OSDN Git Service

* doc/extend.texi (MIPS DSP Built-in Functions): Document the DSP
[pf3gnuchains/gcc-fork.git] / gcc / tree-vect-analyze.c
index 46d7673..7b3f4c8 100644 (file)
@@ -1,5 +1,5 @@
 /* Analysis Utilities for Loop Vectorization.
-   Copyright (C) 2003,2004,2005 Free Software Foundation, Inc.
+   Copyright (C) 2003,2004,2005,2006 Free Software Foundation, Inc.
    Contributed by Dorit Naishlos <dorit@il.ibm.com>
 
 This file is part of GCC.
@@ -16,14 +16,13 @@ for more details.
 
 You should have received a copy of the GNU General Public License
 along with GCC; see the file COPYING.  If not, write to the Free
-Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-02111-1307, USA.  */
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA.  */
 
 #include "config.h"
 #include "system.h"
 #include "coretypes.h"
 #include "tm.h"
-#include "errors.h"
 #include "ggc.h"
 #include "tree.h"
 #include "basic-block.h"
@@ -34,258 +33,36 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 #include "cfgloop.h"
 #include "expr.h"
 #include "optabs.h"
+#include "params.h"
 #include "tree-chrec.h"
 #include "tree-data-ref.h"
 #include "tree-scalar-evolution.h"
 #include "tree-vectorizer.h"
+#include "toplev.h"
 
 /* Main analysis functions.  */
 static loop_vec_info vect_analyze_loop_form (struct loop *);
 static bool vect_analyze_data_refs (loop_vec_info);
 static bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
-static bool vect_analyze_scalar_cycles (loop_vec_info);
+static void vect_analyze_scalar_cycles (loop_vec_info);
 static bool vect_analyze_data_ref_accesses (loop_vec_info);
 static bool vect_analyze_data_ref_dependences (loop_vec_info);
 static bool vect_analyze_data_refs_alignment (loop_vec_info);
 static bool vect_compute_data_refs_alignment (loop_vec_info);
-static void vect_enhance_data_refs_alignment (loop_vec_info);
+static bool vect_enhance_data_refs_alignment (loop_vec_info);
 static bool vect_analyze_operations (loop_vec_info);
 static bool vect_determine_vectorization_factor (loop_vec_info);
 
 /* Utility functions for the analyses.  */
 static bool exist_non_indexing_operands_for_use_p (tree, tree);
-static void vect_mark_relevant (varray_type *, tree);
-static bool vect_stmt_relevant_p (tree, loop_vec_info);
 static tree vect_get_loop_niters (struct loop *, tree *);
 static bool vect_analyze_data_ref_dependence
-  (struct data_reference *, struct data_reference *, loop_vec_info);
-static bool vect_compute_data_ref_alignment (struct data_reference *);
+  (struct data_dependence_relation *, loop_vec_info);
+static bool vect_compute_data_ref_alignment (struct data_reference *); 
 static bool vect_analyze_data_ref_access (struct data_reference *);
-static struct data_reference * vect_analyze_pointer_ref_access 
-  (tree, tree, bool, tree, tree *, tree *);
 static bool vect_can_advance_ivs_p (loop_vec_info);
-static tree vect_get_ptr_offset (tree, tree, tree *);
-static bool vect_analyze_offset_expr (tree, struct loop *, tree, tree *, 
-                                     tree *, tree *);
-static bool vect_base_addr_differ_p (struct data_reference *,
-                                    struct data_reference *drb, bool *);
-static tree vect_object_analysis (tree, tree, bool, tree, 
-                                 struct data_reference **, tree *, tree *, 
-                                 tree *, bool *, tree *, struct ptr_info_def **,
-                                 subvar_t *);
-static tree vect_address_analysis (tree, tree, bool, tree, 
-                                  struct data_reference *, tree *, tree *, 
-                                  tree *, bool *);
-
-
-/* Function vect_get_ptr_offset
-
-   Compute the OFFSET modulo vector-type alignment of pointer REF in bits.  */
-
-static tree 
-vect_get_ptr_offset (tree ref ATTRIBUTE_UNUSED, 
-                    tree vectype ATTRIBUTE_UNUSED, 
-                    tree *offset ATTRIBUTE_UNUSED)
-{
-  /* TODO: Use alignment information.  */
-  return NULL_TREE; 
-}
-
-
-/* Function vect_analyze_offset_expr
-
-   Given an offset expression EXPR received from get_inner_reference, analyze
-   it and create an expression for INITIAL_OFFSET by substituting the variables 
-   of EXPR with initial_condition of the corresponding access_fn in the loop. 
-   E.g., 
-      for i
-         for (j = 3; j < N; j++)
-            a[j].b[i][j] = 0;
-        
-   For a[j].b[i][j], EXPR will be 'i * C_i + j * C_j + C'. 'i' cannot be 
-   substituted, since its access_fn in the inner loop is i. 'j' will be 
-   substituted with 3. An INITIAL_OFFSET will be 'i * C_i + C`', where
-   C` =  3 * C_j + C.
-
-   Compute MISALIGN (the misalignment of the data reference initial access from
-   its base) if possible. Misalignment can be calculated only if all the
-   variables can be substituted with constants, or if a variable is multiplied
-   by a multiple of VECTYPE_ALIGNMENT. In the above example, since 'i' cannot
-   be substituted, MISALIGN will be NULL_TREE in case that C_i is not a multiple
-   of VECTYPE_ALIGNMENT, and C` otherwise. (We perform MISALIGN modulo 
-   VECTYPE_ALIGNMENT computation in the caller of this function).
-
-   STEP is an evolution of the data reference in this loop in bytes.
-   In the above example, STEP is C_j.
-
-   Return FALSE, if the analysis fails, e.g., there is no access_fn for a 
-   variable. In this case, all the outputs (INITIAL_OFFSET, MISALIGN and STEP) 
-   are NULL_TREEs. Otherwise, return TRUE.
-
-*/
-
-static bool
-vect_analyze_offset_expr (tree expr, 
-                         struct loop *loop, 
-                         tree vectype_alignment,
-                         tree *initial_offset,
-                         tree *misalign,
-                         tree *step)
-{
-  tree oprnd0;
-  tree oprnd1;
-  tree left_offset = ssize_int (0);
-  tree right_offset = ssize_int (0);
-  tree left_misalign = ssize_int (0);
-  tree right_misalign = ssize_int (0);
-  tree left_step = ssize_int (0);
-  tree right_step = ssize_int (0);
-  enum tree_code code;
-  tree init, evolution;
-
-  *step = NULL_TREE;
-  *misalign = NULL_TREE;
-  *initial_offset = NULL_TREE;
-
-  /* Strip conversions that don't narrow the mode.  */
-  expr = vect_strip_conversion (expr);
-  if (!expr)
-    return false;
-
-  /* Stop conditions:
-     1. Constant.  */
-  if (TREE_CODE (expr) == INTEGER_CST)
-    {
-      *initial_offset = fold_convert (ssizetype, expr);
-      *misalign = fold_convert (ssizetype, expr);      
-      *step = ssize_int (0);
-      return true;
-    }
-
-  /* 2. Variable. Try to substitute with initial_condition of the corresponding
-     access_fn in the current loop.  */
-  if (SSA_VAR_P (expr))
-    {
-      tree access_fn = analyze_scalar_evolution (loop, expr);
-
-      if (access_fn == chrec_dont_know)
-       /* No access_fn.  */
-       return false;
-
-      init = initial_condition_in_loop_num (access_fn, loop->num);
-      if (init == expr && !expr_invariant_in_loop_p (loop, init))
-       /* Not enough information: may be not loop invariant.  
-          E.g., for a[b[i]], we get a[D], where D=b[i]. EXPR is D, its 
-          initial_condition is D, but it depends on i - loop's induction
-          variable.  */          
-       return false;
-
-      evolution = evolution_part_in_loop_num (access_fn, loop->num);
-      if (evolution && TREE_CODE (evolution) != INTEGER_CST)
-       /* Evolution is not constant.  */
-       return false;
-
-      if (TREE_CODE (init) == INTEGER_CST)
-       *misalign = fold_convert (ssizetype, init);
-      else
-       /* Not constant, misalignment cannot be calculated.  */
-       *misalign = NULL_TREE;
-
-      *initial_offset = fold_convert (ssizetype, init); 
-
-      *step = evolution ? fold_convert (ssizetype, evolution) : ssize_int (0);
-      return true;      
-    }
-
-  /* Recursive computation.  */
-  if (!BINARY_CLASS_P (expr))
-    {
-      /* We expect to get binary expressions (PLUS/MINUS and MULT).  */
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-        {
-         fprintf (vect_dump, "Not binary expression ");
-          print_generic_expr (vect_dump, expr, TDF_SLIM);
-       }
-      return false;
-    }
-  oprnd0 = TREE_OPERAND (expr, 0);
-  oprnd1 = TREE_OPERAND (expr, 1);
-
-  if (!vect_analyze_offset_expr (oprnd0, loop, vectype_alignment, &left_offset, 
-                               &left_misalign, &left_step)
-      || !vect_analyze_offset_expr (oprnd1, loop, vectype_alignment, 
-                                  &right_offset, &right_misalign, &right_step))
-    return false;
-
-  /* The type of the operation: plus, minus or mult.  */
-  code = TREE_CODE (expr);
-  switch (code)
-    {
-    case MULT_EXPR:
-      if (TREE_CODE (right_offset) != INTEGER_CST)
-       /* RIGHT_OFFSET can be not constant. For example, for arrays of variable 
-          sized types. 
-          FORNOW: We don't support such cases.  */
-       return false;
-
-      /* Strip conversions that don't narrow the mode.  */
-      left_offset = vect_strip_conversion (left_offset);      
-      if (!left_offset)
-       return false;      
-      /* Misalignment computation.  */
-      if (SSA_VAR_P (left_offset))
-       {
-         /* If the left side contains variables that can't be substituted with 
-            constants, we check if the right side is a multiple of ALIGNMENT.
-          */
-         if (integer_zerop (size_binop (TRUNC_MOD_EXPR, right_offset, 
-                                 fold_convert (ssizetype, vectype_alignment))))
-           *misalign = ssize_int (0);
-         else
-           /* If the remainder is not zero or the right side isn't constant,
-              we can't compute  misalignment.  */
-           *misalign = NULL_TREE;
-       }
-      else 
-       {
-         /* The left operand was successfully substituted with constant.  */     
-         if (left_misalign)
-           /* In case of EXPR '(i * C1 + j) * C2', LEFT_MISALIGN is 
-              NULL_TREE.  */
-           *misalign  = size_binop (code, left_misalign, right_misalign);
-         else
-           *misalign = NULL_TREE; 
-       }
-
-      /* Step calculation.  */
-      /* Multiply the step by the right operand.  */
-      *step  = size_binop (MULT_EXPR, left_step, right_offset);
-      break;
-   
-    case PLUS_EXPR:
-    case MINUS_EXPR:
-      /* Combine the recursive calculations for step and misalignment.  */
-      *step = size_binop (code, left_step, right_step);
-   
-      if (left_misalign && right_misalign)
-       *misalign  = size_binop (code, left_misalign, right_misalign);
-      else
-       *misalign = NULL_TREE;
-    
-      break;
-
-    default:
-      gcc_unreachable ();
-    }
-
-  /* Compute offset.  */
-  *initial_offset = fold_convert (ssizetype, 
-                                 fold (build2 (code, TREE_TYPE (left_offset), 
-                                               left_offset, 
-                                               right_offset)));
-  return true;
-}
-
+static void vect_update_misalignment_for_peel
+  (struct data_reference *, struct data_reference *, int npeel);
 
 /* Function vect_determine_vectorization_factor
 
@@ -320,99 +97,173 @@ vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
   int nbbs = loop->num_nodes;
   block_stmt_iterator si;
   unsigned int vectorization_factor = 0;
-  int i;
   tree scalar_type;
+  tree phi;
+  tree vectype;
+  unsigned int nunits;
+  stmt_vec_info stmt_info;
+  int i;
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
 
   for (i = 0; i < nbbs; i++)
     {
       basic_block bb = bbs[i];
 
+      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+       {
+         stmt_info = vinfo_for_stmt (phi);
+         if (vect_print_dump_info (REPORT_DETAILS))
+           {
+             fprintf (vect_dump, "==> examining phi: ");
+             print_generic_expr (vect_dump, phi, TDF_SLIM);
+           }
+
+         gcc_assert (stmt_info);
+
+         /* Two cases of "relevant" phis: those that define an 
+            induction that is used in the loop, and those that
+            define a reduction.  */
+         if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_loop
+              && STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
+             || (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
+                 && STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
+            {
+             gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
+              scalar_type = TREE_TYPE (PHI_RESULT (phi));
+
+             if (vect_print_dump_info (REPORT_DETAILS))
+               {
+                 fprintf (vect_dump, "get vectype for scalar type:  ");
+                 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+               }
+
+             vectype = get_vectype_for_scalar_type (scalar_type);
+             if (!vectype)
+               {
+                 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+                   {
+                     fprintf (vect_dump,
+                              "not vectorized: unsupported data-type ");
+                     print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+                   }
+                 return false;
+               }
+             STMT_VINFO_VECTYPE (stmt_info) = vectype;
+
+             if (vect_print_dump_info (REPORT_DETAILS))
+               {
+                 fprintf (vect_dump, "vectype: ");
+                 print_generic_expr (vect_dump, vectype, TDF_SLIM);
+               }
+
+             nunits = TYPE_VECTOR_SUBPARTS (vectype);
+             if (vect_print_dump_info (REPORT_DETAILS))
+               fprintf (vect_dump, "nunits = %d", nunits);
+
+             if (!vectorization_factor
+                 || (nunits > vectorization_factor))
+               vectorization_factor = nunits;
+           }
+       }
+
       for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
         {
-          tree stmt = bsi_stmt (si);
-          unsigned int nunits;
-          stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-          tree vectype;
+         tree stmt = bsi_stmt (si);
+         stmt_info = vinfo_for_stmt (stmt);
 
-          if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-            {
-              fprintf (vect_dump, "==> examining statement: ");
-              print_generic_expr (vect_dump, stmt, TDF_SLIM);
-            }
+         if (vect_print_dump_info (REPORT_DETAILS))
+           {
+             fprintf (vect_dump, "==> examining statement: ");
+             print_generic_expr (vect_dump, stmt, TDF_SLIM);
+           }
 
-          gcc_assert (stmt_info);
-          /* skip stmts which do not need to be vectorized.  */
-          if (!STMT_VINFO_RELEVANT_P (stmt_info))
-            continue;
+         if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
+           continue;
 
-          if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
-            {
-              if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                        LOOP_LOC (loop_vinfo)))
-                {
-                  fprintf (vect_dump, "not vectorized: vector stmt in loop:");
-                  print_generic_expr (vect_dump, stmt, TDF_SLIM);
-                }
-              return false;
-            }
+         gcc_assert (stmt_info);
 
-          if (STMT_VINFO_DATA_REF (stmt_info))
-            scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));
-          else if (TREE_CODE (stmt) == MODIFY_EXPR)
-            scalar_type = TREE_TYPE (TREE_OPERAND (stmt, 0));
-          else
-            scalar_type = TREE_TYPE (stmt);
+         /* skip stmts which do not need to be vectorized.  */
+         if (!STMT_VINFO_RELEVANT_P (stmt_info)
+             && !STMT_VINFO_LIVE_P (stmt_info))
+           {
+             if (vect_print_dump_info (REPORT_DETAILS))
+               fprintf (vect_dump, "skip.");
+             continue;
+           }
 
-          if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-            {
-              fprintf (vect_dump, "get vectype for scalar type:  ");
-              print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
-            }
+         if (!GIMPLE_STMT_P (stmt)
+             && VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
+           {
+             if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+               {
+                 fprintf (vect_dump, "not vectorized: vector stmt in loop:");
+                 print_generic_expr (vect_dump, stmt, TDF_SLIM);
+               }
+             return false;
+           }
 
-          vectype = get_vectype_for_scalar_type (scalar_type);
-          if (!vectype)
-            {
-              if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                        LOOP_LOC (loop_vinfo)))
-                {
-                  fprintf (vect_dump, "not vectorized: unsupported data-type ");
-                  print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
-                }
-              return false;
-            }
-          if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-            {
-              fprintf (vect_dump, "vectype: ");
-              print_generic_expr (vect_dump, vectype, TDF_SLIM);
+         if (STMT_VINFO_VECTYPE (stmt_info))
+           {
+             /* The only case when a vectype had been already set is for stmts 
+                that contain a dataref, or for "pattern-stmts" (stmts generated
+                by the vectorizer to represent/replace a certain idiom).  */
+             gcc_assert (STMT_VINFO_DATA_REF (stmt_info) 
+                         || is_pattern_stmt_p (stmt_info));
+             vectype = STMT_VINFO_VECTYPE (stmt_info);
+           }
+         else
+           {
+             gcc_assert (! STMT_VINFO_DATA_REF (stmt_info)
+                         && !is_pattern_stmt_p (stmt_info));
+
+             /* We set the vectype according to the type of the result (lhs).
+                For stmts whose result-type is different than the type of the
+                arguments (e.g. demotion, promotion), vectype will be reset 
+                appropriately (later).  Note that we have to visit the smallest 
+                datatype in this function, because that determines the VF.  
+                If the smallest datatype in the loop is present only as the 
+                rhs of a promotion operation - we'd miss it here.
+                However, in such a case, that a variable of this datatype
+                does not appear in the lhs anywhere in the loop, it shouldn't
+                affect the vectorization factor.   */
+             scalar_type = TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 0));
+
+             if (vect_print_dump_info (REPORT_DETAILS))
+               {
+                 fprintf (vect_dump, "get vectype for scalar type:  ");
+                 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+               }
+
+             vectype = get_vectype_for_scalar_type (scalar_type);
+             if (!vectype)
+               {
+                 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+                   {
+                     fprintf (vect_dump, 
+                              "not vectorized: unsupported data-type ");
+                     print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+                   }
+                 return false;
+               }
+             STMT_VINFO_VECTYPE (stmt_info) = vectype;
             }
-          STMT_VINFO_VECTYPE (stmt_info) = vectype;
 
-          nunits = TYPE_VECTOR_SUBPARTS (vectype);
-          if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-            fprintf (vect_dump, "nunits = %d", nunits);
+         if (vect_print_dump_info (REPORT_DETAILS))
+           {
+             fprintf (vect_dump, "vectype: ");
+             print_generic_expr (vect_dump, vectype, TDF_SLIM);
+           }
 
-          if (vectorization_factor)
-            {
-              /* FORNOW: don't allow mixed units. 
-                 This restriction will be relaxed in the future.  */
-              if (nunits != vectorization_factor) 
-                {
-                  if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                            LOOP_LOC (loop_vinfo)))
-                    fprintf (vect_dump, "not vectorized: mixed data-types");
-                  return false;
-                }
-            }
-          else
-            vectorization_factor = nunits;
+         nunits = TYPE_VECTOR_SUBPARTS (vectype);
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "nunits = %d", nunits);
+
+         if (!vectorization_factor
+             || (nunits > vectorization_factor))
+           vectorization_factor = nunits;
 
-#ifdef ENABLE_CHECKING
-          gcc_assert (GET_MODE_SIZE (TYPE_MODE (scalar_type))
-                        * vectorization_factor == UNITS_PER_SIMD_WORD);
-#endif
         }
     }
 
@@ -420,8 +271,7 @@ vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
 
   if (vectorization_factor <= 1)
     {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
         fprintf (vect_dump, "not vectorized: unsupported data-type");
       return false;
     }
@@ -445,8 +295,11 @@ vect_analyze_operations (loop_vec_info loop_vinfo)
   unsigned int vectorization_factor = 0;
   int i;
   bool ok;
+  tree phi;
+  stmt_vec_info stmt_info;
+  bool need_to_vectorize = false;
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vect_analyze_operations ===");
 
   gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
@@ -456,12 +309,42 @@ vect_analyze_operations (loop_vec_info loop_vinfo)
     {
       basic_block bb = bbs[i];
 
+      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+        {
+         stmt_info = vinfo_for_stmt (phi);
+         if (vect_print_dump_info (REPORT_DETAILS))
+           {
+             fprintf (vect_dump, "examining phi: ");
+             print_generic_expr (vect_dump, phi, TDF_SLIM);
+           }
+
+         gcc_assert (stmt_info);
+
+         if (STMT_VINFO_LIVE_P (stmt_info))
+           {
+             /* FORNOW: not yet supported.  */
+             if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+               fprintf (vect_dump, "not vectorized: value used after loop.");
+           return false;
+         }
+
+         if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_loop
+             && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
+           {
+             /* Most likely a reduction-like computation that is used
+                in the loop.  */
+             if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+               fprintf (vect_dump, "not vectorized: unsupported pattern.");
+            return false;
+           }
+       }
+
       for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
        {
          tree stmt = bsi_stmt (si);
          stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
 
-         if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+         if (vect_print_dump_info (REPORT_DETAILS))
            {
              fprintf (vect_dump, "==> examining statement: ");
              print_generic_expr (vect_dump, stmt, TDF_SLIM);
@@ -476,74 +359,117 @@ vect_analyze_operations (loop_vec_info loop_vinfo)
             - computations that are used only for array indexing or loop
             control  */
 
-         if (!STMT_VINFO_RELEVANT_P (stmt_info))
+         if (!STMT_VINFO_RELEVANT_P (stmt_info)
+             && !STMT_VINFO_LIVE_P (stmt_info))
            {
-             if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+             if (vect_print_dump_info (REPORT_DETAILS))
                fprintf (vect_dump, "irrelevant.");
              continue;
            }
 
-#ifdef ENABLE_CHECKING
           if (STMT_VINFO_RELEVANT_P (stmt_info))
             {
-              gcc_assert (!VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))));
+              gcc_assert (GIMPLE_STMT_P (stmt)
+                         || !VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))));
               gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
-            }
-#endif
 
-         ok = (vectorizable_operation (stmt, NULL, NULL)
-               || vectorizable_assignment (stmt, NULL, NULL)
-               || vectorizable_load (stmt, NULL, NULL)
-               || vectorizable_store (stmt, NULL, NULL)
-               || vectorizable_condition (stmt, NULL, NULL));
+             ok = (vectorizable_type_promotion (stmt, NULL, NULL)
+                   || vectorizable_type_demotion (stmt, NULL, NULL)
+                   || vectorizable_conversion (stmt, NULL, NULL)
+                   || vectorizable_operation (stmt, NULL, NULL)
+                   || vectorizable_assignment (stmt, NULL, NULL)
+                   || vectorizable_load (stmt, NULL, NULL)
+                   || vectorizable_call (stmt, NULL, NULL)
+                   || vectorizable_store (stmt, NULL, NULL)
+                   || vectorizable_condition (stmt, NULL, NULL));
+
+             if (!ok)
+               {
+                 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+                   {
+                     fprintf (vect_dump, 
+                              "not vectorized: relevant stmt not supported: ");
+                     print_generic_expr (vect_dump, stmt, TDF_SLIM);
+                   }
+                 return false;
+               }       
+             need_to_vectorize = true;
+            }
 
-         if (!ok)
+         if (STMT_VINFO_LIVE_P (stmt_info))
            {
-             if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                         LOOP_LOC (loop_vinfo)))
+             ok = vectorizable_reduction (stmt, NULL, NULL);
+
+             if (ok)
+                need_to_vectorize = true;
+              else
+               ok = vectorizable_live_operation (stmt, NULL, NULL);
+
+             if (!ok)
                {
-                  fprintf (vect_dump, "not vectorized: stmt not supported: ");
-                 print_generic_expr (vect_dump, stmt, TDF_SLIM);
+                 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+                   {
+                     fprintf (vect_dump, 
+                              "not vectorized: live stmt not supported: ");
+                     print_generic_expr (vect_dump, stmt, TDF_SLIM);
+                   }
+                 return false;
                }
-             return false;
            }
-       }
-    }
+       } /* stmts in bb */
+    } /* bbs */
 
   /* TODO: Analyze cost. Decide if worth while to vectorize.  */
 
+  /* All operations in the loop are either irrelevant (deal with loop
+     control, or dead), or only used outside the loop and can be moved
+     out of the loop (e.g. invariants, inductions).  The loop can be 
+     optimized away by scalar optimizations.  We're better off not 
+     touching this loop.  */
+  if (!need_to_vectorize)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, 
+                "All the computation can be taken out of the loop.");
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+        fprintf (vect_dump, 
+                "not vectorized: redundant loop. no profit to vectorize.");
+      return false;
+    }
+
   if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
-      && vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      && vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump,
         "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
         vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
 
   if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
-      && LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor)
+      && ((LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor)
+         || (LOOP_VINFO_INT_NITERS (loop_vinfo) <=
+               ((unsigned) (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)) 
+                                          * vectorization_factor))))
     {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                 LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
        fprintf (vect_dump, "not vectorized: iteration count too small.");
       return false;
     }
 
   if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
-      || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
+      || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
+      || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "epilog loop required.");
       if (!vect_can_advance_ivs_p (loop_vinfo))
         {
-          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                     LOOP_LOC (loop_vinfo)))
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
             fprintf (vect_dump,
                      "not vectorized: can't create epilog loop 1.");
           return false;
         }
-      if (!slpeel_can_duplicate_loop_p (loop, loop->single_exit))
+      if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
         {
-          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                     LOOP_LOC (loop_vinfo)))
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
             fprintf (vect_dump,
                      "not vectorized: can't create epilog loop 2.");
           return false;
@@ -584,10 +510,10 @@ exist_non_indexing_operands_for_use_p (tree use, tree stmt)
      Therefore, all we need to check is if STMT falls into the
      first case, and whether var corresponds to USE.  */
  
-  if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
+  if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME)
     return false;
 
-  operand = TREE_OPERAND (stmt, 1);
+  operand = GIMPLE_STMT_OPERAND (stmt, 1);
 
   if (TREE_CODE (operand) != SSA_NAME)
     return false;
@@ -602,331 +528,557 @@ exist_non_indexing_operands_for_use_p (tree use, tree stmt)
 /* Function vect_analyze_scalar_cycles.
 
    Examine the cross iteration def-use cycles of scalar variables, by
-   analyzing the loop (scalar) PHIs; verify that the cross iteration def-use
-   cycles that they represent do not impede vectorization.
+   analyzing the loop (scalar) PHIs; Classify each cycle as one of the
+   following: invariant, induction, reduction, unknown.
+   
+   Some forms of scalar cycles are not yet supported.
+
+   Example1: reduction: (unsupported yet)
 
-   FORNOW: Reduction as in the following loop, is not supported yet:
               loop1:
               for (i=0; i<N; i++)
                  sum += a[i];
-          The cross-iteration cycle corresponding to variable 'sum' will be
-          considered too complicated and will impede vectorization.
 
-   FORNOW: Induction as in the following loop, is not supported yet:
+   Example2: induction: (unsupported yet)
+
               loop2:
               for (i=0; i<N; i++)
                  a[i] = i;
 
-           However, the following loop *is* vectorizable:
+   Note: the following loop *is* vectorizable:
+
               loop3:
               for (i=0; i<N; i++)
                  a[i] = b[i];
 
-           In both loops there exists a def-use cycle for the variable i:
+         even though it has a def-use cycle caused by the induction variable i:
+
               loop: i_2 = PHI (i_0, i_1)
                     a[i_2] = ...;
                     i_1 = i_2 + 1;
                     GOTO loop;
 
-           The evolution of the above cycle is considered simple enough,
-          however, we also check that the cycle does not need to be
-          vectorized, i.e - we check that the variable that this cycle
-          defines is only used for array indexing or in stmts that do not
-          need to be vectorized. This is not the case in loop2, but it
-          *is* the case in loop3.  */
+         because the def-use cycle in loop3 is considered "not relevant" - i.e.,
+         it does not need to be vectorized because it is only used for array
+         indexing (see 'mark_stmts_to_be_vectorized'). The def-use cycle in
+         loop2 on the other hand is relevant (it is being written to memory).
+*/
 
-static bool
+static void
 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
 {
   tree phi;
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   basic_block bb = loop->header;
-  tree dummy;
+  tree dumy;
+  VEC(tree,heap) *worklist = VEC_alloc (tree, heap, 64);
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
 
+  /* First - identify all inductions.  */
   for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
     {
       tree access_fn = NULL;
+      tree def = PHI_RESULT (phi);
+      stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
 
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
        {
-          fprintf (vect_dump, "Analyze phi: ");
-          print_generic_expr (vect_dump, phi, TDF_SLIM);
+         fprintf (vect_dump, "Analyze phi: ");
+         print_generic_expr (vect_dump, phi, TDF_SLIM);
        }
 
       /* Skip virtual phi's. The data dependences that are associated with
          virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.  */
+      if (!is_gimple_reg (SSA_NAME_VAR (def)))
+       continue;
 
-      if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
+      STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
+
+      /* Analyze the evolution function.  */
+      access_fn = analyze_scalar_evolution (loop, def);
+      if (access_fn && vect_print_dump_info (REPORT_DETAILS))
        {
-         if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-           fprintf (vect_dump, "virtual phi. skip.");
+         fprintf (vect_dump, "Access function of PHI: ");
+         print_generic_expr (vect_dump, access_fn, TDF_SLIM);
+       }
+
+      if (!access_fn
+         || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy)) 
+       {
+         VEC_safe_push (tree, heap, worklist, phi);      
          continue;
        }
 
-      /* Analyze the evolution function.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "Detected induction.");
+      STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
+    }
 
-      /* FORNOW: The only scalar cross-iteration cycles that we allow are
-         those of loop induction variables; This property is verified here.
 
-         Furthermore, if that induction variable is used in an operation
-         that needs to be vectorized (i.e, is not solely used to index
-         arrays and check the exit condition) - we do not support its
-         vectorization yet. This property is verified in vect_is_simple_use,
-         during vect_analyze_operations.  */
+  /* Second - identify all reductions.  */
+  while (VEC_length (tree, worklist) > 0)
+    {
+      tree phi = VEC_pop (tree, worklist);
+      tree def = PHI_RESULT (phi);
+      stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
+      tree reduc_stmt;
 
-      access_fn = /* instantiate_parameters
-                    (loop,*/
-        analyze_scalar_evolution (loop, PHI_RESULT (phi));
+      if (vect_print_dump_info (REPORT_DETAILS))
+        { 
+          fprintf (vect_dump, "Analyze phi: ");
+          print_generic_expr (vect_dump, phi, TDF_SLIM);
+        }
 
-      if (!access_fn)
-       {
-         if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                   LOOP_LOC (loop_vinfo)))
-           fprintf (vect_dump, "not vectorized: unsupported scalar cycle.");
-         return false;
-       }
+      gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
+      gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
 
-      if (vect_print_dump_info (REPORT_DETAILS,
-                               LOOP_LOC (loop_vinfo)))
+      reduc_stmt = vect_is_simple_reduction (loop, phi);
+      if (reduc_stmt)
         {
-           fprintf (vect_dump, "Access function of PHI: ");
-           print_generic_expr (vect_dump, access_fn, TDF_SLIM);
+          if (vect_print_dump_info (REPORT_DETAILS))
+            fprintf (vect_dump, "Detected reduction.");
+          STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
+          STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
+                                                        vect_reduction_def;
         }
-
-      if (!vect_is_simple_iv_evolution (loop->num, access_fn, &dummy, &dummy))
-       {
-         if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                   LOOP_LOC (loop_vinfo)))
-           fprintf (vect_dump, "not vectorized: unsupported scalar cycle.");
-         return false;
-       }
+      else
+        if (vect_print_dump_info (REPORT_DETAILS))
+          fprintf (vect_dump, "Unknown def-use cycle pattern.");
     }
 
-  return true;
+  VEC_free (tree, heap, worklist);
+  return;
 }
 
 
-/* Function vect_base_addr_differ_p.
+/* Function vect_insert_into_interleaving_chain.
 
-   This is the simplest data dependence test: determines whether the
-   data references A and B access the same array/region.  Returns
-   false when the property is not computable at compile time.
-   Otherwise return true, and DIFFER_P will record the result. This
-   utility will not be necessary when alias_sets_conflict_p will be
-   less conservative.  */
+   Insert DRA into the interleaving chain of DRB according to DRA's INIT.  */
 
-static bool
-vect_base_addr_differ_p (struct data_reference *dra,
-                        struct data_reference *drb,
-                        bool *differ_p)
+static void
+vect_insert_into_interleaving_chain (struct data_reference *dra,
+                                    struct data_reference *drb)
 {
-  tree stmt_a = DR_STMT (dra);
-  stmt_vec_info stmt_info_a = vinfo_for_stmt (stmt_a);   
-  tree stmt_b = DR_STMT (drb);
-  stmt_vec_info stmt_info_b = vinfo_for_stmt (stmt_b);   
-  tree addr_a = STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info_a);
-  tree addr_b = STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info_b);
-  tree type_a = TREE_TYPE (addr_a);
-  tree type_b = TREE_TYPE (addr_b);
-  HOST_WIDE_INT alias_set_a, alias_set_b;
-
-  gcc_assert (POINTER_TYPE_P (type_a) &&  POINTER_TYPE_P (type_b));
-  
-  /* Both references are ADDR_EXPR, i.e., we have the objects.  */
-  if (TREE_CODE (addr_a) == ADDR_EXPR && TREE_CODE (addr_b) == ADDR_EXPR)
-    return array_base_name_differ_p (dra, drb, differ_p);  
-
-  alias_set_a = (TREE_CODE (addr_a) == ADDR_EXPR) ? 
-    get_alias_set (TREE_OPERAND (addr_a, 0)) : get_alias_set (addr_a);
-  alias_set_b = (TREE_CODE (addr_b) == ADDR_EXPR) ? 
-    get_alias_set (TREE_OPERAND (addr_b, 0)) : get_alias_set (addr_b);
+  tree prev, next, next_init;
+  stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra)); 
+  stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
 
-  if (!alias_sets_conflict_p (alias_set_a, alias_set_b))
+  prev = DR_GROUP_FIRST_DR (stmtinfo_b);
+  next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));               
+  while (next)
     {
-      *differ_p = true;
-      return true;
-    }
-  
-  /* An instruction writing through a restricted pointer is "independent" of any 
-     instruction reading or writing through a different pointer, in the same 
-     block/scope.  */
-  else if ((TYPE_RESTRICT (type_a) && !DR_IS_READ (dra))
-      || (TYPE_RESTRICT (type_b) && !DR_IS_READ (drb)))
-    {
-      *differ_p = true;
-      return true;
+      next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
+      if (tree_int_cst_compare (next_init, DR_INIT (dra)) > 0)
+       {
+         /* Insert here.  */
+         DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = DR_STMT (dra);
+         DR_GROUP_NEXT_DR (stmtinfo_a) = next;
+         return;
+       }
+      prev = next;
+      next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
     }
-  return false;
-}
 
+  /* We got to the end of the list. Insert here.  */
+  DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = DR_STMT (dra);
+  DR_GROUP_NEXT_DR (stmtinfo_a) = NULL_TREE;
+}
 
-/* Function vect_analyze_data_ref_dependence.
 
-   Return TRUE if there (might) exist a dependence between a memory-reference
-   DRA and a memory-reference DRB.  */
+/* Function vect_update_interleaving_chain.
+   
+   For two data-refs DRA and DRB that are a part of a chain interleaved data 
+   accesses, update the interleaving chain. DRB's INIT is smaller than DRA's.
+
+   There are four possible cases:
+   1. New stmts - both DRA and DRB are not a part of any chain:
+      FIRST_DR = DRB
+      NEXT_DR (DRB) = DRA
+   2. DRB is a part of a chain and DRA is not:
+      no need to update FIRST_DR
+      no need to insert DRB
+      insert DRA according to init
+   3. DRA is a part of a chain and DRB is not:
+      if (init of FIRST_DR > init of DRB)
+          FIRST_DR = DRB
+         NEXT(FIRST_DR) = previous FIRST_DR
+      else
+          insert DRB according to its init
+   4. both DRA and DRB are in some interleaving chains:
+      choose the chain with the smallest init of FIRST_DR
+      insert the nodes of the second chain into the first one.  */
 
-static bool
-vect_analyze_data_ref_dependence (struct data_reference *dra,
-                                 struct data_reference *drb, 
-                                 loop_vec_info loop_vinfo)
+static void
+vect_update_interleaving_chain (struct data_reference *drb,
+                               struct data_reference *dra)
 {
-  bool differ_p; 
-  struct data_dependence_relation *ddr;
-  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-  int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
-  int dist = 0;
-  unsigned int loop_depth = 0;
-  struct loop *loop_nest = loop;  
+  stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra)); 
+  stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
+  tree next_init, init_dra_chain, init_drb_chain, first_a, first_b;
+  tree node, prev, next, node_init, first_stmt;
 
-  
-  if (!vect_base_addr_differ_p (dra, drb, &differ_p))
+  /* 1. New stmts - both DRA and DRB are not a part of any chain.   */
+  if (!DR_GROUP_FIRST_DR (stmtinfo_a) && !DR_GROUP_FIRST_DR (stmtinfo_b))
     {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                               LOOP_LOC (loop_vinfo)))
-        {
-          fprintf (vect_dump,
-                "not vectorized: can't determine dependence between: ");
-          print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
-          fprintf (vect_dump, " and ");
-          print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
-        }
-      return true;
+      DR_GROUP_FIRST_DR (stmtinfo_a) = DR_STMT (drb);
+      DR_GROUP_FIRST_DR (stmtinfo_b) = DR_STMT (drb);
+      DR_GROUP_NEXT_DR (stmtinfo_b) = DR_STMT (dra);
+      return;
     }
 
-  if (differ_p)
-    return false;
-
-  ddr = initialize_data_dependence_relation (dra, drb);
-  compute_affine_dependence (ddr);
-
-  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
-    return false;
-
-  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+  /* 2. DRB is a part of a chain and DRA is not.  */
+  if (!DR_GROUP_FIRST_DR (stmtinfo_a) && DR_GROUP_FIRST_DR (stmtinfo_b))
     {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                LOOP_LOC (loop_vinfo)))
-        {
-          fprintf (vect_dump, 
-                   "not vectorized: can't determine dependence between "); 
-          print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
-          fprintf (vect_dump, " and ");
-          print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
-        }
-      return true;
+      DR_GROUP_FIRST_DR (stmtinfo_a) = DR_GROUP_FIRST_DR (stmtinfo_b);
+      /* Insert DRA into the chain of DRB.  */
+      vect_insert_into_interleaving_chain (dra, drb);
+      return;
     }
 
-  /* Find loop depth.  */
-  while (loop_nest)
+  /* 3. DRA is a part of a chain and DRB is not.  */  
+  if (DR_GROUP_FIRST_DR (stmtinfo_a) && !DR_GROUP_FIRST_DR (stmtinfo_b))
     {
-      if (loop_nest->outer && loop_nest->outer->outer)
+      tree old_first_stmt = DR_GROUP_FIRST_DR (stmtinfo_a);
+      tree init_old = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (
+                                                             old_first_stmt)));
+      tree tmp;
+
+      if (tree_int_cst_compare (init_old, DR_INIT (drb)) > 0)
        {
-         loop_nest = loop_nest->outer;
-         loop_depth++;
+         /* DRB's init is smaller than the init of the stmt previously marked 
+            as the first stmt of the interleaving chain of DRA. Therefore, we 
+            update FIRST_STMT and put DRB in the head of the list.  */
+         DR_GROUP_FIRST_DR (stmtinfo_b) = DR_STMT (drb);
+         DR_GROUP_NEXT_DR (stmtinfo_b) = old_first_stmt;
+               
+         /* Update all the stmts in the list to point to the new FIRST_STMT.  */
+         tmp = old_first_stmt;
+         while (tmp)
+           {
+             DR_GROUP_FIRST_DR (vinfo_for_stmt (tmp)) = DR_STMT (drb);
+             tmp = DR_GROUP_NEXT_DR (vinfo_for_stmt (tmp));
+           }
        }
       else
-       break;
-    }
-
-  /* Compute distance vector.  */
-  compute_subscript_distance (ddr);
-  build_classic_dist_vector (ddr, vect_loops_num, loop_nest->depth);
-
-  if (!DDR_DIST_VECT (ddr))
-    {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                               LOOP_LOC (loop_vinfo)))
        {
-         fprintf (vect_dump, "not vectorized: bad dist vector for ");
-         print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
-         fprintf (vect_dump, " and ");
-         print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
-       }      
-      return true;
+         /* Insert DRB in the list of DRA.  */
+         vect_insert_into_interleaving_chain (drb, dra);
+         DR_GROUP_FIRST_DR (stmtinfo_b) = DR_GROUP_FIRST_DR (stmtinfo_a);            
+       }
+      return;
     }
-
-  dist = DDR_DIST_VECT (ddr)[loop_depth];
-
-  /* Same loop iteration.  */
-  if (dist == 0)
+  
+  /* 4. both DRA and DRB are in some interleaving chains.  */
+  first_a = DR_GROUP_FIRST_DR (stmtinfo_a);
+  first_b = DR_GROUP_FIRST_DR (stmtinfo_b);
+  if (first_a == first_b)
+    return;
+  init_dra_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_a)));
+  init_drb_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_b)));
+
+  if (tree_int_cst_compare (init_dra_chain, init_drb_chain) > 0)
+    {
+      /* Insert the nodes of DRA chain into the DRB chain.  
+        After inserting a node, continue from this node of the DRB chain (don't
+         start from the beginning.  */
+      node = DR_GROUP_FIRST_DR (stmtinfo_a);
+      prev = DR_GROUP_FIRST_DR (stmtinfo_b);      
+      first_stmt = first_b;
+    }
+  else
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
-       fprintf (vect_dump, "dependence distance 0.");
-      return false;
+      /* Insert the nodes of DRB chain into the DRA chain.  
+        After inserting a node, continue from this node of the DRA chain (don't
+         start from the beginning.  */
+      node = DR_GROUP_FIRST_DR (stmtinfo_b);
+      prev = DR_GROUP_FIRST_DR (stmtinfo_a);      
+      first_stmt = first_a;
     }
-
-  if (dist >= vectorization_factor)
-    /* Dependence distance does not create dependence, as far as vectorization
-       is concerned, in this case.  */
-    return false;
-    
-  if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                           LOOP_LOC (loop_vinfo)))
-    {
-      fprintf (vect_dump,
-       "not vectorized: possible dependence between data-refs ");
-      print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
-      fprintf (vect_dump, " and ");
-      print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+  
+  while (node)
+    {
+      node_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (node)));
+      next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));           
+      while (next)
+       {         
+         next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
+         if (tree_int_cst_compare (next_init, node_init) > 0)
+           {
+             /* Insert here.  */
+             DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = node;
+             DR_GROUP_NEXT_DR (vinfo_for_stmt (node)) = next;
+             prev = node;
+             break;
+           }
+         prev = next;
+         next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
+       }
+      if (!next)
+       {
+         /* We got to the end of the list. Insert here.  */
+         DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = node;
+         DR_GROUP_NEXT_DR (vinfo_for_stmt (node)) = NULL_TREE;
+         prev = node;
+       }                       
+      DR_GROUP_FIRST_DR (vinfo_for_stmt (node)) = first_stmt;
+      node = DR_GROUP_NEXT_DR (vinfo_for_stmt (node));        
     }
-
-  return true;
 }
 
 
-/* Function vect_analyze_data_ref_dependences.
+/* Function vect_equal_offsets.
 
-   Examine all the data references in the loop, and make sure there do not
-   exist any data dependences between them.  */
+   Check if OFFSET1 and OFFSET2 are identical expressions.  */
 
 static bool
-vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
+vect_equal_offsets (tree offset1, tree offset2)
 {
-  unsigned int i, j;
-  varray_type loop_write_refs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
-  varray_type loop_read_refs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
+  bool res0, res1;
 
-  /* Examine store-store (output) dependences.  */
+  STRIP_NOPS (offset1);
+  STRIP_NOPS (offset2);
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-    fprintf (vect_dump, "=== vect_analyze_dependences ===");
+  if (offset1 == offset2)
+    return true;
+
+  if (TREE_CODE (offset1) != TREE_CODE (offset2)
+      || !BINARY_CLASS_P (offset1)
+      || !BINARY_CLASS_P (offset2))    
+    return false;
+  
+  res0 = vect_equal_offsets (TREE_OPERAND (offset1, 0), 
+                            TREE_OPERAND (offset2, 0));
+  res1 = vect_equal_offsets (TREE_OPERAND (offset1, 1), 
+                            TREE_OPERAND (offset2, 1));
+
+  return (res0 && res1);
+}
+
+
+/* Function vect_check_interleaving.
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-    fprintf (vect_dump, "compare all store-store pairs.");
+   Check if DRA and DRB are a part of interleaving. In case they are, insert
+   DRA and DRB in an interleaving chain.  */
 
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_refs); i++)
+static void
+vect_check_interleaving (struct data_reference *dra,
+                        struct data_reference *drb)
+{
+  HOST_WIDE_INT type_size_a, type_size_b, diff_mod_size, step, init_a, init_b;
+
+  /* Check that the data-refs have same first location (except init) and they
+     are both either store or load (not load and store).  */
+  if ((DR_BASE_ADDRESS (dra) != DR_BASE_ADDRESS (drb)
+       && (TREE_CODE (DR_BASE_ADDRESS (dra)) != ADDR_EXPR 
+          || TREE_CODE (DR_BASE_ADDRESS (drb)) != ADDR_EXPR
+          || TREE_OPERAND (DR_BASE_ADDRESS (dra), 0) 
+          != TREE_OPERAND (DR_BASE_ADDRESS (drb),0)))
+      || !vect_equal_offsets (DR_OFFSET (dra), DR_OFFSET (drb))
+      || !tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) 
+      || DR_IS_READ (dra) != DR_IS_READ (drb))
+    return;
+
+  /* Check:
+     1. data-refs are of the same type
+     2. their steps are equal
+     3. the step is greater than the difference between data-refs' inits  */
+  type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
+  type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
+
+  if (type_size_a != type_size_b
+      || tree_int_cst_compare (DR_STEP (dra), DR_STEP (drb)))
+    return;
+
+  init_a = TREE_INT_CST_LOW (DR_INIT (dra));
+  init_b = TREE_INT_CST_LOW (DR_INIT (drb));
+  step = TREE_INT_CST_LOW (DR_STEP (dra));
+
+  if (init_a > init_b)
+    {
+      /* If init_a == init_b + the size of the type * k, we have an interleaving, 
+        and DRB is accessed before DRA.  */
+      diff_mod_size = (init_a - init_b) % type_size_a;
+
+      if ((init_a - init_b) > step)
+         return; 
+
+      if (diff_mod_size == 0)
+       {
+         vect_update_interleaving_chain (drb, dra);      
+         if (vect_print_dump_info (REPORT_DR_DETAILS))
+           {
+             fprintf (vect_dump, "Detected interleaving ");
+             print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+             fprintf (vect_dump, " and ");
+             print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+           }
+         return;
+       } 
+    }
+  else 
     {
-      for (j = i + 1; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
+      /* If init_b == init_a + the size of the type * k, we have an 
+        interleaving, and DRA is accessed before DRB.  */
+      diff_mod_size = (init_b - init_a) % type_size_a;
+
+      if ((init_b - init_a) > step)
+         return;
+
+      if (diff_mod_size == 0)
        {
-         struct data_reference *dra =
-           VARRAY_GENERIC_PTR (loop_write_refs, i);
-         struct data_reference *drb =
-           VARRAY_GENERIC_PTR (loop_write_refs, j);
-         if (vect_analyze_data_ref_dependence (dra, drb, loop_vinfo))
-           return false;
-       }
+         vect_update_interleaving_chain (dra, drb);      
+         if (vect_print_dump_info (REPORT_DR_DETAILS))
+           {
+             fprintf (vect_dump, "Detected interleaving ");
+             print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+             fprintf (vect_dump, " and ");
+             print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+           }
+         return;
+       } 
     }
+}
 
-  /* Examine load-store (true/anti) dependences.  */
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-    fprintf (vect_dump, "compare all load-store pairs.");
+/* Function vect_analyze_data_ref_dependence.
 
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_refs); i++)
+   Return TRUE if there (might) exist a dependence between a memory-reference
+   DRA and a memory-reference DRB.  */
+      
+static bool
+vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
+                                  loop_vec_info loop_vinfo)
+{
+  unsigned int i;
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+  struct data_reference *dra = DDR_A (ddr);
+  struct data_reference *drb = DDR_B (ddr);
+  stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra)); 
+  stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
+  int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
+  int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
+  lambda_vector dist_v;
+  unsigned int loop_depth;
+         
+  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+    {
+      /* Independent data accesses.  */
+      vect_check_interleaving (dra, drb);
+      return false;
+    }
+
+  if ((DR_IS_READ (dra) && DR_IS_READ (drb)) || dra == drb)
+    return false;
+  
+  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+    {
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+        {
+          fprintf (vect_dump,
+                   "not vectorized: can't determine dependence between ");
+          print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+          fprintf (vect_dump, " and ");
+          print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+        }
+      return true;
+    }
+
+  if (DDR_NUM_DIST_VECTS (ddr) == 0)
     {
-      for (j = 0; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+        {
+          fprintf (vect_dump, "not vectorized: bad dist vector for ");
+          print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+          fprintf (vect_dump, " and ");
+          print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+        }
+      return true;
+    }    
+
+  loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
+  for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
+    {
+      int dist = dist_v[loop_depth];
+
+      if (vect_print_dump_info (REPORT_DR_DETAILS))
+       fprintf (vect_dump, "dependence distance  = %d.", dist);
+
+      /* Same loop iteration.  */
+      if (dist % vectorization_factor == 0 && dra_size == drb_size)
        {
-         struct data_reference *dra = VARRAY_GENERIC_PTR (loop_read_refs, i);
-         struct data_reference *drb =
-           VARRAY_GENERIC_PTR (loop_write_refs, j);
-         if (vect_analyze_data_ref_dependence (dra, drb, loop_vinfo))
-           return false;
+         /* Two references with distance zero have the same alignment.  */
+         VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a), drb);
+         VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b), dra);
+         if (vect_print_dump_info (REPORT_ALIGNMENT))
+           fprintf (vect_dump, "accesses have the same alignment.");
+         if (vect_print_dump_info (REPORT_DR_DETAILS))
+           {
+             fprintf (vect_dump, "dependence distance modulo vf == 0 between ");
+             print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+             fprintf (vect_dump, " and ");
+             print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+           }
+
+          /* For interleaving, mark that there is a read-write dependency if
+             necessary. We check before that one of the data-refs is store.  */ 
+          if (DR_IS_READ (dra))
+            DR_GROUP_READ_WRITE_DEPENDENCE (stmtinfo_a) = true;
+         else
+            {
+              if (DR_IS_READ (drb))
+                DR_GROUP_READ_WRITE_DEPENDENCE (stmtinfo_b) = true;
+           }
+         
+          continue;
        }
+
+      if (abs (dist) >= vectorization_factor)
+       {
+         /* Dependence distance does not create dependence, as far as vectorization
+            is concerned, in this case.  */
+         if (vect_print_dump_info (REPORT_DR_DETAILS))
+           fprintf (vect_dump, "dependence distance >= VF.");
+         continue;
+       }
+
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+       {
+         fprintf (vect_dump,
+                  "not vectorized: possible dependence between data-refs ");
+         print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+         fprintf (vect_dump, " and ");
+         print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+       }
+
+      return true;
     }
 
+  return false;
+}
+
+
+/* Function vect_analyze_data_ref_dependences.
+          
+   Examine all the data references in the loop, and make sure there do not
+   exist any data dependences between them.  */
+         
+static bool
+vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
+{
+  unsigned int i;
+  VEC (ddr_p, heap) *ddrs = LOOP_VINFO_DDRS (loop_vinfo);
+  struct data_dependence_relation *ddr;
+
+  if (vect_print_dump_info (REPORT_DETAILS)) 
+    fprintf (vect_dump, "=== vect_analyze_dependences ===");
+     
+  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+    if (vect_analyze_data_ref_dependence (ddr, loop_vinfo))
+      return false;
+
   return true;
 }
 
@@ -950,24 +1102,28 @@ vect_compute_data_ref_alignment (struct data_reference *dr)
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);  
   tree ref = DR_REF (dr);
   tree vectype;
-  tree base, alignment;
-  bool base_aligned_p;
+  tree base, base_addr;
+  bool base_aligned;
   tree misalign;
+  tree aligned_to, alignment;
    
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "vect_compute_data_ref_alignment:");
 
   /* Initialize misalignment to unknown.  */
   DR_MISALIGNMENT (dr) = -1;
 
-  misalign = STMT_VINFO_VECT_MISALIGNMENT (stmt_info);
-  base_aligned_p = STMT_VINFO_VECT_BASE_ALIGNED_P (stmt_info);
-  base = build_fold_indirect_ref (STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info));
+  misalign = DR_OFFSET_MISALIGNMENT (dr);
+  aligned_to = DR_ALIGNED_TO (dr);
+  base_addr = DR_BASE_ADDRESS (dr);
+  base = build_fold_indirect_ref (base_addr);
   vectype = STMT_VINFO_VECTYPE (stmt_info);
+  alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
 
-  if (!misalign)
+  if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
+      || !misalign)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC)) 
+      if (vect_print_dump_info (REPORT_DETAILS))
        {
          fprintf (vect_dump, "Unknown alignment for access: ");
          print_generic_expr (vect_dump, base, TDF_SLIM);
@@ -975,11 +1131,25 @@ vect_compute_data_ref_alignment (struct data_reference *dr)
       return true;
     }
 
-  if (!base_aligned_p) 
+  if ((DECL_P (base) 
+       && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
+                               alignment) >= 0)
+      || (TREE_CODE (base_addr) == SSA_NAME
+         && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
+                                                     TREE_TYPE (base_addr)))),
+                                  alignment) >= 0))
+    base_aligned = true;
+  else
+    base_aligned = false;   
+
+  if (!base_aligned) 
     {
-      if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype)))
+      /* Do not change the alignment of global variables if 
+        flag_section_anchors is enabled.  */
+      if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
+         || (TREE_STATIC (base) && flag_section_anchors))
        {
-         if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+         if (vect_print_dump_info (REPORT_DETAILS))
            {
              fprintf (vect_dump, "can't force alignment of ref: ");
              print_generic_expr (vect_dump, ref, TDF_SLIM);
@@ -990,34 +1160,35 @@ vect_compute_data_ref_alignment (struct data_reference *dr)
       /* Force the alignment of the decl.
         NOTE: This is the only change to the code we make during
         the analysis phase, before deciding to vectorize the loop.  */
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "force alignment");
       DECL_ALIGN (base) = TYPE_ALIGN (vectype);
       DECL_USER_ALIGN (base) = 1;
     }
 
   /* At this point we assume that the base is aligned.  */
-  gcc_assert (base_aligned_p 
+  gcc_assert (base_aligned
              || (TREE_CODE (base) == VAR_DECL 
                  && DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
 
-  /* Alignment required, in bytes:  */
-  alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
-
   /* Modulo alignment.  */
   misalign = size_binop (TRUNC_MOD_EXPR, misalign, alignment);
-  if (tree_int_cst_sgn (misalign) < 0)
+
+  if (!host_integerp (misalign, 1))
     {
-      /* Negative misalignment value.  */
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      /* Negative or overflowed misalignment value.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "unexpected misalign value");
       return false;
     }
 
-  DR_MISALIGNMENT (dr) = tree_low_cst (misalign, 1);
+  DR_MISALIGNMENT (dr) = TREE_INT_CST_LOW (misalign);
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-    fprintf (vect_dump, "misalign = %d bytes", DR_MISALIGNMENT (dr));
+  if (vect_print_dump_info (REPORT_DETAILS))
+    {
+      fprintf (vect_dump, "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
+      print_generic_expr (vect_dump, ref, TDF_SLIM);
+    }
 
   return true;
 }
@@ -1026,33 +1197,128 @@ vect_compute_data_ref_alignment (struct data_reference *dr)
 /* Function vect_compute_data_refs_alignment
 
    Compute the misalignment of data references in the loop.
-   This pass may take place at function granularity instead of at loop
-   granularity.
-
-   FOR NOW: No analysis is actually performed. Misalignment is calculated
-   only for trivial cases. TODO.  */
+   Return FALSE if a data reference is found that cannot be vectorized.  */
 
 static bool
 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
 {
-  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
-  varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
+  VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  struct data_reference *dr;
+  unsigned int i;
+
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    if (!vect_compute_data_ref_alignment (dr))
+      return false;
+
+  return true;
+}
+
+
+/* Function vect_update_misalignment_for_peel
+
+   DR - the data reference whose misalignment is to be adjusted.
+   DR_PEEL - the data reference whose misalignment is being made
+             zero in the vector loop by the peel.
+   NPEEL - the number of iterations in the peel loop if the misalignment
+           of DR_PEEL is known at compile time.  */
+
+static void
+vect_update_misalignment_for_peel (struct data_reference *dr,
+                                   struct data_reference *dr_peel, int npeel)
+{
   unsigned int i;
+  VEC(dr_p,heap) *same_align_drs;
+  struct data_reference *current_dr;
+  int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
+  int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
+  stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
+  stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
+
+ /* For interleaved data accesses the step in the loop must be multiplied by
+     the size of the interleaving group.  */
+  if (DR_GROUP_FIRST_DR (stmt_info))
+    dr_size *= DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_DR (stmt_info)));
+  if (DR_GROUP_FIRST_DR (peel_stmt_info))
+    dr_peel_size *= DR_GROUP_SIZE (peel_stmt_info);
+
+  if (known_alignment_for_access_p (dr)
+      && known_alignment_for_access_p (dr_peel)
+      && (DR_MISALIGNMENT (dr) / dr_size ==
+          DR_MISALIGNMENT (dr_peel) / dr_peel_size))
+    {
+      DR_MISALIGNMENT (dr) = 0;
+      return;
+    }
 
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
+  /* It can be assumed that the data refs with the same alignment as dr_peel
+     are aligned in the vector loop.  */
+  same_align_drs
+    = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
+  for (i = 0; VEC_iterate (dr_p, same_align_drs, i, current_dr); i++)
     {
-      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
-      if (!vect_compute_data_ref_alignment (dr))
-       return false;
+      if (current_dr != dr)
+        continue;
+      gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
+                  DR_MISALIGNMENT (dr_peel) / dr_peel_size);
+      DR_MISALIGNMENT (dr) = 0;
+      return;
     }
 
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
+  if (known_alignment_for_access_p (dr)
+      && known_alignment_for_access_p (dr_peel))
     {
-      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
-      if (!vect_compute_data_ref_alignment (dr))
-       return false;
+      DR_MISALIGNMENT (dr) += npeel * dr_size;
+      DR_MISALIGNMENT (dr) %= UNITS_PER_SIMD_WORD;
+      return;
     }
 
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "Setting misalignment to -1.");
+  DR_MISALIGNMENT (dr) = -1;
+}
+
+
+/* Function vect_verify_datarefs_alignment
+
+   Return TRUE if all data references in the loop can be
+   handled with respect to alignment.  */
+
+static bool
+vect_verify_datarefs_alignment (loop_vec_info loop_vinfo)
+{
+  VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  struct data_reference *dr;
+  enum dr_alignment_support supportable_dr_alignment;
+  unsigned int i;
+
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    {
+      tree stmt = DR_STMT (dr);
+      stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+      /* For interleaving, only the alignment of the first access matters.  */
+      if (DR_GROUP_FIRST_DR (stmt_info)
+          && DR_GROUP_FIRST_DR (stmt_info) != stmt)
+        continue;
+
+      supportable_dr_alignment = vect_supportable_dr_alignment (dr);
+      if (!supportable_dr_alignment)
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+            {
+              if (DR_IS_READ (dr))
+                fprintf (vect_dump, 
+                         "not vectorized: unsupported unaligned load.");
+              else
+                fprintf (vect_dump, 
+                         "not vectorized: unsupported unaligned store.");
+            }
+          return false;
+        }
+      if (supportable_dr_alignment != dr_aligned
+          && vect_print_dump_info (REPORT_ALIGNMENT))
+        fprintf (vect_dump, "Vectorizing an unaligned access.");
+    }
   return true;
 }
 
@@ -1065,47 +1331,30 @@ vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
    FOR NOW: we assume that whatever versioning/peeling takes place, only the
    original loop is to be vectorized; Any other loops that are created by
    the transformations performed in this pass - are not supposed to be
-   vectorized. This restriction will be relaxed.  */
+   vectorized. This restriction will be relaxed.
+
+   This pass will require a cost model to guide it whether to apply peeling
+   or versioning or a combination of the two. For example, the scheme that
+   intel uses when given a loop with several memory accesses, is as follows:
+   choose one memory access ('p') which alignment you want to force by doing
+   peeling. Then, either (1) generate a loop in which 'p' is aligned and all
+   other accesses are not necessarily aligned, or (2) use loop versioning to
+   generate one loop in which all accesses are aligned, and another loop in
+   which only 'p' is necessarily aligned.
+
+   ("Automatic Intra-Register Vectorization for the Intel Architecture",
+   Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
+   Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
+
+   Devising a cost model is the most critical aspect of this work. It will
+   guide us on which access to peel for, whether to use loop versioning, how
+   many versions to create, etc. The cost model will probably consist of
+   generic considerations as well as target specific considerations (on
+   powerpc for example, misaligned stores are more painful than misaligned
+   loads).
+
+   Here are the general steps involved in alignment enhancements:
 
-static void
-vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
-{
-  varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
-  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
-  varray_type datarefs;
-  struct data_reference *dr0 = NULL;
-  unsigned int i, j;
-
-  /* Sigh, a hack to make targets that do not define UNITS_PER_SIMD_WORD
-     bootstrap.  Copy UNITS_PER_SIMD_WORD to a local variable to avoid a
-     "division by zero" error.  This error would be issued because we
-     we do "... % UNITS_PER_SIMD_WORD" below, and UNITS_PER_SIMD_WORD
-     defaults to 0 if it is not defined by the target.  */
-  int units_per_simd_word = UNITS_PER_SIMD_WORD;
-
-  /*
-     This pass will require a cost model to guide it whether to apply peeling 
-     or versioning or a combination of the two. For example, the scheme that
-     intel uses when given a loop with several memory accesses, is as follows:
-     choose one memory access ('p') which alignment you want to force by doing 
-     peeling. Then, either (1) generate a loop in which 'p' is aligned and all 
-     other accesses are not necessarily aligned, or (2) use loop versioning to 
-     generate one loop in which all accesses are aligned, and another loop in 
-     which only 'p' is necessarily aligned. 
-
-     ("Automatic Intra-Register Vectorization for the Intel Architecture",
-      Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
-      Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)    
-
-     Devising a cost model is the most critical aspect of this work. It will 
-     guide us on which access to peel for, whether to use loop versioning, how 
-     many versions to create, etc. The cost model will probably consist of 
-     generic considerations as well as target specific considerations (on 
-     powerpc for example, misaligned stores are more painful than misaligned 
-     loads). 
-
-     Here is the general steps involved in alignment enhancements:
-    
      -- original loop, before alignment analysis:
        for (i=0; i<N; i++){
          x = q[i];                     # DR_MISALIGNMENT(q) = unknown
@@ -1124,14 +1373,14 @@ vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
          x = q[i];                     # DR_MISALIGNMENT(q) = 3
          p[i] = y;                     # DR_MISALIGNMENT(p) = 0
        }
-     } 
+     }
      else {
        for (i=0; i<N; i++){    # loop 1B
          x = q[i];                     # DR_MISALIGNMENT(q) = 3
          p[i] = y;                     # DR_MISALIGNMENT(p) = unaligned
        }
      }
-   
+
      -- Possibility 2: we do loop peeling:
      for (i = 0; i < 3; i++){  # (scalar loop, not to be vectorized).
        x = q[i];
@@ -1148,11 +1397,11 @@ vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
        p[i] = y;
      }
      if (p is aligned) {
-       for (i = 3; i<N; i++){  # loop 3A
+       for (i = 3; i<N; i++){  # loop 3A
          x = q[i];                     # DR_MISALIGNMENT(q) = 0
          p[i] = y;                     # DR_MISALIGNMENT(p) = 0
        }
-     } 
+     }
      else {
        for (i = 3; i<N; i++){  # loop 3B
          x = q[i];                     # DR_MISALIGNMENT(q) = 0
@@ -1160,11 +1409,50 @@ vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
        }
      }
 
-     These loops are later passed to loop_transform to be vectorized. The 
-     vectorizer will use the alignment information to guide the transformation 
-     (whether to generate regular loads/stores, or with special handling for 
-     misalignment). 
-   */
+     These loops are later passed to loop_transform to be vectorized. The
+     vectorizer will use the alignment information to guide the transformation
+     (whether to generate regular loads/stores, or with special handling for
+     misalignment).  */
+
+static bool
+vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+  VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  enum dr_alignment_support supportable_dr_alignment;
+  struct data_reference *dr0 = NULL;
+  struct data_reference *dr;
+  unsigned int i;
+  bool do_peeling = false;
+  bool do_versioning = false;
+  bool stat;
+  tree stmt;
+  stmt_vec_info stmt_info;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_enhance_data_refs_alignment ===");
+
+  /* While cost model enhancements are expected in the future, the high level
+     view of the code at this time is as follows:
+
+     A) If there is a misaligned write then see if peeling to align this write
+        can make all data references satisfy vect_supportable_dr_alignment.
+        If so, update data structures as needed and return true.  Note that
+        at this time vect_supportable_dr_alignment is known to return false
+        for a misaligned write.
+
+     B) If peeling wasn't possible and there is a data reference with an
+        unknown misalignment that does not satisfy vect_supportable_dr_alignment
+        then see if loop versioning checks can be used to make all data
+        references satisfy vect_supportable_dr_alignment.  If so, update
+        data structures as needed and return true.
+
+     C) If neither peeling nor versioning were successful then return false if
+        any data reference does not satisfy vect_supportable_dr_alignment.
+
+     D) Return true (all data references satisfy vect_supportable_dr_alignment).
+
+     Note, Possibility 3 above (which is peeling and versioning together) is not
+     being done at this time.  */
 
   /* (1) Peeling to force alignment.  */
 
@@ -1180,876 +1468,595 @@ vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
      misaligned store in the loop.
      Rationale: misaligned stores are not yet supported.
 
-     TODO: Use a better cost model.  */
+     TODO: Use a cost model.  */
 
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
     {
-      dr0 = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
-      if (!aligned_access_p (dr0))
-       {
-         LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
-         LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
+      stmt = DR_STMT (dr);
+      stmt_info = vinfo_for_stmt (stmt);
+
+      /* For interleaving, only the alignment of the first access
+         matters.  */
+      if (DR_GROUP_FIRST_DR (stmt_info)
+          && DR_GROUP_FIRST_DR (stmt_info) != stmt)
+        continue;
+
+      if (!DR_IS_READ (dr) && !aligned_access_p (dr))
+        {
+         if (DR_GROUP_FIRST_DR (stmt_info))
+           {
+             /* For interleaved access we peel only if number of iterations in
+                the prolog loop ({VF - misalignment}), is a multiple of the
+                number of the interleaved accesses.  */
+             int elem_size, mis_in_elements;
+             int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+
+             /* FORNOW: handle only known alignment.  */
+             if (!known_alignment_for_access_p (dr))
+               {
+                 do_peeling = false;
+                 break;
+               }
+
+             elem_size = UNITS_PER_SIMD_WORD / vf;
+             mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
+
+             if ((vf - mis_in_elements) % DR_GROUP_SIZE (stmt_info))
+               {
+                 do_peeling = false;
+                 break;
+               }
+           }
+         dr0 = dr;
+         do_peeling = true;
          break;
        }
     }
 
-  /* (1.2) Update the alignment info according to the peeling factor.
-          If the misalignment of the DR we peel for is M, then the
-          peeling factor is VF - M, and the misalignment of each access DR_i
-          in the loop is DR_MISALIGNMENT (DR_i) + VF - M.
-          If the misalignment of the DR we peel for is unknown, then the 
-          misalignment of each access DR_i in the loop is also unknown.
-
-           TODO: - consider accesses that are known to have the same
-                   alignment, even if that alignment is unknown.  */
+  /* Often peeling for alignment will require peeling for loop-bound, which in 
+     turn requires that we know how to adjust the loop ivs after the loop.  */
+  if (!vect_can_advance_ivs_p (loop_vinfo))
+    do_peeling = false;
 
-  if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
+  if (do_peeling)
     {
       int mis;
       int npeel = 0;
 
       if (known_alignment_for_access_p (dr0))
-       {
-         /* Since it's known at compile time, compute the number of iterations
-            in the peeled loop (the peeling factor) for use in updating
-            DR_MISALIGNMENT values.  The peeling factor is the vectorization
-            factor minus the misalignment as an element count.  */
-         mis = DR_MISALIGNMENT (dr0);
-         mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
-         npeel = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - mis;
-       }
+        {
+          /* Since it's known at compile time, compute the number of iterations
+             in the peeled loop (the peeling factor) for use in updating
+             DR_MISALIGNMENT values.  The peeling factor is the vectorization
+             factor minus the misalignment as an element count.  */
+          mis = DR_MISALIGNMENT (dr0);
+          mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
+          npeel = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - mis;
+
+         /* For interleaved data access every iteration accesses all the 
+            members of the group, therefore we divide the number of iterations
+            by the group size.  */
+         stmt_info = vinfo_for_stmt (DR_STMT (dr0));     
+         if (DR_GROUP_FIRST_DR (stmt_info))
+           npeel /= DR_GROUP_SIZE (stmt_info);
+
+          if (vect_print_dump_info (REPORT_DETAILS))
+            fprintf (vect_dump, "Try peeling by %d", npeel);
+        }
 
-      datarefs = loop_write_datarefs;
-      for (j = 0; j < 2; j++)
-       {
-         for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
-           {
-             struct data_reference *dr = VARRAY_GENERIC_PTR (datarefs, i);
-
-             if (dr == dr0)
-               continue;
-             if (known_alignment_for_access_p (dr)
-                 && DR_MISALIGNMENT (dr) == DR_MISALIGNMENT (dr0))
-               DR_MISALIGNMENT (dr) = 0;
-             else if (known_alignment_for_access_p (dr)
-                      && known_alignment_for_access_p (dr0))
-               {
-                 int drsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
+      /* Ensure that all data refs can be vectorized after the peel.  */
+      for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+        {
+          int save_misalignment;
 
-                 DR_MISALIGNMENT (dr) += npeel * drsize;
-                 DR_MISALIGNMENT (dr) %= units_per_simd_word;
-               }
-             else
-               DR_MISALIGNMENT (dr) = -1;
+         if (dr == dr0)
+           continue;
+
+         stmt = DR_STMT (dr);
+         stmt_info = vinfo_for_stmt (stmt);
+         /* For interleaving, only the alignment of the first access
+            matters.  */
+         if (DR_GROUP_FIRST_DR (stmt_info)
+             && DR_GROUP_FIRST_DR (stmt_info) != stmt)
+           continue;
+
+         save_misalignment = DR_MISALIGNMENT (dr);
+         vect_update_misalignment_for_peel (dr, dr0, npeel);
+         supportable_dr_alignment = vect_supportable_dr_alignment (dr);
+         DR_MISALIGNMENT (dr) = save_misalignment;
+         
+         if (!supportable_dr_alignment)
+           {
+             do_peeling = false;
+             break;
            }
-         datarefs = loop_read_datarefs;
        }
 
-      DR_MISALIGNMENT (dr0) = 0;
+      if (do_peeling)
+        {
+          /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
+             If the misalignment of DR_i is identical to that of dr0 then set
+             DR_MISALIGNMENT (DR_i) to zero.  If the misalignment of DR_i and
+             dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
+             by the peeling factor times the element size of DR_i (MOD the
+             vectorization factor times the size).  Otherwise, the
+             misalignment of DR_i must be set to unknown.  */
+         for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+           if (dr != dr0)
+             vect_update_misalignment_for_peel (dr, dr0, npeel);
+
+          LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
+          LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
+          DR_MISALIGNMENT (dr0) = 0;
+         if (vect_print_dump_info (REPORT_ALIGNMENT))
+            fprintf (vect_dump, "Alignment of access forced using peeling.");
+
+          if (vect_print_dump_info (REPORT_DETAILS))
+            fprintf (vect_dump, "Peeling for alignment will be applied.");
+
+         stat = vect_verify_datarefs_alignment (loop_vinfo);
+         gcc_assert (stat);
+          return stat;
+        }
     }
-}
 
 
-/* Function vect_analyze_data_refs_alignment
-
-   Analyze the alignment of the data-references in the loop.
-   FOR NOW: Until support for misliagned accesses is in place, only if all
-   accesses are aligned can the loop be vectorized. This restriction will be 
-   relaxed.  */ 
+  /* (2) Versioning to force alignment.  */
 
-static bool
-vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
-{
-  varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
-  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
-  enum dr_alignment_support supportable_dr_alignment;
-  unsigned int i;
+  /* Try versioning if:
+     1) flag_tree_vect_loop_version is TRUE
+     2) optimize_size is FALSE
+     3) there is at least one unsupported misaligned data ref with an unknown
+        misalignment, and
+     4) all misaligned data refs with a known misalignment are supported, and
+     5) the number of runtime alignment checks is within reason.  */
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-    fprintf (vect_dump, "=== vect_analyze_data_refs_alignment ===");
+  do_versioning = flag_tree_vect_loop_version && (!optimize_size);
 
-
-  /* This pass may take place at function granularity instead of at loop
-     granularity.  */
-
-  if (!vect_compute_data_refs_alignment (loop_vinfo))
+  if (do_versioning)
     {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                               LOOP_LOC (loop_vinfo)))
-       fprintf (vect_dump, 
-                "not vectorized: can't calculate alignment for data ref.");
-      return false;
-    }
-
-
-  /* This pass will decide on using loop versioning and/or loop peeling in 
-     order to enhance the alignment of data references in the loop.  */
+      for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+        {
+         stmt = DR_STMT (dr);
+         stmt_info = vinfo_for_stmt (stmt);
 
-  vect_enhance_data_refs_alignment (loop_vinfo);
+         /* For interleaving, only the alignment of the first access
+            matters.  */
+         if (aligned_access_p (dr)
+             || (DR_GROUP_FIRST_DR (stmt_info)
+                 && DR_GROUP_FIRST_DR (stmt_info) != stmt))
+           continue;
 
+         supportable_dr_alignment = vect_supportable_dr_alignment (dr);
 
-  /* Finally, check that all the data references in the loop can be
-     handled with respect to their alignment.  */
+          if (!supportable_dr_alignment)
+            {
+              tree stmt;
+              int mask;
+              tree vectype;
+
+              if (known_alignment_for_access_p (dr)
+                  || VEC_length (tree,
+                                 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
+                     >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_CHECKS))
+                {
+                  do_versioning = false;
+                  break;
+                }
 
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
-    {
-      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
-      supportable_dr_alignment = vect_supportable_dr_alignment (dr);
-      if (!supportable_dr_alignment)
-       {
-         if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                   LOOP_LOC (loop_vinfo)))
-           fprintf (vect_dump, "not vectorized: unsupported unaligned load.");
-         return false;
-       }
-      if (supportable_dr_alignment != dr_aligned 
-         && (vect_print_dump_info (REPORT_ALIGNMENT, LOOP_LOC (loop_vinfo))))
-       fprintf (vect_dump, "Vectorizing an unaligned access.");
-    }
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
-    {
-      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
-      supportable_dr_alignment = vect_supportable_dr_alignment (dr);
-      if (!supportable_dr_alignment)
-       {
-         if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                   LOOP_LOC (loop_vinfo)))
-           fprintf (vect_dump, "not vectorized: unsupported unaligned store.");
-         return false;
-       }
-      if (supportable_dr_alignment != dr_aligned 
-         && (vect_print_dump_info (REPORT_ALIGNMENT, LOOP_LOC (loop_vinfo))))
-       fprintf (vect_dump, "Vectorizing an unaligned access.");
+              stmt = DR_STMT (dr);
+              vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+              gcc_assert (vectype);
+  
+              /* The rightmost bits of an aligned address must be zeros.
+                 Construct the mask needed for this test.  For example,
+                 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
+                 mask must be 15 = 0xf. */
+              mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
+
+              /* FORNOW: use the same mask to test all potentially unaligned
+                 references in the loop.  The vectorizer currently supports
+                 a single vector size, see the reference to
+                 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
+                 vectorization factor is computed.  */
+              gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
+                          || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
+              LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
+              VEC_safe_push (tree, heap,
+                             LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo),
+                             DR_STMT (dr));
+            }
+        }
+      
+      /* Versioning requires at least one misaligned data reference.  */
+      if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)) == 0)
+        do_versioning = false;
+      else if (!do_versioning)
+        VEC_truncate (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo), 0);
     }
-  if (LOOP_VINFO_UNALIGNED_DR (loop_vinfo)
-      && vect_print_dump_info (REPORT_ALIGNMENT, LOOP_LOC (loop_vinfo)))
-    fprintf (vect_dump, "Alignment of access forced using peeling.");
-
-  return true;
-}
 
+  if (do_versioning)
+    {
+      VEC(tree,heap) *may_misalign_stmts
+        = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
+      tree stmt;
 
-/* Function vect_analyze_data_ref_access.
+      /* It can now be assumed that the data references in the statements
+         in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
+         of the loop being vectorized.  */
+      for (i = 0; VEC_iterate (tree, may_misalign_stmts, i, stmt); i++)
+        {
+          stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+          dr = STMT_VINFO_DATA_REF (stmt_info);
+          DR_MISALIGNMENT (dr) = 0;
+         if (vect_print_dump_info (REPORT_ALIGNMENT))
+            fprintf (vect_dump, "Alignment of access forced using versioning.");
+        }
 
-   Analyze the access pattern of the data-reference DR. For now, a data access
-   has to consecutive to be considered vectorizable.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "Versioning for alignment will be applied.");
 
-static bool
-vect_analyze_data_ref_access (struct data_reference *dr)
-{
-  tree stmt = DR_STMT (dr);
-  stmt_vec_info stmt_info = vinfo_for_stmt (stmt); 
-  tree step = STMT_VINFO_VECT_STEP (stmt_info);
-  tree scalar_type = TREE_TYPE (DR_REF (dr));
+      /* Peeling and versioning can't be done together at this time.  */
+      gcc_assert (! (do_peeling && do_versioning));
 
-  if (!step || tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)))
-    {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-       fprintf (vect_dump, "not consecutive access");
-      return false;
+      stat = vect_verify_datarefs_alignment (loop_vinfo);
+      gcc_assert (stat);
+      return stat;
     }
-  return true;
-}
 
+  /* This point is reached if neither peeling nor versioning is being done.  */
+  gcc_assert (! (do_peeling || do_versioning));
 
-/* Function vect_analyze_data_ref_accesses.
+  stat = vect_verify_datarefs_alignment (loop_vinfo);
+  return stat;
+}
 
-   Analyze the access pattern of all the data references in the loop.
 
-   FORNOW: the only access pattern that is considered vectorizable is a
-          simple step 1 (consecutive) access.
+/* Function vect_analyze_data_refs_alignment
 
-   FORNOW: handle only arrays and pointer accesses.  */
+   Analyze the alignment of the data-references in the loop.
+   Return FALSE if a data reference is found that cannot be vectorized.  */
 
 static bool
-vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
+vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
 {
-  unsigned int i;
-  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
-  varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
-
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-    fprintf (vect_dump, "=== vect_analyze_data_ref_accesses ===");
-
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
-    {
-      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
-      bool ok = vect_analyze_data_ref_access (dr);
-      if (!ok)
-       {
-         if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                      LOOP_LOC (loop_vinfo)))
-           fprintf (vect_dump, "not vectorized: complicated access pattern.");
-         return false;
-       }
-    }
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_analyze_data_refs_alignment ===");
 
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
+  if (!vect_compute_data_refs_alignment (loop_vinfo))
     {
-      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
-      bool ok = vect_analyze_data_ref_access (dr);
-      if (!ok)
-       {
-         if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                   LOOP_LOC (loop_vinfo)))
-           fprintf (vect_dump, "not vectorized: complicated access pattern.");
-         return false;
-       }
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+       fprintf (vect_dump, 
+                "not vectorized: can't calculate alignment for data ref.");
+      return false;
     }
 
   return true;
 }
 
 
-/* Function vect_analyze_pointer_ref_access.
-
-   Input:
-   STMT - a stmt that contains a data-ref.
-   MEMREF - a data-ref in STMT, which is an INDIRECT_REF.
-   ACCESS_FN - the access function of MEMREF.
+/* Function vect_analyze_data_ref_access.
 
-   Output:
-   If the data-ref access is vectorizable, return a data_reference structure
-   that represents it (DR). Otherwise - return NULL.  
-   STEP - the stride of MEMREF in the loop.
-   INIT - the initial condition of MEMREF in the loop.
-*/
+   Analyze the access pattern of the data-reference DR. For now, a data access
+   has to be consecutive to be considered vectorizable.  */
 
-static struct data_reference *
-vect_analyze_pointer_ref_access (tree memref, tree stmt, bool is_read, 
-                                tree access_fn, tree *ptr_init, tree *ptr_step)
+static bool
+vect_analyze_data_ref_access (struct data_reference *dr)
 {
-  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
-  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-  tree step, init;     
-  tree reftype, innertype;
-  tree indx_access_fn; 
-  int loopnum = loop->num;
-  struct data_reference *dr;
-
-  if (!vect_is_simple_iv_evolution (loopnum, access_fn, &init, &step))
-    {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS, 
-                               LOOP_LOC (loop_vinfo))) 
-       fprintf (vect_dump, "not vectorized: pointer access is not simple.");   
-      return NULL;
-    }
-
-  STRIP_NOPS (init);
-
-  if (!expr_invariant_in_loop_p (loop, init))
-    {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                               LOOP_LOC (loop_vinfo))) 
-       fprintf (vect_dump, 
-                "not vectorized: initial condition is not loop invariant.");   
-      return NULL;
-    }
-
-  if (TREE_CODE (step) != INTEGER_CST)
-    {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                               LOOP_LOC (loop_vinfo))) 
-       fprintf (vect_dump, 
-               "not vectorized: non constant step for pointer access.");       
-      return NULL;
-    }
+  tree step = DR_STEP (dr);
+  HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
+  tree scalar_type = TREE_TYPE (DR_REF (dr));
+  HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
+  tree stmt = DR_STMT (dr);
+  /* For interleaving, STRIDE is STEP counted in elements, i.e., the size of the 
+     interleaving group (including gaps).  */
+  HOST_WIDE_INT stride = dr_step / type_size;
 
-  reftype = TREE_TYPE (TREE_OPERAND (memref, 0));
-  if (!POINTER_TYPE_P (reftype)) 
+  if (!step)
     {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                               LOOP_LOC (loop_vinfo)))
-       fprintf (vect_dump, "not vectorized: unexpected pointer access form."); 
-      return NULL;
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "bad data-ref access");
+      return false;
     }
 
-  if (!POINTER_TYPE_P (TREE_TYPE (init))) 
+  /* Consecutive?  */
+  if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)))
     {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                               LOOP_LOC (loop_vinfo))) 
-       fprintf (vect_dump, "not vectorized: unexpected pointer access form.");
-      return NULL;
+      /* Mark that it is not interleaving.  */
+      DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) = NULL_TREE;
+      return true;
     }
 
-  *ptr_step = fold_convert (ssizetype, step);
-  innertype = TREE_TYPE (reftype);
-  if (!COMPLETE_TYPE_P (innertype))
-    {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                              LOOP_LOC (loop_vinfo)))
-      fprintf (vect_dump, "not vectorized: pointer to incomplete type.");
-      return NULL;
-    }
-   
-  /* Check that STEP is a multiple of type size.  */
-  if (!integer_zerop (size_binop (TRUNC_MOD_EXPR, *ptr_step, 
-                       fold_convert (ssizetype, TYPE_SIZE_UNIT (innertype)))))
-    {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                               LOOP_LOC (loop_vinfo))) 
-       fprintf (vect_dump, "not vectorized: non consecutive access."); 
-      return NULL;
-    }
-   
-  indx_access_fn = 
-       build_polynomial_chrec (loopnum, integer_zero_node, integer_one_node);
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  /* Not consecutive access is possible only if it is a part of interleaving.  */
+  if (!DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)))
     {
-      fprintf (vect_dump, "Access function of ptr indx: ");
-      print_generic_expr (vect_dump, indx_access_fn, TDF_SLIM);
-    }
-  dr = init_data_ref (stmt, memref, NULL_TREE, indx_access_fn, is_read);
-  *ptr_init = init;
-  return dr;
-}
-
-
-/* Function vect_address_analysis
-
-   Return the BASE of the address expression EXPR.
-   Also compute the INITIAL_OFFSET from BASE, MISALIGN and STEP.
-
-   Input:
-   EXPR - the address expression that is being analyzed
-   STMT - the statement that contains EXPR or its original memory reference
-   IS_READ - TRUE if STMT reads from EXPR, FALSE if writes to EXPR
-   VECTYPE - the type that defines the alignment (i.e, we compute
-             alignment relative to TYPE_ALIGN(VECTYPE))
-   DR - data_reference struct for the original memory reference
-
-   Output:
-   BASE (returned value) - the base of the data reference EXPR.
-   INITIAL_OFFSET - initial offset of EXPR from BASE (an expression)
-   MISALIGN - offset of EXPR from BASE in bytes (a constant) or NULL_TREE if the
-              computation is impossible
-   STEP - evolution of EXPR in the loop
-   BASE_ALIGNED - indicates if BASE is aligned
-   If something unexpected is encountered (an unsupported form of data-ref),
-   then NULL_TREE is returned.  
- */
-
-static tree
-vect_address_analysis (tree expr, tree stmt, bool is_read, tree vectype, 
-                      struct data_reference *dr, tree *offset, tree *misalign,
-                      tree *step, bool *base_aligned)
-{
-  tree oprnd0, oprnd1, base_address, offset_expr, base_addr0, base_addr1;
-  tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
-  tree dummy;
-  struct ptr_info_def *dummy1;
-  subvar_t dummy2;
-
-  switch (TREE_CODE (expr))
-    {
-    case PLUS_EXPR:
-    case MINUS_EXPR:
-      /* EXPR is of form {base +/- offset} (or {offset +/- base}).  */
-      oprnd0 = TREE_OPERAND (expr, 0);
-      oprnd1 = TREE_OPERAND (expr, 1);
-
-      STRIP_NOPS (oprnd0);
-      STRIP_NOPS (oprnd1);
+      /* Check if it this DR is a part of interleaving, and is a single
+        element of the group that is accessed in the loop.  */
       
-      /* Recursively try to find the base of the address contained in EXPR.
-        For offset, the returned base will be NULL.  */
-      base_addr0 = vect_address_analysis (oprnd0, stmt, is_read, vectype, dr, 
-                                    &address_offset, &address_misalign, step, 
-                                    base_aligned);
-
-      base_addr1 = vect_address_analysis (oprnd1, stmt, is_read, vectype, dr, 
-                                    &address_offset, &address_misalign, step, 
-                                    base_aligned);
-
-      /* We support cases where only one of the operands contains an 
-        address.  */
-      if ((base_addr0 && base_addr1) || (!base_addr0 && !base_addr1))
-       return NULL_TREE;
-
-      /* To revert STRIP_NOPS.  */
-      oprnd0 = TREE_OPERAND (expr, 0);
-      oprnd1 = TREE_OPERAND (expr, 1);
-      
-      offset_expr = base_addr0 ? 
-       fold_convert (ssizetype, oprnd1) : fold_convert (ssizetype, oprnd0);
-
-      /* EXPR is of form {base +/- offset} (or {offset +/- base}). If offset is 
-        a number, we can add it to the misalignment value calculated for base,
-        otherwise, misalignment is NULL.  */
-      if (TREE_CODE (offset_expr) == INTEGER_CST && address_misalign)
-       *misalign = size_binop (TREE_CODE (expr), address_misalign, 
-                               offset_expr);
-      else
-       *misalign = NULL_TREE;
-
-      /* Combine offset (from EXPR {base + offset}) with the offset calculated
-        for base.  */
-      *offset = size_binop (TREE_CODE (expr), address_offset, offset_expr);
-      return base_addr0 ? base_addr0 : base_addr1;
-
-    case ADDR_EXPR:
-      base_address = vect_object_analysis (TREE_OPERAND (expr, 0), stmt,
-                                          is_read, vectype, &dr, offset, 
-                                          misalign, step, base_aligned, 
-                                          &dummy, &dummy1, &dummy2);
-      return base_address;
+      /* Gaps are supported only for loads. STEP must be a multiple of the type
+        size.  The size of the group must be a power of 2.  */
+      if (DR_IS_READ (dr)
+         && (dr_step % type_size) == 0
+         && stride > 0
+         && exact_log2 (stride) != -1)
+       {
+         DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) = stmt;
+         DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
+         if (vect_print_dump_info (REPORT_DR_DETAILS))
+           {
+             fprintf (vect_dump, "Detected single element interleaving %d ",
+                      DR_GROUP_SIZE (vinfo_for_stmt (stmt)));
+             print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
+             fprintf (vect_dump, " step ");
+             print_generic_expr (vect_dump, step, TDF_SLIM);
+           }
+         return true;
+       }
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "not consecutive access");
+      return false;
+    }
 
-    case SSA_NAME:
-      if (!POINTER_TYPE_P (TREE_TYPE (expr)))
-       return NULL_TREE;
+  if (DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) == stmt)
+    {
+      /* First stmt in the interleaving chain. Check the chain.  */
+      tree next = DR_GROUP_NEXT_DR (vinfo_for_stmt (stmt));
+      struct data_reference *data_ref = dr;
+      unsigned int count = 1;
+      tree next_step;
+      tree prev_init = DR_INIT (data_ref);
+      tree prev = stmt;
+      HOST_WIDE_INT diff, count_in_bytes;
 
-      if (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (expr))) < TYPE_ALIGN (vectype)) 
+      while (next)
        {
-         if (vect_get_ptr_offset (expr, vectype, misalign))
-           *base_aligned = true;         
-         else
-           *base_aligned = false;
-       }
-      else
-       {         
-         *base_aligned = true;
-         *misalign = ssize_int (0);
-       }
-      *offset = ssize_int (0);
-      *step = ssize_int (0);
-      return expr;
-      
-    default:
-      return NULL_TREE;
-    }
-}
+         /* Skip same data-refs. In case that two or more stmts share data-ref
+            (supported only for loads), we vectorize only the first stmt, and
+            the rest get their vectorized loads from the first one.  */
+         if (!tree_int_cst_compare (DR_INIT (data_ref),
+                                    DR_INIT (STMT_VINFO_DATA_REF (
+                                                     vinfo_for_stmt (next)))))
+           {
+              if (!DR_IS_READ (data_ref))
+                { 
+                  if (vect_print_dump_info (REPORT_DETAILS))
+                    fprintf (vect_dump, "Two store stmts share the same dr.");
+                  return false; 
+                }
 
+              /* Check that there is no load-store dependencies for this loads 
+                 to prevent a case of load-store-load to the same location.  */
+              if (DR_GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (next))
+                  || DR_GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (prev)))
+                {
+                  if (vect_print_dump_info (REPORT_DETAILS))
+                    fprintf (vect_dump, 
+                             "READ_WRITE dependence in interleaving.");
+                  return false;
+                }
 
-/* Function vect_object_analysis
-
-   Return the BASE of the data reference MEMREF.
-   Also compute the INITIAL_OFFSET from BASE, MISALIGN and STEP.
-   E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset  
-   'a.b[i] + 4B' from a (can be an expression), MISALIGN is an OFFSET 
-   instantiated with initial_conditions of access_functions of variables, 
-   modulo alignment, and STEP is the evolution of the DR_REF in this loop.
-
-   Function get_inner_reference is used for the above in case of ARRAY_REF and
-   COMPONENT_REF.
-
-   The structure of the function is as follows:
-   Part 1:
-   Case 1. For handled_component_p refs 
-          1.1 call get_inner_reference
-            1.1.1 analyze offset expr received from get_inner_reference
-         1.2. build data-reference structure for MEMREF
-        (fall through with BASE)
-   Case 2. For declarations 
-          2.1 check alignment
-          2.2 update DR_BASE_NAME if necessary for alias
-   Case 3. For INDIRECT_REFs 
-          3.1 get the access function
-         3.2 analyze evolution of MEMREF
-         3.3 set data-reference structure for MEMREF
-          3.4 call vect_address_analysis to analyze INIT of the access function
-
-   Part 2:
-   Combine the results of object and address analysis to calculate 
-   INITIAL_OFFSET, STEP and misalignment info.   
-
-   Input:
-   MEMREF - the memory reference that is being analyzed
-   STMT - the statement that contains MEMREF
-   IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
-   VECTYPE - the type that defines the alignment (i.e, we compute
-             alignment relative to TYPE_ALIGN(VECTYPE))
-   
-   Output:
-   BASE_ADDRESS (returned value) - the base address of the data reference MEMREF
-                                   E.g, if MEMREF is a.b[k].c[i][j] the returned
-                                  base is &a.
-   DR - data_reference struct for MEMREF
-   INITIAL_OFFSET - initial offset of MEMREF from BASE (an expression)
-   MISALIGN - offset of MEMREF from BASE in bytes (a constant) or NULL_TREE if 
-              the computation is impossible
-   STEP - evolution of the DR_REF in the loop
-   BASE_ALIGNED - indicates if BASE is aligned
-   MEMTAG - memory tag for aliasing purposes
-   PTR_INFO - NULL or points-to aliasing info from a pointer SSA_NAME
-   SUBVAR - Sub-variables of the variable
-   If something unexpected is encountered (an unsupported form of data-ref),
-   then NULL_TREE is returned.  */
+             /* For load use the same data-ref load.  */
+             DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
 
-static tree
-vect_object_analysis (tree memref, tree stmt, bool is_read,
-                     tree vectype, struct data_reference **dr,
-                     tree *offset, tree *misalign, tree *step,
-                     bool *base_aligned, tree *memtag,
-                     struct ptr_info_def **ptr_info, subvar_t *subvars)
-{
-  tree base = NULL_TREE, base_address = NULL_TREE;
-  tree object_offset = ssize_int (0), object_misalign = ssize_int (0);
-  tree object_step = ssize_int (0), address_step = ssize_int (0);
-  bool object_base_aligned = true, address_base_aligned = true;
-  tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
-  HOST_WIDE_INT pbitsize, pbitpos;
-  tree poffset, bit_pos_in_bytes;
-  enum machine_mode pmode;
-  int punsignedp, pvolatilep;
-  tree ptr_step = ssize_int (0), ptr_init = NULL_TREE;
-  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
-  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-  struct data_reference *ptr_dr = NULL;
-  tree access_fn, evolution_part, address_to_analyze;
+             prev = next;
+             next = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
+             continue;
+           }
+         prev = next;
 
-  *ptr_info = NULL;
-   
-  /* Part 1: */
-  /* Case 1. handled_component_p refs.  */
-  if (handled_component_p (memref))
-    {
-      /* 1.1 call get_inner_reference.  */
-      /* Find the base and the offset from it.  */
-      base = get_inner_reference (memref, &pbitsize, &pbitpos, &poffset,
-                                 &pmode, &punsignedp, &pvolatilep, false);
-      if (!base)
-       return NULL_TREE;
-
-      /* 1.1.1 analyze offset expr received from get_inner_reference.  */
-      if (poffset 
-         && !vect_analyze_offset_expr (poffset, loop, TYPE_SIZE_UNIT (vectype), 
-                               &object_offset, &object_misalign, &object_step))
-       {
-         if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+         /* Check that all the accesses have the same STEP.  */
+         next_step = DR_STEP (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
+         if (tree_int_cst_compare (step, next_step))
            {
-             fprintf (vect_dump, "failed to compute offset or step for ");
-             print_generic_expr (vect_dump, memref, TDF_SLIM);
+             if (vect_print_dump_info (REPORT_DETAILS))
+               fprintf (vect_dump, "not consecutive access in interleaving");
+             return false;
            }
-         return NULL_TREE;
-       }
 
-      /* Add bit position to OFFSET and MISALIGN.  */
-
-      bit_pos_in_bytes = ssize_int (pbitpos/BITS_PER_UNIT);
-      /* Check that there is no remainder in bits.  */
-      if (pbitpos%BITS_PER_UNIT)
-       {
-         if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-           fprintf (vect_dump, "bit offset alignment.");
-         return NULL_TREE;
-       }
-      object_offset = size_binop (PLUS_EXPR, bit_pos_in_bytes, object_offset);     
-      if (object_misalign) 
-       object_misalign = size_binop (PLUS_EXPR, object_misalign, 
-                                     bit_pos_in_bytes); 
-
-      /* Create data-reference for MEMREF. TODO: handle COMPONENT_REFs.  */
-      if (!(*dr))
-       { 
-         if (TREE_CODE (memref) == ARRAY_REF)
-           *dr = analyze_array (stmt, memref, is_read);
-         else
-           /* FORNOW.  */
-           return NULL_TREE;
-       }
-      memref = base; /* To continue analysis of BASE.  */
-      /* fall through  */
-    }
-  
-  /*  Part 1: Case 2. Declarations.  */ 
-  if (DECL_P (memref))
-    {
-      /* We expect to get a decl only if we already have a DR.  */
-      if (!(*dr))
-       {
-         if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+         data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
+         /* Check that the distance between two accesses is equal to the type
+            size. Otherwise, we have gaps.  */
+         diff = (TREE_INT_CST_LOW (DR_INIT (data_ref)) 
+                 - TREE_INT_CST_LOW (prev_init)) / type_size;
+         if (!DR_IS_READ (data_ref) && diff != 1)
            {
-             fprintf (vect_dump, "unhandled decl ");
-             print_generic_expr (vect_dump, memref, TDF_SLIM);
+             if (vect_print_dump_info (REPORT_DETAILS))
+               fprintf (vect_dump, "interleaved store with gaps");
+             return false;
            }
-         return NULL_TREE;
+         /* Store the gap from the previous member of the group. If there is no
+             gap in the access, DR_GROUP_GAP is always 1.  */
+         DR_GROUP_GAP (vinfo_for_stmt (next)) = diff;
+
+         prev_init = DR_INIT (data_ref);
+         next = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
+         /* Count the number of data-refs in the chain.  */
+         count++;
        }
 
-      /* 2.1 check the alignment.  */
-      if (DECL_ALIGN (memref) >= TYPE_ALIGN (vectype))
-       object_base_aligned = true;
-      else
-       object_base_aligned = false;
-
-      /* 2.2 update DR_BASE_NAME if necessary.  */
-      if (!DR_BASE_NAME ((*dr)))
-       /* For alias analysis.  In case the analysis of INDIRECT_REF brought 
-          us to object.  */
-       DR_BASE_NAME ((*dr)) = memref;
-
-      if (SSA_VAR_P (memref) && var_can_have_subvars (memref)) 
-       *subvars = get_subvars_for_var (memref);
-      base_address = build_fold_addr_expr (memref);
-      *memtag = memref;
-    }
-
-  /* Part 1:  Case 3. INDIRECT_REFs.  */
-  else if (TREE_CODE (memref) == INDIRECT_REF)
-    {
-      tree ptr_ref = TREE_OPERAND (memref, 0);
-      if (TREE_CODE (ptr_ref) == SSA_NAME)
-        *ptr_info = SSA_NAME_PTR_INFO (ptr_ref);
+      /* COUNT is the number of accesses found, we multiply it by the size of 
+        the type to get COUNT_IN_BYTES.  */
+      count_in_bytes = type_size * count;
 
-      /* 3.1 get the access function.  */
-      access_fn = analyze_scalar_evolution (loop, ptr_ref);
-      if (!access_fn)
-       {
-         if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                   LOOP_LOC (loop_vinfo)))
-           fprintf (vect_dump, "not vectorized: complicated pointer access."); 
-         return NULL_TREE;
-       }
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      /* Check that the size of the interleaving is not greater than STEP.  */
+      if (dr_step < count_in_bytes) 
        {
-         fprintf (vect_dump, "Access function of ptr: ");
-         print_generic_expr (vect_dump, access_fn, TDF_SLIM);
+         if (vect_print_dump_info (REPORT_DETAILS))
+           {
+             fprintf (vect_dump, "interleaving size is greater than step for ");
+             print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM); 
+           }
+         return false;
        }
 
-      /* 3.2 analyze evolution of MEMREF.  */
-      evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
-      if (evolution_part)
+      /* Check that the size of the interleaving is equal to STEP for stores, 
+         i.e., that there are no gaps.  */ 
+      if (!DR_IS_READ (dr) && dr_step != count_in_bytes) 
        {
-         ptr_dr = vect_analyze_pointer_ref_access (memref, stmt, is_read, 
-                                        access_fn, &ptr_init, &ptr_step);
-         if (!(ptr_dr))
-           return NULL_TREE; 
-         
-         object_step = size_binop (PLUS_EXPR, object_step, ptr_step);
-         address_to_analyze = ptr_init;
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "interleaved store with gaps");
+         return false;
        }
-      else
+
+      /* Check that STEP is a multiple of type size.  */
+      if ((dr_step % type_size) != 0)
        {
-         if (!(*dr))
-           {
-             if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                       LOOP_LOC (loop_vinfo))) 
-               fprintf (vect_dump, "not vectorized: ptr is loop invariant.");  
-             return NULL_TREE;
-           }
-         /* Since there exists DR for MEMREF, we are analyzing the init of 
-            the access function, which not necessary has evolution in the 
-            loop.  */
-         address_to_analyze = initial_condition_in_loop_num (access_fn,
-                                                              loop->num);
+         if (vect_print_dump_info (REPORT_DETAILS)) 
+            {
+              fprintf (vect_dump, "step is not a multiple of type size: step ");
+              print_generic_expr (vect_dump, step, TDF_SLIM);
+              fprintf (vect_dump, " size ");
+              print_generic_expr (vect_dump, TYPE_SIZE_UNIT (scalar_type),
+                                  TDF_SLIM);
+            }
+         return false;
        }
-      
-      /* 3.3 set data-reference structure for MEMREF.  */
-      *dr = (*dr) ? *dr : ptr_dr;
-
-      /* 3.4 call vect_address_analysis to analyze INIT of the access 
-        function.  */
-      base_address = vect_address_analysis (address_to_analyze, stmt, is_read, 
-                              vectype, *dr, &address_offset, &address_misalign, 
-                              &address_step, &address_base_aligned);
-      if (!base_address)
-       return NULL_TREE;
-
-      switch (TREE_CODE (base_address))
+
+      /* FORNOW: we handle only interleaving that is a power of 2.  */
+      if (exact_log2 (stride) == -1)
        {
-       case SSA_NAME:
-         *memtag = get_var_ann (SSA_NAME_VAR (base_address))->type_mem_tag;
-         if (!(*memtag) && TREE_CODE (TREE_OPERAND (memref, 0)) == SSA_NAME)
-           *memtag = get_var_ann (
-                     SSA_NAME_VAR (TREE_OPERAND (memref, 0)))->type_mem_tag;
-         break;
-       case ADDR_EXPR:
-         *memtag = TREE_OPERAND (base_address, 0);
-         break;
-       default:
-         if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                   LOOP_LOC (loop_vinfo)))
-           {
-             fprintf (vect_dump, "not vectorized: no memtag ref: "); 
-             print_generic_expr (vect_dump, memref, TDF_SLIM);
-           }
-         return NULL_TREE;
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "interleaving is not a power of 2");
+         return false;
        }
+      DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
     }
-           
-  if (!base_address)
-    /* MEMREF cannot be analyzed.  */
-    return NULL_TREE;
-
-  if (SSA_VAR_P (*memtag) && var_can_have_subvars (*memtag))
-    *subvars = get_subvars_for_var (*memtag);
-
-  /* Part 2: Combine the results of object and address analysis to calculate 
-     INITIAL_OFFSET, STEP and misalignment info.  */
-  *offset = size_binop (PLUS_EXPR, object_offset, address_offset);
-  if (object_misalign && address_misalign)
-    *misalign = size_binop (PLUS_EXPR, object_misalign, address_misalign);
-  else
-    *misalign = NULL_TREE;
-  *step = size_binop (PLUS_EXPR, object_step, address_step); 
-  *base_aligned = object_base_aligned && address_base_aligned;
-
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-    {
-      fprintf (vect_dump, "Results of object analysis for: ");
-      print_generic_expr (vect_dump, memref, TDF_SLIM);
-      fprintf (vect_dump, "\n\tbase_address: ");
-      print_generic_expr (vect_dump, base_address, TDF_SLIM);
-      fprintf (vect_dump, "\n\toffset: ");
-      print_generic_expr (vect_dump, *offset, TDF_SLIM);
-      fprintf (vect_dump, "\n\tstep: ");
-      print_generic_expr (vect_dump, *step, TDF_SLIM);
-      fprintf (vect_dump, "\n\tbase aligned %d\n\tmisalign: ", *base_aligned);
-      print_generic_expr (vect_dump, *misalign, TDF_SLIM);
-    }
-  return base_address;
+  return true;
+}
+
+
+/* Function vect_analyze_data_ref_accesses.
+
+   Analyze the access pattern of all the data references in the loop.
+
+   FORNOW: the only access pattern that is considered vectorizable is a
+          simple step 1 (consecutive) access.
+
+   FORNOW: handle only arrays and pointer accesses.  */
+
+static bool
+vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
+{
+  unsigned int i;
+  VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  struct data_reference *dr;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_analyze_data_ref_accesses ===");
+
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    if (!vect_analyze_data_ref_access (dr))
+      {
+       if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+         fprintf (vect_dump, "not vectorized: complicated access pattern.");
+       return false;
+      }
+
+  return true;
 }
 
 
 /* Function vect_analyze_data_refs.
 
-   Find all the data references in the loop.
+  Find all the data references in the loop.
 
-   The general structure of the analysis of data refs in the vectorizer is as 
+   The general structure of the analysis of data refs in the vectorizer is as
    follows:
-   1- vect_analyze_data_refs(loop): 
-      Find and analyze all data-refs in the loop:
-          foreach ref
-            base_address = vect_object_analysis(ref)
-      1.1- vect_object_analysis(ref): 
-           Analyze ref, and build a DR (data_referece struct) for it;
-           compute base, initial_offset, step and alignment. 
-           Call get_inner_reference for refs handled in this function.
-           Call vect_addr_analysis(addr) to analyze pointer type expressions.
-      Set ref_stmt.base, ref_stmt.initial_offset, ref_stmt.alignment,  
-      ref_stmt.memtag, ref_stmt.ptr_info and ref_stmt.step accordingly. 
-   2- vect_analyze_dependences(): apply dependence testing using ref_stmt.DR
+   1- vect_analyze_data_refs(loop): call compute_data_dependences_for_loop to
+      find and analyze all data-refs in the loop and their dependences.
+   2- vect_analyze_dependences(): apply dependence testing using ddrs.
    3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
    4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
 
-   FORNOW: Handle aligned INDIRECT_REFs and ARRAY_REFs 
-          which base is really an array (not a pointer) and which alignment 
-          can be forced. This restriction will be relaxed.  */
+*/
 
 static bool
-vect_analyze_data_refs (loop_vec_info loop_vinfo)
+vect_analyze_data_refs (loop_vec_info loop_vinfo)  
 {
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
-  int nbbs = loop->num_nodes;
-  block_stmt_iterator si;
-  int j;
+  unsigned int i;
+  VEC (data_reference_p, heap) *datarefs;
   struct data_reference *dr;
+  tree scalar_type;
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-    fprintf (vect_dump, "=== vect_analyze_data_refs ===");
-
-  for (j = 0; j < nbbs; j++)
-    {
-      basic_block bb = bbs[j];
-      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
-       {
-         bool is_read = false;
-         tree stmt = bsi_stmt (si);
-         stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-         v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
-         v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
-         vuse_optype vuses = STMT_VUSE_OPS (stmt);
-         varray_type *datarefs = NULL;
-         int nvuses, nv_may_defs, nv_must_defs;
-         tree memref = NULL;
-         tree scalar_type, vectype;      
-         tree base, offset, misalign, step, tag;
-         struct ptr_info_def *ptr_info;
-         bool base_aligned;
-         subvar_t subvars = NULL;
-
-         /* Assumption: there exists a data-ref in stmt, if and only if 
-             it has vuses/vdefs.  */
-
-         if (!vuses && !v_may_defs && !v_must_defs)
-           continue;
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "=== vect_analyze_data_refs ===\n");
 
-         nvuses = NUM_VUSES (vuses);
-         nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
-         nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
+  compute_data_dependences_for_loop (loop, true,
+                                     &LOOP_VINFO_DATAREFS (loop_vinfo),
+                                     &LOOP_VINFO_DDRS (loop_vinfo));
 
-         if (nvuses && (nv_may_defs || nv_must_defs))
-           {
-             if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-               {
-                 fprintf (vect_dump, "unexpected vdefs and vuses in stmt: ");
-                 print_generic_expr (vect_dump, stmt, TDF_SLIM);
-               }
-             return false;
-           }
+  /* Go through the data-refs, check that the analysis succeeded. Update pointer
+     from stmt_vec_info struct to DR and vectype.  */
+  datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
 
-         if (TREE_CODE (stmt) != MODIFY_EXPR)
-           {
-             if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-               {
-                 fprintf (vect_dump, "unexpected vops in stmt: ");
-                 print_generic_expr (vect_dump, stmt, TDF_SLIM);
-               }
-             return false;
-           }
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    {
+      tree stmt;
+      stmt_vec_info stmt_info;
+   
+      if (!dr || !DR_REF (dr))
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+           fprintf (vect_dump, "not vectorized: unhandled data-ref ");
+          return false;
+        }
+      /* Update DR field in stmt_vec_info struct.  */
+      stmt = DR_STMT (dr);
+      stmt_info = vinfo_for_stmt (stmt);
 
-         if (vuses)
-           {
-             memref = TREE_OPERAND (stmt, 1);
-             datarefs = &(LOOP_VINFO_DATAREF_READS (loop_vinfo));
-             is_read = true;
-           } 
-         else /* vdefs */
-           {
-             memref = TREE_OPERAND (stmt, 0);
-             datarefs = &(LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
-             is_read = false;
-           }
-         
-         scalar_type = TREE_TYPE (memref);
-         vectype = get_vectype_for_scalar_type (scalar_type);
-         if (!vectype)
-           {
-             if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-               {
-                 fprintf (vect_dump, "no vectype for stmt: ");
-                 print_generic_expr (vect_dump, stmt, TDF_SLIM);
-                 fprintf (vect_dump, " scalar_type: ");
-                 print_generic_expr (vect_dump, scalar_type, TDF_DETAILS);
-               }
-             /* It is not possible to vectorize this data reference.  */
-             return false;
-           }
-        /* Analyze MEMREF. If it is of a supported form, build data_reference
-            struct for it (DR).  */
-         dr = NULL; 
-         base = vect_object_analysis (memref, stmt, is_read, vectype, &dr, 
-                                      &offset, &misalign, &step, 
-                                      &base_aligned, &tag, &ptr_info,
-                                      &subvars);
-         if (!base)
-           {
-             if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                       LOOP_LOC (loop_vinfo)))
-               {
-                 fprintf (vect_dump, "not vectorized: unhandled data ref: "); 
-                 print_generic_expr (vect_dump, stmt, TDF_SLIM);
-               }
-             return false;
-           }
-         STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info) = base;
-         STMT_VINFO_VECT_INIT_OFFSET (stmt_info) = offset;
-         STMT_VINFO_VECT_STEP (stmt_info) = step;
-         STMT_VINFO_VECT_MISALIGNMENT (stmt_info) = misalign;
-         STMT_VINFO_VECT_BASE_ALIGNED_P (stmt_info) = base_aligned;
-         STMT_VINFO_MEMTAG (stmt_info) = tag;
-         STMT_VINFO_PTR_INFO (stmt_info) = ptr_info;
-         STMT_VINFO_SUBVARS (stmt_info) = subvars;
-         STMT_VINFO_VECTYPE (stmt_info) = vectype;
-         VARRAY_PUSH_GENERIC_PTR (*datarefs, dr);
-         STMT_VINFO_DATA_REF (stmt_info) = dr;
-       }
+      if (STMT_VINFO_DATA_REF (stmt_info))
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+            {
+              fprintf (vect_dump,
+                       "not vectorized: more than one data ref in stmt: ");
+              print_generic_expr (vect_dump, stmt, TDF_SLIM);
+            }
+          return false;
+        }
+      STMT_VINFO_DATA_REF (stmt_info) = dr;
+     
+      /* Check that analysis of the data-ref succeeded.  */
+      if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
+          || !DR_STEP (dr))   
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+            {
+              fprintf (vect_dump, "not vectorized: data ref analysis failed ");
+              print_generic_expr (vect_dump, stmt, TDF_SLIM);
+            }
+          return false;
+        }
+      if (!DR_MEMTAG (dr))
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+            {
+              fprintf (vect_dump, "not vectorized: no memory tag for ");
+              print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
+            }
+          return false;
+        }
+                       
+      /* Set vectype for STMT.  */
+      scalar_type = TREE_TYPE (DR_REF (dr));
+      STMT_VINFO_VECTYPE (stmt_info) =
+                get_vectype_for_scalar_type (scalar_type);
+      if (!STMT_VINFO_VECTYPE (stmt_info)) 
+        {
+          if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+            {
+              fprintf (vect_dump,
+                       "not vectorized: no vectype for stmt: ");
+              print_generic_expr (vect_dump, stmt, TDF_SLIM);
+              fprintf (vect_dump, " scalar_type: ");
+              print_generic_expr (vect_dump, scalar_type, TDF_DETAILS);
+            }
+          return false;
+        }
     }
-
+      
   return true;
 }
 
@@ -2061,40 +2068,52 @@ vect_analyze_data_refs (loop_vec_info loop_vinfo)
    Mark STMT as "relevant for vectorization" and add it to WORKLIST.  */
 
 static void
-vect_mark_relevant (varray_type *worklist, tree stmt)
+vect_mark_relevant (VEC(tree,heap) **worklist, tree stmt,
+                   enum vect_relevant relevant, bool live_p)
 {
-  stmt_vec_info stmt_info;
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
+  bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-    fprintf (vect_dump, "mark relevant.");
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "mark relevant %d, live %d.", relevant, live_p);
 
-  if (TREE_CODE (stmt) == PHI_NODE)
+  if (STMT_VINFO_IN_PATTERN_P (stmt_info))
     {
-      VARRAY_PUSH_TREE (*worklist, stmt);
-      return;
+      tree pattern_stmt;
+
+      /* This is the last stmt in a sequence that was detected as a 
+         pattern that can potentially be vectorized.  Don't mark the stmt
+         as relevant/live because it's not going to vectorized.
+         Instead mark the pattern-stmt that replaces it.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "last stmt in pattern. don't mark relevant/live.");
+      pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+      stmt_info = vinfo_for_stmt (pattern_stmt);
+      gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
+      save_relevant = STMT_VINFO_RELEVANT (stmt_info);
+      save_live_p = STMT_VINFO_LIVE_P (stmt_info);
+      stmt = pattern_stmt;
     }
 
-  stmt_info = vinfo_for_stmt (stmt);
+  STMT_VINFO_LIVE_P (stmt_info) |= live_p;
+  if (relevant > STMT_VINFO_RELEVANT (stmt_info))
+    STMT_VINFO_RELEVANT (stmt_info) = relevant;
 
-  if (!stmt_info)
-    {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-       {
-         fprintf (vect_dump, "mark relevant: no stmt info!!.");
-         print_generic_expr (vect_dump, stmt, TDF_SLIM);
-       }
-      return;
-    }
+  if (TREE_CODE (stmt) == PHI_NODE)
+    /* Don't put phi-nodes in the worklist. Phis that are marked relevant
+       or live will fail vectorization later on.  */
+    return;
 
-  if (STMT_VINFO_RELEVANT_P (stmt_info))
+  if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
+      && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-        fprintf (vect_dump, "already marked relevant.");
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "already marked relevant/live.");
       return;
     }
 
-  STMT_VINFO_RELEVANT_P (stmt_info) = 1;
-  VARRAY_PUSH_TREE (*worklist, stmt);
+  VEC_safe_push (tree, heap, *worklist, stmt);
 }
 
 
@@ -2111,63 +2130,53 @@ vect_mark_relevant (varray_type *worklist, tree stmt)
    CHECKME: what other side effects would the vectorizer allow?  */
 
 static bool
-vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo)
+vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo,
+                     enum vect_relevant *relevant, bool *live_p)
 {
-  v_may_def_optype v_may_defs;
-  v_must_def_optype v_must_defs;
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   ssa_op_iter op_iter;
   imm_use_iterator imm_iter;
   use_operand_p use_p;
-  tree var;
+  def_operand_p def_p;
+
+  *relevant = vect_unused_in_loop;
+  *live_p = false;
 
   /* cond stmt other than loop exit cond.  */
   if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo)))
-    return true;
+    *relevant = vect_used_in_loop;
 
   /* changing memory.  */
-  if (TREE_CODE (stmt) == PHI_NODE)
-    {
-      if (!is_gimple_reg (PHI_RESULT (stmt)))
-        return false;
-      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, PHI_RESULT (stmt))
-       {
-         basic_block bb = bb_for_stmt (USE_STMT (use_p));
-         if (!flow_bb_inside_loop_p (loop, bb))
-           {
-             if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-               fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
-             return true;
-           }
-       }
-      return false;
-    }
-
-  v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
-  v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
-  if (v_may_defs || v_must_defs)
-    {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-       fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
-      return true;
-    }
+  if (TREE_CODE (stmt) != PHI_NODE)
+    if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
+      {
+       if (vect_print_dump_info (REPORT_DETAILS))
+         fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
+       *relevant = vect_used_in_loop;
+      }
 
   /* uses outside the loop.  */
-  FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_DEF)
+  FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
     {
-      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
+      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
        {
          basic_block bb = bb_for_stmt (USE_STMT (use_p));
          if (!flow_bb_inside_loop_p (loop, bb))
            {
-             if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+             if (vect_print_dump_info (REPORT_DETAILS))
                fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
-             return true;
+
+             /* We expect all such uses to be in the loop exit phis
+                (because of loop closed form)   */
+             gcc_assert (TREE_CODE (USE_STMT (use_p)) == PHI_NODE);
+             gcc_assert (bb == single_exit (loop)->dest);
+
+              *live_p = true;
            }
        }
     }
 
-  return false;
+  return (*live_p || *relevant);
 }
 
 
@@ -2190,45 +2199,43 @@ vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo)
 static bool
 vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
 {
-  varray_type worklist;
+  VEC(tree,heap) *worklist;
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
   unsigned int nbbs = loop->num_nodes;
   block_stmt_iterator si;
-  tree stmt;
+  tree stmt, use;
   stmt_ann_t ann;
+  ssa_op_iter iter;
   unsigned int i;
-  int j;
-  use_optype use_ops;
-  stmt_vec_info stmt_info;
+  stmt_vec_info stmt_vinfo;
   basic_block bb;
   tree phi;
+  bool live_p;
+  enum vect_relevant relevant;
+  tree def, def_stmt;
+  enum vect_def_type dt;
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");
 
+  worklist = VEC_alloc (tree, heap, 64);
+
+  /* 1. Init worklist.  */
+
   bb = loop->header;
   for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
     {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
         {
           fprintf (vect_dump, "init: phi relevant? ");
           print_generic_expr (vect_dump, phi, TDF_SLIM);
         }
 
-      if (vect_stmt_relevant_p (phi, loop_vinfo))
-       {
-         if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                   LOOP_LOC (loop_vinfo)))
-           fprintf (vect_dump, "unsupported reduction/induction.");
-          return false;
-       }
+      if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
+       vect_mark_relevant (&worklist, phi, relevant, live_p);
     }
 
-  VARRAY_TREE_INIT (worklist, 64, "work list");
-
-  /* 1. Init worklist.  */
-
   for (i = 0; i < nbbs; i++)
     {
       bb = bbs[i];
@@ -2236,116 +2243,122 @@ vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
        {
          stmt = bsi_stmt (si);
 
-         if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+         if (vect_print_dump_info (REPORT_DETAILS))
            {
              fprintf (vect_dump, "init: stmt relevant? ");
              print_generic_expr (vect_dump, stmt, TDF_SLIM);
            } 
 
-         stmt_info = vinfo_for_stmt (stmt);
-         STMT_VINFO_RELEVANT_P (stmt_info) = 0;
-
-         if (vect_stmt_relevant_p (stmt, loop_vinfo))
-           vect_mark_relevant (&worklist, stmt);
+         if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
+            vect_mark_relevant (&worklist, stmt, relevant, live_p);
        }
     }
 
 
   /* 2. Process_worklist */
 
-  while (VARRAY_ACTIVE_SIZE (worklist) > 0)
+  while (VEC_length (tree, worklist) > 0)
     {
-      stmt = VARRAY_TOP_TREE (worklist);
-      VARRAY_POP (worklist);
+      stmt = VEC_pop (tree, worklist);
 
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
        {
           fprintf (vect_dump, "worklist: examine stmt: ");
           print_generic_expr (vect_dump, stmt, TDF_SLIM);
        }
 
-      /* Examine the USES in this statement. Mark all the statements which
-         feed this statement's uses as "relevant", unless the USE is used as
-         an array index.  */
-
-      if (TREE_CODE (stmt) == PHI_NODE)
-       {
-         /* follow the def-use chain inside the loop.  */
-         for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
-           {
-             tree arg = PHI_ARG_DEF (stmt, j);
-             tree def_stmt = NULL_TREE;
-             basic_block bb;
-             if (!vect_is_simple_use (arg, loop_vinfo, &def_stmt))
-               {
-                 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                           LOOP_LOC (loop_vinfo)))
-                   fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
-                 varray_clear (worklist);
-                 return false;
-               }
-             if (!def_stmt)
-               continue;
-
-             if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-               {
-                 fprintf (vect_dump, "worklist: def_stmt: ");
-                 print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
-               }
+      /* Examine the USEs of STMT. For each ssa-name USE that is defined
+         in the loop, mark the stmt that defines it (DEF_STMT) as
+         relevant/irrelevant and live/dead according to the liveness and
+         relevance properties of STMT.
+       */
 
-             bb = bb_for_stmt (def_stmt);
-             if (flow_bb_inside_loop_p (loop, bb))
-               vect_mark_relevant (&worklist, def_stmt);
-           }
-       } 
+      gcc_assert (TREE_CODE (stmt) != PHI_NODE);
 
       ann = stmt_ann (stmt);
-      use_ops = USE_OPS (ann);
+      stmt_vinfo = vinfo_for_stmt (stmt);
+
+      relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
+      live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
+
+      /* Generally, the liveness and relevance properties of STMT are
+         propagated to the DEF_STMTs of its USEs:
+             STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
+             STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
+
+         Exceptions:
+
+        (case 1)
+           If USE is used only for address computations (e.g. array indexing),
+           which does not need to be directly vectorized, then the
+           liveness/relevance of the respective DEF_STMT is left unchanged.
+
+        (case 2)
+           If STMT has been identified as defining a reduction variable, then
+           we want to set liveness/relevance as follows:
+               STMT_VINFO_LIVE_P (DEF_STMT_info) <-- false
+               STMT_VINFO_RELEVANT (DEF_STMT_info) <-- vect_used_by_reduction
+             because even though STMT is classified as live (since it defines a
+             value that is used across loop iterations) and irrelevant (since it
+             is not used inside the loop), it will be vectorized, and therefore
+             the corresponding DEF_STMTs need to marked as relevant.
+            We distinguish between two kinds of relevant stmts - those that are
+            used by a reduction computation, and those that are (also) used by
+            a regular computation. This allows us later on to identify stmts
+            that are used solely by a reduction, and therefore the order of 
+            the results that they produce does not have to be kept.
+       */
+
+      /* case 2.2:  */
+      if (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def)
+       {
+         gcc_assert (relevant == vect_unused_in_loop && live_p);
+         relevant = vect_used_by_reduction;
+         live_p = false;
+       }
 
-      for (i = 0; i < NUM_USES (use_ops); i++)
+      i = 0;
+      FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
        {
-         tree use = USE_OP (use_ops, i);
+         if (vect_print_dump_info (REPORT_DETAILS))
+           {
+             fprintf (vect_dump, "worklist: examine use %d: ", i++);
+             print_generic_expr (vect_dump, use, TDF_SLIM);
+           }
 
-         /* We are only interested in uses that need to be vectorized. Uses 
-            that are used for address computation are not considered relevant.
+         /* case 1: we are only interested in uses that need to be vectorized. 
+            Uses that are used for address computation are not considered 
+            relevant.
           */
-         if (exist_non_indexing_operands_for_use_p (use, stmt))
-           {
-              tree def_stmt = NULL_TREE;
-              basic_block bb;
-              if (!vect_is_simple_use (use, loop_vinfo, &def_stmt))
-                {
-                  if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
-                                           LOOP_LOC (loop_vinfo)))
-                    fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
-                  varray_clear (worklist);
-                  return false;
-                }
+         if (!exist_non_indexing_operands_for_use_p (use, stmt))
+           continue;
 
-             if (!def_stmt)
-               continue;
+         if (!vect_is_simple_use (use, loop_vinfo, &def_stmt, &def, &dt))
+           {
+             if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+               fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
+             VEC_free (tree, heap, worklist);
+             return false;
+            }
 
-              if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
-                {
-                  fprintf (vect_dump, "worklist: examine use %d: ", i);
-                  print_generic_expr (vect_dump, use, TDF_SLIM);
-                }
+         if (!def_stmt || IS_EMPTY_STMT (def_stmt))
+           continue;
 
-             bb = bb_for_stmt (def_stmt);
-             if (flow_bb_inside_loop_p (loop, bb))
-               vect_mark_relevant (&worklist, def_stmt);
-           }
+         bb = bb_for_stmt (def_stmt);
+         if (!flow_bb_inside_loop_p (loop, bb))
+           continue;
+         vect_mark_relevant (&worklist, def_stmt, relevant, live_p);
        }
     }                          /* while worklist */
 
-  varray_clear (worklist);
+  VEC_free (tree, heap, worklist);
   return true;
 }
 
 
 /* Function vect_can_advance_ivs_p
 
-   In case the number of iterations that LOOP iterates in unknown at compile 
+   In case the number of iterations that LOOP iterates is unknown at compile 
    time, an epilog loop will be generated, and the loop induction variables 
    (IVs) will be "advanced" to the value they are supposed to take just before 
    the epilog loop.  Here we check that the access function of the loop IVs
@@ -2361,12 +2374,15 @@ vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
 
   /* Analyze phi functions of the loop header.  */
 
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "vect_can_advance_ivs_p:");
+
   for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
     {
       tree access_fn = NULL;
       tree evolution_part;
 
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
        {
           fprintf (vect_dump, "Analyze phi: ");
           print_generic_expr (vect_dump, phi, TDF_SLIM);
@@ -2377,11 +2393,20 @@ vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
 
       if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
        {
-         if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+         if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "virtual phi. skip.");
          continue;
        }
 
+      /* Skip reduction phis.  */
+
+      if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
+        {
+          if (vect_print_dump_info (REPORT_DETAILS))
+            fprintf (vect_dump, "reduc phi. skip.");
+          continue;
+        }
+
       /* Analyze the evolution function.  */
 
       access_fn = instantiate_parameters
@@ -2389,12 +2414,12 @@ vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
 
       if (!access_fn)
        {
-         if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+         if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "No Access function.");
          return false;
        }
 
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
         {
          fprintf (vect_dump, "Access function of PHI: ");
          print_generic_expr (vect_dump, access_fn, TDF_SLIM);
@@ -2403,7 +2428,11 @@ vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
       evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
       
       if (evolution_part == NULL_TREE)
-       return false;
+        {
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "No evolution.");
+         return false;
+        }
   
       /* FORNOW: We do not transform initial conditions of IVs 
         which evolution functions are a polynomial of degree >= 2.  */
@@ -2428,17 +2457,17 @@ vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
 {
   tree niters;
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== get_loop_niters ===");
 
-  niters = number_of_iterations_in_loop (loop);
+  niters = number_of_exit_cond_executions (loop);
 
   if (niters != NULL_TREE
       && niters != chrec_dont_know)
     {
       *number_of_iterations = niters;
 
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
        {
          fprintf (vect_dump, "==> get_loop_niters:" );
          print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
@@ -2465,27 +2494,24 @@ vect_analyze_loop_form (struct loop *loop)
   loop_vec_info loop_vinfo;
   tree loop_cond;
   tree number_of_iterations = NULL;
-  LOC loop_loc;
 
-  loop_loc = find_loop_location (loop);
-
-  if (vect_print_dump_info (REPORT_DETAILS, loop_loc))
+  if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vect_analyze_loop_form ===");
 
   if (loop->inner)
     {
-      if (vect_print_dump_info (REPORT_OUTER_LOOPS, loop_loc))
+      if (vect_print_dump_info (REPORT_OUTER_LOOPS))
         fprintf (vect_dump, "not vectorized: nested loop.");
       return NULL;
     }
   
-  if (!loop->single_exit 
+  if (!single_exit (loop) 
       || loop->num_nodes != 2
       || EDGE_COUNT (loop->header->preds) != 2)
     {
-      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
+      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
         {
-          if (!loop->single_exit)
+          if (!single_exit (loop))
             fprintf (vect_dump, "not vectorized: multiple exits.");
           else if (loop->num_nodes != 2)
             fprintf (vect_dump, "not vectorized: too many BBs in loop.");
@@ -2500,26 +2526,27 @@ vect_analyze_loop_form (struct loop *loop)
      that the loop is represented as a do-while (with a proper if-guard
      before the loop if needed), where the loop header contains all the
      executable statements, and the latch is empty.  */
-  if (!empty_block_p (loop->latch))
+  if (!empty_block_p (loop->latch)
+        || phi_nodes (loop->latch))
     {
-      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
-        fprintf (vect_dump, "not vectorized: unexpectd loop form.");
+      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
+        fprintf (vect_dump, "not vectorized: unexpected loop form.");
       return NULL;
     }
 
   /* Make sure there exists a single-predecessor exit bb:  */
-  if (!single_pred_p (loop->single_exit->dest))
+  if (!single_pred_p (single_exit (loop)->dest))
     {
-      edge e = loop->single_exit;
+      edge e = single_exit (loop);
       if (!(e->flags & EDGE_ABNORMAL))
        {
          split_loop_exit_edge (e);
-         if (vect_print_dump_info (REPORT_DETAILS, loop_loc))
+         if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "split exit edge.");
        }
       else
        {
-         if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
+         if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
            fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
          return NULL;
        }
@@ -2527,7 +2554,7 @@ vect_analyze_loop_form (struct loop *loop)
 
   if (empty_block_p (loop->header))
     {
-      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
+      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
         fprintf (vect_dump, "not vectorized: empty loop.");
       return NULL;
     }
@@ -2535,14 +2562,14 @@ vect_analyze_loop_form (struct loop *loop)
   loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
   if (!loop_cond)
     {
-      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
+      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
        fprintf (vect_dump, "not vectorized: complicated exit condition.");
       return NULL;
     }
   
   if (!number_of_iterations) 
     {
-      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
+      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
        fprintf (vect_dump, 
                 "not vectorized: number of iterations cannot be computed.");
       return NULL;
@@ -2550,7 +2577,7 @@ vect_analyze_loop_form (struct loop *loop)
 
   if (chrec_contains_undetermined (number_of_iterations))
     {
-      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
+      if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
         fprintf (vect_dump, "Infinite number of iterations.");
       return false;
     }
@@ -2560,7 +2587,7 @@ vect_analyze_loop_form (struct loop *loop)
 
   if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
     {
-      if (vect_print_dump_info (REPORT_DETAILS, loop_loc))
+      if (vect_print_dump_info (REPORT_DETAILS))
         {
           fprintf (vect_dump, "Symbolic number of iterations is ");
           print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
@@ -2569,13 +2596,12 @@ vect_analyze_loop_form (struct loop *loop)
   else
   if (LOOP_VINFO_INT_NITERS (loop_vinfo) == 0)
     {
-      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS, loop_loc))
+      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
         fprintf (vect_dump, "not vectorized: number of iterations = 0.");
       return NULL;
     }
 
   LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond;
-  LOOP_VINFO_LOC (loop_vinfo) = loop_loc;
 
   return loop_vinfo;
 }
@@ -2592,7 +2618,7 @@ vect_analyze_loop (struct loop *loop)
   bool ok;
   loop_vec_info loop_vinfo;
 
-  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+  if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "===== analyze_loop_nest =====");
 
   /* Check the CFG characteristics of the loop (nesting, entry/exit, etc.  */
@@ -2600,7 +2626,7 @@ vect_analyze_loop (struct loop *loop)
   loop_vinfo = vect_analyze_loop_form (loop);
   if (!loop_vinfo)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
+      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "bad loop form.");
       return NULL;
     }
@@ -2614,31 +2640,38 @@ vect_analyze_loop (struct loop *loop)
   ok = vect_analyze_data_refs (loop_vinfo);
   if (!ok)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "bad data references.");
       destroy_loop_vec_info (loop_vinfo);
       return NULL;
     }
 
+  /* Classify all cross-iteration scalar data-flow cycles.
+     Cross-iteration cycles caused by virtual phis are analyzed separately.  */
+
+  vect_analyze_scalar_cycles (loop_vinfo);
+
+  vect_pattern_recog (loop_vinfo);
+
   /* Data-flow analysis to detect stmts that do not need to be vectorized.  */
 
   ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
   if (!ok)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "unexpected pattern.");
       destroy_loop_vec_info (loop_vinfo);
       return NULL;
     }
 
-  /* Check that all cross-iteration scalar data-flow cycles are OK.
-     Cross-iteration cycles caused by virtual phis are analyzed separately.  */
+  /* Analyze the alignment of the data-refs in the loop.
+     Fail if a data reference is found that cannot be vectorized.  */
 
-  ok = vect_analyze_scalar_cycles (loop_vinfo);
+  ok = vect_analyze_data_refs_alignment (loop_vinfo);
   if (!ok)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
-       fprintf (vect_dump, "bad scalar cycle.");
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "bad data alignment.");
       destroy_loop_vec_info (loop_vinfo);
       return NULL;
     }
@@ -2646,7 +2679,7 @@ vect_analyze_loop (struct loop *loop)
   ok = vect_determine_vectorization_factor (loop_vinfo);
   if (!ok)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "can't determine vectorization factor.");
       destroy_loop_vec_info (loop_vinfo);
       return NULL;
@@ -2658,7 +2691,7 @@ vect_analyze_loop (struct loop *loop)
   ok = vect_analyze_data_ref_dependences (loop_vinfo);
   if (!ok)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "bad data dependence.");
       destroy_loop_vec_info (loop_vinfo);
       return NULL;
@@ -2670,19 +2703,19 @@ vect_analyze_loop (struct loop *loop)
   ok = vect_analyze_data_ref_accesses (loop_vinfo);
   if (!ok)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "bad data access.");
       destroy_loop_vec_info (loop_vinfo);
       return NULL;
     }
 
-  /* Analyze the alignment of the data-refs in the loop.
-     FORNOW: Only aligned accesses are handled.  */
+  /* This pass will decide on using loop versioning and/or loop peeling in
+     order to enhance the alignment of data references in the loop.  */
 
-  ok = vect_analyze_data_refs_alignment (loop_vinfo);
+  ok = vect_enhance_data_refs_alignment (loop_vinfo);
   if (!ok)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "bad data alignment.");
       destroy_loop_vec_info (loop_vinfo);
       return NULL;
@@ -2694,7 +2727,7 @@ vect_analyze_loop (struct loop *loop)
   ok = vect_analyze_operations (loop_vinfo);
   if (!ok)
     {
-      if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
+      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "bad operation or unsupported loop bound.");
       destroy_loop_vec_info (loop_vinfo);
       return NULL;