continue;
+
+      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
+      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+                                 *new_exit_bb);
+
+      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
+      add_phi_arg (new_phi, loop_arg, single_exit (loop));
+
+      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
+      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
+      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
+
+      /* 2.4. Record the newly created name with set_current_def.
+         We want to find a name such that
+                name = get_current_def (orig_loop_name)
+         and to set its current definition as follows:
+                set_current_def (name, new_phi_name)
+
+         If LOOP is a new loop then loop_arg is already the name we're
+         looking for. If LOOP is the original loop, then loop_arg is
+         the orig_loop_name and the relevant name is recorded in its
+         current reaching definition.  */
+      if (is_new_loop)
+        current_new_name = loop_arg;
+      else
+        {
+          current_new_name = get_current_def (loop_arg);
+         /* current_def is not available only if the variable does not
+            change inside the loop, in which case we also don't care
+            about recording a current_def for it because we won't be
+            trying to create loop-exit-phis for it.  */
+         if (!current_new_name)
+           continue;
+        }
+      gcc_assert (get_current_def (current_new_name) == NULL_TREE);
+
+      set_current_def (current_new_name, PHI_RESULT (new_phi));
+      bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
+    }
+
+  set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
+}
+
+
+/* Function slpeel_update_phi_nodes_for_guard2
+
+   Input:
+   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
+
+   In the context of the overall structure, we have:
+
+        loop1_preheader_bb: 
+                guard1 (goto loop1/merg1_bb)
+        loop1
+        loop1_exit_bb: 
+                guard2 (goto merge1_bb/merge2_bb)
+        merge1_bb
+LOOP->  loop2
+        loop2_exit_bb
+        merge2_bb
+        next_bb
+
+   For each name used out side the loop (i.e - for each name that has an exit
+   phi in next_bb) we create a new phi in:
+   1. merge2_bb (to account for the edge from guard_bb) 
+   2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
+   3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
+      if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
+*/
+
+static void
+slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
+                                    bool is_new_loop, basic_block *new_exit_bb)
+{
+  tree orig_phi, new_phi;
+  tree update_phi, update_phi2;
+  tree guard_arg, loop_arg;
+  basic_block new_merge_bb = guard_edge->dest;
+  edge e = EDGE_SUCC (new_merge_bb, 0);
+  basic_block update_bb = e->dest;
+  edge new_exit_e;
+  tree orig_def, orig_def_new_name;
+  tree new_name, new_name2;
+  tree arg;
+
+  /* Create new bb between loop and new_merge_bb.  */
+  *new_exit_bb = split_edge (single_exit (loop));
+
+  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
+
+  for (update_phi = phi_nodes (update_bb); update_phi; 
+       update_phi = PHI_CHAIN (update_phi))
+    {
+      orig_phi = update_phi;
+      orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
+      /* This loop-closed-phi actually doesn't represent a use
+         out of the loop - the phi arg is a constant.  */ 
+      if (TREE_CODE (orig_def) != SSA_NAME)
+        continue;
+      orig_def_new_name = get_current_def (orig_def);
+      arg = NULL_TREE;
+
+      /** 1. Handle new-merge-point phis  **/
+
+      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
+      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+                                 new_merge_bb);
+
+      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
+            of LOOP. Set the two PHI args in NEW_PHI for these edges:  */
+      new_name = orig_def;
+      new_name2 = NULL_TREE;
+      if (orig_def_new_name)
+        {
+          new_name = orig_def_new_name;
+         /* Some variables have both loop-entry-phis and loop-exit-phis.
+            Such variables were given yet newer names by phis placed in
+            guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
+            new_name2 = get_current_def (get_current_def (orig_name)).  */
+          new_name2 = get_current_def (new_name);
+        }
+  
+      if (is_new_loop)
         {
-          loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi,
-                                            loop_latch_edge (loop));
-          guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi,
-                                            loop_preheader_edge (loop));
+          guard_arg = orig_def;
+          loop_arg = new_name;
         }
-      else /* exit phis */
+      else
         {
-          tree orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
-          tree *new_name_ptr = SSA_NAME_AUX (orig_def);
-          tree new_name;
-
-          if (new_name_ptr)
-            new_name = *new_name_ptr;
-          else
-            /* Something defined outside of the loop  */
-            new_name = orig_def;
-
-          if (is_new_loop)
-            {
-              guard_arg = orig_def;
-              loop_arg = new_name;
-            }
-          else
-            {
-              guard_arg = new_name;
-              loop_arg = orig_def;
-            }
+          guard_arg = new_name;
+          loop_arg = orig_def;
         }
-      add_phi_arg (new_phi, loop_arg, loop->single_exit);
+      if (new_name2)
+        guard_arg = new_name2;
+  
+      add_phi_arg (new_phi, loop_arg, new_exit_e);
       add_phi_arg (new_phi, guard_arg, guard_edge);
 
-      /* 3. Update phi in successor block.  */
-      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
-                  || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
+      /* 1.3. Update phi in successor block.  */
+      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
       SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
+      update_phi2 = new_phi;
+
+
+      /** 2. Handle loop-closed-ssa-form phis  **/
+
+      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
+      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+                                 *new_exit_bb);
+
+      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
+      add_phi_arg (new_phi, loop_arg, single_exit (loop));
+
+      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
+      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
+      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
+
+
+      /** 3. Handle loop-closed-ssa-form phis for first loop  **/
+
+      /* 3.1. Find the relevant names that need an exit-phi in
+        GUARD_BB, i.e. names for which
+        slpeel_update_phi_nodes_for_guard1 had not already created a
+        phi node. This is the case for names that are used outside
+        the loop (and therefore need an exit phi) but are not updated
+        across loop iterations (and therefore don't have a
+        loop-header-phi).
+
+        slpeel_update_phi_nodes_for_guard1 is responsible for
+        creating loop-exit phis in GUARD_BB for names that have a
+        loop-header-phi.  When such a phi is created we also record
+        the new name in its current definition.  If this new name
+        exists, then guard_arg was set to this new name (see 1.2
+        above).  Therefore, if guard_arg is not this new name, this
+        is an indication that an exit-phi in GUARD_BB was not yet
+        created, so we take care of it here.  */
+      if (guard_arg == new_name2)
+       continue;
+      arg = guard_arg;
+
+      /* 3.2. Generate new phi node in GUARD_BB:  */
+      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+                                 guard_edge->src);
+
+      /* 3.3. GUARD_BB has one incoming edge:  */
+      gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
+      add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0));
+
+      /* 3.4. Update phi in successor of GUARD_BB:  */
+      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
+                                                                == guard_arg);
+      SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
     }
 
   set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
@@ -568,22 +746,16 @@ slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
 {
   tree indx_before_incr, indx_after_incr, cond_stmt, cond;
   tree orig_cond;
-  edge exit_edge = loop->single_exit;
+  edge exit_edge = single_exit (loop);
   block_stmt_iterator loop_cond_bsi;
   block_stmt_iterator incr_bsi;
   bool insert_after;
-  tree begin_label = tree_block_label (loop->latch);
-  tree exit_label = tree_block_label (loop->single_exit->dest);
   tree init = build_int_cst (TREE_TYPE (niters), 0);
   tree step = build_int_cst (TREE_TYPE (niters), 1);
-  tree then_label;
-  tree else_label;
   LOC loop_loc;
 
   orig_cond = get_loop_exit_condition (loop);
-#ifdef ENABLE_CHECKING
   gcc_assert (orig_cond);
-#endif
   loop_cond_bsi = bsi_for_stmt (orig_cond);
 
   standard_iv_increment_position (loop, &incr_bsi, &insert_after);
@@ -591,24 +763,16 @@ slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
              &incr_bsi, insert_after, &indx_before_incr, &indx_after_incr);
 
   if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop.  */
-    {
-      cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
-      then_label = build1 (GOTO_EXPR, void_type_node, exit_label);
-      else_label = build1 (GOTO_EXPR, void_type_node, begin_label);
-    }
+    cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
   else /* 'then' edge loops back.  */
-    {
-      cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
-      then_label = build1 (GOTO_EXPR, void_type_node, begin_label);
-      else_label = build1 (GOTO_EXPR, void_type_node, exit_label);
-    }
+    cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
 
   cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond,
-                    then_label, else_label);
+                     NULL_TREE, NULL_TREE);
   bsi_insert_before (&loop_cond_bsi, cond_stmt, BSI_SAME_STMT);
 
   /* Remove old loop exit test:  */
-  bsi_remove (&loop_cond_bsi);
+  bsi_remove (&loop_cond_bsi, true);
 
   loop_loc = find_loop_location (loop);
   if (dump_file && (dump_flags & TDF_DETAILS))
@@ -626,9 +790,8 @@ slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
 /* Given LOOP this function generates a new copy of it and puts it 
    on E which is either the entry or exit of LOOP.  */
 
-static struct loop *
-slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops, 
-                                       edge e)
+struct loop *
+slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
 {
   struct loop *new_loop;
   basic_block *new_bbs, *bbs;
@@ -636,8 +799,9 @@ slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
   bool was_imm_dom;
   basic_block exit_dest; 
   tree phi, phi_arg;
+  edge exit, new_exit;
 
-  at_exit = (e == loop->single_exit); 
+  at_exit = (e == single_exit (loop)); 
   if (!at_exit && e != loop_preheader_edge (loop))
     return NULL;
 
@@ -651,28 +815,30 @@ slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
     }
 
   /* Generate new loop structure.  */
-  new_loop = duplicate_loop (loops, loop, loop->outer);
+  new_loop = duplicate_loop (loop, loop_outer (loop));
   if (!new_loop)
     {
       free (bbs);
       return NULL;
     }
 
-  exit_dest = loop->single_exit->dest;
+  exit_dest = single_exit (loop)->dest;
   was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS, 
                                          exit_dest) == loop->header ? 
                 true : false);
 
-  new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
+  new_bbs = XNEWVEC (basic_block, loop->num_nodes);
 
+  exit = single_exit (loop);
   copy_bbs (bbs, loop->num_nodes, new_bbs,
-           &loop->single_exit, 1, &new_loop->single_exit, NULL);
+           &exit, 1, &new_exit, NULL,
+           e->src);
 
   /* Duplicating phi args at exit bbs as coming 
      also from exit of duplicated loop.  */
   for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi))
     {
-      phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->single_exit);
+      phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
       if (phi_arg)
        {
          edge new_loop_exit_edge;
@@ -689,6 +855,7 @@ slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
   if (at_exit) /* Add the loop copy at exit.  */
     {
       redirect_edge_and_branch_force (e, new_loop->header);
+      PENDING_STMT (e) = NULL;
       set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
       if (was_imm_dom)
        set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
@@ -706,6 +873,7 @@ slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
        new_exit_e = EDGE_SUCC (new_loop->header, 1); 
 
       redirect_edge_and_branch_force (new_exit_e, loop->header);
+      PENDING_STMT (new_exit_e) = NULL;
       set_immediate_dominator (CDI_DOMINATORS, loop->header,
                               new_exit_e->src);
 
@@ -719,6 +887,7 @@ slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
        }    
 
       redirect_edge_and_branch_force (entry_e, new_loop->header);
+      PENDING_STMT (entry_e) = NULL;
       set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
     }
 
@@ -736,25 +905,30 @@ slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
 
 static edge
 slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
-                       basic_block dom_bb)
+                      basic_block dom_bb)
 {
   block_stmt_iterator bsi;
   edge new_e, enter_e;
-  tree cond_stmt, then_label, else_label;
+  tree cond_stmt;
+  tree gimplify_stmt_list;
 
   enter_e = EDGE_SUCC (guard_bb, 0);
   enter_e->flags &= ~EDGE_FALLTHRU;
   enter_e->flags |= EDGE_FALSE_VALUE;
   bsi = bsi_last (guard_bb);
 
-  then_label = build1 (GOTO_EXPR, void_type_node,
-                       tree_block_label (exit_bb));
-  else_label = build1 (GOTO_EXPR, void_type_node,
-                       tree_block_label (enter_e->dest));
+  cond =
+    force_gimple_operand (cond, &gimplify_stmt_list, true,
+                         NULL_TREE);
   cond_stmt = build3 (COND_EXPR, void_type_node, cond,
-                    then_label, else_label);
+                     NULL_TREE, NULL_TREE);
+  if (gimplify_stmt_list)
+    bsi_insert_after (&bsi, gimplify_stmt_list, BSI_NEW_STMT);
+
+  bsi = bsi_last (guard_bb);
   bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
-  /* Add new edge to connect entry block to the second loop.  */
+
+  /* Add new edge to connect guard block to the merge/loop-exit block.  */
   new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
   set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
   return new_e;
@@ -770,23 +944,23 @@ slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
  */
 
 bool
-slpeel_can_duplicate_loop_p (struct loop *loop, edge e)
+slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
 {
-  edge exit_e = loop->single_exit;
+  edge exit_e = single_exit (loop);
   edge entry_e = loop_preheader_edge (loop);
   tree orig_cond = get_loop_exit_condition (loop);
   block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src);
 
-  if (any_marked_for_rewrite_p ())
+  if (need_ssa_update_p ())
     return false;
 
   if (loop->inner
       /* All loops have an outer scope; the only case loop->outer is NULL is for
          the function itself.  */
-      || !loop->outer
+      || !loop_outer (loop)
       || loop->num_nodes != 2
       || !empty_block_p (loop->latch)
-      || !loop->single_exit
+      || !single_exit (loop)
       /* Verify that new loop exit condition can be trivially modified.  */
       || (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi))
       || (e != exit_e && e != entry_e))
@@ -800,7 +974,7 @@ void
 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
                                  struct loop *second_loop)
 {
-  basic_block loop1_exit_bb = first_loop->single_exit->dest;
+  basic_block loop1_exit_bb = single_exit (first_loop)->dest;
   basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
   basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
 
@@ -814,7 +988,7 @@ slpeel_verify_cfg_after_peeling (struct loop *first_loop,
   /* 1. Verify that one of the successors of first_loopt->exit is the preheader
         of second_loop.  */
    
-  /* The preheader of new_loop is expected to have two predessors:
+  /* The preheader of new_loop is expected to have two predecessors:
      first_loop->exit and the block that precedes first_loop.  */
 
   gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2 
@@ -829,12 +1003,89 @@ slpeel_verify_cfg_after_peeling (struct loop *first_loop,
 }
 #endif
 
+/* If the run time cost model check determines that vectorization is
+   not profitable and hence scalar loop should be generated then set
+   FIRST_NITERS to prologue peeled iterations. This will allow all the
+   iterations to be executed in the prologue peeled scalar loop.  */
+
+void
+set_prologue_iterations (basic_block bb_before_first_loop,
+                        tree first_niters,
+                        struct loop *loop,
+                        unsigned int th)
+{
+  edge e;
+  basic_block cond_bb, then_bb;
+  tree var, prologue_after_cost_adjust_name, stmt;
+  block_stmt_iterator bsi;
+  tree newphi;
+  edge e_true, e_false, e_fallthru;
+  tree cond_stmt;
+  tree gimplify_stmt_list;
+  tree cost_pre_condition = NULL_TREE;
+  tree scalar_loop_iters = 
+    unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
+
+  e = single_pred_edge (bb_before_first_loop);
+  cond_bb = split_edge(e);
+
+  e = single_pred_edge (bb_before_first_loop);
+  then_bb = split_edge(e);
+  set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
+
+  e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
+                                  EDGE_FALSE_VALUE);
+  set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
+
+  e_true = EDGE_PRED (then_bb, 0);
+  e_true->flags &= ~EDGE_FALLTHRU;
+  e_true->flags |= EDGE_TRUE_VALUE;
+
+  e_fallthru = EDGE_SUCC (then_bb, 0);
+
+  cost_pre_condition =
+    build2 (LE_EXPR, boolean_type_node, scalar_loop_iters, 
+           build_int_cst (TREE_TYPE (scalar_loop_iters), th));
+  cost_pre_condition =
+    force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
+                         true, NULL_TREE);
+  cond_stmt = build3 (COND_EXPR, void_type_node, cost_pre_condition,
+                     NULL_TREE, NULL_TREE);
+
+  bsi = bsi_last (cond_bb);
+  if (gimplify_stmt_list)
+    bsi_insert_after (&bsi, gimplify_stmt_list, BSI_NEW_STMT);
+
+  bsi = bsi_last (cond_bb);
+  bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
+                                         
+  var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
+                       "prologue_after_cost_adjust");
+  add_referenced_var (var);
+  prologue_after_cost_adjust_name = 
+    force_gimple_operand (scalar_loop_iters, &stmt, false, var);
+
+  bsi = bsi_last (then_bb);
+  if (stmt)
+    bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
+
+  newphi = create_phi_node (var, bb_before_first_loop);
+  add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru);
+  add_phi_arg (newphi, first_niters, e_false);
+
+  first_niters = PHI_RESULT (newphi);
+}
+
+
 /* Function slpeel_tree_peel_loop_to_edge.
 
    Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
    that is placed on the entry (exit) edge E of LOOP. After this transformation
    we have two loops one after the other - first-loop iterates FIRST_NITERS
    times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
+   If the cost model indicates that it is profitable to emit a scalar 
+   loop instead of the vector one, then the prolog (epilog) loop will iterate
+   for the entire unchanged scalar iterations of the loop.
 
    Input:
    - LOOP: the loop to be peeled.
@@ -849,6 +1100,13 @@ slpeel_verify_cfg_after_peeling (struct loop *first_loop,
         for updating the loop bound of the first-loop to FIRST_NITERS.  If it
         is false, the caller of this function may want to take care of this
         (this can be useful if we don't want new stmts added to first-loop).
+   - TH: cost model profitability threshold of iterations for vectorization.
+   - CHECK_PROFITABILITY: specify whether cost model check has not occured
+                          during versioning and hence needs to occur during
+                         prologue generation or whether cost model check 
+                         has not occured during prologue generation and hence
+                         needs to occur during epilogue generation.
+           
 
    Output:
    The function returns a pointer to the new loop-copy, or NULL if it failed
@@ -867,19 +1125,22 @@ slpeel_verify_cfg_after_peeling (struct loop *first_loop,
 */
 
 struct loop*
-slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops, 
+slpeel_tree_peel_loop_to_edge (struct loop *loop, 
                               edge e, tree first_niters, 
-                              tree niters, bool update_first_loop_count)
+                              tree niters, bool update_first_loop_count,
+                              unsigned int th, bool check_profitability)
 {
   struct loop *new_loop = NULL, *first_loop, *second_loop;
   edge skip_e;
-  tree pre_condition;
+  tree pre_condition = NULL_TREE;
   bitmap definitions;
   basic_block bb_before_second_loop, bb_after_second_loop;
   basic_block bb_before_first_loop;
   basic_block bb_between_loops;
-  edge exit_e = loop->single_exit;
+  basic_block new_exit_bb;
+  edge exit_e = single_exit (loop);
   LOC loop_loc;
+  tree cost_pre_condition = NULL_TREE;
   
   if (!slpeel_can_duplicate_loop_p (loop, e))
     return NULL;
@@ -905,7 +1166,7 @@ slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops,
         orig_exit_bb:
    */
   
-  if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, loops, e)))
+  if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
     {
       loop_loc = find_loop_location (loop);
       if (dump_file && (dump_flags & TDF_DETAILS))
@@ -931,43 +1192,135 @@ slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops,
       second_loop = loop;
     }
 
-  definitions = marked_ssa_names ();
-  allocate_new_names (definitions);
+  definitions = ssa_names_to_replace ();
   slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
   rename_variables_in_loop (new_loop);
 
 
-  /* 2. Add the guard that controls whether the first loop is executed.
-        Resulting CFG would be:
+  /* 2.  Add the guard code in one of the following ways:
 
-        bb_before_first_loop:
-        if (FIRST_NITERS == 0) GOTO bb_before_second_loop
-                               GOTO first-loop
+     2.a Add the guard that controls whether the first loop is executed.
+         This occurs when this function is invoked for prologue or epilogiue
+        generation and when the cost model check can be done at compile time.
 
-        first_loop:
-        do {
-        } while ...
+         Resulting CFG would be:
 
-        bb_before_second_loop:
+         bb_before_first_loop:
+         if (FIRST_NITERS == 0) GOTO bb_before_second_loop
+                                GOTO first-loop
 
-        second_loop:
-        do {
-        } while ...
+         first_loop:
+         do {
+         } while ...
 
-        orig_exit_bb:
-   */
+         bb_before_second_loop:
+
+         second_loop:
+         do {
+         } while ...
+
+         orig_exit_bb:
+
+     2.b Add the cost model check that allows the prologue
+         to iterate for the entire unchanged scalar
+         iterations of the loop in the event that the cost
+         model indicates that the scalar loop is more
+         profitable than the vector one. This occurs when
+        this function is invoked for prologue generation
+        and the cost model check needs to be done at run
+        time.
+
+         Resulting CFG after prologue peeling would be:
+
+         if (scalar_loop_iterations <= th)
+           FIRST_NITERS = scalar_loop_iterations
+
+         bb_before_first_loop:
+         if (FIRST_NITERS == 0) GOTO bb_before_second_loop
+                                GOTO first-loop
+
+         first_loop:
+         do {
+         } while ...
+
+         bb_before_second_loop:
+
+         second_loop:
+         do {
+         } while ...
+
+         orig_exit_bb:
+
+     2.c Add the cost model check that allows the epilogue
+         to iterate for the entire unchanged scalar
+         iterations of the loop in the event that the cost
+         model indicates that the scalar loop is more
+         profitable than the vector one. This occurs when
+        this function is invoked for epilogue generation
+        and the cost model check needs to be done at run
+        time.
+
+         Resulting CFG after prologue peeling would be:
+
+         bb_before_first_loop:
+         if ((scalar_loop_iterations <= th)
+             ||
+             FIRST_NITERS == 0) GOTO bb_before_second_loop
+                                GOTO first-loop
+
+         first_loop:
+         do {
+         } while ...
+
+         bb_before_second_loop:
+
+         second_loop:
+         do {
+         } while ...
+
+         orig_exit_bb:
+  */
 
   bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
-  add_bb_to_loop (bb_before_first_loop, first_loop->outer);
-  bb_before_second_loop = split_edge (first_loop->single_exit);
-  add_bb_to_loop (bb_before_second_loop, first_loop->outer);
+  bb_before_second_loop = split_edge (single_exit (first_loop));
+
+  /* Epilogue peeling.  */
+  if (!update_first_loop_count)
+    {
+      pre_condition =
+       fold_build2 (LE_EXPR, boolean_type_node, first_niters, 
+                    build_int_cst (TREE_TYPE (first_niters), 0));
+      if (check_profitability)
+       {
+         tree scalar_loop_iters
+           = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
+                                       (loop_vec_info_for_loop (loop)));
+         cost_pre_condition = 
+           build2 (LE_EXPR, boolean_type_node, scalar_loop_iters, 
+                   build_int_cst (TREE_TYPE (scalar_loop_iters), th));
+
+         pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
+                                      cost_pre_condition, pre_condition);
+       }
+    }
+
+  /* Prologue peeling.  */  
+  else
+    {
+      if (check_profitability)
+       set_prologue_iterations (bb_before_first_loop, first_niters,
+                                loop, th);
+
+      pre_condition =
+       fold_build2 (LE_EXPR, boolean_type_node, first_niters, 
+                    build_int_cst (TREE_TYPE (first_niters), 0));
+    }
 
-  pre_condition =
-        build2 (LE_EXPR, boolean_type_node, first_niters, integer_zero_node);
   skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
                                   bb_before_second_loop, bb_before_first_loop);
-  slpeel_update_phi_nodes_for_guard (skip_e, first_loop, true /* entry-phis */,
-                                     first_loop == new_loop);
+  slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
+                                     first_loop == new_loop,
+                                     &new_exit_bb, &definitions);
 
 
   /* 3. Add the guard that controls whether the second loop is executed.
@@ -996,29 +1349,23 @@ slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops,
         orig_exit_bb:
    */
 
-  bb_between_loops = split_edge (first_loop->single_exit);
-  add_bb_to_loop (bb_between_loops, first_loop->outer);
-  bb_after_second_loop = split_edge (second_loop->single_exit);
-  add_bb_to_loop (bb_after_second_loop, second_loop->outer);
+  bb_between_loops = new_exit_bb;
+  bb_after_second_loop = split_edge (single_exit (second_loop));
 
-  pre_condition = build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
+  pre_condition = 
+       fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
   skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
                                   bb_after_second_loop, bb_before_first_loop);
-  slpeel_update_phi_nodes_for_guard (skip_e, second_loop, false /* exit-phis */,
-                                     second_loop == new_loop);
-
-  /* Flow loop scan does not update loop->single_exit field.  */
-  first_loop->single_exit = first_loop->single_exit;
-  second_loop->single_exit = second_loop->single_exit;
+  slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
+                                     second_loop == new_loop, &new_exit_bb);
 
   /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
    */
   if (update_first_loop_count)
     slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
 
-  free_new_names (definitions);
   BITMAP_FREE (definitions);
-  unmark_all_for_rewrite ();
+  delete_update_ssa ();
 
   return new_loop;
 }
@@ -1042,7 +1389,7 @@ find_loop_location (struct loop *loop)
 
   node = get_loop_exit_condition (loop);
 
-  if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node)
+  if (node && CAN_HAVE_LOCATION_P (node) && EXPR_HAS_LOCATION (node)
       && EXPR_FILENAME (node) && EXPR_LINENO (node))
     return EXPR_LOC (node);
 
@@ -1057,7 +1404,7 @@ find_loop_location (struct loop *loop)
   for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
     {
       node = bsi_stmt (si);
-      if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node))
+      if (node && CAN_HAVE_LOCATION_P (node) && EXPR_HAS_LOCATION (node))
         return EXPR_LOC (node);
     }
 
@@ -1127,18 +1474,21 @@ vect_set_dump_settings (void)
    For vectorization debug dumps.  */
 
 bool
-vect_print_dump_info (enum verbosity_levels vl, LOC loc)
+vect_print_dump_info (enum verbosity_levels vl)
 {
   if (vl > vect_verbosity_level)
     return false;
 
-  if (loc == UNKNOWN_LOC)
+  if (!current_function_decl || !vect_dump)
+    return false;
+
+  if (vect_loop_location == UNKNOWN_LOC)
     fprintf (vect_dump, "\n%s:%d: note: ",
-                DECL_SOURCE_FILE (current_function_decl),
-                DECL_SOURCE_LINE (current_function_decl));
+            DECL_SOURCE_FILE (current_function_decl),
+            DECL_SOURCE_LINE (current_function_decl));
   else
-    fprintf (vect_dump, "\n%s:%d: note: ", LOC_FILE (loc), LOC_LINE (loc));
-
+    fprintf (vect_dump, "\n%s:%d: note: ", 
+            LOC_FILE (vect_loop_location), LOC_LINE (vect_loop_location));
 
   return true;
 }
@@ -1161,21 +1511,70 @@ new_stmt_vec_info (tree stmt, loop_vec_info loop_vinfo)
   STMT_VINFO_TYPE (res) = undef_vec_info_type;
   STMT_VINFO_STMT (res) = stmt;
   STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
-  STMT_VINFO_RELEVANT_P (res) = 0;
+  STMT_VINFO_RELEVANT (res) = 0;
+  STMT_VINFO_LIVE_P (res) = false;
   STMT_VINFO_VECTYPE (res) = NULL;
   STMT_VINFO_VEC_STMT (res) = NULL;
+  STMT_VINFO_IN_PATTERN_P (res) = false;
+  STMT_VINFO_RELATED_STMT (res) = NULL;
   STMT_VINFO_DATA_REF (res) = NULL;
-  STMT_VINFO_MEMTAG (res) = NULL;
-  STMT_VINFO_VECT_DR_BASE_ADDRESS (res) = NULL;
-  STMT_VINFO_VECT_INIT_OFFSET (res) = NULL_TREE;
-  STMT_VINFO_VECT_STEP (res) = NULL_TREE;
-  STMT_VINFO_VECT_BASE_ALIGNED_P (res) = false;
-  STMT_VINFO_VECT_MISALIGNMENT (res) = NULL_TREE;
+
+  STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
+  STMT_VINFO_DR_OFFSET (res) = NULL;
+  STMT_VINFO_DR_INIT (res) = NULL;
+  STMT_VINFO_DR_STEP (res) = NULL;
+  STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
+
+  if (TREE_CODE (stmt) == PHI_NODE && is_loop_header_bb_p (bb_for_stmt (stmt)))
+    STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
+  else
+    STMT_VINFO_DEF_TYPE (res) = vect_loop_def;
+  STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
+  STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
+  STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
+  STMT_SLP_TYPE (res) = 0;
+  DR_GROUP_FIRST_DR (res) = NULL_TREE;
+  DR_GROUP_NEXT_DR (res) = NULL_TREE;
+  DR_GROUP_SIZE (res) = 0;
+  DR_GROUP_STORE_COUNT (res) = 0;
+  DR_GROUP_GAP (res) = 0;
+  DR_GROUP_SAME_DR_STMT (res) = NULL_TREE;
+  DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;
 
   return res;
 }
 
 
+/* Free stmt vectorization related info.  */
+
+void
+free_stmt_vec_info (tree stmt)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+  if (!stmt_info)
+    return;
+
+  VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
+  free (stmt_info);
+  set_stmt_info (stmt_ann (stmt), NULL);
+}
+
+
+/* Function bb_in_loop_p
+
+   Used as predicate for dfs order traversal of the loop bbs.  */
+
+static bool
+bb_in_loop_p (const_basic_block bb, const void *data)
+{
+  const struct loop *const loop = (const struct loop *)data;
+  if (flow_bb_inside_loop_p (loop, bb))
+    return true;
+  return false;
+}
+
+
 /* Function new_loop_vec_info.
 
    Create and initialize a new loop_vec_info struct for LOOP, as well as
@@ -1187,40 +1586,92 @@ new_loop_vec_info (struct loop *loop)
   loop_vec_info res;
   basic_block *bbs;
   block_stmt_iterator si;
-  unsigned int i;
+  unsigned int i, nbbs;
 
   res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
+  LOOP_VINFO_LOOP (res) = loop;
 
   bbs = get_loop_body (loop);
 
-  /* Create stmt_info for all stmts in the loop.  */
+  /* Create/Update stmt_info for all stmts in the loop.  */
   for (i = 0; i < loop->num_nodes; i++)
     {
       basic_block bb = bbs[i];
-      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+      tree phi;
+
+      /* BBs in a nested inner-loop will have been already processed (because 
+        we will have called vect_analyze_loop_form for any nested inner-loop).
+        Therefore, for stmts in an inner-loop we just want to update the 
+        STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new 
+        loop_info of the outer-loop we are currently considering to vectorize 
+        (instead of the loop_info of the inner-loop).
+        For stmts in other BBs we need to create a stmt_info from scratch.  */
+      if (bb->loop_father != loop)
        {
-         tree stmt = bsi_stmt (si);
-         stmt_ann_t ann;
-
-         get_stmt_operands (stmt);
-         ann = stmt_ann (stmt);
-         set_stmt_info (ann, new_stmt_vec_info (stmt, res));
+         /* Inner-loop bb.  */
+         gcc_assert (loop->inner && bb->loop_father == loop->inner);
+         for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+           {
+             stmt_vec_info stmt_info = vinfo_for_stmt (phi);
+             loop_vec_info inner_loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+             gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
+             STMT_VINFO_LOOP_VINFO (stmt_info) = res;
+           }
+         for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+          {
+             tree stmt = bsi_stmt (si);
+             stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+             loop_vec_info inner_loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+             gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
+             STMT_VINFO_LOOP_VINFO (stmt_info) = res;
+          }
+       }
+      else
+       {
+         /* bb in current nest.  */
+         for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+           {
+             stmt_ann_t ann = get_stmt_ann (phi);
+             set_stmt_info (ann, new_stmt_vec_info (phi, res));
+           }
+
+         for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+           {
+             tree stmt = bsi_stmt (si);
+             stmt_ann_t ann = stmt_ann (stmt);
+             set_stmt_info (ann, new_stmt_vec_info (stmt, res));
+           }
        }
     }
 
-  LOOP_VINFO_LOOP (res) = loop;
+  /* CHECKME: We want to visit all BBs before their successors (except for 
+     latch blocks, for which this assertion wouldn't hold).  In the simple 
+     case of the loop forms we allow, a dfs order of the BBs would the same 
+     as reversed postorder traversal, so we are safe.  */
+
+   free (bbs);
+   bbs = XCNEWVEC (basic_block, loop->num_nodes);
+   nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p, 
+                             bbs, loop->num_nodes, loop);
+   gcc_assert (nbbs == loop->num_nodes);
+
   LOOP_VINFO_BBS (res) = bbs;
-  LOOP_VINFO_EXIT_COND (res) = NULL;
   LOOP_VINFO_NITERS (res) = NULL;
+  LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
+  LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
   LOOP_VINFO_VECTORIZABLE_P (res) = 0;
-  LOOP_DO_PEELING_FOR_ALIGNMENT (res) = false;
+  LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
   LOOP_VINFO_VECT_FACTOR (res) = 0;
-  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20,
-                          "loop_write_datarefs");
-  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20,
-                          "loop_read_datarefs");
+  LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
+  LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
   LOOP_VINFO_UNALIGNED_DR (res) = NULL;
-  LOOP_VINFO_LOC (res) = UNKNOWN_LOC;
+  LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
+    VEC_alloc (tree, heap, PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
+  LOOP_VINFO_MAY_ALIAS_DDRS (res) =
+    VEC_alloc (ddr_p, heap, PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
+  LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (tree, heap, 10);
+  LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
+  LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
 
   return res;
 }
@@ -1232,13 +1683,15 @@ new_loop_vec_info (struct loop *loop)
    stmts in the loop.  */
 
 void
-destroy_loop_vec_info (loop_vec_info loop_vinfo)
+destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
 {
   struct loop *loop;
   basic_block *bbs;
   int nbbs;
   block_stmt_iterator si;
   int j;
+  VEC (slp_instance, heap) *slp_instances;
+  slp_instance instance;
 
   if (!loop_vinfo)
     return;
@@ -1248,50 +1701,69 @@ destroy_loop_vec_info (loop_vec_info loop_vinfo)
   bbs = LOOP_VINFO_BBS (loop_vinfo);
   nbbs = loop->num_nodes;
 
+  if (!clean_stmts)
+    {
+      free (LOOP_VINFO_BBS (loop_vinfo));
+      free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
+      free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
+      VEC_free (tree, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
+
+      free (loop_vinfo);
+      loop->aux = NULL;
+      return;
+    }
+
   for (j = 0; j < nbbs; j++)
     {
       basic_block bb = bbs[j];
-      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+      tree phi;
+
+      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+        free_stmt_vec_info (phi);
+
+      for (si = bsi_start (bb); !bsi_end_p (si); )
        {
          tree stmt = bsi_stmt (si);
-         stmt_ann_t ann = stmt_ann (stmt);
          stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-         free (stmt_info);
-         set_stmt_info (ann, NULL);
+
+         if (stmt_info)
+           {
+             /* Check if this is a "pattern stmt" (introduced by the 
+                vectorizer during the pattern recognition pass).  */
+             bool remove_stmt_p = false;
+             tree orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+             if (orig_stmt)
+               {
+                 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
+                 if (orig_stmt_info
+                     && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
+                   remove_stmt_p = true; 
+               }
+                       
+             /* Free stmt_vec_info.  */
+             free_stmt_vec_info (stmt);
+
+             /* Remove dead "pattern stmts".  */
+             if (remove_stmt_p)
+               bsi_remove (&si, true);
+           }
+         bsi_next (&si);
        }
     }
 
   free (LOOP_VINFO_BBS (loop_vinfo));
-  varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
-  varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo));
+  free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
+  free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
+  VEC_free (tree, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
+  VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
+  slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
+  for (j = 0; VEC_iterate (slp_instance, slp_instances, j, instance); j++)
+    vect_free_slp_tree (SLP_INSTANCE_TREE (instance));
+  VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
+  VEC_free (tree, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
 
   free (loop_vinfo);
-}
-
-
-/* Function vect_strip_conversions
-
-   Strip conversions that don't narrow the mode.  */
-
-tree 
-vect_strip_conversion (tree expr)
-{
-  tree to, ti, oprnd0;
-  
-  while (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
-    {
-      to = TREE_TYPE (expr);
-      oprnd0 = TREE_OPERAND (expr, 0);
-      ti = TREE_TYPE (oprnd0);
-      if (!INTEGRAL_TYPE_P (to) || !INTEGRAL_TYPE_P (ti))
-       return NULL_TREE;
-      if (GET_MODE_SIZE (TYPE_MODE (to)) < GET_MODE_SIZE (TYPE_MODE (ti)))
-       return NULL_TREE;
-      
-      expr = oprnd0;
-    }
-  return expr; 
+  loop->aux = NULL;
 }
 
 
@@ -1301,7 +1773,7 @@ vect_strip_conversion (tree expr)
    on ALIGNMENT bit boundary.  */
 
 bool 
-vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
+vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
 {
   if (TREE_CODE (decl) != VAR_DECL)
     return false;
@@ -1315,12 +1787,9 @@ vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
   if (TREE_STATIC (decl))
     return (alignment <= MAX_OFILE_ALIGNMENT);
   else
-    /* This is not 100% correct.  The absolute correct stack alignment
-       is STACK_BOUNDARY.  We're supposed to hope, but not assume, that
-       PREFERRED_STACK_BOUNDARY is honored by all translation units.
-       However, until someone implements forced stack alignment, SSE
-       isn't really usable without this.  */  
-    return (alignment <= PREFERRED_STACK_BOUNDARY); 
+    /* This used to be PREFERRED_STACK_BOUNDARY, however, that is not 100%
+       correct until someone implements forced stack alignment.  */
+    return (alignment <= STACK_BOUNDARY); 
 }
 
 
@@ -1337,7 +1806,7 @@ get_vectype_for_scalar_type (tree scalar_type)
   int nunits;
   tree vectype;
 
-  if (nbytes == 0)
+  if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD)
     return NULL_TREE;
 
   /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
@@ -1345,7 +1814,7 @@ get_vectype_for_scalar_type (tree scalar_type)
   nunits = UNITS_PER_SIMD_WORD / nbytes;
 
   vectype = build_vector_type (scalar_type, nunits);
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     {
       fprintf (vect_dump, "get vectype with %d units of type ", nunits);
       print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
@@ -1354,18 +1823,16 @@ get_vectype_for_scalar_type (tree scalar_type)
   if (!vectype)
     return NULL_TREE;
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     {
       fprintf (vect_dump, "vectype: ");
       print_generic_expr (vect_dump, vectype, TDF_SLIM);
     }
 
-  if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
+  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+      && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
     {
-      /* TODO: tree-complex.c sometimes can parallelize operations
-         on generic vectors.  We can vectorize the loop in that case,
-         but then we should re-run the lowering pass.  */
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "mode not supported by target.");
       return NULL_TREE;
     }
@@ -1382,22 +1849,103 @@ get_vectype_for_scalar_type (tree scalar_type)
 enum dr_alignment_support
 vect_supportable_dr_alignment (struct data_reference *dr)
 {
-  tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
+  tree stmt = DR_STMT (dr);
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   enum machine_mode mode = (int) TYPE_MODE (vectype);
+  struct loop *vect_loop = LOOP_VINFO_LOOP (STMT_VINFO_LOOP_VINFO (stmt_info));
+  bool nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
+  bool invariant_in_outerloop = false;
 
   if (aligned_access_p (dr))
     return dr_aligned;
 
+  if (nested_in_vect_loop)
+    {
+      tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
+      invariant_in_outerloop =
+       (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
+    }
+
   /* Possibly unaligned access.  */
-  
+
+  /* We can choose between using the implicit realignment scheme (generating
+     a misaligned_move stmt) and the explicit realignment scheme (generating
+     aligned loads with a REALIGN_LOAD). There are two variants to the explicit
+     realignment scheme: optimized, and unoptimized.
+     We can optimize the realignment only if the step between consecutive
+     vector loads is equal to the vector size.  Since the vector memory
+     accesses advance in steps of VS (Vector Size) in the vectorized loop, it
+     is guaranteed that the misalignment amount remains the same throughout the
+     execution of the vectorized loop.  Therefore, we can create the
+     "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
+     at the loop preheader.
+
+     However, in the case of outer-loop vectorization, when vectorizing a
+     memory access in the inner-loop nested within the LOOP that is now being
+     vectorized, while it is guaranteed that the misalignment of the
+     vectorized memory access will remain the same in different outer-loop
+     iterations, it is *not* guaranteed that is will remain the same throughout
+     the execution of the inner-loop.  This is because the inner-loop advances
+     with the original scalar step (and not in steps of VS).  If the inner-loop
+     step happens to be a multiple of VS, then the misalignment remains fixed
+     and we can use the optimized realignment scheme.  For example:
+
+      for (i=0; i<N; i++)
+        for (j=0; j<M; j++)
+          s += a[i+j];
+
+     When vectorizing the i-loop in the above example, the step between
+     consecutive vector loads is 1, and so the misalignment does not remain
+     fixed across the execution of the inner-loop, and the realignment cannot
+     be optimized (as illustrated in the following pseudo vectorized loop):
+
+      for (i=0; i<N; i+=4)
+        for (j=0; j<M; j++){
+          vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
+                         // when j is {0,1,2,3,4,5,6,7,...} respectively.
+                         // (assuming that we start from an aligned address).
+          }
+
+     We therefore have to use the unoptimized realignment scheme:
+
+      for (i=0; i<N; i+=4)
+          for (j=k; j<M; j+=4)
+          vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
+                           // that the misalignment of the initial address is
+                           // 0).
+
+     The loop can then be vectorized as follows:
+
+      for (k=0; k<4; k++){
+        rt = get_realignment_token (&vp[k]);
+        for (i=0; i<N; i+=4){
+          v1 = vp[i+k];
+          for (j=k; j<M; j+=4){
+            v2 = vp[i+j+VS-1];
+            va = REALIGN_LOAD <v1,v2,rt>;
+            vs += va;
+            v1 = v2;
+          }
+        }
+    } */
+
   if (DR_IS_READ (dr))
     {
-      if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing
+      if (optab_handler (vec_realign_load_optab, mode)->insn_code != 
+                                                            CODE_FOR_nothing
          && (!targetm.vectorize.builtin_mask_for_load
              || targetm.vectorize.builtin_mask_for_load ()))
-       return dr_unaligned_software_pipeline;
+       {
+           if (nested_in_vect_loop
+               && TREE_INT_CST_LOW (DR_STEP (dr)) != UNITS_PER_SIMD_WORD)
+             return dr_explicit_realign;
+           else
+             return dr_explicit_realign_optimized;
+       }
 
-      if (movmisalign_optab->handlers[mode].insn_code != CODE_FOR_nothing)
+      if (optab_handler (movmisalign_optab, mode)->insn_code != 
+                                                            CODE_FOR_nothing)
        /* Can't software pipeline the loads, but can at least do them.  */
        return dr_unaligned_supported;
     }
@@ -1421,64 +1969,632 @@ vect_supportable_dr_alignment (struct data_reference *dr)
    in reduction/induction computations).  */
 
 bool
-vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, tree *def)
+vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, tree *def_stmt,
+                   tree *def, enum vect_def_type *dt)
 { 
-  tree def_stmt;
   basic_block bb;
+  stmt_vec_info stmt_vinfo;
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
 
-  if (def)
-    *def = NULL_TREE;
-
+  *def_stmt = NULL_TREE;
+  *def = NULL_TREE;
+  
+  if (vect_print_dump_info (REPORT_DETAILS))
+    {
+      fprintf (vect_dump, "vect_is_simple_use: operand ");
+      print_generic_expr (vect_dump, operand, TDF_SLIM);
+    }
+    
   if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
-    return true;
+    {
+      *dt = vect_constant_def;
+      return true;
+    }
+  if (is_gimple_min_invariant (operand))
+   {
+      *def = operand;
+      *dt = vect_invariant_def;
+      return true;
+   }
 
+  if (TREE_CODE (operand) == PAREN_EXPR)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "non-associatable copy.");
+      operand = TREE_OPERAND (operand, 0);
+    }
   if (TREE_CODE (operand) != SSA_NAME)
-    return false;
-
-  def_stmt = SSA_NAME_DEF_STMT (operand);
-  if (def_stmt == NULL_TREE )
     {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "not ssa-name.");
+      return false;
+    }
+    
+  *def_stmt = SSA_NAME_DEF_STMT (operand);
+  if (*def_stmt == NULL_TREE )
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "no def_stmt.");
       return false;
     }
 
+  if (vect_print_dump_info (REPORT_DETAILS))
+    {
+      fprintf (vect_dump, "def_stmt: ");
+      print_generic_expr (vect_dump, *def_stmt, TDF_SLIM);
+    }
+
   /* empty stmt is expected only in case of a function argument.
-     (Otherwise - we expect a phi_node or a modify_expr).  */
-  if (IS_EMPTY_STMT (def_stmt))
+     (Otherwise - we expect a phi_node or a GIMPLE_MODIFY_STMT).  */
+  if (IS_EMPTY_STMT (*def_stmt))
+    {
+      tree arg = TREE_OPERAND (*def_stmt, 0);
+      if (is_gimple_min_invariant (arg))
+        {
+          *def = operand;
+          *dt = vect_invariant_def;
+          return true;
+        }
+
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "Unexpected empty stmt.");
+      return false;
+    }
+
+  bb = bb_for_stmt (*def_stmt);
+  if (!flow_bb_inside_loop_p (loop, bb))
+    *dt = vect_invariant_def;
+  else
+    {
+      stmt_vinfo = vinfo_for_stmt (*def_stmt);
+      *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
+    }
+
+  if (*dt == vect_unknown_def_type)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "Unsupported pattern.");
+      return false;
+    }
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "type of def: %d.",*dt);
+
+  switch (TREE_CODE (*def_stmt))
+    {
+    case PHI_NODE:
+      *def = PHI_RESULT (*def_stmt);
+      break;
+
+    case GIMPLE_MODIFY_STMT:
+      *def = GIMPLE_STMT_OPERAND (*def_stmt, 0);
+      break;
+
+    default:
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "unsupported defining stmt: ");
+      return false;
+    }
+
+  return true;
+}
+
+
+/* Function supportable_widening_operation
+
+   Check whether an operation represented by the code CODE is a 
+   widening operation that is supported by the target platform in 
+   vector form (i.e., when operating on arguments of type VECTYPE).
+    
+   Widening operations we currently support are NOP (CONVERT), FLOAT
+   and WIDEN_MULT.  This function checks if these operations are supported
+   by the target platform either directly (via vector tree-codes), or via
+   target builtins.
+
+   Output:
+   - CODE1 and CODE2 are codes of vector operations to be used when 
+   vectorizing the operation, if available. 
+   - DECL1 and DECL2 are decls of target builtin functions to be used
+   when vectorizing the operation, if available. In this case,
+   CODE1 and CODE2 are CALL_EXPR.  */
+
+bool
+supportable_widening_operation (enum tree_code code, tree stmt, tree vectype,
+                                tree *decl1, tree *decl2,
+                                enum tree_code *code1, enum tree_code *code2)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
+  bool ordered_p;
+  enum machine_mode vec_mode;
+  enum insn_code icode1, icode2;
+  optab optab1, optab2;
+  tree expr = GIMPLE_STMT_OPERAND (stmt, 1);
+  tree type = TREE_TYPE (expr);
+  tree wide_vectype = get_vectype_for_scalar_type (type);
+  enum tree_code c1, c2;
+
+  /* The result of a vectorized widening operation usually requires two vectors
+     (because the widened results do not fit int one vector). The generated 
+     vector results would normally be expected to be generated in the same 
+     order as in the original scalar computation. i.e. if 8 results are 
+     generated in each vector iteration, they are to be organized as follows:
+        vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8]. 
+
+     However, in the special case that the result of the widening operation is 
+     used in a reduction computation only, the order doesn't matter (because
+     when vectorizing a reduction we change the order of the computation). 
+     Some targets can take advantage of this and generate more efficient code.
+     For example, targets like Altivec, that support widen_mult using a sequence
+     of {mult_even,mult_odd} generate the following vectors:
+        vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
+
+     When vectorizaing outer-loops, we execute the inner-loop sequentially
+     (each vectorized inner-loop iteration contributes to VF outer-loop 
+     iterations in parallel). We therefore don't allow to change the order 
+     of the computation in the inner-loop during outer-loop vectorization.  */
+
+   if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
+       && !nested_in_vect_loop_p (vect_loop, stmt))
+     ordered_p = false;
+   else
+     ordered_p = true;
+
+  if (!ordered_p
+      && code == WIDEN_MULT_EXPR
+      && targetm.vectorize.builtin_mul_widen_even
+      && targetm.vectorize.builtin_mul_widen_even (vectype)
+      && targetm.vectorize.builtin_mul_widen_odd
+      && targetm.vectorize.builtin_mul_widen_odd (vectype))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "Unordered widening operation detected.");
+
+      *code1 = *code2 = CALL_EXPR;
+      *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
+      *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
+      return true;
+    }
+
+  switch (code)
+    {
+    case WIDEN_MULT_EXPR:
+      if (BYTES_BIG_ENDIAN)
+        {
+          c1 = VEC_WIDEN_MULT_HI_EXPR;
+          c2 = VEC_WIDEN_MULT_LO_EXPR;
+        }
+      else
+        {
+          c2 = VEC_WIDEN_MULT_HI_EXPR;
+          c1 = VEC_WIDEN_MULT_LO_EXPR;
+        }
+      break;
+
+    case NOP_EXPR:
+    case CONVERT_EXPR:
+      if (BYTES_BIG_ENDIAN)
+        {
+          c1 = VEC_UNPACK_HI_EXPR;
+          c2 = VEC_UNPACK_LO_EXPR;
+        }
+      else
+        {
+          c2 = VEC_UNPACK_HI_EXPR;
+          c1 = VEC_UNPACK_LO_EXPR;
+        }
+      break;
+
+    case FLOAT_EXPR:
+      if (BYTES_BIG_ENDIAN)
+        {
+          c1 = VEC_UNPACK_FLOAT_HI_EXPR;
+          c2 = VEC_UNPACK_FLOAT_LO_EXPR;
+        }
+      else
+        {
+          c2 = VEC_UNPACK_FLOAT_HI_EXPR;
+          c1 = VEC_UNPACK_FLOAT_LO_EXPR;
+        }
+      break;
+
+    case FIX_TRUNC_EXPR:
+      /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
+        VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
+        computing the operation.  */
+      return false;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  if (code == FIX_TRUNC_EXPR)
+    {
+      /* The signedness is determined from output operand.  */
+      optab1 = optab_for_tree_code (c1, type);
+      optab2 = optab_for_tree_code (c2, type);
+    }
+  else
+    {
+      optab1 = optab_for_tree_code (c1, vectype);
+      optab2 = optab_for_tree_code (c2, vectype);
+    }
+
+  if (!optab1 || !optab2)
+    return false;
+
+  vec_mode = TYPE_MODE (vectype);
+  if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
+      || insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
+      || (icode2 = optab_handler (optab2, vec_mode)->insn_code)
+                                                        == CODE_FOR_nothing
+      || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
+    return false;
+
+  *code1 = c1;
+  *code2 = c2;
+  return true;
+}
+
+
+/* Function supportable_narrowing_operation
+
+   Check whether an operation represented by the code CODE is a 
+   narrowing operation that is supported by the target platform in 
+   vector form (i.e., when operating on arguments of type VECTYPE).
+    
+   Narrowing operations we currently support are NOP (CONVERT) and
+   FIX_TRUNC. This function checks if these operations are supported by
+   the target platform directly via vector tree-codes.
+
+   Output:
+   - CODE1 is the code of a vector operation to be used when 
+   vectorizing the operation, if available.  */
+
+bool
+supportable_narrowing_operation (enum tree_code code,
+                                const_tree stmt, const_tree vectype,
+                                enum tree_code *code1)
+{
+  enum machine_mode vec_mode;
+  enum insn_code icode1;
+  optab optab1;
+  tree expr = GIMPLE_STMT_OPERAND (stmt, 1);
+  tree type = TREE_TYPE (expr);
+  tree narrow_vectype = get_vectype_for_scalar_type (type);
+  enum tree_code c1;
+
+  switch (code)
+    {
+    case NOP_EXPR:
+    case CONVERT_EXPR:
+      c1 = VEC_PACK_TRUNC_EXPR;
+      break;
+
+    case FIX_TRUNC_EXPR:
+      c1 = VEC_PACK_FIX_TRUNC_EXPR;
+      break;
+
+    case FLOAT_EXPR:
+      /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
+        tree code and optabs used for computing the operation.  */
+      return false;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  if (code == FIX_TRUNC_EXPR)
+    /* The signedness is determined from output operand.  */
+    optab1 = optab_for_tree_code (c1, type);
+  else
+    optab1 = optab_for_tree_code (c1, vectype);
+
+  if (!optab1)
+    return false;
+
+  vec_mode = TYPE_MODE (vectype);
+  if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
+      || insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
+    return false;
+
+  *code1 = c1;
+  return true;
+}
+
+
+/* Function reduction_code_for_scalar_code
+
+   Input:
+   CODE - tree_code of a reduction operations.
+
+   Output:
+   REDUC_CODE - the corresponding tree-code to be used to reduce the
+      vector of partial results into a single scalar result (which
+      will also reside in a vector).
+
+   Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise.  */
+
+bool
+reduction_code_for_scalar_code (enum tree_code code,
+                                enum tree_code *reduc_code)
+{
+  switch (code)
+  {
+  case MAX_EXPR:
+    *reduc_code = REDUC_MAX_EXPR;
+    return true;
+
+  case MIN_EXPR:
+    *reduc_code = REDUC_MIN_EXPR;
+    return true;
+
+  case PLUS_EXPR:
+    *reduc_code = REDUC_PLUS_EXPR;
+    return true;
+
+  default:
+    return false;
+  }
+}
+
+
+/* Function vect_is_simple_reduction
+
+   Detect a cross-iteration def-use cycle that represents a simple
+   reduction computation. We look for the following pattern:
+
+   loop_header:
+     a1 = phi < a0, a2 >
+     a3 = ...
+     a2 = operation (a3, a1)
+  
+   such that:
+   1. operation is commutative and associative and it is safe to 
+      change the order of the computation.
+   2. no uses for a2 in the loop (a2 is used out of the loop)
+   3. no uses of a1 in the loop besides the reduction operation.
+
+   Condition 1 is tested here.
+   Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.  */
+
+tree
+vect_is_simple_reduction (loop_vec_info loop_info, tree phi)
+{
+  struct loop *loop = (bb_for_stmt (phi))->loop_father;
+  struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
+  edge latch_e = loop_latch_edge (loop);
+  tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
+  tree def_stmt, def1, def2;
+  enum tree_code code;
+  int op_type;
+  tree operation, op1, op2;
+  tree type;
+  int nloop_uses;
+  tree name;
+  imm_use_iterator imm_iter;
+  use_operand_p use_p;
+
+  gcc_assert (loop == vect_loop || flow_loop_nested_p (vect_loop, loop));
+
+  name = PHI_RESULT (phi);
+  nloop_uses = 0;
+  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
     {
-      tree arg = TREE_OPERAND (def_stmt, 0);
-      if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
-       return true;
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      tree use_stmt = USE_STMT (use_p);
+      if (flow_bb_inside_loop_p (loop, bb_for_stmt (use_stmt))
+         && vinfo_for_stmt (use_stmt)
+         && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
+        nloop_uses++;
+      if (nloop_uses > 1)
+        {
+          if (vect_print_dump_info (REPORT_DETAILS))
+            fprintf (vect_dump, "reduction used in loop.");
+          return NULL_TREE;
+        }
+    }
+
+  if (TREE_CODE (loop_arg) != SSA_NAME)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
        {
-         fprintf (vect_dump, "Unexpected empty stmt: ");
-         print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
+         fprintf (vect_dump, "reduction: not ssa_name: ");
+         print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
        }
-      return false;  
+      return NULL_TREE;
     }
 
-  /* phi_node inside the loop indicates an induction/reduction pattern.
-     This is not supported yet.  */
-  bb = bb_for_stmt (def_stmt);
-  if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
+  def_stmt = SSA_NAME_DEF_STMT (loop_arg);
+  if (!def_stmt)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-       fprintf (vect_dump, "reduction/induction - unsupported.");
-      return false; /* FORNOW: not supported yet.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "reduction: no def_stmt.");
+      return NULL_TREE;
     }
 
-  /* Expecting a modify_expr or a phi_node.  */
-  if (TREE_CODE (def_stmt) == MODIFY_EXPR
-      || TREE_CODE (def_stmt) == PHI_NODE)
+  if (TREE_CODE (def_stmt) != GIMPLE_MODIFY_STMT)
     {
-      if (def)
-        *def = def_stmt;       
-      return true;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
+      return NULL_TREE;
     }
 
-  return false;
+  name = GIMPLE_STMT_OPERAND (def_stmt, 0);
+  nloop_uses = 0;
+  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
+    {
+      tree use_stmt = USE_STMT (use_p);
+      if (flow_bb_inside_loop_p (loop, bb_for_stmt (use_stmt))
+         && vinfo_for_stmt (use_stmt)
+         && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
+       nloop_uses++;
+      if (nloop_uses > 1)
+       {
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "reduction used in loop.");
+         return NULL_TREE;
+       }
+    }
+
+  operation = GIMPLE_STMT_OPERAND (def_stmt, 1);
+  code = TREE_CODE (operation);
+  if (!commutative_tree_code (code) || !associative_tree_code (code))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "reduction: not commutative/associative: ");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      return NULL_TREE;
+    }
+
+  op_type = TREE_OPERAND_LENGTH (operation);
+  if (op_type != binary_op)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "reduction: not binary operation: ");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      return NULL_TREE;
+    }
+
+  op1 = TREE_OPERAND (operation, 0);
+  op2 = TREE_OPERAND (operation, 1);
+  if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "reduction: uses not ssa_names: ");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      return NULL_TREE;
+    }
+
+  /* Check that it's ok to change the order of the computation.  */
+  type = TREE_TYPE (operation);
+  if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1))
+      || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "reduction: multiple types: operation type: ");
+          print_generic_expr (vect_dump, type, TDF_SLIM);
+          fprintf (vect_dump, ", operands types: ");
+          print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
+          fprintf (vect_dump, ",");
+          print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
+        }
+      return NULL_TREE;
+    }
+
+  /* Generally, when vectorizing a reduction we change the order of the
+     computation.  This may change the behavior of the program in some
+     cases, so we need to check that this is ok.  One exception is when 
+     vectorizing an outer-loop: the inner-loop is executed sequentially,
+     and therefore vectorizing reductions in the inner-loop durint 
+     outer-loop vectorization is safe.  */
+
+  /* CHECKME: check for !flag_finite_math_only too?  */
+  if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
+      && !nested_in_vect_loop_p (vect_loop, def_stmt)) 
+    {
+      /* Changing the order of operations changes the semantics.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "reduction: unsafe fp math optimization: ");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      return NULL_TREE;
+    }
+  else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
+          && !nested_in_vect_loop_p (vect_loop, def_stmt))
+    {
+      /* Changing the order of operations changes the semantics.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "reduction: unsafe int math optimization: ");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      return NULL_TREE;
+    }
+  else if (SAT_FIXED_POINT_TYPE_P (type))
+    {
+      /* Changing the order of operations changes the semantics.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "reduction: unsafe fixed-point math optimization: ");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      return NULL_TREE;
+    }
+
+  /* reduction is safe. we're dealing with one of the following:
+     1) integer arithmetic and no trapv
+     2) floating point arithmetic, and special flags permit this optimization.
+   */
+  def1 = SSA_NAME_DEF_STMT (op1);
+  def2 = SSA_NAME_DEF_STMT (op2);
+  if (!def1 || !def2 || IS_EMPTY_STMT (def1) || IS_EMPTY_STMT (def2))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "reduction: no defs for operands: ");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      return NULL_TREE;
+    }
+
+
+  /* Check that one def is the reduction def, defined by PHI,
+     the other def is either defined in the loop ("vect_loop_def"),
+     or it's an induction (defined by a loop-header phi-node).  */
+
+  if (def2 == phi
+      && flow_bb_inside_loop_p (loop, bb_for_stmt (def1))
+      && (TREE_CODE (def1) == GIMPLE_MODIFY_STMT 
+         || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_induction_def
+         || (TREE_CODE (def1) == PHI_NODE 
+             && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_loop_def
+             && !is_loop_header_bb_p (bb_for_stmt (def1)))))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "detected reduction:");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      return def_stmt;
+    }
+  else if (def1 == phi
+          && flow_bb_inside_loop_p (loop, bb_for_stmt (def2))
+          && (TREE_CODE (def2) == GIMPLE_MODIFY_STMT 
+              || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_induction_def
+              || (TREE_CODE (def2) == PHI_NODE
+                  && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_loop_def
+                  && !is_loop_header_bb_p (bb_for_stmt (def2)))))
+    {
+      /* Swap operands (just for simplicity - so that the rest of the code
+        can assume that the reduction variable is always the last (second)
+        argument).  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "detected reduction: need to swap operands:");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      swap_tree_operands (def_stmt, &TREE_OPERAND (operation, 0), 
+                                   &TREE_OPERAND (operation, 1));
+      return def_stmt;
+    }
+  else
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "reduction: unknown pattern.");
+          print_generic_expr (vect_dump, operation, TDF_SLIM);
+        }
+      return NULL_TREE;
+    }
 }
 
 
@@ -1493,7 +2609,6 @@ vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
 {
   tree init_expr;
   tree step_expr;
-  
   tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
 
   /* When there is no evolution in this loop, the evolution function
@@ -1507,10 +2622,9 @@ vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
     return false;
   
   step_expr = evolution_part;
-  init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
-                                                           loop_nb));
+  init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     {
       fprintf (vect_dump, "step: ");
       print_generic_expr (vect_dump, step_expr, TDF_SLIM);
@@ -1522,8 +2636,8 @@ vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
   *step = step_expr;
 
   if (TREE_CODE (step_expr) != INTEGER_CST)
-    {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+    { 
+      if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "step unknown.");
       return false;
     }
@@ -1532,91 +2646,142 @@ vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
 }
 
 
-/* Function need_imm_uses_for.
-
-   Return whether we ought to include information for 'var'
-   when calculating immediate uses.  For this pass we only want use
-   information for non-virtual variables.  */
-
-static bool
-need_imm_uses_for (tree var)
-{
-  return is_gimple_reg (var);
-}
-
-
 /* Function vectorize_loops.
    
    Entry Point to loop vectorization phase.  */
 
-void
-vectorize_loops (struct loops *loops)
+unsigned
+vectorize_loops (void)
 {
-  unsigned int i, loops_num;
+  unsigned int i;
   unsigned int num_vectorized_loops = 0;
+  unsigned int vect_loops_num;
+  loop_iterator li;
+  struct loop *loop;
 
-  /* Fix the verbosity level if not defined explicitly by the user.  */
-  vect_set_dump_settings ();
+  vect_loops_num = number_of_loops ();
 
-  /* Does the target support SIMD?  */
-  /* FORNOW: until more sophisticated machine modelling is in place.  */
-  if (!UNITS_PER_SIMD_WORD)
-    {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-       fprintf (vect_dump, "vectorizer: target vector size is not defined.");
-      return;
-    }
+  /* Bail out if there are no loops.  */
+  if (vect_loops_num <= 1)
+    return 0;
 
-#ifdef ENABLE_CHECKING
-  verify_loop_closed_ssa ();
-#endif
+  /* Fix the verbosity level if not defined explicitly by the user.  */
+  vect_set_dump_settings ();
 
-  compute_immediate_uses (TDFA_USE_OPS, need_imm_uses_for);
+  /* Allocate the bitmap that records which virtual variables that 
+     need to be renamed.  */
+  vect_memsyms_to_rename = BITMAP_ALLOC (NULL);
 
   /*  ----------- Analyze loops. -----------  */
 
   /* If some loop was duplicated, it gets bigger number 
      than all previously defined loops. This fact allows us to run 
      only over initial loops skipping newly generated ones.  */
-  loops_num = loops->num;
-  for (i = 1; i < loops_num; i++)
+  FOR_EACH_LOOP (li, loop, 0)
     {
       loop_vec_info loop_vinfo;
-      struct loop *loop = loops->parray[i];
-
-      if (!loop)
-        continue;
 
+      vect_loop_location = find_loop_location (loop);
       loop_vinfo = vect_analyze_loop (loop);
       loop->aux = loop_vinfo;
 
       if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
        continue;
 
-      vect_transform_loop (loop_vinfo, loops); 
+      vect_transform_loop (loop_vinfo);
       num_vectorized_loops++;
     }
+  vect_loop_location = UNKNOWN_LOC;
 
-  if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS)
+      || (vect_print_dump_info (REPORT_VECTORIZED_LOOPS)
+         && num_vectorized_loops > 0))
     fprintf (vect_dump, "vectorized %u loops in function.\n",
             num_vectorized_loops);
 
   /*  ----------- Finalize. -----------  */
 
-  free_df ();
-  for (i = 1; i < loops_num; i++)
+  BITMAP_FREE (vect_memsyms_to_rename);
+
+  for (i = 1; i < vect_loops_num; i++)
     {
-      struct loop *loop = loops->parray[i];
       loop_vec_info loop_vinfo;
 
+      loop = get_loop (i);
       if (!loop)
        continue;
       loop_vinfo = loop->aux;
-      destroy_loop_vec_info (loop_vinfo);
+      destroy_loop_vec_info (loop_vinfo, true);
       loop->aux = NULL;
     }
 
-  rewrite_into_ssa (false);
-  rewrite_into_loop_closed_ssa (); /* FORNOW */
-  bitmap_clear (vars_to_rename);
+  return num_vectorized_loops > 0 ? TODO_cleanup_cfg : 0;
+}
+
+/* Increase alignment of global arrays to improve vectorization potential.
+   TODO:
+   - Consider also structs that have an array field.
+   - Use ipa analysis to prune arrays that can't be vectorized?
+     This should involve global alignment analysis and in the future also
+     array padding.  */
+
+static unsigned int
+increase_alignment (void)
+{
+  struct varpool_node *vnode;
+
+  /* Increase the alignment of all global arrays for vectorization.  */
+  for (vnode = varpool_nodes_queue;
+       vnode;
+       vnode = vnode->next_needed)
+    {
+      tree vectype, decl = vnode->decl;
+      unsigned int alignment;
+
+      if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
+       continue;
+      vectype = get_vectype_for_scalar_type (TREE_TYPE (TREE_TYPE (decl)));
+      if (!vectype)
+       continue;
+      alignment = TYPE_ALIGN (vectype);
+      if (DECL_ALIGN (decl) >= alignment)
+       continue;
+
+      if (vect_can_force_dr_alignment_p (decl, alignment))
+       { 
+         DECL_ALIGN (decl) = TYPE_ALIGN (vectype);
+         DECL_USER_ALIGN (decl) = 1;
+         if (dump_file)
+           { 
+             fprintf (dump_file, "Increasing alignment of decl: ");
+             print_generic_expr (dump_file, decl, TDF_SLIM);
+           }
+       }
+    }
+  return 0;
+}
+
+static bool
+gate_increase_alignment (void)
+{
+  return flag_section_anchors && flag_tree_vectorize;
 }
+
+struct simple_ipa_opt_pass pass_ipa_increase_alignment = 
+{
+ {
+  SIMPLE_IPA_PASS,
+  "increase_alignment",                        /* name */
+  gate_increase_alignment,             /* gate */
+  increase_alignment,                  /* execute */
+  NULL,                                        /* sub */
+  NULL,                                        /* next */
+  0,                                   /* static_pass_number */
+  0,                                   /* tv_id */
+  0,                                   /* properties_required */
+  0,                                   /* properties_provided */
+  0,                                   /* properties_destroyed */
+  0,                                   /* todo_flags_start */
+  0                                    /* todo_flags_finish */
+ }
+};