OSDN Git Service

Merge branch 'trunk' of git://gcc.gnu.org/git/gcc into rework
[pf3gnuchains/gcc-fork.git] / gcc / modulo-sched.c
index abb5020..9179de5 100644 (file)
@@ -1,5 +1,5 @@
 /* Swing Modulo Scheduling implementation.
-   Copyright (C) 2004, 2005
+   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
    Free Software Foundation, Inc.
    Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
 
@@ -7,7 +7,7 @@ This file is part of GCC.
 
 GCC is free software; you can redistribute it and/or modify it under
 the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
+Software Foundation; either version 3, or (at your option) any later
 version.
 
 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
@@ -16,16 +16,15 @@ FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.
 
 You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING.  If not, write to the Free
-Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-02111-1307, USA.  */
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
 
 
 #include "config.h"
 #include "system.h"
 #include "coretypes.h"
 #include "tm.h"
-#include "toplev.h"
+#include "diagnostic-core.h"
 #include "rtl.h"
 #include "tm_p.h"
 #include "hard-reg-set.h"
@@ -35,7 +34,6 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 #include "insn-config.h"
 #include "insn-attr.h"
 #include "except.h"
-#include "toplev.h"
 #include "recog.h"
 #include "sched-int.h"
 #include "target.h"
@@ -45,8 +43,11 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 #include "expr.h"
 #include "params.h"
 #include "gcov-io.h"
-#include "df.h"
 #include "ddg.h"
+#include "timevar.h"
+#include "tree-pass.h"
+#include "dbgcnt.h"
+#include "df.h"
 
 #ifdef INSN_SCHEDULING
 
@@ -82,8 +83,21 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
       perform modulo variable expansion for live ranges that span more than
       II cycles (i.e. use register copies to prevent a def from overwriting
       itself before reaching the use).
-*/
 
+    SMS works with countable loops (1) whose control part can be easily
+    decoupled from the rest of the loop and (2) whose loop count can
+    be easily adjusted.  This is because we peel a constant number of
+    iterations into a prologue and epilogue for which we want to avoid
+    emitting the control part, and a kernel which is to iterate that
+    constant number of iterations less than the original loop.  So the
+    control part should be a set of insns clearly identified and having
+    its own iv, not otherwise used in the loop (at-least for now), which
+    initializes a register before the loop to the number of iterations.
+    Currently SMS relies on the do-loop pattern to recognize such loops,
+    where (1) the control part comprises of all insns defining and/or
+    using a certain 'count' register and (2) the loop count can be
+    adjusted by modifying this register prior to the loop.
+    TODO: Rely on cfgloop analysis instead.  */
 \f
 /* This page defines partial-schedule structures and functions for
    modulo scheduling.  */
@@ -105,8 +119,6 @@ typedef struct ps_insn *ps_insn_ptr;
 #define PS_STAGE_COUNT(ps) ((PS_MAX_CYCLE (ps) - PS_MIN_CYCLE (ps) \
                             + 1 + (ps)->ii - 1) / (ps)->ii)
 
-#define CFG_HOOKS cfg_layout_rtl_cfg_hooks
-
 /* A single instruction in the partial schedule.  */
 struct ps_insn
 {
@@ -145,40 +157,44 @@ struct partial_schedule
   ddg_ptr g;   /* The DDG of the insns in the partial schedule.  */
 };
 
+/* We use this to record all the register replacements we do in
+   the kernel so we can undo SMS if it is not profitable.  */
+struct undo_replace_buff_elem
+{
+  rtx insn;
+  rtx orig_reg;
+  rtx new_reg;
+  struct undo_replace_buff_elem *next;
+};
+
+
 
 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
 static void free_partial_schedule (partial_schedule_ptr);
 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
 void print_partial_schedule (partial_schedule_ptr, FILE *);
+static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
                                                ddg_node_ptr node, int cycle,
                                                sbitmap must_precede,
                                                sbitmap must_follow);
 static void rotate_partial_schedule (partial_schedule_ptr, int);
+void set_row_column_for_ps (partial_schedule_ptr);
+static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
+static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
+
 \f
 /* This page defines constants and structures for the modulo scheduling
    driver.  */
 
-/* As in haifa-sched.c:  */
-/* issue_rate is the number of insns that can be scheduled in the same
-   machine cycle.  It can be defined in the config/mach/mach.h file,
-   otherwise we set it to 1.  */
-
-static int issue_rate;
-
-/* For printing statistics.  */
-static FILE *stats_file;
-
-static int sms_order_nodes (ddg_ptr, int, int * result);
+static int sms_order_nodes (ddg_ptr, int, int *, int *);
 static void set_node_sched_params (ddg_ptr);
-static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int,
-                                                  int *, FILE*);
-static void permute_partial_schedule (partial_schedule_ptr ps, rtx last);
-static void generate_prolog_epilog (partial_schedule_ptr, rtx, rtx, int);
-static void duplicate_insns_of_cycles (partial_schedule_ptr ps,
-                                      int from_stage, int to_stage,
-                                      int is_prolog);
-
+static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
+static void permute_partial_schedule (partial_schedule_ptr, rtx);
+static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
+                                    rtx, rtx);
+static void duplicate_insns_of_cycles (partial_schedule_ptr,
+                                      int, int, int, rtx);
 
 #define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap)
 #define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time)
@@ -219,7 +235,7 @@ typedef struct node_sched_params
    code in order to use sched_analyze() for computing the dependencies.
    They are used when initializing the sched_info structure.  */
 static const char *
-sms_print_insn (rtx insn, int aligned ATTRIBUTE_UNUSED)
+sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
 {
   static char tmp[80];
 
@@ -227,12 +243,6 @@ sms_print_insn (rtx insn, int aligned ATTRIBUTE_UNUSED)
   return tmp;
 }
 
-static int
-contributes_to_priority (rtx next, rtx insn)
-{
-  return BLOCK_NUM (next) == BLOCK_NUM (insn);
-}
-
 static void
 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
                               regset cond_exec ATTRIBUTE_UNUSED,
@@ -241,7 +251,17 @@ compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
 {
 }
 
-static struct sched_info sms_sched_info =
+static struct common_sched_info_def sms_common_sched_info;
+
+static struct sched_deps_info_def sms_sched_deps_info =
+  {
+    compute_jump_reg_dependencies,
+    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
+    NULL,
+    0, 0, 0
+  };
+
+static struct haifa_sched_info sms_sched_info =
 {
   NULL,
   NULL,
@@ -249,82 +269,67 @@ static struct sched_info sms_sched_info =
   NULL,
   NULL,
   sms_print_insn,
-  contributes_to_priority,
-  compute_jump_reg_dependencies,
+  NULL,
+  NULL, /* insn_finishes_block_p */
   NULL, NULL,
   NULL, NULL,
-  0, 0, 0
-};
+  0, 0,
 
+  NULL, NULL, NULL,
+  0
+};
 
-/* Return the register decremented and tested or zero if it is not a decrement
-   and branch jump insn (similar to doloop_condition_get).  */
+/* Given HEAD and TAIL which are the first and last insns in a loop;
+   return the register which controls the loop.  Return zero if it has
+   more than one occurrence in the loop besides the control part or the
+   do-loop pattern is not of the form we expect.  */
 static rtx
-doloop_register_get (rtx insn, rtx *comp)
+doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
 {
-  rtx pattern, cmp, inc, reg, condition;
+#ifdef HAVE_doloop_end
+  rtx reg, condition, insn, first_insn_not_to_check;
 
-  if (!JUMP_P (insn))
+  if (!JUMP_P (tail))
     return NULL_RTX;
-  pattern = PATTERN (insn);
 
-  /* The canonical doloop pattern we expect is:
-
-     (parallel [(set (pc) (if_then_else (condition)
-                                       (label_ref (label))
-                                       (pc)))
-               (set (reg) (plus (reg) (const_int -1)))
-               (additional clobbers and uses)])
-
-    where condition is further restricted to be
-      (ne (reg) (const_int 1)).  */
-
-  if (GET_CODE (pattern) != PARALLEL)
+  /* TODO: Free SMS's dependence on doloop_condition_get.  */
+  condition = doloop_condition_get (tail);
+  if (! condition)
     return NULL_RTX;
 
-  cmp = XVECEXP (pattern, 0, 0);
-  inc = XVECEXP (pattern, 0, 1);
-  /* Return the compare rtx.  */
-  *comp = cmp;
-
-  /* Check for (set (reg) (something)).  */
-  if (GET_CODE (inc) != SET || ! REG_P (SET_DEST (inc)))
-    return NULL_RTX;
-
-  /* Extract loop counter register.  */
-  reg = SET_DEST (inc);
-
-  /* Check if something = (plus (reg) (const_int -1)).  */
-  if (GET_CODE (SET_SRC (inc)) != PLUS
-      || XEXP (SET_SRC (inc), 0) != reg
-      || XEXP (SET_SRC (inc), 1) != constm1_rtx)
-    return NULL_RTX;
-
-  /* Check for (set (pc) (if_then_else (condition)
-                                      (label_ref (label))
-                                      (pc))).  */
-  if (GET_CODE (cmp) != SET
-      || SET_DEST (cmp) != pc_rtx
-      || GET_CODE (SET_SRC (cmp)) != IF_THEN_ELSE
-      || GET_CODE (XEXP (SET_SRC (cmp), 1)) != LABEL_REF
-      || XEXP (SET_SRC (cmp), 2) != pc_rtx)
-    return NULL_RTX;
+  if (REG_P (XEXP (condition, 0)))
+    reg = XEXP (condition, 0);
+  else if (GET_CODE (XEXP (condition, 0)) == PLUS
+          && REG_P (XEXP (XEXP (condition, 0), 0)))
+    reg = XEXP (XEXP (condition, 0), 0);
+  else
+    gcc_unreachable ();
 
-  /* Extract loop termination condition.  */
-  condition = XEXP (SET_SRC (cmp), 0);
+  /* Check that the COUNT_REG has no other occurrences in the loop
+     until the decrement.  We assume the control part consists of
+     either a single (parallel) branch-on-count or a (non-parallel)
+     branch immediately preceded by a single (decrement) insn.  */
+  first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
+                             : PREV_INSN (tail));
 
-  /* Check if condition = (ne (reg) (const_int 1)), which is more
-     restrictive than the check in doloop_condition_get:
-     if ((GET_CODE (condition) != GE && GET_CODE (condition) != NE)
-        || GET_CODE (XEXP (condition, 1)) != CONST_INT).  */
-  if (GET_CODE (condition) != NE
-      || XEXP (condition, 1) != const1_rtx)
-    return NULL_RTX;
+  for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
+    if (reg_mentioned_p (reg, insn))
+      {
+        if (dump_file)
+        {
+          fprintf (dump_file, "SMS count_reg found ");
+          print_rtl_single (dump_file, reg);
+          fprintf (dump_file, " outside control in insn:\n");
+          print_rtl_single (dump_file, insn);
+        }
 
-  if (XEXP (condition, 0) == reg)
-    return reg;
+        return NULL_RTX;
+      }
 
+  return reg;
+#else
   return NULL_RTX;
+#endif
 }
 
 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
@@ -337,15 +342,19 @@ const_iteration_count (rtx count_reg, basic_block pre_header,
 {
   rtx insn;
   rtx head, tail;
-  get_block_head_tail (pre_header->index, &head, &tail);
+
+  if (! pre_header)
+    return NULL_RTX;
+
+  get_ebb_head_tail (pre_header, pre_header, &head, &tail);
 
   for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
-    if (INSN_P (insn) && single_set (insn) &&
+    if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
        rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
       {
        rtx pat = single_set (insn);
 
-       if (GET_CODE (SET_SRC (pat)) == CONST_INT)
+       if (CONST_INT_P (SET_SRC (pat)))
          {
            *count = INTVAL (SET_SRC (pat));
            return insn;
@@ -363,7 +372,10 @@ const_iteration_count (rtx count_reg, basic_block pre_header,
 static int
 res_MII (ddg_ptr g)
 {
-  return (g->num_nodes / issue_rate);
+  if (targetm.sched.sms_res_mii)
+    return targetm.sched.sms_res_mii (g);
+
+  return ((g->num_nodes - g->num_debug) / issue_rate);
 }
 
 
@@ -395,66 +407,50 @@ set_node_sched_params (ddg_ptr g)
 }
 
 static void
-print_node_sched_params (FILE * dump_file, int num_nodes)
+print_node_sched_params (FILE *file, int num_nodes, ddg_ptr g)
 {
   int i;
 
+  if (! file)
+    return;
   for (i = 0; i < num_nodes; i++)
     {
       node_sched_params_ptr nsp = &node_sched_params[i];
       rtx reg_move = nsp->first_reg_move;
       int j;
 
-      fprintf (dump_file, "Node %d:\n", i);
-      fprintf (dump_file, " asap = %d:\n", nsp->asap);
-      fprintf (dump_file, " time = %d:\n", nsp->time);
-      fprintf (dump_file, " nreg_moves = %d:\n", nsp->nreg_moves);
+      fprintf (file, "Node = %d; INSN = %d\n", i,
+              (INSN_UID (g->nodes[i].insn)));
+      fprintf (file, " asap = %d:\n", nsp->asap);
+      fprintf (file, " time = %d:\n", nsp->time);
+      fprintf (file, " nreg_moves = %d:\n", nsp->nreg_moves);
       for (j = 0; j < nsp->nreg_moves; j++)
        {
-         fprintf (dump_file, " reg_move = ");
-         print_rtl_single (dump_file, reg_move);
+         fprintf (file, " reg_move = ");
+         print_rtl_single (file, reg_move);
          reg_move = PREV_INSN (reg_move);
        }
     }
 }
 
-/* Calculate an upper bound for II.  SMS should not schedule the loop if it
-   requires more cycles than this bound.  Currently set to the sum of the
-   longest latency edge for each node.  Reset based on experiments.  */
-static int
-calculate_maxii (ddg_ptr g)
-{
-  int i;
-  int maxii = 0;
-
-  for (i = 0; i < g->num_nodes; i++)
-    {
-      ddg_node_ptr u = &g->nodes[i];
-      ddg_edge_ptr e;
-      int max_edge_latency = 0;
-
-      for (e = u->out; e; e = e->next_out)
-       max_edge_latency = MAX (max_edge_latency, e->latency);
-
-      maxii += max_edge_latency;
-    }
-  return maxii;
-}
-
-
-/* Given the partial schedule, generate register moves when the length
-   of the register live range is more than ii; the number of moves is
-   determined according to the following equation:
-               SCHED_TIME (use) - SCHED_TIME (def)   { 1 broken loop-carried
-   nreg_moves = ----------------------------------- - {   dependence.
-                             ii                      { 0 if not.
-   This handles the modulo-variable-expansions (mve's) needed for the ps.  */
-static void
-generate_reg_moves (partial_schedule_ptr ps)
+/*
+   Breaking intra-loop register anti-dependences:
+   Each intra-loop register anti-dependence implies a cross-iteration true
+   dependence of distance 1. Therefore, we can remove such false dependencies
+   and figure out if the partial schedule broke them by checking if (for a
+   true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
+   if so generate a register move.   The number of such moves is equal to:
+              SCHED_TIME (use) - SCHED_TIME (def)       { 0 broken
+   nreg_moves = ----------------------------------- + 1 - {   dependence.
+                            ii                          { 1 if not.
+*/
+static struct undo_replace_buff_elem *
+generate_reg_moves (partial_schedule_ptr ps, bool rescan)
 {
   ddg_ptr g = ps->g;
   int ii = ps->ii;
   int i;
+  struct undo_replace_buff_elem *reg_move_replaces = NULL;
 
   for (i = 0; i < g->num_nodes; i++)
     {
@@ -472,6 +468,9 @@ generate_reg_moves (partial_schedule_ptr ps)
          {
            int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
 
+            if (e->distance == 1)
+              nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
+
            /* If dest precedes src in the schedule of the kernel, then dest
               will read before src writes and we can save one reg_copy.  */
            if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
@@ -495,6 +494,9 @@ generate_reg_moves (partial_schedule_ptr ps)
          {
            int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
 
+           if (e->distance == 1)
+             dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
+
            if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
                && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
              dest_copy--;
@@ -506,25 +508,64 @@ generate_reg_moves (partial_schedule_ptr ps)
       /* Now generate the reg_moves, attaching relevant uses to them.  */
       SCHED_NREG_MOVES (u) = nreg_moves;
       old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn)));
-      last_reg_move = u->insn;
+      /* Insert the reg-moves right before the notes which precede
+         the insn they relates to.  */
+      last_reg_move = u->first_note;
 
       for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
        {
-         int i_use;
+         unsigned int i_use = 0;
          rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg));
          rtx reg_move = gen_move_insn (new_reg, prev_reg);
+         sbitmap_iterator sbi;
 
-         add_insn_before (reg_move, last_reg_move);
+         add_insn_before (reg_move, last_reg_move, NULL);
          last_reg_move = reg_move;
 
          if (!SCHED_FIRST_REG_MOVE (u))
            SCHED_FIRST_REG_MOVE (u) = reg_move;
 
-         EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use,
-           replace_rtx (g->nodes[i_use].insn, old_reg, new_reg));
+         EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, sbi)
+           {
+             struct undo_replace_buff_elem *rep;
+
+             rep = (struct undo_replace_buff_elem *)
+                   xcalloc (1, sizeof (struct undo_replace_buff_elem));
+             rep->insn = g->nodes[i_use].insn;
+             rep->orig_reg = old_reg;
+             rep->new_reg = new_reg;
+
+             if (! reg_move_replaces)
+               reg_move_replaces = rep;
+             else
+               {
+                 rep->next = reg_move_replaces;
+                 reg_move_replaces = rep;
+               }
+
+             replace_rtx (g->nodes[i_use].insn, old_reg, new_reg);
+             if (rescan)
+               df_insn_rescan (g->nodes[i_use].insn);
+           }
 
          prev_reg = new_reg;
        }
+      sbitmap_vector_free (uses_of_defs);
+    }
+  return reg_move_replaces;
+}
+
+/* Free memory allocated for the undo buffer.  */
+static void
+free_undo_replace_buff (struct undo_replace_buff_elem *reg_move_replaces)
+{
+
+  while (reg_move_replaces)
+    {
+      struct undo_replace_buff_elem *rep = reg_move_replaces;
+
+      reg_move_replaces = reg_move_replaces->next;
+      free (rep);
     }
 }
 
@@ -533,23 +574,27 @@ generate_reg_moves (partial_schedule_ptr ps)
 static void
 normalize_sched_times (partial_schedule_ptr ps)
 {
-  int i;
-  ddg_ptr g = ps->g;
+  int row;
   int amount = PS_MIN_CYCLE (ps);
   int ii = ps->ii;
+  ps_insn_ptr crr_insn;
 
-  for (i = 0; i < g->num_nodes; i++)
-    {
-      ddg_node_ptr u = &g->nodes[i];
-      int normalized_time = SCHED_TIME (u) - amount;
-
-      if (normalized_time < 0)
-       abort ();
-
-      SCHED_TIME (u) = normalized_time;
-      SCHED_ROW (u) = normalized_time % ii;
-      SCHED_STAGE (u) = normalized_time / ii;
-    }
+  for (row = 0; row < ii; row++)
+    for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
+      {
+       ddg_node_ptr u = crr_insn->node;
+       int normalized_time = SCHED_TIME (u) - amount;
+
+       if (dump_file)
+         fprintf (dump_file, "crr_insn->node=%d, crr_insn->cycle=%d,\
+                  min_cycle=%d\n", crr_insn->node->cuid, SCHED_TIME
+                  (u), ps->min_cycle);
+       gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
+       gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
+       SCHED_TIME (u) = normalized_time;
+       SCHED_ROW (u) = normalized_time % ii;
+       SCHED_STAGE (u) = normalized_time / ii;
+      }
 }
 
 /* Set SCHED_COLUMN of each node according to its position in PS.  */
@@ -585,12 +630,9 @@ permute_partial_schedule (partial_schedule_ptr ps, rtx last)
                            PREV_INSN (last));
 }
 
-/* Used to generate the prologue & epilogue.  Duplicate the subset of
-   nodes whose stages are between FROM_STAGE and TO_STAGE (inclusive
-   of both), together with a prefix/suffix of their reg_moves.  */
 static void
 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
-                          int to_stage, int for_prolog)
+                          int to_stage, int for_prolog, rtx count_reg)
 {
   int row;
   ps_insn_ptr ps_ij;
@@ -602,12 +644,19 @@ duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
        int j, i_reg_moves;
        rtx reg_move = NULL_RTX;
 
+        /* Do not duplicate any insn which refers to count_reg as it
+           belongs to the control part.
+           TODO: This should be done by analyzing the control part of
+           the loop.  */
+        if (reg_mentioned_p (count_reg, u_node->insn))
+          continue;
+
        if (for_prolog)
          {
            /* SCHED_STAGE (u_node) >= from_stage == 0.  Generate increasing
               number of reg_moves starting with the second occurrence of
               u_node, which is generated if its SCHED_STAGE <= to_stage.  */
-           i_reg_moves = to_stage - SCHED_STAGE (u_node);
+           i_reg_moves = to_stage - SCHED_STAGE (u_node) + 1;
            i_reg_moves = MAX (i_reg_moves, 0);
            i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
 
@@ -641,7 +690,6 @@ duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
 
        for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move))
          emit_insn (copy_rtx (PATTERN (reg_move)));
-
        if (SCHED_STAGE (u_node) >= from_stage
            && SCHED_STAGE (u_node) <= to_stage)
          duplicate_insn_chain (u_node->first_note, u_node->insn);
@@ -651,167 +699,209 @@ duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
 
 /* Generate the instructions (including reg_moves) for prolog & epilog.  */
 static void
-generate_prolog_epilog (partial_schedule_ptr ps, rtx orig_loop_beg,
-                       rtx orig_loop_end, int unknown_count)
+generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
+                        rtx count_reg, rtx count_init)
 {
   int i;
   int last_stage = PS_STAGE_COUNT (ps) - 1;
   edge e;
-  rtx c_reg = NULL_RTX;
-  rtx cmp = NULL_RTX;
-  rtx precond_jump = NULL_RTX;
-  rtx precond_exit_label = NULL_RTX;
-  rtx precond_exit_label_insn = NULL_RTX;
-  rtx last_epilog_insn = NULL_RTX;
-  rtx loop_exit_label = NULL_RTX;
-  rtx loop_exit_label_insn = NULL_RTX;
-  rtx orig_loop_bct = NULL_RTX;
-
-  /* Loop header edge.  */
-  e = EDGE_PRED (ps->g->bb, 0);
-  if (e->src == ps->g->bb)
-    e = EDGE_PRED (ps->g->bb, 1);
 
   /* Generate the prolog, inserting its insns on the loop-entry edge.  */
   start_sequence ();
 
-  /* This is the place where we want to insert the precondition.  */
-  if (unknown_count)
-    precond_jump = emit_note (NOTE_INSN_DELETED);
+  if (!count_init)
+    {
+      /* Generate instructions at the beginning of the prolog to
+         adjust the loop count by STAGE_COUNT.  If loop count is constant
+         (count_init), this constant is adjusted by STAGE_COUNT in
+         generate_prolog_epilog function.  */
+      rtx sub_reg = NULL_RTX;
+
+      sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
+                                     count_reg, GEN_INT (last_stage),
+                                     count_reg, 1, OPTAB_DIRECT);
+      gcc_assert (REG_P (sub_reg));
+      if (REGNO (sub_reg) != REGNO (count_reg))
+        emit_move_insn (count_reg, sub_reg);
+    }
 
   for (i = 0; i < last_stage; i++)
-    duplicate_insns_of_cycles (ps, 0, i, 1);
+    duplicate_insns_of_cycles (ps, 0, i, 1, count_reg);
+
+  /* Put the prolog on the entry edge.  */
+  e = loop_preheader_edge (loop);
+  split_edge_and_insert (e, get_insns ());
 
-  /* No need to call insert_insn_on_edge; we prepared the sequence.  */
-  e->insns.r = get_insns ();
   end_sequence ();
 
   /* Generate the epilog, inserting its insns on the loop-exit edge.  */
   start_sequence ();
 
   for (i = 0; i < last_stage; i++)
-    duplicate_insns_of_cycles (ps, i + 1, last_stage, 0);
+    duplicate_insns_of_cycles (ps, i + 1, last_stage, 0, count_reg);
 
-  last_epilog_insn = emit_note (NOTE_INSN_DELETED);
+  /* Put the epilogue on the exit edge.  */
+  gcc_assert (single_exit (loop));
+  e = single_exit (loop);
+  split_edge_and_insert (e, get_insns ());
+  end_sequence ();
+}
+
+/* Return true if all the BBs of the loop are empty except the
+   loop header.  */
+static bool
+loop_single_full_bb_p (struct loop *loop)
+{
+  unsigned i;
+  basic_block *bbs = get_loop_body (loop);
 
-  /* Emit the label where to put the original loop code.  */
-  if (unknown_count)
+  for (i = 0; i < loop->num_nodes ; i++)
     {
-      rtx label, cond;
+      rtx head, tail;
+      bool empty_bb = true;
 
-      precond_exit_label = gen_label_rtx ();
-      precond_exit_label_insn = emit_label (precond_exit_label);
+      if (bbs[i] == loop->header)
+        continue;
 
-      /* Put the original loop code.  */
-      reorder_insns_nobb (orig_loop_beg, orig_loop_end, precond_exit_label_insn);
+      /* Make sure that basic blocks other than the header
+         have only notes labels or jumps.  */
+      get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
+      for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
+        {
+          if (NOTE_P (head) || LABEL_P (head)
+             || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
+           continue;
+         empty_bb = false;
+         break;
+        }
+
+      if (! empty_bb)
+        {
+          free (bbs);
+          return false;
+        }
+    }
+  free (bbs);
+  return true;
+}
 
-      /* Change the label of the BCT to be the PRECOND_EXIT_LABEL.  */
-      orig_loop_bct = get_last_insn ();
-      c_reg = doloop_register_get (orig_loop_bct, &cmp);
-      label = XEXP (SET_SRC (cmp), 1);
-      cond = XEXP (SET_SRC (cmp), 0);
+/* A simple loop from SMS point of view; it is a loop that is composed of
+   either a single basic block or two BBs - a header and a latch.  */
+#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 )                    \
+                                 && (EDGE_COUNT (loop->latch->preds) == 1) \
+                                  && (EDGE_COUNT (loop->latch->succs) == 1))
 
-      if (! c_reg || GET_CODE (cond) != NE)
-        abort ();
+/* Return true if the loop is in its canonical form and false if not.
+   i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit.  */
+static bool
+loop_canon_p (struct loop *loop)
+{
+
+  if (loop->inner || !loop_outer (loop))
+  {
+    if (dump_file)
+      fprintf (dump_file, "SMS loop inner or !loop_outer\n");
+    return false;
+  }
 
-      XEXP (label, 0) = precond_exit_label;
-      JUMP_LABEL (orig_loop_bct) = precond_exit_label_insn;
-      LABEL_NUSES (precond_exit_label_insn)++;
+  if (!single_exit (loop))
+    {
+      if (dump_file)
+       {
+         rtx insn = BB_END (loop->header);
 
-      /* Generate the loop exit label.  */
-      loop_exit_label = gen_label_rtx ();
-      loop_exit_label_insn = emit_label (loop_exit_label);
+         fprintf (dump_file, "SMS loop many exits ");
+                 fprintf (dump_file, " %s %d (file, line)\n",
+                          insn_file (insn), insn_line (insn));
+       }
+      return false;
     }
 
-  e = EDGE_SUCC (ps->g->bb, 0);
-  if (e->dest == ps->g->bb)
-    e = EDGE_SUCC (ps->g->bb, 1);
+  if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
+    {
+      if (dump_file)
+       {
+         rtx insn = BB_END (loop->header);
 
-  e->insns.r = get_insns ();
-  end_sequence ();
+         fprintf (dump_file, "SMS loop many BBs. ");
+         fprintf (dump_file, " %s %d (file, line)\n",
+                  insn_file (insn), insn_line (insn));
+       }
+      return false;
+    }
 
-  commit_edge_insertions ();
+    return true;
+}
 
-  if (unknown_count)
+/* If there are more than one entry for the loop,
+   make it one by splitting the first entry edge and
+   redirecting the others to the new BB.  */
+static void
+canon_loop (struct loop *loop)
+{
+  edge e;
+  edge_iterator i;
+
+  /* Avoid annoying special cases of edges going to exit
+     block.  */
+  FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
+    if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
+      split_edge (e);
+
+  if (loop->latch == loop->header
+      || EDGE_COUNT (loop->latch->succs) > 1)
     {
-      rtx precond_insns, epilog_jump, insert_after_insn;
-      basic_block loop_exit_bb = BLOCK_FOR_INSN (loop_exit_label_insn);
-      basic_block epilog_bb = BLOCK_FOR_INSN (last_epilog_insn);
-      basic_block precond_bb = BLOCK_FOR_INSN (precond_jump);
-      basic_block orig_loop_bb = BLOCK_FOR_INSN (precond_exit_label_insn);
-      edge epilog_exit_edge = EDGE_SUCC (epilog_bb, 0);
-
-      /* Do loop preconditioning to take care of cases were the loop count is
-        less than the stage count.  Update the CFG properly.  */
-      insert_after_insn = precond_jump;
-      start_sequence ();
-      c_reg = doloop_register_get (ps->g->closing_branch->insn, &cmp);
-      emit_cmp_and_jump_insns (c_reg, GEN_INT (PS_STAGE_COUNT (ps)), LT, NULL,
-                              GET_MODE (c_reg), 1, precond_exit_label);
-      precond_insns = get_insns ();
-      precond_jump = get_last_insn ();
-      end_sequence ();
-      reorder_insns (precond_insns, precond_jump, insert_after_insn);
-
-      /* Generate a subtract instruction at the beginning of the prolog to
-        adjust the loop count by STAGE_COUNT.  */
-      emit_insn_after (gen_sub2_insn (c_reg, GEN_INT (PS_STAGE_COUNT (ps) - 1)),
-                       precond_jump);
-      update_bb_for_insn (precond_bb);
-      delete_insn (insert_after_insn);
-
-      /* Update label info for the precondition jump.  */
-      JUMP_LABEL (precond_jump) = precond_exit_label_insn;
-      LABEL_NUSES (precond_exit_label_insn)++;
-
-      /* Update the CFG.  */
-      split_block (precond_bb, precond_jump);
-      make_edge (precond_bb, orig_loop_bb, 0);
-
-      /* Add a jump at end of the epilog to the LOOP_EXIT_LABEL to jump over the
-        original loop copy and update the CFG.  */
-      epilog_jump = emit_jump_insn_after (gen_jump (loop_exit_label),
-                                         last_epilog_insn);
-      delete_insn (last_epilog_insn);
-      JUMP_LABEL (epilog_jump) = loop_exit_label_insn;
-      LABEL_NUSES (loop_exit_label_insn)++;
-
-      redirect_edge_succ (epilog_exit_edge, loop_exit_bb);
-      epilog_exit_edge->flags &= ~EDGE_FALLTHRU;
-      emit_barrier_after (BB_END (epilog_bb));
+      FOR_EACH_EDGE (e, i, loop->header->preds)
+        if (e->src == loop->latch)
+          break;
+      split_edge (e);
     }
 }
 
-/* Return the line note insn preceding INSN, for debugging.  Taken from
-   emit-rtl.c.  */
-static rtx
-find_line_note (rtx insn)
+/* Setup infos.  */
+static void
+setup_sched_infos (void)
 {
-  for (; insn; insn = PREV_INSN (insn))
-    if (NOTE_P (insn)
-       && NOTE_LINE_NUMBER (insn) >= 0)
-      break;
+  memcpy (&sms_common_sched_info, &haifa_common_sched_info,
+         sizeof (sms_common_sched_info));
+  sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
+  common_sched_info = &sms_common_sched_info;
 
-  return insn;
+  sched_deps_info = &sms_sched_deps_info;
+  current_sched_info = &sms_sched_info;
 }
 
+/* Probability in % that the sms-ed loop rolls enough so that optimized
+   version may be entered.  Just a guess.  */
+#define PROB_SMS_ENOUGH_ITERATIONS 80
+
+/* Used to calculate the upper bound of ii.  */
+#define MAXII_FACTOR 2
+
 /* Main entry point, perform SMS scheduling on the loops of the function
    that consist of single basic blocks.  */
-void
-sms_schedule (FILE *dump_file)
+static void
+sms_schedule (void)
 {
-  static int passes = 0;
   rtx insn;
   ddg_ptr *g_arr, g;
-  basic_block bb, pre_header = NULL;
   int * node_order;
-  int maxii;
-  int i;
+  int maxii, max_asap;
+  loop_iterator li;
   partial_schedule_ptr ps;
-  int max_bb_index = last_basic_block;
-  struct df *df;
-
-  stats_file = dump_file;
+  basic_block bb = NULL;
+  struct loop *loop;
+  basic_block condition_bb = NULL;
+  edge latch_edge;
+  gcov_type trip_count = 0;
+
+  loop_optimizer_init (LOOPS_HAVE_PREHEADERS
+                      | LOOPS_HAVE_RECORDED_EXITS);
+  if (number_of_loops () <= 1)
+    {
+      loop_optimizer_finalize ();
+      return;  /* There are no loops to schedule.  */
+    }
 
   /* Initialize issue_rate.  */
   if (targetm.sched.issue_rate)
@@ -819,254 +909,283 @@ sms_schedule (FILE *dump_file)
       int temp = reload_completed;
 
       reload_completed = 1;
-      issue_rate = (*targetm.sched.issue_rate) ();
+      issue_rate = targetm.sched.issue_rate ();
       reload_completed = temp;
     }
   else
     issue_rate = 1;
 
   /* Initialize the scheduler.  */
-  current_sched_info = &sms_sched_info;
-  sched_init (NULL);
+  setup_sched_infos ();
+  haifa_sched_init ();
 
-  /* Init Data Flow analysis, to be used in interloop dep calculation.  */
-  df = df_init ();
-  df_analyze (df, 0, DF_ALL);
+  /* Allocate memory to hold the DDG array one entry for each loop.
+     We use loop->num as index into this array.  */
+  g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
 
-  /* Allocate memory to hold the DDG array.  */
-  g_arr = xcalloc (max_bb_index, sizeof (ddg_ptr));
+  if (dump_file)
+  {
+    fprintf (dump_file, "\n\nSMS analysis phase\n");
+    fprintf (dump_file, "===================\n\n");
+  }
 
   /* Build DDGs for all the relevant loops and hold them in G_ARR
-     indexed by the loop BB index.  */
-  FOR_EACH_BB (bb)
+     indexed by the loop index.  */
+  FOR_EACH_LOOP (li, loop, 0)
     {
       rtx head, tail;
-      rtx count_reg, comp;
-      edge e, pre_header_edge;
+      rtx count_reg;
 
-      if (bb->index < 0)
-       continue;
+      /* For debugging.  */
+      if (dbg_cnt (sms_sched_loop) == false)
+        {
+          if (dump_file)
+            fprintf (dump_file, "SMS reached max limit... \n");
 
-      /* Check if bb has two successors, one being itself.  */
-      if (EDGE_COUNT (bb->succs) != 2)
-       continue;
+          break;
+        }
 
-      if (EDGE_SUCC (bb, 0)->dest != bb && EDGE_SUCC (bb, 1)->dest != bb)
-       continue;
+      if (dump_file)
+      {
+         rtx insn = BB_END (loop->header);
 
-      if ((EDGE_SUCC (bb, 0)->flags & EDGE_COMPLEX)
-         || (EDGE_SUCC (bb, 1)->flags & EDGE_COMPLEX))
-       continue;
+         fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
+                  loop->num, insn_file (insn), insn_line (insn));
 
-      /* Check if bb has two predecessors, one being itself.  */
-      if (EDGE_COUNT (bb->preds) != 2)
-       continue;
+      }
 
-      if (EDGE_PRED (bb, 0)->src != bb && EDGE_PRED (bb, 1)->src != bb)
-       continue;
+      if (! loop_canon_p (loop))
+        continue;
 
-      if ((EDGE_PRED (bb, 0)->flags & EDGE_COMPLEX)
-         || (EDGE_PRED (bb, 1)->flags & EDGE_COMPLEX))
+      if (! loop_single_full_bb_p (loop))
+      {
+        if (dump_file)
+          fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
        continue;
+      }
 
-      /* For debugging.  */
-      if ((passes++ > MAX_SMS_LOOP_NUMBER) && (MAX_SMS_LOOP_NUMBER != -1))
-       {
-         if (dump_file)
-           fprintf (dump_file, "SMS reached MAX_PASSES... \n");
-         break;
-       }
+      bb = loop->header;
 
-      get_block_head_tail (bb->index, &head, &tail);
-      pre_header_edge = EDGE_PRED (bb, 0);
-      if (EDGE_PRED (bb, 0)->src != bb)
-       pre_header_edge = EDGE_PRED (bb, 1);
+      get_ebb_head_tail (bb, bb, &head, &tail);
+      latch_edge = loop_latch_edge (loop);
+      gcc_assert (single_exit (loop));
+      if (single_exit (loop)->count)
+       trip_count = latch_edge->count / single_exit (loop)->count;
 
-      /* Perfrom SMS only on loops that their average count is above threshold.  */
-      if (bb->count < pre_header_edge->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD)
-        {
-         if (stats_file)
-           {
-             rtx line_note = find_line_note (tail);
+      /* Perform SMS only on loops that their average count is above threshold.  */
 
-             if (line_note)
-               {
-                 expanded_location xloc;
-                 NOTE_EXPANDED_LOCATION (xloc, line_note);
-                 fprintf (stats_file, "SMS bb %s %d (file, line)\n",
-                          xloc.file, xloc.line);
-               }
-             fprintf (stats_file, "SMS single-bb-loop\n");
+      if ( latch_edge->count
+          && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
+       {
+         if (dump_file)
+           {
+             fprintf (dump_file, " %s %d (file, line)\n",
+                      insn_file (tail), insn_line (tail));
+             fprintf (dump_file, "SMS single-bb-loop\n");
              if (profile_info && flag_branch_probabilities)
                {
-                 fprintf (stats_file, "SMS loop-count ");
-                 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
+                 fprintf (dump_file, "SMS loop-count ");
+                 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                           (HOST_WIDEST_INT) bb->count);
-                 fprintf (stats_file, "\n");
-                 fprintf (stats_file, "SMS preheader-count ");
-                 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
-                          (HOST_WIDEST_INT) pre_header_edge->count);
-                 fprintf (stats_file, "\n");
-                 fprintf (stats_file, "SMS profile-sum-max ");
-                 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
+                 fprintf (dump_file, "\n");
+                  fprintf (dump_file, "SMS trip-count ");
+                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
+                           (HOST_WIDEST_INT) trip_count);
+                  fprintf (dump_file, "\n");
+                 fprintf (dump_file, "SMS profile-sum-max ");
+                 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                           (HOST_WIDEST_INT) profile_info->sum_max);
-                 fprintf (stats_file, "\n");
+                 fprintf (dump_file, "\n");
                }
            }
           continue;
         }
 
       /* Make sure this is a doloop.  */
-      if ( !(count_reg = doloop_register_get (tail, &comp)))
+      if ( !(count_reg = doloop_register_get (head, tail)))
+      {
+        if (dump_file)
+          fprintf (dump_file, "SMS doloop_register_get failed\n");
        continue;
+      }
 
-      e = EDGE_PRED (bb, 0);
-      if (e->src == bb)
-       pre_header = EDGE_PRED (bb, 1)->src;
-      else
-       pre_header = e->src;
-
-      /* Don't handle BBs with calls or barriers, or !single_set insns.  */
-      for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
-       if (CALL_P (insn)
-           || BARRIER_P (insn)
-           || (INSN_P (insn) && !JUMP_P (insn)
-               && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
-         break;
+      /* Don't handle BBs with calls or barriers, or !single_set insns,
+         or auto-increment insns (to avoid creating invalid reg-moves
+         for the auto-increment insns).
+         ??? Should handle auto-increment insns.
+         ??? Should handle insns defining subregs.  */
+     for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
+      {
+         rtx set;
+
+        if (CALL_P (insn)
+            || BARRIER_P (insn)
+            || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
+                && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE)
+            || (FIND_REG_INC_NOTE (insn, NULL_RTX) != 0)
+            || (INSN_P (insn) && (set = single_set (insn))
+                && GET_CODE (SET_DEST (set)) == SUBREG))
+        break;
+      }
 
       if (insn != NEXT_INSN (tail))
        {
-         if (stats_file)
+         if (dump_file)
            {
              if (CALL_P (insn))
-               fprintf (stats_file, "SMS loop-with-call\n");
+               fprintf (dump_file, "SMS loop-with-call\n");
              else if (BARRIER_P (insn))
-               fprintf (stats_file, "SMS loop-with-barrier\n");
-             else
-               fprintf (stats_file, "SMS loop-with-not-single-set\n");
-             print_rtl_single (stats_file, insn);
+               fprintf (dump_file, "SMS loop-with-barrier\n");
+              else if (FIND_REG_INC_NOTE (insn, NULL_RTX) != 0)
+                fprintf (dump_file, "SMS reg inc\n");
+              else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
+                && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
+                fprintf (dump_file, "SMS loop-with-not-single-set\n");
+              else
+               fprintf (dump_file, "SMS loop with subreg in lhs\n");
+             print_rtl_single (dump_file, insn);
            }
 
          continue;
        }
 
-      if (! (g = create_ddg (bb, df, 0)))
+      if (! (g = create_ddg (bb, 0)))
         {
-          if (stats_file)
-           fprintf (stats_file, "SMS doloop\n");
+          if (dump_file)
+           fprintf (dump_file, "SMS create_ddg failed\n");
          continue;
         }
 
-      g_arr[bb->index] = g;
-    }
-
-  /* Release Data Flow analysis data structures.  */
-  df_finish (df);
+      g_arr[loop->num] = g;
+      if (dump_file)
+        fprintf (dump_file, "...OK\n");
 
-  /* Go over the built DDGs and perfrom SMS for each one of them.  */
-  for (i = 0; i < max_bb_index; i++)
+    }
+  if (dump_file)
+  {
+    fprintf (dump_file, "\nSMS transformation phase\n");
+    fprintf (dump_file, "=========================\n\n");
+  }
+
+  /* We don't want to perform SMS on new loops - created by versioning.  */
+  FOR_EACH_LOOP (li, loop, 0)
     {
       rtx head, tail;
-      rtx count_reg, count_init, comp;
-      edge pre_header_edge;
+      rtx count_reg, count_init;
       int mii, rec_mii;
-      int stage_count = 0;
+      unsigned stage_count = 0;
       HOST_WIDEST_INT loop_count = 0;
 
-      if (! (g = g_arr[i]))
+      if (! (g = g_arr[loop->num]))
         continue;
 
       if (dump_file)
-       print_ddg (dump_file, g);
+      {
+         rtx insn = BB_END (loop->header);
 
-      get_block_head_tail (g->bb->index, &head, &tail);
+         fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
+                  loop->num, insn_file (insn), insn_line (insn));
 
-      pre_header_edge = EDGE_PRED (g->bb, 0);
-      if (EDGE_PRED (g->bb, 0)->src != g->bb)
-       pre_header_edge = EDGE_PRED (g->bb, 1);
+         print_ddg (dump_file, g);
+      }
 
-      if (stats_file)
-       {
-         rtx line_note = find_line_note (tail);
+      get_ebb_head_tail (loop->header, loop->header, &head, &tail);
 
-         if (line_note)
-           {
-             expanded_location xloc;
-             NOTE_EXPANDED_LOCATION (xloc, line_note);
-             fprintf (stats_file, "SMS bb %s %d (file, line)\n",
-                      xloc.file, xloc.line);
-           }
-         fprintf (stats_file, "SMS single-bb-loop\n");
+      latch_edge = loop_latch_edge (loop);
+      gcc_assert (single_exit (loop));
+      if (single_exit (loop)->count)
+       trip_count = latch_edge->count / single_exit (loop)->count;
+
+      if (dump_file)
+       {
+         fprintf (dump_file, " %s %d (file, line)\n",
+                  insn_file (tail), insn_line (tail));
+         fprintf (dump_file, "SMS single-bb-loop\n");
          if (profile_info && flag_branch_probabilities)
            {
-             fprintf (stats_file, "SMS loop-count ");
-             fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
+             fprintf (dump_file, "SMS loop-count ");
+             fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                       (HOST_WIDEST_INT) bb->count);
-             fprintf (stats_file, "\n");
-             fprintf (stats_file, "SMS preheader-count ");
-             fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
-                      (HOST_WIDEST_INT) pre_header_edge->count);
-             fprintf (stats_file, "\n");
-             fprintf (stats_file, "SMS profile-sum-max ");
-             fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
+             fprintf (dump_file, "\n");
+             fprintf (dump_file, "SMS profile-sum-max ");
+             fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                       (HOST_WIDEST_INT) profile_info->sum_max);
-             fprintf (stats_file, "\n");
+             fprintf (dump_file, "\n");
            }
-         fprintf (stats_file, "SMS doloop\n");
-         fprintf (stats_file, "SMS built-ddg %d\n", g->num_nodes);
-          fprintf (stats_file, "SMS num-loads %d\n", g->num_loads);
-          fprintf (stats_file, "SMS num-stores %d\n", g->num_stores);
+         fprintf (dump_file, "SMS doloop\n");
+         fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
+          fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
+          fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
        }
 
-      /* Make sure this is a doloop.  */
-      if ( !(count_reg = doloop_register_get (tail, &comp)))
-       abort ();
 
-      /* This should be NULL_RTX if the count is unknown at compile time.  */
-      count_init = const_iteration_count (count_reg, pre_header, &loop_count);
+      /* In case of th loop have doloop register it gets special
+        handling.  */
+      count_init = NULL_RTX;
+      if ((count_reg = doloop_register_get (head, tail)))
+       {
+         basic_block pre_header;
 
-      if (stats_file && count_init)
+         pre_header = loop_preheader_edge (loop)->src;
+         count_init = const_iteration_count (count_reg, pre_header,
+                                             &loop_count);
+       }
+      gcc_assert (count_reg);
+
+      if (dump_file && count_init)
         {
-          fprintf (stats_file, "SMS const-doloop ");
-          fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
-          fprintf (stats_file, "\n");
+          fprintf (dump_file, "SMS const-doloop ");
+          fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
+                    loop_count);
+          fprintf (dump_file, "\n");
         }
 
-      node_order = (int *) xmalloc (sizeof (int) * g->num_nodes);
+      node_order = XNEWVEC (int, g->num_nodes);
 
       mii = 1; /* Need to pass some estimate of mii.  */
-      rec_mii = sms_order_nodes (g, mii, node_order);
+      rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
       mii = MAX (res_MII (g), rec_mii);
-      maxii = (calculate_maxii (g) * SMS_MAX_II_FACTOR) / 100;
+      maxii = MAX (max_asap, MAXII_FACTOR * mii);
 
-      if (stats_file)
-       fprintf (stats_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
+      if (dump_file)
+       fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
                 rec_mii, mii, maxii);
 
       /* After sms_order_nodes and before sms_schedule_by_order, to copy over
         ASAP.  */
       set_node_sched_params (g);
 
-      ps = sms_schedule_by_order (g, mii, maxii, node_order, dump_file);
+      ps = sms_schedule_by_order (g, mii, maxii, node_order);
 
-      if (ps)
+      if (ps){
        stage_count = PS_STAGE_COUNT (ps);
+        gcc_assert(stage_count >= 1);
+      }
 
-      if (stage_count == 0 || (count_init && (stage_count > loop_count)))
+      /* Stage count of 1 means that there is no interleaving between
+         iterations, let the scheduling passes do the job.  */
+      if (stage_count <= 1
+         || (count_init && (loop_count <= stage_count))
+         || (flag_branch_probabilities && (trip_count <= stage_count)))
        {
          if (dump_file)
-           fprintf (dump_file, "SMS failed... \n");
-         if (stats_file)
-           fprintf (stats_file, "SMS sched-failed %d\n", stage_count);
+           {
+             fprintf (dump_file, "SMS failed... \n");
+             fprintf (dump_file, "SMS sched-failed (stage-count=%d, loop-count=", stage_count);
+             fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
+             fprintf (dump_file, ", trip-count=");
+             fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
+             fprintf (dump_file, ")\n");
+           }
+         continue;
        }
       else
        {
-          rtx orig_loop_beg = NULL_RTX;
-         rtx orig_loop_end = NULL_RTX;
+         struct undo_replace_buff_elem *reg_move_replaces;
 
-         if (stats_file)
+         if (dump_file)
            {
-             fprintf (stats_file,
+             fprintf (dump_file,
                       "SMS succeeded %d %d (with ii, sc)\n", ps->ii,
                       stage_count);
              print_partial_schedule (ps, dump_file);
@@ -1075,60 +1194,68 @@ sms_schedule (FILE *dump_file)
                       g->closing_branch->cuid, PS_MIN_CYCLE (ps) - 1);
            }
 
-          /* Save the original loop if we want to do loop preconditioning in
-            case the BCT count is not known.  */
-          if (! count_init)
-            {
-             int i;
-
-              start_sequence ();
-             /* Copy the original loop code before modifying it -
-                so we can use it later.  */
-             for (i = 0; i < ps->g->num_nodes; i++)
-               duplicate_insn_chain (ps->g->nodes[i].first_note,
-                                     ps->g->nodes[i].insn);
-
-             orig_loop_beg = get_insns ();
-              orig_loop_end = get_last_insn ();
-             end_sequence ();
-            }
          /* Set the stage boundaries.  If the DDG is built with closing_branch_deps,
             the closing_branch was scheduled and should appear in the last (ii-1)
             row.  Otherwise, we are free to schedule the branch, and we let nodes
             that were scheduled at the first PS_MIN_CYCLE cycle appear in the first
-            row; this should reduce stage_count to minimum.  */
+            row; this should reduce stage_count to minimum.
+             TODO: Revisit the issue of scheduling the insns of the
+             control part relative to the branch when the control part
+             has more than one insn.  */
          normalize_sched_times (ps);
          rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
          set_columns_for_ps (ps);
 
+         canon_loop (loop);
+
+          /* case the BCT count is not known , Do loop-versioning */
+         if (count_reg && ! count_init)
+            {
+             rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
+                                            GEN_INT(stage_count));
+             unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
+                              * REG_BR_PROB_BASE) / 100;
+
+             loop_version (loop, comp_rtx, &condition_bb,
+                           prob, prob, REG_BR_PROB_BASE - prob,
+                           true);
+            }
+
+         /* Set new iteration count of loop kernel.  */
+          if (count_reg && count_init)
+           SET_SRC (single_set (count_init)) = GEN_INT (loop_count
+                                                    - stage_count + 1);
+
+         /* Now apply the scheduled kernel to the RTL of the loop.  */
          permute_partial_schedule (ps, g->closing_branch->first_note);
 
           /* Mark this loop as software pipelined so the later
             scheduling passes doesn't touch it.  */
          if (! flag_resched_modulo_sched)
            g->bb->flags |= BB_DISABLE_SCHEDULE;
+         /* The life-info is not valid any more.  */
+         df_set_bb_dirty (g->bb);
 
-         generate_reg_moves (ps);
+         reg_move_replaces = generate_reg_moves (ps, true);
          if (dump_file)
-           print_node_sched_params (dump_file, g->num_nodes);
-
-         /* Set new iteration count of loop kernel.  */
-          if (count_init)
-           SET_SRC (single_set (count_init)) = GEN_INT (loop_count
-                                                         - stage_count + 1);
-
+           print_node_sched_params (dump_file, g->num_nodes, g);
          /* Generate prolog and epilog.  */
-         generate_prolog_epilog (ps, orig_loop_beg, orig_loop_end,
-                                 count_init ? 0 : 1);
+          generate_prolog_epilog (ps, loop, count_reg, count_init);
+
+         free_undo_replace_buff (reg_move_replaces);
        }
+
       free_partial_schedule (ps);
       free (node_sched_params);
       free (node_order);
       free_ddg (g);
     }
 
+  free (g_arr);
+
   /* Release scheduler data, needed until now because of DFA.  */
-  sched_finish ();
+  haifa_sched_finish ();
+  loop_optimizer_finalize ();
 }
 
 /* The SMS scheduling algorithm itself
@@ -1207,199 +1334,698 @@ sms_schedule (FILE *dump_file)
    set to 0 to save compile time.  */
 #define DFA_HISTORY SMS_DFA_HISTORY
 
+/* A threshold for the number of repeated unsuccessful attempts to insert
+   an empty row, before we flush the partial schedule and start over.  */
+#define MAX_SPLIT_NUM 10
+/* Given the partial schedule PS, this function calculates and returns the
+   cycles in which we can schedule the node with the given index I.
+   NOTE: Here we do the backtracking in SMS, in some special cases. We have
+   noticed that there are several cases in which we fail    to SMS the loop
+   because the sched window of a node is empty    due to tight data-deps. In
+   such cases we want to unschedule    some of the predecessors/successors
+   until we get non-empty    scheduling window.  It returns -1 if the
+   scheduling window is empty and zero otherwise.  */
+
+static int
+get_sched_window (partial_schedule_ptr ps, int *nodes_order, int i,
+                 sbitmap sched_nodes, int ii, int *start_p, int *step_p, int *end_p)
+{
+  int start, step, end;
+  ddg_edge_ptr e;
+  int u = nodes_order [i];
+  ddg_node_ptr u_node = &ps->g->nodes[u];
+  sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
+  sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
+  sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
+  sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
+  int psp_not_empty;
+  int pss_not_empty;
+
+  /* 1. compute sched window for u (start, end, step).  */
+  sbitmap_zero (psp);
+  sbitmap_zero (pss);
+  psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
+  pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
+
+  if (psp_not_empty && !pss_not_empty)
+    {
+      int early_start = INT_MIN;
+
+      end = INT_MAX;
+      for (e = u_node->in; e != 0; e = e->next_in)
+       {
+         ddg_node_ptr v_node = e->src;
+
+          if (dump_file)
+            {
+             fprintf (dump_file, "\nProcessing edge: ");
+              print_ddg_edge (dump_file, e);
+             fprintf (dump_file,
+                      "\nScheduling %d (%d) in psp_not_empty,"
+                      " checking p %d (%d): ", u_node->cuid,
+                      INSN_UID (u_node->insn), v_node->cuid, INSN_UID
+                      (v_node->insn));
+            }
+
+         if (TEST_BIT (sched_nodes, v_node->cuid))
+           {
+              int p_st = SCHED_TIME (v_node);
+
+              early_start =
+                MAX (early_start, p_st + e->latency - (e->distance * ii));
+
+              if (dump_file)
+                fprintf (dump_file,
+                         "pred st = %d; early_start = %d; latency: %d",
+                         p_st, early_start, e->latency);
+
+             if (e->data_type == MEM_DEP)
+               end = MIN (end, SCHED_TIME (v_node) + ii - 1);
+           }
+         else if (dump_file)
+            fprintf (dump_file, "the node is not scheduled\n");
+       }
+      start = early_start;
+      end = MIN (end, early_start + ii);
+      /* Schedule the node close to it's predecessors.  */
+      step = 1;
+
+      if (dump_file)
+        fprintf (dump_file,
+                "\nScheduling %d (%d) in a window (%d..%d) with step %d\n",
+                u_node->cuid, INSN_UID (u_node->insn), start, end, step);
+    }
+
+  else if (!psp_not_empty && pss_not_empty)
+    {
+      int late_start = INT_MAX;
+
+      end = INT_MIN;
+      for (e = u_node->out; e != 0; e = e->next_out)
+       {
+         ddg_node_ptr v_node = e->dest;
+
+          if (dump_file)
+            {
+              fprintf (dump_file, "\nProcessing edge:");
+              print_ddg_edge (dump_file, e);
+              fprintf (dump_file,
+                       "\nScheduling %d (%d) in pss_not_empty,"
+                       " checking s %d (%d): ", u_node->cuid,
+                       INSN_UID (u_node->insn), v_node->cuid, INSN_UID
+                       (v_node->insn));
+            }
+
+         if (TEST_BIT (sched_nodes, v_node->cuid))
+           {
+              int s_st = SCHED_TIME (v_node);
+
+              late_start = MIN (late_start,
+                                s_st - e->latency + (e->distance * ii));
+
+              if (dump_file)
+                fprintf (dump_file,
+                         "succ st = %d; late_start = %d; latency = %d",
+                         s_st, late_start, e->latency);
+
+             if (e->data_type == MEM_DEP)
+               end = MAX (end, SCHED_TIME (v_node) - ii + 1);
+             if (dump_file)
+                 fprintf (dump_file, "end = %d\n", end);
+
+           }
+          else if (dump_file)
+            fprintf (dump_file, "the node is not scheduled\n");
+
+       }
+      start = late_start;
+      end = MAX (end, late_start - ii);
+      /* Schedule the node close to it's successors.  */
+      step = -1;
+
+      if (dump_file)
+        fprintf (dump_file,
+                 "\nScheduling %d (%d) in a window (%d..%d) with step %d\n",
+                 u_node->cuid, INSN_UID (u_node->insn), start, end, step);
+
+    }
+
+  else if (psp_not_empty && pss_not_empty)
+    {
+      int early_start = INT_MIN;
+      int late_start = INT_MAX;
+      int count_preds = 0;
+      int count_succs = 0;
+
+      start = INT_MIN;
+      end = INT_MAX;
+      for (e = u_node->in; e != 0; e = e->next_in)
+       {
+         ddg_node_ptr v_node = e->src;
+
+         if (dump_file)
+           {
+              fprintf (dump_file, "\nProcessing edge:");
+              print_ddg_edge (dump_file, e);
+             fprintf (dump_file,
+                      "\nScheduling %d (%d) in psp_pss_not_empty,"
+                      " checking p %d (%d): ", u_node->cuid, INSN_UID
+                      (u_node->insn), v_node->cuid, INSN_UID
+                      (v_node->insn));
+           }
+
+         if (TEST_BIT (sched_nodes, v_node->cuid))
+           {
+              int p_st = SCHED_TIME (v_node);
+
+             early_start = MAX (early_start,
+                                p_st + e->latency
+                                - (e->distance * ii));
+
+              if (dump_file)
+                fprintf (dump_file,
+                         "pred st = %d; early_start = %d; latency = %d",
+                         p_st, early_start, e->latency);
+
+              if (e->type == TRUE_DEP && e->data_type == REG_DEP)
+                count_preds++;
+
+             if (e->data_type == MEM_DEP)
+               end = MIN (end, SCHED_TIME (v_node) + ii - 1);
+           }
+          else if (dump_file)
+            fprintf (dump_file, "the node is not scheduled\n");
+
+       }
+      for (e = u_node->out; e != 0; e = e->next_out)
+       {
+         ddg_node_ptr v_node = e->dest;
+
+         if (dump_file)
+           {
+              fprintf (dump_file, "\nProcessing edge:");
+              print_ddg_edge (dump_file, e);
+             fprintf (dump_file,
+                      "\nScheduling %d (%d) in psp_pss_not_empty,"
+                      " checking s %d (%d): ", u_node->cuid, INSN_UID
+                      (u_node->insn), v_node->cuid, INSN_UID
+                      (v_node->insn));
+           }
+
+         if (TEST_BIT (sched_nodes, v_node->cuid))
+           {
+              int s_st = SCHED_TIME (v_node);
+
+             late_start = MIN (late_start,
+                               s_st - e->latency
+                               + (e->distance * ii));
+
+              if (dump_file)
+                fprintf (dump_file,
+                         "succ st = %d; late_start = %d; latency = %d",
+                         s_st, late_start, e->latency);
+
+               if (e->type == TRUE_DEP && e->data_type == REG_DEP)
+                 count_succs++;
+
+             if (e->data_type == MEM_DEP)
+               start = MAX (start, SCHED_TIME (v_node) - ii + 1);
+           }
+          else if (dump_file)
+            fprintf (dump_file, "the node is not scheduled\n");
+
+       }
+      start = MAX (start, early_start);
+      end = MIN (end, MIN (early_start + ii, late_start + 1));
+      step = 1;
+      /* If there are more successors than predecessors schedule the
+         node close to it's successors.  */
+      if (count_succs >= count_preds)
+        {
+          int old_start = start;
+
+          start = end - 1;
+          end = old_start - 1;
+          step = -1;
+        }
+    }
+  else /* psp is empty && pss is empty.  */
+    {
+      start = SCHED_ASAP (u_node);
+      end = start + ii;
+      step = 1;
+    }
+
+  *start_p = start;
+  *step_p = step;
+  *end_p = end;
+  sbitmap_free (psp);
+  sbitmap_free (pss);
+
+  if ((start >= end && step == 1) || (start <= end && step == -1))
+    {
+      if (dump_file)
+       fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
+                start, end, step);
+    return -1;
+    }
+
+    return 0;
+}
+
+/* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
+   node currently been scheduled.  At the end of the calculation
+   MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
+   U_NODE which are (1) already scheduled in the first/last row of
+   U_NODE's scheduling window, (2) whose dependence inequality with U
+   becomes an equality when U is scheduled in this same row, and (3)
+   whose dependence latency is zero.
+
+   The first and last rows are calculated using the following parameters:
+   START/END rows - The cycles that begins/ends the traversal on the window;
+   searching for an empty cycle to schedule U_NODE.
+   STEP - The direction in which we traverse the window.
+   II - The initiation interval.  */
+
+static void
+calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
+                              int step, int ii, sbitmap sched_nodes,
+                              sbitmap must_precede, sbitmap must_follow)
+{
+  ddg_edge_ptr e;
+  int first_cycle_in_window, last_cycle_in_window;
+
+  gcc_assert (must_precede && must_follow);
+
+  /* Consider the following scheduling window:
+     {first_cycle_in_window, first_cycle_in_window+1, ...,
+     last_cycle_in_window}.  If step is 1 then the following will be
+     the order we traverse the window: {start=first_cycle_in_window,
+     first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
+     or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
+     end=first_cycle_in_window-1} if step is -1.  */
+  first_cycle_in_window = (step == 1) ? start : end - step;
+  last_cycle_in_window = (step == 1) ? end - step : start;
+
+  sbitmap_zero (must_precede);
+  sbitmap_zero (must_follow);
+
+  if (dump_file)
+    fprintf (dump_file, "\nmust_precede: ");
+
+  /* Instead of checking if:
+      (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
+      && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
+             first_cycle_in_window)
+      && e->latency == 0
+     we use the fact that latency is non-negative:
+      SCHED_TIME (e->src) - (e->distance * ii) <=
+      SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
+      first_cycle_in_window
+     and check only if
+      SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window  */
+  for (e = u_node->in; e != 0; e = e->next_in)
+    if (TEST_BIT (sched_nodes, e->src->cuid)
+       && ((SCHED_TIME (e->src) - (e->distance * ii)) ==
+             first_cycle_in_window))
+      {
+       if (dump_file)
+         fprintf (dump_file, "%d ", e->src->cuid);
+
+       SET_BIT (must_precede, e->src->cuid);
+      }
+
+  if (dump_file)
+    fprintf (dump_file, "\nmust_follow: ");
+
+  /* Instead of checking if:
+      (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
+      && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
+             last_cycle_in_window)
+      && e->latency == 0
+     we use the fact that latency is non-negative:
+      SCHED_TIME (e->dest) + (e->distance * ii) >=
+      SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
+      last_cycle_in_window
+     and check only if
+      SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window  */
+  for (e = u_node->out; e != 0; e = e->next_out)
+    if (TEST_BIT (sched_nodes, e->dest->cuid)
+       && ((SCHED_TIME (e->dest) + (e->distance * ii)) ==
+             last_cycle_in_window))
+      {
+       if (dump_file)
+         fprintf (dump_file, "%d ", e->dest->cuid);
+
+       SET_BIT (must_follow, e->dest->cuid);
+      }
+
+  if (dump_file)
+    fprintf (dump_file, "\n");
+}
+
+/* Return 1 if U_NODE can be scheduled in CYCLE.  Use the following
+   parameters to decide if that's possible:
+   PS - The partial schedule.
+   U - The serial number of U_NODE.
+   NUM_SPLITS - The number of row splits made so far.
+   MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
+   the first row of the scheduling window)
+   MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
+   last row of the scheduling window)  */
+
+static bool
+try_scheduling_node_in_cycle (partial_schedule_ptr ps, ddg_node_ptr u_node,
+                             int u, int cycle, sbitmap sched_nodes,
+                             int *num_splits, sbitmap must_precede,
+                             sbitmap must_follow)
+{
+  ps_insn_ptr psi;
+  bool success = 0;
+
+  verify_partial_schedule (ps, sched_nodes);
+  psi = ps_add_node_check_conflicts (ps, u_node, cycle,
+                                    must_precede, must_follow);
+  if (psi)
+    {
+      SCHED_TIME (u_node) = cycle;
+      SET_BIT (sched_nodes, u);
+      success = 1;
+      *num_splits = 0;
+      if (dump_file)
+       fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
+
+    }
+
+  return success;
+}
+
+/* This function implements the scheduling algorithm for SMS according to the
+   above algorithm.  */
 static partial_schedule_ptr
-sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order, FILE *dump_file)
+sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
 {
   int ii = mii;
-  int i, c, success;
-  int try_again_with_larger_ii = true;
+  int i, c, success, num_splits = 0;
+  int flush_and_start_over = true;
   int num_nodes = g->num_nodes;
-  ddg_edge_ptr e;
   int start, end, step; /* Place together into one struct?  */
   sbitmap sched_nodes = sbitmap_alloc (num_nodes);
   sbitmap must_precede = sbitmap_alloc (num_nodes);
   sbitmap must_follow = sbitmap_alloc (num_nodes);
+  sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
 
   partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
 
-  while (try_again_with_larger_ii && ii < maxii)
+  sbitmap_ones (tobe_scheduled);
+  sbitmap_zero (sched_nodes);
+
+  while (flush_and_start_over && (ii < maxii))
     {
+
       if (dump_file)
-       fprintf(dump_file, "Starting with ii=%d\n", ii);
-      try_again_with_larger_ii = false;
+       fprintf (dump_file, "Starting with ii=%d\n", ii);
+      flush_and_start_over = false;
       sbitmap_zero (sched_nodes);
 
       for (i = 0; i < num_nodes; i++)
        {
          int u = nodes_order[i];
-         ddg_node_ptr u_node = &g->nodes[u];
-         sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
-         sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
-         int psp_not_empty;
-         int pss_not_empty;
+         ddg_node_ptr u_node = &ps->g->nodes[u];
          rtx insn = u_node->insn;
 
-         if (!INSN_P (insn))
-           continue;
+         if (!NONDEBUG_INSN_P (insn))
+           {
+             RESET_BIT (tobe_scheduled, u);
+             continue;
+           }
 
          if (JUMP_P (insn)) /* Closing branch handled later.  */
+           {
+             RESET_BIT (tobe_scheduled, u);
+             continue;
+           }
+
+         if (TEST_BIT (sched_nodes, u))
            continue;
 
-         /* 1. compute sched window for u (start, end, step).  */
-         psp_not_empty = sbitmap_any_common_bits (u_node_preds, sched_nodes);
-         pss_not_empty = sbitmap_any_common_bits (u_node_succs, sched_nodes);
+         /* Try to get non-empty scheduling window.  */
+        success = 0;
+         if (get_sched_window (ps, nodes_order, i, sched_nodes, ii, &start,
+                                &step, &end) == 0)
+            {
+              if (dump_file)
+                fprintf (dump_file, "\nTrying to schedule node %d \
+                        INSN = %d  in (%d .. %d) step %d\n", u, (INSN_UID
+                        (g->nodes[u].insn)), start, end, step);
+
+              gcc_assert ((step > 0 && start < end)
+                          || (step < 0 && start > end));
+
+              calculate_must_precede_follow (u_node, start, end, step, ii,
+                                             sched_nodes, must_precede,
+                                             must_follow);
+
+              for (c = start; c != end; c += step)
+                {
+                  sbitmap tmp_precede = NULL;
+                  sbitmap tmp_follow = NULL;
+
+                  if (c == start)
+                    {
+                      if (step == 1)
+                        tmp_precede = must_precede;
+                      else      /* step == -1.  */
+                        tmp_follow = must_follow;
+                    }
+                  if (c == end - step)
+                    {
+                      if (step == 1)
+                        tmp_follow = must_follow;
+                      else      /* step == -1.  */
+                        tmp_precede = must_precede;
+                    }
+
+                  success =
+                    try_scheduling_node_in_cycle (ps, u_node, u, c,
+                                                  sched_nodes,
+                                                  &num_splits, tmp_precede,
+                                                  tmp_follow);
+                  if (success)
+                    break;
+                }
+
+              verify_partial_schedule (ps, sched_nodes);
+            }
+            if (!success)
+            {
+              int split_row;
+
+              if (ii++ == maxii)
+                break;
+
+              if (num_splits >= MAX_SPLIT_NUM)
+                {
+                  num_splits = 0;
+                  flush_and_start_over = true;
+                  verify_partial_schedule (ps, sched_nodes);
+                  reset_partial_schedule (ps, ii);
+                  verify_partial_schedule (ps, sched_nodes);
+                  break;
+                }
+
+              num_splits++;
+              /* The scheduling window is exclusive of 'end'
+                 whereas compute_split_window() expects an inclusive,
+                 ordered range.  */
+              if (step == 1)
+                split_row = compute_split_row (sched_nodes, start, end - 1,
+                                               ps->ii, u_node);
+              else
+                split_row = compute_split_row (sched_nodes, end + 1, start,
+                                               ps->ii, u_node);
+
+              ps_insert_empty_row (ps, split_row, sched_nodes);
+              i--;              /* Go back and retry node i.  */
+
+              if (dump_file)
+                fprintf (dump_file, "num_splits=%d\n", num_splits);
+            }
 
-         if (psp_not_empty && !pss_not_empty)
-           {
-             int early_start = 0;
+          /* ??? If (success), check register pressure estimates.  */
+        }                       /* Continue with next node.  */
+    }                           /* While flush_and_start_over.  */
+  if (ii >= maxii)
+    {
+      free_partial_schedule (ps);
+      ps = NULL;
+    }
+  else
+    gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
 
-             end = INT_MAX;
-             for (e = u_node->in; e != 0; e = e->next_in)
-               {
-                 ddg_node_ptr v_node = e->src;
-                 if (TEST_BIT (sched_nodes, v_node->cuid))
-                   {
-                      int node_st = SCHED_TIME (v_node)
-                                   + e->latency - (e->distance * ii);
+  sbitmap_free (sched_nodes);
+  sbitmap_free (must_precede);
+  sbitmap_free (must_follow);
+  sbitmap_free (tobe_scheduled);
 
-                     early_start = MAX (early_start, node_st);
+  return ps;
+}
 
-                     if (e->data_type == MEM_DEP)
-                       end = MIN (end, SCHED_TIME (v_node) + ii - 1);
-                   }
-               }
-             start = early_start;
-             end = MIN (end, early_start + ii);
-             step = 1;
-           }
+/* This function inserts a new empty row into PS at the position
+   according to SPLITROW, keeping all already scheduled instructions
+   intact and updating their SCHED_TIME and cycle accordingly.  */
+static void
+ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
+                    sbitmap sched_nodes)
+{
+  ps_insn_ptr crr_insn;
+  ps_insn_ptr *rows_new;
+  int ii = ps->ii;
+  int new_ii = ii + 1;
+  int row;
 
-         else if (!psp_not_empty && pss_not_empty)
-           {
-             int late_start = INT_MAX;
+  verify_partial_schedule (ps, sched_nodes);
 
-             end = INT_MIN;
-             for (e = u_node->out; e != 0; e = e->next_out)
-               {
-                 ddg_node_ptr v_node = e->dest;
-                 if (TEST_BIT (sched_nodes, v_node->cuid))
-                   {
-                     late_start = MIN (late_start,
-                                       SCHED_TIME (v_node) - e->latency
-                                       + (e->distance * ii));
-                     if (e->data_type == MEM_DEP)
-                       end = MAX (end, SCHED_TIME (v_node) - ii + 1);
-                   }
-               }
-             start = late_start;
-             end = MAX (end, late_start - ii);
-             step = -1;
-           }
+  /* We normalize sched_time and rotate ps to have only non-negative sched
+     times, for simplicity of updating cycles after inserting new row.  */
+  split_row -= ps->min_cycle;
+  split_row = SMODULO (split_row, ii);
+  if (dump_file)
+    fprintf (dump_file, "split_row=%d\n", split_row);
 
-         else if (psp_not_empty && pss_not_empty)
-           {
-             int early_start = 0;
-             int late_start = INT_MAX;
+  normalize_sched_times (ps);
+  rotate_partial_schedule (ps, ps->min_cycle);
 
-             start = INT_MIN;
-             end = INT_MAX;
-             for (e = u_node->in; e != 0; e = e->next_in)
-               {
-                 ddg_node_ptr v_node = e->src;
-
-                 if (TEST_BIT (sched_nodes, v_node->cuid))
-                   {
-                     early_start = MAX (early_start,
-                                        SCHED_TIME (v_node) + e->latency
-                                        - (e->distance * ii));
-                     if (e->data_type == MEM_DEP)
-                       end = MIN (end, SCHED_TIME (v_node) + ii - 1);
-                   }
-               }
-             for (e = u_node->out; e != 0; e = e->next_out)
-               {
-                 ddg_node_ptr v_node = e->dest;
-
-                 if (TEST_BIT (sched_nodes, v_node->cuid))
-                   {
-                     late_start = MIN (late_start,
-                                       SCHED_TIME (v_node) - e->latency
-                                       + (e->distance * ii));
-                     if (e->data_type == MEM_DEP)
-                       start = MAX (start, SCHED_TIME (v_node) - ii + 1);
-                   }
-               }
-             start = MAX (start, early_start);
-             end = MIN (end, MIN (early_start + ii, late_start + 1));
-             step = 1;
-           }
-         else /* psp is empty && pss is empty.  */
-           {
-             start = SCHED_ASAP (u_node);
-             end = start + ii;
-             step = 1;
-           }
+  rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
+  for (row = 0; row < split_row; row++)
+    {
+      rows_new[row] = ps->rows[row];
+      ps->rows[row] = NULL;
+      for (crr_insn = rows_new[row];
+          crr_insn; crr_insn = crr_insn->next_in_row)
+       {
+         ddg_node_ptr u = crr_insn->node;
+         int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
 
-         /* 2. Try scheduling u in window.  */
-         if (dump_file)
-           fprintf(dump_file, "Trying to schedule node %d in (%d .. %d) step %d\n",
-                   u, start, end, step);
-
-          /* use must_follow & must_precede bitmaps to determine order
-            of nodes within the cycle.  */
-          sbitmap_zero (must_precede);
-          sbitmap_zero (must_follow);
-         for (e = u_node->in; e != 0; e = e->next_in)
-            if (TEST_BIT (sched_nodes, e->src->cuid)
-               && e->latency == (ii * e->distance)
-               && start == SCHED_TIME (e->src))
-             SET_BIT (must_precede, e->src->cuid);
-
-         for (e = u_node->out; e != 0; e = e->next_out)
-            if (TEST_BIT (sched_nodes, e->dest->cuid)
-               && e->latency == (ii * e->distance)
-               && end == SCHED_TIME (e->dest))
-             SET_BIT (must_follow, e->dest->cuid);
-
-         success = 0;
-         if ((step > 0 && start < end) ||  (step < 0 && start > end))
-           for (c = start; c != end; c += step)
-             {
-               ps_insn_ptr psi;
-
-               psi = ps_add_node_check_conflicts (ps, u_node, c,
-                                                  must_precede,
-                                                  must_follow);
-
-               if (psi)
-                 {
-                   SCHED_TIME (u_node) = c;
-                   SET_BIT (sched_nodes, u);
-                   success = 1;
-                   if (dump_file)
-                     fprintf(dump_file, "Schedule in %d\n", c);
-                   break;
-                 }
-             }
-         if (!success)
-           {
-             /* ??? Try backtracking instead of immediately ii++?  */
-             ii++;
-             try_again_with_larger_ii = true;
-             reset_partial_schedule (ps, ii);
-             break;
-           }
-         /* ??? If (success), check register pressure estimates.  */
-       } /* Continue with next node.  */
-    } /* While try_again_with_larger_ii.  */
+         SCHED_TIME (u) = new_time;
+         crr_insn->cycle = new_time;
+         SCHED_ROW (u) = new_time % new_ii;
+         SCHED_STAGE (u) = new_time / new_ii;
+       }
 
-  sbitmap_free (sched_nodes);
+    }
 
-  if (ii >= maxii)
+  rows_new[split_row] = NULL;
+
+  for (row = split_row; row < ii; row++)
     {
-      free_partial_schedule (ps);
-      ps = NULL;
+      rows_new[row + 1] = ps->rows[row];
+      ps->rows[row] = NULL;
+      for (crr_insn = rows_new[row + 1];
+          crr_insn; crr_insn = crr_insn->next_in_row)
+       {
+         ddg_node_ptr u = crr_insn->node;
+         int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
+
+         SCHED_TIME (u) = new_time;
+         crr_insn->cycle = new_time;
+         SCHED_ROW (u) = new_time % new_ii;
+         SCHED_STAGE (u) = new_time / new_ii;
+       }
     }
-  return ps;
+
+  /* Updating ps.  */
+  ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
+    + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
+  ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
+    + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
+  free (ps->rows);
+  ps->rows = rows_new;
+  ps->ii = new_ii;
+  gcc_assert (ps->min_cycle >= 0);
+
+  verify_partial_schedule (ps, sched_nodes);
+
+  if (dump_file)
+    fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
+            ps->max_cycle);
+}
+
+/* Given U_NODE which is the node that failed to be scheduled; LOW and
+   UP which are the boundaries of it's scheduling window; compute using
+   SCHED_NODES and II a row in the partial schedule that can be split
+   which will separate a critical predecessor from a critical successor
+   thereby expanding the window, and return it.  */
+static int
+compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
+                  ddg_node_ptr u_node)
+{
+  ddg_edge_ptr e;
+  int lower = INT_MIN, upper = INT_MAX;
+  ddg_node_ptr crit_pred = NULL;
+  ddg_node_ptr crit_succ = NULL;
+  int crit_cycle;
+
+  for (e = u_node->in; e != 0; e = e->next_in)
+    {
+      ddg_node_ptr v_node = e->src;
+
+      if (TEST_BIT (sched_nodes, v_node->cuid)
+         && (low == SCHED_TIME (v_node) + e->latency - (e->distance * ii)))
+       if (SCHED_TIME (v_node) > lower)
+         {
+           crit_pred = v_node;
+           lower = SCHED_TIME (v_node);
+         }
+    }
+
+  if (crit_pred != NULL)
+    {
+      crit_cycle = SCHED_TIME (crit_pred) + 1;
+      return SMODULO (crit_cycle, ii);
+    }
+
+  for (e = u_node->out; e != 0; e = e->next_out)
+    {
+      ddg_node_ptr v_node = e->dest;
+      if (TEST_BIT (sched_nodes, v_node->cuid)
+         && (up == SCHED_TIME (v_node) - e->latency + (e->distance * ii)))
+       if (SCHED_TIME (v_node) < upper)
+         {
+           crit_succ = v_node;
+           upper = SCHED_TIME (v_node);
+         }
+    }
+
+  if (crit_succ != NULL)
+    {
+      crit_cycle = SCHED_TIME (crit_succ);
+      return SMODULO (crit_cycle, ii);
+    }
+
+  if (dump_file)
+    fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
+
+  return SMODULO ((low + up + 1) / 2, ii);
+}
+
+static void
+verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
+{
+  int row;
+  ps_insn_ptr crr_insn;
+
+  for (row = 0; row < ps->ii; row++)
+    for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
+      {
+       ddg_node_ptr u = crr_insn->node;
+
+       gcc_assert (TEST_BIT (sched_nodes, u->cuid));
+       /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
+          popcount (sched_nodes) == number of insns in ps.  */
+       gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
+       gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
+      }
 }
 
 \f
@@ -1418,7 +2044,7 @@ typedef struct node_order_params * nopa;
 
 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
-static nopa  calculate_order_params (ddg_ptr, int mii);
+static nopa  calculate_order_params (ddg_ptr, int, int *);
 static int find_max_asap (ddg_ptr, sbitmap);
 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
@@ -1441,30 +2067,40 @@ check_nodes_order (int *node_order, int num_nodes)
 
   sbitmap_zero (tmp);
 
+  if (dump_file)
+    fprintf (dump_file, "SMS final nodes order: \n");
+
   for (i = 0; i < num_nodes; i++)
     {
       int u = node_order[i];
 
-      if (u >= num_nodes || u < 0 || TEST_BIT (tmp, u))
-       abort ();
+      if (dump_file)
+        fprintf (dump_file, "%d ", u);
+      gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
 
       SET_BIT (tmp, u);
     }
 
+  if (dump_file)
+    fprintf (dump_file, "\n");
+
   sbitmap_free (tmp);
 }
 
 /* Order the nodes of G for scheduling and pass the result in
    NODE_ORDER.  Also set aux.count of each node to ASAP.
-   Return the recMII for the given DDG.  */
+   Put maximal ASAP to PMAX_ASAP.  Return the recMII for the given DDG.  */
 static int
-sms_order_nodes (ddg_ptr g, int mii, int * node_order)
+sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
 {
   int i;
   int rec_mii = 0;
   ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
 
-  nopa nops = calculate_order_params (g, mii);
+  nopa nops = calculate_order_params (g, mii, pmax_asap);
+
+  if (dump_file)
+    print_sccs (dump_file, sccs, g);
 
   order_nodes_of_sccs (sccs, node_order);
 
@@ -1500,7 +2136,7 @@ order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
   sbitmap_zero (prev_sccs);
   sbitmap_ones (ones);
 
-  /* Perfrom the node ordering starting from the SCC with the highest recMII.
+  /* Perform the node ordering starting from the SCC with the highest recMII.
      For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc.  */
   for (i = 0; i < all_sccs->num_sccs; i++)
     {
@@ -1536,7 +2172,7 @@ order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
 
 /* MII is needed if we consider backarcs (that do not close recursive cycles).  */
 static struct node_order_params *
-calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED)
+calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
 {
   int u;
   int max_asap;
@@ -1587,18 +2223,31 @@ calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED)
                                   HEIGHT (e->dest) + e->latency);
          }
     }
+  if (dump_file)
+  {
+    fprintf (dump_file, "\nOrder params\n");
+    for (u = 0; u < num_nodes; u++)
+      {
+        ddg_node_ptr u_node = &g->nodes[u];
+
+        fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
+                 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
+      }
+  }
 
+  *pmax_asap = max_asap;
   return node_order_params_arr;
 }
 
 static int
 find_max_asap (ddg_ptr g, sbitmap nodes)
 {
-  int u;
+  unsigned int u = 0;
   int max_asap = -1;
   int result = -1;
+  sbitmap_iterator sbi;
 
-  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
+  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
     {
       ddg_node_ptr u_node = &g->nodes[u];
 
@@ -1607,19 +2256,20 @@ find_max_asap (ddg_ptr g, sbitmap nodes)
          max_asap = ASAP (u_node);
          result = u;
        }
-    });
+    }
   return result;
 }
 
 static int
 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
 {
-  int u;
+  unsigned int u = 0;
   int max_hv = -1;
   int min_mob = INT_MAX;
   int result = -1;
+  sbitmap_iterator sbi;
 
-  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
+  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
     {
       ddg_node_ptr u_node = &g->nodes[u];
 
@@ -1635,19 +2285,20 @@ find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
          min_mob = MOB (u_node);
          result = u;
        }
-    });
+    }
   return result;
 }
 
 static int
 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
 {
-  int u;
+  unsigned int u = 0;
   int max_dv = -1;
   int min_mob = INT_MAX;
   int result = -1;
+  sbitmap_iterator sbi;
 
-  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
+  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
     {
       ddg_node_ptr u_node = &g->nodes[u];
 
@@ -1663,7 +2314,7 @@ find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
          min_mob = MOB (u_node);
          result = u;
        }
-    });
+    }
   return result;
 }
 
@@ -1774,11 +2425,11 @@ order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
    modulo scheduling.  */
 
 /* Create a partial schedule and allocate a memory to hold II rows.  */
+
 static partial_schedule_ptr
 create_partial_schedule (int ii, ddg_ptr g, int history)
 {
-  partial_schedule_ptr ps = (partial_schedule_ptr)
-                            xmalloc (sizeof (struct partial_schedule));
+  partial_schedule_ptr ps = XNEW (struct partial_schedule);
   ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
   ps->ii = ii;
   ps->history = history;
@@ -1810,6 +2461,7 @@ free_ps_insns (partial_schedule_ptr ps)
 }
 
 /* Free all the memory allocated to the partial schedule.  */
+
 static void
 free_partial_schedule (partial_schedule_ptr ps)
 {
@@ -1822,6 +2474,7 @@ free_partial_schedule (partial_schedule_ptr ps)
 
 /* Clear the rows array with its PS_INSNs, and create a new one with
    NEW_II rows.  */
+
 static void
 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
 {
@@ -1849,7 +2502,7 @@ print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
     {
       ps_insn_ptr ps_i = ps->rows[i];
 
-      fprintf (dump, "\n[CYCLE %d ]: ", i);
+      fprintf (dump, "\n[ROW %d ]: ", i);
       while (ps_i)
        {
          fprintf (dump, "%d, ",
@@ -1863,7 +2516,7 @@ print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
 static ps_insn_ptr
 create_ps_insn (ddg_node_ptr node, int rest_count, int cycle)
 {
-  ps_insn_ptr ps_i = xmalloc (sizeof (struct ps_insn));
+  ps_insn_ptr ps_i = XNEW (struct ps_insn);
 
   ps_i->node = node;
   ps_i->next_in_row = NULL;
@@ -1877,7 +2530,7 @@ create_ps_insn (ddg_node_ptr node, int rest_count, int cycle)
 
 /* Removes the given PS_INSN from the partial schedule.  Returns false if the
    node is not found in the partial schedule, else returns true.  */
-static int
+static bool
 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
 {
   int row;
@@ -1932,10 +2585,10 @@ ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
        next_ps_i;
        next_ps_i = next_ps_i->next_in_row)
     {
-      if (TEST_BIT (must_follow, next_ps_i->node->cuid)
+      if (must_follow && TEST_BIT (must_follow, next_ps_i->node->cuid)
          && ! first_must_follow)
         first_must_follow = next_ps_i;
-      if (TEST_BIT (must_precede, next_ps_i->node->cuid))
+      if (must_precede && TEST_BIT (must_precede, next_ps_i->node->cuid))
         {
           /* If we have already met a node that must follow, then
             there is no possible column.  */
@@ -1969,8 +2622,8 @@ ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
 }
 
 /* Advances the PS_INSN one column in its current row; returns false
-   in failure and true in success.  Bit N is set in MUST_FOLLOW if 
-   the node with cuid N must be come after the node pointed to by 
+   in failure and true in success.  Bit N is set in MUST_FOLLOW if
+   the node with cuid N must be come after the node pointed to by
    PS_I when scheduled in the same cycle.  */
 static int
 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
@@ -1992,7 +2645,7 @@ ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
 
   /* Check if next_in_row is dependent on ps_i, both having same sched
      times (typically ANTI_DEP).  If so, ps_i cannot skip over it.  */
-  if (TEST_BIT (must_follow, next_node->cuid))
+  if (must_follow && TEST_BIT (must_follow, next_node->cuid))
     return false;
 
   /* Advance PS_I over its next_in_row in the doubly linked list.  */
@@ -2018,9 +2671,9 @@ ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
 }
 
 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
-   Returns 0 if this is not possible and a PS_INSN otherwise.  Bit N is 
-   set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come 
-   before/after (respectively) the node pointed to by PS_I when scheduled 
+   Returns 0 if this is not possible and a PS_INSN otherwise.  Bit N is
+   set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
+   before/after (respectively) the node pointed to by PS_I when scheduled
    in the same cycle.  */
 static ps_insn_ptr
 add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle,
@@ -2056,15 +2709,17 @@ advance_one_cycle (void)
 {
   if (targetm.sched.dfa_pre_cycle_insn)
     state_transition (curr_state,
-                     (*targetm.sched.dfa_pre_cycle_insn) ());
+                     targetm.sched.dfa_pre_cycle_insn ());
 
   state_transition (curr_state, NULL);
 
   if (targetm.sched.dfa_post_cycle_insn)
     state_transition (curr_state,
-                     (*targetm.sched.dfa_post_cycle_insn) ());
+                     targetm.sched.dfa_post_cycle_insn ());
 }
 
+
+
 /* Checks if PS has resource conflicts according to DFA, starting from
    FROM cycle to TO cycle; returns true if there are conflicts and false
    if there are no conflicts.  Assumes DFA is being used.  */
@@ -2088,7 +2743,7 @@ ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
        {
          rtx insn = crr_insn->node->insn;
 
-         if (!INSN_P (insn))
+         if (!NONDEBUG_INSN_P (insn))
            continue;
 
          /* Check if there is room for the current insn.  */
@@ -2096,14 +2751,14 @@ ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
            return true;
 
          /* Update the DFA state and return with failure if the DFA found
-            recource conflicts.  */
+            resource conflicts.  */
          if (state_transition (curr_state, insn) >= 0)
            return true;
 
          if (targetm.sched.variable_issue)
            can_issue_more =
-             (*targetm.sched.variable_issue) (sched_dump, sched_verbose,
-                                              insn, can_issue_more);
+             targetm.sched.variable_issue (sched_dump, sched_verbose,
+                                           insn, can_issue_more);
          /* A naked CLOBBER or USE generates no instruction, so don't
             let them consume issue slots.  */
          else if (GET_CODE (PATTERN (insn)) != USE
@@ -2119,10 +2774,10 @@ ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
 
 /* Checks if the given node causes resource conflicts when added to PS at
    cycle C.  If not the node is added to PS and returned; otherwise zero
-   is returned.  Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with 
-   cuid N must be come before/after (respectively) the node pointed to by 
+   is returned.  Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
+   cuid N must be come before/after (respectively) the node pointed to by
    PS_I when scheduled in the same cycle.  */
-static ps_insn_ptr
+ps_insn_ptr
 ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
                             int c, sbitmap must_precede,
                             sbitmap must_follow)
@@ -2167,7 +2822,7 @@ ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
 
 /* Rotate the rows of PS such that insns scheduled at time
    START_CYCLE will appear in row 0.  Updates max/min_cycles.  */
-static void
+void
 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
 {
   int i, row, backward_rotates;
@@ -2193,4 +2848,58 @@ rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
   ps->min_cycle -= start_cycle;
 }
 
-#endif /* INSN_SCHEDULING*/
+#endif /* INSN_SCHEDULING */
+\f
+static bool
+gate_handle_sms (void)
+{
+  return (optimize > 0 && flag_modulo_sched);
+}
+
+
+/* Run instruction scheduler.  */
+/* Perform SMS module scheduling.  */
+static unsigned int
+rest_of_handle_sms (void)
+{
+#ifdef INSN_SCHEDULING
+  basic_block bb;
+
+  /* Collect loop information to be used in SMS.  */
+  cfg_layout_initialize (0);
+  sms_schedule ();
+
+  /* Update the life information, because we add pseudos.  */
+  max_regno = max_reg_num ();
+
+  /* Finalize layout changes.  */
+  FOR_EACH_BB (bb)
+    if (bb->next_bb != EXIT_BLOCK_PTR)
+      bb->aux = bb->next_bb;
+  free_dominance_info (CDI_DOMINATORS);
+  cfg_layout_finalize ();
+#endif /* INSN_SCHEDULING */
+  return 0;
+}
+
+struct rtl_opt_pass pass_sms =
+{
+ {
+  RTL_PASS,
+  "sms",                                /* name */
+  gate_handle_sms,                      /* gate */
+  rest_of_handle_sms,                   /* execute */
+  NULL,                                 /* sub */
+  NULL,                                 /* next */
+  0,                                    /* static_pass_number */
+  TV_SMS,                               /* tv_id */
+  0,                                    /* properties_required */
+  0,                                    /* properties_provided */
+  0,                                    /* properties_destroyed */
+  TODO_dump_func,                       /* todo_flags_start */
+  TODO_df_finish | TODO_verify_rtl_sharing |
+  TODO_dump_func |
+  TODO_ggc_collect                      /* todo_flags_finish */
+ }
+};
+