OSDN Git Service

環境情報を削除
[stux/ultron.git] / venv / Include / objimpl.h
diff --git a/venv/Include/objimpl.h b/venv/Include/objimpl.h
deleted file mode 100644 (file)
index 746f9c9..0000000
+++ /dev/null
@@ -1,370 +0,0 @@
-/* The PyObject_ memory family:  high-level object memory interfaces.
-   See pymem.h for the low-level PyMem_ family.
-*/
-
-#ifndef Py_OBJIMPL_H
-#define Py_OBJIMPL_H
-
-#include "pymem.h"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* BEWARE:
-
-   Each interface exports both functions and macros.  Extension modules should
-   use the functions, to ensure binary compatibility across Python versions.
-   Because the Python implementation is free to change internal details, and
-   the macros may (or may not) expose details for speed, if you do use the
-   macros you must recompile your extensions with each Python release.
-
-   Never mix calls to PyObject_ memory functions with calls to the platform
-   malloc/realloc/ calloc/free, or with calls to PyMem_.
-*/
-
-/*
-Functions and macros for modules that implement new object types.
-
- - PyObject_New(type, typeobj) allocates memory for a new object of the given
-   type, and initializes part of it.  'type' must be the C structure type used
-   to represent the object, and 'typeobj' the address of the corresponding
-   type object.  Reference count and type pointer are filled in; the rest of
-   the bytes of the object are *undefined*!  The resulting expression type is
-   'type *'.  The size of the object is determined by the tp_basicsize field
-   of the type object.
-
- - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
-   object with room for n items.  In addition to the refcount and type pointer
-   fields, this also fills in the ob_size field.
-
- - PyObject_Del(op) releases the memory allocated for an object.  It does not
-   run a destructor -- it only frees the memory.  PyObject_Free is identical.
-
- - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
-   allocate memory.  Instead of a 'type' parameter, they take a pointer to a
-   new object (allocated by an arbitrary allocator), and initialize its object
-   header fields.
-
-Note that objects created with PyObject_{New, NewVar} are allocated using the
-specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
-enabled.  In addition, a special debugging allocator is used if PYMALLOC_DEBUG
-is also #defined.
-
-In case a specific form of memory management is needed (for example, if you
-must use the platform malloc heap(s), or shared memory, or C++ local storage or
-operator new), you must first allocate the object with your custom allocator,
-then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
-specific fields:  reference count, type pointer, possibly others.  You should
-be aware that Python no control over these objects because they don't
-cooperate with the Python memory manager.  Such objects may not be eligible
-for automatic garbage collection and you have to make sure that they are
-released accordingly whenever their destructor gets called (cf. the specific
-form of memory management you're using).
-
-Unless you have specific memory management requirements, use
-PyObject_{New, NewVar, Del}.
-*/
-
-/*
- * Raw object memory interface
- * ===========================
- */
-
-/* Functions to call the same malloc/realloc/free as used by Python's
-   object allocator.  If WITH_PYMALLOC is enabled, these may differ from
-   the platform malloc/realloc/free.  The Python object allocator is
-   designed for fast, cache-conscious allocation of many "small" objects,
-   and with low hidden memory overhead.
-
-   PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
-
-   PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
-   PyObject_Realloc(p != NULL, 0) does not return  NULL, or free the memory
-   at p.
-
-   Returned pointers must be checked for NULL explicitly; no action is
-   performed on failure other than to return NULL (no warning it printed, no
-   exception is set, etc).
-
-   For allocating objects, use PyObject_{New, NewVar} instead whenever
-   possible.  The PyObject_{Malloc, Realloc, Free} family is exposed
-   so that you can exploit Python's small-block allocator for non-object
-   uses.  If you must use these routines to allocate object memory, make sure
-   the object gets initialized via PyObject_{Init, InitVar} after obtaining
-   the raw memory.
-*/
-PyAPI_FUNC(void *) PyObject_Malloc(size_t size);
-#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03050000
-PyAPI_FUNC(void *) PyObject_Calloc(size_t nelem, size_t elsize);
-#endif
-PyAPI_FUNC(void *) PyObject_Realloc(void *ptr, size_t new_size);
-PyAPI_FUNC(void) PyObject_Free(void *ptr);
-
-#ifndef Py_LIMITED_API
-/* This function returns the number of allocated memory blocks, regardless of size */
-PyAPI_FUNC(Py_ssize_t) _Py_GetAllocatedBlocks(void);
-#endif /* !Py_LIMITED_API */
-
-/* Macros */
-#ifdef WITH_PYMALLOC
-#ifndef Py_LIMITED_API
-PyAPI_FUNC(void) _PyObject_DebugMallocStats(FILE *out);
-#endif /* #ifndef Py_LIMITED_API */
-#endif
-
-/* Macros */
-#define PyObject_MALLOC         PyObject_Malloc
-#define PyObject_REALLOC        PyObject_Realloc
-#define PyObject_FREE           PyObject_Free
-#define PyObject_Del            PyObject_Free
-#define PyObject_DEL            PyObject_Free
-
-
-/*
- * Generic object allocator interface
- * ==================================
- */
-
-/* Functions */
-PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
-PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
-                                                 PyTypeObject *, Py_ssize_t);
-PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
-PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
-
-#define PyObject_New(type, typeobj) \
-                ( (type *) _PyObject_New(typeobj) )
-#define PyObject_NewVar(type, typeobj, n) \
-                ( (type *) _PyObject_NewVar((typeobj), (n)) )
-
-/* Macros trading binary compatibility for speed. See also pymem.h.
-   Note that these macros expect non-NULL object pointers.*/
-#define PyObject_INIT(op, typeobj) \
-    ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
-#define PyObject_INIT_VAR(op, typeobj, size) \
-    ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
-
-#define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
-
-/* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
-   vrbl-size object with nitems items, exclusive of gc overhead (if any).  The
-   value is rounded up to the closest multiple of sizeof(void *), in order to
-   ensure that pointer fields at the end of the object are correctly aligned
-   for the platform (this is of special importance for subclasses of, e.g.,
-   str or int, so that pointers can be stored after the embedded data).
-
-   Note that there's no memory wastage in doing this, as malloc has to
-   return (at worst) pointer-aligned memory anyway.
-*/
-#if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
-#   error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
-#endif
-
-#define _PyObject_VAR_SIZE(typeobj, nitems)     \
-    _Py_SIZE_ROUND_UP((typeobj)->tp_basicsize + \
-        (nitems)*(typeobj)->tp_itemsize,        \
-        SIZEOF_VOID_P)
-
-#define PyObject_NEW(type, typeobj) \
-( (type *) PyObject_Init( \
-    (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
-
-#define PyObject_NEW_VAR(type, typeobj, n) \
-( (type *) PyObject_InitVar( \
-      (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
-      (typeobj), (n)) )
-
-/* This example code implements an object constructor with a custom
-   allocator, where PyObject_New is inlined, and shows the important
-   distinction between two steps (at least):
-       1) the actual allocation of the object storage;
-       2) the initialization of the Python specific fields
-      in this storage with PyObject_{Init, InitVar}.
-
-   PyObject *
-   YourObject_New(...)
-   {
-       PyObject *op;
-
-       op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
-       if (op == NULL)
-       return PyErr_NoMemory();
-
-       PyObject_Init(op, &YourTypeStruct);
-
-       op->ob_field = value;
-       ...
-       return op;
-   }
-
-   Note that in C++, the use of the new operator usually implies that
-   the 1st step is performed automatically for you, so in a C++ class
-   constructor you would start directly with PyObject_Init/InitVar
-*/
-
-#ifndef Py_LIMITED_API
-typedef struct {
-    /* user context passed as the first argument to the 2 functions */
-    void *ctx;
-
-    /* allocate an arena of size bytes */
-    void* (*alloc) (void *ctx, size_t size);
-
-    /* free an arena */
-    void (*free) (void *ctx, void *ptr, size_t size);
-} PyObjectArenaAllocator;
-
-/* Get the arena allocator. */
-PyAPI_FUNC(void) PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator);
-
-/* Set the arena allocator. */
-PyAPI_FUNC(void) PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator);
-#endif
-
-
-/*
- * Garbage Collection Support
- * ==========================
- */
-
-/* C equivalent of gc.collect() which ignores the state of gc.enabled. */
-PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
-
-#ifndef Py_LIMITED_API
-PyAPI_FUNC(Py_ssize_t) _PyGC_CollectNoFail(void);
-PyAPI_FUNC(Py_ssize_t) _PyGC_CollectIfEnabled(void);
-#endif
-
-/* Test if a type has a GC head */
-#define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
-
-/* Test if an object has a GC head */
-#define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
-    (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
-
-PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
-#define PyObject_GC_Resize(type, op, n) \
-                ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
-
-/* GC information is stored BEFORE the object structure. */
-#ifndef Py_LIMITED_API
-typedef union _gc_head {
-    struct {
-        union _gc_head *gc_next;
-        union _gc_head *gc_prev;
-        Py_ssize_t gc_refs;
-    } gc;
-    double dummy;  /* force worst-case alignment */
-} PyGC_Head;
-
-extern PyGC_Head *_PyGC_generation0;
-
-#define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
-
-/* Bit 0 is set when tp_finalize is called */
-#define _PyGC_REFS_MASK_FINALIZED  (1 << 0)
-/* The (N-1) most significant bits contain the gc state / refcount */
-#define _PyGC_REFS_SHIFT           (1)
-#define _PyGC_REFS_MASK            (((size_t) -1) << _PyGC_REFS_SHIFT)
-
-#define _PyGCHead_REFS(g) ((g)->gc.gc_refs >> _PyGC_REFS_SHIFT)
-#define _PyGCHead_SET_REFS(g, v) do { \
-    (g)->gc.gc_refs = ((g)->gc.gc_refs & ~_PyGC_REFS_MASK) \
-        | (((size_t)(v)) << _PyGC_REFS_SHIFT);             \
-    } while (0)
-#define _PyGCHead_DECREF(g) ((g)->gc.gc_refs -= 1 << _PyGC_REFS_SHIFT)
-
-#define _PyGCHead_FINALIZED(g) (((g)->gc.gc_refs & _PyGC_REFS_MASK_FINALIZED) != 0)
-#define _PyGCHead_SET_FINALIZED(g, v) do {  \
-    (g)->gc.gc_refs = ((g)->gc.gc_refs & ~_PyGC_REFS_MASK_FINALIZED) \
-        | (v != 0); \
-    } while (0)
-
-#define _PyGC_FINALIZED(o) _PyGCHead_FINALIZED(_Py_AS_GC(o))
-#define _PyGC_SET_FINALIZED(o, v) _PyGCHead_SET_FINALIZED(_Py_AS_GC(o), v)
-
-#define _PyGC_REFS(o) _PyGCHead_REFS(_Py_AS_GC(o))
-
-#define _PyGC_REFS_UNTRACKED                    (-2)
-#define _PyGC_REFS_REACHABLE                    (-3)
-#define _PyGC_REFS_TENTATIVELY_UNREACHABLE      (-4)
-
-/* Tell the GC to track this object.  NB: While the object is tracked the
- * collector it must be safe to call the ob_traverse method. */
-#define _PyObject_GC_TRACK(o) do { \
-    PyGC_Head *g = _Py_AS_GC(o); \
-    if (_PyGCHead_REFS(g) != _PyGC_REFS_UNTRACKED) \
-        Py_FatalError("GC object already tracked"); \
-    _PyGCHead_SET_REFS(g, _PyGC_REFS_REACHABLE); \
-    g->gc.gc_next = _PyGC_generation0; \
-    g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
-    g->gc.gc_prev->gc.gc_next = g; \
-    _PyGC_generation0->gc.gc_prev = g; \
-    } while (0);
-
-/* Tell the GC to stop tracking this object.
- * gc_next doesn't need to be set to NULL, but doing so is a good
- * way to provoke memory errors if calling code is confused.
- */
-#define _PyObject_GC_UNTRACK(o) do { \
-    PyGC_Head *g = _Py_AS_GC(o); \
-    assert(_PyGCHead_REFS(g) != _PyGC_REFS_UNTRACKED); \
-    _PyGCHead_SET_REFS(g, _PyGC_REFS_UNTRACKED); \
-    g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
-    g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
-    g->gc.gc_next = NULL; \
-    } while (0);
-
-/* True if the object is currently tracked by the GC. */
-#define _PyObject_GC_IS_TRACKED(o) \
-    (_PyGC_REFS(o) != _PyGC_REFS_UNTRACKED)
-
-/* True if the object may be tracked by the GC in the future, or already is.
-   This can be useful to implement some optimizations. */
-#define _PyObject_GC_MAY_BE_TRACKED(obj) \
-    (PyObject_IS_GC(obj) && \
-        (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj)))
-#endif /* Py_LIMITED_API */
-
-#ifndef Py_LIMITED_API
-PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t size);
-PyAPI_FUNC(PyObject *) _PyObject_GC_Calloc(size_t size);
-#endif /* !Py_LIMITED_API */
-PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
-PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
-PyAPI_FUNC(void) PyObject_GC_Track(void *);
-PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
-PyAPI_FUNC(void) PyObject_GC_Del(void *);
-
-#define PyObject_GC_New(type, typeobj) \
-                ( (type *) _PyObject_GC_New(typeobj) )
-#define PyObject_GC_NewVar(type, typeobj, n) \
-                ( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
-
-
-/* Utility macro to help write tp_traverse functions.
- * To use this macro, the tp_traverse function must name its arguments
- * "visit" and "arg".  This is intended to keep tp_traverse functions
- * looking as much alike as possible.
- */
-#define Py_VISIT(op)                                                    \
-    do {                                                                \
-        if (op) {                                                       \
-            int vret = visit((PyObject *)(op), arg);                    \
-            if (vret)                                                   \
-                return vret;                                            \
-        }                                                               \
-    } while (0)
-
-
-/* Test if a type supports weak references */
-#define PyType_SUPPORTS_WEAKREFS(t) ((t)->tp_weaklistoffset > 0)
-
-#define PyObject_GET_WEAKREFS_LISTPTR(o) \
-    ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
-
-#ifdef __cplusplus
-}
-#endif
-#endif /* !Py_OBJIMPL_H */