OSDN Git Service

* config/interix.opt: New.
[pf3gnuchains/gcc-fork.git] / gcc / tree-ssa-loop-niter.c
index c3d3b77..ee85f6f 100644 (file)
@@ -1,34 +1,33 @@
 /* Functions to determine/estimate number of iterations of a loop.
-   Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
-   
+   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
+   Free Software Foundation, Inc.
+
 This file is part of GCC.
-   
+
 GCC is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 2, or (at your option) any
+Free Software Foundation; either version 3, or (at your option) any
 later version.
-   
+
 GCC is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.
-   
+
 You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING.  If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA.  */
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
 
 #include "config.h"
 #include "system.h"
 #include "coretypes.h"
 #include "tm.h"
 #include "tree.h"
-#include "rtl.h"
 #include "tm_p.h"
-#include "hard-reg-set.h"
 #include "basic-block.h"
 #include "output.h"
-#include "diagnostic.h"
+#include "tree-pretty-print.h"
+#include "gimple-pretty-print.h"
 #include "intl.h"
 #include "tree-flow.h"
 #include "tree-dump.h"
@@ -40,11 +39,11 @@ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
 #include "tree-data-ref.h"
 #include "params.h"
 #include "flags.h"
-#include "toplev.h"
+#include "diagnostic-core.h"
 #include "tree-inline.h"
 #include "gmp.h"
 
-#define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
+#define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
 
 /* The maximum number of dominator BBs we search for conditions
    of loop header copies we use for simplifying a conditional
@@ -85,6 +84,7 @@ split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
       /* Fallthru.  */
 
     case PLUS_EXPR:
+    case POINTER_PLUS_EXPR:
       op0 = TREE_OPERAND (expr, 0);
       op1 = TREE_OPERAND (expr, 1);
 
@@ -93,9 +93,11 @@ split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
 
       *var = op0;
       /* Always sign extend the offset.  */
-      off = double_int_sext (tree_to_double_int (op1),
-                            TYPE_PRECISION (type));
+      off = tree_to_double_int (op1);
+      off = double_int_sext (off, TYPE_PRECISION (type));
       mpz_set_double_int (offset, off, false);
+      if (negate)
+       mpz_neg (offset, offset);
       break;
 
     case INTEGER_CST:
@@ -212,7 +214,7 @@ refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
       STRIP_SIGN_NOPS (c0);
       STRIP_SIGN_NOPS (c1);
       ctype = TREE_TYPE (c0);
-      if (!tree_ssa_useless_type_conversion_1 (ctype, type))
+      if (!useless_type_conversion_p (ctype, type))
        return;
 
       break;
@@ -254,7 +256,7 @@ refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
       return;
     default:
       return;
-    } 
+    }
 
   mpz_init (offc0);
   mpz_init (offc1);
@@ -296,7 +298,7 @@ refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
      overflow decreases the appropriate offset by M, and underflow
      increases it by M.  The above inequality would not necessarily be
      true if
-   
+
      -- VARX + OFFX underflows and VARX + OFFC0 does not, or
        VARX + OFFC0 overflows, but VARX + OFFX does not.
        This may only happen if OFFX < OFFC0.
@@ -351,7 +353,7 @@ end:
 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
    The subtraction is considered to be performed in arbitrary precision,
    without overflows.
+
    We do not attempt to be too clever regarding the value ranges of X and
    Y; most of the time, they are just integers or ssa names offsetted by
    integer.  However, we try to use the information contained in the
@@ -367,7 +369,8 @@ bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
   int cnt = 0;
   edge e;
   basic_block bb;
-  tree cond, c0, c1;
+  tree c0, c1;
+  gimple cond;
   enum tree_code cmp;
 
   /* Get rid of unnecessary casts, but preserve the value of
@@ -426,12 +429,10 @@ bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
       if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
        continue;
 
-      cond = COND_EXPR_COND (last_stmt (e->src));
-      if (!COMPARISON_CLASS_P (cond))
-       continue;
-      c0 = TREE_OPERAND (cond, 0);
-      cmp = TREE_CODE (cond);
-      c1 = TREE_OPERAND (cond, 1);
+      cond = last_stmt (e->src);
+      c0 = gimple_cond_lhs (cond);
+      cmp = gimple_cond_code (cond);
+      c1 = gimple_cond_rhs (cond);
 
       if (e->flags & EDGE_FALSE_VALUE)
        cmp = invert_tree_comparison (cmp, false);
@@ -534,22 +535,46 @@ inverse (tree x, tree mask)
 }
 
 /* Derives the upper bound BND on the number of executions of loop with exit
-   condition S * i <> C, assuming that the loop is not infinite.  If
-   NO_OVERFLOW is true, then the control variable of the loop does not
-   overflow.  If NO_OVERFLOW is true or BNDS.below >= 0, then BNDS.up
-   contains the upper bound on the value of C.  */
+   condition S * i <> C.  If NO_OVERFLOW is true, then the control variable of
+   the loop does not overflow.  EXIT_MUST_BE_TAKEN is true if we are guaranteed
+   that the loop ends through this exit, i.e., the induction variable ever
+   reaches the value of C.  
+   
+   The value C is equal to final - base, where final and base are the final and
+   initial value of the actual induction variable in the analysed loop.  BNDS
+   bounds the value of this difference when computed in signed type with
+   unbounded range, while the computation of C is performed in an unsigned
+   type with the range matching the range of the type of the induction variable.
+   In particular, BNDS.up contains an upper bound on C in the following cases:
+   -- if the iv must reach its final value without overflow, i.e., if
+      NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
+   -- if final >= base, which we know to hold when BNDS.below >= 0.  */
 
 static void
 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
-                            bounds *bnds)
+                            bounds *bnds, bool exit_must_be_taken)
 {
   double_int max;
   mpz_t d;
+  bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
+                      || mpz_sgn (bnds->below) >= 0);
+
+  if (multiple_of_p (TREE_TYPE (c), c, s))
+    {
+      /* If C is an exact multiple of S, then its value will be reached before
+        the induction variable overflows (unless the loop is exited in some
+        other way before).  Note that the actual induction variable in the
+        loop (which ranges from base to final instead of from 0 to C) may
+        overflow, in which case BNDS.up will not be giving a correct upper
+        bound on C; thus, BNDS_U_VALID had to be computed in advance.  */
+      no_overflow = true;
+      exit_must_be_taken = true;
+    }
 
-  /* If the control variable does not overflow, the number of iterations is
-     at most c / s.  Otherwise it is at most the period of the control
-     variable.  */
-  if (!no_overflow && !multiple_of_p (TREE_TYPE (c), c, s))
+  /* If the induction variable can overflow, the number of iterations is at
+     most the period of the control variable (or infinite, but in that case
+     the whole # of iterations analysis will fail).  */
+  if (!no_overflow)
     {
       max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
                             - tree_low_cst (num_ending_zeros (s), 1));
@@ -557,14 +582,22 @@ number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
       return;
     }
 
-  /* Determine the upper bound on C.  */
-  if (no_overflow || mpz_sgn (bnds->below) >= 0)
-    mpz_set (bnd, bnds->up);
-  else if (TREE_CODE (c) == INTEGER_CST)
-    mpz_set_double_int (bnd, tree_to_double_int (c), true);
-  else
-    mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
-                       true);
+  /* Now we know that the induction variable does not overflow, so the loop
+     iterates at most (range of type / S) times.  */
+  mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
+                     true);
+
+  /* If the induction variable is guaranteed to reach the value of C before
+     overflow, ... */
+  if (exit_must_be_taken)
+    {
+      /* ... then we can strenghten this to C / S, and possibly we can use
+        the upper bound on C given by BNDS.  */
+      if (TREE_CODE (c) == INTEGER_CST)
+       mpz_set_double_int (bnd, tree_to_double_int (c), true);
+      else if (bnds_u_valid)
+       mpz_set (bnd, bnds->up);
+    }
 
   mpz_init (d);
   mpz_set_double_int (d, tree_to_double_int (s), true);
@@ -574,7 +607,7 @@ number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
 
 /* Determines number of iterations of loop whose ending condition
    is IV <> FINAL.  TYPE is the type of the iv.  The number of
-   iterations is stored to NITER.  NEVER_INFINITE is true if
+   iterations is stored to NITER.  EXIT_MUST_BE_TAKEN is true if
    we know that the exit must be taken eventually, i.e., that the IV
    ever reaches the value FINAL (we derived this earlier, and possibly set
    NITER->assumptions to make sure this is the case).  BNDS contains the
@@ -582,7 +615,7 @@ number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
 
 static bool
 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
-                        struct tree_niter_desc *niter, bool never_infinite,
+                        struct tree_niter_desc *niter, bool exit_must_be_taken,
                         bounds *bnds)
 {
   tree niter_type = unsigned_type_for (type);
@@ -616,7 +649,8 @@ number_of_iterations_ne (tree type, affine_iv *iv, tree final,
     }
 
   mpz_init (max);
-  number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds);
+  number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
+                              exit_must_be_taken);
   niter->max = mpz_get_double_int (niter_type, max, false);
   mpz_clear (max);
 
@@ -639,9 +673,9 @@ number_of_iterations_ne (tree type, affine_iv *iv, tree final,
                               build_int_cst (niter_type, 1), bits);
   s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
 
-  if (!never_infinite)
+  if (!exit_must_be_taken)
     {
-      /* If we cannot assume that the loop is not infinite, record the
+      /* If we cannot assume that the exit is taken eventually, record the
         assumptions for divisibility of c.  */
       assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
       assumption = fold_build2 (EQ_EXPR, boolean_type_node,
@@ -650,7 +684,7 @@ number_of_iterations_ne (tree type, affine_iv *iv, tree final,
        niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
                                          niter->assumptions, assumption);
     }
-      
+
   c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
   tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
   niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
@@ -664,40 +698,60 @@ number_of_iterations_ne (tree type, affine_iv *iv, tree final,
    of the final value does not overflow are recorded in NITER.  If we
    find the final value, we adjust DELTA and return TRUE.  Otherwise
    we return false.  BNDS bounds the value of IV1->base - IV0->base,
-   and will be updated by the same amount as DELTA.  */
+   and will be updated by the same amount as DELTA.  EXIT_MUST_BE_TAKEN is
+   true if we know that the exit must be taken eventually.  */
 
 static bool
 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
                               struct tree_niter_desc *niter,
                               tree *delta, tree step,
-                              bounds *bnds)
+                              bool exit_must_be_taken, bounds *bnds)
 {
   tree niter_type = TREE_TYPE (step);
   tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
   tree tmod;
   mpz_t mmod;
   tree assumption = boolean_true_node, bound, noloop;
-  bool ret = false;
+  bool ret = false, fv_comp_no_overflow;
+  tree type1 = type;
+  if (POINTER_TYPE_P (type))
+    type1 = sizetype;
 
   if (TREE_CODE (mod) != INTEGER_CST)
     return false;
   if (integer_nonzerop (mod))
     mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
-  tmod = fold_convert (type, mod);
+  tmod = fold_convert (type1, mod);
 
   mpz_init (mmod);
   mpz_set_double_int (mmod, tree_to_double_int (mod), true);
   mpz_neg (mmod, mmod);
 
+  /* If the induction variable does not overflow and the exit is taken,
+     then the computation of the final value does not overflow.  This is
+     also obviously the case if the new final value is equal to the
+     current one.  Finally, we postulate this for pointer type variables,
+     as the code cannot rely on the object to that the pointer points being
+     placed at the end of the address space (and more pragmatically,
+     TYPE_{MIN,MAX}_VALUE is not defined for pointers).  */
+  if (integer_zerop (mod) || POINTER_TYPE_P (type))
+    fv_comp_no_overflow = true;
+  else if (!exit_must_be_taken)
+    fv_comp_no_overflow = false;
+  else
+    fv_comp_no_overflow =
+           (iv0->no_overflow && integer_nonzerop (iv0->step))
+           || (iv1->no_overflow && integer_nonzerop (iv1->step));
+
   if (integer_nonzerop (iv0->step))
     {
       /* The final value of the iv is iv1->base + MOD, assuming that this
         computation does not overflow, and that
         iv0->base <= iv1->base + MOD.  */
-      if (!iv1->no_overflow && !integer_zerop (mod))
+      if (!fv_comp_no_overflow)
        {
-         bound = fold_build2 (MINUS_EXPR, type,
-                              TYPE_MAX_VALUE (type), tmod);
+         bound = fold_build2 (MINUS_EXPR, type1,
+                              TYPE_MAX_VALUE (type1), tmod);
          assumption = fold_build2 (LE_EXPR, boolean_type_node,
                                    iv1->base, bound);
          if (integer_zerop (assumption))
@@ -705,10 +759,15 @@ number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
        }
       if (mpz_cmp (mmod, bnds->below) < 0)
        noloop = boolean_false_node;
+      else if (POINTER_TYPE_P (type))
+       noloop = fold_build2 (GT_EXPR, boolean_type_node,
+                             iv0->base,
+                             fold_build2 (POINTER_PLUS_EXPR, type,
+                                          iv1->base, tmod));
       else
        noloop = fold_build2 (GT_EXPR, boolean_type_node,
                              iv0->base,
-                             fold_build2 (PLUS_EXPR, type,
+                             fold_build2 (PLUS_EXPR, type1,
                                           iv1->base, tmod));
     }
   else
@@ -716,10 +775,10 @@ number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
       /* The final value of the iv is iv0->base - MOD, assuming that this
         computation does not overflow, and that
         iv0->base - MOD <= iv1->base. */
-      if (!iv0->no_overflow && !integer_zerop (mod))
+      if (!fv_comp_no_overflow)
        {
-         bound = fold_build2 (PLUS_EXPR, type,
-                              TYPE_MIN_VALUE (type), tmod);
+         bound = fold_build2 (PLUS_EXPR, type1,
+                              TYPE_MIN_VALUE (type1), tmod);
          assumption = fold_build2 (GE_EXPR, boolean_type_node,
                                    iv0->base, bound);
          if (integer_zerop (assumption))
@@ -727,9 +786,16 @@ number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
        }
       if (mpz_cmp (mmod, bnds->below) < 0)
        noloop = boolean_false_node;
+      else if (POINTER_TYPE_P (type))
+       noloop = fold_build2 (GT_EXPR, boolean_type_node,
+                             fold_build2 (POINTER_PLUS_EXPR, type,
+                                          iv0->base,
+                                          fold_build1 (NEGATE_EXPR,
+                                                       type1, tmod)),
+                             iv1->base);
       else
        noloop = fold_build2 (GT_EXPR, boolean_type_node,
-                             fold_build2 (MINUS_EXPR, type,
+                             fold_build2 (MINUS_EXPR, type1,
                                           iv0->base, tmod),
                              iv1->base);
     }
@@ -815,7 +881,7 @@ assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
   if (!integer_nonzerop (assumption))
     niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
                                      niter->assumptions, assumption);
-    
+
   iv0->no_overflow = true;
   iv1->no_overflow = true;
   return true;
@@ -830,27 +896,27 @@ assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
                      struct tree_niter_desc *niter, bounds *bnds)
 {
   tree assumption = boolean_true_node, bound, diff;
-  tree mbz, mbzl, mbzr;
+  tree mbz, mbzl, mbzr, type1;
   bool rolls_p, no_overflow_p;
   double_int dstep;
   mpz_t mstep, max;
 
   /* We are going to compute the number of iterations as
      (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
-     variant of TYPE.  This formula only works if 
-     
+     variant of TYPE.  This formula only works if
+
      -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
-   
+
      (where MAX is the maximum value of the unsigned variant of TYPE, and
-     the computations in this formula are performed in full precision
-     (without overflows).
+     the computations in this formula are performed in full precision,
+     i.e., without overflows).
 
      Usually, for loops with exit condition iv0->base + step * i < iv1->base,
-     we have a condition of form iv0->base - step < iv1->base before the loop,
+     we have a condition of the form iv0->base - step < iv1->base before the loop,
      and for loops iv0->base < iv1->base - step * i the condition
      iv0->base < iv1->base + step, due to loop header copying, which enable us
      to prove the lower bound.
-     
+
      The upper bound is more complicated.  Unless the expressions for initial
      and final value themselves contain enough information, we usually cannot
      derive it from the context.  */
@@ -889,45 +955,51 @@ assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
   if (rolls_p && no_overflow_p)
     return;
 
+  type1 = type;
+  if (POINTER_TYPE_P (type))
+    type1 = sizetype;
+
   /* Now the hard part; we must formulate the assumption(s) as expressions, and
      we must be careful not to introduce overflow.  */
 
   if (integer_nonzerop (iv0->step))
     {
-      diff = fold_build2 (MINUS_EXPR, type,
-                         iv0->step, build_int_cst (type, 1));
+      diff = fold_build2 (MINUS_EXPR, type1,
+                         iv0->step, build_int_cst (type1, 1));
 
       /* We need to know that iv0->base >= MIN + iv0->step - 1.  Since
         0 address never belongs to any object, we can assume this for
         pointers.  */
       if (!POINTER_TYPE_P (type))
        {
-         bound = fold_build2 (PLUS_EXPR, type,
+         bound = fold_build2 (PLUS_EXPR, type1,
                               TYPE_MIN_VALUE (type), diff);
          assumption = fold_build2 (GE_EXPR, boolean_type_node,
                                    iv0->base, bound);
        }
 
       /* And then we can compute iv0->base - diff, and compare it with
-        iv1->base.  */      
-      mbzl = fold_build2 (MINUS_EXPR, type, iv0->base, diff);
-      mbzr = iv1->base;
+        iv1->base.  */
+      mbzl = fold_build2 (MINUS_EXPR, type1,
+                         fold_convert (type1, iv0->base), diff);
+      mbzr = fold_convert (type1, iv1->base);
     }
   else
     {
-      diff = fold_build2 (PLUS_EXPR, type,
-                         iv1->step, build_int_cst (type, 1));
+      diff = fold_build2 (PLUS_EXPR, type1,
+                         iv1->step, build_int_cst (type1, 1));
 
       if (!POINTER_TYPE_P (type))
        {
-         bound = fold_build2 (PLUS_EXPR, type,
+         bound = fold_build2 (PLUS_EXPR, type1,
                               TYPE_MAX_VALUE (type), diff);
          assumption = fold_build2 (LE_EXPR, boolean_type_node,
                                    iv1->base, bound);
        }
 
-      mbzl = iv0->base;
-      mbzr = fold_build2 (MINUS_EXPR, type, iv1->base, diff);
+      mbzl = fold_convert (type1, iv0->base);
+      mbzr = fold_build2 (MINUS_EXPR, type1,
+                         fold_convert (type1, iv1->base), diff);
     }
 
   if (!integer_nonzerop (assumption))
@@ -944,13 +1016,13 @@ assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
 /* Determines number of iterations of loop whose ending condition
    is IV0 < IV1.  TYPE is the type of the iv.  The number of
    iterations is stored to NITER.  BNDS bounds the difference
-   IV1->base - IV0->base.  */
+   IV1->base - IV0->base.  EXIT_MUST_BE_TAKEN is true if we know
+   that the exit must be taken eventually.  */
 
 static bool
 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
                         struct tree_niter_desc *niter,
-                        bool never_infinite ATTRIBUTE_UNUSED,
-                        bounds *bnds)
+                        bool exit_must_be_taken, bounds *bnds)
 {
   tree niter_type = unsigned_type_for (type);
   tree delta, step, s;
@@ -982,7 +1054,7 @@ number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
         or
 
         for (i = iv1->base; i > iv0->base; i--).
-            
+
         In both cases # of iterations is iv1->base - iv0->base, assuming that
         iv1->base >= iv0->base.
 
@@ -1009,7 +1081,7 @@ number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
      transform the condition to != comparison.  In particular, this will be
      the case if DELTA is constant.  */
   if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
-                                    bnds))
+                                    exit_must_be_taken, bnds))
     {
       affine_iv zps;
 
@@ -1051,24 +1123,31 @@ number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
 
 /* Determines number of iterations of loop whose ending condition
    is IV0 <= IV1.  TYPE is the type of the iv.  The number of
-   iterations is stored to NITER.  NEVER_INFINITE is true if
+   iterations is stored to NITER.  EXIT_MUST_BE_TAKEN is true if
    we know that this condition must eventually become false (we derived this
    earlier, and possibly set NITER->assumptions to make sure this
    is the case).  BNDS bounds the difference IV1->base - IV0->base.  */
 
 static bool
 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
-                        struct tree_niter_desc *niter, bool never_infinite,
+                        struct tree_niter_desc *niter, bool exit_must_be_taken,
                         bounds *bnds)
 {
   tree assumption;
+  tree type1 = type;
+  if (POINTER_TYPE_P (type))
+    type1 = sizetype;
 
   /* Say that IV0 is the control variable.  Then IV0 <= IV1 iff
      IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
      value of the type.  This we must know anyway, since if it is
-     equal to this value, the loop rolls forever.  */
+     equal to this value, the loop rolls forever.  We do not check
+     this condition for pointer type ivs, as the code cannot rely on
+     the object to that the pointer points being placed at the end of
+     the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
+     not defined for pointers).  */
 
-  if (!never_infinite)
+  if (!exit_must_be_taken && !POINTER_TYPE_P (type))
     {
       if (integer_nonzerop (iv0->step))
        assumption = fold_build2 (NE_EXPR, boolean_type_node,
@@ -1085,15 +1164,26 @@ number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
     }
 
   if (integer_nonzerop (iv0->step))
-    iv1->base = fold_build2 (PLUS_EXPR, type,
-                            iv1->base, build_int_cst (type, 1));
+    {
+      if (POINTER_TYPE_P (type))
+       iv1->base = fold_build2 (POINTER_PLUS_EXPR, type, iv1->base,
+                                build_int_cst (type1, 1));
+      else
+       iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
+                                build_int_cst (type1, 1));
+    }
+  else if (POINTER_TYPE_P (type))
+    iv0->base = fold_build2 (POINTER_PLUS_EXPR, type, iv0->base,
+                            fold_build1 (NEGATE_EXPR, type1,
+                                         build_int_cst (type1, 1)));
   else
-    iv0->base = fold_build2 (MINUS_EXPR, type,
-                            iv0->base, build_int_cst (type, 1));
+    iv0->base = fold_build2 (MINUS_EXPR, type1,
+                            iv0->base, build_int_cst (type1, 1));
 
-  bounds_add (bnds, double_int_one, type);
+  bounds_add (bnds, double_int_one, type1);
 
-  return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite, bnds);
+  return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
+                                 bnds);
 }
 
 /* Dumps description of affine induction variable IV to FILE.  */
@@ -1127,7 +1217,7 @@ dump_affine_iv (FILE *file, affine_iv *iv)
    exited (including possibly non-returning function calls, exceptions, etc.)
    -- in this case we can use the information whether the control induction
    variables can overflow or not in a more efficient way.
-   
+
    The results (number of iterations and assumptions as described in
    comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
    Returns false if it fails to determine number of iterations, true if it
@@ -1139,7 +1229,7 @@ number_of_iterations_cond (struct loop *loop,
                           affine_iv *iv1, struct tree_niter_desc *niter,
                           bool only_exit)
 {
-  bool never_infinite, ret;
+  bool exit_must_be_taken = false, ret;
   bounds bnds;
 
   /* The meaning of these assumptions is this:
@@ -1164,42 +1254,27 @@ number_of_iterations_cond (struct loop *loop,
       code = swap_tree_comparison (code);
     }
 
-  if (!only_exit)
-    {
-      /* If this is not the only possible exit from the loop, the information
-        that the induction variables cannot overflow as derived from
-        signedness analysis cannot be relied upon.  We use them e.g. in the
-        following way:  given loop for (i = 0; i <= n; i++), if i is
-        signed, it cannot overflow, thus this loop is equivalent to
-        for (i = 0; i < n + 1; i++);  however, if n == MAX, but the loop
-        is exited in some other way before i overflows, this transformation
-        is incorrect (the new loop exits immediately).  */
-      iv0->no_overflow = false;
-      iv1->no_overflow = false;
-    }
-
   if (POINTER_TYPE_P (type))
     {
       /* Comparison of pointers is undefined unless both iv0 and iv1 point
         to the same object.  If they do, the control variable cannot wrap
         (as wrap around the bounds of memory will never return a pointer
         that would be guaranteed to point to the same object, even if we
-        avoid undefined behavior by casting to size_t and back).  The
-        restrictions on pointer arithmetics and comparisons of pointers
-        ensure that using the no-overflow assumptions is correct in this
-        case even if ONLY_EXIT is false.  */
+        avoid undefined behavior by casting to size_t and back).  */
       iv0->no_overflow = true;
       iv1->no_overflow = true;
     }
 
-  /* If the control induction variable does not overflow, the loop obviously
-     cannot be infinite.  */
-  if (!integer_zerop (iv0->step) && iv0->no_overflow)
-    never_infinite = true;
-  else if (!integer_zerop (iv1->step) && iv1->no_overflow)
-    never_infinite = true;
-  else
-    never_infinite = false;
+  /* If the control induction variable does not overflow and the only exit
+     from the loop is the one that we analyze, we know it must be taken
+     eventually.  */
+  if (only_exit)
+    {
+      if (!integer_zerop (iv0->step) && iv0->no_overflow)
+       exit_must_be_taken = true;
+      else if (!integer_zerop (iv1->step) && iv1->no_overflow)
+       exit_must_be_taken = true;
+    }
 
   /* We can handle the case when neither of the sides of the comparison is
      invariant, provided that the test is NE_EXPR.  This rarely occurs in
@@ -1239,7 +1314,7 @@ number_of_iterations_cond (struct loop *loop,
       niter->max = double_int_zero;
       return true;
     }
-         
+
   /* OK, now we know we have a senseful loop.  Handle several cases, depending
      on what comparison operator is used.  */
   bound_difference (loop, iv1->base, iv0->base, &bnds);
@@ -1247,7 +1322,7 @@ number_of_iterations_cond (struct loop *loop,
   if (dump_file && (dump_flags & TDF_DETAILS))
     {
       fprintf (dump_file,
-              "Analysing # of iterations of loop %d\n", loop->num);
+              "Analyzing # of iterations of loop %d\n", loop->num);
 
       fprintf (dump_file, "  exit condition ");
       dump_affine_iv (dump_file, iv0);
@@ -1270,16 +1345,16 @@ number_of_iterations_cond (struct loop *loop,
     case NE_EXPR:
       gcc_assert (integer_zerop (iv1->step));
       ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
-                                    never_infinite, &bnds);
+                                    exit_must_be_taken, &bnds);
       break;
 
     case LT_EXPR:
-      ret = number_of_iterations_lt (type, iv0, iv1, niter, never_infinite,
+      ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
                                     &bnds);
       break;
 
     case LE_EXPR:
-      ret = number_of_iterations_le (type, iv0, iv1, niter, never_infinite,
+      ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
                                     &bnds);
       break;
 
@@ -1324,7 +1399,7 @@ number_of_iterations_cond (struct loop *loop,
 /* Substitute NEW for OLD in EXPR and fold the result.  */
 
 static tree
-simplify_replace_tree (tree expr, tree old, tree new)
+simplify_replace_tree (tree expr, tree old, tree new_tree)
 {
   unsigned i, n;
   tree ret = NULL_TREE, e, se;
@@ -1332,18 +1407,22 @@ simplify_replace_tree (tree expr, tree old, tree new)
   if (!expr)
     return NULL_TREE;
 
+  /* Do not bother to replace constants.  */
+  if (CONSTANT_CLASS_P (old))
+    return expr;
+
   if (expr == old
       || operand_equal_p (expr, old, 0))
-    return unshare_expr (new);
+    return unshare_expr (new_tree);
 
-  if (!EXPR_P (expr) && !GIMPLE_STMT_P (expr))
+  if (!EXPR_P (expr))
     return expr;
 
   n = TREE_OPERAND_LENGTH (expr);
   for (i = 0; i < n; i++)
     {
       e = TREE_OPERAND (expr, i);
-      se = simplify_replace_tree (e, old, new);
+      se = simplify_replace_tree (e, old, new_tree);
       if (e == se)
        continue;
 
@@ -1363,8 +1442,9 @@ tree
 expand_simple_operations (tree expr)
 {
   unsigned i, n;
-  tree ret = NULL_TREE, e, ee, stmt;
+  tree ret = NULL_TREE, e, ee, e1;
   enum tree_code code;
+  gimple stmt;
 
   if (expr == NULL_TREE)
     return expr;
@@ -1402,17 +1482,17 @@ expand_simple_operations (tree expr)
     return expr;
 
   stmt = SSA_NAME_DEF_STMT (expr);
-  if (TREE_CODE (stmt) == PHI_NODE)
+  if (gimple_code (stmt) == GIMPLE_PHI)
     {
       basic_block src, dest;
 
-      if (PHI_NUM_ARGS (stmt) != 1)
+      if (gimple_phi_num_args (stmt) != 1)
        return expr;
       e = PHI_ARG_DEF (stmt, 0);
 
       /* Avoid propagating through loop exit phi nodes, which
         could break loop-closed SSA form restrictions.  */
-      dest = bb_for_stmt (stmt);
+      dest = gimple_bb (stmt);
       src = single_pred (dest);
       if (TREE_CODE (e) == SSA_NAME
          && src->loop_father != dest->loop_father)
@@ -1420,24 +1500,43 @@ expand_simple_operations (tree expr)
 
       return expand_simple_operations (e);
     }
-  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
+  if (gimple_code (stmt) != GIMPLE_ASSIGN)
     return expr;
 
-  e = GIMPLE_STMT_OPERAND (stmt, 1);
-  if (/* Casts are simple.  */
-      TREE_CODE (e) != NOP_EXPR
-      && TREE_CODE (e) != CONVERT_EXPR
-      /* Copies are simple.  */
-      && TREE_CODE (e) != SSA_NAME
-      /* Assignments of invariants are simple.  */
-      && !is_gimple_min_invariant (e)
+  e = gimple_assign_rhs1 (stmt);
+  code = gimple_assign_rhs_code (stmt);
+  if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
+    {
+      if (is_gimple_min_invariant (e))
+       return e;
+
+      if (code == SSA_NAME)
+       return expand_simple_operations (e);
+
+      return expr;
+    }
+
+  switch (code)
+    {
+    CASE_CONVERT:
+      /* Casts are simple.  */
+      ee = expand_simple_operations (e);
+      return fold_build1 (code, TREE_TYPE (expr), ee);
+
+    case PLUS_EXPR:
+    case MINUS_EXPR:
+    case POINTER_PLUS_EXPR:
       /* And increments and decrements by a constant are simple.  */
-      && !((TREE_CODE (e) == PLUS_EXPR
-           || TREE_CODE (e) == MINUS_EXPR)
-          && is_gimple_min_invariant (TREE_OPERAND (e, 1))))
-    return expr;
+      e1 = gimple_assign_rhs2 (stmt);
+      if (!is_gimple_min_invariant (e1))
+       return expr;
 
-  return expand_simple_operations (e);
+      ee = expand_simple_operations (e);
+      return fold_build2 (code, TREE_TYPE (expr), ee, e1);
+
+    default:
+      return expr;
+    }
 }
 
 /* Tries to simplify EXPR using the condition COND.  Returns the simplified
@@ -1572,6 +1671,7 @@ simplify_using_initial_conditions (struct loop *loop, tree expr)
 {
   edge e;
   basic_block bb;
+  gimple stmt;
   tree cond;
   int cnt = 0;
 
@@ -1592,7 +1692,11 @@ simplify_using_initial_conditions (struct loop *loop, tree expr)
       if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
        continue;
 
-      cond = COND_EXPR_COND (last_stmt (e->src));
+      stmt = last_stmt (e->src);
+      cond = fold_build2 (gimple_cond_code (stmt),
+                         boolean_type_node,
+                         gimple_cond_lhs (stmt),
+                         gimple_cond_rhs (stmt));
       if (e->flags & EDGE_FALSE_VALUE)
        cond = invert_truthvalue (cond);
       expr = tree_simplify_using_condition (cond, expr);
@@ -1659,13 +1763,13 @@ simplify_using_outer_evolutions (struct loop *loop, tree expr)
 
 /* Returns true if EXIT is the only possible exit from LOOP.  */
 
-static bool
-loop_only_exit_p (struct loop *loop, edge exit)
+bool
+loop_only_exit_p (const struct loop *loop, const_edge exit)
 {
   basic_block *body;
-  block_stmt_iterator bsi;
+  gimple_stmt_iterator bsi;
   unsigned i;
-  tree call;
+  gimple call;
 
   if (exit != single_exit (loop))
     return false;
@@ -1673,10 +1777,13 @@ loop_only_exit_p (struct loop *loop, edge exit)
   body = get_loop_body (loop);
   for (i = 0; i < loop->num_nodes; i++)
     {
-      for (bsi = bsi_start (body[0]); !bsi_end_p (bsi); bsi_next (&bsi))
+      for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
        {
-         call = get_call_expr_in (bsi_stmt (bsi));
-         if (call && TREE_SIDE_EFFECTS (call))
+         call = gsi_stmt (bsi);
+         if (gimple_code (call) != GIMPLE_CALL)
+           continue;
+
+         if (gimple_has_side_effects (call))
            {
              free (body);
              return false;
@@ -1701,7 +1808,8 @@ number_of_iterations_exit (struct loop *loop, edge exit,
                           struct tree_niter_desc *niter,
                           bool warn)
 {
-  tree stmt, cond, type;
+  gimple stmt;
+  tree type;
   tree op0, op1;
   enum tree_code code;
   affine_iv iv0, iv1;
@@ -1711,15 +1819,14 @@ number_of_iterations_exit (struct loop *loop, edge exit,
 
   niter->assumptions = boolean_false_node;
   stmt = last_stmt (exit->src);
-  if (!stmt || TREE_CODE (stmt) != COND_EXPR)
+  if (!stmt || gimple_code (stmt) != GIMPLE_COND)
     return false;
 
   /* We want the condition for staying inside loop.  */
-  cond = COND_EXPR_COND (stmt);
+  code = gimple_cond_code (stmt);
   if (exit->flags & EDGE_TRUE_VALUE)
-    cond = invert_truthvalue (cond);
+    code = invert_tree_comparison (code, false);
 
-  code = TREE_CODE (cond);
   switch (code)
     {
     case GT_EXPR:
@@ -1732,18 +1839,18 @@ number_of_iterations_exit (struct loop *loop, edge exit,
     default:
       return false;
     }
-  
-  op0 = TREE_OPERAND (cond, 0);
-  op1 = TREE_OPERAND (cond, 1);
+
+  op0 = gimple_cond_lhs (stmt);
+  op1 = gimple_cond_rhs (stmt);
   type = TREE_TYPE (op0);
 
   if (TREE_CODE (type) != INTEGER_TYPE
       && !POINTER_TYPE_P (type))
     return false;
-     
-  if (!simple_iv (loop, stmt, op0, &iv0, false))
+
+  if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
     return false;
-  if (!simple_iv (loop, stmt, op1, &iv1, false))
+  if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
     return false;
 
   /* We don't want to see undefined signed overflow warnings while
@@ -1792,8 +1899,8 @@ number_of_iterations_exit (struct loop *loop, edge exit,
   if (warn)
     {
       const char *wording;
-      location_t loc = EXPR_LOCATION (stmt);
-  
+      location_t loc = gimple_location (stmt);
+
       /* We can provide a more specific warning if one of the operator is
         constant and the other advances by +1 or -1.  */
       if (!integer_zerop (iv1.step)
@@ -1805,15 +1912,13 @@ number_of_iterations_exit (struct loop *loop, edge exit,
           ? N_("assuming that the loop is not infinite")
           : N_("cannot optimize possibly infinite loops");
       else
-       wording = 
+       wording =
          flag_unsafe_loop_optimizations
          ? N_("assuming that the loop counter does not overflow")
          : N_("cannot optimize loop, the loop counter may overflow");
 
-      if (LOCATION_LINE (loc) > 0)
-       warning (OPT_Wunsafe_loop_optimizations, "%H%s", &loc, gettext (wording));
-      else
-       warning (OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
+      warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
+                 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
     }
 
   return flag_unsafe_loop_optimizations;
@@ -1834,7 +1939,7 @@ find_loop_niter (struct loop *loop, edge *exit)
   struct tree_niter_desc desc;
 
   *exit = NULL;
-  for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
+  FOR_EACH_VEC_ELT (edge, exits, i, ex)
     {
       if (!just_once_each_iteration_p (loop, ex->src))
        continue;
@@ -1887,6 +1992,51 @@ find_loop_niter (struct loop *loop, edge *exit)
   return niter ? niter : chrec_dont_know;
 }
 
+/* Return true if loop is known to have bounded number of iterations.  */
+
+bool
+finite_loop_p (struct loop *loop)
+{
+  unsigned i;
+  VEC (edge, heap) *exits;
+  edge ex;
+  struct tree_niter_desc desc;
+  bool finite = false;
+  int flags;
+
+  if (flag_unsafe_loop_optimizations)
+    return true;
+  flags = flags_from_decl_or_type (current_function_decl);
+  if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
+    {
+      if (dump_file && (dump_flags & TDF_DETAILS))
+       fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
+                loop->num);
+      return true;
+    }
+
+  exits = get_loop_exit_edges (loop);
+  FOR_EACH_VEC_ELT (edge, exits, i, ex)
+    {
+      if (!just_once_each_iteration_p (loop, ex->src))
+       continue;
+
+      if (number_of_iterations_exit (loop, ex, &desc, false))
+        {
+         if (dump_file && (dump_flags & TDF_DETAILS))
+           {
+             fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
+             print_generic_expr (dump_file, desc.niter, TDF_SLIM);
+             fprintf (dump_file, " times\n");
+           }
+         finite = true;
+         break;
+       }
+    }
+  VEC_free (edge, heap, exits);
+  return finite;
+}
+
 /*
 
    Analysis of a number of iterations of a loop by a brute-force evaluation.
@@ -1902,36 +2052,39 @@ find_loop_niter (struct loop *loop, edge *exit)
    result by a chain of operations such that all but exactly one of their
    operands are constants.  */
 
-static tree
+static gimple
 chain_of_csts_start (struct loop *loop, tree x)
 {
-  tree stmt = SSA_NAME_DEF_STMT (x);
+  gimple stmt = SSA_NAME_DEF_STMT (x);
   tree use;
-  basic_block bb = bb_for_stmt (stmt);
+  basic_block bb = gimple_bb (stmt);
+  enum tree_code code;
 
   if (!bb
       || !flow_bb_inside_loop_p (loop, bb))
-    return NULL_TREE;
-  
-  if (TREE_CODE (stmt) == PHI_NODE)
+    return NULL;
+
+  if (gimple_code (stmt) == GIMPLE_PHI)
     {
       if (bb == loop->header)
        return stmt;
 
-      return NULL_TREE;
+      return NULL;
     }
 
-  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
-    return NULL_TREE;
+  if (gimple_code (stmt) != GIMPLE_ASSIGN)
+    return NULL;
 
-  if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
-    return NULL_TREE;
-  if (SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF) == NULL_DEF_OPERAND_P)
-    return NULL_TREE;
+  code = gimple_assign_rhs_code (stmt);
+  if (gimple_references_memory_p (stmt)
+      || TREE_CODE_CLASS (code) == tcc_reference
+      || (code == ADDR_EXPR
+         && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
+    return NULL;
 
   use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
-  if (use == NULL_USE_OPERAND_P)
-    return NULL_TREE;
+  if (use == NULL_TREE)
+    return NULL;
 
   return chain_of_csts_start (loop, use);
 }
@@ -1943,39 +2096,39 @@ chain_of_csts_start (struct loop *loop, tree x)
    * the initial value of the phi node is constant
    * the value of the phi node in the next iteration can be derived from the
      value in the current iteration by a chain of operations with constants.
-   
-   If such phi node exists, it is returned.  If X is a constant, X is returned
-   unchanged.  Otherwise NULL_TREE is returned.  */
 
-static tree
+   If such phi node exists, it is returned, otherwise NULL is returned.  */
+
+static gimple
 get_base_for (struct loop *loop, tree x)
 {
-  tree phi, init, next;
+  gimple phi;
+  tree init, next;
 
   if (is_gimple_min_invariant (x))
-    return x;
+    return NULL;
 
   phi = chain_of_csts_start (loop, x);
   if (!phi)
-    return NULL_TREE;
+    return NULL;
 
   init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
   next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
 
   if (TREE_CODE (next) != SSA_NAME)
-    return NULL_TREE;
+    return NULL;
 
   if (!is_gimple_min_invariant (init))
-    return NULL_TREE;
+    return NULL;
 
   if (chain_of_csts_start (loop, next) != phi)
-    return NULL_TREE;
+    return NULL;
 
   return phi;
 }
 
-/* Given an expression X, then 
+/* Given an expression X, then
+
    * if X is NULL_TREE, we return the constant BASE.
    * otherwise X is a SSA name, whose value in the considered loop is derived
      by a chain of operations with constant from a result of a phi node in
@@ -1985,9 +2138,7 @@ get_base_for (struct loop *loop, tree x)
 static tree
 get_val_for (tree x, tree base)
 {
-  tree stmt, nx, val;
-  use_operand_p op;
-  ssa_op_iter iter;
+  gimple stmt;
 
   gcc_assert (is_gimple_min_invariant (base));
 
@@ -1995,24 +2146,41 @@ get_val_for (tree x, tree base)
     return base;
 
   stmt = SSA_NAME_DEF_STMT (x);
-  if (TREE_CODE (stmt) == PHI_NODE)
+  if (gimple_code (stmt) == GIMPLE_PHI)
     return base;
 
-  FOR_EACH_SSA_USE_OPERAND (op, stmt, iter, SSA_OP_USE)
+  gcc_assert (is_gimple_assign (stmt));
+
+  /* STMT must be either an assignment of a single SSA name or an
+     expression involving an SSA name and a constant.  Try to fold that
+     expression using the value for the SSA name.  */
+  if (gimple_assign_ssa_name_copy_p (stmt))
+    return get_val_for (gimple_assign_rhs1 (stmt), base);
+  else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
+          && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
     {
-      nx = USE_FROM_PTR (op);
-      val = get_val_for (nx, base);
-      SET_USE (op, val);
-      val = fold (GIMPLE_STMT_OPERAND (stmt, 1));
-      SET_USE (op, nx);
-      /* only iterate loop once.  */
-      return val;
+      return fold_build1 (gimple_assign_rhs_code (stmt),
+                         gimple_expr_type (stmt),
+                         get_val_for (gimple_assign_rhs1 (stmt), base));
     }
-
-  /* Should never reach here.  */
-  gcc_unreachable ();
+  else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
+    {
+      tree rhs1 = gimple_assign_rhs1 (stmt);
+      tree rhs2 = gimple_assign_rhs2 (stmt);
+      if (TREE_CODE (rhs1) == SSA_NAME)
+       rhs1 = get_val_for (rhs1, base);
+      else if (TREE_CODE (rhs2) == SSA_NAME)
+       rhs2 = get_val_for (rhs2, base);
+      else
+       gcc_unreachable ();
+      return fold_build2 (gimple_assign_rhs_code (stmt),
+                         gimple_expr_type (stmt), rhs1, rhs2);
+    }
+  else
+    gcc_unreachable ();
 }
 
+
 /* Tries to count the number of iterations of LOOP till it exits by EXIT
    by brute force -- i.e. by determining the value of the operands of the
    condition at EXIT in first few iterations of the loop (assuming that
@@ -2023,20 +2191,20 @@ get_val_for (tree x, tree base)
 tree
 loop_niter_by_eval (struct loop *loop, edge exit)
 {
-  tree cond, cnd, acnd;
-  tree op[2], val[2], next[2], aval[2], phi[2];
+  tree acnd;
+  tree op[2], val[2], next[2], aval[2];
+  gimple phi, cond;
   unsigned i, j;
   enum tree_code cmp;
 
   cond = last_stmt (exit->src);
-  if (!cond || TREE_CODE (cond) != COND_EXPR)
+  if (!cond || gimple_code (cond) != GIMPLE_COND)
     return chrec_dont_know;
 
-  cnd = COND_EXPR_COND (cond);
+  cmp = gimple_cond_code (cond);
   if (exit->flags & EDGE_TRUE_VALUE)
-    cnd = invert_truthvalue (cnd);
+    cmp = invert_tree_comparison (cmp, false);
 
-  cmp = TREE_CODE (cnd);
   switch (cmp)
     {
     case EQ_EXPR:
@@ -2045,8 +2213,8 @@ loop_niter_by_eval (struct loop *loop, edge exit)
     case GE_EXPR:
     case LT_EXPR:
     case LE_EXPR:
-      for (j = 0; j < 2; j++)
-       op[j] = TREE_OPERAND (cnd, j);
+      op[0] = gimple_cond_lhs (cond);
+      op[1] = gimple_cond_rhs (cond);
       break;
 
     default:
@@ -2055,23 +2223,19 @@ loop_niter_by_eval (struct loop *loop, edge exit)
 
   for (j = 0; j < 2; j++)
     {
-      phi[j] = get_base_for (loop, op[j]);
-      if (!phi[j])
-       return chrec_dont_know;
-    }
-
-  for (j = 0; j < 2; j++)
-    {
-      if (TREE_CODE (phi[j]) == PHI_NODE)
+      if (is_gimple_min_invariant (op[j]))
        {
-         val[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_preheader_edge (loop));
-         next[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_latch_edge (loop));
+         val[j] = op[j];
+         next[j] = NULL_TREE;
+         op[j] = NULL_TREE;
        }
       else
        {
-         val[j] = phi[j];
-         next[j] = NULL_TREE;
-         op[j] = NULL_TREE;
+         phi = get_base_for (loop, op[j]);
+         if (!phi)
+           return chrec_dont_know;
+         val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
+         next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
        }
     }
 
@@ -2126,7 +2290,13 @@ find_loop_niter_by_eval (struct loop *loop, edge *exit)
   tree niter = NULL_TREE, aniter;
 
   *exit = NULL;
-  for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
+
+  /* Loops with multiple exits are expensive to handle and less important.  */
+  if (!flag_expensive_optimizations
+      && VEC_length (edge, exits) > 1)
+    return chrec_dont_know;
+
+  FOR_EACH_VEC_ELT (edge, exits, i, ex)
     {
       if (!just_once_each_iteration_p (loop, ex->src))
        continue;
@@ -2153,17 +2323,48 @@ find_loop_niter_by_eval (struct loop *loop, edge *exit)
 
 */
 
+static double_int derive_constant_upper_bound_ops (tree, tree,
+                                                  enum tree_code, tree);
+
+/* Returns a constant upper bound on the value of the right-hand side of
+   an assignment statement STMT.  */
+
+static double_int
+derive_constant_upper_bound_assign (gimple stmt)
+{
+  enum tree_code code = gimple_assign_rhs_code (stmt);
+  tree op0 = gimple_assign_rhs1 (stmt);
+  tree op1 = gimple_assign_rhs2 (stmt);
+
+  return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
+                                         op0, code, op1);
+}
+
 /* Returns a constant upper bound on the value of expression VAL.  VAL
    is considered to be unsigned.  If its type is signed, its value must
    be nonnegative.  */
+
 static double_int
 derive_constant_upper_bound (tree val)
 {
-  tree type = TREE_TYPE (val);
-  tree op0, op1, subtype, maxt;
+  enum tree_code code;
+  tree op0, op1;
+
+  extract_ops_from_tree (val, &code, &op0, &op1);
+  return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
+}
+
+/* Returns a constant upper bound on the value of expression OP0 CODE OP1,
+   whose type is TYPE.  The expression is considered to be unsigned.  If
+   its type is signed, its value must be nonnegative.  */
+
+static double_int
+derive_constant_upper_bound_ops (tree type, tree op0,
+                                enum tree_code code, tree op1)
+{
+  tree subtype, maxt;
   double_int bnd, max, mmax, cst;
-  tree stmt;
+  gimple stmt;
 
   if (INTEGRAL_TYPE_P (type))
     maxt = TYPE_MAX_VALUE (type);
@@ -2172,14 +2373,12 @@ derive_constant_upper_bound (tree val)
 
   max = tree_to_double_int (maxt);
 
-  switch (TREE_CODE (val))
+  switch (code)
     {
     case INTEGER_CST:
-      return tree_to_double_int (val);
+      return tree_to_double_int (op0);
 
-    case NOP_EXPR:
-    case CONVERT_EXPR:
-      op0 = TREE_OPERAND (val, 0);
+    CASE_CONVERT:
       subtype = TREE_TYPE (op0);
       if (!TYPE_UNSIGNED (subtype)
          /* If TYPE is also signed, the fact that VAL is nonnegative implies
@@ -2205,10 +2404,8 @@ derive_constant_upper_bound (tree val)
       return bnd;
 
     case PLUS_EXPR:
+    case POINTER_PLUS_EXPR:
     case MINUS_EXPR:
-      op0 = TREE_OPERAND (val, 0);
-      op1 = TREE_OPERAND (val, 1);
-
       if (TREE_CODE (op1) != INTEGER_CST
          || !tree_expr_nonnegative_p (op0))
        return max;
@@ -2218,7 +2415,7 @@ derive_constant_upper_bound (tree val)
         of the signedness of the type.  */
       cst = tree_to_double_int (op1);
       cst = double_int_sext (cst, TYPE_PRECISION (type));
-      if (TREE_CODE (val) == PLUS_EXPR)
+      if (code != MINUS_EXPR)
        cst = double_int_neg (cst);
 
       bnd = derive_constant_upper_bound (op0);
@@ -2233,7 +2430,7 @@ derive_constant_upper_bound (tree val)
          /* OP0 + CST.  We need to check that
             BND <= MAX (type) - CST.  */
 
-         mmax = double_int_add (max, double_int_neg (cst));
+         mmax = double_int_sub (max, cst);
          if (double_int_ucmp (bnd, mmax) > 0)
            return max;
 
@@ -2265,15 +2462,13 @@ derive_constant_upper_bound (tree val)
                return max;
            }
 
-         bnd = double_int_add (bnd, double_int_neg (cst));
+         bnd = double_int_sub (bnd, cst);
        }
 
       return bnd;
 
     case FLOOR_DIV_EXPR:
     case EXACT_DIV_EXPR:
-      op0 = TREE_OPERAND (val, 0);
-      op1 = TREE_OPERAND (val, 1);
       if (TREE_CODE (op1) != INTEGER_CST
          || tree_int_cst_sign_bit (op1))
        return max;
@@ -2282,26 +2477,25 @@ derive_constant_upper_bound (tree val)
       return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
 
     case BIT_AND_EXPR:
-      op1 = TREE_OPERAND (val, 1);
       if (TREE_CODE (op1) != INTEGER_CST
          || tree_int_cst_sign_bit (op1))
        return max;
       return tree_to_double_int (op1);
 
     case SSA_NAME:
-      stmt = SSA_NAME_DEF_STMT (val);
-      if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT
-         || GIMPLE_STMT_OPERAND (stmt, 0) != val)
+      stmt = SSA_NAME_DEF_STMT (op0);
+      if (gimple_code (stmt) != GIMPLE_ASSIGN
+         || gimple_assign_lhs (stmt) != op0)
        return max;
-      return derive_constant_upper_bound (GIMPLE_STMT_OPERAND (stmt, 1));
+      return derive_constant_upper_bound_assign (stmt);
 
-    default: 
+    default:
       return max;
     }
 }
 
 /* Records that every statement in LOOP is executed I_BOUND times.
-   REALISTIC is true if I_BOUND is expected to be close the the real number
+   REALISTIC is true if I_BOUND is expected to be close to the real number
    of iterations.  UPPER is true if we are sure the loop iterates at most
    I_BOUND times.  */
 
@@ -2330,13 +2524,13 @@ record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP.  IS_EXIT
    is true if the loop is exited immediately after STMT, and this exit
    is taken at last when the STMT is executed BOUND + 1 times.
-   REALISTIC is true if BOUND is expected to be close the the real number
+   REALISTIC is true if BOUND is expected to be close to the real number
    of iterations.  UPPER is true if we are sure the loop iterates at most
    BOUND times.  I_BOUND is an unsigned double_int upper estimate on BOUND.  */
 
 static void
 record_estimate (struct loop *loop, tree bound, double_int i_bound,
-                tree at_stmt, bool is_exit, bool realistic, bool upper)
+                gimple at_stmt, bool is_exit, bool realistic, bool upper)
 {
   double_int delta;
   edge exit;
@@ -2344,7 +2538,7 @@ record_estimate (struct loop *loop, tree bound, double_int i_bound,
   if (dump_file && (dump_flags & TDF_DETAILS))
     {
       fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
-      print_generic_expr (dump_file, at_stmt, TDF_SLIM);
+      print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
       fprintf (dump_file, " is %sexecuted at most ",
               upper ? "" : "probably ");
       print_generic_expr (dump_file, bound, TDF_SLIM);
@@ -2364,7 +2558,7 @@ record_estimate (struct loop *loop, tree bound, double_int i_bound,
      list.  */
   if (upper)
     {
-      struct nb_iter_bound *elt = GGC_NEW (struct nb_iter_bound);
+      struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
 
       elt->bound = i_bound;
       elt->stmt = at_stmt;
@@ -2382,7 +2576,7 @@ record_estimate (struct loop *loop, tree bound, double_int i_bound,
   if (is_exit
       || (exit != NULL
          && dominated_by_p (CDI_DOMINATORS,
-                            exit->src, bb_for_stmt (at_stmt))))
+                            exit->src, gimple_bb (at_stmt))))
     delta = double_int_one;
   else
     delta = double_int_two;
@@ -2402,7 +2596,7 @@ record_estimate (struct loop *loop, tree bound, double_int i_bound,
    UPPER is true if we are sure the induction variable does not wrap.  */
 
 static void
-record_nonwrapping_iv (struct loop *loop, tree base, tree step, tree stmt,
+record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
                       tree low, tree high, bool realistic, bool upper)
 {
   tree niter_bound, extreme, delta;
@@ -2421,7 +2615,7 @@ record_nonwrapping_iv (struct loop *loop, tree base, tree step, tree stmt,
       fprintf (dump_file, " + ");
       print_generic_expr (dump_file, step, TDF_SLIM);
       fprintf (dump_file, " * iteration does not wrap in statement ");
-      print_generic_expr (dump_file, stmt, TDF_SLIM);
+      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
       fprintf (dump_file, " in loop %d.\n", loop->num);
     }
 
@@ -2456,7 +2650,7 @@ record_nonwrapping_iv (struct loop *loop, tree base, tree step, tree stmt,
    allocated structure.  If this is the case, the array may be allocated larger
    than its upper bound implies.  */
 
-static bool
+bool
 array_at_struct_end_p (tree ref)
 {
   tree base = get_base_address (ref);
@@ -2464,9 +2658,9 @@ array_at_struct_end_p (tree ref)
 
   /* Unless the reference is through a pointer, the size of the array matches
      its declaration.  */
-  if (!base || !INDIRECT_REF_P (base))
+  if (!base || (!INDIRECT_REF_P (base) && TREE_CODE (base) != MEM_REF))
     return false;
-  
+
   for (;handled_component_p (ref); ref = parent)
     {
       parent = TREE_OPERAND (ref, 0);
@@ -2479,7 +2673,7 @@ array_at_struct_end_p (tree ref)
 
          /* Unless the field is at the end of the struct, we are done.  */
          field = TREE_OPERAND (ref, 1);
-         if (TREE_CHAIN (field))
+         if (DECL_CHAIN (field))
            return false;
        }
 
@@ -2490,7 +2684,6 @@ array_at_struct_end_p (tree ref)
         Therefore, continue checking.  */
     }
 
-  gcc_assert (INDIRECT_REF_P (ref));
   return true;
 }
 
@@ -2502,14 +2695,14 @@ array_at_struct_end_p (tree ref)
 struct ilb_data
 {
   struct loop *loop;
-  tree stmt;
+  gimple stmt;
   bool reliable;
 };
 
 static bool
 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
 {
-  struct ilb_data *data = dta;
+  struct ilb_data *data = (struct ilb_data *) dta;
   tree ev, init, step;
   tree low, high, type, next;
   bool sign, upper = data->reliable, at_end = false;
@@ -2541,7 +2734,7 @@ idx_infer_loop_bounds (tree base, tree *idx, void *dta)
 
   low = array_ref_low_bound (base);
   high = array_ref_up_bound (base);
-  
+
   /* The case of nonconstant bounds could be handled, but it would be
      complicated.  */
   if (TREE_CODE (low) != INTEGER_CST
@@ -2575,7 +2768,7 @@ idx_infer_loop_bounds (tree base, tree *idx, void *dta)
     next = fold_binary (PLUS_EXPR, type, low, step);
   else
     next = fold_binary (PLUS_EXPR, type, high, step);
-  
+
   if (tree_int_cst_compare (low, next) <= 0
       && tree_int_cst_compare (next, high) <= 0)
     return true;
@@ -2589,7 +2782,7 @@ idx_infer_loop_bounds (tree base, tree *idx, void *dta)
    STMT is guaranteed to be executed in every iteration of LOOP.*/
 
 static void
-infer_loop_bounds_from_ref (struct loop *loop, tree stmt, tree ref,
+infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref,
                            bool reliable)
 {
   struct ilb_data data;
@@ -2605,14 +2798,12 @@ infer_loop_bounds_from_ref (struct loop *loop, tree stmt, tree ref,
    executed in every iteration of LOOP.  */
 
 static void
-infer_loop_bounds_from_array (struct loop *loop, tree stmt, bool reliable)
+infer_loop_bounds_from_array (struct loop *loop, gimple stmt, bool reliable)
 {
-  tree call;
-
-  if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
+  if (is_gimple_assign (stmt))
     {
-      tree op0 = GIMPLE_STMT_OPERAND (stmt, 0);
-      tree op1 = GIMPLE_STMT_OPERAND (stmt, 1);
+      tree op0 = gimple_assign_lhs (stmt);
+      tree op1 = gimple_assign_rhs1 (stmt);
 
       /* For each memory access, analyze its access function
         and record a bound on the loop iteration domain.  */
@@ -2622,17 +2813,21 @@ infer_loop_bounds_from_array (struct loop *loop, tree stmt, bool reliable)
       if (REFERENCE_CLASS_P (op1))
        infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
     }
-  
-  
-  call = get_call_expr_in (stmt);
-  if (call)
+  else if (is_gimple_call (stmt))
     {
-      tree arg;
-      call_expr_arg_iterator iter;
+      tree arg, lhs;
+      unsigned i, n = gimple_call_num_args (stmt);
+
+      lhs = gimple_call_lhs (stmt);
+      if (lhs && REFERENCE_CLASS_P (lhs))
+       infer_loop_bounds_from_ref (loop, stmt, lhs, reliable);
 
-      FOR_EACH_CALL_EXPR_ARG (arg, iter, call)
-       if (REFERENCE_CLASS_P (arg))
-         infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
+      for (i = 0; i < n; i++)
+       {
+         arg = gimple_call_arg (stmt, i);
+         if (REFERENCE_CLASS_P (arg))
+           infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
+       }
     }
 }
 
@@ -2640,14 +2835,14 @@ infer_loop_bounds_from_array (struct loop *loop, tree stmt, bool reliable)
    that signed arithmetics in STMT does not overflow.  */
 
 static void
-infer_loop_bounds_from_signedness (struct loop *loop, tree stmt)
+infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
 {
   tree def, base, step, scev, type, low, high;
 
-  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
+  if (gimple_code (stmt) != GIMPLE_ASSIGN)
     return;
 
-  def = GIMPLE_STMT_OPERAND (stmt, 0);
+  def = gimple_assign_lhs (stmt);
 
   if (TREE_CODE (def) != SSA_NAME)
     return;
@@ -2690,10 +2885,10 @@ infer_loop_bounds_from_undefined (struct loop *loop)
 {
   unsigned i;
   basic_block *bbs;
-  block_stmt_iterator bsi;
+  gimple_stmt_iterator bsi;
   basic_block bb;
   bool reliable;
-  
+
   bbs = get_loop_body (loop);
 
   for (i = 0; i < loop->num_nodes; i++)
@@ -2705,9 +2900,9 @@ infer_loop_bounds_from_undefined (struct loop *loop)
         # of iterations of the loop.  However, we can use it as a guess.  */
       reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
 
-      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
        {
-         tree stmt = bsi_stmt (bsi);
+         gimple stmt = gsi_stmt (bsi);
 
          infer_loop_bounds_from_array (loop, stmt, reliable);
 
@@ -2737,10 +2932,11 @@ gcov_type_to_double_int (gcov_type val)
   return ret;
 }
 
-/* Records estimates on numbers of iterations of LOOP.  */
+/* Records estimates on numbers of iterations of LOOP.  If USE_UNDEFINED_P
+   is true also use estimates derived from undefined behavior.  */
 
 void
-estimate_numbers_of_iterations_loop (struct loop *loop)
+estimate_numbers_of_iterations_loop (struct loop *loop, bool use_undefined_p)
 {
   VEC (edge, heap) *exits;
   tree niter, type;
@@ -2757,7 +2953,7 @@ estimate_numbers_of_iterations_loop (struct loop *loop)
   loop->any_estimate = false;
 
   exits = get_loop_exit_edges (loop);
-  for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
+  FOR_EACH_VEC_ELT (edge, exits, i, ex)
     {
       if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
        continue;
@@ -2773,8 +2969,9 @@ estimate_numbers_of_iterations_loop (struct loop *loop)
                       true, true, true);
     }
   VEC_free (edge, heap, exits);
-  
-  infer_loop_bounds_from_undefined (loop);
+
+  if (use_undefined_p)
+    infer_loop_bounds_from_undefined (loop);
 
   /* If we have a measured profile, use it to estimate the number of
      iterations.  */
@@ -2797,7 +2994,7 @@ estimate_numbers_of_iterations_loop (struct loop *loop)
 /* Records estimates on numbers of iterations of loops.  */
 
 void
-estimate_numbers_of_iterations (void)
+estimate_numbers_of_iterations (bool use_undefined_p)
 {
   loop_iterator li;
   struct loop *loop;
@@ -2808,7 +3005,7 @@ estimate_numbers_of_iterations (void)
 
   FOR_EACH_LOOP (li, loop, 0)
     {
-      estimate_numbers_of_iterations_loop (loop);
+      estimate_numbers_of_iterations_loop (loop, use_undefined_p);
     }
 
   fold_undefer_and_ignore_overflow_warnings ();
@@ -2817,9 +3014,9 @@ estimate_numbers_of_iterations (void)
 /* Returns true if statement S1 dominates statement S2.  */
 
 bool
-stmt_dominates_stmt_p (tree s1, tree s2)
+stmt_dominates_stmt_p (gimple s1, gimple s2)
 {
-  basic_block bb1 = bb_for_stmt (s1), bb2 = bb_for_stmt (s2);
+  basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
 
   if (!bb1
       || s1 == s2)
@@ -2827,10 +3024,16 @@ stmt_dominates_stmt_p (tree s1, tree s2)
 
   if (bb1 == bb2)
     {
-      block_stmt_iterator bsi;
+      gimple_stmt_iterator bsi;
+
+      if (gimple_code (s2) == GIMPLE_PHI)
+       return false;
+
+      if (gimple_code (s1) == GIMPLE_PHI)
+       return true;
 
-      for (bsi = bsi_start (bb1); bsi_stmt (bsi) != s2; bsi_next (&bsi))
-       if (bsi_stmt (bsi) == s1)
+      for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
+       if (gsi_stmt (bsi) == s1)
          return true;
 
       return false;
@@ -2846,8 +3049,8 @@ stmt_dominates_stmt_p (tree s1, tree s2)
    statements in the loop.  */
 
 static bool
-n_of_executions_at_most (tree stmt,
-                        struct nb_iter_bound *niter_bound, 
+n_of_executions_at_most (gimple stmt,
+                        struct nb_iter_bound *niter_bound,
                         tree niter)
 {
   double_int bound = niter_bound->bound;
@@ -2863,7 +3066,7 @@ n_of_executions_at_most (tree stmt,
 
   /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
      times.  This means that:
-     
+
      -- if NITER_BOUND->is_exit is true, then everything before
         NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
        times, and everything after it at most NITER_BOUND->bound times.
@@ -2887,7 +3090,7 @@ n_of_executions_at_most (tree stmt,
   else
     {
       if (!stmt
-         || (bb_for_stmt (stmt) != bb_for_stmt (niter_bound->stmt)
+         || (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
              && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
        {
          bound = double_int_add (bound, double_int_one);
@@ -2923,14 +3126,14 @@ nowrap_type_p (tree type)
    enough with respect to the step and initial condition in order to
    keep the evolution confined in TYPEs bounds.  Return true when the
    iv is known to overflow or when the property is not computable.
+
    USE_OVERFLOW_SEMANTICS is true if this function should assume that
    the rules for overflow of the given language apply (e.g., that signed
    arithmetics in C does not overflow).  */
 
 bool
-scev_probably_wraps_p (tree base, tree step, 
-                      tree at_stmt, struct loop *loop,
+scev_probably_wraps_p (tree base, tree step,
+                      gimple at_stmt, struct loop *loop,
                       bool use_overflow_semantics)
 {
   struct nb_iter_bound *bound;
@@ -2943,7 +3146,7 @@ scev_probably_wraps_p (tree base, tree step,
 
      We used to test for the following situation that frequently appears
      during address arithmetics:
-        
+
        D.1621_13 = (long unsigned intD.4) D.1620_12;
        D.1622_14 = D.1621_13 * 8;
        D.1623_15 = (doubleD.29 *) D.1622_14;
@@ -2955,8 +3158,7 @@ scev_probably_wraps_p (tree base, tree step,
      2032, 2040, 0, 8, ..., but the code is still legal.  */
 
   if (chrec_contains_undetermined (base)
-      || chrec_contains_undetermined (step)
-      || TREE_CODE (step) != INTEGER_CST)
+      || chrec_contains_undetermined (step))
     return true;
 
   if (integer_zerop (step))
@@ -2964,9 +3166,14 @@ scev_probably_wraps_p (tree base, tree step,
 
   /* If we can use the fact that signed and pointer arithmetics does not
      wrap, we are done.  */
-  if (use_overflow_semantics && nowrap_type_p (type))
+  if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
     return false;
 
+  /* To be able to use estimates on number of iterations of the loop,
+     we must have an upper bound on the absolute value of the step.  */
+  if (TREE_CODE (step) != INTEGER_CST)
+    return true;
+
   /* Don't issue signed overflow warnings.  */
   fold_defer_overflow_warnings ();
 
@@ -2994,7 +3201,7 @@ scev_probably_wraps_p (tree base, tree step,
 
   valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
 
-  estimate_numbers_of_iterations_loop (loop);
+  estimate_numbers_of_iterations_loop (loop, true);
   for (bound = loop->bounds; bound; bound = bound->next)
     {
       if (n_of_executions_at_most (at_stmt, bound, valid_niter))