OSDN Git Service

* doc/extend.texi: Add MeP attributes and pragmas.
[pf3gnuchains/gcc-fork.git] / gcc / doc / extend.texi
index df900fd..06bacec 100644 (file)
@@ -35,6 +35,7 @@ extensions, accepted by GCC in C89 mode and in C++.
 * Long Long::           Double-word integers---@code{long long int}.
 * Complex::             Data types for complex numbers.
 * Floating Types::      Additional Floating Types.
+* Half-Precision::      Half-Precision Floating Point.
 * Decimal Float::       Decimal Floating Types. 
 * Hex Floats::          Hexadecimal floating-point constants.
 * Fixed-Point::         Fixed-Point Types.
@@ -918,8 +919,56 @@ typedef _Complex float __attribute__((mode(XC))) _Complex80;
 @end smallexample
 
 Not all targets support additional floating point types.  @code{__float80}
-is supported on i386, x86_64 and ia64 targets and target @code{__float128}
-is supported on x86_64 and ia64 targets.
+and @code{__float128} types are supported on i386, x86_64 and ia64 targets.
+
+@node Half-Precision
+@section Half-Precision Floating Point
+@cindex half-precision floating point
+@cindex @code{__fp16} data type
+
+On ARM targets, GCC supports half-precision (16-bit) floating point via
+the @code{__fp16} type.  You must enable this type explicitly 
+with the @option{-mfp16-format} command-line option in order to use it.
+
+ARM supports two incompatible representations for half-precision
+floating-point values.  You must choose one of the representations and
+use it consistently in your program.
+
+Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
+This format can represent normalized values in the range of @math{2^{-14}} to 65504.
+There are 11 bits of significand precision, approximately 3
+decimal digits.
+
+Specifying @option{-mfp16-format=alternative} selects the ARM
+alternative format.  This representation is similar to the IEEE
+format, but does not support infinities or NaNs.  Instead, the range
+of exponents is extended, so that this format can represent normalized
+values in the range of @math{2^{-14}} to 131008.
+
+The @code{__fp16} type is a storage format only.  For purposes
+of arithmetic and other operations, @code{__fp16} values in C or C++
+expressions are automatically promoted to @code{float}.  In addition,
+you cannot declare a function with a return value or parameters 
+of type @code{__fp16}.
+
+Note that conversions from @code{double} to @code{__fp16}
+involve an intermediate conversion to @code{float}.  Because
+of rounding, this can sometimes produce a different result than a
+direct conversion.
+
+ARM provides hardware support for conversions between 
+@code{__fp16} and @code{float} values
+as an extension to VFP and NEON (Advanced SIMD).  GCC generates
+code using the instructions provided by this extension if you compile
+with the options @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
+in addition to the @option{-mfp16-format} option to select
+a half-precision format.  
+
+Language-level support for the @code{__fp16} data type is
+independent of whether GCC generates code using hardware floating-point
+instructions.  In cases where hardware support is not specified, GCC
+implements conversions between @code{__fp16} and @code{float} values
+as library calls.
 
 @node Decimal Float
 @section Decimal Floating Types
@@ -2088,6 +2137,12 @@ present.
 The @code{deprecated} attribute can also be used for variables and
 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
 
+@item disinterrupt
+@cindex @code{disinterrupt} attribute
+On MeP targets, this attribute causes the compiler to emit
+instructions to disable interrupts for the duration of the given
+function.
+
 @item dllexport
 @cindex @code{__declspec(dllexport)}
 On Microsoft Windows targets and Symbian OS targets the
@@ -2214,6 +2269,10 @@ At the end of a function, it will jump to a board-specific routine
 instead of using @code{rts}.  The board-specific return routine simulates
 the @code{rtc}.
 
+On MeP targets this causes the compiler to use a calling convention
+which assumes the called function is too far away for the built-in
+addressing modes.
+
 @item fastcall
 @cindex functions that pop the argument stack on the 386
 On the Intel 386, the @code{fastcall} attribute causes the compiler to
@@ -2401,7 +2460,7 @@ This attribute is ignored for R8C target.
 
 @item interrupt
 @cindex interrupt handler functions
-Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, MIPS
+Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, MeP, MIPS
 and Xstormy16 ports to indicate that the specified function is an
 interrupt handler.  The compiler will generate function entry and exit
 sequences suitable for use in an interrupt handler when this attribute
@@ -2620,6 +2679,10 @@ use the normal calling convention based on @code{jsr} and @code{rts}.
 This attribute can be used to cancel the effect of the @option{-mlong-calls}
 option.
 
+On MeP targets this attribute causes the compiler to assume the called
+function is close enough to use the normal calling convention,
+overriding the @code{-mtf} command line option.
+
 @item nesting
 @cindex Allow nesting in an interrupt handler on the Blackfin processor.
 Use this attribute together with @code{interrupt_handler},
@@ -3274,6 +3337,13 @@ visibility of their template.
 If both the template and enclosing class have explicit visibility, the
 visibility from the template is used.
 
+@item vliw
+@cindex @code{vliw} attribute
+On MeP, the @code{vliw} attribute tells the compiler to emit
+instructions in VLIW mode instead of core mode.  Note that this
+attribute is not allowed unless a VLIW coprocessor has been configured
+and enabled through command line options.
+
 @item warn_unused_result
 @cindex @code{warn_unused_result} attribute
 The @code{warn_unused_result} attribute causes a warning to be emitted
@@ -4101,6 +4171,64 @@ Medium and large model objects may live anywhere in the 32-bit address space
 addresses).
 @end table
 
+@anchor{MeP Variable Attributes}
+@subsection MeP Variable Attributes
+
+The MeP target has a number of addressing modes and busses.  The
+@code{near} space spans the standard memory space's first 16 megabytes
+(24 bits).  The @code{far} space spans the entire 32-bit memory space.
+The @code{based} space is a 128 byte region in the memory space which
+is addressed relative to the @code{$tp} register.  The @code{tiny}
+space is a 65536 byte region relative to the @code{$gp} register.  In
+addition to these memory regions, the MeP target has a separate 16-bit
+control bus which is specified with @code{cb} attributes.
+
+@table @code
+
+@item based
+Any variable with the @code{based} attribute will be assigned to the
+@code{.based} section, and will be accessed with relative to the
+@code{$tp} register.
+
+@item tiny
+Likewise, the @code{tiny} attribute assigned variables to the
+@code{.tiny} section, relative to the @code{$gp} register.
+
+@item near
+Variables with the @code{near} attribute are assumed to have addresses
+that fit in a 24-bit addressing mode.  This is the default for large
+variables (@code{-mtiny=4} is the default) but this attribute can
+override @code{-mtiny=} for small variables, or override @code{-ml}.
+
+@item far
+Variables with the @code{far} attribute are addressed using a full
+32-bit address.  Since this covers the entire memory space, this
+allows modules to make no assumptions about where variables might be
+stored.
+
+@item io
+@item io (@var{addr})
+Variables with the @code{io} attribute are used to address
+memory-mapped peripherals.  If an address is specified, the variable
+is assigned that address, else it is not assigned an address (it is
+assumed some other module will assign an address).  Example:
+
+@example
+int timer_count __attribute__((io(0x123)));
+@end example
+
+@item cb
+@item cb (@var{addr})
+Variables with the @code{cb} attribute are used to access the control
+bus, using special instructions.  @code{addr} indicates the control bus
+address.  Example:
+
+@example
+int cpu_clock __attribute__((cb(0x123)));
+@end example
+
+@end table
+
 @anchor{i386 Variable Attributes}
 @subsection i386 Variable Attributes
 
@@ -4603,6 +4731,14 @@ virtual table for @code{C} is not exported.  (You can use
 @code{__attribute__} instead of @code{__declspec} if you prefer, but
 most Symbian OS code uses @code{__declspec}.)
 
+@anchor{MeP Type Attributes}
+@subsection MeP Type Attributes
+
+Many of the MeP variable attributes may be applied to types as well.
+Specifically, the @code{based}, @code{tiny}, @code{near}, and
+@code{far} attributes may be applied to either.  The @code{io} and
+@code{cb} attributes may not be applied to types.
+
 @anchor{i386 Type Attributes}
 @subsection i386 Type Attributes
 
@@ -6815,6 +6951,61 @@ intentionally executing an illegal instruction) or by calling
 you should not rely on any particular implementation.
 @end deftypefn
 
+@deftypefn {Built-in Function} void __builtin_unreachable (void)
+If control flow reaches the point of the @code{__builtin_unreachable},
+the program is undefined.  It is useful in situations where the
+compiler cannot deduce the unreachability of the code.
+
+One such case is immediately following an @code{asm} statement that
+will either never terminate, or one that transfers control elsewhere
+and never returns.  In this example, without the
+@code{__builtin_unreachable}, GCC would issue a warning that control
+reaches the end of a non-void function.  It would also generate code
+to return after the @code{asm}.
+
+@smallexample
+int f (int c, int v)
+@{
+  if (c)
+    @{
+      return v;
+    @}
+  else
+    @{
+      asm("jmp error_handler");
+      __builtin_unreachable ();
+    @}
+@}
+@end smallexample
+
+Because the @code{asm} statement unconditionally transfers control out
+of the function, control will never reach the end of the function
+body.  The @code{__builtin_unreachable} is in fact unreachable and
+communicates this fact to the compiler.
+
+Another use for @code{__builtin_unreachable} is following a call a
+function that never returns but that is not declared
+@code{__attribute__((noreturn))}, as in this example:
+
+@smallexample
+void function_that_never_returns (void);
+
+int g (int c)
+@{
+  if (c)
+    @{
+      return 1;
+    @}
+  else
+    @{
+      function_that_never_returns ();
+      __builtin_unreachable ();
+    @}
+@}
+@end smallexample
+
+@end deftypefn
+
 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
 This function is used to flush the processor's instruction cache for
 the region of memory between @var{begin} inclusive and @var{end}
@@ -8359,6 +8550,7 @@ Generates the @code{crc32w} machine instruction.
 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
 Generates the @code{crc32l} machine instruction.
 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
+Generates the @code{crc32q} machine instruction.
 @end table
 
 The following built-in functions are changed to generate new SSE4.2
@@ -11598,6 +11790,7 @@ for further explanation.
 @menu
 * ARM Pragmas::
 * M32C Pragmas::
+* MeP Pragmas::
 * RS/6000 and PowerPC Pragmas::
 * Darwin Pragmas::
 * Solaris Pragmas::
@@ -11648,6 +11841,78 @@ as it may allow you to reduce the number of memregs used.
 
 @end table
 
+@node MeP Pragmas
+@subsection MeP Pragmas
+
+@table @code
+
+@item custom io_volatile (on|off)
+@cindex pragma, custom io_volatile
+Overrides the command line option @code{-mio-volatile} for the current
+file.  Note that for compatibility with future GCC releases, this
+option should only be used once before any @code{io} variables in each
+file.
+
+@item GCC coprocessor available @var{registers}
+@cindex pragma, coprocessor available
+Specifies which coprocessor registers are available to the register
+allocator.  @var{registers} may be a single register, register range
+separated by ellipses, or comma-separated list of those.  Example:
+
+@example
+#pragma GCC coprocessor available $c0...$c10, $c28
+@end example
+
+@item GCC coprocessor call_saved @var{registers}
+@cindex pragma, coprocessor call_saved
+Specifies which coprocessor registers are to be saved and restored by
+any function using them.  @var{registers} may be a single register,
+register range separated by ellipses, or comma-separated list of
+those.  Example:
+
+@example
+#pragma GCC coprocessor call_saved $c4...$c6, $c31
+@end example
+
+@item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
+@cindex pragma, coprocessor subclass
+Creates and defines a register class.  These register classes can be
+used by inline @code{asm} constructs.  @var{registers} may be a single
+register, register range separated by ellipses, or comma-separated
+list of those.  Example:
+
+@example
+#pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
+
+asm ("cpfoo %0" : "=B" (x));
+@end example
+
+@item GCC disinterrupt @var{name} , @var{name} @dots{}
+@cindex pragma, disinterrupt
+For the named functions, the compiler adds code to disable interrupts
+for the duration of those functions.  Any functions so named, which
+are not encountered in the source, cause a warning that the pragma was
+not used.  Examples:
+
+@example
+#pragma disinterrupt foo
+#pragma disinterrupt bar, grill
+int foo () { @dots{} }
+@end example
+
+@item GCC call @var{name} , @var{name} @dots{}
+@cindex pragma, call
+For the named functions, the compiler always uses a register-indirect
+call model when calling the named functions.  Examples:
+
+@example
+extern int foo ();
+#pragma call foo
+@end example
+
+@end table
+
+
 @node RS/6000 and PowerPC Pragmas
 @subsection RS/6000 and PowerPC Pragmas