OSDN Git Service

* doc/install.texi: Document that dejagnu 1.4.4 is required.
[pf3gnuchains/gcc-fork.git] / gcc / doc / install-old.texi
index c0aa729..0a4afbe 100644 (file)
@@ -1,72 +1,37 @@
-@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
+@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
 @c This is part of the GCC manual.
-@c For copying conditions, see the file gcc.texi.
-
-@c The text of this file appears in the file INSTALL
-@c in the GCC distribution, as well as in the GCC manual.
+@c For copying conditions, see the file install.texi.
+
+@ifnothtml
+@comment node-name,     next,          previous, up
+@node    Old, GNU Free Documentation License, Specific, Top
+@end ifnothtml
+@html
+<h1 align="center">Old installation documentation</h1>
+@end html
+@ifnothtml
+@chapter Old installation documentation
+@end ifnothtml
 
 Note most of this information is out of date and superseded by the
-online GCC install procedures @uref{http://gcc.gnu.org/install/}.  It is
-provided for historical reference only.
-
-@ifclear INSTALLONLY
-@node Installation
-@chapter Installing GNU CC
-@end ifclear
-@cindex installing GNU CC
+previous chapters of this manual.  It is provided for historical
+reference only, because of a lack of volunteers to merge it into the
+main manual.
 
+@ifnothtml
 @menu
-* Configuration Files::  Files created by running @code{configure}.
-* Configurations::    Configurations Supported by GNU CC.
-* Other Dir::     Compiling in a separate directory (not where the source is).
-* Cross-Compiler::   Building and installing a cross-compiler.
-* VMS Install::   See below for installation on VMS.
-* Collect2::     How @code{collect2} works; how it finds @code{ld}.
-* Header Dirs::   Understanding the standard header file directories.
+* Configurations::    Configurations Supported by GCC.
 @end menu
+@end ifnothtml
 
-Here is the procedure for installing GNU CC on a GNU or Unix system.
-See @ref{VMS Install}, for VMS systems.  In this section we assume you
-compile in the same directory that contains the source files; see
-@ref{Other Dir}, to find out how to compile in a separate directory on
-Unix systems.
-
-You cannot install GNU C by itself on MSDOS; it will not compile under
-any MSDOS compiler except itself.  You need to get the complete
-compilation package DJGPP, which includes binaries as well as sources,
-and includes all the necessary compilation tools and libraries.
+Here is the procedure for installing GCC on a GNU or Unix system.
 
 @enumerate
 @item
-If you have built GNU CC previously in the same directory for a
-different target machine, do @samp{make distclean} to delete all files
-that might be invalid.  One of the files this deletes is
-@file{Makefile}; if @samp{make distclean} complains that @file{Makefile}
-does not exist, it probably means that the directory is already suitably
-clean.
-
-@item
-On a System V release 4 system, make sure @file{/usr/bin} precedes
-@file{/usr/ucb} in @code{PATH}.  The @code{cc} command in
-@file{/usr/ucb} uses libraries which have bugs.
-
-@cindex Bison parser generator
-@cindex parser generator, Bison
-@item
-Make sure the Bison parser generator is installed.  (This is unnecessary
-if the Bison output file @file{c-parse.c} is more recent than
-@file{c-parse.y},and you do not plan to change the @samp{.y} file.)
-
-Bison versions older than Sept 8, 1988 will produce incorrect output
-for @file{c-parse.c}.
-
-@item
-If you have chosen a configuration for GNU CC which requires other GNU
+If you have chosen a configuration for GCC which requires other GNU
 tools (such as GAS or the GNU linker) instead of the standard system
 tools, install the required tools in the build directory under the names
-@file{as}, @file{ld} or whatever is appropriate.  This will enable the
-compiler to find the proper tools for compilation of the program
-@file{enquire}.
+@file{as}, @file{ld} or whatever is appropriate.
 
 Alternatively, you can do subsequent compilation using a value of the
 @code{PATH} environment variable such that the necessary GNU tools come
@@ -90,9 +55,8 @@ to specify a configuration when building a native compiler unless
 wrong.
 
 In those cases, specify the build machine's @dfn{configuration name}
-with the @samp{--host} option; the host and target will default to be
-the same as the host machine.  (If you are building a cross-compiler,
-see @ref{Cross-Compiler}.)
+with the @option{--host} option; the host and target will default to be
+the same as the host machine.
 
 Here is an example:
 
@@ -119,456 +83,25 @@ ignored.  So you might as well specify the version if you know it.
 
 See @ref{Configurations}, for a list of supported configuration names and
 notes on many of the configurations.  You should check the notes in that
-section before proceeding any further with the installation of GNU CC.
-
-@item
-When running @code{configure}, you may also need to specify certain
-additional options that describe variant hardware and software
-configurations.  These are @samp{--with-gnu-as}, @samp{--with-gnu-ld},
-@samp{--with-stabs} and @samp{--nfp}.
-
-@table @samp
-@item --with-gnu-as
-If you will use GNU CC with the GNU assembler (GAS), you should declare
-this by using the @samp{--with-gnu-as} option when you run
-@file{configure}.
-
-Using this option does not install GAS.  It only modifies the output of
-GNU CC to work with GAS.  Building and installing GAS is up to you.
-
-Conversely, if you @emph{do not} wish to use GAS and do not specify
-@samp{--with-gnu-as} when building GNU CC, it is up to you to make sure
-that GAS is not installed.  GNU CC searches for a program named
-@code{as} in various directories; if the program it finds is GAS, then
-it runs GAS.  If you are not sure where GNU CC finds the assembler it is
-using, try specifying @samp{-v} when you run it.
-
-The systems where it makes a difference whether you use GAS are@*
-@samp{hppa1.0-@var{any}-@var{any}}, @samp{hppa1.1-@var{any}-@var{any}},
-@samp{i386-@var{any}-sysv}, @samp{i386-@var{any}-isc},@*
-@samp{i860-@var{any}-bsd}, @samp{m68k-bull-sysv},@*
-@samp{m68k-hp-hpux}, @samp{m68k-sony-bsd},@*
-@samp{m68k-altos-sysv}, @samp{m68000-hp-hpux},@*
-@samp{m68000-att-sysv}, @samp{@var{any}-lynx-lynxos},
-and @samp{mips-@var{any}}).
-On any other system, @samp{--with-gnu-as} has no effect.
-
-On the systems listed above (except for the HP-PA, for ISC on the
-386, and for @samp{mips-sgi-irix5.*}), if you use GAS, you should also
-use the GNU linker (and specify @samp{--with-gnu-ld}).
-
-@item --with-gnu-ld
-Specify the option @samp{--with-gnu-ld} if you plan to use the GNU
-linker with GNU CC.
-
-This option does not cause the GNU linker to be installed; it just
-modifies the behavior of GNU CC to work with the GNU linker.
-@c Specifically, it inhibits the installation of @code{collect2}, a program
-@c which otherwise serves as a front-end for the system's linker on most
-@c configurations.
-
-@item --with-stabs
-On MIPS based systems and on Alphas, you must specify whether you want
-GNU CC to create the normal ECOFF debugging format, or to use BSD-style
-stabs passed through the ECOFF symbol table.  The normal ECOFF debug
-format cannot fully handle languages other than C.  BSD stabs format can
-handle other languages, but it only works with the GNU debugger GDB.
-
-Normally, GNU CC uses the ECOFF debugging format by default; if you
-prefer BSD stabs, specify @samp{--with-stabs} when you configure GNU
-CC.
-
-No matter which default you choose when you configure GNU CC, the user
-can use the @samp{-gcoff} and @samp{-gstabs+} options to specify explicitly
-the debug format for a particular compilation.
-
-@samp{--with-stabs} is meaningful on the ISC system on the 386, also, if
-@samp{--with-gas} is used.  It selects use of stabs debugging
-information embedded in COFF output.  This kind of debugging information
-supports C++ well; ordinary COFF debugging information does not.
-
-@samp{--with-stabs} is also meaningful on 386 systems running SVR4.  It
-selects use of stabs debugging information embedded in ELF output.  The
-C++ compiler currently (2.6.0) does not support the DWARF debugging
-information normally used on 386 SVR4 platforms; stabs provide a
-workable alternative.  This requires gas and gdb, as the normal SVR4
-tools can not generate or interpret stabs.
-
-@item --nfp
-On certain systems, you must specify whether the machine has a floating
-point unit.  These systems include @samp{m68k-sun-sunos@var{n}} and
-@samp{m68k-isi-bsd}.  On any other system, @samp{--nfp} currently has no
-effect, though perhaps there are other systems where it could usefully
-make a difference.
-
-@cindex Internal Compiler Checking
-@item --enable-checking
-When you specify this option, the compiler is built to perform checking
-of tree node types when referencing fields of that node.  This does not
-change the generated code, but adds error checking within the compiler.
-This will slow down the compiler and may only work properly if you
-are building the compiler with GNU C.
-
-@cindex Native Language Support
-@cindex NLS
-@item --enable-nls
-@itemx --disable-nls
-The @samp{--enable-nls} option enables Native Language Support (NLS),
-which lets GCC output diagnostics in languages other than American
-English. Native Language Support is enabled by default if not doing a
-canadian cross build. The @samp{--disable-nls} option disables NLS.
-
-@cindex @code{gettext}
-@item --with-included-gettext
-If NLS is enbled, the @samp{--with-included-gettext} option causes the build
-procedure to prefer its copy of GNU @code{gettext}. This is the default. If
-you want the GCC build procedure to prefer the host's @code{gettext}
-libraries, use @samp{--without-included-gettext}.
-
-@cindex @code{catgets}
-@item --with-catgets
-If NLS is enabled, and if the host lacks @code{gettext} but has the
-inferior @code{catgets} interface, the GCC build procedure normally
-ignores @code{catgets} and instead uses GCC's copy of the GNU
-@code{gettext} library.  The @samp{--with-catgets} option causes the
-build procedure to use the host's @code{catgets} in this situation.
-
-@cindex Windows32 Registry support
-@item --enable-win32-registry
-@itemx --enable-win32-registry=@var{KEY}
-@itemx --disable-win32-registry
-The @samp{--enable-win32-registry} option enables Windows-hosted GCC
-to look up installations paths in the registry using the following key:
-
-@smallexample
-@code{HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\<KEY>}
-@end smallexample
-
-<KEY> defaults to GCC version number, and can be overridden by the
-@code{--enable-win32-registry=KEY} option. Vendors and distributors
-who use custom installers are encouraged to provide a different key,
-perhaps one comprised of vendor name and GCC version number, to
-avoid conflict with existing installations. This feature is enabled
-by default, and can be disabled by @code{--disable-win32-registry}
-option.  This option has no effect on the other hosts.
-@end table
-
-@item
-Build the compiler.  Just type @samp{make LANGUAGES=c} in the compiler
-directory.
-
-@samp{LANGUAGES=c} specifies that only the C compiler should be
-compiled.  The makefile normally builds compilers for all the supported
-languages; currently, C, C++, Objective C, Java, FORTRAN, and CHILL.
-However, C is the only language that is sure to work when you build with
-other non-GNU C compilers.  In addition, building anything but C at this
-stage is a waste of time.
-
-In general, you can specify the languages to build by typing the
-argument @samp{LANGUAGES="@var{list}"}, where @var{list} is one or more
-words from the list @samp{c}, @samp{c++}, @samp{objective-c},
-@samp{java}, @samp{f77}, and @samp{CHILL}.  If you have any additional
-GNU compilers as subdirectories of the GNU CC source directory, you may
-also specify their names in this list.
-
-Ignore any warnings you may see about ``statement not reached'' in
-@file{insn-emit.c}; they are normal.  Also, warnings about ``unknown
-escape sequence'' are normal in @file{genopinit.c} and perhaps some
-other files.  Likewise, you should ignore warnings about ``constant is
-so large that it is unsigned'' in @file{insn-emit.c} and
-@file{insn-recog.c}, and a warning about a comparison always being zero
-in @file{enquire.o}.  Any other compilation errors may represent bugs in
-the port to your machine or operating system, and
-@ifclear INSTALLONLY
-should be investigated and reported (@pxref{Bugs}).
-@end ifclear
-@ifset INSTALLONLY
-should be investigated and reported.
-@end ifset
-
-Some compilers fail to compile GNU CC because they have bugs or
-limitations.  For example, the Microsoft compiler is said to run out of
-macro space.  Some Ultrix compilers run out of expression space; then
-you need to break up the statement where the problem happens.
-
-@item
-If you are building a cross-compiler, stop here.  @xref{Cross-Compiler}.
-
-@cindex stage1
-@item
-Move the first-stage object files and executables into a subdirectory
-with this command:
-
-@smallexample
-make stage1
-@end smallexample
-
-The files are moved into a subdirectory named @file{stage1}.
-Once installation is complete, you may wish to delete these files
-with @code{rm -r stage1}.
-
-@item
-If you have chosen a configuration for GNU CC which requires other GNU
-tools (such as GAS or the GNU linker) instead of the standard system
-tools, install the required tools in the @file{stage1} subdirectory
-under the names @file{as}, @file{ld} or whatever is appropriate.  This
-will enable the stage 1 compiler to find the proper tools in the
-following stage.
-
-Alternatively, you can do subsequent compilation using a value of the
-@code{PATH} environment variable such that the necessary GNU tools come
-before the standard system tools.
-
-@item
-Recompile the compiler with itself, with this command:
-
-@smallexample
-make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2"
-@end smallexample
-
-This is called making the stage 2 compiler.
-
-The command shown above builds compilers for all the supported
-languages.  If you don't want them all, you can specify the languages to
-build by typing the argument @samp{LANGUAGES="@var{list}"}.  @var{list}
-should contain one or more words from the list @samp{c}, @samp{c++},
-@samp{objective-c}, and @samp{proto}.  Separate the words with spaces.
-@samp{proto} stands for the programs @code{protoize} and
-@code{unprotoize}; they are not a separate language, but you use
-@code{LANGUAGES} to enable or disable their installation.
-
-If you are going to build the stage 3 compiler, then you might want to
-build only the C language in stage 2.
-
-Once you have built the stage 2 compiler, if you are short of disk
-space, you can delete the subdirectory @file{stage1}.
-
-On a 68000 or 68020 system lacking floating point hardware,
-unless you have selected a @file{tm.h} file that expects by default
-that there is no such hardware, do this instead:
-
-@smallexample
-make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2 -msoft-float"
-@end smallexample
-
-@item
-If you wish to test the compiler by compiling it with itself one more
-time, install any other necessary GNU tools (such as GAS or the GNU
-linker) in the @file{stage2} subdirectory as you did in the
-@file{stage1} subdirectory, then do this:
-
-@smallexample
-make stage2
-make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2"
-@end smallexample
-
-@noindent
-This is called making the stage 3 compiler.  Aside from the @samp{-B}
-option, the compiler options should be the same as when you made the
-stage 2 compiler.  But the @code{LANGUAGES} option need not be the
-same.  The command shown above builds compilers for all the supported
-languages; if you don't want them all, you can specify the languages to
-build by typing the argument @samp{LANGUAGES="@var{list}"}, as described
-above.
-
-If you do not have to install any additional GNU tools, you may use the
-command
-
-@smallexample
-make bootstrap LANGUAGES=@var{language-list} BOOT_CFLAGS=@var{option-list}
-@end smallexample
-
-@noindent
-instead of making @file{stage1}, @file{stage2}, and performing
-the two compiler builds.
-
-@item
-Compare the latest object files with the stage 2 object files---they
-ought to be identical, aside from time stamps (if any).
-
-On some systems, meaningful comparison of object files is impossible;
-they always appear ``different.''  This is currently true on Solaris and
-some systems that use ELF object file format.  On some versions of Irix
-on SGI machines and DEC Unix (OSF/1) on Alpha systems, you will not be
-able to compare the files without specifying @file{-save-temps}; see the
-description of individual systems above to see if you get comparison
-failures.  You may have similar problems on other systems.
-
-Use this command to compare the files:
-
-@smallexample
-make compare
-@end smallexample
-
-This will mention any object files that differ between stage 2 and stage
-3.  Any difference, no matter how innocuous, indicates that the stage 2
-compiler has compiled GNU CC incorrectly, and is therefore a potentially
-@ifclear INSTALLONLY
-serious bug which you should investigate and report (@pxref{Bugs}).
-@end ifclear
-@ifset INSTALLONLY
-serious bug which you should investigate and report.
-@end ifset
+section before proceeding any further with the installation of GCC@.
 
-If your system does not put time stamps in the object files, then this
-is a faster way to compare them (using the Bourne shell):
-
-@smallexample
-for file in *.o; do
-cmp $file stage2/$file
-done
-@end smallexample
-
-If you have built the compiler with the @samp{-mno-mips-tfile} option on
-MIPS machines, you will not be able to compare the files.
-
-@item
-Install the compiler driver, the compiler's passes and run-time support
-with @samp{make install}.  Use the same value for @code{CC},
-@code{CFLAGS} and @code{LANGUAGES} that you used when compiling the
-files that are being installed.  One reason this is necessary is that
-some versions of Make have bugs and recompile files gratuitously when
-you do this step.  If you use the same variable values, those files will
-be recompiled properly.
-
-For example, if you have built the stage 2 compiler, you can use the
-following command:
-
-@smallexample
-make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="@var{list}"
-@end smallexample
-
-@noindent
-This copies the files @file{cc1}, @file{cpp} and @file{libgcc.a} to
-files @file{cc1}, @file{cpp} and @file{libgcc.a} in the directory
-@file{/usr/local/lib/gcc-lib/@var{target}/@var{version}}, which is where
-the compiler driver program looks for them.  Here @var{target} is the
-canonicalized form of target machine type specified when you ran
-@file{configure}, and @var{version} is the version number of GNU CC.
-This naming scheme permits various versions and/or cross-compilers to
-coexist.  It also copies the executables for compilers for other
-languages (e.g., @file{cc1plus} for C++) to the same directory.
-
-This also copies the driver program @file{xgcc} into
-@file{/usr/local/bin/gcc}, so that it appears in typical execution
-search paths.  It also copies @file{gcc.1} into
-@file{/usr/local/man/man1} and info pages into @file{/usr/local/info}.
-
-On some systems, this command causes recompilation of some files.  This
-is usually due to bugs in @code{make}.  You should either ignore this
-problem, or use GNU Make.
-
-(It is usually better to install GNU CC executables from stage 2 or 3,
-since they usually run faster than the ones compiled with some other
-compiler.)
-
-@item
-GNU CC includes a runtime library for Objective-C because it is an
-integral part of the language.  You can find the files associated with
-the library in the subdirectory @file{objc}.  The GNU Objective-C
-Runtime Library requires header files for the target's C library in
-order to be compiled,and also requires the header files for the target's
-thread library if you want thread support.  @xref{Cross Headers,
-Cross-Compilers and Header Files, Cross-Compilers and Header Files}, for
-discussion about header files issues for cross-compilation.
-
-When you run @file{configure}, it picks the appropriate Objective-C
-thread implementation file for the target platform.  In some situations,
-you may wish to choose a different back-end as some platforms support
-multiple thread implementations or you may wish to disable thread
-support completely.  You do this by specifying a value for the
-@var{OBJC_THREAD_FILE} makefile variable on the command line when you
-run make, for example:
-
-@smallexample
-make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2" OBJC_THREAD_FILE=thr-single
-@end smallexample
-
-@noindent
-Below is a list of the currently available back-ends.
-
-@itemize @bullet
-@item thr-single
-Disable thread support, should work for all platforms.
-@item thr-decosf1
-DEC OSF/1 thread support.
-@item thr-irix
-SGI IRIX thread support.
-@item thr-mach
-Generic MACH thread support, known to work on NEXTSTEP.
-@item thr-os2
-IBM OS/2 thread support.
-@item thr-posix
-Generix POSIX thread support.
-@item thr-pthreads
-PCThreads on Linux-based GNU systems.
-@item thr-solaris
-SUN Solaris thread support.
-@item thr-win32
-Microsoft Win32 API thread support.
-@end itemize
 @end enumerate
 
-@node Configuration Files
-@section Files Created by @code{configure}
-
-Here we spell out what files will be set up by @code{configure}.  Normally
-you need not be concerned with these files.
-
-@itemize @bullet
-@item
-@ifset INTERNALS
-A file named @file{config.h} is created that contains a @samp{#include}
-of the top-level config file for the machine you will run the compiler
-on (@pxref{Config}).  This file is responsible for defining information
-about the host machine.  It includes @file{tm.h}.
-@end ifset
-@ifclear INTERNALS
-A file named @file{config.h} is created that contains a @samp{#include}
-of the top-level config file for the machine you will run the compiler
-on (@pxref{Config,,The Configuration File, gcc.info, Using and Porting
-GCC}).  This file is responsible for defining information about the host
-machine.  It includes @file{tm.h}.
-@end ifclear
-
-The top-level config file is located in the subdirectory @file{config}.
-Its name is always @file{xm-@var{something}.h}; usually
-@file{xm-@var{machine}.h}, but there are some exceptions.
-
-If your system does not support symbolic links, you might want to
-set up @file{config.h} to contain a @samp{#include} command which
-refers to the appropriate file.
-
-@item
-A file named @file{tconfig.h} is created which includes the top-level config
-file for your target machine.  This is used for compiling certain
-programs to run on that machine.
-
-@item
-A file named @file{tm.h} is created which includes the
-machine-description macro file for your target machine.  It should be in
-the subdirectory @file{config} and its name is often
-@file{@var{machine}.h}.
-
-@item
-The command file @file{configure} also constructs the file
-@file{Makefile} by adding some text to the template file
-@file{Makefile.in}.  The additional text comes from files in the
-@file{config} directory, named @file{t-@var{target}} and
-@file{x-@var{host}}.  If these files do not exist, it means nothing
-needs to be added for a given target or host.
-@end itemize
-
-@node Configurations
-@section Configurations Supported by GNU CC
-@cindex configurations supported by GNU CC
+@ifnothtml
+@node Configurations, , , Old
+@section Configurations Supported by GCC
+@end ifnothtml
+@html
+<h2>@anchor{Configurations}Configurations Supported by GCC</h2>
+@end html
+@cindex configurations supported by GCC
 
 Here are the possible CPU types:
 
 @quotation
 @c gmicro, fx80, spur and tahoe omitted since they don't work.
 1750a, a29k, alpha, arm, avr, c@var{n}, clipper, dsp16xx, elxsi, fr30, h8300,
-hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, m32r,
+hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r,
 m68000, m68k, m6811, m6812, m88k, mcore, mips, mipsel, mips64, mips64el,
 mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc,
 sparclite, sparc64, v850, vax, we32k.
@@ -608,12 +141,12 @@ operating system from the CPU and company.
 
 You can add a version number to the system type; this may or may not
 make a difference.  For example, you can write @samp{bsd4.3} or
-@samp{bsd4.4} to distinguish versions of BSD.  In practice, the version
+@samp{bsd4.4} to distinguish versions of BSD@.  In practice, the version
 number is most needed for @samp{sysv3} and @samp{sysv4}, which are often
 treated differently.
 
 @samp{linux-gnu} is the canonical name for the GNU/Linux target; however
-GNU CC will also accept @samp{linux}.  The version of the kernel in use is
+GCC will also accept @samp{linux}.  The version of the kernel in use is
 not relevant on these systems.  A suffix such as @samp{libc1} or @samp{aout}
 distinguishes major versions of the C library; all of the suffixed versions
 are obsolete.
@@ -622,7 +155,7 @@ If you specify an impossible combination such as @samp{i860-dg-vms},
 then you may get an error message from @file{configure}, or it may
 ignore part of the information and do the best it can with the rest.
 @file{configure} always prints the canonical name for the alternative
-that it used.  GNU CC does not support all possible alternatives.
+that it used.  GCC does not support all possible alternatives.
 
 Often a particular model of machine has a name.  Many machine names are
 recognized as aliases for CPU/company combinations.  Thus, the machine
@@ -659,1366 +192,3 @@ Thus, if you specify @samp{m68k-local}, configuration uses
 files @file{m68k.md}, @file{local.h}, @file{m68k.c},
 @file{xm-local.h}, @file{t-local}, and @file{x-local}, all in the
 directory @file{config/m68k}.
-
-Here is a list of configurations that have special treatment or special
-things you must know:
-
-@table @samp
-@item 1750a-*-*
-MIL-STD-1750A processors.
-
-The MIL-STD-1750A cross configuration produces output for
-@code{as1750}, an assembler/linker available under the GNU Public
-License for the 1750A. @code{as1750} can be obtained at
-@uref{ftp://ftp.fta-berlin.de/pub/crossgcc/1750gals/}.
-A similarly licensed simulator for
-the 1750A is available from same address.
-
-You should ignore a fatal error during the building of libgcc (libgcc is
-not yet implemented for the 1750A.)
-
-The @code{as1750} assembler requires the file @file{ms1750.inc}, which is
-found in the directory @file{config/1750a}.
-
-GNU CC produced the same sections as the Fairchild F9450 C Compiler,
-namely:
-
-@table @code
-@item Normal
-The program code section.
-
-@item Static
-The read/write (RAM) data section.
-
-@item Konst
-The read-only (ROM) constants section.
-
-@item Init
-Initialization section (code to copy KREL to SREL).
-@end table
-
-The smallest addressable unit is 16 bits (BITS_PER_UNIT is 16).  This
-means that type `char' is represented with a 16-bit word per character.
-The 1750A's "Load/Store Upper/Lower Byte" instructions are not used by
-GNU CC.
-
-@item alpha-*-osf1
-Systems using processors that implement the DEC Alpha architecture and
-are running the DEC Unix (OSF/1) operating system, for example the DEC
-Alpha AXP systems.CC.)
-
-GNU CC writes a @samp{.verstamp} directive to the assembler output file
-unless it is built as a cross-compiler.  It gets the version to use from
-the system header file @file{/usr/include/stamp.h}.  If you install a
-new version of DEC Unix, you should rebuild GCC to pick up the new version
-stamp.
-
-Note that since the Alpha is a 64-bit architecture, cross-compilers from
-32-bit machines will not generate code as efficient as that generated
-when the compiler is running on a 64-bit machine because many
-optimizations that depend on being able to represent a word on the
-target in an integral value on the host cannot be performed.  Building
-cross-compilers on the Alpha for 32-bit machines has only been tested in
-a few cases and may not work properly.
-
-@code{make compare} may fail on old versions of DEC Unix unless you add
-@samp{-save-temps} to @code{CFLAGS}.  On these systems, the name of the
-assembler input file is stored in the object file, and that makes
-comparison fail if it differs between the @code{stage1} and
-@code{stage2} compilations.  The option @samp{-save-temps} forces a
-fixed name to be used for the assembler input file, instead of a
-randomly chosen name in @file{/tmp}.  Do not add @samp{-save-temps}
-unless the comparisons fail without that option.  If you add
-@samp{-save-temps}, you will have to manually delete the @samp{.i} and
-@samp{.s} files after each series of compilations.
-
-GNU CC now supports both the native (ECOFF) debugging format used by DBX
-and GDB and an encapsulated STABS format for use only with GDB.  See the
-discussion of the @samp{--with-stabs} option of @file{configure} above
-for more information on these formats and how to select them.
-
-There is a bug in DEC's assembler that produces incorrect line numbers
-for ECOFF format when the @samp{.align} directive is used.  To work
-around this problem, GNU CC will not emit such alignment directives
-while writing ECOFF format debugging information even if optimization is
-being performed.  Unfortunately, this has the very undesirable
-side-effect that code addresses when @samp{-O} is specified are
-different depending on whether or not @samp{-g} is also specified.
-
-To avoid this behavior, specify @samp{-gstabs+} and use GDB instead of
-DBX.  DEC is now aware of this problem with the assembler and hopes to
-provide a fix shortly.
-
-@item arc-*-elf
-Argonaut ARC processor.
-This configuration is intended for embedded systems.
-
-@item arm-*-aout
-Advanced RISC Machines ARM-family processors.  These are often used in
-embedded applications.  There are no standard Unix configurations.
-This configuration corresponds to the basic instruction sequences and will
-produce @file{a.out} format object modules.
-
-You may need to make a variant of the file @file{arm.h} for your particular
-configuration.
-
-@item arm-*-elf
-This configuration is intended for embedded systems.
-
-@item arm-*-linux*aout
-Any of the ARM-family processors running the Linux-based GNU system with
-the @file{a.out} binary format.  This is an obsolete configuration.
-
-@item arm-*-linux
-@itemx arm-*-linux-gnu
-@itemx arm-*-linux*oldld
-Any of the ARM-family processors running the Linux-based GNU system with
-the @file{ELF} binary format.  You must use version 2.9.1.0.22 or later
-of the GNU/Linux binutils, which you can download from
-@uref{ftp://ftp.varesearch.com/pub/support/hjl/binutils/}.
-
-These two configurations differ only in the required version of GNU
-binutils.  For binutils 2.9.1.0.x, use @samp{arm-*-linux-gnuoldld}.  For
-newer versions of binutils, use @samp{arm-*-linux-gnu}.
-
-@item arm-*-riscix
-The ARM2 or ARM3 processor running RISC iX, Acorn's port of BSD Unix.
-If you are running a version of RISC iX prior to 1.2 then you must
-specify the version number during configuration.  Note that the
-assembler shipped with RISC iX does not support stabs debugging
-information; a new version of the assembler, with stabs support
-included, is now available from Acorn and via ftp
-@uref{ftp://ftp.acorn.com/pub/riscix/as+xterm.tar.Z}.  To enable stabs
-debugging, pass @samp{--with-gnu-as} to configure.
-
-You will need to install GNU @file{sed} before you can run configure.
-
-@item a29k
-AMD Am29k-family processors.  These are normally used in embedded
-applications.  There are no standard Unix configurations.
-This configuration
-corresponds to AMD's standard calling sequence and binary interface
-and is compatible with other 29k tools.
-
-You may need to make a variant of the file @file{a29k.h} for your
-particular configuration.
-
-@item a29k-*-bsd
-AMD Am29050 used in a system running a variant of BSD Unix.
-
-@item avr
-ATMEL AVR-family micro controllers.  These are used in embedded
-applications.  There are no standard Unix configurations.
-@xref{AVR Options}, for the list of supported MCU types.
-
-@item decstation-*
-MIPS-based DECstations can support three different personalities:
-Ultrix, DEC OSF/1, and OSF/rose.  (Alpha-based DECstation products have
-a configuration name beginning with @samp{alpha-dec}.)  To configure GCC
-for these platforms use the following configurations:
-
-@table @samp
-@item decstation-ultrix
-Ultrix configuration.
-
-@item decstation-osf1
-Dec's version of OSF/1.
-
-@item decstation-osfrose
-Open Software Foundation reference port of OSF/1 which uses the
-OSF/rose object file format instead of ECOFF.  Normally, you
-would not select this configuration.
-@end table
-
-The MIPS C compiler needs to be told to increase its table size
-for switch statements with the @samp{-Wf,-XNg1500} option in
-order to compile @file{cp/parse.c}.  If you use the @samp{-O2}
-optimization option, you also need to use @samp{-Olimit 3000}.
-Both of these options are automatically generated in the
-@file{Makefile} that the shell script @file{configure} builds.
-If you override the @code{CC} make variable and use the MIPS
-compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
-
-@item elxsi-elxsi-bsd
-The Elxsi's C compiler has known limitations that prevent it from
-compiling GNU C.  Please contact @email{mrs@@cygnus.com} for more details.
-
-@item dsp16xx
-A port to the AT&T DSP1610 family of processors.
-
-@ignore
-@item fx80
-Alliant FX/8 computer.  Note that the standard installed C compiler in
-Concentrix 5.0 has a bug which prevent it from compiling GNU CC
-correctly.  You can patch the compiler bug as follows:
-
-@smallexample
-cp /bin/pcc ./pcc
-adb -w ./pcc - << EOF
-15f6?w 6610
-EOF
-@end smallexample
-
-Then you must use the @samp{-ip12} option when compiling GNU CC
-with the patched compiler, as shown here:
-
-@smallexample
-make CC="./pcc -ip12" CFLAGS=-w
-@end smallexample
-
-Note also that Alliant's version of DBX does not manage to work with the
-output from GNU CC.
-@end ignore
-
-@item h8300-*-*
-Hitachi H8/300 series of processors.
-
-The calling convention and structure layout has changed in release 2.6.
-All code must be recompiled.  The calling convention now passes the
-first three arguments in function calls in registers.  Structures are no
-longer a multiple of 2 bytes.
-
-@item i370-*-*
-This port is very preliminary and has many known bugs.  We hope to
-have a higher-quality port for this machine soon.
-
-@item i386-*-linux*oldld
-Use this configuration to generate @file{a.out} binaries on Linux-based
-GNU systems if you do not have gas/binutils version 2.5.2 or later
-installed. This is an obsolete configuration.
-
-@item i386-*-linux*aout
-Use this configuration to generate @file{a.out} binaries on Linux-based
-GNU systems. This configuration is being superseded. You must use
-gas/binutils version 2.5.2 or later.
-
-@item i386-*-linux
-@itemx i386-*-linux-gnu
-Use this configuration to generate ELF binaries on Linux-based GNU
-systems.  You must use gas/binutils version 2.5.2 or later.
-
-@item i386-*-sco
-Compilation with RCC is recommended.  Also, it may be a good idea to
-link with GNU malloc instead of the malloc that comes with the system.
-
-@item i386-*-sco3.2v4
-Use this configuration for SCO release 3.2 version 4.
-
-@item i386-*-sco3.2v5*
-Use this for the SCO OpenServer Release 5 family of operating systems.
-
-@item i386-*-isc
-It may be a good idea to link with GNU malloc instead of the malloc that
-comes with the system.
-
-In ISC version 4.1, @file{sed} core dumps when building
-@file{deduced.h}.  Use the version of @file{sed} from version 4.0.
-
-@item i386-*-esix
-It may be good idea to link with GNU malloc instead of the malloc that
-comes with the system.
-
-@item i386-ibm-aix
-You need to use GAS version 2.1 or later, and LD from
-GNU binutils version 2.2 or later.
-
-@item i386-sequent-bsd
-Go to the Berkeley universe before compiling.
-
-@item i386-sequent-ptx1*
-@itemx i386-sequent-ptx2*
-You must install GNU @file{sed} before running @file{configure}.
-
-@item *-lynx-lynxos
-LynxOS 2.2 and earlier comes with GNU CC 1.x already installed as
-@file{/bin/gcc}.  You should compile with this instead of @file{/bin/cc}.
-You can tell GNU CC to use the GNU assembler and linker, by specifying
-@samp{--with-gnu-as --with-gnu-ld} when configuring.  These will produce
-COFF format object files and executables;  otherwise GNU CC will use the
-installed tools, which produce @file{a.out} format executables.
-
-@item m32r-*-elf
-Mitsubishi M32R processor.
-This configuration is intended for embedded systems.
-
-@item m68000-hp-bsd
-HP 9000 series 200 running BSD.  Note that the C compiler that comes
-with this system cannot compile GNU CC; contact @email{law@@cygnus.com}
-to get binaries of GNU CC for bootstrapping.
-
-@item m68k-altos
-Altos 3068.  You must use the GNU assembler, linker and debugger.
-Also, you must fix a kernel bug.  Details in the file @file{README.ALTOS}.
-
-@item m68k-apple-aux
-Apple Macintosh running A/UX.
-You may configure GCC  to use either the system assembler and
-linker or the GNU assembler and linker.  You should use the GNU configuration
-if you can, especially if you also want to use GNU C++.  You enabled
-that configuration with + the @samp{--with-gnu-as} and @samp{--with-gnu-ld}
-options to @code{configure}.
-
-Note the C compiler that comes
-with this system cannot compile GNU CC.  You can find binaries of GNU CC
-for bootstrapping on @code{jagubox.gsfc.nasa.gov}.
-You will also a patched version of @file{/bin/ld} there that
-raises some of the arbitrary limits found in the original.
-
-@item m68k-att-sysv
-AT&T 3b1, a.k.a. 7300 PC.  This version of GNU CC cannot
-be compiled with the system C compiler, which is too buggy.
-You will need to get a previous version of GCC and use it to
-bootstrap.  Binaries are available from the OSU-CIS archive, at
-@uref{ftp://archive.cis.ohio-state.edu/pub/att7300/}.
-
-@item m68k-bull-sysv
-Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-2.01. GNU CC works
-either with native assembler or GNU assembler. You can use
-GNU assembler with native coff generation by providing @samp{--with-gnu-as} to
-the configure script or use GNU assembler with dbx-in-coff encapsulation
-by providing @samp{--with-gnu-as --stabs}. For any problem with native
-assembler or for availability of the DPX/2 port of GAS, contact
-@email{F.Pierresteguy@@frcl.bull.fr}.
-
-@item m68k-crds-unox
-Use @samp{configure unos} for building on Unos.
-
-The Unos assembler is named @code{casm} instead of @code{as}.  For some
-strange reason linking @file{/bin/as} to @file{/bin/casm} changes the
-behavior, and does not work.  So, when installing GNU CC, you should
-install the following script as @file{as} in the subdirectory where
-the passes of GCC are installed:
-
-@example
-#!/bin/sh
-casm $*
-@end example
-
-The default Unos library is named @file{libunos.a} instead of
-@file{libc.a}.  To allow GNU CC to function, either change all
-references to @samp{-lc} in @file{gcc.c} to @samp{-lunos} or link
-@file{/lib/libc.a} to @file{/lib/libunos.a}.
-
-@cindex @code{alloca}, for Unos
-When compiling GNU CC with the standard compiler, to overcome bugs in
-the support of @code{alloca}, do not use @samp{-O} when making stage 2.
-Then use the stage 2 compiler with @samp{-O} to make the stage 3
-compiler.  This compiler will have the same characteristics as the usual
-stage 2 compiler on other systems.  Use it to make a stage 4 compiler
-and compare that with stage 3 to verify proper compilation.
-
-(Perhaps simply defining @code{ALLOCA} in @file{x-crds} as described in
-the comments there will make the above paragraph superfluous.  Please
-inform us of whether this works.)
-
-Unos uses memory segmentation instead of demand paging, so you will need
-a lot of memory.  5 Mb is barely enough if no other tasks are running.
-If linking @file{cc1} fails, try putting the object files into a library
-and linking from that library.
-
-@item m68k-hp-hpux
-HP 9000 series 300 or 400 running HP-UX.  HP-UX version 8.0 has a bug in
-the assembler that prevents compilation of GNU CC.  To fix it, get patch
-PHCO_4484 from HP.
-
-In addition, if you wish to use gas @samp{--with-gnu-as} you must use
-gas version 2.1 or later, and you must use the GNU linker version 2.1 or
-later.  Earlier versions of gas relied upon a program which converted the
-gas output into the native HP-UX format, but that program has not been
-kept up to date.  gdb does not understand that native HP-UX format, so
-you must use gas if you wish to use gdb.
-
-@item m68k-sun
-Sun 3.  We do not provide a configuration file to use the Sun FPA by
-default, because programs that establish signal handlers for floating
-point traps inherently cannot work with the FPA.
-
-@item m6811-elf
-Motorola 68HC11 family micro controllers.  These are used in embedded
-applications.  There are no standard Unix configurations.
-
-@item m6812-elf
-Motorola 68HC12 family micro controllers.  These are used in embedded
-applications.  There are no standard Unix configurations.
-
-@item m88k-*-svr3
-Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference port.
-These systems tend to use the Green Hills C, revision 1.8.5, as the
-standard C compiler.  There are apparently bugs in this compiler that
-result in object files differences between stage 2 and stage 3.  If this
-happens, make the stage 4 compiler and compare it to the stage 3
-compiler.  If the stage 3 and stage 4 object files are identical, this
-suggests you encountered a problem with the standard C compiler; the
-stage 3 and 4 compilers may be usable.
-
-It is best, however, to use an older version of GNU CC for bootstrapping
-if you have one.
-
-@item m88k-*-dgux
-Motorola m88k running DG/UX.  To build 88open BCS native or cross
-compilers on DG/UX, specify the configuration name as
-@samp{m88k-*-dguxbcs} and build in the 88open BCS software development
-environment.  To build ELF native or cross compilers on DG/UX, specify
-@samp{m88k-*-dgux} and build in the DG/UX ELF development environment.
-You set the software development environment by issuing
-@samp{sde-target} command and specifying either @samp{m88kbcs} or
-@samp{m88kdguxelf} as the operand.
-
-If you do not specify a configuration name, @file{configure} guesses the
-configuration based on the current software development environment.
-
-@item m88k-tektronix-sysv3
-Tektronix XD88 running UTekV 3.2e.  Do not turn on
-optimization while building stage1 if you bootstrap with
-the buggy Green Hills compiler.  Also, The bundled LAI
-System V NFS is buggy so if you build in an NFS mounted
-directory, start from a fresh reboot, or avoid NFS all together.
-Otherwise you may have trouble getting clean comparisons
-between stages.
-
-@item mips-mips-bsd
-MIPS machines running the MIPS operating system in BSD mode.  It's
-possible that some old versions of the system lack the functions
-@code{memcpy}, @code{memmove}, @code{memcmp}, and @code{memset}.  If your
-system lacks these, you must remove or undo the definition of
-@code{TARGET_MEM_FUNCTIONS} in @file{mips-bsd.h}.
-
-The MIPS C compiler needs to be told to increase its table size
-for switch statements with the @samp{-Wf,-XNg1500} option in
-order to compile @file{cp/parse.c}.  If you use the @samp{-O2}
-optimization option, you also need to use @samp{-Olimit 3000}.
-Both of these options are automatically generated in the
-@file{Makefile} that the shell script @file{configure} builds.
-If you override the @code{CC} make variable and use the MIPS
-compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
-
-@item mips-mips-riscos*
-The MIPS C compiler needs to be told to increase its table size
-for switch statements with the @samp{-Wf,-XNg1500} option in
-order to compile @file{cp/parse.c}.  If you use the @samp{-O2}
-optimization option, you also need to use @samp{-Olimit 3000}.
-Both of these options are automatically generated in the
-@file{Makefile} that the shell script @file{configure} builds.
-If you override the @code{CC} make variable and use the MIPS
-compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
-
-MIPS computers running RISC-OS can support four different
-personalities: default, BSD 4.3, System V.3, and System V.4
-(older versions of RISC-OS don't support V.4).  To configure GCC
-for these platforms use the following configurations:
-
-@table @samp
-@item mips-mips-riscos@code{rev}
-Default configuration for RISC-OS, revision @code{rev}.
-
-@item mips-mips-riscos@code{rev}bsd
-BSD 4.3 configuration for RISC-OS, revision @code{rev}.
-
-@item mips-mips-riscos@code{rev}sysv4
-System V.4 configuration for RISC-OS, revision @code{rev}.
-
-@item mips-mips-riscos@code{rev}sysv
-System V.3 configuration for RISC-OS, revision @code{rev}.
-@end table
-
-The revision @code{rev} mentioned above is the revision of
-RISC-OS to use.  You must reconfigure GCC when going from a
-RISC-OS revision 4 to RISC-OS revision 5.  This has the effect of
-avoiding a linker
-@ifclear INSTALLONLY
-bug (see @ref{Installation Problems}, for more details).
-@end ifclear
-@ifset INSTALLONLY
-bug.
-@end ifset
-
-@item mips-sgi-*
-In order to compile GCC on an SGI running IRIX 4, the "c.hdr.lib"
-option must be installed from the CD-ROM supplied from Silicon Graphics.
-This is found on the 2nd CD in release 4.0.1.
-
-In order to compile GCC on an SGI running IRIX 5, the "compiler_dev.hdr"
-subsystem must be installed from the IDO CD-ROM supplied by Silicon
-Graphics.
-
-@code{make compare} may fail on version 5 of IRIX unless you add
-@samp{-save-temps} to @code{CFLAGS}.  On these systems, the name of the
-assembler input file is stored in the object file, and that makes
-comparison fail if it differs between the @code{stage1} and
-@code{stage2} compilations.  The option @samp{-save-temps} forces a
-fixed name to be used for the assembler input file, instead of a
-randomly chosen name in @file{/tmp}.  Do not add @samp{-save-temps}
-unless the comparisons fail without that option.  If you do you
-@samp{-save-temps}, you will have to manually delete the @samp{.i} and
-@samp{.s} files after each series of compilations.
-
-The MIPS C compiler needs to be told to increase its table size
-for switch statements with the @samp{-Wf,-XNg1500} option in
-order to compile @file{cp/parse.c}.  If you use the @samp{-O2}
-optimization option, you also need to use @samp{-Olimit 3000}.
-Both of these options are automatically generated in the
-@file{Makefile} that the shell script @file{configure} builds.
-If you override the @code{CC} make variable and use the MIPS
-compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
-
-On Irix version 4.0.5F, and perhaps on some other versions as well,
-there is an assembler bug that reorders instructions incorrectly.  To
-work around it, specify the target configuration
-@samp{mips-sgi-irix4loser}.  This configuration inhibits assembler
-optimization.
-
-In a compiler configured with target @samp{mips-sgi-irix4}, you can turn
-off assembler optimization by using the @samp{-noasmopt} option.  This
-compiler option passes the option @samp{-O0} to the assembler, to
-inhibit reordering.
-
-The @samp{-noasmopt} option can be useful for testing whether a problem
-is due to erroneous assembler reordering.  Even if a problem does not go
-away with @samp{-noasmopt}, it may still be due to assembler
-reordering---perhaps GNU CC itself was miscompiled as a result.
-
-To enable debugging under Irix 5, you must use GNU as 2.5 or later,
-and use the @samp{--with-gnu-as} configure option when configuring gcc.
-GNU as is distributed as part of the binutils package.
-
-@item mips-sony-sysv
-Sony MIPS NEWS.  This works in NEWSOS 5.0.1, but not in 5.0.2 (which
-uses ELF instead of COFF).  Support for 5.0.2 will probably be provided
-soon by volunteers.  In particular, the linker does not like the
-code generated by GCC when shared libraries are linked in.
-
-@item ns32k-encore
-Encore ns32000 system.  Encore systems are supported only under BSD.
-
-@item ns32k-*-genix
-National Semiconductor ns32000 system.  Genix has bugs in @code{alloca}
-and @code{malloc}; you must get the compiled versions of these from GNU
-Emacs.
-
-@item ns32k-sequent
-Go to the Berkeley universe before compiling.
-
-@item ns32k-utek
-UTEK ns32000 system (``merlin'').  The C compiler that comes with this
-system cannot compile GNU CC; contact @samp{tektronix!reed!mason} to get
-binaries of GNU CC for bootstrapping.
-
-@item romp-*-aos
-@itemx romp-*-mach
-The only operating systems supported for the IBM RT PC are AOS and
-MACH.  GNU CC does not support AIX running on the RT.  We recommend you
-compile GNU CC with an earlier version of itself; if you compile GNU CC
-with @code{hc}, the Metaware compiler, it will work, but you will get
-mismatches between the stage 2 and stage 3 compilers in various files.
-These errors are minor differences in some floating-point constants and
-can be safely ignored; the stage 3 compiler is correct.
-
-@item rs6000-*-aix
-@itemx powerpc-*-aix
-Various early versions of each release of the IBM XLC compiler will not
-bootstrap GNU CC.  Symptoms include differences between the stage2 and
-stage3 object files, and errors when compiling @file{libgcc.a} or
-@file{enquire}.  Known problematic releases include: xlc-1.2.1.8,
-xlc-1.3.0.0 (distributed with AIX 3.2.5), and xlc-1.3.0.19.  Both
-xlc-1.2.1.28 and xlc-1.3.0.24 (PTF 432238) are known to produce working
-versions of GNU CC, but most other recent releases correctly bootstrap
-GNU CC.
-
-Release 4.3.0 of AIX and ones prior to AIX 3.2.4 include a version of
-the IBM assembler which does not accept debugging directives: assembler
-updates are available as PTFs.  Also, if you are using AIX 3.2.5 or
-greater and the GNU assembler, you must have a version modified after
-October 16th, 1995 in order for the GNU C compiler to build.  See the
-file @file{README.RS6000} for more details on any of these problems.
-
-GNU CC does not yet support the 64-bit PowerPC instructions.
-
-Objective C does not work on this architecture because it makes assumptions
-that are incompatible with the calling conventions.
-
-AIX on the RS/6000 provides support (NLS) for environments outside of
-the United States.  Compilers and assemblers use NLS to support
-locale-specific representations of various objects including
-floating-point numbers ("." vs "," for separating decimal fractions).
-There have been problems reported where the library linked with GNU CC
-does not produce the same floating-point formats that the assembler
-accepts.  If you have this problem, set the LANG environment variable to
-"C" or "En_US".
-
-Due to changes in the way that GNU CC invokes the binder (linker) for AIX
-4.1, you may now receive warnings of duplicate symbols from the link step
-that were not reported before.  The assembly files generated by GNU CC for
-AIX have always included multiple symbol definitions for certain global
-variable and function declarations in the original program.  The warnings
-should not prevent the linker from producing a correct library or runnable
-executable.
-
-By default, AIX 4.1 produces code that can be used on either Power or
-PowerPC processors.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-elf
-@itemx powerpc-*-sysv4
-PowerPC system in big endian mode, running System V.4.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-linux
-@itemx powerpc-*-linux-gnu
-PowerPC system in big endian mode, running the Linux-based GNU system.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-eabiaix
-Embedded PowerPC system in big endian mode with -mcall-aix selected as
-the default.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-eabisim
-Embedded PowerPC system in big endian mode for use in running under the
-PSIM simulator.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-eabi
-Embedded PowerPC system in big endian mode.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpcle-*-elf
-@itemx powerpcle-*-sysv4
-PowerPC system in little endian mode, running System V.4.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpcle-*-eabisim
-Embedded PowerPC system in little endian mode for use in running under
-the PSIM simulator.
-
-@itemx powerpcle-*-eabi
-Embedded PowerPC system in little endian mode.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpcle-*-winnt
-@itemx powerpcle-*-pe
-PowerPC system in little endian mode running Windows NT.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item vax-dec-ultrix
-Don't try compiling with Vax C (@code{vcc}).  It produces incorrect code
-in some cases (for example, when @code{alloca} is used).
-
-Meanwhile, compiling @file{cp/parse.c} with pcc does not work because of
-an internal table size limitation in that compiler.  To avoid this
-problem, compile just the GNU C compiler first, and use it to recompile
-building all the languages that you want to run.
-
-@item vax-dec-vms
-See @ref{VMS Install}, for details on how to install GNU CC on VMS.
-
-@item we32k-*-*
-These computers are also known as the 3b2, 3b5, 3b20 and other similar
-names.  (However, the 3b1 is actually a 68000; see
-@ref{Configurations}.)
-
-Don't use @samp{-g} when compiling with the system's compiler.  The
-system's linker seems to be unable to handle such a large program with
-debugging information.
-
-The system's compiler runs out of capacity when compiling @file{stmt.c}
-in GNU CC.  You can work around this by building @file{cpp} in GNU CC
-first, then use that instead of the system's preprocessor with the
-system's C compiler to compile @file{stmt.c}.  Here is how:
-
-@smallexample
-mv /lib/cpp /lib/cpp.att
-cp cpp /lib/cpp.gnu
-echo '/lib/cpp.gnu -traditional $@{1+"$@@"@}' > /lib/cpp
-chmod +x /lib/cpp
-@end smallexample
-
-The system's compiler produces bad code for some of the GNU CC
-optimization files.  So you must build the stage 2 compiler without
-optimization.  Then build a stage 3 compiler with optimization.
-That executable should work.  Here are the necessary commands:
-
-@smallexample
-make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
-make stage2
-make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"
-@end smallexample
-
-You may need to raise the ULIMIT setting to build a C++ compiler,
-as the file @file{cc1plus} is larger than one megabyte.
-@end table
-
-@node Other Dir
-@section Compilation in a Separate Directory
-@cindex other directory, compilation in
-@cindex compilation in a separate directory
-@cindex separate directory, compilation in
-
-If you wish to build the object files and executables in a directory
-other than the one containing the source files, here is what you must
-do differently:
-
-@enumerate
-@item
-Make sure you have a version of Make that supports the @code{VPATH}
-feature.  (GNU Make supports it, as do Make versions on most BSD
-systems.)
-
-@item
-If you have ever run @file{configure} in the source directory, you must undo
-the configuration.  Do this by running:
-
-@example
-make distclean
-@end example
-
-@item
-Go to the directory in which you want to build the compiler before
-running @file{configure}:
-
-@example
-mkdir gcc-sun3
-cd gcc-sun3
-@end example
-
-On systems that do not support symbolic links, this directory must be
-on the same file system as the source code directory.
-
-@item
-Specify where to find @file{configure} when you run it:
-
-@example
-../gcc/configure @dots{}
-@end example
-
-This also tells @code{configure} where to find the compiler sources;
-@code{configure} takes the directory from the file name that was used to
-invoke it.  But if you want to be sure, you can specify the source
-directory with the @samp{--srcdir} option, like this:
-
-@example
-../gcc/configure --srcdir=../gcc @var{other options}
-@end example
-
-The directory you specify with @samp{--srcdir} need not be the same
-as the one that @code{configure} is found in.
-@end enumerate
-
-Now, you can run @code{make} in that directory.  You need not repeat the
-configuration steps shown above, when ordinary source files change.  You
-must, however, run @code{configure} again when the configuration files
-change, if your system does not support symbolic links.
-
-@node Cross-Compiler
-@section Building and Installing a Cross-Compiler
-@cindex cross-compiler, installation
-
-GNU CC can function as a cross-compiler for many machines, but not all.
-
-@itemize @bullet
-@item
-Cross-compilers for the Mips as target using the Mips assembler
-currently do not work, because the auxiliary programs
-@file{mips-tdump.c} and @file{mips-tfile.c} can't be compiled on
-anything but a Mips.  It does work to cross compile for a Mips
-if you use the GNU assembler and linker.
-
-@item
-Cross-compilers between machines with different floating point formats
-have not all been made to work.  GNU CC now has a floating point
-emulator with which these can work, but each target machine description
-needs to be updated to take advantage of it.
-
-@item
-Cross-compilation between machines of different word sizes is
-somewhat problematic and sometimes does not work.
-@end itemize
-
-Since GNU CC generates assembler code, you probably need a
-cross-assembler that GNU CC can run, in order to produce object files.
-If you want to link on other than the target machine, you need a
-cross-linker as well.  You also need header files and libraries suitable
-for the target machine that you can install on the host machine.
-
-@menu
-* Steps of Cross::      Using a cross-compiler involves several steps
-                          that may be carried out on different machines.
-* Configure Cross::     Configuring a cross-compiler.
-* Tools and Libraries:: Where to put the linker and assembler, and the C library.
-* Cross Headers::       Finding and installing header files
-                          for a cross-compiler.
-* Build Cross::         Actually compiling the cross-compiler.
-@end menu
-
-@node Steps of Cross
-@subsection Steps of Cross-Compilation
-
-To compile and run a program using a cross-compiler involves several
-steps:
-
-@itemize @bullet
-@item
-Run the cross-compiler on the host machine to produce assembler files
-for the target machine.  This requires header files for the target
-machine.
-
-@item
-Assemble the files produced by the cross-compiler.  You can do this
-either with an assembler on the target machine, or with a
-cross-assembler on the host machine.
-
-@item
-Link those files to make an executable.  You can do this either with a
-linker on the target machine, or with a cross-linker on the host
-machine.  Whichever machine you use, you need libraries and certain
-startup files (typically @file{crt@dots{}.o}) for the target machine.
-@end itemize
-
-It is most convenient to do all of these steps on the same host machine,
-since then you can do it all with a single invocation of GNU CC.  This
-requires a suitable cross-assembler and cross-linker.  For some targets,
-the GNU assembler and linker are available.
-
-@node Configure Cross
-@subsection Configuring a Cross-Compiler
-
-To build GNU CC as a cross-compiler, you start out by running
-@file{configure}.  Use the @samp{--target=@var{target}} to specify the
-target type.  If @file{configure} was unable to correctly identify the
-system you are running on, also specify the @samp{--build=@var{build}}
-option.  For example, here is how to configure for a cross-compiler that
-produces code for an HP 68030 system running BSD on a system that
-@file{configure} can correctly identify:
-
-@smallexample
-./configure --target=m68k-hp-bsd4.3
-@end smallexample
-
-@node Tools and Libraries
-@subsection Tools and Libraries for a Cross-Compiler
-
-If you have a cross-assembler and cross-linker available, you should
-install them now.  Put them in the directory
-@file{/usr/local/@var{target}/bin}.  Here is a table of the tools
-you should put in this directory:
-
-@table @file
-@item as
-This should be the cross-assembler.
-
-@item ld
-This should be the cross-linker.
-
-@item ar
-This should be the cross-archiver: a program which can manipulate
-archive files (linker libraries) in the target machine's format.
-
-@item ranlib
-This should be a program to construct a symbol table in an archive file.
-@end table
-
-The installation of GNU CC will find these programs in that directory,
-and copy or link them to the proper place to for the cross-compiler to
-find them when run later.
-
-The easiest way to provide these files is to build the Binutils package
-and GAS.  Configure them with the same @samp{--host} and @samp{--target}
-options that you use for configuring GNU CC, then build and install
-them.  They install their executables automatically into the proper
-directory.  Alas, they do not support all the targets that GNU CC
-supports.
-
-If you want to install libraries to use with the cross-compiler, such as
-a standard C library, put them in the directory
-@file{/usr/local/@var{target}/lib}; installation of GNU CC copies
-all the files in that subdirectory into the proper place for GNU CC to
-find them and link with them.  Here's an example of copying some
-libraries from a target machine:
-
-@example
-ftp @var{target-machine}
-lcd /usr/local/@var{target}/lib
-cd /lib
-get libc.a
-cd /usr/lib
-get libg.a
-get libm.a
-quit
-@end example
-
-@noindent
-The precise set of libraries you'll need, and their locations on
-the target machine, vary depending on its operating system.
-
-@cindex start files
-Many targets require ``start files'' such as @file{crt0.o} and
-@file{crtn.o} which are linked into each executable; these too should be
-placed in @file{/usr/local/@var{target}/lib}.  There may be several
-alternatives for @file{crt0.o}, for use with profiling or other
-compilation options.  Check your target's definition of
-@code{STARTFILE_SPEC} to find out what start files it uses.
-Here's an example of copying these files from a target machine:
-
-@example
-ftp @var{target-machine}
-lcd /usr/local/@var{target}/lib
-prompt
-cd /lib
-mget *crt*.o
-cd /usr/lib
-mget *crt*.o
-quit
-@end example
-
-@node Cross Headers
-@subsection Cross-Compilers and Header Files
-
-If you are cross-compiling a standalone program or a program for an
-embedded system, then you may not need any header files except the few
-that are part of GNU CC (and those of your program).  However, if you
-intend to link your program with a standard C library such as
-@file{libc.a}, then you probably need to compile with the header files
-that go with the library you use.
-
-The GNU C compiler does not come with these files, because (1) they are
-system-specific, and (2) they belong in a C library, not in a compiler.
-
-If the GNU C library supports your target machine, then you can get the
-header files from there (assuming you actually use the GNU library when
-you link your program).
-
-If your target machine comes with a C compiler, it probably comes with
-suitable header files also.  If you make these files accessible from the host
-machine, the cross-compiler can use them also.
-
-Otherwise, you're on your own in finding header files to use when
-cross-compiling.
-
-When you have found suitable header files, put them in the directory
-@file{/usr/local/@var{target}/include}, before building the cross
-compiler.  Then installation will run fixincludes properly and install
-the corrected versions of the header files where the compiler will use
-them.
-
-Provide the header files before you build the cross-compiler, because
-the build stage actually runs the cross-compiler to produce parts of
-@file{libgcc.a}.  (These are the parts that @emph{can} be compiled with
-GNU CC.)  Some of them need suitable header files.
-
-Here's an example showing how to copy the header files from a target
-machine.  On the target machine, do this:
-
-@example
-(cd /usr/include; tar cf - .) > tarfile
-@end example
-
-Then, on the host machine, do this:
-
-@example
-ftp @var{target-machine}
-lcd /usr/local/@var{target}/include
-get tarfile
-quit
-tar xf tarfile
-@end example
-
-@node Build Cross
-@subsection Actually Building the Cross-Compiler
-
-Now you can proceed just as for compiling a single-machine compiler
-through the step of building stage 1.
-
-If your target is exotic, you may need to provide the header file
-@file{float.h}.One way to do this is to compile @file{enquire} and run
-it on your target machine.  The job of @file{enquire} is to run on the
-target machine and figure out by experiment the nature of its floating
-point representation.  @file{enquire} records its findings in the header
-file @file{float.h}.  If you can't produce this file by running
-@file{enquire} on the target machine, then you will need to come up with
-a suitable @file{float.h} in some other way (or else, avoid using it in
-your programs).
-
-Do not try to build stage 2 for a cross-compiler.  It doesn't work to
-rebuild GNU CC as a cross-compiler using the cross-compiler, because
-that would produce a program that runs on the target machine, not on the
-host.  For example, if you compile a 386-to-68030 cross-compiler with
-itself, the result will not be right either for the 386 (because it was
-compiled into 68030 code) or for the 68030 (because it was configured
-for a 386 as the host).  If you want to compile GNU CC into 68030 code,
-whether you compile it on a 68030 or with a cross-compiler on a 386, you
-must specify a 68030 as the host when you configure it.
-
-To install the cross-compiler, use @samp{make install}, as usual.
-
-@node VMS Install
-@section Installing GNU CC on VMS
-@cindex VMS installation
-@cindex installing GNU CC on VMS
-
-The VMS version of GNU CC is distributed in a backup saveset containing
-both source code and precompiled binaries.
-
-To install the @file{gcc} command so you can use the compiler easily, in
-the same manner as you use the VMS C compiler, you must install the VMS CLD
-file for GNU CC as follows:
-
-@enumerate
-@item
-Define the VMS logical names @samp{GNU_CC} and @samp{GNU_CC_INCLUDE}
-to point to the directories where the GNU CC executables
-(@file{gcc-cpp.exe}, @file{gcc-cc1.exe}, etc.) and the C include files are
-kept respectively.  This should be done with the commands:@refill
-
-@smallexample
-$ assign /system /translation=concealed -
-  disk:[gcc.] gnu_cc
-$ assign /system /translation=concealed -
-  disk:[gcc.include.] gnu_cc_include
-@end smallexample
-
-@noindent
-with the appropriate disk and directory names.  These commands can be
-placed in your system startup file so they will be executed whenever
-the machine is rebooted.  You may, if you choose, do this via the
-@file{GCC_INSTALL.COM} script in the @file{[GCC]} directory.
-
-@item
-Install the @file{GCC} command with the command line:
-
-@smallexample
-$ set command /table=sys$common:[syslib]dcltables -
-  /output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc
-$ install replace sys$common:[syslib]dcltables
-@end smallexample
-
-@item
-To install the help file, do the following:
-
-@smallexample
-$ library/help sys$library:helplib.hlb gcc.hlp
-@end smallexample
-
-@noindent
-Now you can invoke the compiler with a command like @samp{gcc /verbose
-file.c}, which is equivalent to the command @samp{gcc -v -c file.c} in
-Unix.
-@end enumerate
-
-If you wish to use GNU C++ you must first install GNU CC, and then
-perform the following steps:
-
-@enumerate
-@item
-Define the VMS logical name @samp{GNU_GXX_INCLUDE} to point to the
-directory where the preprocessor will search for the C++ header files.
-This can be done with the command:@refill
-
-@smallexample
-$ assign /system /translation=concealed -
-  disk:[gcc.gxx_include.] gnu_gxx_include
-@end smallexample
-
-@noindent
-with the appropriate disk and directory name.  If you are going to be
-using a C++ runtime library, this is where its install procedure will install
-its header files.
-
-@item
-Obtain the file @file{gcc-cc1plus.exe}, and place this in the same
-directory that @file{gcc-cc1.exe} is kept.
-
-The GNU C++ compiler can be invoked with a command like @samp{gcc /plus
-/verbose file.cc}, which is equivalent to the command @samp{g++ -v -c
-file.cc} in Unix.
-@end enumerate
-
-We try to put corresponding binaries and sources on the VMS distribution
-tape.  But sometimes the binaries will be from an older version than the
-sources, because we don't always have time to update them.  (Use the
-@samp{/version} option to determine the version number of the binaries and
-compare it with the source file @file{version.c} to tell whether this is
-so.)  In this case, you should use the binaries you get to recompile the
-sources.  If you must recompile, here is how:
-
-@enumerate
-@item
-Execute the command procedure @file{vmsconfig.com} to set up the files
-@file{tm.h}, @file{config.h}, @file{aux-output.c}, and @file{md.}, and
-to create files @file{tconfig.h} and @file{hconfig.h}.  This procedure
-also creates several linker option files used by @file{make-cc1.com} and
-a data file used by @file{make-l2.com}.@refill
-
-@smallexample
-$ @@vmsconfig.com
-@end smallexample
-
-@item
-Setup the logical names and command tables as defined above.  In
-addition, define the VMS logical name @samp{GNU_BISON} to point at the
-to the directories where the Bison executable is kept.  This should be
-done with the command:@refill
-
-@smallexample
-$ assign /system /translation=concealed -
-  disk:[bison.] gnu_bison
-@end smallexample
-
-You may, if you choose, use the @file{INSTALL_BISON.COM} script in the
-@file{[BISON]} directory.
-
-@item
-Install the @samp{BISON} command with the command line:@refill
-
-@smallexample
-$ set command /table=sys$common:[syslib]dcltables -
-  /output=sys$common:[syslib]dcltables -
-  gnu_bison:[000000]bison
-$ install replace sys$common:[syslib]dcltables
-@end smallexample
-
-@item
-Type @samp{@@make-gcc} to recompile everything (alternatively, submit
-the file @file{make-gcc.com} to a batch queue).  If you wish to build
-the GNU C++ compiler as well as the GNU CC compiler, you must first edit
-@file{make-gcc.com} and follow the instructions that appear in the
-comments.@refill
-
-@item
-In order to use GCC, you need a library of functions which GCC compiled code
-will call to perform certain tasks, and these functions are defined in the
-file @file{libgcc2.c}.  To compile this you should use the command procedure
-@file{make-l2.com}, which will generate the library @file{libgcc2.olb}.
-@file{libgcc2.olb} should be built using the compiler built from
-the same distribution that @file{libgcc2.c} came from, and
-@file{make-gcc.com} will automatically do all of this for you.
-
-To install the library, use the following commands:@refill
-
-@smallexample
-$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
-$ library gnu_cc:[000000]gcclib/delete=L_*
-$ library libgcc2/extract=*/output=libgcc2.obj
-$ library gnu_cc:[000000]gcclib libgcc2.obj
-@end smallexample
-
-The first command simply removes old modules that will be replaced with
-modules from @file{libgcc2} under different module names.  The modules
-@code{new} and @code{eprintf} may not actually be present in your
-@file{gcclib.olb}---if the VMS librarian complains about those modules
-not being present, simply ignore the message and continue on with the
-next command.  The second command removes the modules that came from the
-previous version of the library @file{libgcc2.c}.
-
-Whenever you update the compiler on your system, you should also update the
-library with the above procedure.
-
-@item
-You may wish to build GCC in such a way that no files are written to the
-directory where the source files reside.  An example would be the when
-the source files are on a read-only disk.  In these cases, execute the
-following DCL commands (substituting your actual path names):
-
-@smallexample
-$ assign dua0:[gcc.build_dir.]/translation=concealed, -
-         dua1:[gcc.source_dir.]/translation=concealed  gcc_build
-$ set default gcc_build:[000000]
-@end smallexample
-
-@noindent
-where the directory @file{dua1:[gcc.source_dir]} contains the source
-code, and the directory @file{dua0:[gcc.build_dir]} is meant to contain
-all of the generated object files and executables.  Once you have done
-this, you can proceed building GCC as described above.  (Keep in mind
-that @file{gcc_build} is a rooted logical name, and thus the device
-names in each element of the search list must be an actual physical
-device name rather than another rooted logical name).
-
-@item
-@strong{If you are building GNU CC with a previous version of GNU CC,
-you also should check to see that you have the newest version of the
-assembler}.  In particular, GNU CC version 2 treats global constant
-variables slightly differently from GNU CC version 1, and GAS version
-1.38.1 does not have the patches required to work with GCC version 2.
-If you use GAS 1.38.1, then @code{extern const} variables will not have
-the read-only bit set, and the linker will generate warning messages
-about mismatched psect attributes for these variables.  These warning
-messages are merely a nuisance, and can safely be ignored.
-
-If you are compiling with a version of GNU CC older than 1.33, specify
-@samp{/DEFINE=("inline=")} as an option in all the compilations.  This
-requires editing all the @code{gcc} commands in @file{make-cc1.com}.
-(The older versions had problems supporting @code{inline}.)  Once you
-have a working 1.33 or newer GNU CC, you can change this file back.
-
-@item
-If you want to build GNU CC with the VAX C compiler, you will need to
-make minor changes in @file{make-cccp.com} and @file{make-cc1.com}
-to choose alternate definitions of @code{CC}, @code{CFLAGS}, and
-@code{LIBS}.  See comments in those files.  However, you must
-also have a working version of the GNU assembler (GNU as, aka GAS) as
-it is used as the back-end for GNU CC to produce binary object modules
-and is not included in the GNU CC sources.  GAS is also needed to
-compile @file{libgcc2} in order to build @file{gcclib} (see above);
-@file{make-l2.com} expects to be able to find it operational in
-@file{gnu_cc:[000000]gnu-as.exe}.
-
-To use GNU CC on VMS, you need the VMS driver programs
-@file{gcc.exe}, @file{gcc.com}, and @file{gcc.cld}.  They are
-distributed with the VMS binaries (@file{gcc-vms}) rather than the
-GNU CC sources.  GAS is also included in @file{gcc-vms}, as is Bison.
-
-Once you have successfully built GNU CC with VAX C, you should use the
-resulting compiler to rebuild itself.  Before doing this, be sure to
-restore the @code{CC}, @code{CFLAGS}, and @code{LIBS} definitions in
-@file{make-cccp.com} and @file{make-cc1.com}.  The second generation
-compiler will be able to take advantage of many optimizations that must
-be suppressed when building with other compilers.
-@end enumerate
-
-Under previous versions of GNU CC, the generated code would occasionally
-give strange results when linked with the sharable @file{VAXCRTL} library.
-Now this should work.
-
-Even with this version, however, GNU CC itself should not be linked with
-the sharable @file{VAXCRTL}.  The version of @code{qsort} in
-@file{VAXCRTL} has a bug (known to be present in VMS versions V4.6
-through V5.5) which causes the compiler to fail.
-
-The executables are generated by @file{make-cc1.com} and
-@file{make-cccp.com} use the object library version of @file{VAXCRTL} in
-order to make use of the @code{qsort} routine in @file{gcclib.olb}.  If
-you wish to link the compiler executables with the shareable image
-version of @file{VAXCRTL}, you should edit the file @file{tm.h} (created
-by @file{vmsconfig.com}) to define the macro @code{QSORT_WORKAROUND}.
-
-@code{QSORT_WORKAROUND} is always defined when GNU CC is compiled with
-VAX C, to avoid a problem in case @file{gcclib.olb} is not yet
-available.
-
-@node Collect2
-@section @code{collect2}
-
-GNU CC uses a utility called @code{collect2} on nearly all systems to arrange
-to call various initialization functions at start time.
-
-The program @code{collect2} works by linking the program once and
-looking through the linker output file for symbols with particular names
-indicating they are constructor functions.  If it finds any, it
-creates a new temporary @samp{.c} file containing a table of them,
-compiles it, and links the program a second time including that file.
-
-@findex __main
-@cindex constructors, automatic calls
-The actual calls to the constructors are carried out by a subroutine
-called @code{__main}, which is called (automatically) at the beginning
-of the body of @code{main} (provided @code{main} was compiled with GNU
-CC).  Calling @code{__main} is necessary, even when compiling C code, to
-allow linking C and C++ object code together.  (If you use
-@samp{-nostdlib}, you get an unresolved reference to @code{__main},
-since it's defined in the standard GCC library.  Include @samp{-lgcc} at
-the end of your compiler command line to resolve this reference.)
-
-The program @code{collect2} is installed as @code{ld} in the directory
-where the passes of the compiler are installed.  When @code{collect2}
-needs to find the @emph{real} @code{ld}, it tries the following file
-names:
-
-@itemize @bullet
-@item
-@file{real-ld} in the directories listed in the compiler's search
-directories.
-
-@item
-@file{real-ld} in the directories listed in the environment variable
-@code{PATH}.
-
-@item
-The file specified in the @code{REAL_LD_FILE_NAME} configuration macro,
-if specified.
-
-@item
-@file{ld} in the compiler's search directories, except that
-@code{collect2} will not execute itself recursively.
-
-@item
-@file{ld} in @code{PATH}.
-@end itemize
-
-``The compiler's search directories'' means all the directories where
-@code{gcc} searches for passes of the compiler.  This includes
-directories that you specify with @samp{-B}.
-
-Cross-compilers search a little differently:
-
-@itemize @bullet
-@item
-@file{real-ld} in the compiler's search directories.
-
-@item
-@file{@var{target}-real-ld} in @code{PATH}.
-
-@item
-The file specified in the @code{REAL_LD_FILE_NAME} configuration macro,
-if specified.
-
-@item
-@file{ld} in the compiler's search directories.
-
-@item
-@file{@var{target}-ld} in @code{PATH}.
-@end itemize
-
-@code{collect2} explicitly avoids running @code{ld} using the file name
-under which @code{collect2} itself was invoked.  In fact, it remembers
-up a list of such names---in case one copy of @code{collect2} finds
-another copy (or version) of @code{collect2} installed as @code{ld} in a
-second place in the search path.
-
-@code{collect2} searches for the utilities @code{nm} and @code{strip}
-using the same algorithm as above for @code{ld}.
-
-@node Header Dirs
-@section Standard Header File Directories
-
-@code{GCC_INCLUDE_DIR} means the same thing for native and cross.  It is
-where GNU CC stores its private include files, and also where GNU CC
-stores the fixed include files.  A cross compiled GNU CC runs
-@code{fixincludes} on the header files in @file{$(tooldir)/include}.
-(If the cross compilation header files need to be fixed, they must be
-installed before GNU CC is built.  If the cross compilation header files
-are already suitable for ISO C and GNU CC, nothing special need be
-done).
-
-@code{GPLUSPLUS_INCLUDE_DIR} means the same thing for native and cross.  It
-is where @code{g++} looks first for header files.  The C++ library
-installs only target independent header files in that directory.
-
-@code{LOCAL_INCLUDE_DIR} is used only for a native compiler.  It is
-normally @file{/usr/local/include}.  GNU CC searches this directory so
-that users can install header files in @file{/usr/local/include}.
-
-@code{CROSS_INCLUDE_DIR} is used only for a cross compiler.  GNU CC
-doesn't install anything there.
-
-@code{TOOL_INCLUDE_DIR} is used for both native and cross compilers.  It
-is the place for other packages to install header files that GNU CC will
-use.  For a cross-compiler, this is the equivalent of
-@file{/usr/include}.  When you build a cross-compiler,
-@code{fixincludes} processes any header files in this directory.