OSDN Git Service

2009-08-14 Paolo Bonzini <bonzini@gnu.org>
[pf3gnuchains/gcc-fork.git] / gcc / cfganal.c
index 0175a94..75cb49d 100644 (file)
@@ -1,12 +1,13 @@
 /* Control flow graph analysis code for GNU compiler.
    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
 /* Control flow graph analysis code for GNU compiler.
    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
-   1999, 2000, 2001 Free Software Foundation, Inc.
+   1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
+   Free Software Foundation, Inc.
 
 This file is part of GCC.
 
 GCC is free software; you can redistribute it and/or modify it under
 the terms of the GNU General Public License as published by the Free
 
 This file is part of GCC.
 
 GCC is free software; you can redistribute it and/or modify it under
 the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
+Software Foundation; either version 3, or (at your option) any later
 version.
 
 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 version.
 
 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
@@ -15,19 +16,25 @@ FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.
 
 You should have received a copy of the GNU General Public License
 for more details.
 
 You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING.  If not, write to the Free
-Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-02111-1307, USA.  */
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
 
 /* This file contains various simple utilities to analyze the CFG.  */
 #include "config.h"
 #include "system.h"
 
 /* This file contains various simple utilities to analyze the CFG.  */
 #include "config.h"
 #include "system.h"
+#include "coretypes.h"
+#include "tm.h"
 #include "rtl.h"
 #include "rtl.h"
+#include "obstack.h"
 #include "hard-reg-set.h"
 #include "basic-block.h"
 #include "hard-reg-set.h"
 #include "basic-block.h"
+#include "insn-config.h"
+#include "recog.h"
 #include "toplev.h"
 #include "toplev.h"
-
-#include "obstack.h"
+#include "tm_p.h"
+#include "vec.h"
+#include "vecprim.h"
+#include "timevar.h"
 
 /* Store the data structures necessary for depth-first search.  */
 struct depth_first_search_dsS {
 
 /* Store the data structures necessary for depth-first search.  */
 struct depth_first_search_dsS {
@@ -43,67 +50,116 @@ struct depth_first_search_dsS {
 };
 typedef struct depth_first_search_dsS *depth_first_search_ds;
 
 };
 typedef struct depth_first_search_dsS *depth_first_search_ds;
 
-static void flow_dfs_compute_reverse_init
-  PARAMS ((depth_first_search_ds));
-static void flow_dfs_compute_reverse_add_bb
-  PARAMS ((depth_first_search_ds, basic_block));
-static basic_block flow_dfs_compute_reverse_execute
-  PARAMS ((depth_first_search_ds));
-static void flow_dfs_compute_reverse_finish
-  PARAMS ((depth_first_search_ds));
-static void remove_fake_successors     PARAMS ((basic_block));
-static bool need_fake_edge_p           PARAMS ((rtx));
+static void flow_dfs_compute_reverse_init (depth_first_search_ds);
+static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
+                                            basic_block);
+static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
+                                                    basic_block);
+static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
+static bool flow_active_insn_p (const_rtx);
 \f
 \f
+/* Like active_insn_p, except keep the return value clobber around
+   even after reload.  */
+
+static bool
+flow_active_insn_p (const_rtx insn)
+{
+  if (active_insn_p (insn))
+    return true;
+
+  /* A clobber of the function return value exists for buggy
+     programs that fail to return a value.  Its effect is to
+     keep the return value from being live across the entire
+     function.  If we allow it to be skipped, we introduce the
+     possibility for register lifetime confusion.  */
+  if (GET_CODE (PATTERN (insn)) == CLOBBER
+      && REG_P (XEXP (PATTERN (insn), 0))
+      && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
+    return true;
+
+  return false;
+}
+
 /* Return true if the block has no effect and only forwards control flow to
    its single destination.  */
 /* Return true if the block has no effect and only forwards control flow to
    its single destination.  */
+
 bool
 bool
-forwarder_block_p (bb)
-     basic_block bb;
+forwarder_block_p (const_basic_block bb)
 {
 {
-  rtx insn = bb->head;
+  rtx insn;
+
   if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
   if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
-      || !bb->succ || bb->succ->succ_next)
+      || !single_succ_p (bb))
     return false;
 
     return false;
 
-  while (insn != bb->end)
-    {
-      if (INSN_P (insn) && active_insn_p (insn))
-       return false;
-      insn = NEXT_INSN (insn);
-    }
+  for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
+    if (INSN_P (insn) && flow_active_insn_p (insn))
+      return false;
+
   return (!INSN_P (insn)
   return (!INSN_P (insn)
-         || (GET_CODE (insn) == JUMP_INSN && simplejump_p (insn))
-         || !active_insn_p (insn));
+         || (JUMP_P (insn) && simplejump_p (insn))
+         || !flow_active_insn_p (insn));
 }
 
 /* Return nonzero if we can reach target from src by falling through.  */
 }
 
 /* Return nonzero if we can reach target from src by falling through.  */
+
 bool
 bool
-can_fallthru (src, target)
-     basic_block src, target;
+can_fallthru (basic_block src, basic_block target)
 {
 {
-  rtx insn = src->end;
-  rtx insn2 = target->head;
+  rtx insn = BB_END (src);
+  rtx insn2;
+  edge e;
+  edge_iterator ei;
 
 
-  if (src->index + 1 == target->index && !active_insn_p (insn2))
+  if (target == EXIT_BLOCK_PTR)
+    return true;
+  if (src->next_bb != target)
+    return 0;
+  FOR_EACH_EDGE (e, ei, src->succs)
+    if (e->dest == EXIT_BLOCK_PTR
+       && e->flags & EDGE_FALLTHRU)
+      return 0;
+
+  insn2 = BB_HEAD (target);
+  if (insn2 && !active_insn_p (insn2))
     insn2 = next_active_insn (insn2);
     insn2 = next_active_insn (insn2);
+
   /* ??? Later we may add code to move jump tables offline.  */
   return next_active_insn (insn) == insn2;
 }
   /* ??? Later we may add code to move jump tables offline.  */
   return next_active_insn (insn) == insn2;
 }
+
+/* Return nonzero if we could reach target from src by falling through,
+   if the target was made adjacent.  If we already have a fall-through
+   edge to the exit block, we can't do that.  */
+bool
+could_fall_through (basic_block src, basic_block target)
+{
+  edge e;
+  edge_iterator ei;
+
+  if (target == EXIT_BLOCK_PTR)
+    return true;
+  FOR_EACH_EDGE (e, ei, src->succs)
+    if (e->dest == EXIT_BLOCK_PTR
+       && e->flags & EDGE_FALLTHRU)
+      return 0;
+  return true;
+}
 \f
 /* Mark the back edges in DFS traversal.
 \f
 /* Mark the back edges in DFS traversal.
-   Return non-zero if a loop (natural or otherwise) is present.
+   Return nonzero if a loop (natural or otherwise) is present.
    Inspired by Depth_First_Search_PP described in:
 
      Advanced Compiler Design and Implementation
      Steven Muchnick
      Morgan Kaufmann, 1997
 
    Inspired by Depth_First_Search_PP described in:
 
      Advanced Compiler Design and Implementation
      Steven Muchnick
      Morgan Kaufmann, 1997
 
-   and heavily borrowed from flow_depth_first_order_compute.  */
+   and heavily borrowed from pre_and_rev_post_order_compute.  */
 
 bool
 
 bool
-mark_dfs_back_edges ()
+mark_dfs_back_edges (void)
 {
 {
-  edge *stack;
+  edge_iterator *stack;
   int *pre;
   int *post;
   int sp;
   int *pre;
   int *post;
   int sp;
@@ -113,33 +169,33 @@ mark_dfs_back_edges ()
   bool found = false;
 
   /* Allocate the preorder and postorder number arrays.  */
   bool found = false;
 
   /* Allocate the preorder and postorder number arrays.  */
-  pre = (int *) xcalloc (n_basic_blocks, sizeof (int));
-  post = (int *) xcalloc (n_basic_blocks, sizeof (int));
+  pre = XCNEWVEC (int, last_basic_block);
+  post = XCNEWVEC (int, last_basic_block);
 
   /* Allocate stack for back-tracking up CFG.  */
 
   /* Allocate stack for back-tracking up CFG.  */
-  stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
   sp = 0;
 
   /* Allocate bitmap to track nodes that have been visited.  */
   sp = 0;
 
   /* Allocate bitmap to track nodes that have been visited.  */
-  visited = sbitmap_alloc (n_basic_blocks);
+  visited = sbitmap_alloc (last_basic_block);
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (visited);
 
   /* Push the first edge on to the stack.  */
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (visited);
 
   /* Push the first edge on to the stack.  */
-  stack[sp++] = ENTRY_BLOCK_PTR->succ;
+  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
 
   while (sp)
     {
 
   while (sp)
     {
-      edge e;
+      edge_iterator ei;
       basic_block src;
       basic_block dest;
 
       /* Look at the edge on the top of the stack.  */
       basic_block src;
       basic_block dest;
 
       /* Look at the edge on the top of the stack.  */
-      e = stack[sp - 1];
-      src = e->src;
-      dest = e->dest;
-      e->flags &= ~EDGE_DFS_BACK;
+      ei = stack[sp - 1];
+      src = ei_edge (ei)->src;
+      dest = ei_edge (ei)->dest;
+      ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
 
       /* Check if the edge destination has been visited yet.  */
       if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
 
       /* Check if the edge destination has been visited yet.  */
       if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
@@ -148,12 +204,11 @@ mark_dfs_back_edges ()
          SET_BIT (visited, dest->index);
 
          pre[dest->index] = prenum++;
          SET_BIT (visited, dest->index);
 
          pre[dest->index] = prenum++;
-
-         if (dest->succ)
+         if (EDGE_COUNT (dest->succs) > 0)
            {
              /* Since the DEST node has been visited for the first
                 time, check its successors.  */
            {
              /* Since the DEST node has been visited for the first
                 time, check its successors.  */
-             stack[sp++] = dest->succ;
+             stack[sp++] = ei_start (dest->succs);
            }
          else
            post[dest->index] = postnum++;
            }
          else
            post[dest->index] = postnum++;
@@ -163,13 +218,13 @@ mark_dfs_back_edges ()
          if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
              && pre[src->index] >= pre[dest->index]
              && post[dest->index] == 0)
          if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
              && pre[src->index] >= pre[dest->index]
              && post[dest->index] == 0)
-           e->flags |= EDGE_DFS_BACK, found = true;
+           ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
 
 
-         if (! e->succ_next && src != ENTRY_BLOCK_PTR)
+         if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
            post[src->index] = postnum++;
 
            post[src->index] = postnum++;
 
-         if (e->succ_next)
-           stack[sp - 1] = e->succ_next;
+         if (!ei_one_before_end_p (ei))
+           ei_next (&stack[sp - 1]);
          else
            sp--;
        }
          else
            sp--;
        }
@@ -183,165 +238,64 @@ mark_dfs_back_edges ()
   return found;
 }
 
   return found;
 }
 
-/* Return true if we need to add fake edge to exit.
-   Helper function for the flow_call_edges_add.  */
-
-static bool
-need_fake_edge_p (insn)
-     rtx insn;
-{
-  if (!INSN_P (insn))
-    return false;
-
-  if ((GET_CODE (insn) == CALL_INSN
-       && !SIBLING_CALL_P (insn)
-       && !find_reg_note (insn, REG_NORETURN, NULL)
-       && !find_reg_note (insn, REG_ALWAYS_RETURN, NULL)
-       && !CONST_OR_PURE_CALL_P (insn)))
-    return true;
-
-  return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
-          && MEM_VOLATILE_P (PATTERN (insn)))
-         || (GET_CODE (PATTERN (insn)) == PARALLEL
-             && asm_noperands (insn) != -1
-             && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
-         || GET_CODE (PATTERN (insn)) == ASM_INPUT);
-}
-
-/* Add fake edges to the function exit for any non constant and non noreturn
-   calls, volatile inline assembly in the bitmap of blocks specified by
-   BLOCKS or to the whole CFG if BLOCKS is zero.  Return the number of blocks
-   that were split.
+/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru.  */
 
 
-   The goal is to expose cases in which entering a basic block does not imply
-   that all subsequent instructions must be executed.  */
-
-int
-flow_call_edges_add (blocks)
-     sbitmap blocks;
+void
+set_edge_can_fallthru_flag (void)
 {
 {
-  int i;
-  int blocks_split = 0;
-  int bb_num = 0;
-  basic_block *bbs;
-  bool check_last_block = false;
-
-  /* Map bb indices into basic block pointers since split_block
-     will renumber the basic blocks.  */
-
-  bbs = xmalloc (n_basic_blocks * sizeof (*bbs));
-
-  if (! blocks)
-    {
-      for (i = 0; i < n_basic_blocks; i++)
-       bbs[bb_num++] = BASIC_BLOCK (i);
-      check_last_block = true;
-    }
-  else
-    {
-      EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
-      {
-       bbs[bb_num++] = BASIC_BLOCK (i);
-       if (i == n_basic_blocks - 1)
-         check_last_block = true;
-      });
-    }
-
-  /* In the last basic block, before epilogue generation, there will be
-     a fallthru edge to EXIT.  Special care is required if the last insn
-     of the last basic block is a call because make_edge folds duplicate
-     edges, which would result in the fallthru edge also being marked
-     fake, which would result in the fallthru edge being removed by
-     remove_fake_edges, which would result in an invalid CFG.
-
-     Moreover, we can't elide the outgoing fake edge, since the block
-     profiler needs to take this into account in order to solve the minimal
-     spanning tree in the case that the call doesn't return.
-
-     Handle this by adding a dummy instruction in a new last basic block.  */
-  if (check_last_block
-      && need_fake_edge_p (BASIC_BLOCK (n_basic_blocks - 1)->end))
-    {
-       edge e;
-       for (e = BASIC_BLOCK (n_basic_blocks - 1)->succ; e; e = e->succ_next)
-        if (e->dest == EXIT_BLOCK_PTR)
-           break;
-       insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
-       commit_edge_insertions ();
-    }
-
-
-  /* Now add fake edges to the function exit for any non constant
-     calls since there is no way that we can determine if they will
-     return or not...  */
+  basic_block bb;
 
 
-  for (i = 0; i < bb_num; i++)
+  FOR_EACH_BB (bb)
     {
     {
-      basic_block bb = bbs[i];
-      rtx insn;
-      rtx prev_insn;
+      edge e;
+      edge_iterator ei;
 
 
-      for (insn = bb->end; ; insn = prev_insn)
+      FOR_EACH_EDGE (e, ei, bb->succs)
        {
        {
-         prev_insn = PREV_INSN (insn);
-         if (need_fake_edge_p (insn))
-           {
-             edge e;
-
-             /* The above condition should be enough to verify that there is
-                no edge to the exit block in CFG already.  Calling make_edge in
-                such case would make us to mark that edge as fake and remove it
-                later.  */
-#ifdef ENABLE_CHECKING
-             if (insn == bb->end)
-               for (e = bb->succ; e; e = e->succ_next)
-                 if (e->dest == EXIT_BLOCK_PTR)
-                   abort ();
-#endif
-
-             /* Note that the following may create a new basic block
-                and renumber the existing basic blocks.  */
-             e = split_block (bb, insn);
-             if (e)
-               blocks_split++;
-
-             make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
-           }
-         if (insn == bb->head)
-           break;
-       }
-    }
+         e->flags &= ~EDGE_CAN_FALLTHRU;
 
 
-  if (blocks_split)
-    verify_flow_info ();
+         /* The FALLTHRU edge is also CAN_FALLTHRU edge.  */
+         if (e->flags & EDGE_FALLTHRU)
+           e->flags |= EDGE_CAN_FALLTHRU;
+       }
 
 
-  free (bbs);
-  return blocks_split;
+      /* If the BB ends with an invertible condjump all (2) edges are
+        CAN_FALLTHRU edges.  */
+      if (EDGE_COUNT (bb->succs) != 2)
+       continue;
+      if (!any_condjump_p (BB_END (bb)))
+       continue;
+      if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
+       continue;
+      invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
+      EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
+      EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
+    }
 }
 }
+
 /* Find unreachable blocks.  An unreachable block will have 0 in
 /* Find unreachable blocks.  An unreachable block will have 0 in
-   the reachable bit in block->flags.  A non-zero value indicates the
+   the reachable bit in block->flags.  A nonzero value indicates the
    block is reachable.  */
 
 void
    block is reachable.  */
 
 void
-find_unreachable_blocks ()
+find_unreachable_blocks (void)
 {
   edge e;
 {
   edge e;
-  int i, n;
-  basic_block *tos, *worklist;
+  edge_iterator ei;
+  basic_block *tos, *worklist, bb;
 
 
-  n = n_basic_blocks;
-  tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * n);
+  tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
 
   /* Clear all the reachability flags.  */
 
 
   /* Clear all the reachability flags.  */
 
-  for (i = 0; i < n; ++i)
-    BASIC_BLOCK (i)->flags &= ~BB_REACHABLE;
+  FOR_EACH_BB (bb)
+    bb->flags &= ~BB_REACHABLE;
 
   /* Add our starting points to the worklist.  Almost always there will
      be only one.  It isn't inconceivable that we might one day directly
      support Fortran alternate entry points.  */
 
 
   /* Add our starting points to the worklist.  Almost always there will
      be only one.  It isn't inconceivable that we might one day directly
      support Fortran alternate entry points.  */
 
-  for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
+  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
     {
       *tos++ = e->dest;
 
     {
       *tos++ = e->dest;
 
@@ -355,12 +309,16 @@ find_unreachable_blocks ()
     {
       basic_block b = *--tos;
 
     {
       basic_block b = *--tos;
 
-      for (e = b->succ; e; e = e->succ_next)
-       if (!(e->dest->flags & BB_REACHABLE))
-         {
-           *tos++ = e->dest;
-           e->dest->flags |= BB_REACHABLE;
-         }
+      FOR_EACH_EDGE (e, ei, b->succs)
+       {
+         basic_block dest = e->dest;
+
+         if (!(dest->flags & BB_REACHABLE))
+           {
+             *tos++ = dest;
+             dest->flags |= BB_REACHABLE;
+           }
+       }
     }
 
   free (worklist);
     }
 
   free (worklist);
@@ -380,64 +338,45 @@ find_unreachable_blocks ()
    and the data structure is filled in.  */
 
 struct edge_list *
    and the data structure is filled in.  */
 
 struct edge_list *
-create_edge_list ()
+create_edge_list (void)
 {
   struct edge_list *elist;
   edge e;
   int num_edges;
 {
   struct edge_list *elist;
   edge e;
   int num_edges;
-  int x;
   int block_count;
   int block_count;
+  basic_block bb;
+  edge_iterator ei;
 
 
-  block_count = n_basic_blocks + 2;   /* Include the entry and exit blocks.  */
+  block_count = n_basic_blocks; /* Include the entry and exit blocks.  */
 
   num_edges = 0;
 
   /* Determine the number of edges in the flow graph by counting successor
      edges on each basic block.  */
 
   num_edges = 0;
 
   /* Determine the number of edges in the flow graph by counting successor
      edges on each basic block.  */
-  for (x = 0; x < n_basic_blocks; x++)
+  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
     {
     {
-      basic_block bb = BASIC_BLOCK (x);
-
-      for (e = bb->succ; e; e = e->succ_next)
-       num_edges++;
+      num_edges += EDGE_COUNT (bb->succs);
     }
     }
-  /* Don't forget successors of the entry block.  */
-  for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
-    num_edges++;
 
 
-  elist = (struct edge_list *) xmalloc (sizeof (struct edge_list));
+  elist = XNEW (struct edge_list);
   elist->num_blocks = block_count;
   elist->num_edges = num_edges;
   elist->num_blocks = block_count;
   elist->num_edges = num_edges;
-  elist->index_to_edge = (edge *) xmalloc (sizeof (edge) * num_edges);
+  elist->index_to_edge = XNEWVEC (edge, num_edges);
 
   num_edges = 0;
 
 
   num_edges = 0;
 
-  /* Follow successors of the entry block, and register these edges.  */
-  for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
-    {
-      elist->index_to_edge[num_edges] = e;
-      num_edges++;
-    }
-
-  for (x = 0; x < n_basic_blocks; x++)
-    {
-      basic_block bb = BASIC_BLOCK (x);
+  /* Follow successors of blocks, and register these edges.  */
+  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
+    FOR_EACH_EDGE (e, ei, bb->succs)
+      elist->index_to_edge[num_edges++] = e;
 
 
-      /* Follow all successors of blocks, and register these edges.  */
-      for (e = bb->succ; e; e = e->succ_next)
-       {
-         elist->index_to_edge[num_edges] = e;
-         num_edges++;
-       }
-    }
   return elist;
 }
 
 /* This function free's memory associated with an edge list.  */
 
 void
   return elist;
 }
 
 /* This function free's memory associated with an edge list.  */
 
 void
-free_edge_list (elist)
-     struct edge_list *elist;
+free_edge_list (struct edge_list *elist)
 {
   if (elist)
     {
 {
   if (elist)
     {
@@ -449,13 +388,12 @@ free_edge_list (elist)
 /* This function provides debug output showing an edge list.  */
 
 void
 /* This function provides debug output showing an edge list.  */
 
 void
-print_edge_list (f, elist)
-     FILE *f;
-     struct edge_list *elist;
+print_edge_list (FILE *f, struct edge_list *elist)
 {
   int x;
 {
   int x;
+
   fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
   fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
-          elist->num_blocks - 2, elist->num_edges);
+          elist->num_blocks, elist->num_edges);
 
   for (x = 0; x < elist->num_edges; x++)
     {
 
   for (x = 0; x < elist->num_edges; x++)
     {
@@ -477,18 +415,16 @@ print_edge_list (f, elist)
    extra edges.  */
 
 void
    extra edges.  */
 
 void
-verify_edge_list (f, elist)
-     FILE *f;
-     struct edge_list *elist;
+verify_edge_list (FILE *f, struct edge_list *elist)
 {
 {
-  int x, pred, succ, index;
+  int pred, succ, index;
   edge e;
   edge e;
+  basic_block bb, p, s;
+  edge_iterator ei;
 
 
-  for (x = 0; x < n_basic_blocks; x++)
+  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
     {
     {
-      basic_block bb = BASIC_BLOCK (x);
-
-      for (e = bb->succ; e; e = e->succ_next)
+      FOR_EACH_EDGE (e, ei, bb->succs)
        {
          pred = e->src->index;
          succ = e->dest->index;
        {
          pred = e->src->index;
          succ = e->dest->index;
@@ -498,6 +434,7 @@ verify_edge_list (f, elist)
              fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
              continue;
            }
              fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
              continue;
            }
+
          if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
            fprintf (f, "*p* Pred for index %d should be %d not %d\n",
                     index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
          if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
            fprintf (f, "*p* Pred for index %d should be %d not %d\n",
                     index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
@@ -506,160 +443,102 @@ verify_edge_list (f, elist)
                     index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
        }
     }
                     index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
        }
     }
-  for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
-    {
-      pred = e->src->index;
-      succ = e->dest->index;
-      index = EDGE_INDEX (elist, e->src, e->dest);
-      if (index == EDGE_INDEX_NO_EDGE)
-       {
-         fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
-         continue;
-       }
-      if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
-       fprintf (f, "*p* Pred for index %d should be %d not %d\n",
-                index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
-      if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
-       fprintf (f, "*p* Succ for index %d should be %d not %d\n",
-                index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
-    }
-  /* We've verified that all the edges are in the list, no lets make sure
+
+  /* We've verified that all the edges are in the list, now lets make sure
      there are no spurious edges in the list.  */
 
      there are no spurious edges in the list.  */
 
-  for (pred = 0; pred < n_basic_blocks; pred++)
-    for (succ = 0; succ < n_basic_blocks; succ++)
+  FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
+    FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
       {
       {
-       basic_block p = BASIC_BLOCK (pred);
-       basic_block s = BASIC_BLOCK (succ);
-
        int found_edge = 0;
 
        int found_edge = 0;
 
-       for (e = p->succ; e; e = e->succ_next)
+       FOR_EACH_EDGE (e, ei, p->succs)
          if (e->dest == s)
            {
              found_edge = 1;
              break;
            }
          if (e->dest == s)
            {
              found_edge = 1;
              break;
            }
-       for (e = s->pred; e; e = e->pred_next)
+
+       FOR_EACH_EDGE (e, ei, s->preds)
          if (e->src == p)
            {
              found_edge = 1;
              break;
            }
          if (e->src == p)
            {
              found_edge = 1;
              break;
            }
-       if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
+
+       if (EDGE_INDEX (elist, p, s)
            == EDGE_INDEX_NO_EDGE && found_edge != 0)
          fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
            == EDGE_INDEX_NO_EDGE && found_edge != 0)
          fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
-                  pred, succ);
-       if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
+                  p->index, s->index);
+       if (EDGE_INDEX (elist, p, s)
            != EDGE_INDEX_NO_EDGE && found_edge == 0)
          fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
            != EDGE_INDEX_NO_EDGE && found_edge == 0)
          fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
-                  pred, succ, EDGE_INDEX (elist, BASIC_BLOCK (pred),
-                                          BASIC_BLOCK (succ)));
+                  p->index, s->index, EDGE_INDEX (elist, p, s));
       }
       }
-  for (succ = 0; succ < n_basic_blocks; succ++)
+}
+
+/* Given PRED and SUCC blocks, return the edge which connects the blocks.
+   If no such edge exists, return NULL.  */
+
+edge
+find_edge (basic_block pred, basic_block succ)
+{
+  edge e;
+  edge_iterator ei;
+
+  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
     {
     {
-      basic_block p = ENTRY_BLOCK_PTR;
-      basic_block s = BASIC_BLOCK (succ);
-
-      int found_edge = 0;
-
-      for (e = p->succ; e; e = e->succ_next)
-       if (e->dest == s)
-         {
-           found_edge = 1;
-           break;
-         }
-      for (e = s->pred; e; e = e->pred_next)
-       if (e->src == p)
-         {
-           found_edge = 1;
-           break;
-         }
-      if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
-         == EDGE_INDEX_NO_EDGE && found_edge != 0)
-       fprintf (f, "*** Edge (entry, %d) appears to not have an index\n",
-                succ);
-      if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
-         != EDGE_INDEX_NO_EDGE && found_edge == 0)
-       fprintf (f, "*** Edge (entry, %d) has index %d, but no edge exists\n",
-                succ, EDGE_INDEX (elist, ENTRY_BLOCK_PTR,
-                                  BASIC_BLOCK (succ)));
+      FOR_EACH_EDGE (e, ei, pred->succs)
+       if (e->dest == succ)
+         return e;
     }
     }
-  for (pred = 0; pred < n_basic_blocks; pred++)
+  else
     {
     {
-      basic_block p = BASIC_BLOCK (pred);
-      basic_block s = EXIT_BLOCK_PTR;
-
-      int found_edge = 0;
-
-      for (e = p->succ; e; e = e->succ_next)
-       if (e->dest == s)
-         {
-           found_edge = 1;
-           break;
-         }
-      for (e = s->pred; e; e = e->pred_next)
-       if (e->src == p)
-         {
-           found_edge = 1;
-           break;
-         }
-      if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
-         == EDGE_INDEX_NO_EDGE && found_edge != 0)
-       fprintf (f, "*** Edge (%d, exit) appears to not have an index\n",
-                pred);
-      if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
-         != EDGE_INDEX_NO_EDGE && found_edge == 0)
-       fprintf (f, "*** Edge (%d, exit) has index %d, but no edge exists\n",
-                pred, EDGE_INDEX (elist, BASIC_BLOCK (pred),
-                                  EXIT_BLOCK_PTR));
+      FOR_EACH_EDGE (e, ei, succ->preds)
+       if (e->src == pred)
+         return e;
     }
     }
+
+  return NULL;
 }
 
 /* This routine will determine what, if any, edge there is between
    a specified predecessor and successor.  */
 
 int
 }
 
 /* This routine will determine what, if any, edge there is between
    a specified predecessor and successor.  */
 
 int
-find_edge_index (edge_list, pred, succ)
-     struct edge_list *edge_list;
-     basic_block pred, succ;
+find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
 {
   int x;
 {
   int x;
+
   for (x = 0; x < NUM_EDGES (edge_list); x++)
   for (x = 0; x < NUM_EDGES (edge_list); x++)
-    {
-      if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
-         && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
-       return x;
-    }
+    if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
+       && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
+      return x;
+
   return (EDGE_INDEX_NO_EDGE);
 }
 
 /* Dump the list of basic blocks in the bitmap NODES.  */
 
 void
   return (EDGE_INDEX_NO_EDGE);
 }
 
 /* Dump the list of basic blocks in the bitmap NODES.  */
 
 void
-flow_nodes_print (str, nodes, file)
-     const char *str;
-     const sbitmap nodes;
-     FILE *file;
+flow_nodes_print (const char *str, const_sbitmap nodes, FILE *file)
 {
 {
-  int node;
+  unsigned int node = 0;
+  sbitmap_iterator sbi;
 
   if (! nodes)
     return;
 
   fprintf (file, "%s { ", str);
 
   if (! nodes)
     return;
 
   fprintf (file, "%s { ", str);
-  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
+  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
+    fprintf (file, "%d ", node);
   fputs ("}\n", file);
 }
 
 /* Dump the list of edges in the array EDGE_LIST.  */
 
 void
   fputs ("}\n", file);
 }
 
 /* Dump the list of edges in the array EDGE_LIST.  */
 
 void
-flow_edge_list_print (str, edge_list, num_edges, file)
-     const char *str;
-     const edge *edge_list;
-     int num_edges;
-     FILE *file;
+flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
 {
   int i;
 
 {
   int i;
 
@@ -670,25 +549,27 @@ flow_edge_list_print (str, edge_list, num_edges, file)
   for (i = 0; i < num_edges; i++)
     fprintf (file, "%d->%d ", edge_list[i]->src->index,
             edge_list[i]->dest->index);
   for (i = 0; i < num_edges; i++)
     fprintf (file, "%d->%d ", edge_list[i]->src->index,
             edge_list[i]->dest->index);
+
   fputs ("}\n", file);
 }
 
 \f
   fputs ("}\n", file);
 }
 
 \f
-/* This routine will remove any fake successor edges for a basic block.
-   When the edge is removed, it is also removed from whatever predecessor
+/* This routine will remove any fake predecessor edges for a basic block.
+   When the edge is removed, it is also removed from whatever successor
    list it is in.  */
 
 static void
    list it is in.  */
 
 static void
-remove_fake_successors (bb)
-     basic_block bb;
+remove_fake_predecessors (basic_block bb)
 {
   edge e;
 {
   edge e;
-  for (e = bb->succ; e;)
+  edge_iterator ei;
+
+  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
     {
     {
-      edge tmp = e;
-      e = e->succ_next;
-      if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
-       remove_edge (tmp);
+      if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
+       remove_edge (e);
+      else
+       ei_next (&ei);
     }
 }
 
     }
 }
 
@@ -697,29 +578,35 @@ remove_fake_successors (bb)
    fake predecessors.  */
 
 void
    fake predecessors.  */
 
 void
-remove_fake_edges ()
+remove_fake_edges (void)
 {
 {
-  int x;
+  basic_block bb;
 
 
-  for (x = 0; x < n_basic_blocks; x++)
-    remove_fake_successors (BASIC_BLOCK (x));
+  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
+    remove_fake_predecessors (bb);
+}
 
 
-  /* We've handled all successors except the entry block's.  */
-  remove_fake_successors (ENTRY_BLOCK_PTR);
+/* This routine will remove all fake edges to the EXIT_BLOCK.  */
+
+void
+remove_fake_exit_edges (void)
+{
+  remove_fake_predecessors (EXIT_BLOCK_PTR);
 }
 
 }
 
+
 /* This function will add a fake edge between any block which has no
    successors, and the exit block. Some data flow equations require these
    edges to exist.  */
 
 void
 /* This function will add a fake edge between any block which has no
    successors, and the exit block. Some data flow equations require these
    edges to exist.  */
 
 void
-add_noreturn_fake_exit_edges ()
+add_noreturn_fake_exit_edges (void)
 {
 {
-  int x;
+  basic_block bb;
 
 
-  for (x = 0; x < n_basic_blocks; x++)
-    if (BASIC_BLOCK (x)->succ == NULL)
-      make_single_succ_edge (BASIC_BLOCK (x), EXIT_BLOCK_PTR, EDGE_FAKE);
+  FOR_EACH_BB (bb)
+    if (EDGE_COUNT (bb->succs) == 0)
+      make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
 }
 
 /* This function adds a fake edge between any infinite loops to the
 }
 
 /* This function adds a fake edge between any infinite loops to the
@@ -734,65 +621,73 @@ add_noreturn_fake_exit_edges ()
    nodes not reachable from the exit block.  */
 
 void
    nodes not reachable from the exit block.  */
 
 void
-connect_infinite_loops_to_exit ()
+connect_infinite_loops_to_exit (void)
 {
 {
-  basic_block unvisited_block;
+  basic_block unvisited_block = EXIT_BLOCK_PTR;
+  struct depth_first_search_dsS dfs_ds;
 
   /* Perform depth-first search in the reverse graph to find nodes
      reachable from the exit block.  */
 
   /* Perform depth-first search in the reverse graph to find nodes
      reachable from the exit block.  */
-  struct depth_first_search_dsS dfs_ds;
-
   flow_dfs_compute_reverse_init (&dfs_ds);
   flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
 
   /* Repeatedly add fake edges, updating the unreachable nodes.  */
   while (1)
     {
   flow_dfs_compute_reverse_init (&dfs_ds);
   flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
 
   /* Repeatedly add fake edges, updating the unreachable nodes.  */
   while (1)
     {
-      unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
+      unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
+                                                         unvisited_block);
       if (!unvisited_block)
        break;
       if (!unvisited_block)
        break;
+
       make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
       flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
     }
 
   flow_dfs_compute_reverse_finish (&dfs_ds);
       make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
       flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
     }
 
   flow_dfs_compute_reverse_finish (&dfs_ds);
-
   return;
 }
 \f
   return;
 }
 \f
-/* Compute reverse top sort order */
-void
-flow_reverse_top_sort_order_compute (rts_order)
-     int *rts_order;
+/* Compute reverse top sort order.  This is computing a post order
+   numbering of the graph.  If INCLUDE_ENTRY_EXIT is true, then then
+   ENTRY_BLOCK and EXIT_BLOCK are included.  If DELETE_UNREACHABLE is
+   true, unreachable blocks are deleted.  */
+
+int
+post_order_compute (int *post_order, bool include_entry_exit, 
+                   bool delete_unreachable)
 {
 {
-  edge *stack;
+  edge_iterator *stack;
   int sp;
   int sp;
-  int postnum = 0;
+  int post_order_num = 0;
   sbitmap visited;
   sbitmap visited;
+  int count;
+
+  if (include_entry_exit)
+    post_order[post_order_num++] = EXIT_BLOCK;
 
   /* Allocate stack for back-tracking up CFG.  */
 
   /* Allocate stack for back-tracking up CFG.  */
-  stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
   sp = 0;
 
   /* Allocate bitmap to track nodes that have been visited.  */
   sp = 0;
 
   /* Allocate bitmap to track nodes that have been visited.  */
-  visited = sbitmap_alloc (n_basic_blocks);
+  visited = sbitmap_alloc (last_basic_block);
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (visited);
 
   /* Push the first edge on to the stack.  */
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (visited);
 
   /* Push the first edge on to the stack.  */
-  stack[sp++] = ENTRY_BLOCK_PTR->succ;
+  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
 
   while (sp)
     {
 
   while (sp)
     {
-      edge e;
+      edge_iterator ei;
       basic_block src;
       basic_block dest;
 
       /* Look at the edge on the top of the stack.  */
       basic_block src;
       basic_block dest;
 
       /* Look at the edge on the top of the stack.  */
-      e = stack[sp - 1];
-      src = e->src;
-      dest = e->dest;
+      ei = stack[sp - 1];
+      src = ei_edge (ei)->src;
+      dest = ei_edge (ei)->dest;
 
       /* Check if the edge destination has been visited yet.  */
       if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
 
       /* Check if the edge destination has been visited yet.  */
       if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
@@ -800,195 +695,301 @@ flow_reverse_top_sort_order_compute (rts_order)
          /* Mark that we have visited the destination.  */
          SET_BIT (visited, dest->index);
 
          /* Mark that we have visited the destination.  */
          SET_BIT (visited, dest->index);
 
-         if (dest->succ)
-           {
-             /* Since the DEST node has been visited for the first
-                time, check its successors.  */
-             stack[sp++] = dest->succ;
-           }
+         if (EDGE_COUNT (dest->succs) > 0)
+           /* Since the DEST node has been visited for the first
+              time, check its successors.  */
+           stack[sp++] = ei_start (dest->succs);
          else
          else
-           rts_order[postnum++] = dest->index;
+           post_order[post_order_num++] = dest->index;
        }
       else
        {
        }
       else
        {
-         if (! e->succ_next && src != ENTRY_BLOCK_PTR)
-          rts_order[postnum++] = src->index;
+         if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
+           post_order[post_order_num++] = src->index;
 
 
-         if (e->succ_next)
-           stack[sp - 1] = e->succ_next;
+         if (!ei_one_before_end_p (ei))
+           ei_next (&stack[sp - 1]);
          else
            sp--;
        }
     }
 
          else
            sp--;
        }
     }
 
+  if (include_entry_exit)
+    {
+      post_order[post_order_num++] = ENTRY_BLOCK;
+      count = post_order_num;
+    }
+  else 
+    count = post_order_num + 2;
+  
+  /* Delete the unreachable blocks if some were found and we are
+     supposed to do it.  */
+  if (delete_unreachable && (count != n_basic_blocks))
+    {
+      basic_block b;
+      basic_block next_bb;
+      for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
+       {
+         next_bb = b->next_bb;
+         
+         if (!(TEST_BIT (visited, b->index)))
+           delete_basic_block (b);
+       }
+      
+      tidy_fallthru_edges ();
+    }
+
   free (stack);
   sbitmap_free (visited);
   free (stack);
   sbitmap_free (visited);
+  return post_order_num;
 }
 
 }
 
-/* Compute the depth first search order and store in the array
-  DFS_ORDER if non-zero, marking the nodes visited in VISITED.  If
-  RC_ORDER is non-zero, return the reverse completion number for each
-  node.  Returns the number of nodes visited.  A depth first search
-  tries to get as far away from the starting point as quickly as
-  possible.  */
+
+/* Helper routine for inverted_post_order_compute. 
+   BB has to belong to a region of CFG
+   unreachable by inverted traversal from the exit.
+   i.e. there's no control flow path from ENTRY to EXIT
+   that contains this BB.
+   This can happen in two cases - if there's an infinite loop
+   or if there's a block that has no successor
+   (call to a function with no return).
+   Some RTL passes deal with this condition by 
+   calling connect_infinite_loops_to_exit () and/or 
+   add_noreturn_fake_exit_edges ().
+   However, those methods involve modifying the CFG itself
+   which may not be desirable.
+   Hence, we deal with the infinite loop/no return cases
+   by identifying a unique basic block that can reach all blocks
+   in such a region by inverted traversal.
+   This function returns a basic block that guarantees
+   that all blocks in the region are reachable
+   by starting an inverted traversal from the returned block.  */
+
+static basic_block
+dfs_find_deadend (basic_block bb)
+{
+  sbitmap visited = sbitmap_alloc (last_basic_block);
+  sbitmap_zero (visited);
+
+  for (;;)
+    {
+      SET_BIT (visited, bb->index);
+      if (EDGE_COUNT (bb->succs) == 0
+          || TEST_BIT (visited, EDGE_SUCC (bb, 0)->dest->index))
+        {
+          sbitmap_free (visited);
+          return bb;
+        }
+
+      bb = EDGE_SUCC (bb, 0)->dest;
+    }
+
+  gcc_unreachable ();
+}
+
+
+/* Compute the reverse top sort order of the inverted CFG
+   i.e. starting from the exit block and following the edges backward
+   (from successors to predecessors).
+   This ordering can be used for forward dataflow problems among others.
+
+   This function assumes that all blocks in the CFG are reachable
+   from the ENTRY (but not necessarily from EXIT).
+
+   If there's an infinite loop,
+   a simple inverted traversal starting from the blocks
+   with no successors can't visit all blocks.
+   To solve this problem, we first do inverted traversal
+   starting from the blocks with no successor.
+   And if there's any block left that's not visited by the regular 
+   inverted traversal from EXIT,
+   those blocks are in such problematic region.
+   Among those, we find one block that has 
+   any visited predecessor (which is an entry into such a region),
+   and start looking for a "dead end" from that block 
+   and do another inverted traversal from that block.  */
 
 int
 
 int
-flow_depth_first_order_compute (dfs_order, rc_order)
-     int *dfs_order;
-     int *rc_order;
+inverted_post_order_compute (int *post_order)
 {
 {
-  edge *stack;
+  basic_block bb;
+  edge_iterator *stack;
   int sp;
   int sp;
-  int dfsnum = 0;
-  int rcnum = n_basic_blocks - 1;
+  int post_order_num = 0;
   sbitmap visited;
 
   /* Allocate stack for back-tracking up CFG.  */
   sbitmap visited;
 
   /* Allocate stack for back-tracking up CFG.  */
-  stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
   sp = 0;
 
   /* Allocate bitmap to track nodes that have been visited.  */
   sp = 0;
 
   /* Allocate bitmap to track nodes that have been visited.  */
-  visited = sbitmap_alloc (n_basic_blocks);
+  visited = sbitmap_alloc (last_basic_block);
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (visited);
 
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (visited);
 
-  /* Push the first edge on to the stack.  */
-  stack[sp++] = ENTRY_BLOCK_PTR->succ;
+  /* Put all blocks that have no successor into the initial work list.  */
+  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
+    if (EDGE_COUNT (bb->succs) == 0)
+      {
+        /* Push the initial edge on to the stack.  */
+        if (EDGE_COUNT (bb->preds) > 0) 
+          {
+            stack[sp++] = ei_start (bb->preds);
+            SET_BIT (visited, bb->index);
+          }
+      }
 
 
-  while (sp)
+  do 
     {
     {
-      edge e;
-      basic_block src;
-      basic_block dest;
-
-      /* Look at the edge on the top of the stack.  */
-      e = stack[sp - 1];
-      src = e->src;
-      dest = e->dest;
-
-      /* Check if the edge destination has been visited yet.  */
-      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
-       {
-         /* Mark that we have visited the destination.  */
-         SET_BIT (visited, dest->index);
-
-         if (dfs_order)
-           dfs_order[dfsnum] = dest->index;
-
-         dfsnum++;
-
-         if (dest->succ)
-           {
-             /* Since the DEST node has been visited for the first
-                time, check its successors.  */
-             stack[sp++] = dest->succ;
-           }
-         else
-           {
-             /* There are no successors for the DEST node so assign
-                its reverse completion number.  */
-             if (rc_order)
-               rc_order[rcnum--] = dest->index;
-           }
-       }
-      else
-       {
-         if (! e->succ_next && src != ENTRY_BLOCK_PTR)
-           {
-             /* There are no more successors for the SRC node
-                so assign its reverse completion number.  */
-             if (rc_order)
-               rc_order[rcnum--] = src->index;
-           }
-
-         if (e->succ_next)
-           stack[sp - 1] = e->succ_next;
-         else
-           sp--;
-       }
+      bool has_unvisited_bb = false;
+
+      /* The inverted traversal loop. */
+      while (sp)
+        {
+          edge_iterator ei;
+          basic_block pred;
+
+          /* Look at the edge on the top of the stack.  */
+          ei = stack[sp - 1];
+          bb = ei_edge (ei)->dest;
+          pred = ei_edge (ei)->src;
+
+          /* Check if the predecessor has been visited yet.  */
+          if (! TEST_BIT (visited, pred->index))
+            {
+              /* Mark that we have visited the destination.  */
+              SET_BIT (visited, pred->index);
+
+              if (EDGE_COUNT (pred->preds) > 0)
+                /* Since the predecessor node has been visited for the first
+                   time, check its predecessors.  */
+                stack[sp++] = ei_start (pred->preds);
+              else
+                post_order[post_order_num++] = pred->index;
+            }
+          else
+            {
+              if (bb != EXIT_BLOCK_PTR && ei_one_before_end_p (ei))
+                post_order[post_order_num++] = bb->index;
+
+              if (!ei_one_before_end_p (ei))
+                ei_next (&stack[sp - 1]);
+              else
+                sp--;
+            }
+        }
+
+      /* Detect any infinite loop and activate the kludge. 
+         Note that this doesn't check EXIT_BLOCK itself
+         since EXIT_BLOCK is always added after the outer do-while loop.  */
+      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
+        if (!TEST_BIT (visited, bb->index))
+          {
+            has_unvisited_bb = true;
+
+            if (EDGE_COUNT (bb->preds) > 0)
+              {
+                edge_iterator ei;
+                edge e;
+                basic_block visited_pred = NULL;
+
+                /* Find an already visited predecessor.  */
+                FOR_EACH_EDGE (e, ei, bb->preds)
+                  {
+                    if (TEST_BIT (visited, e->src->index))
+                      visited_pred = e->src;
+                  }
+
+                if (visited_pred)
+                  {
+                    basic_block be = dfs_find_deadend (bb);
+                    gcc_assert (be != NULL);
+                    SET_BIT (visited, be->index);
+                    stack[sp++] = ei_start (be->preds);
+                    break;
+                  }
+              }
+          }
+
+      if (has_unvisited_bb && sp == 0)
+        {
+          /* No blocks are reachable from EXIT at all. 
+             Find a dead-end from the ENTRY, and restart the iteration. */
+          basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR);
+          gcc_assert (be != NULL);
+          SET_BIT (visited, be->index);
+          stack[sp++] = ei_start (be->preds);
+        }
+
+      /* The only case the below while fires is 
+         when there's an infinite loop.  */
     }
     }
+  while (sp);
+
+  /* EXIT_BLOCK is always included.  */
+  post_order[post_order_num++] = EXIT_BLOCK;
 
   free (stack);
   sbitmap_free (visited);
 
   free (stack);
   sbitmap_free (visited);
-
-  /* The number of nodes visited should not be greater than
-     n_basic_blocks.  */
-  if (dfsnum > n_basic_blocks)
-    abort ();
-
-  /* There are some nodes left in the CFG that are unreachable.  */
-  if (dfsnum < n_basic_blocks)
-    abort ();
-  return dfsnum;
+  return post_order_num;
 }
 
 }
 
-struct dfst_node {
-    unsigned nnodes;
-    struct dfst_node **node;
-    struct dfst_node *up;
-};
-
-/* Compute a preorder transversal ordering such that a sub-tree which
-   is the source of a cross edge appears before the sub-tree which is
-   the destination of the cross edge.  This allows for easy detection
-   of all the entry blocks for a loop.
-
-   The ordering is compute by:
-
-     1) Generating a depth first spanning tree.
+/* Compute the depth first search order and store in the array
+  PRE_ORDER if nonzero, marking the nodes visited in VISITED.  If
+  REV_POST_ORDER is nonzero, return the reverse completion number for each
+  node.  Returns the number of nodes visited.  A depth first search
+  tries to get as far away from the starting point as quickly as
+  possible. 
 
 
-     2) Walking the resulting tree from right to left.  */
+  pre_order is a really a preorder numbering of the graph.
+  rev_post_order is really a reverse postorder numbering of the graph.
+ */
 
 
-void
-flow_preorder_transversal_compute (pot_order)
-     int *pot_order;
+int
+pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order, 
+                               bool include_entry_exit)
 {
 {
-  edge e;
-  edge *stack;
-  int i;
-  int max_successors;
+  edge_iterator *stack;
   int sp;
   int sp;
+  int pre_order_num = 0;
+  int rev_post_order_num = n_basic_blocks - 1;
   sbitmap visited;
   sbitmap visited;
-  struct dfst_node *node;
-  struct dfst_node *dfst;
 
   /* Allocate stack for back-tracking up CFG.  */
 
   /* Allocate stack for back-tracking up CFG.  */
-  stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
   sp = 0;
 
   sp = 0;
 
-  /* Allocate the tree.  */
-  dfst
-    = (struct dfst_node *) xcalloc (n_basic_blocks, sizeof (struct dfst_node));
-  for (i = 0; i < n_basic_blocks; i++)
+  if (include_entry_exit)
     {
     {
-      max_successors = 0;
-      for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
-       max_successors++;
-      dfst[i].node = max_successors ? (struct dfst_node **)
-                                     xcalloc (max_successors,
-                                              sizeof (struct dfst_node *))
-                           : NULL;
+      if (pre_order)
+       pre_order[pre_order_num] = ENTRY_BLOCK;
+      pre_order_num++;
+      if (rev_post_order)
+       rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
     }
     }
+  else 
+    rev_post_order_num -= NUM_FIXED_BLOCKS;
 
   /* Allocate bitmap to track nodes that have been visited.  */
 
   /* Allocate bitmap to track nodes that have been visited.  */
-  visited = sbitmap_alloc (n_basic_blocks);
+  visited = sbitmap_alloc (last_basic_block);
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (visited);
 
   /* Push the first edge on to the stack.  */
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (visited);
 
   /* Push the first edge on to the stack.  */
-  stack[sp++] = ENTRY_BLOCK_PTR->succ;
+  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
 
   while (sp)
     {
 
   while (sp)
     {
+      edge_iterator ei;
       basic_block src;
       basic_block dest;
 
       /* Look at the edge on the top of the stack.  */
       basic_block src;
       basic_block dest;
 
       /* Look at the edge on the top of the stack.  */
-      e = stack[sp - 1];
-      src = e->src;
-      dest = e->dest;
+      ei = stack[sp - 1];
+      src = ei_edge (ei)->src;
+      dest = ei_edge (ei)->dest;
 
       /* Check if the edge destination has been visited yet.  */
       if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
 
       /* Check if the edge destination has been visited yet.  */
       if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
@@ -996,25 +997,30 @@ flow_preorder_transversal_compute (pot_order)
          /* Mark that we have visited the destination.  */
          SET_BIT (visited, dest->index);
 
          /* Mark that we have visited the destination.  */
          SET_BIT (visited, dest->index);
 
-         /* Add the destination to the preorder tree.  */
-         if (src != ENTRY_BLOCK_PTR)
-           {
-             dfst[src->index].node[dfst[src->index].nnodes++]
-               = &dfst[dest->index];
-             dfst[dest->index].up = &dfst[src->index];
-           }
+         if (pre_order)
+           pre_order[pre_order_num] = dest->index;
 
 
-         if (dest->succ)
-           {
-             /* Since the DEST node has been visited for the first
-                time, check its successors.  */
-             stack[sp++] = dest->succ;
-           }
+         pre_order_num++;
+
+         if (EDGE_COUNT (dest->succs) > 0)
+           /* Since the DEST node has been visited for the first
+              time, check its successors.  */
+           stack[sp++] = ei_start (dest->succs);
+         else if (rev_post_order)
+           /* There are no successors for the DEST node so assign
+              its reverse completion number.  */
+           rev_post_order[rev_post_order_num--] = dest->index;
        }
       else
        {
        }
       else
        {
-         if (e->succ_next)
-           stack[sp - 1] = e->succ_next;
+         if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
+             && rev_post_order)
+           /* There are no more successors for the SRC node
+              so assign its reverse completion number.  */
+           rev_post_order[rev_post_order_num--] = src->index;
+
+         if (!ei_one_before_end_p (ei))
+           ei_next (&stack[sp - 1]);
          else
            sp--;
        }
          else
            sp--;
        }
@@ -1023,30 +1029,22 @@ flow_preorder_transversal_compute (pot_order)
   free (stack);
   sbitmap_free (visited);
 
   free (stack);
   sbitmap_free (visited);
 
-  /* Record the preorder transversal order by
-     walking the tree from right to left.  */
-
-  i = 0;
-  node = &dfst[0];
-  pot_order[i++] = 0;
-
-  while (node)
+  if (include_entry_exit)
     {
     {
-      if (node->nnodes)
-       {
-         node = node->node[--node->nnodes];
-         pot_order[i++] = node - dfst;
-       }
-      else
-       node = node->up;
+      if (pre_order)
+       pre_order[pre_order_num] = EXIT_BLOCK;
+      pre_order_num++;
+      if (rev_post_order)
+       rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
+      /* The number of nodes visited should be the number of blocks.  */
+      gcc_assert (pre_order_num == n_basic_blocks);
     }
     }
+  else
+    /* The number of nodes visited should be the number of blocks minus
+       the entry and exit blocks which are not visited here.  */
+    gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
 
 
-  /* Free the tree.  */
-
-  for (i = 0; i < n_basic_blocks; i++)
-    if (dfst[i].node)
-      free (dfst[i].node);
-  free (dfst);
+  return pre_order_num;
 }
 
 /* Compute the depth first search order on the _reverse_ graph and
 }
 
 /* Compute the depth first search order on the _reverse_ graph and
@@ -1076,21 +1074,18 @@ flow_preorder_transversal_compute (pot_order)
 /* Initialize the data structures used for depth-first search on the
    reverse graph.  If INITIALIZE_STACK is nonzero, the exit block is
    added to the basic block stack.  DATA is the current depth-first
 /* Initialize the data structures used for depth-first search on the
    reverse graph.  If INITIALIZE_STACK is nonzero, the exit block is
    added to the basic block stack.  DATA is the current depth-first
-   search context.  If INITIALIZE_STACK is non-zero, there is an
+   search context.  If INITIALIZE_STACK is nonzero, there is an
    element on the stack.  */
 
 static void
    element on the stack.  */
 
 static void
-flow_dfs_compute_reverse_init (data)
-     depth_first_search_ds data;
+flow_dfs_compute_reverse_init (depth_first_search_ds data)
 {
   /* Allocate stack for back-tracking up CFG.  */
 {
   /* Allocate stack for back-tracking up CFG.  */
-  data->stack =
-    (basic_block *) xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
-                            * sizeof (basic_block));
+  data->stack = XNEWVEC (basic_block, n_basic_blocks);
   data->sp = 0;
 
   /* Allocate bitmap to track nodes that have been visited.  */
   data->sp = 0;
 
   /* Allocate bitmap to track nodes that have been visited.  */
-  data->visited_blocks = sbitmap_alloc (n_basic_blocks - (INVALID_BLOCK + 1));
+  data->visited_blocks = sbitmap_alloc (last_basic_block);
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (data->visited_blocks);
 
   /* None of the nodes in the CFG have been visited yet.  */
   sbitmap_zero (data->visited_blocks);
@@ -1103,42 +1098,40 @@ flow_dfs_compute_reverse_init (data)
    block.  */
 
 static void
    block.  */
 
 static void
-flow_dfs_compute_reverse_add_bb (data, bb)
-     depth_first_search_ds data;
-     basic_block bb;
+flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
 {
   data->stack[data->sp++] = bb;
 {
   data->stack[data->sp++] = bb;
-  SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
-  return;
+  SET_BIT (data->visited_blocks, bb->index);
 }
 
 }
 
-/* Continue the depth-first search through the reverse graph starting
-   with the block at the stack's top and ending when the stack is
-   empty.  Visited nodes are marked.  Returns an unvisited basic
-   block, or NULL if there is none available.  */
+/* Continue the depth-first search through the reverse graph starting with the
+   block at the stack's top and ending when the stack is empty.  Visited nodes
+   are marked.  Returns an unvisited basic block, or NULL if there is none
+   available.  */
 
 static basic_block
 
 static basic_block
-flow_dfs_compute_reverse_execute (data)
-     depth_first_search_ds data;
+flow_dfs_compute_reverse_execute (depth_first_search_ds data,
+                                 basic_block last_unvisited)
 {
   basic_block bb;
   edge e;
 {
   basic_block bb;
   edge e;
-  int i;
+  edge_iterator ei;
 
   while (data->sp > 0)
     {
       bb = data->stack[--data->sp];
 
   while (data->sp > 0)
     {
       bb = data->stack[--data->sp];
+
       /* Perform depth-first search on adjacent vertices.  */
       /* Perform depth-first search on adjacent vertices.  */
-      for (e = bb->pred; e; e = e->pred_next)
-       if (!TEST_BIT (data->visited_blocks,
-                      e->src->index - (INVALID_BLOCK + 1)))
+      FOR_EACH_EDGE (e, ei, bb->preds)
+       if (!TEST_BIT (data->visited_blocks, e->src->index))
          flow_dfs_compute_reverse_add_bb (data, e->src);
     }
 
   /* Determine if there are unvisited basic blocks.  */
          flow_dfs_compute_reverse_add_bb (data, e->src);
     }
 
   /* Determine if there are unvisited basic blocks.  */
-  for (i = n_basic_blocks - (INVALID_BLOCK + 1); --i >= 0;)
-    if (!TEST_BIT (data->visited_blocks, i))
-      return BASIC_BLOCK (i + (INVALID_BLOCK + 1));
+  FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
+    if (!TEST_BIT (data->visited_blocks, bb->index))
+      return bb;
+
   return NULL;
 }
 
   return NULL;
 }
 
@@ -1146,10 +1139,220 @@ flow_dfs_compute_reverse_execute (data)
    reverse graph.  */
 
 static void
    reverse graph.  */
 
 static void
-flow_dfs_compute_reverse_finish (data)
-     depth_first_search_ds data;
+flow_dfs_compute_reverse_finish (depth_first_search_ds data)
 {
   free (data->stack);
   sbitmap_free (data->visited_blocks);
 {
   free (data->stack);
   sbitmap_free (data->visited_blocks);
-  return;
 }
 }
+
+/* Performs dfs search from BB over vertices satisfying PREDICATE;
+   if REVERSE, go against direction of edges.  Returns number of blocks
+   found and their list in RSLT.  RSLT can contain at most RSLT_MAX items.  */
+int
+dfs_enumerate_from (basic_block bb, int reverse,
+                   bool (*predicate) (const_basic_block, const void *),
+                   basic_block *rslt, int rslt_max, const void *data)
+{
+  basic_block *st, lbb;
+  int sp = 0, tv = 0;
+  unsigned size;
+
+  /* A bitmap to keep track of visited blocks.  Allocating it each time
+     this function is called is not possible, since dfs_enumerate_from
+     is often used on small (almost) disjoint parts of cfg (bodies of
+     loops), and allocating a large sbitmap would lead to quadratic
+     behavior.  */
+  static sbitmap visited;
+  static unsigned v_size;
+
+#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index)) 
+#define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index)) 
+#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index)) 
+
+  /* Resize the VISITED sbitmap if necessary.  */
+  size = last_basic_block; 
+  if (size < 10)
+    size = 10;
+
+  if (!visited)
+    {
+
+      visited = sbitmap_alloc (size);
+      sbitmap_zero (visited);
+      v_size = size;
+    }
+  else if (v_size < size)
+    {
+      /* Ensure that we increase the size of the sbitmap exponentially.  */
+      if (2 * v_size > size)
+       size = 2 * v_size;
+
+      visited = sbitmap_resize (visited, size, 0);
+      v_size = size;
+    }
+
+  st = XCNEWVEC (basic_block, rslt_max);
+  rslt[tv++] = st[sp++] = bb;
+  MARK_VISITED (bb);
+  while (sp)
+    {
+      edge e;
+      edge_iterator ei;
+      lbb = st[--sp];
+      if (reverse)
+       {
+         FOR_EACH_EDGE (e, ei, lbb->preds)
+           if (!VISITED_P (e->src) && predicate (e->src, data))
+             {
+               gcc_assert (tv != rslt_max);
+               rslt[tv++] = st[sp++] = e->src;
+               MARK_VISITED (e->src);
+             }
+       }
+      else
+       {
+         FOR_EACH_EDGE (e, ei, lbb->succs)
+           if (!VISITED_P (e->dest) && predicate (e->dest, data))
+             {
+               gcc_assert (tv != rslt_max);
+               rslt[tv++] = st[sp++] = e->dest;
+               MARK_VISITED (e->dest);
+             }
+       }
+    }
+  free (st);
+  for (sp = 0; sp < tv; sp++)
+    UNMARK_VISITED (rslt[sp]);
+  return tv;
+#undef MARK_VISITED
+#undef UNMARK_VISITED
+#undef VISITED_P
+}
+
+
+/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
+
+   This algorithm can be found in Timothy Harvey's PhD thesis, at
+   http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
+   dominance algorithms.
+
+   First, we identify each join point, j (any node with more than one
+   incoming edge is a join point).
+
+   We then examine each predecessor, p, of j and walk up the dominator tree
+   starting at p.
+
+   We stop the walk when we reach j's immediate dominator - j is in the
+   dominance frontier of each of  the nodes in the walk, except for j's
+   immediate dominator. Intuitively, all of the rest of j's dominators are
+   shared by j's predecessors as well.
+   Since they dominate j, they will not have j in their dominance frontiers.
+
+   The number of nodes touched by this algorithm is equal to the size
+   of the dominance frontiers, no more, no less.
+*/
+
+
+static void
+compute_dominance_frontiers_1 (bitmap *frontiers)
+{
+  edge p;
+  edge_iterator ei;
+  basic_block b;
+  FOR_EACH_BB (b)
+    {
+      if (EDGE_COUNT (b->preds) >= 2)
+       {
+         FOR_EACH_EDGE (p, ei, b->preds)
+           {
+             basic_block runner = p->src;
+             basic_block domsb;
+             if (runner == ENTRY_BLOCK_PTR)
+               continue;
+
+             domsb = get_immediate_dominator (CDI_DOMINATORS, b);
+             while (runner != domsb)
+               {
+                 if (bitmap_bit_p (frontiers[runner->index], b->index))
+                   break;
+                 bitmap_set_bit (frontiers[runner->index],
+                                 b->index);
+                 runner = get_immediate_dominator (CDI_DOMINATORS,
+                                                   runner);
+               }
+           }
+       }
+    }
+}
+
+
+void
+compute_dominance_frontiers (bitmap *frontiers)
+{
+  timevar_push (TV_DOM_FRONTIERS);
+
+  compute_dominance_frontiers_1 (frontiers);
+
+  timevar_pop (TV_DOM_FRONTIERS);
+}
+
+/* Given a set of blocks with variable definitions (DEF_BLOCKS),
+   return a bitmap with all the blocks in the iterated dominance
+   frontier of the blocks in DEF_BLOCKS.  DFS contains dominance
+   frontier information as returned by compute_dominance_frontiers.
+
+   The resulting set of blocks are the potential sites where PHI nodes
+   are needed.  The caller is responsible for freeing the memory
+   allocated for the return value.  */
+
+bitmap
+compute_idf (bitmap def_blocks, bitmap *dfs)
+{
+  bitmap_iterator bi;
+  unsigned bb_index, i;
+  VEC(int,heap) *work_stack;
+  bitmap phi_insertion_points;
+
+  work_stack = VEC_alloc (int, heap, n_basic_blocks);
+  phi_insertion_points = BITMAP_ALLOC (NULL);
+
+  /* Seed the work list with all the blocks in DEF_BLOCKS.  We use
+     VEC_quick_push here for speed.  This is safe because we know that
+     the number of definition blocks is no greater than the number of
+     basic blocks, which is the initial capacity of WORK_STACK.  */
+  EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
+    VEC_quick_push (int, work_stack, bb_index);
+
+  /* Pop a block off the worklist, add every block that appears in
+     the original block's DF that we have not already processed to
+     the worklist.  Iterate until the worklist is empty.   Blocks
+     which are added to the worklist are potential sites for
+     PHI nodes.  */
+  while (VEC_length (int, work_stack) > 0)
+    {
+      bb_index = VEC_pop (int, work_stack);
+
+      /* Since the registration of NEW -> OLD name mappings is done
+        separately from the call to update_ssa, when updating the SSA
+        form, the basic blocks where new and/or old names are defined
+        may have disappeared by CFG cleanup calls.  In this case,
+        we may pull a non-existing block from the work stack.  */
+      gcc_assert (bb_index < (unsigned) last_basic_block);
+
+      EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
+                                     0, i, bi)
+       {
+         /* Use a safe push because if there is a definition of VAR
+            in every basic block, then WORK_STACK may eventually have
+            more than N_BASIC_BLOCK entries.  */
+         VEC_safe_push (int, heap, work_stack, i);
+         bitmap_set_bit (phi_insertion_points, i);
+       }
+    }
+
+  VEC_free (int, heap, work_stack);
+
+  return phi_insertion_points;
+}
+
+