OSDN Git Service

Index: gcc/ChangeLog
[pf3gnuchains/gcc-fork.git] / gcc / simplify-rtx.c
index 49c205c..2f7ae25 100644 (file)
@@ -1,6 +1,6 @@
 /* RTL simplification functions for GNU compiler.
    Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
-   1999, 2000, 2001 Free Software Foundation, Inc.
+   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
 
 This file is part of GCC.
 
@@ -22,8 +22,10 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 
 #include "config.h"
 #include "system.h"
-
+#include "coretypes.h"
+#include "tm.h"
 #include "rtl.h"
+#include "tree.h"
 #include "tm_p.h"
 #include "regs.h"
 #include "hard-reg-set.h"
@@ -36,58 +38,10 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 #include "toplev.h"
 #include "output.h"
 #include "ggc.h"
+#include "target.h"
 
 /* Simplification and canonicalization of RTL.  */
 
-/* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
-   virtual regs here because the simplify_*_operation routines are called
-   by integrate.c, which is called before virtual register instantiation.
-
-   ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into 
-   a header file so that their definitions can be shared with the
-   simplification routines in simplify-rtx.c.  Until then, do not
-   change these macros without also changing the copy in simplify-rtx.c.  */
-
-#define FIXED_BASE_PLUS_P(X)                                   \
-  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx   \
-   || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
-   || (X) == virtual_stack_vars_rtx                            \
-   || (X) == virtual_incoming_args_rtx                         \
-   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
-       && (XEXP (X, 0) == frame_pointer_rtx                    \
-          || XEXP (X, 0) == hard_frame_pointer_rtx             \
-          || ((X) == arg_pointer_rtx                           \
-              && fixed_regs[ARG_POINTER_REGNUM])               \
-          || XEXP (X, 0) == virtual_stack_vars_rtx             \
-          || XEXP (X, 0) == virtual_incoming_args_rtx))        \
-   || GET_CODE (X) == ADDRESSOF)
-
-/* Similar, but also allows reference to the stack pointer.
-
-   This used to include FIXED_BASE_PLUS_P, however, we can't assume that
-   arg_pointer_rtx by itself is nonzero, because on at least one machine,
-   the i960, the arg pointer is zero when it is unused.  */
-
-#define NONZERO_BASE_PLUS_P(X)                                 \
-  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx   \
-   || (X) == virtual_stack_vars_rtx                            \
-   || (X) == virtual_incoming_args_rtx                         \
-   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
-       && (XEXP (X, 0) == frame_pointer_rtx                    \
-          || XEXP (X, 0) == hard_frame_pointer_rtx             \
-          || ((X) == arg_pointer_rtx                           \
-              && fixed_regs[ARG_POINTER_REGNUM])               \
-          || XEXP (X, 0) == virtual_stack_vars_rtx             \
-          || XEXP (X, 0) == virtual_incoming_args_rtx))        \
-   || (X) == stack_pointer_rtx                                 \
-   || (X) == virtual_stack_dynamic_rtx                         \
-   || (X) == virtual_outgoing_args_rtx                         \
-   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
-       && (XEXP (X, 0) == stack_pointer_rtx                    \
-          || XEXP (X, 0) == virtual_stack_dynamic_rtx          \
-          || XEXP (X, 0) == virtual_outgoing_args_rtx))        \
-   || GET_CODE (X) == ADDRESSOF)
-
 /* Much code operates on (low, high) pairs; the low value is an
    unsigned wide int, the high value a signed wide int.  We
    occasionally need to sign extend from low to high as if low were a
@@ -95,80 +49,133 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 #define HWI_SIGN_EXTEND(low) \
  ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
 
-static rtx neg_const_int PARAMS ((enum machine_mode, rtx));
-static int simplify_plus_minus_op_data_cmp PARAMS ((const void *,
-                                                   const void *));
-static rtx simplify_plus_minus         PARAMS ((enum rtx_code,
-                                                enum machine_mode, rtx, rtx));
-static void check_fold_consts          PARAMS ((PTR));
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-static void simplify_unary_real                PARAMS ((PTR));
-static void simplify_binary_real       PARAMS ((PTR));
-#endif
-static void simplify_binary_is2orm1    PARAMS ((PTR));
-
+static rtx neg_const_int (enum machine_mode, rtx);
+static bool plus_minus_operand_p (rtx);
+static int simplify_plus_minus_op_data_cmp (const void *, const void *);
+static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx,
+                               rtx, int);
+static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
+                                 unsigned int);
+static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
+                                          rtx, rtx);
+static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
+                                           enum machine_mode, rtx, rtx);
+static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
+static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
+                                       rtx, rtx, rtx, rtx);
 \f
 /* Negate a CONST_INT rtx, truncating (because a conversion from a
    maximally negative number can overflow).  */
 static rtx
-neg_const_int (mode, i)
-     enum machine_mode mode;
-     rtx i;
+neg_const_int (enum machine_mode mode, rtx i)
 {
-  return GEN_INT (trunc_int_for_mode (- INTVAL (i), mode));
+  return gen_int_mode (- INTVAL (i), mode);
 }
 
+/* Test whether expression, X, is an immediate constant that represents
+   the most significant bit of machine mode MODE.  */
+
+bool
+mode_signbit_p (enum machine_mode mode, rtx x)
+{
+  unsigned HOST_WIDE_INT val;
+  unsigned int width;
+
+  if (GET_MODE_CLASS (mode) != MODE_INT)
+    return false;
+
+  width = GET_MODE_BITSIZE (mode);
+  if (width == 0)
+    return false;
+  
+  if (width <= HOST_BITS_PER_WIDE_INT
+      && GET_CODE (x) == CONST_INT)
+    val = INTVAL (x);
+  else if (width <= 2 * HOST_BITS_PER_WIDE_INT
+          && GET_CODE (x) == CONST_DOUBLE
+          && CONST_DOUBLE_LOW (x) == 0)
+    {
+      val = CONST_DOUBLE_HIGH (x);
+      width -= HOST_BITS_PER_WIDE_INT;
+    }
+  else
+    return false;
+
+  if (width < HOST_BITS_PER_WIDE_INT)
+    val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
+  return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
+}
 \f
-/* Make a binary operation by properly ordering the operands and 
+/* Make a binary operation by properly ordering the operands and
    seeing if the expression folds.  */
 
 rtx
-simplify_gen_binary (code, mode, op0, op1)
-     enum rtx_code code;
-     enum machine_mode mode;
-     rtx op0, op1;
+simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
+                    rtx op1)
 {
   rtx tem;
 
   /* Put complex operands first and constants second if commutative.  */
-  if (GET_RTX_CLASS (code) == 'c'
+  if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
       && swap_commutative_operands_p (op0, op1))
     tem = op0, op0 = op1, op1 = tem;
 
   /* If this simplifies, do it.  */
   tem = simplify_binary_operation (code, mode, op0, op1);
-
   if (tem)
     return tem;
 
-  /* Handle addition and subtraction of CONST_INT specially.  Otherwise,
-     just form the operation.  */
+  /* Handle addition and subtraction specially.  Otherwise, just form
+     the operation.  */
 
-  if (GET_CODE (op1) == CONST_INT
-      && GET_MODE (op0) != VOIDmode
-      && (code == PLUS || code == MINUS))
+  if (code == PLUS || code == MINUS)
     {
-      if (code == MINUS)
-       op1 = neg_const_int (mode, op1);
-      return plus_constant (op0, INTVAL (op1));
+      tem = simplify_plus_minus (code, mode, op0, op1, 1);
+      if (tem)
+       return tem;
     }
-  else
-    return gen_rtx_fmt_ee (code, mode, op0, op1);
+
+  return gen_rtx_fmt_ee (code, mode, op0, op1);
 }
 \f
 /* If X is a MEM referencing the constant pool, return the real value.
    Otherwise return X.  */
 rtx
-avoid_constant_pool_reference (x)
-     rtx x;
+avoid_constant_pool_reference (rtx x)
 {
-  rtx c, addr;
+  rtx c, tmp, addr;
   enum machine_mode cmode;
 
-  if (GET_CODE (x) != MEM)
-    return x;
+  switch (GET_CODE (x))
+    {
+    case MEM:
+      break;
+
+    case FLOAT_EXTEND:
+      /* Handle float extensions of constant pool references.  */
+      tmp = XEXP (x, 0);
+      c = avoid_constant_pool_reference (tmp);
+      if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
+       {
+         REAL_VALUE_TYPE d;
+
+         REAL_VALUE_FROM_CONST_DOUBLE (d, c);
+         return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
+       }
+      return x;
+
+    default:
+      return x;
+    }
+
   addr = XEXP (x, 0);
 
+  /* Call target hook to avoid the effects of -fpic etc....  */
+  addr = targetm.delegitimize_address (addr);
+
+  if (GET_CODE (addr) == LO_SUM)
+    addr = XEXP (addr, 1);
+
   if (GET_CODE (addr) != SYMBOL_REF
       || ! CONSTANT_POOL_ADDRESS_P (addr))
     return x;
@@ -192,11 +199,8 @@ avoid_constant_pool_reference (x)
    the specified operation.  */
 
 rtx
-simplify_gen_unary (code, mode, op, op_mode)
-     enum rtx_code code;
-     enum machine_mode mode;
-     rtx op;
-     enum machine_mode op_mode;
+simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
+                   enum machine_mode op_mode)
 {
   rtx tem;
 
@@ -210,10 +214,8 @@ simplify_gen_unary (code, mode, op, op_mode)
 /* Likewise for ternary operations.  */
 
 rtx
-simplify_gen_ternary (code, mode, op0_mode, op0, op1, op2)
-     enum rtx_code code;
-     enum machine_mode mode, op0_mode;
-     rtx op0, op1, op2;
+simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
+                     enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
 {
   rtx tem;
 
@@ -224,251 +226,472 @@ simplify_gen_ternary (code, mode, op0_mode, op0, op1, op2)
 
   return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
 }
-\f
+
 /* Likewise, for relational operations.
-   CMP_MODE specifies mode comparison is done in.
-  */
+   CMP_MODE specifies mode comparison is done in.  */
 
 rtx
-simplify_gen_relational (code, mode, cmp_mode, op0, op1)
-     enum rtx_code code;
-     enum machine_mode mode;
-     enum machine_mode cmp_mode;
-     rtx op0, op1;
+simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
+                        enum machine_mode cmp_mode, rtx op0, rtx op1)
 {
   rtx tem;
 
-  if ((tem = simplify_relational_operation (code, cmp_mode, op0, op1)) != 0)
+  if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
+                                                op0, op1)))
     return tem;
 
-  /* Put complex operands first and constants second.  */
-  if (swap_commutative_operands_p (op0, op1))
-    tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
-
   return gen_rtx_fmt_ee (code, mode, op0, op1);
 }
 \f
-/* Replace all occurrences of OLD in X with NEW and try to simplify the
+/* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
    resulting RTX.  Return a new RTX which is as simplified as possible.  */
 
 rtx
-simplify_replace_rtx (x, old, new)
-     rtx x;
-     rtx old;
-     rtx new;
+simplify_replace_rtx (rtx x, rtx old_rtx, rtx new_rtx)
 {
   enum rtx_code code = GET_CODE (x);
   enum machine_mode mode = GET_MODE (x);
+  enum machine_mode op_mode;
+  rtx op0, op1, op2;
 
-  /* If X is OLD, return NEW.  Otherwise, if this is an expression, try
+  /* If X is OLD_RTX, return NEW_RTX.  Otherwise, if this is an expression, try
      to build a new expression substituting recursively.  If we can't do
      anything, return our input.  */
 
-  if (x == old)
-    return new;
+  if (x == old_rtx)
+    return new_rtx;
 
   switch (GET_RTX_CLASS (code))
     {
-    case '1':
-      {
-       enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
-       rtx op = (XEXP (x, 0) == old
-                 ? new : simplify_replace_rtx (XEXP (x, 0), old, new));
-
-       return simplify_gen_unary (code, mode, op, op_mode);
-      }
-
-    case '2':
-    case 'c':
-      return
-       simplify_gen_binary (code, mode,
-                            simplify_replace_rtx (XEXP (x, 0), old, new),
-                            simplify_replace_rtx (XEXP (x, 1), old, new));
-    case '<':
-      {
-       enum machine_mode op_mode = (GET_MODE (XEXP (x, 0)) != VOIDmode
-                                    ? GET_MODE (XEXP (x, 0))
-                                    : GET_MODE (XEXP (x, 1)));
-       rtx op0 = simplify_replace_rtx (XEXP (x, 0), old, new);
-       rtx op1 = simplify_replace_rtx (XEXP (x, 1), old, new);
-
-       return
-         simplify_gen_relational (code, mode,
-                                  (op_mode != VOIDmode
-                                   ? op_mode
-                                   : GET_MODE (op0) != VOIDmode
-                                   ? GET_MODE (op0)
-                                   : GET_MODE (op1)),
-                                  op0, op1);
-      }
-
-    case '3':
-    case 'b':
-      {
-       enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
-       rtx op0 = simplify_replace_rtx (XEXP (x, 0), old, new);
-
-       return
-         simplify_gen_ternary (code, mode, 
-                               (op_mode != VOIDmode
-                                ? op_mode
-                                : GET_MODE (op0)),
-                               op0,
-                               simplify_replace_rtx (XEXP (x, 1), old, new),
-                               simplify_replace_rtx (XEXP (x, 2), old, new));
-      }
+    case RTX_UNARY:
+      op0 = XEXP (x, 0);
+      op_mode = GET_MODE (op0);
+      op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
+      if (op0 == XEXP (x, 0))
+       return x;
+      return simplify_gen_unary (code, mode, op0, op_mode);
+
+    case RTX_BIN_ARITH:
+    case RTX_COMM_ARITH:
+      op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
+      op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
+      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
+       return x;
+      return simplify_gen_binary (code, mode, op0, op1);
+
+    case RTX_COMPARE:
+    case RTX_COMM_COMPARE:
+      op0 = XEXP (x, 0);
+      op1 = XEXP (x, 1);
+      op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
+      op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
+      op1 = simplify_replace_rtx (op1, old_rtx, new_rtx);
+      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
+       return x;
+      return simplify_gen_relational (code, mode, op_mode, op0, op1);
+
+    case RTX_TERNARY:
+    case RTX_BITFIELD_OPS:
+      op0 = XEXP (x, 0);
+      op_mode = GET_MODE (op0);
+      op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
+      op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
+      op2 = simplify_replace_rtx (XEXP (x, 2), old_rtx, new_rtx);
+      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
+       return x;
+      if (op_mode == VOIDmode)
+       op_mode = GET_MODE (op0);
+      return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
 
-    case 'x':
+    case RTX_EXTRA:
       /* The only case we try to handle is a SUBREG.  */
       if (code == SUBREG)
        {
-         rtx exp;
-         exp = simplify_gen_subreg (GET_MODE (x),
-                                    simplify_replace_rtx (SUBREG_REG (x),
-                                                          old, new),
+         op0 = simplify_replace_rtx (SUBREG_REG (x), old_rtx, new_rtx);
+         if (op0 == SUBREG_REG (x))
+           return x;
+         op0 = simplify_gen_subreg (GET_MODE (x), op0,
                                     GET_MODE (SUBREG_REG (x)),
                                     SUBREG_BYTE (x));
-         if (exp)
-          x = exp;
+         return op0 ? op0 : x;
        }
-      return x;
+      break;
 
-    default:
-      if (GET_CODE (x) == MEM)
-       return
-         replace_equiv_address_nv (x,
-                                   simplify_replace_rtx (XEXP (x, 0),
-                                                         old, new));
+    case RTX_OBJ:
+      if (code == MEM)
+       {
+         op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
+         if (op0 == XEXP (x, 0))
+           return x;
+         return replace_equiv_address_nv (x, op0);
+       }
+      else if (code == LO_SUM)
+       {
+         op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
+         op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
 
-      return x;
+         /* (lo_sum (high x) x) -> x  */
+         if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
+           return op1;
+
+         if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
+           return x;
+         return gen_rtx_LO_SUM (mode, op0, op1);
+       }
+      else if (code == REG)
+       {
+         if (rtx_equal_p (x, old_rtx))
+           return new_rtx;
+       }
+      break;
+
+    default:
+      break;
     }
   return x;
 }
 \f
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-/* Subroutine of simplify_unary_operation, called via do_float_handler.
-   Handles simplification of unary ops on floating point values.  */
-struct simplify_unary_real_args
+/* Try to simplify a unary operation CODE whose output mode is to be
+   MODE with input operand OP whose mode was originally OP_MODE.
+   Return zero if no simplification can be made.  */
+rtx
+simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
+                         rtx op, enum machine_mode op_mode)
 {
-  rtx operand;
-  rtx result;
-  enum machine_mode mode;
-  enum rtx_code code;
-  bool want_integer;
-};
-#define REAL_VALUE_ABS(d_) \
-   (REAL_VALUE_NEGATIVE (d_) ? REAL_VALUE_NEGATE (d_) : (d_))
+  rtx trueop, tem;
 
-static void
-simplify_unary_real (p)
-     PTR p;
-{
-  REAL_VALUE_TYPE d;
+  if (GET_CODE (op) == CONST)
+    op = XEXP (op, 0);
 
-  struct simplify_unary_real_args *args =
-    (struct simplify_unary_real_args *) p;
+  trueop = avoid_constant_pool_reference (op);
 
-  REAL_VALUE_FROM_CONST_DOUBLE (d, args->operand);
+  tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
+  if (tem)
+    return tem;
+
+  return simplify_unary_operation_1 (code, mode, op);
+}
 
-  if (args->want_integer)
+/* Perform some simplifications we can do even if the operands
+   aren't constant.  */
+static rtx
+simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
+{
+  enum rtx_code reversed;
+  rtx temp;
+
+  switch (code)
     {
-      HOST_WIDE_INT i;
+    case NOT:
+      /* (not (not X)) == X.  */
+      if (GET_CODE (op) == NOT)
+       return XEXP (op, 0);
+
+      /* (not (eq X Y)) == (ne X Y), etc.  */
+      if (COMPARISON_P (op)
+         && (mode == BImode || STORE_FLAG_VALUE == -1)
+         && ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
+       return simplify_gen_relational (reversed, mode, VOIDmode,
+                                       XEXP (op, 0), XEXP (op, 1));
+
+      /* (not (plus X -1)) can become (neg X).  */
+      if (GET_CODE (op) == PLUS
+         && XEXP (op, 1) == constm1_rtx)
+       return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
+
+      /* Similarly, (not (neg X)) is (plus X -1).  */
+      if (GET_CODE (op) == NEG)
+       return plus_constant (XEXP (op, 0), -1);
+
+      /* (not (xor X C)) for C constant is (xor X D) with D = ~C.  */
+      if (GET_CODE (op) == XOR
+         && GET_CODE (XEXP (op, 1)) == CONST_INT
+         && (temp = simplify_unary_operation (NOT, mode,
+                                              XEXP (op, 1), mode)) != 0)
+       return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
+
+      /* (not (plus X C)) for signbit C is (xor X D) with D = ~C.  */
+      if (GET_CODE (op) == PLUS
+         && GET_CODE (XEXP (op, 1)) == CONST_INT
+         && mode_signbit_p (mode, XEXP (op, 1))
+         && (temp = simplify_unary_operation (NOT, mode,
+                                              XEXP (op, 1), mode)) != 0)
+       return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
+
+
+      /* (not (ashift 1 X)) is (rotate ~1 X).  We used to do this for
+        operands other than 1, but that is not valid.  We could do a
+        similar simplification for (not (lshiftrt C X)) where C is
+        just the sign bit, but this doesn't seem common enough to
+        bother with.  */
+      if (GET_CODE (op) == ASHIFT
+         && XEXP (op, 0) == const1_rtx)
+       {
+         temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
+         return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
+       }
+
+      /* If STORE_FLAG_VALUE is -1, (not (comparison X Y)) can be done
+        by reversing the comparison code if valid.  */
+      if (STORE_FLAG_VALUE == -1
+         && COMPARISON_P (op)
+         && (reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN)
+       return simplify_gen_relational (reversed, mode, VOIDmode,
+                                       XEXP (op, 0), XEXP (op, 1));
+
+      /* (not (ashiftrt foo C)) where C is the number of bits in FOO
+        minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
+        so we can perform the above simplification.  */
+      
+      if (STORE_FLAG_VALUE == -1
+         && GET_CODE (op) == ASHIFTRT
+         && GET_CODE (XEXP (op, 1)) == CONST_INT
+         && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
+       return simplify_gen_relational (GE, mode, VOIDmode,
+                                       XEXP (op, 0), const0_rtx);
 
-      switch (args->code)
+      break;
+
+    case NEG:
+      /* (neg (neg X)) == X.  */
+      if (GET_CODE (op) == NEG)
+       return XEXP (op, 0);
+
+      /* (neg (plus X 1)) can become (not X).  */
+      if (GET_CODE (op) == PLUS
+         && XEXP (op, 1) == const1_rtx)
+       return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
+      
+      /* Similarly, (neg (not X)) is (plus X 1).  */
+      if (GET_CODE (op) == NOT)
+       return plus_constant (XEXP (op, 0), 1);
+      
+      /* (neg (minus X Y)) can become (minus Y X).  This transformation
+        isn't safe for modes with signed zeros, since if X and Y are
+        both +0, (minus Y X) is the same as (minus X Y).  If the
+        rounding mode is towards +infinity (or -infinity) then the two
+        expressions will be rounded differently.  */
+      if (GET_CODE (op) == MINUS
+         && !HONOR_SIGNED_ZEROS (mode)
+         && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
+       return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
+      
+      if (GET_CODE (op) == PLUS
+         && !HONOR_SIGNED_ZEROS (mode)
+         && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
        {
-       case FIX:               i = REAL_VALUE_FIX (d);           break;
-       case UNSIGNED_FIX:      i = REAL_VALUE_UNSIGNED_FIX (d);  break;
-       default:
-         abort ();
+         /* (neg (plus A C)) is simplified to (minus -C A).  */
+         if (GET_CODE (XEXP (op, 1)) == CONST_INT
+             || GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
+           {
+             temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
+             if (temp)
+               return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
+           }
+
+         /* (neg (plus A B)) is canonicalized to (minus (neg A) B).  */
+         temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
+         return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
        }
-      args->result = GEN_INT (trunc_int_for_mode (i, args->mode));
-    }
-  else
-    {
-      switch (args->code)
+
+      /* (neg (mult A B)) becomes (mult (neg A) B).
+        This works even for floating-point values.  */
+      if (GET_CODE (op) == MULT
+         && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
        {
-       case SQRT:
-         /* We don't attempt to optimize this.  */
-         args->result = 0;
-         return;
-
-       case ABS:             d = REAL_VALUE_ABS (d);                   break;
-       case NEG:             d = REAL_VALUE_NEGATE (d);                break;
-       case FLOAT_TRUNCATE:  d = real_value_truncate (args->mode, d);  break;
-       case FLOAT_EXTEND:    /* All this does is change the mode.  */  break;
-       case FIX:             d = REAL_VALUE_RNDZINT (d);               break;
-       case UNSIGNED_FIX:    d = REAL_VALUE_UNSIGNED_RNDZINT (d);      break;
-       default:
-         abort ();
+         temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
+         return simplify_gen_binary (MULT, mode, temp, XEXP (op, 1));
        }
-      args->result = CONST_DOUBLE_FROM_REAL_VALUE (d, args->mode);
+
+      /* NEG commutes with ASHIFT since it is multiplication.  Only do
+        this if we can then eliminate the NEG (e.g., if the operand
+        is a constant).  */
+      if (GET_CODE (op) == ASHIFT)
+       {
+         temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
+         if (temp)
+           return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
+       }
+
+      /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
+        C is equal to the width of MODE minus 1.  */
+      if (GET_CODE (op) == ASHIFTRT
+         && GET_CODE (XEXP (op, 1)) == CONST_INT
+         && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
+       return simplify_gen_binary (LSHIFTRT, mode,
+                                   XEXP (op, 0), XEXP (op, 1));
+
+      /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
+        C is equal to the width of MODE minus 1.  */
+      if (GET_CODE (op) == LSHIFTRT
+         && GET_CODE (XEXP (op, 1)) == CONST_INT
+         && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
+       return simplify_gen_binary (ASHIFTRT, mode,
+                                   XEXP (op, 0), XEXP (op, 1));
+      
+      break;
+
+    case SIGN_EXTEND:
+      /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
+        becomes just the MINUS if its mode is MODE.  This allows
+        folding switch statements on machines using casesi (such as
+        the VAX).  */
+      if (GET_CODE (op) == TRUNCATE
+         && GET_MODE (XEXP (op, 0)) == mode
+         && GET_CODE (XEXP (op, 0)) == MINUS
+         && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
+         && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
+       return XEXP (op, 0);
+
+      /* Check for a sign extension of a subreg of a promoted
+        variable, where the promotion is sign-extended, and the
+        target mode is the same as the variable's promotion.  */
+      if (GET_CODE (op) == SUBREG
+         && SUBREG_PROMOTED_VAR_P (op)
+         && ! SUBREG_PROMOTED_UNSIGNED_P (op)
+         && GET_MODE (XEXP (op, 0)) == mode)
+       return XEXP (op, 0);
+
+#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
+      if (! POINTERS_EXTEND_UNSIGNED
+         && mode == Pmode && GET_MODE (op) == ptr_mode
+         && (CONSTANT_P (op)
+             || (GET_CODE (op) == SUBREG
+                 && REG_P (SUBREG_REG (op))
+                 && REG_POINTER (SUBREG_REG (op))
+                 && GET_MODE (SUBREG_REG (op)) == Pmode)))
+       return convert_memory_address (Pmode, op);
+#endif
+      break;
+
+    case ZERO_EXTEND:
+      /* Check for a zero extension of a subreg of a promoted
+        variable, where the promotion is zero-extended, and the
+        target mode is the same as the variable's promotion.  */
+      if (GET_CODE (op) == SUBREG
+         && SUBREG_PROMOTED_VAR_P (op)
+         && SUBREG_PROMOTED_UNSIGNED_P (op)
+         && GET_MODE (XEXP (op, 0)) == mode)
+       return XEXP (op, 0);
+
+#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
+      if (POINTERS_EXTEND_UNSIGNED > 0
+         && mode == Pmode && GET_MODE (op) == ptr_mode
+         && (CONSTANT_P (op)
+             || (GET_CODE (op) == SUBREG
+                 && REG_P (SUBREG_REG (op))
+                 && REG_POINTER (SUBREG_REG (op))
+                 && GET_MODE (SUBREG_REG (op)) == Pmode)))
+       return convert_memory_address (Pmode, op);
+#endif
+      break;
+
+    default:
+      break;
     }
+  
+  return 0;
 }
-#endif
 
-/* Try to simplify a unary operation CODE whose output mode is to be
-   MODE with input operand OP whose mode was originally OP_MODE.
-   Return zero if no simplification can be made.  */
+/* Try to compute the value of a unary operation CODE whose output mode is to
+   be MODE with input operand OP whose mode was originally OP_MODE.
+   Return zero if the value cannot be computed.  */
 rtx
-simplify_unary_operation (code, mode, op, op_mode)
-     enum rtx_code code;
-     enum machine_mode mode;
-     rtx op;
-     enum machine_mode op_mode;
+simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
+                               rtx op, enum machine_mode op_mode)
 {
   unsigned int width = GET_MODE_BITSIZE (mode);
-  rtx trueop = avoid_constant_pool_reference (op);
+
+  if (code == VEC_DUPLICATE)
+    {
+      gcc_assert (VECTOR_MODE_P (mode));
+      if (GET_MODE (op) != VOIDmode)
+      {
+       if (!VECTOR_MODE_P (GET_MODE (op)))
+         gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
+       else
+         gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
+                                               (GET_MODE (op)));
+      }
+      if (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
+         || GET_CODE (op) == CONST_VECTOR)
+       {
+          int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
+          unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
+         rtvec v = rtvec_alloc (n_elts);
+         unsigned int i;
+
+         if (GET_CODE (op) != CONST_VECTOR)
+           for (i = 0; i < n_elts; i++)
+             RTVEC_ELT (v, i) = op;
+         else
+           {
+             enum machine_mode inmode = GET_MODE (op);
+              int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
+              unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
+
+             gcc_assert (in_n_elts < n_elts);
+             gcc_assert ((n_elts % in_n_elts) == 0);
+             for (i = 0; i < n_elts; i++)
+               RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
+           }
+         return gen_rtx_CONST_VECTOR (mode, v);
+       }
+    }
+
+  if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
+    {
+      int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
+      unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
+      enum machine_mode opmode = GET_MODE (op);
+      int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
+      unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
+      rtvec v = rtvec_alloc (n_elts);
+      unsigned int i;
+
+      gcc_assert (op_n_elts == n_elts);
+      for (i = 0; i < n_elts; i++)
+       {
+         rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
+                                           CONST_VECTOR_ELT (op, i),
+                                           GET_MODE_INNER (opmode));
+         if (!x)
+           return 0;
+         RTVEC_ELT (v, i) = x;
+       }
+      return gen_rtx_CONST_VECTOR (mode, v);
+    }
 
   /* The order of these tests is critical so that, for example, we don't
      check the wrong mode (input vs. output) for a conversion operation,
      such as FIX.  At some point, this should be simplified.  */
 
-#if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
-
-  if (code == FLOAT && GET_MODE (trueop) == VOIDmode
-      && (GET_CODE (trueop) == CONST_DOUBLE || GET_CODE (trueop) == CONST_INT))
+  if (code == FLOAT && GET_MODE (op) == VOIDmode
+      && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
     {
       HOST_WIDE_INT hv, lv;
       REAL_VALUE_TYPE d;
 
-      if (GET_CODE (trueop) == CONST_INT)
-       lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
+      if (GET_CODE (op) == CONST_INT)
+       lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
       else
-       lv = CONST_DOUBLE_LOW (trueop),  hv = CONST_DOUBLE_HIGH (trueop);
+       lv = CONST_DOUBLE_LOW (op),  hv = CONST_DOUBLE_HIGH (op);
 
-#ifdef REAL_ARITHMETIC
       REAL_VALUE_FROM_INT (d, lv, hv, mode);
-#else
-      if (hv < 0)
-       {
-         d = (double) (~ hv);
-         d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
-               * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
-         d += (double) (unsigned HOST_WIDE_INT) (~ lv);
-         d = (- d - 1.0);
-       }
-      else
-       {
-         d = (double) hv;
-         d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
-               * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
-         d += (double) (unsigned HOST_WIDE_INT) lv;
-       }
-#endif  /* REAL_ARITHMETIC */
       d = real_value_truncate (mode, d);
       return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
     }
-  else if (code == UNSIGNED_FLOAT && GET_MODE (trueop) == VOIDmode
-          && (GET_CODE (trueop) == CONST_DOUBLE
-              || GET_CODE (trueop) == CONST_INT))
+  else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
+          && (GET_CODE (op) == CONST_DOUBLE
+              || GET_CODE (op) == CONST_INT))
     {
       HOST_WIDE_INT hv, lv;
       REAL_VALUE_TYPE d;
 
-      if (GET_CODE (trueop) == CONST_INT)
-       lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
+      if (GET_CODE (op) == CONST_INT)
+       lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
       else
-       lv = CONST_DOUBLE_LOW (trueop),  hv = CONST_DOUBLE_HIGH (trueop);
+       lv = CONST_DOUBLE_LOW (op),  hv = CONST_DOUBLE_HIGH (op);
 
       if (op_mode == VOIDmode)
        {
@@ -482,24 +705,15 @@ simplify_unary_operation (code, mode, op, op_mode)
       else
        hv = 0, lv &= GET_MODE_MASK (op_mode);
 
-#ifdef REAL_ARITHMETIC
       REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
-#else
-
-      d = (double) (unsigned HOST_WIDE_INT) hv;
-      d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
-           * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
-      d += (double) (unsigned HOST_WIDE_INT) lv;
-#endif  /* REAL_ARITHMETIC */
       d = real_value_truncate (mode, d);
       return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
     }
-#endif
 
-  if (GET_CODE (trueop) == CONST_INT
+  if (GET_CODE (op) == CONST_INT
       && width <= HOST_BITS_PER_WIDE_INT && width > 0)
     {
-      HOST_WIDE_INT arg0 = INTVAL (trueop);
+      HOST_WIDE_INT arg0 = INTVAL (op);
       HOST_WIDE_INT val;
 
       switch (code)
@@ -523,20 +737,56 @@ simplify_unary_operation (code, mode, op, op_mode)
          val = exact_log2 (arg0 & (- arg0)) + 1;
          break;
 
+       case CLZ:
+         arg0 &= GET_MODE_MASK (mode);
+         if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
+           ;
+         else
+           val = GET_MODE_BITSIZE (mode) - floor_log2 (arg0) - 1;
+         break;
+
+       case CTZ:
+         arg0 &= GET_MODE_MASK (mode);
+         if (arg0 == 0)
+           {
+             /* Even if the value at zero is undefined, we have to come
+                up with some replacement.  Seems good enough.  */
+             if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
+               val = GET_MODE_BITSIZE (mode);
+           }
+         else
+           val = exact_log2 (arg0 & -arg0);
+         break;
+
+       case POPCOUNT:
+         arg0 &= GET_MODE_MASK (mode);
+         val = 0;
+         while (arg0)
+           val++, arg0 &= arg0 - 1;
+         break;
+
+       case PARITY:
+         arg0 &= GET_MODE_MASK (mode);
+         val = 0;
+         while (arg0)
+           val++, arg0 &= arg0 - 1;
+         val &= 1;
+         break;
+
        case TRUNCATE:
          val = arg0;
          break;
 
        case ZERO_EXTEND:
-         if (op_mode == VOIDmode)
-           op_mode = mode;
+         /* When zero-extending a CONST_INT, we need to know its
+             original mode.  */
+         gcc_assert (op_mode != VOIDmode);
          if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
            {
              /* If we were really extending the mode,
                 we would have to distinguish between zero-extension
                 and sign-extension.  */
-             if (width != GET_MODE_BITSIZE (op_mode))
-               abort ();
+             gcc_assert (width == GET_MODE_BITSIZE (op_mode));
              val = arg0;
            }
          else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
@@ -553,8 +803,7 @@ simplify_unary_operation (code, mode, op, op_mode)
              /* If we were really extending the mode,
                 we would have to distinguish between zero-extension
                 and sign-extension.  */
-             if (width != GET_MODE_BITSIZE (op_mode))
-               abort ();
+             gcc_assert (width == GET_MODE_BITSIZE (op_mode));
              val = arg0;
            }
          else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
@@ -572,30 +821,31 @@ simplify_unary_operation (code, mode, op, op_mode)
        case SQRT:
        case FLOAT_EXTEND:
        case FLOAT_TRUNCATE:
+       case SS_TRUNCATE:
+       case US_TRUNCATE:
          return 0;
 
        default:
-         abort ();
+         gcc_unreachable ();
        }
 
-      val = trunc_int_for_mode (val, mode);
-
-      return GEN_INT (val);
+      return gen_int_mode (val, mode);
     }
 
   /* We can do some operations on integer CONST_DOUBLEs.  Also allow
      for a DImode operation on a CONST_INT.  */
-  else if (GET_MODE (trueop) == VOIDmode && width <= HOST_BITS_PER_INT * 2
-          && (GET_CODE (trueop) == CONST_DOUBLE
-              || GET_CODE (trueop) == CONST_INT))
+  else if (GET_MODE (op) == VOIDmode
+          && width <= HOST_BITS_PER_WIDE_INT * 2
+          && (GET_CODE (op) == CONST_DOUBLE
+              || GET_CODE (op) == CONST_INT))
     {
       unsigned HOST_WIDE_INT l1, lv;
       HOST_WIDE_INT h1, hv;
 
-      if (GET_CODE (trueop) == CONST_DOUBLE)
-       l1 = CONST_DOUBLE_LOW (trueop), h1 = CONST_DOUBLE_HIGH (trueop);
+      if (GET_CODE (op) == CONST_DOUBLE)
+       l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
       else
-       l1 = INTVAL (trueop), h1 = HWI_SIGN_EXTEND (l1);
+       l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
 
       switch (code)
        {
@@ -618,9 +868,54 @@ simplify_unary_operation (code, mode, op, op_mode)
        case FFS:
          hv = 0;
          if (l1 == 0)
-           lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
+           {
+             if (h1 == 0)
+               lv = 0;
+             else
+               lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1) + 1;
+           }
          else
-           lv = exact_log2 (l1 & (-l1)) + 1;
+           lv = exact_log2 (l1 & -l1) + 1;
+         break;
+
+       case CLZ:
+         hv = 0;
+         if (h1 != 0)
+           lv = GET_MODE_BITSIZE (mode) - floor_log2 (h1) - 1
+             - HOST_BITS_PER_WIDE_INT;
+         else if (l1 != 0)
+           lv = GET_MODE_BITSIZE (mode) - floor_log2 (l1) - 1;
+         else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
+           lv = GET_MODE_BITSIZE (mode);
+         break;
+
+       case CTZ:
+         hv = 0;
+         if (l1 != 0)
+           lv = exact_log2 (l1 & -l1);
+         else if (h1 != 0)
+           lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1);
+         else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
+           lv = GET_MODE_BITSIZE (mode);
+         break;
+
+       case POPCOUNT:
+         hv = 0;
+         lv = 0;
+         while (l1)
+           lv++, l1 &= l1 - 1;
+         while (h1)
+           lv++, h1 &= h1 - 1;
+         break;
+
+       case PARITY:
+         hv = 0;
+         lv = 0;
+         while (l1)
+           lv++, l1 &= l1 - 1;
+         while (h1)
+           lv++, h1 &= h1 - 1;
+         lv &= 1;
          break;
 
        case TRUNCATE:
@@ -629,8 +924,9 @@ simplify_unary_operation (code, mode, op, op_mode)
          break;
 
        case ZERO_EXTEND:
-         if (op_mode == VOIDmode
-             || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
+         gcc_assert (op_mode != VOIDmode);
+
+         if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
            return 0;
 
          hv = 0;
@@ -663,201 +959,213 @@ simplify_unary_operation (code, mode, op, op_mode)
       return immed_double_const (lv, hv, mode);
     }
 
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-  else if (GET_CODE (trueop) == CONST_DOUBLE
+  else if (GET_CODE (op) == CONST_DOUBLE
           && GET_MODE_CLASS (mode) == MODE_FLOAT)
     {
-      struct simplify_unary_real_args args;
-      args.operand = trueop;
-      args.mode = mode;
-      args.code = code;
-      args.want_integer = false;
+      REAL_VALUE_TYPE d, t;
+      REAL_VALUE_FROM_CONST_DOUBLE (d, op);
 
-      if (do_float_handler (simplify_unary_real, (PTR) &args))
-       return args.result;
+      switch (code)
+       {
+       case SQRT:
+         if (HONOR_SNANS (mode) && real_isnan (&d))
+           return 0;
+         real_sqrt (&t, mode, &d);
+         d = t;
+         break;
+       case ABS:
+         d = REAL_VALUE_ABS (d);
+         break;
+       case NEG:
+         d = REAL_VALUE_NEGATE (d);
+         break;
+       case FLOAT_TRUNCATE:
+         d = real_value_truncate (mode, d);
+         break;
+       case FLOAT_EXTEND:
+         /* All this does is change the mode.  */
+         break;
+       case FIX:
+         real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
+         break;
+       case NOT:
+         {
+           long tmp[4];
+           int i;
 
-      return 0;
+           real_to_target (tmp, &d, GET_MODE (op));
+           for (i = 0; i < 4; i++)
+             tmp[i] = ~tmp[i];
+           real_from_target (&d, tmp, mode);
+           break;
+         }
+       default:
+         gcc_unreachable ();
+       }
+      return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
     }
 
-  else if (GET_CODE (trueop) == CONST_DOUBLE
-          && GET_MODE_CLASS (GET_MODE (trueop)) == MODE_FLOAT
+  else if (GET_CODE (op) == CONST_DOUBLE
+          && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
           && GET_MODE_CLASS (mode) == MODE_INT
-          && width <= HOST_BITS_PER_WIDE_INT && width > 0)
-    {
-      struct simplify_unary_real_args args;
-      args.operand = trueop;
-      args.mode = mode;
-      args.code = code;
-      args.want_integer = true;
-
-      if (do_float_handler (simplify_unary_real, (PTR) &args))
-       return args.result;
-
-      return 0;
-    }
-#endif
-  /* This was formerly used only for non-IEEE float.
-     eggert@twinsun.com says it is safe for IEEE also.  */
-  else
+          && width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
     {
-      enum rtx_code reversed;
-      /* There are some simplifications we can do even if the operands
-        aren't constant.  */
+      /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
+        operators are intentionally left unspecified (to ease implementation
+        by target backends), for consistency, this routine implements the
+        same semantics for constant folding as used by the middle-end.  */
+
+      /* This was formerly used only for non-IEEE float.
+        eggert@twinsun.com says it is safe for IEEE also.  */
+      HOST_WIDE_INT xh, xl, th, tl;
+      REAL_VALUE_TYPE x, t;
+      REAL_VALUE_FROM_CONST_DOUBLE (x, op);
       switch (code)
        {
-       case NOT:
-         /* (not (not X)) == X.  */
-         if (GET_CODE (op) == NOT)
-           return XEXP (op, 0);
+       case FIX:
+         if (REAL_VALUE_ISNAN (x))
+           return const0_rtx;
 
-         /* (not (eq X Y)) == (ne X Y), etc.  */
-         if (mode == BImode && GET_RTX_CLASS (GET_CODE (op)) == '<'
-             && ((reversed = reversed_comparison_code (op, NULL_RTX))
-                 != UNKNOWN))
-           return gen_rtx_fmt_ee (reversed,
-                                  op_mode, XEXP (op, 0), XEXP (op, 1));
-         break;
+         /* Test against the signed upper bound.  */
+         if (width > HOST_BITS_PER_WIDE_INT)
+           {
+             th = ((unsigned HOST_WIDE_INT) 1
+                   << (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
+             tl = -1;
+           }
+         else
+           {
+             th = 0;
+             tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
+           }
+         real_from_integer (&t, VOIDmode, tl, th, 0);
+         if (REAL_VALUES_LESS (t, x))
+           {
+             xh = th;
+             xl = tl;
+             break;
+           }
 
-       case NEG:
-         /* (neg (neg X)) == X.  */
-         if (GET_CODE (op) == NEG)
-           return XEXP (op, 0);
+         /* Test against the signed lower bound.  */
+         if (width > HOST_BITS_PER_WIDE_INT)
+           {
+             th = (HOST_WIDE_INT) -1 << (width - HOST_BITS_PER_WIDE_INT - 1);
+             tl = 0;
+           }
+         else
+           {
+             th = -1;
+             tl = (HOST_WIDE_INT) -1 << (width - 1);
+           }
+         real_from_integer (&t, VOIDmode, tl, th, 0);
+         if (REAL_VALUES_LESS (x, t))
+           {
+             xh = th;
+             xl = tl;
+             break;
+           }
+         REAL_VALUE_TO_INT (&xl, &xh, x);
          break;
 
-       case SIGN_EXTEND:
-         /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
-            becomes just the MINUS if its mode is MODE.  This allows
-            folding switch statements on machines using casesi (such as
-            the VAX).  */
-         if (GET_CODE (op) == TRUNCATE
-             && GET_MODE (XEXP (op, 0)) == mode
-             && GET_CODE (XEXP (op, 0)) == MINUS
-             && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
-             && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
-           return XEXP (op, 0);
+       case UNSIGNED_FIX:
+         if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
+           return const0_rtx;
 
-#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
-         if (! POINTERS_EXTEND_UNSIGNED
-             && mode == Pmode && GET_MODE (op) == ptr_mode
-             && (CONSTANT_P (op)
-                 || (GET_CODE (op) == SUBREG
-                     && GET_CODE (SUBREG_REG (op)) == REG
-                     && REG_POINTER (SUBREG_REG (op))
-                     && GET_MODE (SUBREG_REG (op)) == Pmode)))
-           return convert_memory_address (Pmode, op);
-#endif
+         /* Test against the unsigned upper bound.  */
+         if (width == 2*HOST_BITS_PER_WIDE_INT)
+           {
+             th = -1;
+             tl = -1;
+           }
+         else if (width >= HOST_BITS_PER_WIDE_INT)
+           {
+             th = ((unsigned HOST_WIDE_INT) 1
+                   << (width - HOST_BITS_PER_WIDE_INT)) - 1;
+             tl = -1;
+           }
+         else
+           {
+             th = 0;
+             tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
+           }
+         real_from_integer (&t, VOIDmode, tl, th, 1);
+         if (REAL_VALUES_LESS (t, x))
+           {
+             xh = th;
+             xl = tl;
+             break;
+           }
+
+         REAL_VALUE_TO_INT (&xl, &xh, x);
          break;
 
-#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
-       case ZERO_EXTEND:
-         if (POINTERS_EXTEND_UNSIGNED > 0
-             && mode == Pmode && GET_MODE (op) == ptr_mode
-             && (CONSTANT_P (op)
-                 || (GET_CODE (op) == SUBREG
-                     && GET_CODE (SUBREG_REG (op)) == REG
-                     && REG_POINTER (SUBREG_REG (op))
-                     && GET_MODE (SUBREG_REG (op)) == Pmode)))
-           return convert_memory_address (Pmode, op);
-         break;
-#endif
-         
        default:
-         break;
+         gcc_unreachable ();
        }
-
-      return 0;
+      return immed_double_const (xl, xh, mode);
     }
+
+  return NULL_RTX;
 }
 \f
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-/* Subroutine of simplify_binary_operation, called via do_float_handler.
-   Handles simplification of binary ops on floating point values.  */
-struct simplify_binary_real_args
-{
-  rtx trueop0, trueop1;
-  rtx result;
-  enum rtx_code code;
-  enum machine_mode mode;
-};
+/* Subroutine of simplify_binary_operation to simplify a commutative,
+   associative binary operation CODE with result mode MODE, operating
+   on OP0 and OP1.  CODE is currently one of PLUS, MULT, AND, IOR, XOR,
+   SMIN, SMAX, UMIN or UMAX.  Return zero if no simplification or
+   canonicalization is possible.  */
 
-static void
-simplify_binary_real (p)
-     PTR p;
+static rtx
+simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
+                               rtx op0, rtx op1)
 {
-  REAL_VALUE_TYPE f0, f1, value;
-  struct simplify_binary_real_args *args =
-    (struct simplify_binary_real_args *) p;
-
-  REAL_VALUE_FROM_CONST_DOUBLE (f0, args->trueop0);
-  REAL_VALUE_FROM_CONST_DOUBLE (f1, args->trueop1);
-  f0 = real_value_truncate (args->mode, f0);
-  f1 = real_value_truncate (args->mode, f1);
-
-#ifdef REAL_ARITHMETIC
-#ifndef REAL_INFINITY
-  if (args->code == DIV && REAL_VALUES_EQUAL (f1, dconst0))
+  rtx tem;
+
+  /* Linearize the operator to the left.  */
+  if (GET_CODE (op1) == code)
     {
-      args->result = 0;
-      return;
+      /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)".  */
+      if (GET_CODE (op0) == code)
+       {
+         tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
+         return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
+       }
+
+      /* "a op (b op c)" becomes "(b op c) op a".  */
+      if (! swap_commutative_operands_p (op1, op0))
+       return simplify_gen_binary (code, mode, op1, op0);
+
+      tem = op0;
+      op0 = op1;
+      op1 = tem;
     }
-#endif
-  REAL_ARITHMETIC (value, rtx_to_tree_code (args->code), f0, f1);
-#else
-  switch (args->code)
+
+  if (GET_CODE (op0) == code)
     {
-    case PLUS:
-      value = f0 + f1;
-      break;
-    case MINUS:
-      value = f0 - f1;
-      break;
-    case MULT:
-      value = f0 * f1;
-      break;
-    case DIV:
-#ifndef REAL_INFINITY
-      if (f1 == 0)
-       return 0;
-#endif
-      value = f0 / f1;
-      break;
-    case SMIN:
-      value = MIN (f0, f1);
-      break;
-    case SMAX:
-      value = MAX (f0, f1);
-      break;
-    default:
-      abort ();
+      /* Canonicalize "(x op c) op y" as "(x op y) op c".  */
+      if (swap_commutative_operands_p (XEXP (op0, 1), op1))
+       {
+         tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
+         return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
+       }
+
+      /* Attempt to simplify "(a op b) op c" as "a op (b op c)".  */
+      tem = swap_commutative_operands_p (XEXP (op0, 1), op1)
+           ? simplify_binary_operation (code, mode, op1, XEXP (op0, 1))
+           : simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
+      if (tem != 0)
+        return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
+
+      /* Attempt to simplify "(a op b) op c" as "(a op c) op b".  */
+      tem = swap_commutative_operands_p (XEXP (op0, 0), op1)
+           ? simplify_binary_operation (code, mode, op1, XEXP (op0, 0))
+           : simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
+      if (tem != 0)
+        return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
     }
-#endif
 
-  value = real_value_truncate (args->mode, value);
-  args->result = CONST_DOUBLE_FROM_REAL_VALUE (value, args->mode);
+  return 0;
 }
-#endif
-
-/* Another subroutine called via do_float_handler.  This one tests
-   the floating point value given against 2. and -1.  */
-struct simplify_binary_is2orm1_args
-{
-  rtx value;
-  bool is_2;
-  bool is_m1;
-};
-
-static void
-simplify_binary_is2orm1 (p)
-     PTR p;
-{
-  REAL_VALUE_TYPE d;
-  struct simplify_binary_is2orm1_args *args =
-    (struct simplify_binary_is2orm1_args *) p;
 
-  REAL_VALUE_FROM_CONST_DOUBLE (d, args->value);
-  args->is_2 = REAL_VALUES_EQUAL (d, dconst2);
-  args->is_m1 = REAL_VALUES_EQUAL (d, dconstm1);
-}
 
 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
    and OP1.  Return 0 if no simplification is possible.
@@ -865,849 +1173,1341 @@ simplify_binary_is2orm1 (p)
    Don't use this for relational operations such as EQ or LT.
    Use simplify_relational_operation instead.  */
 rtx
-simplify_binary_operation (code, mode, op0, op1)
-     enum rtx_code code;
-     enum machine_mode mode;
-     rtx op0, op1;
+simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
+                          rtx op0, rtx op1)
 {
-  HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
-  HOST_WIDE_INT val;
-  unsigned int width = GET_MODE_BITSIZE (mode);
+  rtx trueop0, trueop1;
   rtx tem;
-  rtx trueop0 = avoid_constant_pool_reference (op0);
-  rtx trueop1 = avoid_constant_pool_reference (op1);
 
   /* Relational operations don't work here.  We must know the mode
      of the operands in order to do the comparison correctly.
      Assuming a full word can give incorrect results.
      Consider comparing 128 with -128 in QImode.  */
-
-  if (GET_RTX_CLASS (code) == '<')
-    abort ();
+  gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
+  gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
 
   /* Make sure the constant is second.  */
-  if (GET_RTX_CLASS (code) == 'c'
-      && swap_commutative_operands_p (trueop0, trueop1))
+  if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
+      && swap_commutative_operands_p (op0, op1))
     {
       tem = op0, op0 = op1, op1 = tem;
-      tem = trueop0, trueop0 = trueop1, trueop1 = tem;
     }
 
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-  if (GET_MODE_CLASS (mode) == MODE_FLOAT
-      && GET_CODE (trueop0) == CONST_DOUBLE
-      && GET_CODE (trueop1) == CONST_DOUBLE
-      && mode == GET_MODE (op0) && mode == GET_MODE (op1))
-    {
-      struct simplify_binary_real_args args;
-      args.trueop0 = trueop0;
-      args.trueop1 = trueop1;
-      args.mode = mode;
-      args.code = code;
-
-      if (do_float_handler (simplify_binary_real, (PTR) &args))
-       return args.result;
-      return 0;
-    }
-#endif  /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
+  trueop0 = avoid_constant_pool_reference (op0);
+  trueop1 = avoid_constant_pool_reference (op1);
 
-  /* We can fold some multi-word operations.  */
-  if (GET_MODE_CLASS (mode) == MODE_INT
-      && width == HOST_BITS_PER_WIDE_INT * 2
-      && (GET_CODE (trueop0) == CONST_DOUBLE
-         || GET_CODE (trueop0) == CONST_INT)
-      && (GET_CODE (trueop1) == CONST_DOUBLE
-         || GET_CODE (trueop1) == CONST_INT))
-    {
-      unsigned HOST_WIDE_INT l1, l2, lv;
-      HOST_WIDE_INT h1, h2, hv;
+  tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
+  if (tem)
+    return tem;
+  return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
+}
 
-      if (GET_CODE (trueop0) == CONST_DOUBLE)
-       l1 = CONST_DOUBLE_LOW (trueop0), h1 = CONST_DOUBLE_HIGH (trueop0);
-      else
-       l1 = INTVAL (trueop0), h1 = HWI_SIGN_EXTEND (l1);
+static rtx
+simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
+                            rtx op0, rtx op1, rtx trueop0, rtx trueop1)
+{
+  rtx tem;
+  HOST_WIDE_INT val;
+  unsigned int width = GET_MODE_BITSIZE (mode);
 
-      if (GET_CODE (trueop1) == CONST_DOUBLE)
-       l2 = CONST_DOUBLE_LOW (trueop1), h2 = CONST_DOUBLE_HIGH (trueop1);
-      else
-       l2 = INTVAL (trueop1), h2 = HWI_SIGN_EXTEND (l2);
+  /* Even if we can't compute a constant result,
+     there are some cases worth simplifying.  */
 
-      switch (code)
+  switch (code)
+    {
+    case PLUS:
+      /* Maybe simplify x + 0 to x.  The two expressions are equivalent
+        when x is NaN, infinite, or finite and nonzero.  They aren't
+        when x is -0 and the rounding mode is not towards -infinity,
+        since (-0) + 0 is then 0.  */
+      if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
+       return op0;
+
+      /* ((-a) + b) -> (b - a) and similarly for (a + (-b)).  These
+        transformations are safe even for IEEE.  */
+      if (GET_CODE (op0) == NEG)
+       return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
+      else if (GET_CODE (op1) == NEG)
+       return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
+
+      /* (~a) + 1 -> -a */
+      if (INTEGRAL_MODE_P (mode)
+         && GET_CODE (op0) == NOT
+         && trueop1 == const1_rtx)
+       return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
+
+      /* Handle both-operands-constant cases.  We can only add
+        CONST_INTs to constants since the sum of relocatable symbols
+        can't be handled by most assemblers.  Don't add CONST_INT
+        to CONST_INT since overflow won't be computed properly if wider
+        than HOST_BITS_PER_WIDE_INT.  */
+
+      if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
+         && GET_CODE (op1) == CONST_INT)
+       return plus_constant (op0, INTVAL (op1));
+      else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
+              && GET_CODE (op0) == CONST_INT)
+       return plus_constant (op1, INTVAL (op0));
+
+      /* See if this is something like X * C - X or vice versa or
+        if the multiplication is written as a shift.  If so, we can
+        distribute and make a new multiply, shift, or maybe just
+        have X (if C is 2 in the example above).  But don't make
+        something more expensive than we had before.  */
+
+      if (! FLOAT_MODE_P (mode))
        {
-       case MINUS:
-         /* A - B == A + (-B).  */
-         neg_double (l2, h2, &lv, &hv);
-         l2 = lv, h2 = hv;
-
-         /* .. fall through ...  */
+         HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
+         rtx lhs = op0, rhs = op1;
+
+         if (GET_CODE (lhs) == NEG)
+           coeff0 = -1, lhs = XEXP (lhs, 0);
+         else if (GET_CODE (lhs) == MULT
+                  && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
+           coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
+         else if (GET_CODE (lhs) == ASHIFT
+                  && GET_CODE (XEXP (lhs, 1)) == CONST_INT
+                  && INTVAL (XEXP (lhs, 1)) >= 0
+                  && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
+           {
+             coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
+             lhs = XEXP (lhs, 0);
+           }
 
-       case PLUS:
-         add_double (l1, h1, l2, h2, &lv, &hv);
-         break;
+         if (GET_CODE (rhs) == NEG)
+           coeff1 = -1, rhs = XEXP (rhs, 0);
+         else if (GET_CODE (rhs) == MULT
+                  && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
+           {
+             coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
+           }
+         else if (GET_CODE (rhs) == ASHIFT
+                  && GET_CODE (XEXP (rhs, 1)) == CONST_INT
+                  && INTVAL (XEXP (rhs, 1)) >= 0
+                  && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
+           {
+             coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
+             rhs = XEXP (rhs, 0);
+           }
 
-       case MULT:
-         mul_double (l1, h1, l2, h2, &lv, &hv);
-         break;
+         if (rtx_equal_p (lhs, rhs))
+           {
+             rtx orig = gen_rtx_PLUS (mode, op0, op1);
+             tem = simplify_gen_binary (MULT, mode, lhs,
+                                        GEN_INT (coeff0 + coeff1));
+             return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
+               ? tem : 0;
+           }
+       }
 
-       case DIV:  case MOD:   case UDIV:  case UMOD:
-         /* We'd need to include tree.h to do this and it doesn't seem worth
-            it.  */
-         return 0;
+      /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit.  */
+      if ((GET_CODE (op1) == CONST_INT
+          || GET_CODE (op1) == CONST_DOUBLE)
+         && GET_CODE (op0) == XOR
+         && (GET_CODE (XEXP (op0, 1)) == CONST_INT
+             || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
+         && mode_signbit_p (mode, op1))
+       return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
+                                   simplify_gen_binary (XOR, mode, op1,
+                                                        XEXP (op0, 1)));
+
+      /* If one of the operands is a PLUS or a MINUS, see if we can
+        simplify this by the associative law.
+        Don't use the associative law for floating point.
+        The inaccuracy makes it nonassociative,
+        and subtle programs can break if operations are associated.  */
+
+      if (INTEGRAL_MODE_P (mode)
+         && (plus_minus_operand_p (op0)
+             || plus_minus_operand_p (op1))
+         && (tem = simplify_plus_minus (code, mode, op0, op1, 0)) != 0)
+       return tem;
+
+      /* Reassociate floating point addition only when the user
+        specifies unsafe math optimizations.  */
+      if (FLOAT_MODE_P (mode)
+         && flag_unsafe_math_optimizations)
+       {
+         tem = simplify_associative_operation (code, mode, op0, op1);
+         if (tem)
+           return tem;
+       }
+      break;
 
-       case AND:
-         lv = l1 & l2, hv = h1 & h2;
-         break;
+    case COMPARE:
+#ifdef HAVE_cc0
+      /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
+        using cc0, in which case we want to leave it as a COMPARE
+        so we can distinguish it from a register-register-copy.
 
-       case IOR:
-         lv = l1 | l2, hv = h1 | h2;
-         break;
+        In IEEE floating point, x-0 is not the same as x.  */
 
-       case XOR:
-         lv = l1 ^ l2, hv = h1 ^ h2;
-         break;
+      if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+          || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
+         && trueop1 == CONST0_RTX (mode))
+       return op0;
+#endif
 
-       case SMIN:
-         if (h1 < h2
-             || (h1 == h2
-                 && ((unsigned HOST_WIDE_INT) l1
-                     < (unsigned HOST_WIDE_INT) l2)))
-           lv = l1, hv = h1;
-         else
-           lv = l2, hv = h2;
-         break;
+      /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags).  */
+      if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
+          || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
+         && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
+       {
+         rtx xop00 = XEXP (op0, 0);
+         rtx xop10 = XEXP (op1, 0);
 
-       case SMAX:
-         if (h1 > h2
-             || (h1 == h2
-                 && ((unsigned HOST_WIDE_INT) l1
-                     > (unsigned HOST_WIDE_INT) l2)))
-           lv = l1, hv = h1;
-         else
-           lv = l2, hv = h2;
-         break;
+#ifdef HAVE_cc0
+         if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
+#else
+           if (REG_P (xop00) && REG_P (xop10)
+               && GET_MODE (xop00) == GET_MODE (xop10)
+               && REGNO (xop00) == REGNO (xop10)
+               && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
+               && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
+#endif
+             return xop00;
+       }
+      break;
 
-       case UMIN:
-         if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
-             || (h1 == h2
-                 && ((unsigned HOST_WIDE_INT) l1
-                     < (unsigned HOST_WIDE_INT) l2)))
-           lv = l1, hv = h1;
-         else
-           lv = l2, hv = h2;
-         break;
+    case MINUS:
+      /* We can't assume x-x is 0 even with non-IEEE floating point,
+        but since it is zero except in very strange circumstances, we
+        will treat it as zero with -funsafe-math-optimizations.  */
+      if (rtx_equal_p (trueop0, trueop1)
+         && ! side_effects_p (op0)
+         && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
+       return CONST0_RTX (mode);
+
+      /* Change subtraction from zero into negation.  (0 - x) is the
+        same as -x when x is NaN, infinite, or finite and nonzero.
+        But if the mode has signed zeros, and does not round towards
+        -infinity, then 0 - 0 is 0, not -0.  */
+      if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
+       return simplify_gen_unary (NEG, mode, op1, mode);
+
+      /* (-1 - a) is ~a.  */
+      if (trueop0 == constm1_rtx)
+       return simplify_gen_unary (NOT, mode, op1, mode);
+
+      /* Subtracting 0 has no effect unless the mode has signed zeros
+        and supports rounding towards -infinity.  In such a case,
+        0 - 0 is -0.  */
+      if (!(HONOR_SIGNED_ZEROS (mode)
+           && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
+         && trueop1 == CONST0_RTX (mode))
+       return op0;
+
+      /* See if this is something like X * C - X or vice versa or
+        if the multiplication is written as a shift.  If so, we can
+        distribute and make a new multiply, shift, or maybe just
+        have X (if C is 2 in the example above).  But don't make
+        something more expensive than we had before.  */
+
+      if (! FLOAT_MODE_P (mode))
+       {
+         HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
+         rtx lhs = op0, rhs = op1;
 
-       case UMAX:
-         if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
-             || (h1 == h2
-                 && ((unsigned HOST_WIDE_INT) l1
-                     > (unsigned HOST_WIDE_INT) l2)))
-           lv = l1, hv = h1;
-         else
-           lv = l2, hv = h2;
-         break;
+         if (GET_CODE (lhs) == NEG)
+           coeff0 = -1, lhs = XEXP (lhs, 0);
+         else if (GET_CODE (lhs) == MULT
+                  && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
+           {
+             coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
+           }
+         else if (GET_CODE (lhs) == ASHIFT
+                  && GET_CODE (XEXP (lhs, 1)) == CONST_INT
+                  && INTVAL (XEXP (lhs, 1)) >= 0
+                  && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
+           {
+             coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
+             lhs = XEXP (lhs, 0);
+           }
 
-       case LSHIFTRT:   case ASHIFTRT:
-       case ASHIFT:
-       case ROTATE:     case ROTATERT:
-#ifdef SHIFT_COUNT_TRUNCATED
-         if (SHIFT_COUNT_TRUNCATED)
-           l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
-#endif
+         if (GET_CODE (rhs) == NEG)
+           coeff1 = - 1, rhs = XEXP (rhs, 0);
+         else if (GET_CODE (rhs) == MULT
+                  && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
+           {
+             coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
+           }
+         else if (GET_CODE (rhs) == ASHIFT
+                  && GET_CODE (XEXP (rhs, 1)) == CONST_INT
+                  && INTVAL (XEXP (rhs, 1)) >= 0
+                  && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
+           {
+             coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
+             rhs = XEXP (rhs, 0);
+           }
 
-         if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
-           return 0;
+         if (rtx_equal_p (lhs, rhs))
+           {
+             rtx orig = gen_rtx_MINUS (mode, op0, op1);
+             tem = simplify_gen_binary (MULT, mode, lhs,
+                                        GEN_INT (coeff0 - coeff1));
+             return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
+               ? tem : 0;
+           }
+       }
 
-         if (code == LSHIFTRT || code == ASHIFTRT)
-           rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
-                          code == ASHIFTRT);
-         else if (code == ASHIFT)
-           lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
-         else if (code == ROTATE)
-           lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
-         else /* code == ROTATERT */
-           rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
-         break;
+      /* (a - (-b)) -> (a + b).  True even for IEEE.  */
+      if (GET_CODE (op1) == NEG)
+       return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
 
-       default:
-         return 0;
+      /* (-x - c) may be simplified as (-c - x).  */
+      if (GET_CODE (op0) == NEG
+         && (GET_CODE (op1) == CONST_INT
+             || GET_CODE (op1) == CONST_DOUBLE))
+       {
+         tem = simplify_unary_operation (NEG, mode, op1, mode);
+         if (tem)
+           return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
        }
 
-      return immed_double_const (lv, hv, mode);
-    }
+      /* If one of the operands is a PLUS or a MINUS, see if we can
+        simplify this by the associative law.
+        Don't use the associative law for floating point.
+        The inaccuracy makes it nonassociative,
+        and subtle programs can break if operations are associated.  */
+
+      if (INTEGRAL_MODE_P (mode)
+         && (plus_minus_operand_p (op0)
+             || plus_minus_operand_p (op1))
+         && (tem = simplify_plus_minus (code, mode, op0, op1, 0)) != 0)
+       return tem;
+
+      /* Don't let a relocatable value get a negative coeff.  */
+      if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
+       return simplify_gen_binary (PLUS, mode,
+                                   op0,
+                                   neg_const_int (mode, op1));
+
+      /* (x - (x & y)) -> (x & ~y) */
+      if (GET_CODE (op1) == AND)
+       {
+         if (rtx_equal_p (op0, XEXP (op1, 0)))
+           {
+             tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
+                                       GET_MODE (XEXP (op1, 1)));
+             return simplify_gen_binary (AND, mode, op0, tem);
+           }
+         if (rtx_equal_p (op0, XEXP (op1, 1)))
+           {
+             tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
+                                       GET_MODE (XEXP (op1, 0)));
+             return simplify_gen_binary (AND, mode, op0, tem);
+           }
+       }
+      break;
 
-  if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
-      || width > HOST_BITS_PER_WIDE_INT || width == 0)
-    {
-      /* Even if we can't compute a constant result,
-        there are some cases worth simplifying.  */
+    case MULT:
+      if (trueop1 == constm1_rtx)
+       return simplify_gen_unary (NEG, mode, op0, mode);
+
+      /* Maybe simplify x * 0 to 0.  The reduction is not valid if
+        x is NaN, since x * 0 is then also NaN.  Nor is it valid
+        when the mode has signed zeros, since multiplying a negative
+        number by 0 will give -0, not 0.  */
+      if (!HONOR_NANS (mode)
+         && !HONOR_SIGNED_ZEROS (mode)
+         && trueop1 == CONST0_RTX (mode)
+         && ! side_effects_p (op0))
+       return op1;
 
-      switch (code)
+      /* In IEEE floating point, x*1 is not equivalent to x for
+        signalling NaNs.  */
+      if (!HONOR_SNANS (mode)
+         && trueop1 == CONST1_RTX (mode))
+       return op0;
+
+      /* Convert multiply by constant power of two into shift unless
+        we are still generating RTL.  This test is a kludge.  */
+      if (GET_CODE (trueop1) == CONST_INT
+         && (val = exact_log2 (INTVAL (trueop1))) >= 0
+         /* If the mode is larger than the host word size, and the
+            uppermost bit is set, then this isn't a power of two due
+            to implicit sign extension.  */
+         && (width <= HOST_BITS_PER_WIDE_INT
+             || val != HOST_BITS_PER_WIDE_INT - 1))
+       return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
+
+      /* x*2 is x+x and x*(-1) is -x */
+      if (GET_CODE (trueop1) == CONST_DOUBLE
+         && GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT
+         && GET_MODE (op0) == mode)
        {
-       case PLUS:
-         /* In IEEE floating point, x+0 is not the same as x.  Similarly
-            for the other optimizations below.  */
-         if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
-             && FLOAT_MODE_P (mode) && ! flag_unsafe_math_optimizations)
-           break;
+         REAL_VALUE_TYPE d;
+         REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
 
-         if (trueop1 == CONST0_RTX (mode))
-           return op0;
+         if (REAL_VALUES_EQUAL (d, dconst2))
+           return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
 
-         /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
-         if (GET_CODE (op0) == NEG)
-           return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
-         else if (GET_CODE (op1) == NEG)
-           return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
-
-         /* (~a) + 1 -> -a */
-         if (INTEGRAL_MODE_P (mode)
-             && GET_CODE (op0) == NOT
-             && trueop1 == const1_rtx)
-           return gen_rtx_NEG (mode, XEXP (op0, 0));
-
-         /* Handle both-operands-constant cases.  We can only add
-            CONST_INTs to constants since the sum of relocatable symbols
-            can't be handled by most assemblers.  Don't add CONST_INT
-            to CONST_INT since overflow won't be computed properly if wider
-            than HOST_BITS_PER_WIDE_INT.  */
-
-         if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
-             && GET_CODE (op1) == CONST_INT)
-           return plus_constant (op0, INTVAL (op1));
-         else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
-                  && GET_CODE (op0) == CONST_INT)
-           return plus_constant (op1, INTVAL (op0));
-
-         /* See if this is something like X * C - X or vice versa or
-            if the multiplication is written as a shift.  If so, we can
-            distribute and make a new multiply, shift, or maybe just
-            have X (if C is 2 in the example above).  But don't make
-            real multiply if we didn't have one before.  */
-
-         if (! FLOAT_MODE_P (mode))
-           {
-             HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
-             rtx lhs = op0, rhs = op1;
-             int had_mult = 0;
-
-             if (GET_CODE (lhs) == NEG)
-               coeff0 = -1, lhs = XEXP (lhs, 0);
-             else if (GET_CODE (lhs) == MULT
-                      && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
-               {
-                 coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
-                 had_mult = 1;
-               }
-             else if (GET_CODE (lhs) == ASHIFT
-                      && GET_CODE (XEXP (lhs, 1)) == CONST_INT
-                      && INTVAL (XEXP (lhs, 1)) >= 0
-                      && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
-               {
-                 coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
-                 lhs = XEXP (lhs, 0);
-               }
+         if (REAL_VALUES_EQUAL (d, dconstm1))
+           return simplify_gen_unary (NEG, mode, op0, mode);
+       }
 
-             if (GET_CODE (rhs) == NEG)
-               coeff1 = -1, rhs = XEXP (rhs, 0);
-             else if (GET_CODE (rhs) == MULT
-                      && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
-               {
-                 coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
-                 had_mult = 1;
-               }
-             else if (GET_CODE (rhs) == ASHIFT
-                      && GET_CODE (XEXP (rhs, 1)) == CONST_INT
-                      && INTVAL (XEXP (rhs, 1)) >= 0
-                      && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
-               {
-                 coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
-                 rhs = XEXP (rhs, 0);
-               }
+      /* Reassociate multiplication, but for floating point MULTs
+        only when the user specifies unsafe math optimizations.  */
+      if (! FLOAT_MODE_P (mode)
+         || flag_unsafe_math_optimizations)
+       {
+         tem = simplify_associative_operation (code, mode, op0, op1);
+         if (tem)
+           return tem;
+       }
+      break;
 
-             if (rtx_equal_p (lhs, rhs))
-               {
-                 tem = simplify_gen_binary (MULT, mode, lhs,
-                                       GEN_INT (coeff0 + coeff1));
-                 return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
-               }
-           }
+    case IOR:
+      if (trueop1 == const0_rtx)
+       return op0;
+      if (GET_CODE (trueop1) == CONST_INT
+         && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
+             == GET_MODE_MASK (mode)))
+       return op1;
+      if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+       return op0;
+      /* A | (~A) -> -1 */
+      if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
+          || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
+         && ! side_effects_p (op0)
+         && GET_MODE_CLASS (mode) != MODE_CC)
+       return constm1_rtx;
+      tem = simplify_associative_operation (code, mode, op0, op1);
+      if (tem)
+       return tem;
+      break;
 
-         /* If one of the operands is a PLUS or a MINUS, see if we can
-            simplify this by the associative law. 
-            Don't use the associative law for floating point.
-            The inaccuracy makes it nonassociative,
-            and subtle programs can break if operations are associated.  */
-
-         if (INTEGRAL_MODE_P (mode)
-             && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
-                 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
-                 || (GET_CODE (op0) == CONST
-                     && GET_CODE (XEXP (op0, 0)) == PLUS)
-                 || (GET_CODE (op1) == CONST
-                     && GET_CODE (XEXP (op1, 0)) == PLUS))
-             && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
-           return tem;
-         break;
+    case XOR:
+      if (trueop1 == const0_rtx)
+       return op0;
+      if (GET_CODE (trueop1) == CONST_INT
+         && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
+             == GET_MODE_MASK (mode)))
+       return simplify_gen_unary (NOT, mode, op0, mode);
+      if (trueop0 == trueop1
+         && ! side_effects_p (op0)
+         && GET_MODE_CLASS (mode) != MODE_CC)
+       return const0_rtx;
+
+      /* Canonicalize XOR of the most significant bit to PLUS.  */
+      if ((GET_CODE (op1) == CONST_INT
+          || GET_CODE (op1) == CONST_DOUBLE)
+         && mode_signbit_p (mode, op1))
+       return simplify_gen_binary (PLUS, mode, op0, op1);
+      /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit.  */
+      if ((GET_CODE (op1) == CONST_INT
+          || GET_CODE (op1) == CONST_DOUBLE)
+         && GET_CODE (op0) == PLUS
+         && (GET_CODE (XEXP (op0, 1)) == CONST_INT
+             || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
+         && mode_signbit_p (mode, XEXP (op0, 1)))
+       return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
+                                   simplify_gen_binary (XOR, mode, op1,
+                                                        XEXP (op0, 1)));
+             
+      tem = simplify_associative_operation (code, mode, op0, op1);
+      if (tem)
+       return tem;
+      break;
 
-       case COMPARE:
-#ifdef HAVE_cc0
-         /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
-            using cc0, in which case we want to leave it as a COMPARE
-            so we can distinguish it from a register-register-copy.
+    case AND:
+      if (trueop1 == const0_rtx && ! side_effects_p (op0))
+       return const0_rtx;
+      /* If we are turning off bits already known off in OP0, we need
+        not do an AND.  */
+      if (GET_CODE (trueop1) == CONST_INT
+         && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+         && (nonzero_bits (trueop0, mode) & ~INTVAL (trueop1)) == 0)
+       return op0;
+      if (trueop0 == trueop1 && ! side_effects_p (op0)
+         && GET_MODE_CLASS (mode) != MODE_CC)
+       return op0;
+      /* A & (~A) -> 0 */
+      if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
+          || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
+         && ! side_effects_p (op0)
+         && GET_MODE_CLASS (mode) != MODE_CC)
+       return const0_rtx;
+
+      /* Transform (and (extend X) C) into (zero_extend (and X C)) if
+        there are no nonzero bits of C outside of X's mode.  */
+      if ((GET_CODE (op0) == SIGN_EXTEND
+          || GET_CODE (op0) == ZERO_EXTEND)
+         && GET_CODE (trueop1) == CONST_INT
+         && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+         && (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
+             & INTVAL (trueop1)) == 0)
+       {
+         enum machine_mode imode = GET_MODE (XEXP (op0, 0));
+         tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
+                                    gen_int_mode (INTVAL (trueop1),
+                                                  imode));
+         return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
+       }
 
-            In IEEE floating point, x-0 is not the same as x.  */
+      /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
+        ((A & N) + B) & M -> (A + B) & M
+        Similarly if (N & M) == 0,
+        ((A | N) + B) & M -> (A + B) & M
+        and for - instead of + and/or ^ instead of |.  */
+      if (GET_CODE (trueop1) == CONST_INT
+         && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+         && ~INTVAL (trueop1)
+         && (INTVAL (trueop1) & (INTVAL (trueop1) + 1)) == 0
+         && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
+       {
+         rtx pmop[2];
+         int which;
 
-         if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
-              || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
-             && trueop1 == CONST0_RTX (mode))
-           return op0;
-#endif
+         pmop[0] = XEXP (op0, 0);
+         pmop[1] = XEXP (op0, 1);
 
-         /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags).  */
-         if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
-              || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
-             && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
+         for (which = 0; which < 2; which++)
            {
-             rtx xop00 = XEXP (op0, 0);
-             rtx xop10 = XEXP (op1, 0);
-
-#ifdef HAVE_cc0
-             if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
-#else
-             if (GET_CODE (xop00) == REG && GET_CODE (xop10) == REG
-                 && GET_MODE (xop00) == GET_MODE (xop10)
-                 && REGNO (xop00) == REGNO (xop10)
-                 && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
-                 && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
-#endif
-               return xop00;
+             tem = pmop[which];
+             switch (GET_CODE (tem))
+               {
+               case AND:
+                 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
+                     && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1))
+                     == INTVAL (trueop1))
+                   pmop[which] = XEXP (tem, 0);
+                 break;
+               case IOR:
+               case XOR:
+                 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
+                     && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1)) == 0)
+                   pmop[which] = XEXP (tem, 0);
+                 break;
+               default:
+                 break;
+               }
            }
-         break;              
 
-       case MINUS:
-         /* None of these optimizations can be done for IEEE
-            floating point.  */
-         if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
-             && FLOAT_MODE_P (mode) && ! flag_unsafe_math_optimizations)
-           break;
+         if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
+           {
+             tem = simplify_gen_binary (GET_CODE (op0), mode,
+                                        pmop[0], pmop[1]);
+             return simplify_gen_binary (code, mode, tem, op1);
+           }
+       }
+      tem = simplify_associative_operation (code, mode, op0, op1);
+      if (tem)
+       return tem;
+      break;
 
-         /* We can't assume x-x is 0 even with non-IEEE floating point,
-            but since it is zero except in very strange circumstances, we
-            will treat it as zero with -funsafe-math-optimizations.  */
-         if (rtx_equal_p (trueop0, trueop1)
-             && ! side_effects_p (op0)
-             && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
-           return CONST0_RTX (mode);
-
-         /* Change subtraction from zero into negation.  */
-         if (trueop0 == CONST0_RTX (mode))
-           return gen_rtx_NEG (mode, op1);
-
-         /* (-1 - a) is ~a.  */
-         if (trueop0 == constm1_rtx)
-           return gen_rtx_NOT (mode, op1);
+    case UDIV:
+      /* 0/x is 0 (or x&0 if x has side-effects).  */
+      if (trueop0 == const0_rtx)
+       return side_effects_p (op1)
+         ? simplify_gen_binary (AND, mode, op1, const0_rtx)
+         : const0_rtx;
+         /* x/1 is x.  */
+         if (trueop1 == const1_rtx)
+           {
+             /* Handle narrowing UDIV.  */
+             rtx x = gen_lowpart_common (mode, op0);
+             if (x)
+               return x;
+             if (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
+               return gen_lowpart_SUBREG (mode, op0);
+             return op0;
+           }
+         /* Convert divide by power of two into shift.  */
+         if (GET_CODE (trueop1) == CONST_INT
+             && (val = exact_log2 (INTVAL (trueop1))) > 0)
+           return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
+         break;
 
-         /* Subtracting 0 has no effect.  */
-         if (trueop1 == CONST0_RTX (mode))
+    case DIV:
+      /* Handle floating point and integers separately.  */
+      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+       {
+         /* Maybe change 0.0 / x to 0.0.  This transformation isn't
+            safe for modes with NaNs, since 0.0 / 0.0 will then be
+            NaN rather than 0.0.  Nor is it safe for modes with signed
+            zeros, since dividing 0 by a negative number gives -0.0  */
+         if (trueop0 == CONST0_RTX (mode)
+             && !HONOR_NANS (mode)
+             && !HONOR_SIGNED_ZEROS (mode)
+             && ! side_effects_p (op1))
+           return op0;
+         /* x/1.0 is x.  */
+         if (trueop1 == CONST1_RTX (mode)
+             && !HONOR_SNANS (mode))
            return op0;
 
-         /* See if this is something like X * C - X or vice versa or
-            if the multiplication is written as a shift.  If so, we can
-            distribute and make a new multiply, shift, or maybe just
-            have X (if C is 2 in the example above).  But don't make
-            real multiply if we didn't have one before.  */
-
-         if (! FLOAT_MODE_P (mode))
+         if (GET_CODE (trueop1) == CONST_DOUBLE
+             && trueop1 != CONST0_RTX (mode))
            {
-             HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
-             rtx lhs = op0, rhs = op1;
-             int had_mult = 0;
-
-             if (GET_CODE (lhs) == NEG)
-               coeff0 = -1, lhs = XEXP (lhs, 0);
-             else if (GET_CODE (lhs) == MULT
-                      && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
-               {
-                 coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
-                 had_mult = 1;
-               }
-             else if (GET_CODE (lhs) == ASHIFT
-                      && GET_CODE (XEXP (lhs, 1)) == CONST_INT
-                      && INTVAL (XEXP (lhs, 1)) >= 0
-                      && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
-               {
-                 coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
-                 lhs = XEXP (lhs, 0);
-               }
+             REAL_VALUE_TYPE d;
+             REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
 
-             if (GET_CODE (rhs) == NEG)
-               coeff1 = - 1, rhs = XEXP (rhs, 0);
-             else if (GET_CODE (rhs) == MULT
-                      && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
-               {
-                 coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
-                 had_mult = 1;
-               }
-             else if (GET_CODE (rhs) == ASHIFT
-                      && GET_CODE (XEXP (rhs, 1)) == CONST_INT
-                      && INTVAL (XEXP (rhs, 1)) >= 0
-                      && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
-               {
-                 coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
-                 rhs = XEXP (rhs, 0);
-               }
+             /* x/-1.0 is -x.  */
+             if (REAL_VALUES_EQUAL (d, dconstm1)
+                 && !HONOR_SNANS (mode))
+               return simplify_gen_unary (NEG, mode, op0, mode);
 
-             if (rtx_equal_p (lhs, rhs))
+             /* Change FP division by a constant into multiplication.
+                Only do this with -funsafe-math-optimizations.  */
+             if (flag_unsafe_math_optimizations
+                 && !REAL_VALUES_EQUAL (d, dconst0))
                {
-                 tem = simplify_gen_binary (MULT, mode, lhs,
-                                            GEN_INT (coeff0 - coeff1));
-                 return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
+                 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
+                 tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
+                 return simplify_gen_binary (MULT, mode, op0, tem);
                }
            }
-
-         /* (a - (-b)) -> (a + b).  */
-         if (GET_CODE (op1) == NEG)
-           return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
-
-         /* If one of the operands is a PLUS or a MINUS, see if we can
-            simplify this by the associative law. 
-            Don't use the associative law for floating point.
-            The inaccuracy makes it nonassociative,
-            and subtle programs can break if operations are associated.  */
-
-         if (INTEGRAL_MODE_P (mode)
-             && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
-                 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
-                 || (GET_CODE (op0) == CONST
-                     && GET_CODE (XEXP (op0, 0)) == PLUS)
-                 || (GET_CODE (op1) == CONST
-                     && GET_CODE (XEXP (op1, 0)) == PLUS))
-             && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
-           return tem;
-
-         /* Don't let a relocatable value get a negative coeff.  */
-         if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
-           return simplify_gen_binary (PLUS, mode,
-                                       op0,
-                                       neg_const_int (mode, op1));
-
-         /* (x - (x & y)) -> (x & ~y) */
-         if (GET_CODE (op1) == AND)
+       }
+      else
+       {
+         /* 0/x is 0 (or x&0 if x has side-effects).  */
+         if (trueop0 == const0_rtx)
+           return side_effects_p (op1)
+             ? simplify_gen_binary (AND, mode, op1, const0_rtx)
+             : const0_rtx;
+         /* x/1 is x.  */
+         if (trueop1 == const1_rtx)
            {
-            if (rtx_equal_p (op0, XEXP (op1, 0)))
-              return simplify_gen_binary (AND, mode, op0,
-                                          gen_rtx_NOT (mode, XEXP (op1, 1)));
-            if (rtx_equal_p (op0, XEXP (op1, 1)))
-              return simplify_gen_binary (AND, mode, op0,
-                                          gen_rtx_NOT (mode, XEXP (op1, 0)));
-          }
-         break;
-
-       case MULT:
+             /* Handle narrowing DIV.  */
+             rtx x = gen_lowpart_common (mode, op0);
+             if (x)
+               return x;
+             if (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
+               return gen_lowpart_SUBREG (mode, op0);
+             return op0;
+           }
+         /* x/-1 is -x.  */
          if (trueop1 == constm1_rtx)
            {
-             tem = simplify_unary_operation (NEG, mode, op0, mode);
-
-             return tem ? tem : gen_rtx_NEG (mode, op0);
+             rtx x = gen_lowpart_common (mode, op0);
+             if (!x)
+               x = (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
+                 ? gen_lowpart_SUBREG (mode, op0) : op0;
+             return simplify_gen_unary (NEG, mode, x, mode);
            }
+       }
+      break;
 
-         /* In IEEE floating point, x*0 is not always 0.  */
-         if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
-              || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
-             && trueop1 == CONST0_RTX (mode)
-             && ! side_effects_p (op0))
-           return op1;
-
-         /* In IEEE floating point, x*1 is not equivalent to x for nans.
-            However, ANSI says we can drop signals,
-            so we can do this anyway.  */
-         if (trueop1 == CONST1_RTX (mode))
-           return op0;
-
-         /* Convert multiply by constant power of two into shift unless
-            we are still generating RTL.  This test is a kludge.  */
+    case UMOD:
+      /* 0%x is 0 (or x&0 if x has side-effects).  */
+      if (trueop0 == const0_rtx)
+       return side_effects_p (op1)
+         ? simplify_gen_binary (AND, mode, op1, const0_rtx)
+         : const0_rtx;
+         /* x%1 is 0 (of x&0 if x has side-effects).  */
+         if (trueop1 == const1_rtx)
+           return side_effects_p (op0)
+             ? simplify_gen_binary (AND, mode, op0, const0_rtx)
+             : const0_rtx;
+         /* Implement modulus by power of two as AND.  */
          if (GET_CODE (trueop1) == CONST_INT
-             && (val = exact_log2 (INTVAL (trueop1))) >= 0
-             /* If the mode is larger than the host word size, and the
-                uppermost bit is set, then this isn't a power of two due
-                to implicit sign extension.  */
-             && (width <= HOST_BITS_PER_WIDE_INT
-                 || val != HOST_BITS_PER_WIDE_INT - 1)
-             && ! rtx_equal_function_value_matters)
-           return gen_rtx_ASHIFT (mode, op0, GEN_INT (val));
-
-         if (GET_CODE (trueop1) == CONST_DOUBLE
-             && GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT)
-           {
-             struct simplify_binary_is2orm1_args args;
+             && exact_log2 (INTVAL (trueop1)) > 0)
+           return simplify_gen_binary (AND, mode, op0,
+                                       GEN_INT (INTVAL (op1) - 1));
+         break;
 
-             args.value = trueop1;
-             if (! do_float_handler (simplify_binary_is2orm1, (PTR) &args))
-               return 0;
+    case MOD:
+      /* 0%x is 0 (or x&0 if x has side-effects).  */
+      if (trueop0 == const0_rtx)
+       return side_effects_p (op1)
+         ? simplify_gen_binary (AND, mode, op1, const0_rtx)
+         : const0_rtx;
+         /* x%1 and x%-1 is 0 (or x&0 if x has side-effects).  */
+         if (trueop1 == const1_rtx || trueop1 == constm1_rtx)
+           return side_effects_p (op0)
+             ? simplify_gen_binary (AND, mode, op0, const0_rtx)
+             : const0_rtx;
+         break;
 
-             /* x*2 is x+x and x*(-1) is -x */
-             if (args.is_2 && GET_MODE (op0) == mode)
-               return gen_rtx_PLUS (mode, op0, copy_rtx (op0));
+    case ROTATERT:
+    case ROTATE:
+    case ASHIFTRT:
+      /* Rotating ~0 always results in ~0.  */
+      if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
+         && (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
+         && ! side_effects_p (op1))
+       return op0;
 
-             else if (args.is_m1 && GET_MODE (op0) == mode)
-               return gen_rtx_NEG (mode, op0);
-           }
-         break;
+      /* Fall through....  */
 
-       case IOR:
-         if (trueop1 == const0_rtx)
-           return op0;
-         if (GET_CODE (trueop1) == CONST_INT
-             && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
-                 == GET_MODE_MASK (mode)))
-           return op1;
-         if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
-           return op0;
-         /* A | (~A) -> -1 */
-         if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
-              || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
-             && ! side_effects_p (op0)
-             && GET_MODE_CLASS (mode) != MODE_CC)
-           return constm1_rtx;
-         break;
+    case ASHIFT:
+    case LSHIFTRT:
+      if (trueop1 == const0_rtx)
+       return op0;
+      if (trueop0 == const0_rtx && ! side_effects_p (op1))
+       return op0;
+      break;
 
-       case XOR:
-         if (trueop1 == const0_rtx)
-           return op0;
-         if (GET_CODE (trueop1) == CONST_INT
-             && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
-                 == GET_MODE_MASK (mode)))
-           return gen_rtx_NOT (mode, op0);
-         if (trueop0 == trueop1 && ! side_effects_p (op0)
-             && GET_MODE_CLASS (mode) != MODE_CC)
-           return const0_rtx;
-         break;
+    case SMIN:
+      if (width <= HOST_BITS_PER_WIDE_INT
+         && GET_CODE (trueop1) == CONST_INT
+         && INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
+         && ! side_effects_p (op0))
+       return op1;
+      if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+       return op0;
+      tem = simplify_associative_operation (code, mode, op0, op1);
+      if (tem)
+       return tem;
+      break;
 
-       case AND:
-         if (trueop1 == const0_rtx && ! side_effects_p (op0))
-           return const0_rtx;
-         if (GET_CODE (trueop1) == CONST_INT
-             && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
-                 == GET_MODE_MASK (mode)))
-           return op0;
-         if (trueop0 == trueop1 && ! side_effects_p (op0)
-             && GET_MODE_CLASS (mode) != MODE_CC)
-           return op0;
-         /* A & (~A) -> 0 */
-         if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
-              || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
-             && ! side_effects_p (op0)
-             && GET_MODE_CLASS (mode) != MODE_CC)
-           return const0_rtx;
-         break;
+    case SMAX:
+      if (width <= HOST_BITS_PER_WIDE_INT
+         && GET_CODE (trueop1) == CONST_INT
+         && ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
+             == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
+         && ! side_effects_p (op0))
+       return op1;
+      if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+       return op0;
+      tem = simplify_associative_operation (code, mode, op0, op1);
+      if (tem)
+       return tem;
+      break;
 
-       case UDIV:
-         /* Convert divide by power of two into shift (divide by 1 handled
-            below).  */
-         if (GET_CODE (trueop1) == CONST_INT
-             && (arg1 = exact_log2 (INTVAL (trueop1))) > 0)
-           return gen_rtx_LSHIFTRT (mode, op0, GEN_INT (arg1));
+    case UMIN:
+      if (trueop1 == const0_rtx && ! side_effects_p (op0))
+       return op1;
+      if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+       return op0;
+      tem = simplify_associative_operation (code, mode, op0, op1);
+      if (tem)
+       return tem;
+      break;
 
-         /* ... fall through ...  */
+    case UMAX:
+      if (trueop1 == constm1_rtx && ! side_effects_p (op0))
+       return op1;
+      if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+       return op0;
+      tem = simplify_associative_operation (code, mode, op0, op1);
+      if (tem)
+       return tem;
+      break;
 
-       case DIV:
-         if (trueop1 == CONST1_RTX (mode))
-           {
-             rtx x = gen_lowpart_common (mode, op0);
-             return x ? x : op0;
-           }
+    case SS_PLUS:
+    case US_PLUS:
+    case SS_MINUS:
+    case US_MINUS:
+      /* ??? There are simplifications that can be done.  */
+      return 0;
 
-         /* In IEEE floating point, 0/x is not always 0.  */
-         if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
-              || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
-             && trueop0 == CONST0_RTX (mode)
-             && ! side_effects_p (op1))
-           return op0;
+    case VEC_SELECT:
+      if (!VECTOR_MODE_P (mode))
+       {
+         gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
+         gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
+         gcc_assert (GET_CODE (trueop1) == PARALLEL);
+         gcc_assert (XVECLEN (trueop1, 0) == 1);
+         gcc_assert (GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT);
+
+         if (GET_CODE (trueop0) == CONST_VECTOR)
+           return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
+                                                     (trueop1, 0, 0)));
+       }
+      else
+       {
+         gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
+         gcc_assert (GET_MODE_INNER (mode)
+                     == GET_MODE_INNER (GET_MODE (trueop0)));
+         gcc_assert (GET_CODE (trueop1) == PARALLEL);
 
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-         /* Change division by a constant into multiplication.  Only do
-            this with -funsafe-math-optimizations.  */
-         else if (GET_CODE (trueop1) == CONST_DOUBLE
-                  && GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT
-                  && trueop1 != CONST0_RTX (mode)
-                  && flag_unsafe_math_optimizations)
+         if (GET_CODE (trueop0) == CONST_VECTOR)
            {
-             REAL_VALUE_TYPE d;
-             REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
+             int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
+             unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
+             rtvec v = rtvec_alloc (n_elts);
+             unsigned int i;
 
-             if (! REAL_VALUES_EQUAL (d, dconst0))
+             gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
+             for (i = 0; i < n_elts; i++)
                {
-#if defined (REAL_ARITHMETIC)
-                 REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
-                 return gen_rtx_MULT (mode, op0, 
-                                      CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
-#else
-                 return
-                   gen_rtx_MULT (mode, op0, 
-                                 CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
-#endif
+                 rtx x = XVECEXP (trueop1, 0, i);
+
+                 gcc_assert (GET_CODE (x) == CONST_INT);
+                 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
+                                                      INTVAL (x));
                }
+
+             return gen_rtx_CONST_VECTOR (mode, v);
            }
-#endif
-         break;
+       }
+      return 0;
+    case VEC_CONCAT:
+      {
+       enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
+                                     ? GET_MODE (trueop0)
+                                     : GET_MODE_INNER (mode));
+       enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
+                                     ? GET_MODE (trueop1)
+                                     : GET_MODE_INNER (mode));
+
+       gcc_assert (VECTOR_MODE_P (mode));
+       gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
+                   == GET_MODE_SIZE (mode));
+
+       if (VECTOR_MODE_P (op0_mode))
+         gcc_assert (GET_MODE_INNER (mode)
+                     == GET_MODE_INNER (op0_mode));
+       else
+         gcc_assert (GET_MODE_INNER (mode) == op0_mode);
+
+       if (VECTOR_MODE_P (op1_mode))
+         gcc_assert (GET_MODE_INNER (mode)
+                     == GET_MODE_INNER (op1_mode));
+       else
+         gcc_assert (GET_MODE_INNER (mode) == op1_mode);
+
+       if ((GET_CODE (trueop0) == CONST_VECTOR
+            || GET_CODE (trueop0) == CONST_INT
+            || GET_CODE (trueop0) == CONST_DOUBLE)
+           && (GET_CODE (trueop1) == CONST_VECTOR
+               || GET_CODE (trueop1) == CONST_INT
+               || GET_CODE (trueop1) == CONST_DOUBLE))
+         {
+           int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
+           unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
+           rtvec v = rtvec_alloc (n_elts);
+           unsigned int i;
+           unsigned in_n_elts = 1;
+
+           if (VECTOR_MODE_P (op0_mode))
+             in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
+           for (i = 0; i < n_elts; i++)
+             {
+               if (i < in_n_elts)
+                 {
+                   if (!VECTOR_MODE_P (op0_mode))
+                     RTVEC_ELT (v, i) = trueop0;
+                   else
+                     RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
+                 }
+               else
+                 {
+                   if (!VECTOR_MODE_P (op1_mode))
+                     RTVEC_ELT (v, i) = trueop1;
+                   else
+                     RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
+                                                          i - in_n_elts);
+                 }
+             }
 
-       case UMOD:
-         /* Handle modulus by power of two (mod with 1 handled below).  */
-         if (GET_CODE (trueop1) == CONST_INT
-             && exact_log2 (INTVAL (trueop1)) > 0)
-           return gen_rtx_AND (mode, op0, GEN_INT (INTVAL (op1) - 1));
+           return gen_rtx_CONST_VECTOR (mode, v);
+         }
+      }
+      return 0;
 
-         /* ... fall through ...  */
+    default:
+      gcc_unreachable ();
+    }
 
-       case MOD:
-         if ((trueop0 == const0_rtx || trueop1 == const1_rtx)
-             && ! side_effects_p (op0) && ! side_effects_p (op1))
-           return const0_rtx;
-         break;
+  return 0;
+}
 
-       case ROTATERT:
-       case ROTATE:
-         /* Rotating ~0 always results in ~0.  */
-         if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
-             && (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
-             && ! side_effects_p (op1))
-           return op0;
+rtx
+simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
+                                rtx op0, rtx op1)
+{
+  HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
+  HOST_WIDE_INT val;
+  unsigned int width = GET_MODE_BITSIZE (mode);
 
-         /* ... fall through ...  */
+  if (VECTOR_MODE_P (mode)
+      && code != VEC_CONCAT
+      && GET_CODE (op0) == CONST_VECTOR
+      && GET_CODE (op1) == CONST_VECTOR)
+    {
+      unsigned n_elts = GET_MODE_NUNITS (mode);
+      enum machine_mode op0mode = GET_MODE (op0);
+      unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
+      enum machine_mode op1mode = GET_MODE (op1);
+      unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
+      rtvec v = rtvec_alloc (n_elts);
+      unsigned int i;
+
+      gcc_assert (op0_n_elts == n_elts);
+      gcc_assert (op1_n_elts == n_elts);
+      for (i = 0; i < n_elts; i++)
+       {
+         rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
+                                            CONST_VECTOR_ELT (op0, i),
+                                            CONST_VECTOR_ELT (op1, i));
+         if (!x)
+           return 0;
+         RTVEC_ELT (v, i) = x;
+       }
 
-       case ASHIFT:
-       case ASHIFTRT:
-       case LSHIFTRT:
-         if (trueop1 == const0_rtx)
-           return op0;
-         if (trueop0 == const0_rtx && ! side_effects_p (op1))
-           return op0;
-         break;
+      return gen_rtx_CONST_VECTOR (mode, v);
+    }
 
-       case SMIN:
-         if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (trueop1) == CONST_INT 
-             && INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
-             && ! side_effects_p (op0))
-           return op1;
-         else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
-           return op0;
-         break;
-          
-       case SMAX:
-         if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (trueop1) == CONST_INT
-             && ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
-                 == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
-             && ! side_effects_p (op0))
-           return op1;
-         else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
-           return op0;
-         break;
+  if (VECTOR_MODE_P (mode)
+      && code == VEC_CONCAT
+      && CONSTANT_P (op0) && CONSTANT_P (op1))
+    {
+      unsigned n_elts = GET_MODE_NUNITS (mode);
+      rtvec v = rtvec_alloc (n_elts);
 
-       case UMIN:
-         if (trueop1 == const0_rtx && ! side_effects_p (op0))
-           return op1;
-         else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
-           return op0;
-         break;
-           
-       case UMAX:
-         if (trueop1 == constm1_rtx && ! side_effects_p (op0))
-           return op1;
-         else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
-           return op0;
-         break;
+      gcc_assert (n_elts >= 2);
+      if (n_elts == 2)
+       {
+         gcc_assert (GET_CODE (op0) != CONST_VECTOR);
+         gcc_assert (GET_CODE (op1) != CONST_VECTOR);
 
-       default:
-         abort ();
+         RTVEC_ELT (v, 0) = op0;
+         RTVEC_ELT (v, 1) = op1;
        }
-      
-      return 0;
+      else
+       {
+         unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
+         unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
+         unsigned i;
+
+         gcc_assert (GET_CODE (op0) == CONST_VECTOR);
+         gcc_assert (GET_CODE (op1) == CONST_VECTOR);
+         gcc_assert (op0_n_elts + op1_n_elts == n_elts);
+
+         for (i = 0; i < op0_n_elts; ++i)
+           RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
+         for (i = 0; i < op1_n_elts; ++i)
+           RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
+       }
+
+      return gen_rtx_CONST_VECTOR (mode, v);
     }
 
-  /* Get the integer argument values in two forms:
-     zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S.  */
+  if (GET_MODE_CLASS (mode) == MODE_FLOAT
+      && GET_CODE (op0) == CONST_DOUBLE
+      && GET_CODE (op1) == CONST_DOUBLE
+      && mode == GET_MODE (op0) && mode == GET_MODE (op1))
+    {
+      if (code == AND
+         || code == IOR
+         || code == XOR)
+       {
+         long tmp0[4];
+         long tmp1[4];
+         REAL_VALUE_TYPE r;
+         int i;
+
+         real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
+                         GET_MODE (op0));
+         real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
+                         GET_MODE (op1));
+         for (i = 0; i < 4; i++)
+           {
+             switch (code)
+             {
+             case AND:
+               tmp0[i] &= tmp1[i];
+               break;
+             case IOR:
+               tmp0[i] |= tmp1[i];
+               break;
+             case XOR:
+               tmp0[i] ^= tmp1[i];
+               break;
+             default:
+               gcc_unreachable ();
+             }
+           }
+          real_from_target (&r, tmp0, mode);
+          return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
+       }
+      else
+       {
+         REAL_VALUE_TYPE f0, f1, value, result;
+         bool inexact;
 
-  arg0 = INTVAL (trueop0);
-  arg1 = INTVAL (trueop1);
+         REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
+         REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
+         real_convert (&f0, mode, &f0);
+         real_convert (&f1, mode, &f1);
 
-  if (width < HOST_BITS_PER_WIDE_INT)
-    {
-      arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
-      arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
+         if (HONOR_SNANS (mode)
+             && (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
+           return 0;
 
-      arg0s = arg0;
-      if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
-       arg0s |= ((HOST_WIDE_INT) (-1) << width);
+         if (code == DIV
+             && REAL_VALUES_EQUAL (f1, dconst0)
+             && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
+           return 0;
 
-      arg1s = arg1;
-      if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
-       arg1s |= ((HOST_WIDE_INT) (-1) << width);
-    }
-  else
-    {
-      arg0s = arg0;
-      arg1s = arg1;
-    }
+         if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
+             && flag_trapping_math
+             && REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
+           {
+             int s0 = REAL_VALUE_NEGATIVE (f0);
+             int s1 = REAL_VALUE_NEGATIVE (f1);
 
-  /* Compute the value of the arithmetic.  */
+             switch (code)
+               {
+               case PLUS:
+                 /* Inf + -Inf = NaN plus exception.  */
+                 if (s0 != s1)
+                   return 0;
+                 break;
+               case MINUS:
+                 /* Inf - Inf = NaN plus exception.  */
+                 if (s0 == s1)
+                   return 0;
+                 break;
+               case DIV:
+                 /* Inf / Inf = NaN plus exception.  */
+                 return 0;
+               default:
+                 break;
+               }
+           }
 
-  switch (code)
-    {
-    case PLUS:
-      val = arg0s + arg1s;
-      break;
+         if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
+             && flag_trapping_math
+             && ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
+                 || (REAL_VALUE_ISINF (f1)
+                     && REAL_VALUES_EQUAL (f0, dconst0))))
+           /* Inf * 0 = NaN plus exception.  */
+           return 0;
 
-    case MINUS:
-      val = arg0s - arg1s;
-      break;
+         inexact = real_arithmetic (&value, rtx_to_tree_code (code),
+                                    &f0, &f1);
+         real_convert (&result, mode, &value);
 
-    case MULT:
-      val = arg0s * arg1s;
-      break;
+         /* Don't constant fold this floating point operation if the
+            result may dependent upon the run-time rounding mode and
+            flag_rounding_math is set, or if GCC's software emulation
+            is unable to accurately represent the result.  */
 
-    case DIV:
-      if (arg1s == 0
-         || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
-             && arg1s == -1))
-       return 0;
-      val = arg0s / arg1s;
-      break;
+         if ((flag_rounding_math
+              || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
+                  && !flag_unsafe_math_optimizations))
+             && (inexact || !real_identical (&result, &value)))
+           return NULL_RTX;
 
-    case MOD:
-      if (arg1s == 0
-         || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
-             && arg1s == -1))
-       return 0;
-      val = arg0s % arg1s;
-      break;
+         return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
+       }
+    }
 
-    case UDIV:
-      if (arg1 == 0
-         || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
-             && arg1s == -1))
-       return 0;
-      val = (unsigned HOST_WIDE_INT) arg0 / arg1;
-      break;
+  /* We can fold some multi-word operations.  */
+  if (GET_MODE_CLASS (mode) == MODE_INT
+      && width == HOST_BITS_PER_WIDE_INT * 2
+      && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
+      && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
+    {
+      unsigned HOST_WIDE_INT l1, l2, lv, lt;
+      HOST_WIDE_INT h1, h2, hv, ht;
 
-    case UMOD:
-      if (arg1 == 0
-         || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
-             && arg1s == -1))
-       return 0;
-      val = (unsigned HOST_WIDE_INT) arg0 % arg1;
-      break;
+      if (GET_CODE (op0) == CONST_DOUBLE)
+       l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
+      else
+       l1 = INTVAL (op0), h1 = HWI_SIGN_EXTEND (l1);
 
-    case AND:
-      val = arg0 & arg1;
-      break;
+      if (GET_CODE (op1) == CONST_DOUBLE)
+       l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
+      else
+       l2 = INTVAL (op1), h2 = HWI_SIGN_EXTEND (l2);
 
-    case IOR:
-      val = arg0 | arg1;
-      break;
+      switch (code)
+       {
+       case MINUS:
+         /* A - B == A + (-B).  */
+         neg_double (l2, h2, &lv, &hv);
+         l2 = lv, h2 = hv;
 
-    case XOR:
-      val = arg0 ^ arg1;
-      break;
+         /* Fall through....  */
+
+       case PLUS:
+         add_double (l1, h1, l2, h2, &lv, &hv);
+         break;
+
+       case MULT:
+         mul_double (l1, h1, l2, h2, &lv, &hv);
+         break;
+
+       case DIV:
+         if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
+                                   &lv, &hv, &lt, &ht))
+           return 0;
+         break;
+
+       case MOD:
+         if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
+                                   &lt, &ht, &lv, &hv))
+           return 0;
+         break;
 
-    case LSHIFTRT:
-      /* If shift count is undefined, don't fold it; let the machine do
-        what it wants.  But truncate it if the machine will do that.  */
-      if (arg1 < 0)
-       return 0;
-
-#ifdef SHIFT_COUNT_TRUNCATED
-      if (SHIFT_COUNT_TRUNCATED)
-       arg1 %= width;
-#endif
+       case UDIV:
+         if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
+                                   &lv, &hv, &lt, &ht))
+           return 0;
+         break;
 
-      val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
-      break;
+       case UMOD:
+         if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
+                                   &lt, &ht, &lv, &hv))
+           return 0;
+         break;
 
-    case ASHIFT:
-      if (arg1 < 0)
-       return 0;
+       case AND:
+         lv = l1 & l2, hv = h1 & h2;
+         break;
 
-#ifdef SHIFT_COUNT_TRUNCATED
-      if (SHIFT_COUNT_TRUNCATED)
-       arg1 %= width;
-#endif
+       case IOR:
+         lv = l1 | l2, hv = h1 | h2;
+         break;
 
-      val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
-      break;
+       case XOR:
+         lv = l1 ^ l2, hv = h1 ^ h2;
+         break;
 
-    case ASHIFTRT:
-      if (arg1 < 0)
-       return 0;
+       case SMIN:
+         if (h1 < h2
+             || (h1 == h2
+                 && ((unsigned HOST_WIDE_INT) l1
+                     < (unsigned HOST_WIDE_INT) l2)))
+           lv = l1, hv = h1;
+         else
+           lv = l2, hv = h2;
+         break;
 
-#ifdef SHIFT_COUNT_TRUNCATED
-      if (SHIFT_COUNT_TRUNCATED)
-       arg1 %= width;
-#endif
+       case SMAX:
+         if (h1 > h2
+             || (h1 == h2
+                 && ((unsigned HOST_WIDE_INT) l1
+                     > (unsigned HOST_WIDE_INT) l2)))
+           lv = l1, hv = h1;
+         else
+           lv = l2, hv = h2;
+         break;
 
-      val = arg0s >> arg1;
+       case UMIN:
+         if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
+             || (h1 == h2
+                 && ((unsigned HOST_WIDE_INT) l1
+                     < (unsigned HOST_WIDE_INT) l2)))
+           lv = l1, hv = h1;
+         else
+           lv = l2, hv = h2;
+         break;
 
-      /* Bootstrap compiler may not have sign extended the right shift.
-        Manually extend the sign to insure bootstrap cc matches gcc.  */
-      if (arg0s < 0 && arg1 > 0)
-       val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);
+       case UMAX:
+         if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
+             || (h1 == h2
+                 && ((unsigned HOST_WIDE_INT) l1
+                     > (unsigned HOST_WIDE_INT) l2)))
+           lv = l1, hv = h1;
+         else
+           lv = l2, hv = h2;
+         break;
 
-      break;
+       case LSHIFTRT:   case ASHIFTRT:
+       case ASHIFT:
+       case ROTATE:     case ROTATERT:
+         if (SHIFT_COUNT_TRUNCATED)
+           l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
 
-    case ROTATERT:
-      if (arg1 < 0)
-       return 0;
+         if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
+           return 0;
 
-      arg1 %= width;
-      val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
-            | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
-      break;
+         if (code == LSHIFTRT || code == ASHIFTRT)
+           rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
+                          code == ASHIFTRT);
+         else if (code == ASHIFT)
+           lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
+         else if (code == ROTATE)
+           lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
+         else /* code == ROTATERT */
+           rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
+         break;
 
-    case ROTATE:
-      if (arg1 < 0)
-       return 0;
+       default:
+         return 0;
+       }
 
-      arg1 %= width;
-      val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
-            | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
-      break;
+      return immed_double_const (lv, hv, mode);
+    }
 
-    case COMPARE:
-      /* Do nothing here.  */
-      return 0;
+  if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
+      && width <= HOST_BITS_PER_WIDE_INT && width != 0)
+    {
+      /* Get the integer argument values in two forms:
+         zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S.  */
 
-    case SMIN:
-      val = arg0s <= arg1s ? arg0s : arg1s;
-      break;
+      arg0 = INTVAL (op0);
+      arg1 = INTVAL (op1);
 
-    case UMIN:
-      val = ((unsigned HOST_WIDE_INT) arg0
-            <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
-      break;
+      if (width < HOST_BITS_PER_WIDE_INT)
+        {
+          arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
+          arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
 
-    case SMAX:
-      val = arg0s > arg1s ? arg0s : arg1s;
-      break;
+          arg0s = arg0;
+          if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
+           arg0s |= ((HOST_WIDE_INT) (-1) << width);
 
-    case UMAX:
-      val = ((unsigned HOST_WIDE_INT) arg0
-            > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
-      break;
+         arg1s = arg1;
+         if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
+           arg1s |= ((HOST_WIDE_INT) (-1) << width);
+       }
+      else
+       {
+         arg0s = arg0;
+         arg1s = arg1;
+       }
+      
+      /* Compute the value of the arithmetic.  */
+      
+      switch (code)
+       {
+       case PLUS:
+         val = arg0s + arg1s;
+         break;
+         
+       case MINUS:
+         val = arg0s - arg1s;
+         break;
+         
+       case MULT:
+         val = arg0s * arg1s;
+         break;
+         
+       case DIV:
+         if (arg1s == 0
+             || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
+                 && arg1s == -1))
+           return 0;
+         val = arg0s / arg1s;
+         break;
+         
+       case MOD:
+         if (arg1s == 0
+             || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
+                 && arg1s == -1))
+           return 0;
+         val = arg0s % arg1s;
+         break;
+         
+       case UDIV:
+         if (arg1 == 0
+             || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
+                 && arg1s == -1))
+           return 0;
+         val = (unsigned HOST_WIDE_INT) arg0 / arg1;
+         break;
+         
+       case UMOD:
+         if (arg1 == 0
+             || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
+                 && arg1s == -1))
+           return 0;
+         val = (unsigned HOST_WIDE_INT) arg0 % arg1;
+         break;
+         
+       case AND:
+         val = arg0 & arg1;
+         break;
+         
+       case IOR:
+         val = arg0 | arg1;
+         break;
+         
+       case XOR:
+         val = arg0 ^ arg1;
+         break;
+         
+       case LSHIFTRT:
+       case ASHIFT:
+       case ASHIFTRT:
+         /* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
+            the value is in range.  We can't return any old value for
+            out-of-range arguments because either the middle-end (via
+            shift_truncation_mask) or the back-end might be relying on
+            target-specific knowledge.  Nor can we rely on
+            shift_truncation_mask, since the shift might not be part of an
+            ashlM3, lshrM3 or ashrM3 instruction.  */
+         if (SHIFT_COUNT_TRUNCATED)
+           arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
+         else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
+           return 0;
+         
+         val = (code == ASHIFT
+                ? ((unsigned HOST_WIDE_INT) arg0) << arg1
+                : ((unsigned HOST_WIDE_INT) arg0) >> arg1);
+         
+         /* Sign-extend the result for arithmetic right shifts.  */
+         if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
+           val |= ((HOST_WIDE_INT) -1) << (width - arg1);
+         break;
+         
+       case ROTATERT:
+         if (arg1 < 0)
+           return 0;
+         
+         arg1 %= width;
+         val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
+                | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
+         break;
+         
+       case ROTATE:
+         if (arg1 < 0)
+           return 0;
+         
+         arg1 %= width;
+         val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
+                | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
+         break;
+         
+       case COMPARE:
+         /* Do nothing here.  */
+         return 0;
+         
+       case SMIN:
+         val = arg0s <= arg1s ? arg0s : arg1s;
+         break;
+         
+       case UMIN:
+         val = ((unsigned HOST_WIDE_INT) arg0
+                <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
+         break;
+         
+       case SMAX:
+         val = arg0s > arg1s ? arg0s : arg1s;
+         break;
+         
+       case UMAX:
+         val = ((unsigned HOST_WIDE_INT) arg0
+                > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
+         break;
+         
+       case SS_PLUS:
+       case US_PLUS:
+       case SS_MINUS:
+       case US_MINUS:
+         /* ??? There are simplifications that can be done.  */
+         return 0;
+         
+       default:
+         gcc_unreachable ();
+       }
 
-    default:
-      abort ();
+      return gen_int_mode (val, mode);
     }
 
-  val = trunc_int_for_mode (val, mode);
-
-  return GEN_INT (val);
+  return NULL_RTX;
 }
+
+
 \f
 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
    PLUS or MINUS.
 
    Rather than test for specific case, we do this by a brute-force method
    and do all possible simplifications until no more changes occur.  Then
-   we rebuild the operation.  */
+   we rebuild the operation.
+
+   If FORCE is true, then always generate the rtx.  This is used to
+   canonicalize stuff emitted from simplify_gen_binary.  Note that this
+   can still fail if the rtx is too complex.  It won't fail just because
+   the result is not 'simpler' than the input, however.  */
 
 struct simplify_plus_minus_op_data
 {
@@ -1716,9 +2516,7 @@ struct simplify_plus_minus_op_data
 };
 
 static int
-simplify_plus_minus_op_data_cmp (p1, p2)
-     const void *p1;
-     const void *p2;
+simplify_plus_minus_op_data_cmp (const void *p1, const void *p2)
 {
   const struct simplify_plus_minus_op_data *d1 = p1;
   const struct simplify_plus_minus_op_data *d2 = p2;
@@ -1728,19 +2526,17 @@ simplify_plus_minus_op_data_cmp (p1, p2)
 }
 
 static rtx
-simplify_plus_minus (code, mode, op0, op1)
-     enum rtx_code code;
-     enum machine_mode mode;
-     rtx op0, op1;
+simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
+                    rtx op1, int force)
 {
   struct simplify_plus_minus_op_data ops[8];
   rtx result, tem;
   int n_ops = 2, input_ops = 2, input_consts = 0, n_consts;
-  int first, negate, changed;
+  int first, changed;
   int i, j;
 
-  memset ((char *) ops, 0, sizeof ops);
-  
+  memset (ops, 0, sizeof ops);
+
   /* Set up the two operands and then expand them until nothing has been
      changed.  If we run out of room in our array, give up; this should
      almost never happen.  */
@@ -1765,7 +2561,7 @@ simplify_plus_minus (code, mode, op0, op1)
            case PLUS:
            case MINUS:
              if (n_ops == 7)
-               return 0;
+               return NULL_RTX;
 
              ops[n_ops].op = XEXP (this_op, 1);
              ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
@@ -1783,9 +2579,18 @@ simplify_plus_minus (code, mode, op0, op1)
              break;
 
            case CONST:
-             ops[i].op = XEXP (this_op, 0);
-             input_consts++;
-             changed = 1;
+             if (n_ops < 7
+                 && GET_CODE (XEXP (this_op, 0)) == PLUS
+                 && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
+                 && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
+               {
+                 ops[i].op = XEXP (XEXP (this_op, 0), 0);
+                 ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
+                 ops[n_ops].neg = this_neg;
+                 n_ops++;
+                 input_consts++;
+                 changed = 1;
+               }
              break;
 
            case NOT:
@@ -1793,7 +2598,7 @@ simplify_plus_minus (code, mode, op0, op1)
              if (n_ops != 7)
                {
                  ops[n_ops].op = constm1_rtx;
-                 ops[n_ops].neg = this_neg;
+                 ops[n_ops++].neg = this_neg;
                  ops[i].op = XEXP (this_op, 0);
                  ops[i].neg = !this_neg;
                  changed = 1;
@@ -1817,9 +2622,14 @@ simplify_plus_minus (code, mode, op0, op1)
   while (changed);
 
   /* If we only have two operands, we can't do anything.  */
-  if (n_ops <= 2)
+  if (n_ops <= 2 && !force)
     return NULL_RTX;
 
+  /* Count the number of CONSTs we didn't split above.  */
+  for (i = 0; i < n_ops; i++)
+    if (GET_CODE (ops[i].op) == CONST)
+      input_consts++;
+
   /* Now simplify each pair of operands until nothing changes.  The first
      time through just simplify constants against each other.  */
 
@@ -1850,7 +2660,7 @@ simplify_plus_minus (code, mode, op0, op1)
 
                tem = simplify_binary_operation (ncode, mode, lhs, rhs);
 
-               /* Reject "simplifications" that just wrap the two 
+               /* Reject "simplifications" that just wrap the two
                   arguments in a CONST.  Failure to do so can result
                   in infinite recursion with simplify_binary_operation
                   when it calls us to simplify CONST operations.  */
@@ -1858,7 +2668,13 @@ simplify_plus_minus (code, mode, op0, op1)
                    && ! (GET_CODE (tem) == CONST
                          && GET_CODE (XEXP (tem, 0)) == ncode
                          && XEXP (XEXP (tem, 0), 0) == lhs
-                         && XEXP (XEXP (tem, 0), 1) == rhs))
+                         && XEXP (XEXP (tem, 0), 1) == rhs)
+                   /* Don't allow -x + -1 -> ~x simplifications in the
+                      first pass.  This allows us the chance to combine
+                      the -1 with other constants.  */
+                   && ! (first
+                         && GET_CODE (tem) == NOT
+                         && XEXP (tem, 0) == rhs))
                  {
                    lneg &= rneg;
                    if (GET_CODE (tem) == NEG)
@@ -1887,6 +2703,13 @@ simplify_plus_minus (code, mode, op0, op1)
   /* Sort the operations based on swap_commutative_operands_p.  */
   qsort (ops, n_ops, sizeof (*ops), simplify_plus_minus_op_data_cmp);
 
+  /* Create (minus -C X) instead of (neg (const (plus X C))).  */
+  if (n_ops == 2
+      && GET_CODE (ops[1].op) == CONST_INT
+      && CONSTANT_P (ops[0].op)
+      && ops[0].neg)
+    return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
+  
   /* We suppressed creation of trivial CONST expressions in the
      combination loop to avoid recursion.  Create one manually now.
      The combination loop should have ensured that there is exactly
@@ -1904,126 +2727,248 @@ simplify_plus_minus (code, mode, op0, op1)
       n_ops--;
     }
 
-  /* Count the number of CONSTs that we generated.  */
-  n_consts = 0;
-  for (i = 0; i < n_ops; i++)
-    if (GET_CODE (ops[i].op) == CONST)
-      n_consts++;
+  /* Count the number of CONSTs that we generated.  */
+  n_consts = 0;
+  for (i = 0; i < n_ops; i++)
+    if (GET_CODE (ops[i].op) == CONST)
+      n_consts++;
+
+  /* Give up if we didn't reduce the number of operands we had.  Make
+     sure we count a CONST as two operands.  If we have the same
+     number of operands, but have made more CONSTs than before, this
+     is also an improvement, so accept it.  */
+  if (!force
+      && (n_ops + n_consts > input_ops
+         || (n_ops + n_consts == input_ops && n_consts <= input_consts)))
+    return NULL_RTX;
+
+  /* Put a non-negated operand first, if possible.  */
+
+  for (i = 0; i < n_ops && ops[i].neg; i++)
+    continue;
+  if (i == n_ops)
+    ops[0].op = gen_rtx_NEG (mode, ops[0].op);
+  else if (i != 0)
+    {
+      tem = ops[0].op;
+      ops[0] = ops[i];
+      ops[i].op = tem;
+      ops[i].neg = 1;
+    }
+
+  /* Now make the result by performing the requested operations.  */
+  result = ops[0].op;
+  for (i = 1; i < n_ops; i++)
+    result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
+                            mode, result, ops[i].op);
+
+  return result;
+}
+
+/* Check whether an operand is suitable for calling simplify_plus_minus.  */
+static bool
+plus_minus_operand_p (rtx x)
+{
+  return GET_CODE (x) == PLUS
+         || GET_CODE (x) == MINUS
+        || (GET_CODE (x) == CONST
+            && GET_CODE (XEXP (x, 0)) == PLUS
+            && CONSTANT_P (XEXP (XEXP (x, 0), 0))
+            && CONSTANT_P (XEXP (XEXP (x, 0), 1)));
+}
+
+/* Like simplify_binary_operation except used for relational operators.
+   MODE is the mode of the result. If MODE is VOIDmode, both operands must
+   not also be VOIDmode.
+
+   CMP_MODE specifies in which mode the comparison is done in, so it is
+   the mode of the operands.  If CMP_MODE is VOIDmode, it is taken from
+   the operands or, if both are VOIDmode, the operands are compared in
+   "infinite precision".  */
+rtx
+simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
+                              enum machine_mode cmp_mode, rtx op0, rtx op1)
+{
+  rtx tem, trueop0, trueop1;
+
+  if (cmp_mode == VOIDmode)
+    cmp_mode = GET_MODE (op0);
+  if (cmp_mode == VOIDmode)
+    cmp_mode = GET_MODE (op1);
+
+  tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
+  if (tem)
+    {
+      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+       {
+          if (tem == const0_rtx)
+            return CONST0_RTX (mode);
+#ifdef FLOAT_STORE_FLAG_VALUE
+         {
+           REAL_VALUE_TYPE val;
+           val = FLOAT_STORE_FLAG_VALUE (mode);
+           return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
+         }
+#else
+         return NULL_RTX;
+#endif 
+       }
+      if (VECTOR_MODE_P (mode))
+       {
+         if (tem == const0_rtx)
+           return CONST0_RTX (mode);
+#ifdef VECTOR_STORE_FLAG_VALUE
+         {
+           int i, units;
+           rtvec v;
+
+           rtx val = VECTOR_STORE_FLAG_VALUE (mode);
+           if (val == NULL_RTX)
+             return NULL_RTX;
+           if (val == const1_rtx)
+             return CONST1_RTX (mode);
+
+           units = GET_MODE_NUNITS (mode);
+           v = rtvec_alloc (units);
+           for (i = 0; i < units; i++)
+             RTVEC_ELT (v, i) = val;
+           return gen_rtx_raw_CONST_VECTOR (mode, v);
+         }
+#else
+         return NULL_RTX;
+#endif
+       }
+
+      return tem;
+    }
+
+  /* For the following tests, ensure const0_rtx is op1.  */
+  if (swap_commutative_operands_p (op0, op1)
+      || (op0 == const0_rtx && op1 != const0_rtx))
+    tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
+
+  /* If op0 is a compare, extract the comparison arguments from it.  */
+  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
+    return simplify_relational_operation (code, mode, VOIDmode,
+                                         XEXP (op0, 0), XEXP (op0, 1));
 
-  /* Give up if we didn't reduce the number of operands we had.  Make
-     sure we count a CONST as two operands.  If we have the same
-     number of operands, but have made more CONSTs than before, this
-     is also an improvement, so accept it.  */
-  if (n_ops + n_consts > input_ops
-      || (n_ops + n_consts == input_ops && n_consts <= input_consts))
+  if (mode == VOIDmode
+      || GET_MODE_CLASS (cmp_mode) == MODE_CC
+      || CC0_P (op0))
     return NULL_RTX;
 
-  /* Put a non-negated operand first.  If there aren't any, make all
-     operands positive and negate the whole thing later.  */
+  trueop0 = avoid_constant_pool_reference (op0);
+  trueop1 = avoid_constant_pool_reference (op1);
+  return simplify_relational_operation_1 (code, mode, cmp_mode,
+                                         trueop0, trueop1);
+}
 
-  negate = 0;
-  for (i = 0; i < n_ops && ops[i].neg; i++)
-    continue;
-  if (i == n_ops)
-    {
-      for (i = 0; i < n_ops; i++)
-       ops[i].neg = 0;
-      negate = 1;
-    }
-  else if (i != 0)
+/* This part of simplify_relational_operation is only used when CMP_MODE
+   is not in class MODE_CC (i.e. it is a real comparison).
+
+   MODE is the mode of the result, while CMP_MODE specifies in which
+   mode the comparison is done in, so it is the mode of the operands.  */
+
+static rtx
+simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
+                                enum machine_mode cmp_mode, rtx op0, rtx op1)
+{
+  enum rtx_code op0code = GET_CODE (op0);
+
+  if (GET_CODE (op1) == CONST_INT)
     {
-      tem = ops[0].op;
-      ops[0] = ops[i];
-      ops[i].op = tem;
-      ops[i].neg = 1;
+      if (INTVAL (op1) == 0 && COMPARISON_P (op0))
+       {
+         /* If op0 is a comparison, extract the comparison arguments form it.  */
+         if (code == NE)
+           {
+             if (GET_MODE (op0) == mode)
+               return simplify_rtx (op0);
+             else
+               return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
+                                               XEXP (op0, 0), XEXP (op0, 1));
+           }
+         else if (code == EQ)
+           {
+             enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
+             if (new_code != UNKNOWN)
+               return simplify_gen_relational (new_code, mode, VOIDmode,
+                                               XEXP (op0, 0), XEXP (op0, 1));
+           }
+       }
     }
 
-  /* Now make the result by performing the requested operations.  */
-  result = ops[0].op;
-  for (i = 1; i < n_ops; i++)
-    result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
-                            mode, result, ops[i].op);
+  /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1))  */
+  if ((code == EQ || code == NE)
+      && (op0code == PLUS || op0code == MINUS)
+      && CONSTANT_P (op1)
+      && CONSTANT_P (XEXP (op0, 1))
+      && (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
+    {
+      rtx x = XEXP (op0, 0);
+      rtx c = XEXP (op0, 1);
 
-  return negate ? gen_rtx_NEG (mode, result) : result;
-}
+      c = simplify_gen_binary (op0code == PLUS ? MINUS : PLUS,
+                              cmp_mode, op1, c);
+      return simplify_gen_relational (code, mode, cmp_mode, x, c);
+    }
 
-struct cfc_args
-{
-  rtx op0, op1;                        /* Input */
-  int equal, op0lt, op1lt;     /* Output */
-  int unordered;
-};
+  /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
+     the same as (zero_extract:SI FOO (const_int 1) BAR).  */
+  if (code == NE
+      && op1 == const0_rtx
+      && GET_MODE_CLASS (mode) == MODE_INT
+      && cmp_mode != VOIDmode
+      /* ??? Work-around BImode bugs in the ia64 backend.  */
+      && mode != BImode
+      && cmp_mode != BImode
+      && nonzero_bits (op0, cmp_mode) == 1
+      && STORE_FLAG_VALUE == 1)
+    return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
+          ? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
+          : lowpart_subreg (mode, op0, cmp_mode);
 
-static void
-check_fold_consts (data)
-  PTR data;
-{
-  struct cfc_args *args = (struct cfc_args *) data;
-  REAL_VALUE_TYPE d0, d1;
-
-  /* We may possibly raise an exception while reading the value.  */
-  args->unordered = 1;
-  REAL_VALUE_FROM_CONST_DOUBLE (d0, args->op0);
-  REAL_VALUE_FROM_CONST_DOUBLE (d1, args->op1);
-
-  /* Comparisons of Inf versus Inf are ordered.  */
-  if (REAL_VALUE_ISNAN (d0)
-      || REAL_VALUE_ISNAN (d1))
-    return;
-  args->equal = REAL_VALUES_EQUAL (d0, d1);
-  args->op0lt = REAL_VALUES_LESS (d0, d1);
-  args->op1lt = REAL_VALUES_LESS (d1, d0);
-  args->unordered = 0;
+  return NULL_RTX;
 }
 
-/* Like simplify_binary_operation except used for relational operators.
-   MODE is the mode of the operands, not that of the result.  If MODE
-   is VOIDmode, both operands must also be VOIDmode and we compare the
-   operands in "infinite precision".
-
-   If no simplification is possible, this function returns zero.  Otherwise,
-   it returns either const_true_rtx or const0_rtx.  */
+/* Check if the given comparison (done in the given MODE) is actually a
+   tautology or a contradiction.
+   If no simplification is possible, this function returns zero.
+   Otherwise, it returns either const_true_rtx or const0_rtx.  */
 
 rtx
-simplify_relational_operation (code, mode, op0, op1)
-     enum rtx_code code;
-     enum machine_mode mode;
-     rtx op0, op1;
+simplify_const_relational_operation (enum rtx_code code,
+                                    enum machine_mode mode,
+                                    rtx op0, rtx op1)
 {
   int equal, op0lt, op0ltu, op1lt, op1ltu;
   rtx tem;
   rtx trueop0;
   rtx trueop1;
 
-  if (mode == VOIDmode
-      && (GET_MODE (op0) != VOIDmode
-         || GET_MODE (op1) != VOIDmode))
-    abort ();
+  gcc_assert (mode != VOIDmode
+             || (GET_MODE (op0) == VOIDmode
+                 && GET_MODE (op1) == VOIDmode));
 
   /* If op0 is a compare, extract the comparison arguments from it.  */
   if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
     op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
 
-  trueop0 = avoid_constant_pool_reference (op0);
-  trueop1 = avoid_constant_pool_reference (op1);
-
   /* We can't simplify MODE_CC values since we don't know what the
      actual comparison is.  */
-  if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC
-#ifdef HAVE_cc0
-      || op0 == cc0_rtx
-#endif
-      )
+  if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
     return 0;
 
   /* Make sure the constant is second.  */
-  if (swap_commutative_operands_p (trueop0, trueop1))
+  if (swap_commutative_operands_p (op0, op1))
     {
       tem = op0, op0 = op1, op1 = tem;
-      tem = trueop0, trueop0 = trueop1, trueop1 = tem;
       code = swap_condition (code);
     }
 
+  trueop0 = avoid_constant_pool_reference (op0);
+  trueop1 = avoid_constant_pool_reference (op1);
+
   /* For integer comparisons of A and B maybe we can simplify A - B and can
      then simplify a comparison of that with zero.  If A and B are both either
      a register or a CONST_INT, this can't help; testing for these cases will
@@ -2032,15 +2977,18 @@ simplify_relational_operation (code, mode, op0, op1)
      If CODE is an unsigned comparison, then we can never do this optimization,
      because it gives an incorrect result if the subtraction wraps around zero.
      ANSI C defines unsigned operations such that they never overflow, and
-     thus such cases can not be ignored.  */
+     thus such cases can not be ignored; but we cannot do it even for
+     signed comparisons for languages such as Java, so test flag_wrapv.  */
 
-  if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
-      && ! ((GET_CODE (op0) == REG || GET_CODE (trueop0) == CONST_INT)
-           && (GET_CODE (op1) == REG || GET_CODE (trueop1) == CONST_INT))
+  if (!flag_wrapv && INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
+      && ! ((REG_P (op0) || GET_CODE (trueop0) == CONST_INT)
+           && (REG_P (op1) || GET_CODE (trueop1) == CONST_INT))
       && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
+      /* We cannot do this for == or != if tem is a nonzero address.  */
+      && ((code != EQ && code != NE) || ! nonzero_address_p (tem))
       && code != GTU && code != GEU && code != LTU && code != LEU)
-    return simplify_relational_operation (signed_condition (code),
-                                         mode, tem, const0_rtx);
+    return simplify_const_relational_operation (signed_condition (code),
+                                               mode, tem, const0_rtx);
 
   if (flag_unsafe_math_optimizations && code == ORDERED)
     return const_true_rtx;
@@ -2048,32 +2996,26 @@ simplify_relational_operation (code, mode, op0, op1)
   if (flag_unsafe_math_optimizations && code == UNORDERED)
     return const0_rtx;
 
-  /* For non-IEEE floating-point, if the two operands are equal, we know the
-     result.  */
-  if (rtx_equal_p (trueop0, trueop1)
-      && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
-         || ! FLOAT_MODE_P (GET_MODE (trueop0)) 
-         || flag_unsafe_math_optimizations))
+  /* For modes without NaNs, if the two operands are equal, we know the
+     result except if they have side-effects.  */
+  if (! HONOR_NANS (GET_MODE (trueop0))
+      && rtx_equal_p (trueop0, trueop1)
+      && ! side_effects_p (trueop0))
     equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
 
   /* If the operands are floating-point constants, see if we can fold
      the result.  */
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
   else if (GET_CODE (trueop0) == CONST_DOUBLE
           && GET_CODE (trueop1) == CONST_DOUBLE
           && GET_MODE_CLASS (GET_MODE (trueop0)) == MODE_FLOAT)
     {
-      struct cfc_args args;
+      REAL_VALUE_TYPE d0, d1;
 
-      /* Setup input for check_fold_consts() */
-      args.op0 = trueop0;
-      args.op1 = trueop1;
-      
-      
-      if (!do_float_handler (check_fold_consts, (PTR) &args))
-       args.unordered = 1;
+      REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
+      REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
 
-      if (args.unordered)
+      /* Comparisons are unordered iff at least one of the values is NaN.  */
+      if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
        switch (code)
          {
          case UNEQ:
@@ -2096,12 +3038,10 @@ simplify_relational_operation (code, mode, op0, op1)
            return 0;
          }
 
-      /* Receive output from check_fold_consts() */
-      equal = args.equal;
-      op0lt = op0ltu = args.op0lt;
-      op1lt = op1ltu = args.op1lt;
+      equal = REAL_VALUES_EQUAL (d0, d1);
+      op0lt = op0ltu = REAL_VALUES_LESS (d0, d1);
+      op1lt = op1ltu = REAL_VALUES_LESS (d1, d0);
     }
-#endif  /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
 
   /* Otherwise, see if the operands are both integers.  */
   else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
@@ -2125,7 +3065,7 @@ simplify_relational_operation (code, mode, op0, op1)
          l0u = l0s = INTVAL (trueop0);
          h0u = h0s = HWI_SIGN_EXTEND (l0s);
        }
-         
+
       if (GET_CODE (trueop1) == CONST_DOUBLE)
        {
          l1u = l1s = CONST_DOUBLE_LOW (trueop1);
@@ -2163,58 +3103,108 @@ simplify_relational_operation (code, mode, op0, op1)
   /* Otherwise, there are some code-specific tests we can make.  */
   else
     {
+      /* Optimize comparisons with upper and lower bounds.  */
+      if (SCALAR_INT_MODE_P (mode)
+         && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+       {
+         rtx mmin, mmax;
+         int sign;
+
+         if (code == GEU
+             || code == LEU
+             || code == GTU
+             || code == LTU)
+           sign = 0;
+         else
+           sign = 1;
+
+         get_mode_bounds (mode, sign, mode, &mmin, &mmax);
+
+         tem = NULL_RTX;
+         switch (code)
+           {
+           case GEU:
+           case GE:
+             /* x >= min is always true.  */
+             if (rtx_equal_p (trueop1, mmin))
+               tem = const_true_rtx;
+             else 
+             break;
+
+           case LEU:
+           case LE:
+             /* x <= max is always true.  */
+             if (rtx_equal_p (trueop1, mmax))
+               tem = const_true_rtx;
+             break;
+
+           case GTU:
+           case GT:
+             /* x > max is always false.  */
+             if (rtx_equal_p (trueop1, mmax))
+               tem = const0_rtx;
+             break;
+
+           case LTU:
+           case LT:
+             /* x < min is always false.  */
+             if (rtx_equal_p (trueop1, mmin))
+               tem = const0_rtx;
+             break;
+
+           default:
+             break;
+           }
+         if (tem == const0_rtx
+             || tem == const_true_rtx)
+           return tem;
+       }
+
       switch (code)
        {
        case EQ:
-         /* References to the frame plus a constant or labels cannot
-            be zero, but a SYMBOL_REF can due to #pragma weak.  */
-         if (((NONZERO_BASE_PLUS_P (op0) && trueop1 == const0_rtx)
-              || GET_CODE (trueop0) == LABEL_REF)
-#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
-             /* On some machines, the ap reg can be 0 sometimes.  */
-             && op0 != arg_pointer_rtx
-#endif
-               )
+         if (trueop1 == const0_rtx && nonzero_address_p (op0))
            return const0_rtx;
          break;
 
        case NE:
-         if (((NONZERO_BASE_PLUS_P (op0) && trueop1 == const0_rtx)
-              || GET_CODE (trueop0) == LABEL_REF)
-#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
-             && op0 != arg_pointer_rtx
-#endif
-             )
+         if (trueop1 == const0_rtx && nonzero_address_p (op0))
            return const_true_rtx;
          break;
 
-       case GEU:
-         /* Unsigned values are never negative.  */
-         if (trueop1 == const0_rtx)
-           return const_true_rtx;
+       case LT:
+         /* Optimize abs(x) < 0.0.  */
+         if (trueop1 == CONST0_RTX (mode) && !HONOR_SNANS (mode))
+           {
+             tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
+                                                      : trueop0;
+             if (GET_CODE (tem) == ABS)
+               return const0_rtx;
+           }
          break;
 
-       case LTU:
-         if (trueop1 == const0_rtx)
-           return const0_rtx;
+       case GE:
+         /* Optimize abs(x) >= 0.0.  */
+         if (trueop1 == CONST0_RTX (mode) && !HONOR_NANS (mode))
+           {
+             tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
+                                                      : trueop0;
+             if (GET_CODE (tem) == ABS)
+               return const_true_rtx;
+           }
          break;
 
-       case LEU:
-         /* Unsigned values are never greater than the largest
-            unsigned value.  */
-         if (GET_CODE (trueop1) == CONST_INT
-             && (unsigned HOST_WIDE_INT) INTVAL (trueop1) == GET_MODE_MASK (mode)
-           && INTEGRAL_MODE_P (mode))
-         return const_true_rtx;
+       case UNGE:
+         /* Optimize ! (abs(x) < 0.0).  */
+         if (trueop1 == CONST0_RTX (mode))
+           {
+             tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
+                                                      : trueop0;
+             if (GET_CODE (tem) == ABS)
+               return const_true_rtx;
+           }
          break;
 
-       case GTU:
-         if (GET_CODE (trueop1) == CONST_INT
-             && (unsigned HOST_WIDE_INT) INTVAL (trueop1) == GET_MODE_MASK (mode)
-             && INTEGRAL_MODE_P (mode))
-           return const0_rtx;
-         break;
-         
        default:
          break;
        }
@@ -2257,7 +3247,7 @@ simplify_relational_operation (code, mode, op0, op1)
     case UNORDERED:
       return const0_rtx;
     default:
-      abort ();
+      gcc_unreachable ();
     }
 }
 \f
@@ -2266,10 +3256,9 @@ simplify_relational_operation (code, mode, op0, op1)
    a constant.  Return 0 if no simplifications is possible.  */
 
 rtx
-simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
-     enum rtx_code code;
-     enum machine_mode mode, op0_mode;
-     rtx op0, op1, op2;
+simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
+                           enum machine_mode op0_mode, rtx op0, rtx op1,
+                           rtx op2)
 {
   unsigned int width = GET_MODE_BITSIZE (mode);
 
@@ -2315,7 +3304,7 @@ simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
                  != ((HOST_WIDE_INT) (-1) << (width - 1))))
            val &= ((HOST_WIDE_INT) 1 << width) - 1;
 
-         return GEN_INT (val);
+         return gen_int_mode (val, mode);
        }
       break;
 
@@ -2323,42 +3312,45 @@ simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
       if (GET_CODE (op0) == CONST_INT)
        return op0 != const0_rtx ? op1 : op2;
 
-      /* Convert a == b ? b : a to "a".  */
-      if (GET_CODE (op0) == NE && ! side_effects_p (op0)
-         && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
-         && rtx_equal_p (XEXP (op0, 0), op1)
-         && rtx_equal_p (XEXP (op0, 1), op2))
+      /* Convert c ? a : a into "a".  */
+      if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
+       return op1;
+
+      /* Convert a != b ? a : b into "a".  */
+      if (GET_CODE (op0) == NE
+         && ! side_effects_p (op0)
+         && ! HONOR_NANS (mode)
+         && ! HONOR_SIGNED_ZEROS (mode)
+         && ((rtx_equal_p (XEXP (op0, 0), op1)
+              && rtx_equal_p (XEXP (op0, 1), op2))
+             || (rtx_equal_p (XEXP (op0, 0), op2)
+                 && rtx_equal_p (XEXP (op0, 1), op1))))
        return op1;
-      else if (GET_CODE (op0) == EQ && ! side_effects_p (op0)
-         && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
-         && rtx_equal_p (XEXP (op0, 1), op1)
-         && rtx_equal_p (XEXP (op0, 0), op2))
+
+      /* Convert a == b ? a : b into "b".  */
+      if (GET_CODE (op0) == EQ
+         && ! side_effects_p (op0)
+         && ! HONOR_NANS (mode)
+         && ! HONOR_SIGNED_ZEROS (mode)
+         && ((rtx_equal_p (XEXP (op0, 0), op1)
+              && rtx_equal_p (XEXP (op0, 1), op2))
+             || (rtx_equal_p (XEXP (op0, 0), op2)
+                 && rtx_equal_p (XEXP (op0, 1), op1))))
        return op2;
-      else if (GET_RTX_CLASS (GET_CODE (op0)) == '<' && ! side_effects_p (op0))
+
+      if (COMPARISON_P (op0) && ! side_effects_p (op0))
        {
          enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
                                        ? GET_MODE (XEXP (op0, 1))
                                        : GET_MODE (XEXP (op0, 0)));
          rtx temp;
-         if (cmp_mode == VOIDmode)
-           cmp_mode = op0_mode;
-         temp = simplify_relational_operation (GET_CODE (op0), cmp_mode,
-                                               XEXP (op0, 0), XEXP (op0, 1));
-
-         /* See if any simplifications were possible.  */
-         if (temp == const0_rtx)
-           return op2;
-         else if (temp == const1_rtx)
-           return op1;
-         else if (temp)
-           op0 = temp;
 
          /* Look for happy constants in op1 and op2.  */
          if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
            {
              HOST_WIDE_INT t = INTVAL (op1);
              HOST_WIDE_INT f = INTVAL (op2);
-             
+
              if (t == STORE_FLAG_VALUE && f == 0)
                code = GET_CODE (op0);
              else if (t == 0 && f == STORE_FLAG_VALUE)
@@ -2372,129 +3364,357 @@ simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
              else
                break;
 
-             return gen_rtx_fmt_ee (code, mode, XEXP (op0, 0), XEXP (op0, 1));
+             return simplify_gen_relational (code, mode, cmp_mode,
+                                             XEXP (op0, 0), XEXP (op0, 1));
+           }
+
+         if (cmp_mode == VOIDmode)
+           cmp_mode = op0_mode;
+         temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
+                                               cmp_mode, XEXP (op0, 0),
+                                               XEXP (op0, 1));
+
+         /* See if any simplifications were possible.  */
+         if (temp)
+           {
+             if (GET_CODE (temp) == CONST_INT)
+               return temp == const0_rtx ? op2 : op1;
+             else if (temp)
+               return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
+           }
+       }
+      break;
+
+    case VEC_MERGE:
+      gcc_assert (GET_MODE (op0) == mode);
+      gcc_assert (GET_MODE (op1) == mode);
+      gcc_assert (VECTOR_MODE_P (mode));
+      op2 = avoid_constant_pool_reference (op2);
+      if (GET_CODE (op2) == CONST_INT)
+       {
+          int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
+         unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
+         int mask = (1 << n_elts) - 1;
+
+         if (!(INTVAL (op2) & mask))
+           return op1;
+         if ((INTVAL (op2) & mask) == mask)
+           return op0;
+
+         op0 = avoid_constant_pool_reference (op0);
+         op1 = avoid_constant_pool_reference (op1);
+         if (GET_CODE (op0) == CONST_VECTOR
+             && GET_CODE (op1) == CONST_VECTOR)
+           {
+             rtvec v = rtvec_alloc (n_elts);
+             unsigned int i;
+
+             for (i = 0; i < n_elts; i++)
+               RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
+                                   ? CONST_VECTOR_ELT (op0, i)
+                                   : CONST_VECTOR_ELT (op1, i));
+             return gen_rtx_CONST_VECTOR (mode, v);
            }
        }
       break;
 
     default:
-      abort ();
+      gcc_unreachable ();
     }
 
   return 0;
 }
 
-/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
-   Return 0 if no simplifications is possible.  */
-rtx
-simplify_subreg (outermode, op, innermode, byte)
-     rtx op;
-     unsigned int byte;
-     enum machine_mode outermode, innermode;
-{
-  /* Little bit of sanity checking.  */
-  if (innermode == VOIDmode || outermode == VOIDmode
-      || innermode == BLKmode || outermode == BLKmode)
-    abort ();
-
-  if (GET_MODE (op) != innermode
-      && GET_MODE (op) != VOIDmode)
-    abort ();
+/* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_VECTOR,
+   returning another CONST_INT or CONST_DOUBLE or CONST_VECTOR.
 
-  if (byte % GET_MODE_SIZE (outermode)
-      || byte >= GET_MODE_SIZE (innermode))
-    abort ();
+   Works by unpacking OP into a collection of 8-bit values
+   represented as a little-endian array of 'unsigned char', selecting by BYTE,
+   and then repacking them again for OUTERMODE.  */
 
-  if (outermode == innermode && !byte)
+static rtx
+simplify_immed_subreg (enum machine_mode outermode, rtx op, 
+                      enum machine_mode innermode, unsigned int byte)
+{
+  /* We support up to 512-bit values (for V8DFmode).  */
+  enum {
+    max_bitsize = 512,
+    value_bit = 8,
+    value_mask = (1 << value_bit) - 1
+  };
+  unsigned char value[max_bitsize / value_bit];
+  int value_start;
+  int i;
+  int elem;
+
+  int num_elem;
+  rtx * elems;
+  int elem_bitsize;
+  rtx result_s;
+  rtvec result_v = NULL;
+  enum mode_class outer_class;
+  enum machine_mode outer_submode;
+
+  /* Some ports misuse CCmode.  */
+  if (GET_MODE_CLASS (outermode) == MODE_CC && GET_CODE (op) == CONST_INT)
     return op;
 
-  /* Attempt to simplify constant to non-SUBREG expression.  */
-  if (CONSTANT_P (op))
+  /* We have no way to represent a complex constant at the rtl level.  */
+  if (COMPLEX_MODE_P (outermode))
+    return NULL_RTX;
+
+  /* Unpack the value.  */
+
+  if (GET_CODE (op) == CONST_VECTOR)
+    {
+      num_elem = CONST_VECTOR_NUNITS (op);
+      elems = &CONST_VECTOR_ELT (op, 0);
+      elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
+    }
+  else
     {
-      int offset, part;
-      unsigned HOST_WIDE_INT val = 0;
-
-      /* ??? This code is partly redundant with code below, but can handle
-        the subregs of floats and similar corner cases.
-        Later it we should move all simplification code here and rewrite
-        GEN_LOWPART_IF_POSSIBLE, GEN_HIGHPART, OPERAND_SUBWORD and friends
-        using SIMPLIFY_SUBREG.  */
-      if (subreg_lowpart_offset (outermode, innermode) == byte)
+      num_elem = 1;
+      elems = &op;
+      elem_bitsize = max_bitsize;
+    }
+  /* If this asserts, it is too complicated; reducing value_bit may help.  */
+  gcc_assert (BITS_PER_UNIT % value_bit == 0);
+  /* I don't know how to handle endianness of sub-units.  */
+  gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
+  
+  for (elem = 0; elem < num_elem; elem++)
+    {
+      unsigned char * vp;
+      rtx el = elems[elem];
+      
+      /* Vectors are kept in target memory order.  (This is probably
+        a mistake.)  */
+      {
+       unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
+       unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize) 
+                         / BITS_PER_UNIT);
+       unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
+       unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
+       unsigned bytele = (subword_byte % UNITS_PER_WORD
+                        + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
+       vp = value + (bytele * BITS_PER_UNIT) / value_bit;
+      }
+       
+      switch (GET_CODE (el))
        {
-         rtx new = gen_lowpart_if_possible (outermode, op);
-         if (new)
-           return new;
-       }
+       case CONST_INT:
+         for (i = 0;
+              i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize; 
+              i += value_bit)
+           *vp++ = INTVAL (el) >> i;
+         /* CONST_INTs are always logically sign-extended.  */
+         for (; i < elem_bitsize; i += value_bit)
+           *vp++ = INTVAL (el) < 0 ? -1 : 0;
+         break;
+      
+       case CONST_DOUBLE:
+         if (GET_MODE (el) == VOIDmode)
+           {
+             /* If this triggers, someone should have generated a
+                CONST_INT instead.  */
+             gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
 
-      /* Similar comment as above apply here.  */
-      if (GET_MODE_SIZE (outermode) == UNITS_PER_WORD
-         && GET_MODE_SIZE (innermode) > UNITS_PER_WORD
-         && GET_MODE_CLASS (outermode) == MODE_INT)
-       {
-         rtx new = constant_subword (op,
-                                     (byte / UNITS_PER_WORD),
-                                     innermode);
-         if (new)
-           return new;
+             for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
+               *vp++ = CONST_DOUBLE_LOW (el) >> i;
+             while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
+               {
+                 *vp++
+                   = CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
+                 i += value_bit;
+               }
+             /* It shouldn't matter what's done here, so fill it with
+                zero.  */
+             for (; i < max_bitsize; i += value_bit)
+               *vp++ = 0;
+           }
+         else
+           {
+             long tmp[max_bitsize / 32];
+             int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
+
+             gcc_assert (GET_MODE_CLASS (GET_MODE (el)) == MODE_FLOAT);
+             gcc_assert (bitsize <= elem_bitsize);
+             gcc_assert (bitsize % value_bit == 0);
+
+             real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
+                             GET_MODE (el));
+
+             /* real_to_target produces its result in words affected by
+                FLOAT_WORDS_BIG_ENDIAN.  However, we ignore this,
+                and use WORDS_BIG_ENDIAN instead; see the documentation
+                of SUBREG in rtl.texi.  */
+             for (i = 0; i < bitsize; i += value_bit)
+               {
+                 int ibase;
+                 if (WORDS_BIG_ENDIAN)
+                   ibase = bitsize - 1 - i;
+                 else
+                   ibase = i;
+                 *vp++ = tmp[ibase / 32] >> i % 32;
+               }
+             
+             /* It shouldn't matter what's done here, so fill it with
+                zero.  */
+             for (; i < elem_bitsize; i += value_bit)
+               *vp++ = 0;
+           }
+         break;
+         
+       default:
+         gcc_unreachable ();
        }
+    }
 
-      offset = byte * BITS_PER_UNIT;
-      switch (GET_CODE (op))
-       {
-       case CONST_DOUBLE:
-         if (GET_MODE (op) != VOIDmode)
-           break;
+  /* Now, pick the right byte to start with.  */
+  /* Renumber BYTE so that the least-significant byte is byte 0.  A special
+     case is paradoxical SUBREGs, which shouldn't be adjusted since they
+     will already have offset 0.  */
+  if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
+    {
+      unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode) 
+                       - byte);
+      unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
+      unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
+      byte = (subword_byte % UNITS_PER_WORD
+             + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
+    }
 
-         /* We can't handle this case yet.  */
-         if (GET_MODE_BITSIZE (outermode) >= HOST_BITS_PER_WIDE_INT)
-           return NULL_RTX;
+  /* BYTE should still be inside OP.  (Note that BYTE is unsigned,
+     so if it's become negative it will instead be very large.)  */
+  gcc_assert (byte < GET_MODE_SIZE (innermode));
 
-         part = offset >= HOST_BITS_PER_WIDE_INT;
-         if ((BITS_PER_WORD > HOST_BITS_PER_WIDE_INT
-              && BYTES_BIG_ENDIAN)
-             || (BITS_PER_WORD <= HOST_BITS_PER_WIDE_INT
-                 && WORDS_BIG_ENDIAN))
-           part = !part;
-         val = part ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op);
-         offset %= HOST_BITS_PER_WIDE_INT;
+  /* Convert from bytes to chunks of size value_bit.  */
+  value_start = byte * (BITS_PER_UNIT / value_bit);
 
-         /* We've already picked the word we want from a double, so 
-            pretend this is actually an integer.  */
-         innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
+  /* Re-pack the value.  */
+    
+  if (VECTOR_MODE_P (outermode))
+    {
+      num_elem = GET_MODE_NUNITS (outermode);
+      result_v = rtvec_alloc (num_elem);
+      elems = &RTVEC_ELT (result_v, 0);
+      outer_submode = GET_MODE_INNER (outermode);
+    }
+  else
+    {
+      num_elem = 1;
+      elems = &result_s;
+      outer_submode = outermode;
+    }
 
-         /* FALLTHROUGH */
-       case CONST_INT:
-         if (GET_CODE (op) == CONST_INT)
-           val = INTVAL (op);
+  outer_class = GET_MODE_CLASS (outer_submode);
+  elem_bitsize = GET_MODE_BITSIZE (outer_submode);
 
-         /* We don't handle synthetizing of non-integral constants yet.  */
-         if (GET_MODE_CLASS (outermode) != MODE_INT)
-           return NULL_RTX;
+  gcc_assert (elem_bitsize % value_bit == 0);
+  gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
 
-         if (BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
-           {
-             if (WORDS_BIG_ENDIAN)
-               offset = (GET_MODE_BITSIZE (innermode)
-                         - GET_MODE_BITSIZE (outermode) - offset);
-             if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
-                 && GET_MODE_SIZE (outermode) < UNITS_PER_WORD)
-               offset = (offset + BITS_PER_WORD - GET_MODE_BITSIZE (outermode)
-                         - 2 * (offset % BITS_PER_WORD));
-           }
+  for (elem = 0; elem < num_elem; elem++)
+    {
+      unsigned char *vp;
+      
+      /* Vectors are stored in target memory order.  (This is probably
+        a mistake.)  */
+      {
+       unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
+       unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize) 
+                         / BITS_PER_UNIT);
+       unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
+       unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
+       unsigned bytele = (subword_byte % UNITS_PER_WORD
+                        + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
+       vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
+      }
 
-         if (offset >= HOST_BITS_PER_WIDE_INT)
-           return ((HOST_WIDE_INT) val < 0) ? constm1_rtx : const0_rtx;
-         else
-           {
-             val >>= offset;
-             if (GET_MODE_BITSIZE (outermode) < HOST_BITS_PER_WIDE_INT)
-               val = trunc_int_for_mode (val, outermode);
-             return GEN_INT (val);
-           }
-       default:
+      switch (outer_class)
+       {
+       case MODE_INT:
+       case MODE_PARTIAL_INT:
+         {
+           unsigned HOST_WIDE_INT hi = 0, lo = 0;
+
+           for (i = 0;
+                i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
+                i += value_bit)
+             lo |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
+           for (; i < elem_bitsize; i += value_bit)
+             hi |= ((HOST_WIDE_INT)(*vp++ & value_mask)
+                    << (i - HOST_BITS_PER_WIDE_INT));
+           
+           /* immed_double_const doesn't call trunc_int_for_mode.  I don't
+              know why.  */
+           if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
+             elems[elem] = gen_int_mode (lo, outer_submode);
+           else
+             elems[elem] = immed_double_const (lo, hi, outer_submode);
+         }
+         break;
+      
+       case MODE_FLOAT:
+         {
+           REAL_VALUE_TYPE r;
+           long tmp[max_bitsize / 32];
+           
+           /* real_from_target wants its input in words affected by
+              FLOAT_WORDS_BIG_ENDIAN.  However, we ignore this,
+              and use WORDS_BIG_ENDIAN instead; see the documentation
+              of SUBREG in rtl.texi.  */
+           for (i = 0; i < max_bitsize / 32; i++)
+             tmp[i] = 0;
+           for (i = 0; i < elem_bitsize; i += value_bit)
+             {
+               int ibase;
+               if (WORDS_BIG_ENDIAN)
+                 ibase = elem_bitsize - 1 - i;
+               else
+                 ibase = i;
+               tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
+             }
+
+           real_from_target (&r, tmp, outer_submode);
+           elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
+         }
          break;
+           
+       default:
+         gcc_unreachable ();
        }
     }
+  if (VECTOR_MODE_P (outermode))
+    return gen_rtx_CONST_VECTOR (outermode, result_v);
+  else
+    return result_s;
+}
+
+/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
+   Return 0 if no simplifications are possible.  */
+rtx
+simplify_subreg (enum machine_mode outermode, rtx op,
+                enum machine_mode innermode, unsigned int byte)
+{
+  /* Little bit of sanity checking.  */
+  gcc_assert (innermode != VOIDmode);
+  gcc_assert (outermode != VOIDmode);
+  gcc_assert (innermode != BLKmode);
+  gcc_assert (outermode != BLKmode);
+
+  gcc_assert (GET_MODE (op) == innermode
+             || GET_MODE (op) == VOIDmode);
+
+  gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
+  gcc_assert (byte < GET_MODE_SIZE (innermode));
+
+  if (outermode == innermode && !byte)
+    return op;
+
+  if (GET_CODE (op) == CONST_INT
+      || GET_CODE (op) == CONST_DOUBLE
+      || GET_CODE (op) == CONST_VECTOR)
+    return simplify_immed_subreg (outermode, op, innermode, byte);
 
   /* Changing mode twice with SUBREG => just change it once,
      or not at all if changing back op starting mode.  */
@@ -2502,7 +3722,7 @@ simplify_subreg (outermode, op, innermode, byte)
     {
       enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
       int final_offset = byte + SUBREG_BYTE (op);
-      rtx new;
+      rtx newx;
 
       if (outermode == innermostmode
          && byte == 0 && SUBREG_BYTE (op) == 0)
@@ -2558,13 +3778,15 @@ simplify_subreg (outermode, op, innermode, byte)
            return NULL_RTX;
        }
 
-      /* Recurse for futher possible simplifications.  */
-      new = simplify_subreg (outermode, SUBREG_REG (op),
-                            GET_MODE (SUBREG_REG (op)),
-                            final_offset);
-      if (new)
-       return new;
-      return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
+      /* Recurse for further possible simplifications.  */
+      newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
+                             final_offset);
+      if (newx)
+       return newx;
+      if (validate_subreg (outermode, innermostmode,
+                          SUBREG_REG (op), final_offset))
+        return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
+      return NULL_RTX;
     }
 
   /* SUBREG of a hard register => just change the register number
@@ -2573,17 +3795,12 @@ simplify_subreg (outermode, op, innermode, byte)
      frame, or argument pointer, leave this as a SUBREG.  */
 
   if (REG_P (op)
-      && (! REG_FUNCTION_VALUE_P (op)
-         || ! rtx_equal_function_value_matters)
-#ifdef CLASS_CANNOT_CHANGE_MODE
-      && ! (CLASS_CANNOT_CHANGE_MODE_P (outermode, innermode)
+      && REGNO (op) < FIRST_PSEUDO_REGISTER
+#ifdef CANNOT_CHANGE_MODE_CLASS
+      && ! (REG_CANNOT_CHANGE_MODE_P (REGNO (op), innermode, outermode)
            && GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
-           && GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT
-           && (TEST_HARD_REG_BIT
-               (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
-                REGNO (op))))
+           && GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT)
 #endif
-      && REGNO (op) < FIRST_PSEUDO_REGISTER
       && ((reload_completed && !frame_pointer_needed)
          || (REGNO (op) != FRAME_POINTER_REGNUM
 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
@@ -2593,21 +3810,24 @@ simplify_subreg (outermode, op, innermode, byte)
 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
       && REGNO (op) != ARG_POINTER_REGNUM
 #endif
-      && REGNO (op) != STACK_POINTER_REGNUM)
+      && REGNO (op) != STACK_POINTER_REGNUM
+      && subreg_offset_representable_p (REGNO (op), innermode,
+                                       byte, outermode))
     {
-      int final_regno = subreg_hard_regno (gen_rtx_SUBREG (outermode, op, byte),
-                                          0);
+      unsigned int regno = REGNO (op);
+      unsigned int final_regno
+       = regno + subreg_regno_offset (regno, innermode, byte, outermode);
 
       /* ??? We do allow it if the current REG is not valid for
         its mode.  This is a kludge to work around how float/complex
-        arguments are passed on 32-bit Sparc and should be fixed.  */
+        arguments are passed on 32-bit SPARC and should be fixed.  */
       if (HARD_REGNO_MODE_OK (final_regno, outermode)
-         || ! HARD_REGNO_MODE_OK (REGNO (op), innermode))
+         || ! HARD_REGNO_MODE_OK (regno, innermode))
        {
-         rtx x = gen_rtx_REG (outermode, final_regno);
+         rtx x = gen_rtx_REG_offset (op, outermode, final_regno, byte);
 
          /* Propagate original regno.  We don't have any way to specify
-            the offset inside orignal regno, so do so only for lowpart.
+            the offset inside original regno, so do so only for lowpart.
             The information is used only by alias analysis that can not
             grog partial register anyway.  */
 
@@ -2622,7 +3842,7 @@ simplify_subreg (outermode, op, innermode, byte)
      SUBREG with it.  Don't do this if the MEM has a mode-dependent address
      or if we would be widening it.  */
 
-  if (GET_CODE (op) == MEM
+  if (MEM_P (op)
       && ! mode_dependent_address_p (XEXP (op, 0))
       /* Allow splitting of volatile memory references in case we don't
          have instruction to move the whole thing.  */
@@ -2635,55 +3855,133 @@ simplify_subreg (outermode, op, innermode, byte)
      of real and imaginary part.  */
   if (GET_CODE (op) == CONCAT)
     {
-      int is_realpart = byte < GET_MODE_UNIT_SIZE (innermode);
-      rtx part = is_realpart ? XEXP (op, 0) : XEXP (op, 1);
-      unsigned int final_offset;
-      rtx res;
+      unsigned int inner_size, final_offset;
+      rtx part, res;
+
+      inner_size = GET_MODE_UNIT_SIZE (innermode);
+      part = byte < inner_size ? XEXP (op, 0) : XEXP (op, 1);
+      final_offset = byte % inner_size;
+      if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
+       return NULL_RTX;
 
-      final_offset = byte % (GET_MODE_UNIT_SIZE (innermode));
       res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
       if (res)
        return res;
-      /* We can at least simplify it by referring directly to the relevant part.  */
-      return gen_rtx_SUBREG (outermode, part, final_offset);
+      if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
+       return gen_rtx_SUBREG (outermode, part, final_offset);
+      return NULL_RTX;
+    }
+
+  /* Optimize SUBREG truncations of zero and sign extended values.  */
+  if ((GET_CODE (op) == ZERO_EXTEND
+       || GET_CODE (op) == SIGN_EXTEND)
+      && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode))
+    {
+      unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
+
+      /* If we're requesting the lowpart of a zero or sign extension,
+        there are three possibilities.  If the outermode is the same
+        as the origmode, we can omit both the extension and the subreg.
+        If the outermode is not larger than the origmode, we can apply
+        the truncation without the extension.  Finally, if the outermode
+        is larger than the origmode, but both are integer modes, we
+        can just extend to the appropriate mode.  */
+      if (bitpos == 0)
+       {
+         enum machine_mode origmode = GET_MODE (XEXP (op, 0));
+         if (outermode == origmode)
+           return XEXP (op, 0);
+         if (GET_MODE_BITSIZE (outermode) <= GET_MODE_BITSIZE (origmode))
+           return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
+                                       subreg_lowpart_offset (outermode,
+                                                              origmode));
+         if (SCALAR_INT_MODE_P (outermode))
+           return simplify_gen_unary (GET_CODE (op), outermode,
+                                      XEXP (op, 0), origmode);
+       }
+
+      /* A SUBREG resulting from a zero extension may fold to zero if
+        it extracts higher bits that the ZERO_EXTEND's source bits.  */
+      if (GET_CODE (op) == ZERO_EXTEND
+         && bitpos >= GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))))
+       return CONST0_RTX (outermode);
     }
 
+  /* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
+     to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
+     the outer subreg is effectively a truncation to the original mode.  */
+  if ((GET_CODE (op) == LSHIFTRT
+       || GET_CODE (op) == ASHIFTRT)
+      && SCALAR_INT_MODE_P (outermode)
+      /* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
+        to avoid the possibility that an outer LSHIFTRT shifts by more
+        than the sign extension's sign_bit_copies and introduces zeros
+        into the high bits of the result.  */
+      && (2 * GET_MODE_BITSIZE (outermode)) <= GET_MODE_BITSIZE (innermode)
+      && GET_CODE (XEXP (op, 1)) == CONST_INT
+      && GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
+      && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
+      && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
+      && subreg_lsb_1 (outermode, innermode, byte) == 0)
+    return simplify_gen_binary (ASHIFTRT, outermode,
+                               XEXP (XEXP (op, 0), 0), XEXP (op, 1));
+
+  /* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
+     to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
+     the outer subreg is effectively a truncation to the original mode.  */
+  if ((GET_CODE (op) == LSHIFTRT
+       || GET_CODE (op) == ASHIFTRT)
+      && SCALAR_INT_MODE_P (outermode)
+      && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
+      && GET_CODE (XEXP (op, 1)) == CONST_INT
+      && GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
+      && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
+      && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
+      && subreg_lsb_1 (outermode, innermode, byte) == 0)
+    return simplify_gen_binary (LSHIFTRT, outermode,
+                               XEXP (XEXP (op, 0), 0), XEXP (op, 1));
+
+  /* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
+     to (ashift:QI (x:QI) C), where C is a suitable small constant and
+     the outer subreg is effectively a truncation to the original mode.  */
+  if (GET_CODE (op) == ASHIFT
+      && SCALAR_INT_MODE_P (outermode)
+      && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
+      && GET_CODE (XEXP (op, 1)) == CONST_INT
+      && (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
+         || GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
+      && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
+      && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
+      && subreg_lsb_1 (outermode, innermode, byte) == 0)
+    return simplify_gen_binary (ASHIFT, outermode,
+                               XEXP (XEXP (op, 0), 0), XEXP (op, 1));
+
   return NULL_RTX;
 }
+
 /* Make a SUBREG operation or equivalent if it folds.  */
 
 rtx
-simplify_gen_subreg (outermode, op, innermode, byte)
-     rtx op;
-     unsigned int byte;
-     enum machine_mode outermode, innermode;
+simplify_gen_subreg (enum machine_mode outermode, rtx op,
+                    enum machine_mode innermode, unsigned int byte)
 {
-  rtx new;
-  /* Little bit of sanity checking.  */
-  if (innermode == VOIDmode || outermode == VOIDmode
-      || innermode == BLKmode || outermode == BLKmode)
-    abort ();
+  rtx newx;
 
-  if (GET_MODE (op) != innermode
-      && GET_MODE (op) != VOIDmode)
-    abort ();
+  newx = simplify_subreg (outermode, op, innermode, byte);
+  if (newx)
+    return newx;
 
-  if (byte % GET_MODE_SIZE (outermode)
-      || byte >= GET_MODE_SIZE (innermode))
-    abort ();
-
-  if (GET_CODE (op) == QUEUED)
+  if (GET_CODE (op) == SUBREG
+      || GET_CODE (op) == CONCAT
+      || GET_MODE (op) == VOIDmode)
     return NULL_RTX;
 
-  new = simplify_subreg (outermode, op, innermode, byte);
-  if (new)
-    return new;
-
-  if (GET_CODE (op) == SUBREG || GET_MODE (op) == VOIDmode)
-    return NULL_RTX;
+  if (validate_subreg (outermode, innermode, op, byte))
+    return gen_rtx_SUBREG (outermode, op, byte);
 
-  return gen_rtx_SUBREG (outermode, op, byte);
+  return NULL_RTX;
 }
+
 /* Simplify X, an rtx expression.
 
    Return the simplified expression or NULL if no simplifications
@@ -2692,7 +3990,7 @@ simplify_gen_subreg (outermode, op, innermode, byte)
    This is the preferred entry point into the simplification routines;
    however, we still allow passes to call the more specific routines.
 
-   Right now GCC has three (yes, three) major bodies of RTL simplficiation
+   Right now GCC has three (yes, three) major bodies of RTL simplification
    code that need to be unified.
 
        1. fold_rtx in cse.c.  This code uses various CSE specific
@@ -2723,55 +4021,62 @@ simplify_gen_subreg (outermode, op, innermode, byte)
     maintain and improve.  It's totally silly that when we add a
     simplification that it needs to be added to 4 places (3 for RTL
     simplification and 1 for tree simplification.  */
-          
+
 rtx
-simplify_rtx (x)
-     rtx x;
+simplify_rtx (rtx x)
 {
   enum rtx_code code = GET_CODE (x);
   enum machine_mode mode = GET_MODE (x);
 
   switch (GET_RTX_CLASS (code))
     {
-    case '1':
+    case RTX_UNARY:
       return simplify_unary_operation (code, mode,
                                       XEXP (x, 0), GET_MODE (XEXP (x, 0)));
-    case 'c':
+    case RTX_COMM_ARITH:
       if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
-       {
-         rtx tem;
+       return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
 
-         tem = XEXP (x, 0);
-         XEXP (x, 0) = XEXP (x, 1);
-         XEXP (x, 1) = tem;
-         return simplify_binary_operation (code, mode,
-                                           XEXP (x, 0), XEXP (x, 1));
-       }
+      /* Fall through....  */
 
-    case '2':
+    case RTX_BIN_ARITH:
       return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
 
-    case '3':
-    case 'b':
+    case RTX_TERNARY:
+    case RTX_BITFIELD_OPS:
       return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
                                         XEXP (x, 0), XEXP (x, 1),
                                         XEXP (x, 2));
 
-    case '<':
-      return simplify_relational_operation (code,
-                                           ((GET_MODE (XEXP (x, 0))
-                                             != VOIDmode)
-                                            ? GET_MODE (XEXP (x, 0))
-                                            : GET_MODE (XEXP (x, 1))),
-                                           XEXP (x, 0), XEXP (x, 1));
-    case 'x':
-      /* The only case we try to handle is a SUBREG.  */
+    case RTX_COMPARE:
+    case RTX_COMM_COMPARE:
+      return simplify_relational_operation (code, mode,
+                                            ((GET_MODE (XEXP (x, 0))
+                                             != VOIDmode)
+                                            ? GET_MODE (XEXP (x, 0))
+                                            : GET_MODE (XEXP (x, 1))),
+                                            XEXP (x, 0),
+                                            XEXP (x, 1));
+
+    case RTX_EXTRA:
       if (code == SUBREG)
-        return simplify_gen_subreg (mode, SUBREG_REG (x),
+       return simplify_gen_subreg (mode, SUBREG_REG (x),
                                    GET_MODE (SUBREG_REG (x)),
                                    SUBREG_BYTE (x));
-      return NULL;
+      break;
+
+    case RTX_OBJ:
+      if (code == LO_SUM)
+       {
+         /* Convert (lo_sum (high FOO) FOO) to FOO.  */
+         if (GET_CODE (XEXP (x, 0)) == HIGH
+             && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
+         return XEXP (x, 1);
+       }
+      break;
+
     default:
-      return NULL;
+      break;
     }
+  return NULL;
 }