OSDN Git Service

Daily bump.
[pf3gnuchains/gcc-fork.git] / gcc / gcse.c
index 3fa620a..224dd6b 100644 (file)
@@ -1,6 +1,6 @@
 /* Global common subexpression elimination/Partial redundancy elimination
    and global constant/copy propagation for GNU compiler.
-   Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
+   Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
 
 This file is part of GNU CC.
 
@@ -126,6 +126,10 @@ Boston, MA 02111-1307, USA.  */
    Steven Muchnick
    Morgan Kaufmann, 1997
 
+   Building an Optimizing Compiler
+   Robert Morgan
+   Digital Press, 1998
+
    People wishing to speed up the code here should read:
      Elimination Algorithms for Data Flow Analysis
      B.G. Ryder, M.C. Paull
@@ -144,6 +148,7 @@ Boston, MA 02111-1307, USA.  */
 #include "toplev.h"
 
 #include "rtl.h"
+#include "tm_p.h"
 #include "regs.h"
 #include "hard-reg-set.h"
 #include "flags.h"
@@ -284,14 +289,6 @@ static FILE *gcse_file;
 
 static int run_jump_opt_after_gcse;
 
-/* Element I is a list of I's predecessors/successors.  */
-static int_list_ptr *s_preds;
-static int_list_ptr *s_succs;
-
-/* Element I is the number of predecessors/successors of basic block I.  */
-static int *num_preds;
-static int *num_succs;
-
 /* Bitmaps are normally not included in debugging dumps.
    However it's useful to be able to print them from GDB.
    We could create special functions for this, but it's simpler to
@@ -310,9 +307,7 @@ static char can_copy_p[(int) NUM_MACHINE_MODES];
 /* Non-zero if can_copy_p has been initialized.  */
 static int can_copy_init_p;
 
-struct reg_use {
-  rtx reg_rtx;
-};
+struct reg_use {rtx reg_rtx; };
 
 /* Hash table of expressions.  */
 
@@ -367,17 +362,18 @@ struct occr
    not clear whether in the final analysis a sufficient amount of memory would
    be saved as the size of the available expression bitmaps would be larger
    [one could build a mapping table without holes afterwards though].
-   Someday I'll perform the computation and figure it out.
-*/
+   Someday I'll perform the computation and figure it out.  */
 
 /* Total size of the expression hash table, in elements.  */
-static int expr_hash_table_size;
+static unsigned int expr_hash_table_size;
+
 /* The table itself.
    This is an array of `expr_hash_table_size' elements.  */
 static struct expr **expr_hash_table;
 
 /* Total size of the copy propagation hash table, in elements.  */
 static int set_hash_table_size;
+
 /* The table itself.
    This is an array of `set_hash_table_size' elements.  */
 static struct expr **set_hash_table;
@@ -390,7 +386,11 @@ static int *uid_cuid;
 static int max_uid;
 
 /* Get the cuid of an insn.  */
+#ifdef ENABLE_CHECKING
+#define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
+#else
 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
+#endif
 
 /* Number of cuids.  */
 static int max_cuid;
@@ -404,14 +404,16 @@ static rtx *cuid_insn;
 /* Maximum register number in function prior to doing gcse + 1.
    Registers created during this pass have regno >= max_gcse_regno.
    This is named with "gcse" to not collide with global of same name.  */
-static int max_gcse_regno;
+static unsigned int max_gcse_regno;
 
 /* Maximum number of cse-able expressions found.  */
 static int n_exprs;
+
 /* Maximum number of assignments for copy propagation found.  */
 static int n_sets;
 
 /* Table of registers that are modified.
+
    For each register, each element is a list of places where the pseudo-reg
    is set.
 
@@ -419,33 +421,35 @@ static int n_sets;
    requires knowledge of which blocks kill which regs [and thus could use
    a bitmap instead of the lists `reg_set_table' uses].
 
-   `reg_set_table' and could be turned into an array of bitmaps
-   (num-bbs x num-regs)
-   [however perhaps it may be useful to keep the data as is].
-   One advantage of recording things this way is that `reg_set_table' is
-   fairly sparse with respect to pseudo regs but for hard regs could be
-   fairly dense [relatively speaking].
-   And recording sets of pseudo-regs in lists speeds
+   `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
+   num-regs) [however perhaps it may be useful to keep the data as is].  One
+   advantage of recording things this way is that `reg_set_table' is fairly
+   sparse with respect to pseudo regs but for hard regs could be fairly dense
+   [relatively speaking].  And recording sets of pseudo-regs in lists speeds
    up functions like compute_transp since in the case of pseudo-regs we only
    need to iterate over the number of times a pseudo-reg is set, not over the
    number of basic blocks [clearly there is a bit of a slow down in the cases
    where a pseudo is set more than once in a block, however it is believed
    that the net effect is to speed things up].  This isn't done for hard-regs
    because recording call-clobbered hard-regs in `reg_set_table' at each
-   function call can consume a fair bit of memory, and iterating over hard-regs
-   stored this way in compute_transp will be more expensive.  */
+   function call can consume a fair bit of memory, and iterating over
+   hard-regs stored this way in compute_transp will be more expensive.  */
 
-typedef struct reg_set {
+typedef struct reg_set
+{
   /* The next setting of this register.  */
   struct reg_set *next;
   /* The insn where it was set.  */
   rtx insn;
 } reg_set;
+
 static reg_set **reg_set_table;
+
 /* Size of `reg_set_table'.
    The table starts out at max_gcse_regno + slop, and is enlarged as
    necessary.  */
 static int reg_set_table_size;
+
 /* Amount to grow `reg_set_table' by when it's full.  */
 #define REG_SET_TABLE_SLOP 100
 
@@ -476,6 +480,7 @@ static char *mem_set_in_block;
    This isn't intended to be absolutely precise.  Its intent is only
    to keep an eye on memory usage.  */
 static int bytes_used;
+
 /* GCSE substitutions made.  */
 static int gcse_subst_count;
 /* Number of copy instructions created.  */
@@ -504,8 +509,7 @@ static sbitmap u_bitmap;
 
    Thus we view the bitmaps as 2 dimensional arrays.  i.e.
    rd_kill[block_num][cuid_num]
-   ae_kill[block_num][expr_num]
-*/
+   ae_kill[block_num][expr_num]                         */
 
 /* For reaching defs */
 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
@@ -513,110 +517,131 @@ static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
 /* for available exprs */
 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
 
+/* Objects of this type are passed around by the null-pointer check
+   removal routines.  */
+struct null_pointer_info
+{
+  /* The basic block being processed.  */
+  int current_block;
+  /* The first register to be handled in this pass.  */
+  unsigned int min_reg;
+  /* One greater than the last register to be handled in this pass.  */
+  unsigned int max_reg;
+  sbitmap *nonnull_local;
+  sbitmap *nonnull_killed;
+};
 \f
-static void compute_can_copy     PROTO ((void));
-
-static char *gmalloc             PROTO ((unsigned int));
-static char *grealloc           PROTO ((char *, unsigned int));
-static char *gcse_alloc               PROTO ((unsigned long));
-static void alloc_gcse_mem         PROTO ((rtx));
-static void free_gcse_mem           PROTO ((void));
-static void alloc_reg_set_mem   PROTO ((int));
-static void free_reg_set_mem     PROTO ((void));
-static void record_one_set         PROTO ((int, rtx));
-static void record_set_info       PROTO ((rtx, rtx));
-static void compute_sets             PROTO ((rtx));
-
-static void hash_scan_insn         PROTO ((rtx, int, int));
-static void hash_scan_set           PROTO ((rtx, rtx, int));
-static void hash_scan_clobber   PROTO ((rtx, rtx));
-static void hash_scan_call         PROTO ((rtx, rtx));
-static int want_to_gcse_p           PROTO ((rtx));
-static int oprs_unchanged_p       PROTO ((rtx, rtx, int));
-static int oprs_anticipatable_p       PROTO ((rtx, rtx));
-static int oprs_available_p       PROTO ((rtx, rtx));
-static void insert_expr_in_table      PROTO ((rtx, enum machine_mode,
-                                             rtx, int, int));
-static void insert_set_in_table       PROTO ((rtx, rtx));
-static unsigned int hash_expr   PROTO ((rtx, enum machine_mode,
-                                        int *, int));
-static unsigned int hash_expr_1       PROTO ((rtx, enum machine_mode, int *));
-static unsigned int hash_set     PROTO ((int, int));
-static int expr_equiv_p               PROTO ((rtx, rtx));
-static void record_last_reg_set_info  PROTO ((rtx, int));
-static void record_last_mem_set_info  PROTO ((rtx));
-static void record_last_set_info      PROTO ((rtx, rtx));
-static void compute_hash_table PROTO ((int));
-static void alloc_set_hash_table      PROTO ((int));
-static void free_set_hash_table       PROTO ((void));
-static void compute_set_hash_table    PROTO ((void));
-static void alloc_expr_hash_table     PROTO ((int));
-static void free_expr_hash_table      PROTO ((void));
-static void compute_expr_hash_table   PROTO ((void));
-static void dump_hash_table       PROTO ((FILE *, const char *, struct expr **,
-                                          int, int));
-static struct expr *lookup_expr       PROTO ((rtx));
-static struct expr *lookup_set PROTO ((int, rtx));
-static struct expr *next_set     PROTO ((int, struct expr *));
-static void reset_opr_set_tables      PROTO ((void));
-static int oprs_not_set_p           PROTO ((rtx, rtx));
-static void mark_call           PROTO ((rtx));
-static void mark_set             PROTO ((rtx, rtx));
-static void mark_clobber             PROTO ((rtx, rtx));
-static void mark_oprs_set           PROTO ((rtx));
-
-static void alloc_cprop_mem       PROTO ((int, int));
-static void free_cprop_mem         PROTO ((void));
-static void compute_transp         PROTO ((rtx, int, sbitmap *, int));
-static void compute_transpout      PROTO ((void));
-static void compute_local_properties  PROTO ((sbitmap *, sbitmap *,
-                                             sbitmap *, int));
-static void compute_cprop_avinout     PROTO ((void));
-static void compute_cprop_data PROTO ((void));
-static void find_used_regs         PROTO ((rtx));
-static int try_replace_reg         PROTO ((rtx, rtx, rtx));
-static struct expr *find_avail_set    PROTO ((int, rtx));
-static int cprop_jump                  PROTO((rtx, rtx, struct reg_use *, rtx));
-static int cprop_cc0_jump              PROTO((rtx, struct reg_use *, rtx));
-static int cprop_insn           PROTO ((rtx, int));
-static int cprop                     PROTO ((int));
-static int one_cprop_pass           PROTO ((int, int));
-
-static void alloc_pre_mem           PROTO ((int, int));
-static void free_pre_mem             PROTO ((void));
-static void compute_pre_data     PROTO ((void));
-static int pre_expr_reaches_here_p    PROTO ((int, struct expr *,
-                                             int, int, char *));
-static void insert_insn_end_bb PROTO ((struct expr *, int, int));
-static void pre_insert         PROTO ((struct expr **));
-static void pre_insert_copy_insn      PROTO ((struct expr *, rtx));
-static void pre_insert_copies   PROTO ((void));
-static int pre_delete           PROTO ((void));
-static int pre_gcse               PROTO ((void));
-static int one_pre_gcse_pass     PROTO ((int));
-
-static void add_label_notes          PROTO ((rtx, rtx));
-
-static void alloc_rd_mem             PROTO ((int, int));
-static void free_rd_mem               PROTO ((void));
-static void handle_rd_kill_set PROTO ((rtx, int, int));
-static void compute_kill_rd       PROTO ((void));
-static void compute_rd         PROTO ((void));
-static void alloc_avail_expr_mem      PROTO ((int, int));
-static void free_avail_expr_mem       PROTO ((void));
-static void compute_ae_gen         PROTO ((void));
-static int expr_killed_p             PROTO ((rtx, int));
-static void compute_ae_kill       PROTO ((void));
-static void compute_available   PROTO ((void));
-static int expr_reaches_here_p PROTO ((struct occr *, struct expr *,
-                                             int, int, char *));
-static rtx computing_insn           PROTO ((struct expr *, rtx));
-static int def_reaches_here_p   PROTO ((rtx, rtx));
-static int can_disregard_other_sets   PROTO ((struct reg_set **, rtx, int));
-static int handle_avail_expr     PROTO ((rtx, struct expr *));
-static int classic_gcse               PROTO ((void));
-static int one_classic_gcse_pass      PROTO ((int));
-
+static void compute_can_copy   PARAMS ((void));
+static char *gmalloc           PARAMS ((unsigned int));
+static char *grealloc          PARAMS ((char *, unsigned int));
+static char *gcse_alloc                PARAMS ((unsigned long));
+static void alloc_gcse_mem     PARAMS ((rtx));
+static void free_gcse_mem      PARAMS ((void));
+static void alloc_reg_set_mem  PARAMS ((int));
+static void free_reg_set_mem   PARAMS ((void));
+static int get_bitmap_width     PARAMS ((int, int, int));
+static void record_one_set     PARAMS ((int, rtx));
+static void record_set_info    PARAMS ((rtx, rtx, void *));
+static void compute_sets       PARAMS ((rtx));
+static void hash_scan_insn     PARAMS ((rtx, int, int));
+static void hash_scan_set      PARAMS ((rtx, rtx, int));
+static void hash_scan_clobber  PARAMS ((rtx, rtx));
+static void hash_scan_call     PARAMS ((rtx, rtx));
+static int want_to_gcse_p      PARAMS ((rtx));
+static int oprs_unchanged_p    PARAMS ((rtx, rtx, int));
+static int oprs_anticipatable_p PARAMS ((rtx, rtx));
+static int oprs_available_p    PARAMS ((rtx, rtx));
+static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
+                                         int, int));
+static void insert_set_in_table PARAMS ((rtx, rtx));
+static unsigned int hash_expr  PARAMS ((rtx, enum machine_mode, int *, int));
+static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
+static unsigned int hash_set   PARAMS ((int, int));
+static int expr_equiv_p                PARAMS ((rtx, rtx));
+static void record_last_reg_set_info PARAMS ((rtx, int));
+static void record_last_mem_set_info PARAMS ((rtx));
+static void record_last_set_info PARAMS ((rtx, rtx, void *));
+static void compute_hash_table PARAMS ((int));
+static void alloc_set_hash_table PARAMS ((int));
+static void free_set_hash_table PARAMS ((void));
+static void compute_set_hash_table PARAMS ((void));
+static void alloc_expr_hash_table PARAMS ((unsigned int));
+static void free_expr_hash_table PARAMS ((void));
+static void compute_expr_hash_table PARAMS ((void));
+static void dump_hash_table    PARAMS ((FILE *, const char *, struct expr **,
+                                        int, int));
+static struct expr *lookup_expr        PARAMS ((rtx));
+static struct expr *lookup_set PARAMS ((unsigned int, rtx));
+static struct expr *next_set   PARAMS ((unsigned int, struct expr *));
+static void reset_opr_set_tables PARAMS ((void));
+static int oprs_not_set_p      PARAMS ((rtx, rtx));
+static void mark_call          PARAMS ((rtx));
+static void mark_set           PARAMS ((rtx, rtx));
+static void mark_clobber       PARAMS ((rtx, rtx));
+static void mark_oprs_set      PARAMS ((rtx));
+static void alloc_cprop_mem    PARAMS ((int, int));
+static void free_cprop_mem     PARAMS ((void));
+static void compute_transp     PARAMS ((rtx, int, sbitmap *, int));
+static void compute_transpout  PARAMS ((void));
+static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
+                                             int));
+static void compute_cprop_data PARAMS ((void));
+static void find_used_regs     PARAMS ((rtx));
+static int try_replace_reg     PARAMS ((rtx, rtx, rtx));
+static struct expr *find_avail_set PARAMS ((int, rtx));
+static int cprop_jump          PARAMS ((rtx, rtx, struct reg_use *, rtx));
+#ifdef HAVE_cc0
+static int cprop_cc0_jump      PARAMS ((rtx, struct reg_use *, rtx));
+#endif
+static int cprop_insn          PARAMS ((rtx, int));
+static int cprop               PARAMS ((int));
+static int one_cprop_pass      PARAMS ((int, int));
+static void alloc_pre_mem      PARAMS ((int, int));
+static void free_pre_mem       PARAMS ((void));
+static void compute_pre_data   PARAMS ((void));
+static int pre_expr_reaches_here_p PARAMS ((int, struct expr *, int));
+static void insert_insn_end_bb PARAMS ((struct expr *, int, int));
+static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
+static void pre_insert_copies  PARAMS ((void));
+static int pre_delete          PARAMS ((void));
+static int pre_gcse            PARAMS ((void));
+static int one_pre_gcse_pass   PARAMS ((int));
+static void add_label_notes    PARAMS ((rtx, rtx));
+static void alloc_code_hoist_mem PARAMS ((int, int));
+static void free_code_hoist_mem        PARAMS ((void));
+static void compute_code_hoist_vbeinout        PARAMS ((void));
+static void compute_code_hoist_data PARAMS ((void));
+static int hoist_expr_reaches_here_p PARAMS ((int, int, int, char *));
+static void hoist_code         PARAMS ((void));
+static int one_code_hoisting_pass PARAMS ((void));
+static void alloc_rd_mem       PARAMS ((int, int));
+static void free_rd_mem                PARAMS ((void));
+static void handle_rd_kill_set PARAMS ((rtx, int, int));
+static void compute_kill_rd    PARAMS ((void));
+static void compute_rd         PARAMS ((void));
+static void alloc_avail_expr_mem PARAMS ((int, int));
+static void free_avail_expr_mem PARAMS ((void));
+static void compute_ae_gen     PARAMS ((void));
+static int expr_killed_p       PARAMS ((rtx, int));
+static void compute_ae_kill    PARAMS ((sbitmap *, sbitmap *));
+static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
+                                        int, int));
+static rtx computing_insn      PARAMS ((struct expr *, rtx));
+static int def_reaches_here_p  PARAMS ((rtx, rtx));
+static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
+static int handle_avail_expr   PARAMS ((rtx, struct expr *));
+static int classic_gcse                PARAMS ((void));
+static int one_classic_gcse_pass PARAMS ((int));
+static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
+static void delete_null_pointer_checks_1 PARAMS ((unsigned int *, sbitmap *,
+                                                 sbitmap *,
+                                                 struct null_pointer_info *));
+static rtx process_insert_insn PARAMS ((struct expr *));
+static int pre_edge_insert     PARAMS ((struct edge_list *, struct expr **));
+static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
+                                            int, int, char *));
+static int pre_expr_reaches_here_p_work        PARAMS ((int, struct expr *,
+                                                int, char *));
 \f
 /* Entry point for global common subexpression elimination.
    F is the first instruction in the function.  */
@@ -649,15 +674,24 @@ gcse_main (f, file)
   /* Identify the basic block information for this function, including
      successors and predecessors.  */
   max_gcse_regno = max_reg_num ();
-  find_basic_blocks (f, max_gcse_regno, file, 1);
+
+  if (file)
+    dump_flow_info (file);
 
   /* Return if there's nothing to do.  */
   if (n_basic_blocks <= 1)
-    {
-      /* Free storage allocated by find_basic_blocks.  */
-      free_basic_block_vars (0);
-      return 0;
-    }
+    return 0;
+
+  /* Trying to perform global optimizations on flow graphs which have
+     a high connectivity will take a long time and is unlikely to be
+     particularly useful.
+
+     In normal circumstances a cfg should have about twice has many edges
+     as blocks.  But we do not want to punish small functions which have
+     a couple switch statements.  So we require a relatively large number
+     of basic blocks and the ratio of edges to blocks to be high.  */
+  if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
+    return 0;
 
   /* See what modes support reg/reg copy operations.  */
   if (! can_copy_init_p)
@@ -667,27 +701,15 @@ gcse_main (f, file)
     }
 
   gcc_obstack_init (&gcse_obstack);
+  bytes_used = 0;
 
-  /* Allocate and compute predecessors/successors.  */
-
-  s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
-  s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
-  num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
-  num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
-  bytes_used = 4 * n_basic_blocks * sizeof (int_list_ptr);
-  compute_preds_succs (s_preds, s_succs, num_preds, num_succs);
+  /* Record where pseudo-registers are set.  This data is kept accurate
+     during each pass.  ??? We could also record hard-reg information here
+     [since it's unchanging], however it is currently done during hash table
+     computation.
 
-  if (file)
-    dump_bb_data (file, s_preds, s_succs, 0);
-
-  /* Record where pseudo-registers are set.
-     This data is kept accurate during each pass.
-     ??? We could also record hard-reg information here
-     [since it's unchanging], however it is currently done during
-     hash table computation.
-
-     It may be tempting to compute MEM set information here too, but MEM
-     sets will be subject to code motion one day and thus we need to compute
+     It may be tempting to compute MEM set information here too, but MEM sets
+     will be subject to code motion one day and thus we need to compute
      information about memory sets when we build the hash tables.  */
 
   alloc_reg_set_mem (max_gcse_regno);
@@ -720,18 +742,45 @@ gcse_main (f, file)
       if (optimize_size)
        changed |= one_classic_gcse_pass (pass + 1);
       else
-       changed |= one_pre_gcse_pass (pass + 1);
+        {
+         changed |= one_pre_gcse_pass (pass + 1);
+         free_reg_set_mem ();
+         alloc_reg_set_mem (max_reg_num ());
+         compute_sets (f);
+         run_jump_opt_after_gcse = 1;
+       }
 
       if (max_pass_bytes < bytes_used)
        max_pass_bytes = bytes_used;
 
+      /* Free up memory, then reallocate for code hoisting.  We can
+        not re-use the existing allocated memory because the tables
+        will not have info for the insns or registers created by
+        partial redundancy elimination.  */
       free_gcse_mem ();
 
+      /* It does not make sense to run code hoisting unless we optimizing
+        for code size -- it rarely makes programs faster, and can make
+        them bigger if we did partial redundancy elimination (when optimizing
+        for space, we use a classic gcse algorithm instead of partial
+        redundancy algorithms).  */
+      if (optimize_size)
+        {
+         max_gcse_regno = max_reg_num ();
+         alloc_gcse_mem (f);
+         changed |= one_code_hoisting_pass ();
+         free_gcse_mem ();
+
+         if (max_pass_bytes < bytes_used)
+           max_pass_bytes = bytes_used;
+        }
+
       if (file)
        {
          fprintf (file, "\n");
          fflush (file);
        }
+
       obstack_free (&gcse_obstack, gcse_obstack_bottom);
       pass++;
     }
@@ -753,14 +802,8 @@ gcse_main (f, file)
               pass, pass > 1 ? "es" : "", max_pass_bytes);
     }
 
-  /* Free our obstack.  */
   obstack_free (&gcse_obstack, NULL_PTR);
-  /* Free reg_set_table.  */
   free_reg_set_mem ();
-  /* Free storage used to record predecessor/successor data.  */
-  free_bb_mem ();
-  /* Free storage allocated by find_basic_blocks.  */
-  free_basic_block_vars (0);
   return run_jump_opt_after_gcse;
 }
 \f
@@ -781,24 +824,20 @@ compute_can_copy ()
 
   start_sequence ();
   for (i = 0; i < NUM_MACHINE_MODES; i++)
-    {
-      switch (GET_MODE_CLASS (i))
-       {
-       case MODE_CC :
+    if (GET_MODE_CLASS (i) == MODE_CC)
+      {
 #ifdef AVOID_CCMODE_COPIES
-         can_copy_p[i] = 0;
+       can_copy_p[i] = 0;
 #else
-         reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
-         insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
-         if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
-           can_copy_p[i] = 1;
-#endif
-         break;
-       default :
+       reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
+       insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
+       if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
          can_copy_p[i] = 1;
-         break;
-       }
-    }
+#endif
+      }
+    else
+      can_copy_p[i] = 1;
+
   end_sequence ();
 
   /* Free the objects we just allocated.  */
@@ -861,9 +900,9 @@ alloc_gcse_mem (f)
   for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
     {
       if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
-       INSN_CUID (insn) = i++;
+       uid_cuid[INSN_UID (insn)] = i++;
       else
-       INSN_CUID (insn) = i;
+       uid_cuid[INSN_UID (insn)] = i;
     }
 
   /* Create a table mapping cuids to insns.  */
@@ -873,20 +912,13 @@ alloc_gcse_mem (f)
   cuid_insn = (rtx *) gmalloc (n);
   bzero ((char *) cuid_insn, n);
   for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
-    {
-      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
-       {
-         CUID_INSN (i) = insn;
-         i++;
-       }
-    }
+    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+      CUID_INSN (i++) = insn;
 
   /* Allocate vars to track sets of regs.  */
-
   reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
 
   /* Allocate vars to track sets of regs, memory per block.  */
-
   reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
                                                       max_gcse_regno);
   mem_set_in_block = (char *) gmalloc (n_basic_blocks);
@@ -906,10 +938,53 @@ free_gcse_mem ()
   free (mem_set_in_block);
 }
 
+/* Many of the global optimization algorithms work by solving dataflow
+   equations for various expressions.  Initially, some local value is
+   computed for each expression in each block.  Then, the values across the
+   various blocks are combined (by following flow graph edges) to arrive at
+   global values.  Conceptually, each set of equations is independent.  We
+   may therefore solve all the equations in parallel, solve them one at a
+   time, or pick any intermediate approach.
+
+   When you're going to need N two-dimensional bitmaps, each X (say, the
+   number of blocks) by Y (say, the number of expressions), call this
+   function.  It's not important what X and Y represent; only that Y
+   correspond to the things that can be done in parallel.  This function will
+   return an appropriate chunking factor C; you should solve C sets of
+   equations in parallel.  By going through this function, we can easily
+   trade space against time; by solving fewer equations in parallel we use
+   less space.  */
+
+static int
+get_bitmap_width (n, x, y)
+     int n;
+     int x;
+     int y;
+{
+  /* It's not really worth figuring out *exactly* how much memory will
+     be used by a particular choice.  The important thing is to get
+     something approximately right.  */
+  size_t max_bitmap_memory = 10 * 1024 * 1024;
+
+  /* The number of bytes we'd use for a single column of minimum
+     width.  */
+  size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
+
+  /* Often, it's reasonable just to solve all the equations in
+     parallel.  */
+  if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
+    return y;
+
+  /* Otherwise, pick the largest width we can, without going over the
+     limit.  */
+  return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
+                            / column_size);
+}
 \f
 /* Compute the local properties of each recorded expression.
-   Local properties are those that are defined by the block, irrespective
-   of other blocks.
+
+   Local properties are those that are defined by the block, irrespective of
+   other blocks.
 
    An expression is transparent in a block if its operands are not modified
    in the block.
@@ -922,18 +997,17 @@ free_gcse_mem ()
    least once and expression would contain the same value if the computation
    was moved to the beginning of the block.
 
-   We call this routine for cprop, pre and code hoisting.  They all
-   compute basically the same information and thus can easily share
-   this code.
+   We call this routine for cprop, pre and code hoisting.  They all compute
+   basically the same information and thus can easily share this code.
 
-   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording
-   local properties.  If NULL, then it is not necessary to compute
-   or record that particular property.
+   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
+   properties.  If NULL, then it is not necessary to compute or record that
+   particular property.
 
-   SETP controls which hash table to look at.  If zero, this routine
-   looks at the expr hash table; if nonzero this routine looks at
-   the set hash table.  Additionally, TRANSP is computed as ~TRANSP,
-   since this is really cprop's ABSALTERED.  */
+   SETP controls which hash table to look at.  If zero, this routine looks at
+   the expr hash table; if nonzero this routine looks at the set hash table.
+   Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
+   ABSALTERED.  */
  
 static void
 compute_local_properties (transp, comp, antloc, setp)
@@ -942,7 +1016,7 @@ compute_local_properties (transp, comp, antloc, setp)
      sbitmap *antloc;
      int setp;
 {
-  int i, hash_table_size;
+  unsigned int i, hash_table_size;
   struct expr **hash_table;
   
   /* Initialize any bitmaps that were passed in.  */
@@ -953,6 +1027,7 @@ compute_local_properties (transp, comp, antloc, setp)
       else
        sbitmap_vector_ones (transp, n_basic_blocks);
     }
+
   if (comp)
     sbitmap_vector_zero (comp, n_basic_blocks);
   if (antloc)
@@ -970,47 +1045,38 @@ compute_local_properties (transp, comp, antloc, setp)
 
       for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
        {
-         struct occr *occr;
          int indx = expr->bitmap_index;
+         struct occr *occr;
 
          /* The expression is transparent in this block if it is not killed.
             We start by assuming all are transparent [none are killed], and
             then reset the bits for those that are.  */
-
          if (transp)
            compute_transp (expr->expr, indx, transp, setp);
 
          /* The occurrences recorded in antic_occr are exactly those that
             we want to set to non-zero in ANTLOC.  */
-
          if (antloc)
-           {
-             for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
-               {
-                 int bb = BLOCK_NUM (occr->insn);
-                 SET_BIT (antloc[bb], indx);
+           for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
+             {
+               SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
 
-                 /* While we're scanning the table, this is a good place to
-                    initialize this.  */
-                 occr->deleted_p = 0;
-               }
-           }
+               /* While we're scanning the table, this is a good place to
+                  initialize this.  */
+               occr->deleted_p = 0;
+             }
 
          /* The occurrences recorded in avail_occr are exactly those that
             we want to set to non-zero in COMP.  */
          if (comp)
-           {
-       
-             for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
-               {
-                 int bb = BLOCK_NUM (occr->insn);
-                 SET_BIT (comp[bb], indx);
+           for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
+             {
+               SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
 
-                 /* While we're scanning the table, this is a good place to
-                    initialize this.  */
-                 occr->copied_p = 0;
-               }
-           }
+               /* While we're scanning the table, this is a good place to
+                  initialize this.  */
+               occr->copied_p = 0;
+             }
 
          /* While we're scanning the table, this is a good place to
             initialize this.  */
@@ -1018,7 +1084,6 @@ compute_local_properties (transp, comp, antloc, setp)
        }
     }
 }
-
 \f
 /* Register set information.
 
@@ -1031,7 +1096,7 @@ static void
 alloc_reg_set_mem (n_regs)
      int n_regs;
 {
-  int n;
+  unsigned int n;
 
   reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
   n = reg_set_table_size * sizeof (struct reg_set *);
@@ -1062,9 +1127,10 @@ record_one_set (regno, insn)
   if (regno >= reg_set_table_size)
     {
       int new_size = regno + REG_SET_TABLE_SLOP;
-      reg_set_table = (struct reg_set **)
-       grealloc ((char *) reg_set_table,
-                 new_size * sizeof (struct reg_set *));
+
+      reg_set_table
+       = (struct reg_set **) grealloc ((char *) reg_set_table,
+                                       new_size * sizeof (struct reg_set *));
       bzero ((char *) (reg_set_table + reg_set_table_size),
             (new_size - reg_set_table_size) * sizeof (struct reg_set *));
       reg_set_table_size = new_size;
@@ -1074,70 +1140,46 @@ record_one_set (regno, insn)
                                                   sizeof (struct reg_set));
   bytes_used += sizeof (struct reg_set);
   new_reg_info->insn = insn;
-  new_reg_info->next = NULL;
-  if (reg_set_table[regno] == NULL)
-    reg_set_table[regno] = new_reg_info;
-  else
-    {
-      reg_info_ptr1 = reg_info_ptr2 = reg_set_table[regno];
-      /* ??? One could keep a "last" pointer to speed this up.  */
-      while (reg_info_ptr1 != NULL)
-       {
-         reg_info_ptr2 = reg_info_ptr1;
-         reg_info_ptr1 = reg_info_ptr1->next;
-       }
-      reg_info_ptr2->next = new_reg_info;
-    }
+  new_reg_info->next = reg_set_table[regno];
+  reg_set_table[regno] = new_reg_info;
 }
 
-/* For communication between next two functions (via note_stores).  */
-static rtx record_set_insn;
-
-/* Called from compute_sets via note_stores to handle one
-   SET or CLOBBER in an insn.  */
+/* Called from compute_sets via note_stores to handle one SET or CLOBBER in
+   an insn.  The DATA is really the instruction in which the SET is
+   occurring.  */
 
 static void
-record_set_info (dest, setter)
+record_set_info (dest, setter, data)
      rtx dest, setter ATTRIBUTE_UNUSED;
+     void *data;
 {
-  if (GET_CODE (dest) == SUBREG)
-    dest = SUBREG_REG (dest);
+  rtx record_set_insn = (rtx) data;
 
-  if (GET_CODE (dest) == REG)
-    {
-      if (REGNO (dest) >= FIRST_PSEUDO_REGISTER)
-       record_one_set (REGNO (dest), record_set_insn);
-    }
+  if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
+    record_one_set (REGNO (dest), record_set_insn);
 }
 
 /* Scan the function and record each set of each pseudo-register.
 
-   This is called once, at the start of the gcse pass.
-   See the comments for `reg_set_table' for further docs.  */
+   This is called once, at the start of the gcse pass.  See the comments for
+   `reg_set_table' for further documenation.  */
 
 static void
 compute_sets (f)
      rtx f;
 {
-  rtx insn = f;
+  rtx insn;
 
-  while (insn)
-    {
-      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
-       {
-         record_set_insn = insn;
-         note_stores (PATTERN (insn), record_set_info);
-       }
-      insn = NEXT_INSN (insn);
-    }
+  for (insn = f; insn != 0; insn = NEXT_INSN (insn))
+    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+      note_stores (PATTERN (insn), record_set_info, insn);
 }
 \f
 /* Hash table support.  */
 
-#define NEVER_SET -1
-
 /* For each register, the cuid of the first/last insn in the block to set it,
    or -1 if not set.  */
+#define NEVER_SET -1
 static int *reg_first_set;
 static int *reg_last_set;
 
@@ -1145,6 +1187,7 @@ static int *reg_last_set;
    to set memory or -1 if not set.  `mem_last_set' is also used when
    performing GCSE to record whether memory has been set since the beginning
    of the block.
+
    Note that handling of memory is very simple, we don't make any attempt
    to optimize things (later).  */
 static int mem_first_set;
@@ -1157,9 +1200,7 @@ static int
 want_to_gcse_p (x)
      rtx x;
 {
-  enum rtx_code code = GET_CODE (x);
-
-  switch (code)
+  switch (GET_CODE (x))
     {
     case REG:
     case SUBREG:
@@ -1184,13 +1225,10 @@ oprs_unchanged_p (x, insn, avail_p)
      rtx x, insn;
      int avail_p;
 {
-  int i;
+  int i, j;
   enum rtx_code code;
   const char *fmt;
 
-  /* repeat is used to turn tail-recursion into iteration.  */
- repeat:
-
   if (x == 0)
     return 1;
 
@@ -1206,20 +1244,14 @@ oprs_unchanged_p (x, insn, avail_p)
                || reg_first_set[REGNO (x)] >= INSN_CUID (insn));
 
     case MEM:
-      if (avail_p)
-       {
-         if (mem_last_set != NEVER_SET
-             && mem_last_set >= INSN_CUID (insn))
-           return 0;
-       }
+      if (avail_p && mem_last_set != NEVER_SET
+         && mem_last_set >= INSN_CUID (insn))
+       return 0;
+      else if (! avail_p && mem_first_set != NEVER_SET
+              && mem_first_set < INSN_CUID (insn))
+       return 0;
       else
-       {
-         if (mem_first_set != NEVER_SET
-             && mem_first_set < INSN_CUID (insn))
-           return 0;
-       }
-      x = XEXP (x, 0);
-      goto repeat;
+       return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
 
     case PRE_DEC:
     case PRE_INC:
@@ -1242,34 +1274,23 @@ oprs_unchanged_p (x, insn, avail_p)
       break;
     }
 
-  i = GET_RTX_LENGTH (code) - 1;
-  fmt = GET_RTX_FORMAT (code);
-  for (; i >= 0; i--)
+  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
     {
       if (fmt[i] == 'e')
        {
-         rtx tem = XEXP (x, i);
-
-         /* If we are about to do the last recursive call
-            needed at this level, change it into iteration.
-            This function is called enough to be worth it.  */
+         /* If we are about to do the last recursive call needed at this
+            level, change it into iteration.  This function is called enough
+            to be worth it.  */
          if (i == 0)
-           {
-             x = tem;
-             goto repeat;
-           }
-         if (! oprs_unchanged_p (tem, insn, avail_p))
+           return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
+
+         else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
            return 0;
        }
       else if (fmt[i] == 'E')
-       {
-         int j;
-         for (j = 0; j < XVECLEN (x, i); j++)
-           {
-             if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
-               return 0;
-           }
-       }
+       for (j = 0; j < XVECLEN (x, i); j++)
+         if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
+           return 0;
     }
 
   return 1;
@@ -1296,10 +1317,10 @@ oprs_available_p (x, insn)
 }
 
 /* Hash expression X.
-   MODE is only used if X is a CONST_INT.
-   A boolean indicating if a volatile operand is found or if the expression
-   contains something we don't want to insert in the table is stored in
-   DO_NOT_RECORD_P.
+
+   MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
+   indicating if a volatile operand is found or if the expression contains
+   something we don't want to insert in the table.
 
    ??? One might want to merge this with canon_hash.  Later.  */
 
@@ -1331,49 +1352,44 @@ hash_expr_1 (x, mode, do_not_record_p)
   enum rtx_code code;
   const char *fmt;
 
-  /* repeat is used to turn tail-recursion into iteration.  */
- repeat:
+  /* Used to turn recursion into iteration.  We can't rely on GCC's
+     tail-recursion eliminatio since we need to keep accumulating values
+     in HASH.  */
 
   if (x == 0)
     return hash;
 
+ repeat:
   code = GET_CODE (x);
   switch (code)
     {
     case REG:
-      {
-       register int regno = REGNO (x);
-       hash += ((unsigned) REG << 7) + regno;
-       return hash;
-      }
+      hash += ((unsigned int) REG << 7) + REGNO (x);
+      return hash;
 
     case CONST_INT:
-      {
-       unsigned HOST_WIDE_INT tem = INTVAL (x);
-       hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
-       return hash;
-      }
+      hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
+              + (unsigned int) INTVAL (x));
+      return hash;
 
     case CONST_DOUBLE:
       /* This is like the general case, except that it only counts
         the integers representing the constant.  */
-      hash += (unsigned) code + (unsigned) GET_MODE (x);
+      hash += (unsigned int) code + (unsigned int) GET_MODE (x);
       if (GET_MODE (x) != VOIDmode)
        for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
-         {
-           unsigned tem = XINT (x, i);
-           hash += tem;
-         }
+         hash += (unsigned int) XWINT (x, i);
       else
-       hash += ((unsigned) CONST_DOUBLE_LOW (x)
-                + (unsigned) CONST_DOUBLE_HIGH (x));
+       hash += ((unsigned int) CONST_DOUBLE_LOW (x)
+                + (unsigned int) CONST_DOUBLE_HIGH (x));
       return hash;
 
       /* Assume there is only one rtx object for any given label.  */
     case LABEL_REF:
       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
         differences and differences between each stage's debugging dumps.  */
-      hash += ((unsigned) LABEL_REF << 7) + CODE_LABEL_NUMBER (XEXP (x, 0));
+      hash += (((unsigned int) LABEL_REF << 7)
+              + CODE_LABEL_NUMBER (XEXP (x, 0)));
       return hash;
 
     case SYMBOL_REF:
@@ -1384,10 +1400,12 @@ hash_expr_1 (x, mode, do_not_record_p)
           final assembler.  This also avoids differences in the dump files
           between various stages.  */
        unsigned int h = 0;
-       unsigned char *p = (unsigned char *) XSTR (x, 0);
+       const unsigned char *p = (const unsigned char *) XSTR (x, 0);
+
        while (*p)
          h += (h << 7) + *p++; /* ??? revisit */
-       hash += ((unsigned) SYMBOL_REF << 7) + h;
+
+       hash += ((unsigned int) SYMBOL_REF << 7) + h;
        return hash;
       }
 
@@ -1397,7 +1415,9 @@ hash_expr_1 (x, mode, do_not_record_p)
          *do_not_record_p = 1;
          return 0;
        }
-      hash += (unsigned) MEM;
+
+      hash += (unsigned int) MEM;
+      hash += MEM_ALIAS_SET (x);
       x = XEXP (x, 0);
       goto repeat;
 
@@ -1423,27 +1443,25 @@ hash_expr_1 (x, mode, do_not_record_p)
       break;
     }
 
-  i = GET_RTX_LENGTH (code) - 1;
   hash += (unsigned) code + (unsigned) GET_MODE (x);
-  fmt = GET_RTX_FORMAT (code);
-  for (; i >= 0; i--)
+  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
     {
       if (fmt[i] == 'e')
        {
-         rtx tem = XEXP (x, i);
-
          /* If we are about to do the last recursive call
             needed at this level, change it into iteration.
             This function is called enough to be worth it.  */
          if (i == 0)
            {
-             x = tem;
+             x = XEXP (x, i);
              goto repeat;
            }
-         hash += hash_expr_1 (tem, 0, do_not_record_p);
+
+         hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
          if (*do_not_record_p)
            return 0;
        }
+
       else if (fmt[i] == 'E')
        for (j = 0; j < XVECLEN (x, i); j++)
          {
@@ -1451,18 +1469,18 @@ hash_expr_1 (x, mode, do_not_record_p)
            if (*do_not_record_p)
              return 0;
          }
+
       else if (fmt[i] == 's')
        {
-         register unsigned char *p = (unsigned char *) XSTR (x, i);
+         register const unsigned char *p =
+           (const unsigned char *) XSTR (x, i);
+
          if (p)
            while (*p)
              hash += *p++;
        }
       else if (fmt[i] == 'i')
-       {
-         register unsigned tem = XINT (x, i);
-         hash += tem;
-       }
+       hash += (unsigned int) XINT (x, i);
       else
        abort ();
     }
@@ -1472,8 +1490,8 @@ hash_expr_1 (x, mode, do_not_record_p)
 
 /* Hash a set of register REGNO.
 
-   Sets are hashed on the register that is set.
-   This simplifies the PRE copy propagation code.
+   Sets are hashed on the register that is set.  This simplifies the PRE copy
+   propagation code.
 
    ??? May need to make things more elaborate.  Later, as necessary.  */
 
@@ -1501,6 +1519,7 @@ expr_equiv_p (x, y)
 
   if (x == y)
     return 1;
+
   if (x == 0 || y == 0)
     return x == y;
 
@@ -1530,6 +1549,14 @@ expr_equiv_p (x, y)
     case REG:
       return REGNO (x) == REGNO (y);
 
+    case MEM:
+      /* Can't merge two expressions in different alias sets, since we can
+        decide that the expression is transparent in a block when it isn't,
+        due to it being set with the different alias set.  */
+      if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
+       return 0;
+      break;
+
     /*  For commutative operations, check both orders.  */
     case PLUS:
     case MULT:
@@ -1628,7 +1655,7 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
   cur_expr = expr_hash_table[hash];
   found = 0;
 
-  while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
+  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
     {
       /* If the expression isn't found, save a pointer to the end of
         the list.  */
@@ -1641,15 +1668,12 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
       cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
       bytes_used += sizeof (struct expr);
       if (expr_hash_table[hash] == NULL)
-       {
-         /* This is the first pattern that hashed to this index.  */
-         expr_hash_table[hash] = cur_expr;
-       }
+       /* This is the first pattern that hashed to this index.  */
+       expr_hash_table[hash] = cur_expr;
       else
-       {
-         /* Add EXPR to end of this hash chain.  */
-         last_expr->next_same_hash = cur_expr;
-       }
+       /* Add EXPR to end of this hash chain.  */
+       last_expr->next_same_hash = cur_expr;
+
       /* Set the fields of the expr element.  */ 
       cur_expr->expr = x;
       cur_expr->bitmap_index = n_exprs++;
@@ -1659,7 +1683,6 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
     }
 
   /* Now record the occurrence(s).  */
-
   if (antic_p)
     {
       antic_occr = cur_expr->antic_occr;
@@ -1674,12 +1697,10 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
        }
 
       if (antic_occr)
-       {
-         /* Found another instance of the expression in the same basic block.
-            Prefer the currently recorded one.  We want the first one in the
-            block and the block is scanned from start to end.  */
-         ; /* nothing to do */
-       }
+       /* Found another instance of the expression in the same basic block.
+          Prefer the currently recorded one.  We want the first one in the
+          block and the block is scanned from start to end.  */
+       ; /* nothing to do */
       else
        {
          /* First occurrence of this expression in this basic block.  */
@@ -1690,6 +1711,7 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
            cur_expr->antic_occr = antic_occr;
          else
            last_occr->next = antic_occr;
+
          antic_occr->insn = insn;
          antic_occr->next = NULL;
        }
@@ -1709,23 +1731,23 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
        }
 
       if (avail_occr)
-       {
-         /* Found another instance of the expression in the same basic block.
-            Prefer this occurrence to the currently recorded one.  We want
-            the last one in the block and the block is scanned from start
-            to end.  */
-         avail_occr->insn = insn;
-       }
+       /* Found another instance of the expression in the same basic block.
+          Prefer this occurrence to the currently recorded one.  We want
+          the last one in the block and the block is scanned from start
+          to end.  */
+       avail_occr->insn = insn;
       else
        {
          /* First occurrence of this expression in this basic block.  */
          avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
          bytes_used += sizeof (struct occr);
+
          /* First occurrence of this expression in any block?  */
          if (cur_expr->avail_occr == NULL)
            cur_expr->avail_occr = avail_occr;
          else
            last_occr->next = avail_occr;
+
          avail_occr->insn = insn;
          avail_occr->next = NULL;
        }
@@ -1756,7 +1778,7 @@ insert_set_in_table (x, insn)
   cur_expr = set_hash_table[hash];
   found = 0;
 
-  while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
+  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
     {
       /* If the expression isn't found, save a pointer to the end of
         the list.  */
@@ -1769,15 +1791,12 @@ insert_set_in_table (x, insn)
       cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
       bytes_used += sizeof (struct expr);
       if (set_hash_table[hash] == NULL)
-       {
-         /* This is the first pattern that hashed to this index.  */
-         set_hash_table[hash] = cur_expr;
-       }
+       /* This is the first pattern that hashed to this index.  */
+       set_hash_table[hash] = cur_expr;
       else
-       {
-         /* Add EXPR to end of this hash chain.  */
-         last_expr->next_same_hash = cur_expr;
-       }
+       /* Add EXPR to end of this hash chain.  */
+       last_expr->next_same_hash = cur_expr;
+
       /* Set the fields of the expr element.
         We must copy X because it can be modified when copy propagation is
         performed on its operands.  */
@@ -1790,7 +1809,6 @@ insert_set_in_table (x, insn)
     }
 
   /* Now record the occurrence.  */
-
   cur_occr = cur_expr->avail_occr;
 
   /* Search for another occurrence in the same basic block.  */
@@ -1803,31 +1821,30 @@ insert_set_in_table (x, insn)
     }
 
   if (cur_occr)
-    {
-      /* Found another instance of the expression in the same basic block.
-        Prefer this occurrence to the currently recorded one.  We want
-        the last one in the block and the block is scanned from start
-        to end.  */
-      cur_occr->insn = insn;
-    }
+    /* Found another instance of the expression in the same basic block.
+       Prefer this occurrence to the currently recorded one.  We want the
+       last one in the block and the block is scanned from start to end.  */
+    cur_occr->insn = insn;
   else
     {
       /* First occurrence of this expression in this basic block.  */
       cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
       bytes_used += sizeof (struct occr);
+
       /* First occurrence of this expression in any block?  */
       if (cur_expr->avail_occr == NULL)
        cur_expr->avail_occr = cur_occr;
       else
        last_occr->next = cur_occr;
+
       cur_occr->insn = insn;
       cur_occr->next = NULL;
     }
 }
 
-/* Scan pattern PAT of INSN and add an entry to the hash table.
-   If SET_P is non-zero, this is for the assignment hash table,
-   otherwise it is for the expression hash table.  */
+/* Scan pattern PAT of INSN and add an entry to the hash table.  If SET_P is
+   non-zero, this is for the assignment hash table, otherwise it is for the
+   expression hash table.  */
 
 static void
 hash_scan_set (pat, insn, set_p)
@@ -1855,12 +1872,14 @@ hash_scan_set (pat, insn, set_p)
        {
          /* An expression is not anticipatable if its operands are
             modified before this insn.  */
-         int antic_p = ! optimize_size && oprs_anticipatable_p (src, insn);
+         int antic_p = oprs_anticipatable_p (src, insn);
          /* An expression is not available if its operands are
             subsequently modified, including this insn.  */
          int avail_p = oprs_available_p (src, insn);
+
          insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
        }
+
       /* Record sets for constant/copy propagation.  */
       else if (set_p
               && regno >= FIRST_PSEUDO_REGISTER
@@ -1914,6 +1933,7 @@ hash_scan_insn (insn, set_p, in_libcall_block)
      int in_libcall_block;
 {
   rtx pat = PATTERN (insn);
+  int i;
 
   /* Pick out the sets of INSN and for other forms of instructions record
      what's been modified.  */
@@ -1925,24 +1945,21 @@ hash_scan_insn (insn, set_p, in_libcall_block)
        hash_scan_set (pat, insn, set_p);
     }
   else if (GET_CODE (pat) == PARALLEL)
-    {
-      int i;
+    for (i = 0; i < XVECLEN (pat, 0); i++)
+      {
+       rtx x = XVECEXP (pat, 0, i);
 
-      for (i = 0; i < XVECLEN (pat, 0); i++)
-       {
-         rtx x = XVECEXP (pat, 0, i);
+       if (GET_CODE (x) == SET)
+         {
+           if (GET_CODE (SET_SRC (x)) == CALL)
+             hash_scan_call (SET_SRC (x), insn);
+         }
+       else if (GET_CODE (x) == CLOBBER)
+         hash_scan_clobber (x, insn);
+       else if (GET_CODE (x) == CALL)
+         hash_scan_call (x, insn);
+      }
 
-         if (GET_CODE (x) == SET)
-           {
-             if (GET_CODE (SET_SRC (x)) == CALL)
-               hash_scan_call (SET_SRC (x), insn);
-           }
-         else if (GET_CODE (x) == CLOBBER)
-           hash_scan_clobber (x, insn);
-         else if (GET_CODE (x) == CALL)
-           hash_scan_call (x, insn);
-       }
-    }
   else if (GET_CODE (pat) == CLOBBER)
     hash_scan_clobber (pat, insn);
   else if (GET_CODE (pat) == CALL)
@@ -1958,42 +1975,48 @@ dump_hash_table (file, name, table, table_size, total_size)
 {
   int i;
   /* Flattened out table, so it's printed in proper order.  */
-  struct expr **flat_table = (struct expr **) alloca (total_size * sizeof (struct expr *));
-  unsigned int *hash_val = (unsigned int *) alloca (total_size * sizeof (unsigned int));
+  struct expr **flat_table;
+  unsigned int *hash_val;
+  struct expr *expr;
 
-  bzero ((char *) flat_table, total_size * sizeof (struct expr *));
-  for (i = 0; i < table_size; i++)
-    {
-      struct expr *expr;
+  flat_table 
+    = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
+  hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
 
-      for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
-       {
-         flat_table[expr->bitmap_index] = expr;
-         hash_val[expr->bitmap_index] = i;
-       }
-    }
+  for (i = 0; i < table_size; i++)
+    for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
+      {
+       flat_table[expr->bitmap_index] = expr;
+       hash_val[expr->bitmap_index] = i;
+      }
 
   fprintf (file, "%s hash table (%d buckets, %d entries)\n",
           name, table_size, total_size);
 
   for (i = 0; i < total_size; i++)
-    {
-      struct expr *expr = flat_table[i];
-
-      fprintf (file, "Index %d (hash value %d)\n  ",
-              expr->bitmap_index, hash_val[i]);
-      print_rtl (file, expr->expr);
-      fprintf (file, "\n");
-    }
+    if (flat_table[i] != 0)
+      {
+       expr = flat_table[i];
+       fprintf (file, "Index %d (hash value %d)\n  ",
+                expr->bitmap_index, hash_val[i]);
+       print_rtl (file, expr->expr);
+       fprintf (file, "\n");
+      }
 
   fprintf (file, "\n");
+
+  free (flat_table);
+  free (hash_val);
 }
 
 /* Record register first/last/block set information for REGNO in INSN.
+
    reg_first_set records the first place in the block where the register
    is set and is used to compute "anticipatability".
+
    reg_last_set records the last place in the block where the register
    is set and is used to compute "availability".
+
    reg_set_in_block records whether the register is set in the block
    and is used to compute "transparency".  */
 
@@ -2004,6 +2027,7 @@ record_last_reg_set_info (insn, regno)
 {
   if (reg_first_set[regno] == NEVER_SET)
     reg_first_set[regno] = INSN_CUID (insn);
+
   reg_last_set[regno] = INSN_CUID (insn);
   SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
 }
@@ -2016,20 +2040,22 @@ record_last_mem_set_info (insn)
 {
   if (mem_first_set == NEVER_SET)
     mem_first_set = INSN_CUID (insn);
+
   mem_last_set = INSN_CUID (insn);
   mem_set_in_block[BLOCK_NUM (insn)] = 1;
 }
 
-/* Used for communicating between next two routines.  */
-static rtx last_set_insn;
-
 /* Called from compute_hash_table via note_stores to handle one
-   SET or CLOBBER in an insn.  */
+   SET or CLOBBER in an insn.  DATA is really the instruction in which
+   the SET is taking place.  */
 
 static void
-record_last_set_info (dest, setter)
+record_last_set_info (dest, setter, data)
      rtx dest, setter ATTRIBUTE_UNUSED;
+     void *data;
 {
+  rtx last_set_insn = (rtx) data;
+
   if (GET_CODE (dest) == SUBREG)
     dest = SUBREG_REG (dest);
 
@@ -2052,6 +2078,7 @@ record_last_set_info (dest, setter)
    - they are of the form (set (pseudo-reg) src),
    - src is something we want to perform const/copy propagation on,
    - none of the operands or target are subsequently modified in the block
+
    Currently src must be a pseudo-reg or a const_int.
 
    F is the first insn.
@@ -2081,9 +2108,9 @@ compute_hash_table (set_p)
   for (bb = 0; bb < n_basic_blocks; bb++)
     {
       rtx insn;
-      int regno;
+      unsigned int regno;
       int in_libcall_block;
-      int i;
+      unsigned int i;
 
       /* First pass over the instructions records information used to
         determine when registers and memory are first and last set.
@@ -2092,6 +2119,7 @@ compute_hash_table (set_p)
 
       for (i = 0; i < max_gcse_regno; i++)
        reg_first_set[i] = reg_last_set[i] = NEVER_SET;
+
       mem_first_set = NEVER_SET;
       mem_last_set = NEVER_SET;
 
@@ -2130,12 +2158,12 @@ compute_hash_table (set_p)
                     && regno != FRAME_POINTER_REGNUM)
                    || global_regs[regno])
                  record_last_reg_set_info (insn, regno);
+
              if (! CONST_CALL_P (insn))
                record_last_mem_set_info (insn);
            }
 
-         last_set_insn = insn;
-         note_stores (PATTERN (insn), record_last_set_info);
+         note_stores (PATTERN (insn), record_last_set_info, insn);
        }
 
       /* The next pass builds the hash table.  */
@@ -2143,20 +2171,19 @@ compute_hash_table (set_p)
       for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
           insn && insn != NEXT_INSN (BLOCK_END (bb));
           insn = NEXT_INSN (insn))
-       {
-         if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
-           {
-             if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
-               in_libcall_block = 1;
-             else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
-               in_libcall_block = 0;
-             hash_scan_insn (insn, set_p, in_libcall_block);
-           }
+       if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+         {
+           if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
+             in_libcall_block = 1;
+           else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
+             in_libcall_block = 0;
+           hash_scan_insn (insn, set_p, in_libcall_block);
        }
     }
 
   free (reg_first_set);
   free (reg_last_set);
+
   /* Catch bugs early.  */
   reg_first_set = reg_last_set = 0;
 }
@@ -2174,6 +2201,7 @@ alloc_set_hash_table (n_insns)
   set_hash_table_size = n_insns / 4;
   if (set_hash_table_size < 11)
     set_hash_table_size = 11;
+
   /* Attempt to maintain efficient use of hash table.
      Making it an odd number is simplest for now.
      ??? Later take some measurements.  */
@@ -2197,7 +2225,8 @@ compute_set_hash_table ()
 {
   /* Initialize count of number of entries in hash table.  */
   n_sets = 0;
-  bzero ((char *) set_hash_table, set_hash_table_size * sizeof (struct expr *));
+  bzero ((char *) set_hash_table,
+        set_hash_table_size * sizeof (struct expr *));
 
   compute_hash_table (1);
 }
@@ -2208,7 +2237,7 @@ compute_set_hash_table ()
 
 static void
 alloc_expr_hash_table (n_insns)
-     int n_insns;
+     unsigned int n_insns;
 {
   int n;
 
@@ -2216,6 +2245,7 @@ alloc_expr_hash_table (n_insns)
   /* Make sure the amount is usable.  */
   if (expr_hash_table_size < 11)
     expr_hash_table_size = 11;
+
   /* Attempt to maintain efficient use of hash table.
      Making it an odd number is simplest for now.
      ??? Later take some measurements.  */
@@ -2239,7 +2269,8 @@ compute_expr_hash_table ()
 {
   /* Initialize count of number of entries in hash table.  */
   n_exprs = 0;
-  bzero ((char *) expr_hash_table, expr_hash_table_size * sizeof (struct expr *));
+  bzero ((char *) expr_hash_table,
+        expr_hash_table_size * sizeof (struct expr *));
 
   compute_hash_table (0);
 }
@@ -2269,14 +2300,13 @@ lookup_expr (pat)
   return expr;
 }
 
-/* Lookup REGNO in the set table.
-   If PAT is non-NULL look for the entry that matches it, otherwise return
-   the first entry for REGNO.
-   The result is a pointer to the table entry, or NULL if not found.  */
+/* Lookup REGNO in the set table.  If PAT is non-NULL look for the entry that
+   matches it, otherwise return the first entry for REGNO.  The result is a
+   pointer to the table entry, or NULL if not found.  */
 
 static struct expr *
 lookup_set (regno, pat)
-     int regno;
+     unsigned int regno;
      rtx pat;
 {
   unsigned int hash = hash_set (regno, set_hash_table_size);
@@ -2302,12 +2332,13 @@ lookup_set (regno, pat)
 
 static struct expr *
 next_set (regno, expr)
-     int regno;
+     unsigned int regno;
      struct expr *expr;
 {
   do
     expr = expr->next_same_hash;
   while (expr && REGNO (SET_DEST (expr->expr)) != regno);
+
   return expr;
 }
 
@@ -2320,6 +2351,7 @@ reset_opr_set_tables ()
   /* Maintain a bitmap of which regs have been set since beginning of
      the block.  */
   sbitmap_zero (reg_set_bitmap);
+
   /* Also keep a record of the last instruction to modify memory.
      For now this is very trivial, we only record whether any memory
      location has been modified.  */
@@ -2333,13 +2365,10 @@ static int
 oprs_not_set_p (x, insn)
      rtx x, insn;
 {
-  int i;
+  int i, j;
   enum rtx_code code;
   const char *fmt;
 
-  /* repeat is used to turn tail-recursion into iteration.  */
-repeat:
-
   if (x == 0)
     return 1;
 
@@ -2360,8 +2389,8 @@ repeat:
     case MEM:
       if (mem_last_set != 0)
        return 0;
-      x = XEXP (x, 0);
-      goto repeat;
+      else
+       return oprs_not_set_p (XEXP (x, 0), insn);
 
     case REG:
       return ! TEST_BIT (reg_set_bitmap, REGNO (x));
@@ -2370,34 +2399,23 @@ repeat:
       break;
     }
 
-  fmt = GET_RTX_FORMAT (code);
-  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
     {
       if (fmt[i] == 'e')
        {
-         int not_set_p;
          /* If we are about to do the last recursive call
             needed at this level, change it into iteration.
             This function is called enough to be worth it.  */
          if (i == 0)
-           {
-             x = XEXP (x, 0);
-             goto repeat;
-           }
-         not_set_p = oprs_not_set_p (XEXP (x, i), insn);
-         if (! not_set_p)
+           return oprs_not_set_p (XEXP (x, i), insn);
+
+         if (! oprs_not_set_p (XEXP (x, i), insn))
            return 0;
        }
       else if (fmt[i] == 'E')
-       {
-         int j;
-         for (j = 0; j < XVECLEN (x, i); j++)
-           {
-             int not_set_p = oprs_not_set_p (XVECEXP (x, i, j), insn);
-             if (! not_set_p)
-               return 0;
-           }
-       }
+       for (j = 0; j < XVECLEN (x, i); j++)
+         if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
+           return 0;
     }
 
   return 1;
@@ -2460,25 +2478,23 @@ mark_oprs_set (insn)
      rtx insn;
 {
   rtx pat = PATTERN (insn);
+  int i;
 
   if (GET_CODE (pat) == SET)
     mark_set (pat, insn);
   else if (GET_CODE (pat) == PARALLEL)
-    {
-      int i;
+    for (i = 0; i < XVECLEN (pat, 0); i++)
+      {
+       rtx x = XVECEXP (pat, 0, i);
+
+       if (GET_CODE (x) == SET)
+         mark_set (x, insn);
+       else if (GET_CODE (x) == CLOBBER)
+         mark_clobber (x, insn);
+       else if (GET_CODE (x) == CALL)
+         mark_call (insn);
+      }
 
-      for (i = 0; i < XVECLEN (pat, 0); i++)
-       {
-         rtx x = XVECEXP (pat, 0, i);
-
-         if (GET_CODE (x) == SET)
-           mark_set (x, insn);
-         else if (GET_CODE (x) == CLOBBER)
-           mark_clobber (x, insn);
-         else if (GET_CODE (x) == CALL)
-           mark_call (insn);
-       }
-    }
   else if (GET_CODE (pat) == CLOBBER)
     mark_clobber (pat, insn);
   else if (GET_CODE (pat) == CALL)
@@ -2518,22 +2534,18 @@ free_rd_mem ()
   free (rd_out);
 }
 
-/* Add INSN to the kills of BB.
-   REGNO, set in BB, is killed by INSN.  */
+/* Add INSN to the kills of BB.  REGNO, set in BB, is killed by INSN.  */
 
 static void
 handle_rd_kill_set (insn, regno, bb)
      rtx insn;
      int regno, bb;
 {
-  struct reg_set *this_reg = reg_set_table[regno];
+  struct reg_set *this_reg;
 
-  while (this_reg)
-    {
-      if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
-       SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
-      this_reg = this_reg->next;
-    }
+  for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
+    if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
+      SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
 }
 
 /* Compute the set of kill's for reaching definitions.  */
@@ -2541,7 +2553,8 @@ handle_rd_kill_set (insn, regno, bb)
 static void
 compute_kill_rd ()
 {
-  int bb,cuid;
+  int bb, cuid;
+  int regno, i;
 
   /* For each block
        For each set bit in `gen' of the block (i.e each insn which
@@ -2550,70 +2563,54 @@ compute_kill_rd ()
         Look at the linked list starting at reg_set_table[regx]
         For each setting of regx in the linked list, which is not in
             this block
-          Set the bit in `kill' corresponding to that insn
-    */
-
+          Set the bit in `kill' corresponding to that insn.   */
   for (bb = 0; bb < n_basic_blocks; bb++)
-    {
-      for (cuid = 0; cuid < max_cuid; cuid++)
+    for (cuid = 0; cuid < max_cuid; cuid++)
+      if (TEST_BIT (rd_gen[bb], cuid))
        {
-         if (TEST_BIT (rd_gen[bb], cuid))
-           {
-             rtx insn = CUID_INSN (cuid);
-             rtx pat = PATTERN (insn);
+         rtx insn = CUID_INSN (cuid);
+         rtx pat = PATTERN (insn);
 
-             if (GET_CODE (insn) == CALL_INSN)
+         if (GET_CODE (insn) == CALL_INSN)
+           {
+             for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
                {
-                 int regno;
-
-                 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
-                   {
-                     if ((call_used_regs[regno]
-                          && regno != STACK_POINTER_REGNUM
+                 if ((call_used_regs[regno]
+                      && regno != STACK_POINTER_REGNUM
 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
-                          && regno != HARD_FRAME_POINTER_REGNUM
+                      && regno != HARD_FRAME_POINTER_REGNUM
 #endif
 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
-                          && ! (regno == ARG_POINTER_REGNUM
-                                && fixed_regs[regno])
+                      && ! (regno == ARG_POINTER_REGNUM
+                            && fixed_regs[regno])
 #endif
 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
-                          && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
+                      && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
 #endif
-                          && regno != FRAME_POINTER_REGNUM)
-                         || global_regs[regno])
-                       handle_rd_kill_set (insn, regno, bb);
-                   }
+                      && regno != FRAME_POINTER_REGNUM)
+                     || global_regs[regno])
+                   handle_rd_kill_set (insn, regno, bb);
                }
+           }
 
-             if (GET_CODE (pat) == PARALLEL)
+         if (GET_CODE (pat) == PARALLEL)
+           {
+             for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
                {
-                 int i;
+                 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
 
-                 /* We work backwards because ... */
-                 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
-                   {
-                     enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
-                     if ((code == SET || code == CLOBBER)
-                         && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
-                       handle_rd_kill_set (insn,
-                                           REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
-                                           bb);
-                   }
-               }
-             else if (GET_CODE (pat) == SET)
-               {
-                 if (GET_CODE (SET_DEST (pat)) == REG)
-                   {
-                     /* Each setting of this register outside of this block
-                        must be marked in the set of kills in this block.  */
-                     handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
-                   }
+                 if ((code == SET || code == CLOBBER)
+                     && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
+                   handle_rd_kill_set (insn,
+                                       REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
+                                       bb);
                }
-             /* FIXME: CLOBBER? */
            }
+         else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
+           /* Each setting of this register outside of this block
+              must be marked in the set of kills in this block.  */
+           handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
        }
-    }
 }
 
 /* Compute the reaching definitions as in 
@@ -2686,27 +2683,18 @@ free_avail_expr_mem ()
 static void
 compute_ae_gen ()
 {
-  int i;
+  unsigned int i;
+  struct expr *expr;
+  struct occr *occr;
 
   /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
      This is all we have to do because an expression is not recorded if it
      is not available, and the only expressions we want to work with are the
      ones that are recorded.  */
-
   for (i = 0; i < expr_hash_table_size; i++)
-    {
-      struct expr *expr = expr_hash_table[i];
-      while (expr != NULL)
-       {
-         struct occr *occr = expr->avail_occr;
-         while (occr != NULL)
-           {
-             SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
-             occr = occr->next;
-           }
-         expr = expr->next_same_hash;
-       }
-    }
+    for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
+      for (occr = expr->avail_occr; occr != 0; occr = occr->next)
+       SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
 }
 
 /* Return non-zero if expression X is killed in BB.  */
@@ -2716,13 +2704,10 @@ expr_killed_p (x, bb)
      rtx x;
      int bb;
 {
-  int i;
+  int i, j;
   enum rtx_code code;
   const char *fmt;
 
-  /* repeat is used to turn tail-recursion into iteration.  */
- repeat:
-
   if (x == 0)
     return 1;
 
@@ -2735,8 +2720,8 @@ expr_killed_p (x, bb)
     case MEM:
       if (mem_set_in_block[bb])
        return 1;
-      x = XEXP (x, 0);
-      goto repeat;
+      else
+       return expr_killed_p (XEXP (x, 0), bb);
 
     case PC:
     case CC0: /*FIXME*/
@@ -2753,34 +2738,22 @@ expr_killed_p (x, bb)
       break;
     }
 
-  i = GET_RTX_LENGTH (code) - 1;
-  fmt = GET_RTX_FORMAT (code);
-  for (; i >= 0; i--)
+  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
     {
       if (fmt[i] == 'e')
        {
-         rtx tem = XEXP (x, i);
-
          /* If we are about to do the last recursive call
             needed at this level, change it into iteration.
             This function is called enough to be worth it.  */
          if (i == 0)
-           {
-             x = tem;
-             goto repeat;
-           }
-         if (expr_killed_p (tem, bb))
+           return expr_killed_p (XEXP (x, i), bb);
+         else if (expr_killed_p (XEXP (x, i), bb))
            return 1;
        }
       else if (fmt[i] == 'E')
-       {
-         int j;
-         for (j = 0; j < XVECLEN (x, i); j++)
-           {
-             if (expr_killed_p (XVECEXP (x, i, j), bb))
-               return 1;
-           }
-       }
+       for (j = 0; j < XVECLEN (x, i); j++)
+         if (expr_killed_p (XVECEXP (x, i, j), bb))
+           return 1;
     }
 
   return 0;
@@ -2789,62 +2762,24 @@ expr_killed_p (x, bb)
 /* Compute the set of available expressions killed in each basic block.  */
 
 static void
-compute_ae_kill ()
+compute_ae_kill (ae_gen, ae_kill)
+     sbitmap *ae_gen, *ae_kill;
 {
-  int bb,i;
+  int bb;
+  unsigned int i;
+  struct expr *expr;
 
   for (bb = 0; bb < n_basic_blocks; bb++)
-    {
-      for (i = 0; i < expr_hash_table_size; i++)
+    for (i = 0; i < expr_hash_table_size; i++)
+      for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
        {
-         struct expr *expr = expr_hash_table[i];
-
-         for ( ; expr != NULL; expr = expr->next_same_hash)
-           {
-             /* Skip EXPR if generated in this block.  */
-             if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
-               continue;
-
-             if (expr_killed_p (expr->expr, bb))
-               SET_BIT (ae_kill[bb], expr->bitmap_index);
-           }
-       }
-    }
-}
-
-/* Compute available expressions.
-
-   Implement the algorithm to find available expressions
-   as given in the Aho Sethi Ullman book, pages 627-631.  */
-
-static void
-compute_available ()
-{
-  int bb, changed, passes;
-
-  sbitmap_zero (ae_in[0]);
-
-  sbitmap_copy (ae_out[0] /*dst*/, ae_gen[0] /*src*/);
+         /* Skip EXPR if generated in this block.  */
+         if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
+           continue;
 
-  for (bb = 1; bb < n_basic_blocks; bb++)
-    sbitmap_difference (ae_out[bb], u_bitmap, ae_kill[bb]);
-    
-  passes = 0;
-  changed = 1;
-  while (changed)
-    {
-      changed = 0;
-      for (bb = 1; bb < n_basic_blocks; bb++)
-       {
-         sbitmap_intersection_of_preds (ae_in[bb], ae_out, bb);
-         changed |= sbitmap_union_of_diff (ae_out[bb], ae_gen[bb],
-                                           ae_in[bb], ae_kill[bb]);
+         if (expr_killed_p (expr->expr, bb))
+           SET_BIT (ae_kill[bb], expr->bitmap_index);
        }
-      passes++;
-    }
-
-  if (gcse_file)
-    fprintf (gcse_file, "avail expr computation: %d passes\n", passes);
 }
 \f
 /* Actually perform the Classic GCSE optimizations.  */
@@ -2866,7 +2801,7 @@ compute_available ()
    the closest such expression.  */
 
 static int
-expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
+expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
      struct occr *occr;
      struct expr *expr;
      int bb;
@@ -2875,22 +2810,13 @@ expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
 {
   edge pred;
 
-  if (visited == NULL)
-    {
-      visited = (char *) alloca (n_basic_blocks);
-      bzero (visited, n_basic_blocks);
-    }
-
   for (pred = BASIC_BLOCK(bb)->pred; pred != NULL; pred = pred->pred_next)
     {
       int pred_bb = pred->src->index;
 
       if (visited[pred_bb])
-       {
-         /* This predecessor has already been visited.
-            Nothing to do.  */
+       /* This predecessor has already been visited. Nothing to do.  */
          ;
-       }
       else if (pred_bb == bb)
        {
          /* BB loops on itself.  */
@@ -2898,11 +2824,14 @@ expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
              && TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)
              && BLOCK_NUM (occr->insn) == pred_bb)
            return 1;
+
          visited[pred_bb] = 1;
        }
+
       /* Ignore this predecessor if it kills the expression.  */
       else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index))
        visited[pred_bb] = 1;
+
       /* Does this predecessor generate this expression?  */
       else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index))
        {
@@ -2911,13 +2840,17 @@ expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
             so we just need to check the block number.  */
          if (BLOCK_NUM (occr->insn) == pred_bb)
            return 1;
+
          visited[pred_bb] = 1;
        }
+
       /* Neither gen nor kill.  */
       else
        {
          visited[pred_bb] = 1;
-         if (expr_reaches_here_p (occr, expr, pred_bb, check_self_loop, visited))
+         if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop, 
+             visited))
+
            return 1;
        }
     }
@@ -2926,6 +2859,25 @@ expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
   return 0;
 }
 
+/* This wrapper for expr_reaches_here_p_work() is to ensure that any
+   memory allocated for that function is returned. */
+
+static int
+expr_reaches_here_p (occr, expr, bb, check_self_loop)
+     struct occr *occr;
+     struct expr *expr;
+     int bb;
+     int check_self_loop;
+{
+  int rval;
+  char *visited = (char *) xcalloc (n_basic_blocks, 1);
+
+  rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
+  
+  free (visited);
+  return rval;
+}
+
 /* Return the instruction that computes EXPR that reaches INSN's basic block.
    If there is more than one such instruction, return NULL.
 
@@ -2941,11 +2893,10 @@ computing_insn (expr, insn)
   if (expr->avail_occr->next == NULL)
     {    
       if (BLOCK_NUM (expr->avail_occr->insn) == bb)
-       {
-         /* The available expression is actually itself
-            (i.e. a loop in the flow graph) so do nothing.  */
-         return NULL;
-       }
+       /* The available expression is actually itself
+          (i.e. a loop in the flow graph) so do nothing.  */
+       return NULL;
+
       /* (FIXME) Case that we found a pattern that was created by
         a substitution that took place.  */
       return expr->avail_occr->insn;
@@ -2967,31 +2918,29 @@ computing_insn (expr, insn)
                 The only time we care about this is when the expression
                 is generated later in the block [and thus there's a loop].
                 We let the normal cse pass handle the other cases.  */
-             if (INSN_CUID (insn) < INSN_CUID (occr->insn))
-               {
-                 if (expr_reaches_here_p (occr, expr, bb, 1, NULL))
-                   {
-                     can_reach++;
-                     if (can_reach > 1)
-                       return NULL;
-                     insn_computes_expr = occr->insn;
-                   }
-               }
-           }
-         else /* Computation of the pattern outside this block.  */
-           {
-             if (expr_reaches_here_p (occr, expr, bb, 0, NULL))
+             if (INSN_CUID (insn) < INSN_CUID (occr->insn)
+                 && expr_reaches_here_p (occr, expr, bb, 1))
                {
                  can_reach++;
                  if (can_reach > 1)
                    return NULL;
+
                  insn_computes_expr = occr->insn;
                }
            }
+         else if (expr_reaches_here_p (occr, expr, bb, 0))
+           {
+             can_reach++;
+             if (can_reach > 1)
+               return NULL;
+
+             insn_computes_expr = occr->insn;
+           }
        }
 
       if (insn_computes_expr == NULL)
        abort ();
+
       return insn_computes_expr;
     }
 }
@@ -3014,12 +2963,13 @@ def_reaches_here_p (insn, def_insn)
        {
          if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
            return 1;
-         if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
+         else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
            reg = XEXP (PATTERN (def_insn), 0);
          else if (GET_CODE (PATTERN (def_insn)) == SET)
            reg = SET_DEST (PATTERN (def_insn));
          else
            abort ();
+
          return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
        }
       else
@@ -3029,11 +2979,11 @@ def_reaches_here_p (insn, def_insn)
   return 0;
 }
 
-/* Return non-zero if *ADDR_THIS_REG can only have one value at INSN.
-   The value returned is the number of definitions that reach INSN.
-   Returning a value of zero means that [maybe] more than one definition
-   reaches INSN and the caller can't perform whatever optimization it is
-   trying.  i.e. it is always safe to return zero.  */
+/* Return non-zero if *ADDR_THIS_REG can only have one value at INSN.  The
+   value returned is the number of definitions that reach INSN.  Returning a
+   value of zero means that [maybe] more than one definition reaches INSN and
+   the caller can't perform whatever optimization it is trying.  i.e. it is
+   always safe to return zero.  */
 
 static int
 can_disregard_other_sets (addr_this_reg, insn, for_combine)
@@ -3042,43 +2992,38 @@ can_disregard_other_sets (addr_this_reg, insn, for_combine)
      int for_combine;
 {
   int number_of_reaching_defs = 0;
-  struct reg_set *this_reg = *addr_this_reg;
+  struct reg_set *this_reg;
 
-  while (this_reg)
-    {
-      if (def_reaches_here_p (insn, this_reg->insn))
-       {
-         number_of_reaching_defs++;
-         /* Ignore parallels for now.  */
-         if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
-           return 0;
-         if (!for_combine
-             && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
-                 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
-                                   SET_SRC (PATTERN (insn)))))
-           {
-             /* A setting of the reg to a different value reaches INSN.  */
+  for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
+    if (def_reaches_here_p (insn, this_reg->insn))
+      {
+       number_of_reaching_defs++;
+       /* Ignore parallels for now.  */
+       if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
+         return 0;
+
+       if (!for_combine
+           && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
+               || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
+                                 SET_SRC (PATTERN (insn)))))
+         /* A setting of the reg to a different value reaches INSN.  */
+         return 0;
+
+       if (number_of_reaching_defs > 1)
+         {
+           /* If in this setting the value the register is being set to is
+              equal to the previous value the register was set to and this
+              setting reaches the insn we are trying to do the substitution
+              on then we are ok.  */
+           if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
              return 0;
-           }
-         if (number_of_reaching_defs > 1)
-           {
-             /* If in this setting the value the register is being
-                set to is equal to the previous value the register 
-                was set to and this setting reaches the insn we are
-                trying to do the substitution on then we are ok.  */
-
-             if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
-               return 0;
-             if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
-                                SET_SRC (PATTERN (insn))))
-               return 0;
-           }
-         *addr_this_reg = this_reg; 
-       }
+           else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
+                                   SET_SRC (PATTERN (insn))))
+             return 0;
+         }
 
-      /* prev_this_reg = this_reg; */
-      this_reg = this_reg->next;
-    }
+       *addr_this_reg = this_reg; 
+      }
 
   return number_of_reaching_defs;
 }
@@ -3111,12 +3056,13 @@ handle_avail_expr (insn, expr)
   /* At this point we know only one computation of EXPR outside of this
      block reaches this insn.  Now try to find a register that the
      expression is computed into.  */
-
   if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
     {
       /* This is the case when the available expression that reaches
         here has already been handled as an available expression.  */
-      int regnum_for_replacing = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
+      unsigned int regnum_for_replacing
+       = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
+
       /* If the register was created by GCSE we can't use `reg_set_table',
         however we know it's set only once.  */
       if (regnum_for_replacing >= max_gcse_regno
@@ -3133,11 +3079,15 @@ handle_avail_expr (insn, expr)
 
   if (!found_setting)
     {
-      int regnum_for_replacing = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
+      unsigned int regnum_for_replacing
+       = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
+
       /* This shouldn't happen.  */
       if (regnum_for_replacing >= max_gcse_regno)
        abort ();
+
       this_reg = reg_set_table[regnum_for_replacing];
+
       /* If the register the expression is computed into is set only once,
         or only one set reaches this insn, use it.  */
       if (this_reg->next == NULL
@@ -3161,14 +3111,15 @@ handle_avail_expr (insn, expr)
          gcse_subst_count++;
          if (gcse_file != NULL)
            {
-             fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d %s insn %d\n",
-                      INSN_UID (insn), REGNO (to),
-                      use_src ? "from" : "set in",
+             fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
+                      INSN_UID (insn));
+             fprintf (gcse_file, " reg %d %s insn %d\n",
+                      REGNO (to), use_src ? "from" : "set in",
                       INSN_UID (insn_computes_expr));
            }
-
        }
     }
+
   /* The register that the expr is computed into is set more than once.  */
   else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
     {
@@ -3185,28 +3136,34 @@ handle_avail_expr (insn, expr)
         an insn.  I think this is ok.  */
       new_insn
        = emit_insn_after (gen_rtx_SET (VOIDmode, to,
-                                       SET_DEST (PATTERN (insn_computes_expr))),
-                                 insn_computes_expr);
+                                       SET_DEST (PATTERN
+                                                 (insn_computes_expr))),
+                          insn_computes_expr);
+
       /* Keep block number table up to date.  */
       set_block_num (new_insn, BLOCK_NUM (insn_computes_expr));
+
       /* Keep register set table up to date.  */
       record_one_set (REGNO (to), new_insn);
 
       gcse_create_count++;
       if (gcse_file != NULL)
        {
-         fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d, computed in insn %d,\n",
+         fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
                   INSN_UID (NEXT_INSN (insn_computes_expr)),
-                  REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))),
+                  REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
+         fprintf (gcse_file, ", computed in insn %d,\n",
                   INSN_UID (insn_computes_expr));
-         fprintf (gcse_file, "      into newly allocated reg %d\n", REGNO (to));
+         fprintf (gcse_file, "      into newly allocated reg %d\n",
+                  REGNO (to));
        }
 
       pat = PATTERN (insn);
 
       /* Do register replacement for INSN.  */
       changed = validate_change (insn, &SET_SRC (pat),
-                                SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr))),
+                                SET_DEST (PATTERN
+                                          (NEXT_INSN (insn_computes_expr))),
                                 0);
 
       /* We should be able to ignore the return code from validate_change but
@@ -3216,21 +3173,22 @@ handle_avail_expr (insn, expr)
          gcse_subst_count++;
          if (gcse_file != NULL)
            {
-             fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d set in insn %d\n",
+             fprintf (gcse_file,
+                      "GCSE: Replacing the source in insn %d with reg %d ",
                       INSN_UID (insn),
-                      REGNO (SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr)))),
+                      REGNO (SET_DEST (PATTERN (NEXT_INSN
+                                                (insn_computes_expr)))));
+             fprintf (gcse_file, "set in insn %d\n",
                       INSN_UID (insn_computes_expr)); 
            }
-
        }
     }
 
   return changed;
 }
 
-/* Perform classic GCSE.
-   This is called by one_classic_gcse_pass after all the dataflow analysis
-   has been done.
+/* Perform classic GCSE.  This is called by one_classic_gcse_pass after all
+   the dataflow analysis has been done.
 
    The result is non-zero if a change was made.  */
 
@@ -3254,7 +3212,6 @@ classic_gcse ()
           insn = NEXT_INSN (insn))
        {
          /* Is insn of form (set (pseudo-reg) ...)?  */
-
          if (GET_CODE (insn) == INSN
              && GET_CODE (PATTERN (insn)) == SET
              && GET_CODE (SET_DEST (PATTERN (insn))) == REG
@@ -3305,26 +3262,28 @@ one_classic_gcse_pass (pass)
   if (gcse_file)
     dump_hash_table (gcse_file, "Expression", expr_hash_table,
                     expr_hash_table_size, n_exprs);
+
   if (n_exprs > 0)
     {
       compute_kill_rd ();
       compute_rd ();
       alloc_avail_expr_mem (n_basic_blocks, n_exprs);
       compute_ae_gen ();
-      compute_ae_kill ();
-      compute_available ();
+      compute_ae_kill (ae_gen, ae_kill);
+      compute_available (ae_gen, ae_kill, ae_out, ae_in);
       changed = classic_gcse ();
       free_avail_expr_mem ();
     }
+
   free_rd_mem ();
   free_expr_hash_table ();
 
   if (gcse_file)
     {
       fprintf (gcse_file, "\n");
-      fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
-              current_function_name, pass,
-              bytes_used, gcse_subst_count, gcse_create_count);
+      fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
+              current_function_name, pass, bytes_used, gcse_subst_count);
+      fprintf (gcse_file, "%d insns created\n", gcse_create_count);
     }
 
   return changed;
@@ -3333,18 +3292,15 @@ one_classic_gcse_pass (pass)
 /* Compute copy/constant propagation working variables.  */
 
 /* Local properties of assignments.  */
-
 static sbitmap *cprop_pavloc;
 static sbitmap *cprop_absaltered;
 
 /* Global properties of assignments (computed from the local properties).  */
-
 static sbitmap *cprop_avin;
 static sbitmap *cprop_avout;
 
-/* Allocate vars used for copy/const propagation.
-   N_BLOCKS is the number of basic blocks.
-   N_SETS is the number of sets.  */
+/* Allocate vars used for copy/const propagation.  N_BLOCKS is the number of
+   basic blocks.  N_SETS is the number of sets.  */
 
 static void
 alloc_cprop_mem (n_blocks, n_sets)
@@ -3368,11 +3324,11 @@ free_cprop_mem ()
   free (cprop_avout);
 }
 
-/* For each block, compute whether X is transparent.
-   X is either an expression or an assignment [though we don't care which,
-   for this context an assignment is treated as an expression].
-   For each block where an element of X is modified, set (SET_P == 1) or reset
-   (SET_P == 0) the INDX bit in BMAP.  */
+/* For each block, compute whether X is transparent.  X is either an
+   expression or an assignment [though we don't care which, for this context
+   an assignment is treated as an expression].  For each block where an
+   element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
+   bit in BMAP.  */
 
 static void
 compute_transp (x, indx, bmap, set_p)
@@ -3381,11 +3337,13 @@ compute_transp (x, indx, bmap, set_p)
      sbitmap *bmap;
      int set_p;
 {
-  int bb,i;
+  int bb, i, j;
   enum rtx_code code;
+  reg_set *r;
   const char *fmt;
 
-  /* repeat is used to turn tail-recursion into iteration.  */
+  /* repeat is used to turn tail-recursion into iteration since GCC
+     can't do it when there's no return value.  */
  repeat:
 
   if (x == 0)
@@ -3395,46 +3353,36 @@ compute_transp (x, indx, bmap, set_p)
   switch (code)
     {
     case REG:
-      {
-       reg_set *r;
-       int regno = REGNO (x);
+      if (set_p)
+       {
+         if (REGNO (x) < FIRST_PSEUDO_REGISTER)
+           {
+             for (bb = 0; bb < n_basic_blocks; bb++)
+               if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
+                 SET_BIT (bmap[bb], indx);
+           }
+         else
+           {
+             for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
+               SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
+           }
+       }
+      else
+       {
+         if (REGNO (x) < FIRST_PSEUDO_REGISTER)
+           {
+             for (bb = 0; bb < n_basic_blocks; bb++)
+               if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
+                 RESET_BIT (bmap[bb], indx);
+           }
+         else
+           {
+             for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
+               RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
+           }
+       }
 
-       if (set_p)
-         {
-           if (regno < FIRST_PSEUDO_REGISTER)
-             {
-               for (bb = 0; bb < n_basic_blocks; bb++)
-                 if (TEST_BIT (reg_set_in_block[bb], regno))
-                   SET_BIT (bmap[bb], indx);
-             }
-           else
-             {
-               for (r = reg_set_table[regno]; r != NULL; r = r->next)
-                 {
-                   bb = BLOCK_NUM (r->insn);
-                   SET_BIT (bmap[bb], indx);
-                 }
-             }
-         }
-       else
-         {
-           if (regno < FIRST_PSEUDO_REGISTER)
-             {
-               for (bb = 0; bb < n_basic_blocks; bb++)
-                 if (TEST_BIT (reg_set_in_block[bb], regno))
-                   RESET_BIT (bmap[bb], indx);
-             }
-           else
-             {
-               for (r = reg_set_table[regno]; r != NULL; r = r->next)
-                 {
-                   bb = BLOCK_NUM (r->insn);
-                   RESET_BIT (bmap[bb], indx);
-                 }
-             }
-         }
-       return;
-      }
+      return;
 
     case MEM:
       if (set_p)
@@ -3449,6 +3397,7 @@ compute_transp (x, indx, bmap, set_p)
            if (mem_set_in_block[bb])
              RESET_BIT (bmap[bb], indx);
        }
+
       x = XEXP (x, 0);
       goto repeat;
 
@@ -3467,65 +3416,25 @@ compute_transp (x, indx, bmap, set_p)
       break;
     }
 
-  i = GET_RTX_LENGTH (code) - 1;
-  fmt = GET_RTX_FORMAT (code);
-  for (; i >= 0; i--)
+  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
     {
       if (fmt[i] == 'e')
        {
-         rtx tem = XEXP (x, i);
-
          /* If we are about to do the last recursive call
             needed at this level, change it into iteration.
             This function is called enough to be worth it.  */
          if (i == 0)
            {
-             x = tem;
+             x = XEXP (x, i);
              goto repeat;
            }
-         compute_transp (tem, indx, bmap, set_p);
-       }
-      else if (fmt[i] == 'E')
-       {
-         int j;
-         for (j = 0; j < XVECLEN (x, i); j++)
-           compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
-       }
-    }
-}
-
-/* Compute the available expressions at the start and end of each
-   basic block for cprop.  This particular dataflow equation is
-   used often enough that we might want to generalize it and make
-   as a subroutine for other global optimizations that need available
-   in/out information.  */
-static void
-compute_cprop_avinout ()
-{
-  int bb, changed, passes;
 
-  sbitmap_zero (cprop_avin[0]);
-  sbitmap_vector_ones (cprop_avout, n_basic_blocks);
-
-  passes = 0;
-  changed = 1;
-  while (changed)
-    {
-      changed = 0;
-      for (bb = 0; bb < n_basic_blocks; bb++)
-       {
-         if (bb != 0)
-           sbitmap_intersection_of_preds (cprop_avin[bb], cprop_avout, bb);
-         changed |= sbitmap_union_of_diff (cprop_avout[bb],
-                                           cprop_pavloc[bb],
-                                           cprop_avin[bb],
-                                           cprop_absaltered[bb]);
+         compute_transp (XEXP (x, i), indx, bmap, set_p);
        }
-      passes++;
+      else if (fmt[i] == 'E')
+       for (j = 0; j < XVECLEN (x, i); j++)
+         compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
     }
-
-  if (gcse_file)
-    fprintf (gcse_file, "cprop avail expr computation: %d passes\n", passes);
 }
 
 /* Top level routine to do the dataflow analysis needed by copy/const
@@ -3535,7 +3444,8 @@ static void
 compute_cprop_data ()
 {
   compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
-  compute_cprop_avinout ();
+  compute_available (cprop_pavloc, cprop_absaltered,
+                    cprop_avout, cprop_avin);
 }
 \f
 /* Copy/constant propagation.  */
@@ -3550,23 +3460,23 @@ static struct reg_use reg_use_table[MAX_USES];
 /* Index into `reg_use_table' while building it.  */
 static int reg_use_count;
 
-/* Set up a list of register numbers used in INSN.
-   The found uses are stored in `reg_use_table'.
-   `reg_use_count' is initialized to zero before entry, and
-   contains the number of uses in the table upon exit.
+/* Set up a list of register numbers used in INSN.  The found uses are stored
+   in `reg_use_table'.  `reg_use_count' is initialized to zero before entry,
+   and contains the number of uses in the table upon exit.
 
-   ??? If a register appears multiple times we will record it multiple
-   times.  This doesn't hurt anything but it will slow things down.  */
+   ??? If a register appears multiple times we will record it multiple times.
+   This doesn't hurt anything but it will slow things down.  */
 
 static void
 find_used_regs (x)
      rtx x;
 {
-  int i;
+  int i, j;
   enum rtx_code code;
   const char *fmt;
 
-  /* repeat is used to turn tail-recursion into iteration.  */
+  /* repeat is used to turn tail-recursion into iteration since GCC
+     can't do it when there's no return value.  */
  repeat:
 
   if (x == 0)
@@ -3578,6 +3488,7 @@ find_used_regs (x)
     case REG:
       if (reg_use_count == MAX_USES)
        return;
+
       reg_use_table[reg_use_count].reg_rtx = x;
       reg_use_count++;
       return;
@@ -3611,8 +3522,7 @@ find_used_regs (x)
 
   /* Recursively scan the operands of this expression.  */
 
-  fmt = GET_RTX_FORMAT (code);
-  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
     {
       if (fmt[i] == 'e')
        {
@@ -3624,14 +3534,12 @@ find_used_regs (x)
              x = XEXP (x, 0);
              goto repeat;
            }
+
          find_used_regs (XEXP (x, i));
        }
       else if (fmt[i] == 'E')
-       {
-         int j;
-         for (j = 0; j < XVECLEN (x, i); j++)
-           find_used_regs (XVECEXP (x, i, j));
-       }
+       for (j = 0; j < XVECLEN (x, i); j++)
+         find_used_regs (XVECEXP (x, i, j));
     }
 }
 
@@ -3642,22 +3550,72 @@ static int
 try_replace_reg (from, to, insn)
      rtx from, to, insn;
 {
+  rtx note;
+  rtx src;
+  int success;
+  rtx set;
+
+  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
+
+  if (!note)
+    note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
+
   /* If this fails we could try to simplify the result of the
      replacement and attempt to recognize the simplified insn.
 
      But we need a general simplify_rtx that doesn't have pass
      specific state variables.  I'm not aware of one at the moment.  */
-  return validate_replace_src (from, to, insn);
-}
 
-/* Find a set of REGNO that is available on entry to INSN's block.
-   Returns NULL if not found.  */
+  success = validate_replace_src (from, to, insn);
+  set = single_set (insn);
 
-static struct expr *
-find_avail_set (regno, insn)
-     int regno;
-     rtx insn;
-{
+  /* We've failed to do replacement. Try to add REG_EQUAL note to not loose
+     information.  */
+  if (!success && !note)
+    {
+      if (!set)
+       return 0;
+
+      note = REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
+                                                  copy_rtx (SET_SRC (set)),
+                                                  REG_NOTES (insn));
+    }
+
+  /* Always do the replacement in REQ_EQUAL and REG_EQUIV notes.  Also
+     try to simplify them.  */
+  if (note)
+    {
+      rtx simplified;
+
+      src = XEXP (note, 0);
+      replace_rtx (src, from, to);
+
+      /* Try to simplify resulting note. */
+      simplified = simplify_rtx (src);
+      if (simplified)
+       {
+         src = simplified;
+         XEXP (note, 0) = src;
+       }
+
+      /* REG_EQUAL may get simplified into register.
+         We don't allow that. Remove that note. This code ought
+         not to hapen, because previous code ought to syntetize
+         reg-reg move, but be on the safe side.  */
+      else if (REG_P (src))
+       remove_note (insn, note);
+    }
+  return success;
+}
+
+/* Find a set of REGNOs that are available on entry to INSN's block.  Returns
+   NULL no such set is found.  */
+
+static struct expr *
+find_avail_set (regno, insn)
+     int regno;
+     rtx insn;
+{
   /* SET1 contains the last set found that can be returned to the caller for
      use in a substitution.  */
   struct expr *set1 = 0;
@@ -3701,6 +3659,7 @@ find_avail_set (regno, insn)
 
          If the source operand changed, we may still use it for the next
          iteration of this loop, but we may not use it for substitutions.  */
+
       if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
        set1 = set;
 
@@ -3725,6 +3684,7 @@ find_avail_set (regno, insn)
    REG_USED is the use we will try to replace, SRC is the constant we
    will try to substitute for it.
    Returns nonzero if a change was made.  */
+
 static int
 cprop_jump (insn, copy, reg_used, src)
      rtx insn, copy;
@@ -3785,24 +3745,26 @@ cprop_jump (insn, copy, reg_used, src)
       const_prop_count++;
       if (gcse_file != NULL)
        {
-         int regno = REGNO (reg_used->reg_rtx);
-         fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
-                  regno, INSN_UID (insn));
+         fprintf (gcse_file,
+                  "CONST-PROP: Replacing reg %d in insn %d with constant ",
+                  REGNO (reg_used->reg_rtx), INSN_UID (insn));
          print_rtl (gcse_file, src);
          fprintf (gcse_file, "\n");
        }
+
       return 1;
     }
   return 0;
 }
 
 #ifdef HAVE_cc0
-/* Subroutine of cprop_insn that tries to propagate constants into
-   JUMP_INSNS for machines that have CC0.  INSN is a single set that
-   stores into CC0; the insn following it is a conditional jump.
-   REG_USED is the use we will try to replace, SRC is the constant we
-   will try to substitute for it.
+
+/* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
+   for machines that have CC0.  INSN is a single set that stores into CC0;
+   the insn following it is a conditional jump.  REG_USED is the use we will
+   try to replace, SRC is the constant we will try to substitute for it.
    Returns nonzero if a change was made.  */
+
 static int
 cprop_cc0_jump (insn, reg_used, src)
      rtx insn;
@@ -3837,6 +3799,7 @@ cprop_insn (insn, alter_jumps)
 {
   struct reg_use *reg_used;
   int changed = 0;
+  rtx note;
 
   /* Only propagate into SETs.  Note that a conditional jump is a
      SET with pc_rtx as the destination.  */
@@ -3847,13 +3810,21 @@ cprop_insn (insn, alter_jumps)
 
   reg_use_count = 0;
   find_used_regs (PATTERN (insn));
+  
+  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
+  if (!note)
+    note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
+
+  /* We may win even when propagating constants into notes. */
+  if (note)
+    find_used_regs (XEXP (note, 0));
 
-  reg_used = &reg_use_table[0];
-  for ( ; reg_use_count > 0; reg_used++, reg_use_count--)
+  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
+       reg_used++, reg_use_count--)
     {
+      unsigned int regno = REGNO (reg_used->reg_rtx);
       rtx pat, src;
       struct expr *set;
-      int regno = REGNO (reg_used->reg_rtx);
 
       /* Ignore registers created by GCSE.
         We do this because ... */
@@ -3875,6 +3846,7 @@ cprop_insn (insn, alter_jumps)
       /* ??? We might be able to handle PARALLELs.  Later.  */
       if (GET_CODE (pat) != SET)
        abort ();
+
       src = SET_SRC (pat);
 
       /* Constant propagation.  */
@@ -3889,8 +3861,10 @@ cprop_insn (insn, alter_jumps)
              const_prop_count++;
              if (gcse_file != NULL)
                {
-                 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
-                          regno, INSN_UID (insn));
+                 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
+                          regno);
+                 fprintf (gcse_file, "insn %d with constant ",
+                          INSN_UID (insn));
                  print_rtl (gcse_file, src);
                  fprintf (gcse_file, "\n");
                }
@@ -3932,8 +3906,9 @@ cprop_insn (insn, alter_jumps)
              copy_prop_count++;
              if (gcse_file != NULL)
                {
-                 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d with reg %d\n",
-                          regno, INSN_UID (insn), REGNO (src));
+                 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
+                          regno, INSN_UID (insn));
+                 fprintf (gcse_file, " with reg %d\n", REGNO (src));
                }
 
              /* The original insn setting reg_used may or may not now be
@@ -3948,9 +3923,8 @@ cprop_insn (insn, alter_jumps)
   return changed;
 }
 
-/* Forward propagate copies.
-   This includes copies and constants.
-   Return non-zero if a change was made.  */
+/* Forward propagate copies.  This includes copies and constants.  Return
+   non-zero if a change was made.  */
 
 static int
 cprop (alter_jumps)
@@ -4017,14 +3991,15 @@ one_cprop_pass (pass, alter_jumps)
       changed = cprop (alter_jumps);
       free_cprop_mem ();
     }
+
   free_set_hash_table ();
 
   if (gcse_file)
     {
-      fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, %d const props, %d copy props\n",
-              current_function_name, pass,
-              bytes_used, const_prop_count, copy_prop_count);
-      fprintf (gcse_file, "\n");
+      fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
+              current_function_name, pass, bytes_used);
+      fprintf (gcse_file, "%d const props, %d copy props\n\n",
+              const_prop_count, copy_prop_count);
     }
 
   return changed;
@@ -4054,6 +4029,15 @@ static sbitmap *pre_optimal;
 /* Nonzero for expressions which are redundant in a particular block.  */
 static sbitmap *pre_redundant;
 
+/* Nonzero for expressions which should be inserted on a specific edge.  */
+static sbitmap *pre_insert_map;
+
+/* Nonzero for expressions which should be deleted in a specific block.  */
+static sbitmap *pre_delete_map;
+
+/* Contains the edge_list returned by pre_edge_lcm.  */
+static struct edge_list *edge_list;
+
 static sbitmap *temp_bitmap;
 
 /* Redundant insns.  */
@@ -4068,11 +4052,19 @@ alloc_pre_mem (n_blocks, n_exprs)
   transp = sbitmap_vector_alloc (n_blocks, n_exprs);
   comp = sbitmap_vector_alloc (n_blocks, n_exprs);
   antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
-
   temp_bitmap = sbitmap_vector_alloc (n_blocks, n_exprs);
-  pre_optimal = sbitmap_vector_alloc (n_blocks, n_exprs);
-  pre_redundant = sbitmap_vector_alloc (n_blocks, n_exprs);
+
+  pre_optimal = NULL;
+  pre_redundant = NULL;
+  pre_insert_map = NULL;
+  pre_delete_map = NULL;
+  ae_in = NULL;
+  ae_out = NULL;
+  u_bitmap = NULL;
   transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
+
+  /* pre_insert and pre_delete are allocated later.  */
 }
 
 /* Free vars used for PRE analysis.  */
@@ -4083,10 +4075,33 @@ free_pre_mem ()
   free (transp);
   free (comp);
   free (antloc);
+  free (temp_bitmap);
+
+  if (pre_optimal)
+    free (pre_optimal);
+  if (pre_redundant)
+    free (pre_redundant);
+  if (pre_insert_map)
+    free (pre_insert_map);
+  if (pre_delete_map)
+    free (pre_delete_map);
+  if (transpout)
+    free (transpout);
+
+  if (ae_in)
+    free (ae_in);
+  if (ae_out)
+    free (ae_out);
+  if (ae_kill)
+    free (ae_kill);
+  if (u_bitmap)
+    free (u_bitmap);
+
+  transp = comp = antloc = NULL;
+  pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
+  transpout = ae_in = ae_out = ae_kill = NULL;
+  u_bitmap = NULL;
 
-  free (pre_optimal);
-  free (pre_redundant);
-  free (transpout);
 }
 
 /* Top level routine to do the dataflow analysis needed by PRE.  */
@@ -4094,12 +4109,27 @@ free_pre_mem ()
 static void
 compute_pre_data ()
 {
+  int i;
+
   compute_local_properties (transp, comp, antloc, 0);
   compute_transpout ();
-  pre_lcm (n_basic_blocks, n_exprs, s_preds, s_succs, transp,
-          antloc, pre_redundant, pre_optimal);
-}
+  sbitmap_vector_zero (ae_kill, n_basic_blocks);
+
+  /* Compute ae_kill for each basic block using:
+
+     ~(TRANSP | COMP)
+
+     This is significantly faster than compute_ae_kill.  */
+
+  for (i = 0; i < n_basic_blocks; i++)
+    {
+      sbitmap_a_or_b (ae_kill[i], transp[i], comp[i]);
+      sbitmap_not (ae_kill[i], ae_kill[i]);
+    }
 
+  edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
+                           ae_kill, &pre_insert_map, &pre_delete_map);
+}
 \f
 /* PRE utilities */
 
@@ -4109,9 +4139,6 @@ compute_pre_data ()
    VISITED is a pointer to a working buffer for tracking which BB's have
    been visited.  It is NULL for the top-level call.
 
-   CHECK_PRE_COMP controls whether or not we check for a computation of
-   EXPR in OCCR_BB.
-
    We treat reaching expressions that go through blocks containing the same
    reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
    2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
@@ -4120,21 +4147,14 @@ compute_pre_data ()
    the closest such expression.  */
 
 static int
-pre_expr_reaches_here_p (occr_bb, expr, bb, check_pre_comp, visited)
+pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
      int occr_bb;
      struct expr *expr;
      int bb;
-     int check_pre_comp;
      char *visited;
 {
   edge pred;
 
-  if (visited == NULL)
-    {
-      visited = (char *) alloca (n_basic_blocks);
-      bzero (visited, n_basic_blocks);
-    }
-
   for (pred = BASIC_BLOCK (bb)->pred; pred != NULL; pred = pred->pred_next)
     {
       int pred_bb = pred->src->index;
@@ -4142,29 +4162,28 @@ pre_expr_reaches_here_p (occr_bb, expr, bb, check_pre_comp, visited)
       if (pred->src == ENTRY_BLOCK_PTR
          /* Has predecessor has already been visited?  */
          || visited[pred_bb])
-       {
-         /* Nothing to do.  */
-       }
+       ;/* Nothing to do.  */
+
       /* Does this predecessor generate this expression?  */
-      else if ((!check_pre_comp && occr_bb == pred_bb)
-              || TEST_BIT (comp[pred_bb], expr->bitmap_index))
+      else if (TEST_BIT (comp[pred_bb], expr->bitmap_index))
        {
          /* Is this the occurrence we're looking for?
             Note that there's only one generating occurrence per block
             so we just need to check the block number.  */
          if (occr_bb == pred_bb)
            return 1;
+
          visited[pred_bb] = 1;
        }
       /* Ignore this predecessor if it kills the expression.  */
       else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index))
        visited[pred_bb] = 1;
+
       /* Neither gen nor kill.  */
       else
        {
          visited[pred_bb] = 1;
-         if (pre_expr_reaches_here_p (occr_bb, expr, pred_bb,
-                                      check_pre_comp, visited))
+         if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
            return 1;
        }
     }
@@ -4172,7 +4191,48 @@ pre_expr_reaches_here_p (occr_bb, expr, bb, check_pre_comp, visited)
   /* All paths have been checked.  */
   return 0;
 }
+
+/* The wrapper for pre_expr_reaches_here_work that ensures that any
+   memory allocated for that function is returned. */
+
+static int
+pre_expr_reaches_here_p (occr_bb, expr, bb)
+     int occr_bb;
+     struct expr *expr;
+     int bb;
+{
+  int rval;
+  char *visited = (char *) xcalloc (n_basic_blocks, 1);
+
+  rval = pre_expr_reaches_here_p_work(occr_bb, expr, bb, visited);
+
+  free (visited);
+  return rval;
+}
 \f
+
+/* Given an expr, generate RTL which we can insert at the end of a BB,
+   or on an edge.  Set the block number of any insns generated to 
+   the value of BB.  */
+
+static rtx
+process_insert_insn (expr)
+     struct expr *expr;
+{
+  rtx reg = expr->reaching_reg;
+  rtx pat, copied_expr;
+  rtx first_new_insn;
+
+  start_sequence ();
+  copied_expr = copy_rtx (expr->expr);
+  emit_move_insn (reg, copied_expr);
+  first_new_insn = get_insns ();
+  pat = gen_sequence ();
+  end_sequence ();
+
+  return pat;
+}
+  
 /* Add EXPR to the end of basic block BB.
 
    This is used by both the PRE and code hoisting.
@@ -4191,15 +4251,10 @@ insert_insn_end_bb (expr, bb, pre)
   rtx new_insn;
   rtx reg = expr->reaching_reg;
   int regno = REGNO (reg);
-  rtx pat, copied_expr;
-  rtx first_new_insn;
+  rtx pat;
+  int i;
 
-  start_sequence ();
-  copied_expr = copy_rtx (expr->expr);
-  emit_move_insn (reg, copied_expr);
-  first_new_insn = get_insns ();
-  pat = gen_sequence ();
-  end_sequence ();
+  pat = process_insert_insn (expr);
 
   /* If the last insn is a jump, insert EXPR in front [taking care to
      handle cc0, etc. properly].  */
@@ -4233,10 +4288,9 @@ insert_insn_end_bb (expr, bb, pre)
        }
 #endif
       /* FIXME: What if something in cc0/jump uses value set in new insn?  */
-      new_insn = emit_insn_before (pat, insn);
-      if (BLOCK_HEAD (bb) == insn)
-       BLOCK_HEAD (bb) = new_insn;
+      new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb));
     }
+
   /* Likewise if the last insn is a call, as will happen in the presence
      of exception handling.  */
   else if (GET_CODE (insn) == CALL_INSN)
@@ -4248,11 +4302,12 @@ insert_insn_end_bb (expr, bb, pre)
       /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
         we search backward and place the instructions before the first
         parameter is loaded.  Do this for everyone for consistency and a
-        presumtion that we'll get better code elsewhere as well.  */
+        presumtion that we'll get better code elsewhere as well.  
 
-      /* It should always be the case that we can put these instructions
+        It should always be the case that we can put these instructions
         anywhere in the basic block with performing PRE optimizations.
         Check this.  */
+
       if (pre
          && !TEST_BIT (antloc[bb], expr->bitmap_index)
           && !TEST_BIT (transp[bb], expr->bitmap_index))
@@ -4267,10 +4322,10 @@ insert_insn_end_bb (expr, bb, pre)
        if (GET_CODE (XEXP (p, 0)) == USE
            && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
          {
-           int regno = REGNO (XEXP (XEXP (p, 0), 0));
-           if (regno >= FIRST_PSEUDO_REGISTER)
+           if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
              abort ();
-           SET_HARD_REG_BIT (parm_regs, regno);
+
+           SET_HARD_REG_BIT (parm_regs, REGNO (XEXP (XEXP (p, 0), 0)));
            nparm_regs++;
          }
 
@@ -4295,19 +4350,13 @@ insert_insn_end_bb (expr, bb, pre)
         stopped on the head of the block, which could be a CODE_LABEL.
         If we inserted before the CODE_LABEL, then we would be putting
         the insn in the wrong basic block.  In that case, put the insn
-        after the CODE_LABEL.
+        after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
+      while (GET_CODE (insn) == CODE_LABEL
+            || (GET_CODE (insn) == NOTE
+                && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
+       insn = NEXT_INSN (insn);
 
-        ?!? Do we need to account for NOTE_INSN_BASIC_BLOCK here?  */
-      if (GET_CODE (insn) != CODE_LABEL)
-       {
-         new_insn = emit_insn_before (pat, insn);
-         if (BLOCK_HEAD (bb) == insn)
-           BLOCK_HEAD (bb) = new_insn;
-       }
-      else
-       {
-         new_insn = emit_insn_after (pat, insn);
-       }
+      new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb));
     }
   else
     {
@@ -4320,22 +4369,22 @@ insert_insn_end_bb (expr, bb, pre)
      sure that each insn in the sequence is handled.  */
   if (GET_CODE (pat) == SEQUENCE)
     {
-      int i;
-
       for (i = 0; i < XVECLEN (pat, 0); i++)
        {
          rtx insn = XVECEXP (pat, 0, i);
+
          set_block_num (insn, bb);
          if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
            add_label_notes (PATTERN (insn), new_insn);
-         record_set_insn = insn;
-         note_stores (PATTERN (insn), record_set_info);
+
+         note_stores (PATTERN (insn), record_set_info, insn);
        }
     }
   else
     {
       add_label_notes (SET_SRC (pat), new_insn);
       set_block_num (new_insn, bb);
+
       /* Keep register set table up to date.  */
       record_one_set (regno, new_insn);
     }
@@ -4344,76 +4393,99 @@ insert_insn_end_bb (expr, bb, pre)
 
   if (gcse_file)
     {
-      fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, copying expression %d to reg %d\n",
-              bb, INSN_UID (new_insn), expr->bitmap_index, regno);
+      fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
+              bb, INSN_UID (new_insn));
+      fprintf (gcse_file, "copying expression %d to reg %d\n",
+              expr->bitmap_index, regno);
     }
 }
 
-/* Insert partially redundant expressions at the ends of appropriate basic
-   blocks making them fully redundant.  */
+/* Insert partially redundant expressions on edges in the CFG to make
+   the expressions fully redundant.  */
 
-static void
-pre_insert (index_map)
+static int
+pre_edge_insert (edge_list, index_map)
+     struct edge_list *edge_list;
      struct expr **index_map;
 {
-  int bb, i, set_size;
+  int e, i, j, num_edges, set_size, did_insert = 0;
   sbitmap *inserted;
 
-  /* Compute INSERT = PRE_OPTIMAL & ~PRE_REDUNDANT. 
-     Where INSERT is nonzero, we add the expression at the end of the basic
-     block if it reaches any of the deleted expressions.  */
+  /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
+     if it reaches any of the deleted expressions.  */
 
-  set_size = pre_optimal[0]->size;
-  inserted = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
-  sbitmap_vector_zero (inserted, n_basic_blocks);
+  set_size = pre_insert_map[0]->size;
+  num_edges = NUM_EDGES (edge_list);
+  inserted = sbitmap_vector_alloc (num_edges, n_exprs);
+  sbitmap_vector_zero (inserted, num_edges);
 
-  for (bb = 0; bb < n_basic_blocks; bb++)
+  for (e = 0; e < num_edges; e++)
     {
       int indx;
+      basic_block pred = INDEX_EDGE_PRED_BB (edge_list, e);
+      int bb = pred->index;
 
-      /* This computes the number of potential insertions we need.  */
-      sbitmap_not (temp_bitmap[bb], pre_redundant[bb]);
-      sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_optimal[bb]);
-
-      /* TEMP_BITMAP[bb] now contains a bitmap of the expressions that we need
-        to insert at the end of this basic block.  */
       for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
        {
-         SBITMAP_ELT_TYPE insert = temp_bitmap[bb]->elms[i];
-         int j;
+         SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
 
          for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
-           {
-             if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
-               {
-                 struct expr *expr = index_map[j];
-                 struct occr *occr;
+           if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
+             {
+               struct expr *expr = index_map[j];
+               struct occr *occr;
 
-                 /* Now look at each deleted occurence of this expression.  */
-                 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
-                   {
-                     if (! occr->deleted_p)
-                       continue;
-
-                     /* Insert this expression at the end of BB if it would
-                        reach the deleted occurence.  */
-                     if (!TEST_BIT (inserted[bb], j)
-                         && pre_expr_reaches_here_p (bb, expr,
-                                                  BLOCK_NUM (occr->insn), 0,
-                                                  NULL))
-                       {
-                         SET_BIT (inserted[bb], j);
-                         insert_insn_end_bb (index_map[j], bb, 1);
-                       }
-                   }
-               }
-           }
+               /* Now look at each deleted occurence of this expression.  */
+               for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
+                 {
+                   if (! occr->deleted_p)
+                     continue;
+
+                   /* Insert this expression on this edge if if it would
+                      reach the deleted occurence in BB.  */
+                   if (!TEST_BIT (inserted[e], j))
+                     {
+                       rtx insn;
+                       edge eg = INDEX_EDGE (edge_list, e);
+
+                       /* We can't insert anything on an abnormal and
+                          critical edge, so we insert the insn at the end of
+                          the previous block. There are several alternatives
+                          detailed in Morgans book P277 (sec 10.5) for
+                          handling this situation.  This one is easiest for
+                          now.  */
+
+                       if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
+                         insert_insn_end_bb (index_map[j], bb, 0);
+                       else
+                         {
+                           insn = process_insert_insn (index_map[j]);
+                           insert_insn_on_edge (insn, eg);
+                         }
+
+                       if (gcse_file)
+                         {
+                           fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
+                                    bb,
+                                    INDEX_EDGE_SUCC_BB (edge_list, e)->index);
+                           fprintf (gcse_file, "copy expression %d\n",
+                                    expr->bitmap_index);
+                         }
+
+                       SET_BIT (inserted[e], j);
+                       did_insert = 1;
+                       gcse_create_count++;
+                     }
+                 }
+             }
        }
     }
+
+  free (inserted);
+  return did_insert;
 }
 
-/* Copy the result of INSN to REG.
-   INDX is the expression number.  */
+/* Copy the result of INSN to REG.  INDX is the expression number.  */
 
 static void
 pre_insert_copy_insn (expr, insn)
@@ -4425,23 +4497,29 @@ pre_insert_copy_insn (expr, insn)
   int indx = expr->bitmap_index;
   rtx set = single_set (insn);
   rtx new_insn;
+  int bb = BLOCK_NUM (insn);
 
   if (!set)
     abort ();
+
   new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)),
                              insn);
+
   /* Keep block number table up to date.  */
-  set_block_num (new_insn, BLOCK_NUM (insn));
+  set_block_num (new_insn, bb);
+
   /* Keep register set table up to date.  */
   record_one_set (regno, new_insn);
+  if (insn == BLOCK_END (bb))
+    BLOCK_END (bb) = new_insn;
 
   gcse_create_count++;
 
   if (gcse_file)
-    {
-      fprintf (gcse_file, "PRE: bb %d, insn %d, copying expression %d in insn %d to reg %d\n",
-              BLOCK_NUM (insn), INSN_UID (new_insn), indx, INSN_UID (insn), regno);
-    }
+    fprintf (gcse_file,
+            "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
+             BLOCK_NUM (insn), INSN_UID (new_insn), indx,
+             INSN_UID (insn), regno);
 }
 
 /* Copy available expressions that reach the redundant expression
@@ -4450,12 +4528,10 @@ pre_insert_copy_insn (expr, insn)
 static void
 pre_insert_copies ()
 {
-  int i, bb;
-
-  for (bb = 0; bb < n_basic_blocks; bb++)
-    {
-      sbitmap_a_and_b (temp_bitmap[bb], pre_optimal[bb], pre_redundant[bb]);
-    }
+  unsigned int i;
+  struct expr *expr;
+  struct occr *occr;
+  struct occr *avail;
 
   /* For each available expression in the table, copy the result to
      `reaching_reg' if the expression reaches a deleted one.
@@ -4464,56 +4540,44 @@ pre_insert_copies ()
      Need to do some profiling.  */
 
   for (i = 0; i < expr_hash_table_size; i++)
-    {
-      struct expr *expr;
-
-      for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
-       {
-         struct occr *occr;
-
-         /* If the basic block isn't reachable, PPOUT will be TRUE.
-            However, we don't want to insert a copy here because the
-            expression may not really be redundant.  So only insert
-            an insn if the expression was deleted.
-            This test also avoids further processing if the expression
-            wasn't deleted anywhere.  */
-         if (expr->reaching_reg == NULL)
-           continue;
-
-         for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
-           {
-             struct occr *avail;
+    for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
+      {
+       /* If the basic block isn't reachable, PPOUT will be TRUE.  However,
+          we don't want to insert a copy here because the expression may not
+          really be redundant.  So only insert an insn if the expression was
+          deleted.  This test also avoids further processing if the
+          expression wasn't deleted anywhere.  */
+       if (expr->reaching_reg == NULL)
+         continue;
+
+       for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
+         {
+           if (! occr->deleted_p)
+             continue;
 
-             if (! occr->deleted_p)
-               continue;
+           for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
+             {
+               rtx insn = avail->insn;
 
-             for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
-               {
-                 rtx insn = avail->insn;
-                 int bb = BLOCK_NUM (insn);
+               /* No need to handle this one if handled already.  */
+               if (avail->copied_p)
+                 continue;
 
-                 if (!TEST_BIT (temp_bitmap[bb], expr->bitmap_index))
-                   continue;
+               /* Don't handle this one if it's a redundant one.  */
+               if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
+                 continue;
 
-                 /* No need to handle this one if handled already.  */
-                 if (avail->copied_p)
-                   continue;
-                 /* Don't handle this one if it's a redundant one.  */
-                 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
-                   continue;
-                 /* Or if the expression doesn't reach the deleted one.  */
-                 if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr,
-                                                BLOCK_NUM (occr->insn),
-                                                1, NULL))
-                   continue;
+               /* Or if the expression doesn't reach the deleted one.  */
+               if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr,
+                                              BLOCK_NUM (occr->insn)))
+                 continue;
 
-                 /* Copy the result of avail to reaching_reg.  */
-                 pre_insert_copy_insn (expr, insn);
-                 avail->copied_p = 1;
-               }
-           }
-       }
-    }
+               /* Copy the result of avail to reaching_reg.  */
+               pre_insert_copy_insn (expr, insn);
+               avail->copied_p = 1;
+             }
+         }
+      }
 }
 
 /* Delete redundant computations.
@@ -4526,74 +4590,71 @@ pre_insert_copies ()
 static int
 pre_delete ()
 {
-  int i, bb, changed;
+  unsigned int i;
+  int bb, changed;
+  struct expr *expr;
+  struct occr *occr;
 
   /* Compute the expressions which are redundant and need to be replaced by
      copies from the reaching reg to the target reg.  */
   for (bb = 0; bb < n_basic_blocks; bb++)
-    {
-      sbitmap_not (temp_bitmap[bb], pre_optimal[bb]);
-      sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_redundant[bb]);
-    }
+    sbitmap_copy (temp_bitmap[bb], pre_delete_map[bb]);
 
   changed = 0;
   for (i = 0; i < expr_hash_table_size; i++)
-    {
-      struct expr *expr;
-
-      for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
-       {
-         struct occr *occr;
-         int indx = expr->bitmap_index;
+    for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
+      {
+       int indx = expr->bitmap_index;
 
-         /* We only need to search antic_occr since we require
-            ANTLOC != 0.  */
+       /* We only need to search antic_occr since we require
+          ANTLOC != 0.  */
 
-         for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
-           {
-             rtx insn = occr->insn;
-             rtx set;
-             int bb = BLOCK_NUM (insn);
+       for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
+         {
+           rtx insn = occr->insn;
+           rtx set;
+           int bb = BLOCK_NUM (insn);
 
-             if (TEST_BIT (temp_bitmap[bb], indx))
-               {
-                 set = single_set (insn);
-                 if (! set)
-                   abort ();
-
-                 /* Create a pseudo-reg to store the result of reaching
-                    expressions into.  Get the mode for the new pseudo
-                    from the mode of the original destination pseudo.  */
-                 if (expr->reaching_reg == NULL)
-                   expr->reaching_reg
-                     = gen_reg_rtx (GET_MODE (SET_DEST (set)));
-
-                 /* In theory this should never fail since we're creating
-                    a reg->reg copy.
-
-                    However, on the x86 some of the movXX patterns actually
-                    contain clobbers of scratch regs.  This may cause the
-                    insn created by validate_change to not match any pattern
-                    and thus cause validate_change to fail.   */
-                 if (validate_change (insn, &SET_SRC (set),
-                                      expr->reaching_reg, 0))
-                   {
-                     occr->deleted_p = 1;
-                     SET_BIT (pre_redundant_insns, INSN_CUID (insn));
-                     changed = 1;
-                     gcse_subst_count++;
-                   }
+           if (TEST_BIT (temp_bitmap[bb], indx))
+             {
+               set = single_set (insn);
+               if (! set)
+                 abort ();
+
+               /* Create a pseudo-reg to store the result of reaching
+                  expressions into.  Get the mode for the new pseudo from
+                  the mode of the original destination pseudo.  */
+               if (expr->reaching_reg == NULL)
+                 expr->reaching_reg
+                   = gen_reg_rtx (GET_MODE (SET_DEST (set)));
+
+               /* In theory this should never fail since we're creating
+                  a reg->reg copy.
+
+                  However, on the x86 some of the movXX patterns actually
+                  contain clobbers of scratch regs.  This may cause the
+                  insn created by validate_change to not match any pattern
+                  and thus cause validate_change to fail.   */
+               if (validate_change (insn, &SET_SRC (set),
+                                    expr->reaching_reg, 0))
+                 {
+                   occr->deleted_p = 1;
+                   SET_BIT (pre_redundant_insns, INSN_CUID (insn));
+                   changed = 1;
+                   gcse_subst_count++;
+                 }
 
-                 if (gcse_file)
-                   {
-                     fprintf (gcse_file,
-                              "PRE: redundant insn %d (expression %d) in bb %d, reaching reg is %d\n",
-                              INSN_UID (insn), indx, bb, REGNO (expr->reaching_reg));
-                   }
-               }
-           }
-       }
-    }
+               if (gcse_file)
+                 {
+                   fprintf (gcse_file,
+                            "PRE: redundant insn %d (expression %d) in ",
+                              INSN_UID (insn), indx);
+                   fprintf (gcse_file, "bb %d, reaching reg is %d\n",
+                            bb, REGNO (expr->reaching_reg));
+                 }
+             }
+         }
+      }
 
   return changed;
 }
@@ -4602,41 +4663,37 @@ pre_delete ()
    This is called by one_pre_gcse_pass after all the dataflow analysis
    has been done.
 
-   This is based on the original Morel-Renvoise paper Fred Chow's thesis,
-   and lazy code motion from Knoop, Ruthing and Steffen as described in
-   Advanced Compiler Design and Implementation.
+   This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
+   lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
+   Compiler Design and Implementation.
 
-   ??? A new pseudo reg is created to hold the reaching expression.
-   The nice thing about the classical approach is that it would try to
-   use an existing reg.  If the register can't be adequately optimized
-   [i.e. we introduce reload problems], one could add a pass here to
-   propagate the new register through the block.
+   ??? A new pseudo reg is created to hold the reaching expression.  The nice
+   thing about the classical approach is that it would try to use an existing
+   reg.  If the register can't be adequately optimized [i.e. we introduce
+   reload problems], one could add a pass here to propagate the new register
+   through the block.
 
-   ??? We don't handle single sets in PARALLELs because we're [currently]
-   not able to copy the rest of the parallel when we insert copies to create
-   full redundancies from partial redundancies.  However, there's no reason
-   why we can't handle PARALLELs in the cases where there are no partial
+   ??? We don't handle single sets in PARALLELs because we're [currently] not
+   able to copy the rest of the parallel when we insert copies to create full
+   redundancies from partial redundancies.  However, there's no reason why we
+   can't handle PARALLELs in the cases where there are no partial
    redundancies.  */
 
 static int
 pre_gcse ()
 {
-  int i;
-  int changed;
+  unsigned int i;
+  int did_insert, changed;
   struct expr **index_map;
+  struct expr *expr;
 
   /* Compute a mapping from expression number (`bitmap_index') to
      hash table entry.  */
 
-  index_map = (struct expr **) alloca (n_exprs * sizeof (struct expr *));
-  bzero ((char *) index_map, n_exprs * sizeof (struct expr *));
+  index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
   for (i = 0; i < expr_hash_table_size; i++)
-    {
-      struct expr *expr;
-
-      for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
-       index_map[expr->bitmap_index] = expr;
-    }
+    for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
+      index_map[expr->bitmap_index] = expr;
 
   /* Reset bitmap used to track which insns are redundant.  */
   pre_redundant_insns = sbitmap_alloc (max_cuid);
@@ -4646,18 +4703,22 @@ pre_gcse ()
      - we know what register to use for the new insns and for the other
        ones with reaching expressions
      - we know which insns are redundant when we go to create copies  */
+
   changed = pre_delete ();
 
-  /* Insert insns in places that make partially redundant expressions
-     fully redundant.  */
-  pre_insert (index_map);
+  did_insert = pre_edge_insert (edge_list, index_map);
 
   /* In other places with reaching expressions, copy the expression to the
-     specially allocated pseudo-reg that reaches the redundant expression.  */
+     specially allocated pseudo-reg that reaches the redundant expr.  */
   pre_insert_copies ();
+  if (did_insert)
+    {
+      commit_edge_insertions ();
+      changed = 1;
+    }
 
+  free (index_map);
   free (pre_redundant_insns);
-
   return changed;
 }
 
@@ -4675,25 +4736,30 @@ one_pre_gcse_pass (pass)
   gcse_create_count = 0;
 
   alloc_expr_hash_table (max_cuid);
+  add_noreturn_fake_exit_edges ();
   compute_expr_hash_table ();
   if (gcse_file)
     dump_hash_table (gcse_file, "Expression", expr_hash_table,
                     expr_hash_table_size, n_exprs);
+
   if (n_exprs > 0)
     {
       alloc_pre_mem (n_basic_blocks, n_exprs);
       compute_pre_data ();
       changed |= pre_gcse ();
+      free_edge_list (edge_list);
       free_pre_mem ();
     }
+
+  remove_fake_edges ();
   free_expr_hash_table ();
 
   if (gcse_file)
     {
-      fprintf (gcse_file, "\n");
-      fprintf (gcse_file, "PRE GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
-              current_function_name, pass,
-              bytes_used, gcse_subst_count, gcse_create_count);
+      fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
+              current_function_name, pass, bytes_used);
+      fprintf (gcse_file, "%d substs, %d insns created\n",
+              gcse_subst_count, gcse_create_count);
     }
 
   return changed;
@@ -4726,13 +4792,13 @@ add_label_notes (x, insn)
 
         We no longer ignore such label references (see LABEL_REF handling in
         mark_jump_label for additional information).  */
+
       REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
                                            REG_NOTES (insn));
       return;
     }
 
-  fmt = GET_RTX_FORMAT (code);
-  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
     {
       if (fmt[i] == 'e')
        add_label_notes (XEXP (x, i), insn);
@@ -4759,13 +4825,13 @@ static void
 compute_transpout ()
 {
   int bb;
+  unsigned int i;
+  struct expr *expr;
 
   sbitmap_vector_ones (transpout, n_basic_blocks);
 
   for (bb = 0; bb < n_basic_blocks; ++bb)
     {
-      int i;
-
       /* Note that flow inserted a nop a the end of basic blocks that
         end in call instructions for reasons other than abnormal
         control flow.  */
@@ -4773,22 +4839,672 @@ compute_transpout ()
        continue;
 
       for (i = 0; i < expr_hash_table_size; i++)
+       for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
+         if (GET_CODE (expr->expr) == MEM)
+           {
+             if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
+                 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
+               continue;
+               
+             /* ??? Optimally, we would use interprocedural alias
+                analysis to determine if this mem is actually killed
+                by this call.  */
+             RESET_BIT (transpout[bb], expr->bitmap_index);
+           }
+    }
+}
+
+/* Removal of useless null pointer checks */
+
+/* Called via note_stores.  X is set by SETTER.  If X is a register we must
+   invalidate nonnull_local and set nonnull_killed.  DATA is really a
+   `null_pointer_info *'.
+
+   We ignore hard registers.  */
+
+static void
+invalidate_nonnull_info (x, setter, data)
+     rtx x;
+     rtx setter ATTRIBUTE_UNUSED;
+     void *data;
+{
+  unsigned int regno;
+  struct null_pointer_info *npi = (struct null_pointer_info *) data;
+
+  while (GET_CODE (x) == SUBREG)
+    x = SUBREG_REG (x);
+
+  /* Ignore anything that is not a register or is a hard register.  */
+  if (GET_CODE (x) != REG
+      || REGNO (x) < npi->min_reg
+      || REGNO (x) >= npi->max_reg)
+    return;
+
+  regno = REGNO (x) - npi->min_reg;
+
+  RESET_BIT (npi->nonnull_local[npi->current_block], regno);
+  SET_BIT (npi->nonnull_killed[npi->current_block], regno);
+}
+
+/* Do null-pointer check elimination for the registers indicated in
+   NPI.  NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
+   they are not our responsibility to free.  */
+
+static void
+delete_null_pointer_checks_1 (block_reg, nonnull_avin, nonnull_avout, npi)
+     unsigned int *block_reg;
+     sbitmap *nonnull_avin;
+     sbitmap *nonnull_avout;
+     struct null_pointer_info *npi;
+{
+  int bb;
+  int current_block;
+  sbitmap *nonnull_local = npi->nonnull_local;
+  sbitmap *nonnull_killed = npi->nonnull_killed;
+  
+  /* Compute local properties, nonnull and killed.  A register will have
+     the nonnull property if at the end of the current block its value is
+     known to be nonnull.  The killed property indicates that somewhere in
+     the block any information we had about the register is killed.
+
+     Note that a register can have both properties in a single block.  That
+     indicates that it's killed, then later in the block a new value is
+     computed.  */
+  sbitmap_vector_zero (nonnull_local, n_basic_blocks);
+  sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
+
+  for (current_block = 0; current_block < n_basic_blocks; current_block++)
+    {
+      rtx insn, stop_insn;
+
+      /* Set the current block for invalidate_nonnull_info.  */
+      npi->current_block = current_block;
+
+      /* Scan each insn in the basic block looking for memory references and
+        register sets.  */
+      stop_insn = NEXT_INSN (BLOCK_END (current_block));
+      for (insn = BLOCK_HEAD (current_block);
+          insn != stop_insn;
+          insn = NEXT_INSN (insn))
        {
-         struct expr *expr;
-         for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
-           if (GET_CODE (expr->expr) == MEM)
-             {
-               rtx addr = XEXP (expr->expr, 0);
+         rtx set;
+         rtx reg;
 
-               if (GET_CODE (addr) == SYMBOL_REF
-                   && CONSTANT_POOL_ADDRESS_P (addr))
-                 continue;
+         /* Ignore anything that is not a normal insn.  */
+         if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
+           continue;
+
+         /* Basically ignore anything that is not a simple SET.  We do have
+            to make sure to invalidate nonnull_local and set nonnull_killed
+            for such insns though.  */
+         set = single_set (insn);
+         if (!set)
+           {
+             note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
+             continue;
+           }
+
+         /* See if we've got a useable memory load.  We handle it first
+            in case it uses its address register as a dest (which kills
+            the nonnull property).  */
+         if (GET_CODE (SET_SRC (set)) == MEM
+             && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
+             && REGNO (reg) >= npi->min_reg
+             && REGNO (reg) < npi->max_reg)
+           SET_BIT (nonnull_local[current_block],
+                    REGNO (reg) - npi->min_reg);
+
+         /* Now invalidate stuff clobbered by this insn.  */
+         note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
+
+         /* And handle stores, we do these last since any sets in INSN can
+            not kill the nonnull property if it is derived from a MEM
+            appearing in a SET_DEST.  */
+         if (GET_CODE (SET_DEST (set)) == MEM
+             && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
+             && REGNO (reg) >= npi->min_reg
+             && REGNO (reg) < npi->max_reg)
+           SET_BIT (nonnull_local[current_block],
+                    REGNO (reg) - npi->min_reg);
+       }
+    }
+
+  /* Now compute global properties based on the local properties.   This
+     is a classic global availablity algorithm.  */
+  compute_available (nonnull_local, nonnull_killed,
+                    nonnull_avout, nonnull_avin);
+
+  /* Now look at each bb and see if it ends with a compare of a value
+     against zero.  */
+  for (bb = 0; bb < n_basic_blocks; bb++)
+    {
+      rtx last_insn = BLOCK_END (bb);
+      rtx condition, earliest;
+      int compare_and_branch;
+
+      /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
+        since BLOCK_REG[BB] is zero if this block did not end with a
+        comparison against zero, this condition works.  */
+      if (block_reg[bb] < npi->min_reg
+         || block_reg[bb] >= npi->max_reg)
+       continue;
+
+      /* LAST_INSN is a conditional jump.  Get its condition.  */
+      condition = get_condition (last_insn, &earliest);
+
+      /* If we can't determine the condition then skip.  */
+      if (! condition)
+       continue;
+
+      /* Is the register known to have a nonzero value?  */
+      if (!TEST_BIT (nonnull_avout[bb], block_reg[bb] - npi->min_reg))
+       continue;
+
+      /* Try to compute whether the compare/branch at the loop end is one or
+        two instructions.  */
+      if (earliest == last_insn)
+       compare_and_branch = 1;
+      else if (earliest == prev_nonnote_insn (last_insn))
+       compare_and_branch = 2;
+      else
+       continue;
+
+      /* We know the register in this comparison is nonnull at exit from
+        this block.  We can optimize this comparison.  */
+      if (GET_CODE (condition) == NE)
+       {
+         rtx new_jump;
+
+         new_jump = emit_jump_insn_before (gen_jump (JUMP_LABEL (last_insn)),
+                                           last_insn);
+         JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
+         LABEL_NUSES (JUMP_LABEL (new_jump))++;
+         emit_barrier_after (new_jump);
+       }
+      delete_insn (last_insn);
+      if (compare_and_branch == 2)
+       delete_insn (earliest);
+
+      /* Don't check this block again.  (Note that BLOCK_END is
+        invalid here; we deleted the last instruction in the 
+        block.)  */
+      block_reg[bb] = 0;
+    }
+}
+
+/* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
+   at compile time.
+
+   This is conceptually similar to global constant/copy propagation and
+   classic global CSE (it even uses the same dataflow equations as cprop).
+
+   If a register is used as memory address with the form (mem (reg)), then we
+   know that REG can not be zero at that point in the program.  Any instruction
+   which sets REG "kills" this property.
+
+   So, if every path leading to a conditional branch has an available memory
+   reference of that form, then we know the register can not have the value
+   zero at the conditional branch.  
+
+   So we merely need to compute the local properies and propagate that data
+   around the cfg, then optimize where possible.
+
+   We run this pass two times.  Once before CSE, then again after CSE.  This
+   has proven to be the most profitable approach.  It is rare for new
+   optimization opportunities of this nature to appear after the first CSE
+   pass.
+
+   This could probably be integrated with global cprop with a little work.  */
+
+void
+delete_null_pointer_checks (f)
+     rtx f ATTRIBUTE_UNUSED;
+{
+  sbitmap *nonnull_avin, *nonnull_avout;
+  unsigned int *block_reg;
+  int bb;
+  int reg;
+  int regs_per_pass;
+  int max_reg;
+  struct null_pointer_info npi;
+
+  /* If we have only a single block, then there's nothing to do.  */
+  if (n_basic_blocks <= 1)
+    return;
+
+  /* Trying to perform global optimizations on flow graphs which have
+     a high connectivity will take a long time and is unlikely to be
+     particularly useful.
+
+     In normal circumstances a cfg should have about twice has many edges
+     as blocks.  But we do not want to punish small functions which have
+     a couple switch statements.  So we require a relatively large number
+     of basic blocks and the ratio of edges to blocks to be high.  */
+  if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
+    return;
+
+  /* We need four bitmaps, each with a bit for each register in each
+     basic block.  */
+  max_reg = max_reg_num ();
+  regs_per_pass = get_bitmap_width (4, n_basic_blocks, max_reg);
+
+  /* Allocate bitmaps to hold local and global properties.  */
+  npi.nonnull_local = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
+  npi.nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
+  nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
+  nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
+
+  /* Go through the basic blocks, seeing whether or not each block
+     ends with a conditional branch whose condition is a comparison
+     against zero.  Record the register compared in BLOCK_REG.  */
+  block_reg = (unsigned int *) xcalloc (n_basic_blocks, sizeof (int));
+  for (bb = 0; bb < n_basic_blocks; bb++)
+    {
+      rtx last_insn = BLOCK_END (bb);
+      rtx condition, earliest, reg;
+
+      /* We only want conditional branches.  */
+      if (GET_CODE (last_insn) != JUMP_INSN
+         || !any_condjump_p (last_insn)
+         || !onlyjump_p (last_insn))
+       continue;
+
+      /* LAST_INSN is a conditional jump.  Get its condition.  */
+      condition = get_condition (last_insn, &earliest);
+
+      /* If we were unable to get the condition, or it is not a equality
+        comparison against zero then there's nothing we can do.  */
+      if (!condition
+         || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
+         || GET_CODE (XEXP (condition, 1)) != CONST_INT
+         || (XEXP (condition, 1) 
+             != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
+       continue;
+
+      /* We must be checking a register against zero.  */
+      reg = XEXP (condition, 0);
+      if (GET_CODE (reg) != REG)
+       continue;
+
+      block_reg[bb] = REGNO (reg);
+    }
+
+  /* Go through the algorithm for each block of registers.  */
+  for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
+    {
+      npi.min_reg = reg;
+      npi.max_reg = MIN (reg + regs_per_pass, max_reg);
+      delete_null_pointer_checks_1 (block_reg, nonnull_avin,
+                                   nonnull_avout, &npi);
+    }
+
+  /* Free the table of registers compared at the end of every block.  */
+  free (block_reg);
+
+  /* Free bitmaps.  */
+  free (npi.nonnull_local);
+  free (npi.nonnull_killed);
+  free (nonnull_avin);
+  free (nonnull_avout);
+}
+
+/* Code Hoisting variables and subroutines.  */
+
+/* Very busy expressions.  */
+static sbitmap *hoist_vbein;
+static sbitmap *hoist_vbeout;
+
+/* Hoistable expressions.  */
+static sbitmap *hoist_exprs;
+
+/* Dominator bitmaps.  */
+static sbitmap *dominators;
+
+/* ??? We could compute post dominators and run this algorithm in
+   reverse to to perform tail merging, doing so would probably be
+   more effective than the tail merging code in jump.c.
+
+   It's unclear if tail merging could be run in parallel with
+   code hoisting.  It would be nice.  */
+
+/* Allocate vars used for code hoisting analysis.  */
+
+static void
+alloc_code_hoist_mem (n_blocks, n_exprs)
+     int n_blocks, n_exprs;
+{
+  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
+  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
+  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
+
+  hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
+  hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
+  hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
+  transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
+
+  dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
+}
+
+/* Free vars used for code hoisting analysis.  */
+
+static void
+free_code_hoist_mem ()
+{
+  free (antloc);
+  free (transp);
+  free (comp);
+
+  free (hoist_vbein);
+  free (hoist_vbeout);
+  free (hoist_exprs);
+  free (transpout);
+
+  free (dominators);
+}
+
+/* Compute the very busy expressions at entry/exit from each block.
+
+   An expression is very busy if all paths from a given point
+   compute the expression.  */
+
+static void
+compute_code_hoist_vbeinout ()
+{
+  int bb, changed, passes;
+
+  sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
+  sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
+
+  passes = 0;
+  changed = 1;
+
+  while (changed)
+    {
+      changed = 0;
+
+      /* We scan the blocks in the reverse order to speed up
+        the convergence.  */
+      for (bb = n_basic_blocks - 1; bb >= 0; bb--)
+       {
+         changed |= sbitmap_a_or_b_and_c (hoist_vbein[bb], antloc[bb],
+                                          hoist_vbeout[bb], transp[bb]);
+         if (bb != n_basic_blocks - 1)
+           sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb);
+       }
+
+      passes++;
+    }
+
+  if (gcse_file)
+    fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
+}
+
+/* Top level routine to do the dataflow analysis needed by code hoisting.  */
+
+static void
+compute_code_hoist_data ()
+{
+  compute_local_properties (transp, comp, antloc, 0);
+  compute_transpout ();
+  compute_code_hoist_vbeinout ();
+  compute_flow_dominators (dominators, NULL);
+  if (gcse_file)
+    fprintf (gcse_file, "\n");
+}
+
+/* Determine if the expression identified by EXPR_INDEX would
+   reach BB unimpared if it was placed at the end of EXPR_BB.
+
+   It's unclear exactly what Muchnick meant by "unimpared".  It seems
+   to me that the expression must either be computed or transparent in
+   *every* block in the path(s) from EXPR_BB to BB.  Any other definition
+   would allow the expression to be hoisted out of loops, even if
+   the expression wasn't a loop invariant.
+
+   Contrast this to reachability for PRE where an expression is
+   considered reachable if *any* path reaches instead of *all*
+   paths.  */
+
+static int
+hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
+     int expr_bb;
+     int expr_index;
+     int bb;
+     char *visited;
+{
+  edge pred;
+  int visited_allocated_locally = 0;
+  
+
+  if (visited == NULL)
+    {
+       visited_allocated_locally = 1;
+       visited = xcalloc (n_basic_blocks, 1);
+    }
+
+  visited[expr_bb] = 1;
+  for (pred = BASIC_BLOCK (bb)->pred; pred != NULL; pred = pred->pred_next)
+    {
+      int pred_bb = pred->src->index;
+
+      if (pred->src == ENTRY_BLOCK_PTR)
+       break;
+      else if (visited[pred_bb])
+       continue;
+
+      /* Does this predecessor generate this expression?  */
+      else if (TEST_BIT (comp[pred_bb], expr_index))
+       break;
+      else if (! TEST_BIT (transp[pred_bb], expr_index))
+       break;
+
+      /* Not killed.  */
+      else
+       {
+         visited[pred_bb] = 1;
+         if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
+                                          pred_bb, visited))
+           break;
+       }
+    }
+  if (visited_allocated_locally) 
+    free (visited);
+
+  return (pred == NULL);
+}
+\f
+/* Actually perform code hoisting.  */
+
+static void
+hoist_code ()
+{
+  int bb, dominated;
+  unsigned int i;
+  struct expr **index_map;
+  struct expr *expr;
+
+  sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
+
+  /* Compute a mapping from expression number (`bitmap_index') to
+     hash table entry.  */
+
+  index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
+  for (i = 0; i < expr_hash_table_size; i++)
+    for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
+      index_map[expr->bitmap_index] = expr;
+
+  /* Walk over each basic block looking for potentially hoistable
+     expressions, nothing gets hoisted from the entry block.  */
+  for (bb = 0; bb < n_basic_blocks; bb++)
+    {
+      int found = 0;
+      int insn_inserted_p;
+
+      /* Examine each expression that is very busy at the exit of this
+        block.  These are the potentially hoistable expressions.  */
+      for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
+       {
+         int hoistable = 0;
+
+         if (TEST_BIT (hoist_vbeout[bb], i) && TEST_BIT (transpout[bb], i))
+           {
+             /* We've found a potentially hoistable expression, now
+                we look at every block BB dominates to see if it
+                computes the expression.  */
+             for (dominated = 0; dominated < n_basic_blocks; dominated++)
+               {
+                 /* Ignore self dominance.  */
+                 if (bb == dominated
+                     || ! TEST_BIT (dominators[dominated], bb))
+                   continue;
+
+                 /* We've found a dominated block, now see if it computes
+                    the busy expression and whether or not moving that
+                    expression to the "beginning" of that block is safe.  */
+                 if (!TEST_BIT (antloc[dominated], i))
+                   continue;
+
+                 /* Note if the expression would reach the dominated block
+                    unimpared if it was placed at the end of BB. 
+
+                    Keep track of how many times this expression is hoistable
+                    from a dominated block into BB.  */
+                 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
+                   hoistable++;
+               }
+
+             /* If we found more than one hoistable occurence of this
+                expression, then note it in the bitmap of expressions to
+                hoist.  It makes no sense to hoist things which are computed
+                in only one BB, and doing so tends to pessimize register
+                allocation.  One could increase this value to try harder
+                to avoid any possible code expansion due to register
+                allocation issues; however experiments have shown that
+                the vast majority of hoistable expressions are only movable
+                from two successors, so raising this threshhold is likely
+                to nullify any benefit we get from code hoisting.  */
+             if (hoistable > 1)
+               {
+                 SET_BIT (hoist_exprs[bb], i);
+                 found = 1;
+               }
+           }
+       }
                
-               /* ??? Optimally, we would use interprocedural alias
-                  analysis to determine if this mem is actually killed
-                  by this call.  */
-               RESET_BIT (transpout[bb], expr->bitmap_index);
-             }
+      /* If we found nothing to hoist, then quit now.  */
+      if (! found)
+       continue;
+
+      /* Loop over all the hoistable expressions.  */
+      for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
+       {
+         /* We want to insert the expression into BB only once, so
+            note when we've inserted it.  */
+         insn_inserted_p = 0;
+
+         /* These tests should be the same as the tests above.  */
+         if (TEST_BIT (hoist_vbeout[bb], i))
+           {
+             /* We've found a potentially hoistable expression, now
+                we look at every block BB dominates to see if it
+                computes the expression.  */
+             for (dominated = 0; dominated < n_basic_blocks; dominated++)
+               {
+                 /* Ignore self dominance.  */
+                 if (bb == dominated
+                     || ! TEST_BIT (dominators[dominated], bb))
+                   continue;
+
+                 /* We've found a dominated block, now see if it computes
+                    the busy expression and whether or not moving that
+                    expression to the "beginning" of that block is safe.  */
+                 if (!TEST_BIT (antloc[dominated], i))
+                   continue;
+
+                 /* The expression is computed in the dominated block and
+                    it would be safe to compute it at the start of the
+                    dominated block.  Now we have to determine if the
+                    expresion would reach the dominated block if it was
+                    placed at the end of BB.  */
+                 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
+                   {
+                     struct expr *expr = index_map[i];
+                     struct occr *occr = expr->antic_occr;
+                     rtx insn;
+                     rtx set;
+
+                     /* Find the right occurence of this expression.  */
+                     while (BLOCK_NUM (occr->insn) != dominated && occr)
+                       occr = occr->next;
+
+                     /* Should never happen.  */
+                     if (!occr)
+                       abort ();
+
+                     insn = occr->insn;
+                
+                     set = single_set (insn);
+                     if (! set)
+                       abort ();
+
+                     /* Create a pseudo-reg to store the result of reaching
+                        expressions into.  Get the mode for the new pseudo
+                        from the mode of the original destination pseudo.  */
+                     if (expr->reaching_reg == NULL)
+                       expr->reaching_reg
+                         = gen_reg_rtx (GET_MODE (SET_DEST (set)));
+
+                     /* In theory this should never fail since we're creating
+                        a reg->reg copy.
+
+                        However, on the x86 some of the movXX patterns
+                        actually contain clobbers of scratch regs.  This may
+                        cause the insn created by validate_change to not
+                        match any pattern and thus cause validate_change to
+                        fail.  */
+                     if (validate_change (insn, &SET_SRC (set),
+                                          expr->reaching_reg, 0))
+                       {
+                         occr->deleted_p = 1;
+                         if (!insn_inserted_p)
+                           {
+                             insert_insn_end_bb (index_map[i], bb, 0);
+                             insn_inserted_p = 1;
+                           }
+                       }
+                   }
+               }
+           }
        }
     }
+
+    free (index_map);
+}
+
+/* Top level routine to perform one code hoisting (aka unification) pass
+
+   Return non-zero if a change was made.  */
+
+static int
+one_code_hoisting_pass ()
+{
+  int changed = 0;
+
+  alloc_expr_hash_table (max_cuid);
+  compute_expr_hash_table ();
+  if (gcse_file)
+    dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
+                    expr_hash_table_size, n_exprs);
+
+  if (n_exprs > 0)
+    {
+      alloc_code_hoist_mem (n_basic_blocks, n_exprs);
+      compute_code_hoist_data ();
+      hoist_code ();
+      free_code_hoist_mem ();
+    }
+
+  free_expr_hash_table ();
+
+  return changed;
 }