OSDN Git Service

2007-02-19 Thomas Koenig <Thomas.Koenig@online.de>
[pf3gnuchains/gcc-fork.git] / libgfortran / generated / maxloc1_8_i1.c
diff --git a/libgfortran/generated/maxloc1_8_i1.c b/libgfortran/generated/maxloc1_8_i1.c
new file mode 100644 (file)
index 0000000..f103083
--- /dev/null
@@ -0,0 +1,421 @@
+/* Implementation of the MAXLOC intrinsic
+   Copyright 2002 Free Software Foundation, Inc.
+   Contributed by Paul Brook <paul@nowt.org>
+
+This file is part of the GNU Fortran 95 runtime library (libgfortran).
+
+Libgfortran is free software; you can redistribute it and/or
+modify it under the terms of the GNU General Public
+License as published by the Free Software Foundation; either
+version 2 of the License, or (at your option) any later version.
+
+In addition to the permissions in the GNU General Public License, the
+Free Software Foundation gives you unlimited permission to link the
+compiled version of this file into combinations with other programs,
+and to distribute those combinations without any restriction coming
+from the use of this file.  (The General Public License restrictions
+do apply in other respects; for example, they cover modification of
+the file, and distribution when not linked into a combine
+executable.)
+
+Libgfortran is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public
+License along with libgfortran; see the file COPYING.  If not,
+write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+Boston, MA 02110-1301, USA.  */
+
+#include "config.h"
+#include <stdlib.h>
+#include <assert.h>
+#include <float.h>
+#include <limits.h>
+#include "libgfortran.h"
+
+
+#if defined (HAVE_GFC_INTEGER_1) && defined (HAVE_GFC_INTEGER_8)
+
+
+extern void maxloc1_8_i1 (gfc_array_i8 * const restrict, 
+       gfc_array_i1 * const restrict, const index_type * const restrict);
+export_proto(maxloc1_8_i1);
+
+void
+maxloc1_8_i1 (gfc_array_i8 * const restrict retarray, 
+       gfc_array_i1 * const restrict array, 
+       const index_type * const restrict pdim)
+{
+  index_type count[GFC_MAX_DIMENSIONS];
+  index_type extent[GFC_MAX_DIMENSIONS];
+  index_type sstride[GFC_MAX_DIMENSIONS];
+  index_type dstride[GFC_MAX_DIMENSIONS];
+  const GFC_INTEGER_1 * restrict base;
+  GFC_INTEGER_8 * restrict dest;
+  index_type rank;
+  index_type n;
+  index_type len;
+  index_type delta;
+  index_type dim;
+
+  /* Make dim zero based to avoid confusion.  */
+  dim = (*pdim) - 1;
+  rank = GFC_DESCRIPTOR_RANK (array) - 1;
+
+  len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
+  delta = array->dim[dim].stride;
+
+  for (n = 0; n < dim; n++)
+    {
+      sstride[n] = array->dim[n].stride;
+      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
+
+      if (extent[n] < 0)
+       extent[n] = 0;
+    }
+  for (n = dim; n < rank; n++)
+    {
+      sstride[n] = array->dim[n + 1].stride;
+      extent[n] =
+        array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
+
+      if (extent[n] < 0)
+       extent[n] = 0;
+    }
+
+  if (retarray->data == NULL)
+    {
+      size_t alloc_size;
+
+      for (n = 0; n < rank; n++)
+        {
+          retarray->dim[n].lbound = 0;
+          retarray->dim[n].ubound = extent[n]-1;
+          if (n == 0)
+            retarray->dim[n].stride = 1;
+          else
+            retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
+        }
+
+      retarray->offset = 0;
+      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
+
+      alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
+                  * extent[rank-1];
+
+      if (alloc_size == 0)
+       {
+         /* Make sure we have a zero-sized array.  */
+         retarray->dim[0].lbound = 0;
+         retarray->dim[0].ubound = -1;
+         return;
+       }
+      else
+       retarray->data = internal_malloc_size (alloc_size);
+    }
+  else
+    {
+      if (rank != GFC_DESCRIPTOR_RANK (retarray))
+       runtime_error ("rank of return array incorrect");
+    }
+
+  for (n = 0; n < rank; n++)
+    {
+      count[n] = 0;
+      dstride[n] = retarray->dim[n].stride;
+      if (extent[n] <= 0)
+        len = 0;
+    }
+
+  base = array->data;
+  dest = retarray->data;
+
+  while (base)
+    {
+      const GFC_INTEGER_1 * restrict src;
+      GFC_INTEGER_8 result;
+      src = base;
+      {
+
+  GFC_INTEGER_1 maxval;
+  maxval = (-GFC_INTEGER_1_HUGE-1);
+  result = 0;
+        if (len <= 0)
+         *dest = 0;
+       else
+         {
+           for (n = 0; n < len; n++, src += delta)
+             {
+
+  if (*src > maxval || !result)
+    {
+      maxval = *src;
+      result = (GFC_INTEGER_8)n + 1;
+    }
+          }
+           *dest = result;
+         }
+      }
+      /* Advance to the next element.  */
+      count[0]++;
+      base += sstride[0];
+      dest += dstride[0];
+      n = 0;
+      while (count[n] == extent[n])
+        {
+          /* When we get to the end of a dimension, reset it and increment
+             the next dimension.  */
+          count[n] = 0;
+          /* We could precalculate these products, but this is a less
+             frequently used path so probably not worth it.  */
+          base -= sstride[n] * extent[n];
+          dest -= dstride[n] * extent[n];
+          n++;
+          if (n == rank)
+            {
+              /* Break out of the look.  */
+              base = NULL;
+              break;
+            }
+          else
+            {
+              count[n]++;
+              base += sstride[n];
+              dest += dstride[n];
+            }
+        }
+    }
+}
+
+
+extern void mmaxloc1_8_i1 (gfc_array_i8 * const restrict, 
+       gfc_array_i1 * const restrict, const index_type * const restrict,
+       gfc_array_l4 * const restrict);
+export_proto(mmaxloc1_8_i1);
+
+void
+mmaxloc1_8_i1 (gfc_array_i8 * const restrict retarray, 
+       gfc_array_i1 * const restrict array, 
+       const index_type * const restrict pdim, 
+       gfc_array_l4 * const restrict mask)
+{
+  index_type count[GFC_MAX_DIMENSIONS];
+  index_type extent[GFC_MAX_DIMENSIONS];
+  index_type sstride[GFC_MAX_DIMENSIONS];
+  index_type dstride[GFC_MAX_DIMENSIONS];
+  index_type mstride[GFC_MAX_DIMENSIONS];
+  GFC_INTEGER_8 * restrict dest;
+  const GFC_INTEGER_1 * restrict base;
+  const GFC_LOGICAL_4 * restrict mbase;
+  int rank;
+  int dim;
+  index_type n;
+  index_type len;
+  index_type delta;
+  index_type mdelta;
+
+  dim = (*pdim) - 1;
+  rank = GFC_DESCRIPTOR_RANK (array) - 1;
+
+  len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
+  if (len <= 0)
+    return;
+  delta = array->dim[dim].stride;
+  mdelta = mask->dim[dim].stride;
+
+  for (n = 0; n < dim; n++)
+    {
+      sstride[n] = array->dim[n].stride;
+      mstride[n] = mask->dim[n].stride;
+      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
+
+      if (extent[n] < 0)
+       extent[n] = 0;
+
+    }
+  for (n = dim; n < rank; n++)
+    {
+      sstride[n] = array->dim[n + 1].stride;
+      mstride[n] = mask->dim[n + 1].stride;
+      extent[n] =
+        array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
+
+      if (extent[n] < 0)
+       extent[n] = 0;
+    }
+
+  if (retarray->data == NULL)
+    {
+      size_t alloc_size;
+
+      for (n = 0; n < rank; n++)
+        {
+          retarray->dim[n].lbound = 0;
+          retarray->dim[n].ubound = extent[n]-1;
+          if (n == 0)
+            retarray->dim[n].stride = 1;
+          else
+            retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
+        }
+
+      alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
+                  * extent[rank-1];
+
+      retarray->offset = 0;
+      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
+
+      if (alloc_size == 0)
+       {
+         /* Make sure we have a zero-sized array.  */
+         retarray->dim[0].lbound = 0;
+         retarray->dim[0].ubound = -1;
+         return;
+       }
+      else
+       retarray->data = internal_malloc_size (alloc_size);
+
+    }
+  else
+    {
+      if (rank != GFC_DESCRIPTOR_RANK (retarray))
+       runtime_error ("rank of return array incorrect");
+    }
+
+  for (n = 0; n < rank; n++)
+    {
+      count[n] = 0;
+      dstride[n] = retarray->dim[n].stride;
+      if (extent[n] <= 0)
+        return;
+    }
+
+  dest = retarray->data;
+  base = array->data;
+  mbase = mask->data;
+
+  if (GFC_DESCRIPTOR_SIZE (mask) != 4)
+    {
+      /* This allows the same loop to be used for all logical types.  */
+      assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
+      for (n = 0; n < rank; n++)
+        mstride[n] <<= 1;
+      mdelta <<= 1;
+      mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
+    }
+
+  while (base)
+    {
+      const GFC_INTEGER_1 * restrict src;
+      const GFC_LOGICAL_4 * restrict msrc;
+      GFC_INTEGER_8 result;
+      src = base;
+      msrc = mbase;
+      {
+
+  GFC_INTEGER_1 maxval;
+  maxval = (-GFC_INTEGER_1_HUGE-1);
+  result = 0;
+        if (len <= 0)
+         *dest = 0;
+       else
+         {
+           for (n = 0; n < len; n++, src += delta, msrc += mdelta)
+             {
+
+  if (*msrc && (*src > maxval || !result))
+    {
+      maxval = *src;
+      result = (GFC_INTEGER_8)n + 1;
+    }
+              }
+           *dest = result;
+         }
+      }
+      /* Advance to the next element.  */
+      count[0]++;
+      base += sstride[0];
+      mbase += mstride[0];
+      dest += dstride[0];
+      n = 0;
+      while (count[n] == extent[n])
+        {
+          /* When we get to the end of a dimension, reset it and increment
+             the next dimension.  */
+          count[n] = 0;
+          /* We could precalculate these products, but this is a less
+             frequently used path so probably not worth it.  */
+          base -= sstride[n] * extent[n];
+          mbase -= mstride[n] * extent[n];
+          dest -= dstride[n] * extent[n];
+          n++;
+          if (n == rank)
+            {
+              /* Break out of the look.  */
+              base = NULL;
+              break;
+            }
+          else
+            {
+              count[n]++;
+              base += sstride[n];
+              mbase += mstride[n];
+              dest += dstride[n];
+            }
+        }
+    }
+}
+
+
+extern void smaxloc1_8_i1 (gfc_array_i8 * const restrict, 
+       gfc_array_i1 * const restrict, const index_type * const restrict,
+       GFC_LOGICAL_4 *);
+export_proto(smaxloc1_8_i1);
+
+void
+smaxloc1_8_i1 (gfc_array_i8 * const restrict retarray, 
+       gfc_array_i1 * const restrict array, 
+       const index_type * const restrict pdim, 
+       GFC_LOGICAL_4 * mask)
+{
+  index_type rank;
+  index_type n;
+  index_type dstride;
+  GFC_INTEGER_8 *dest;
+
+  if (*mask)
+    {
+      maxloc1_8_i1 (retarray, array, pdim);
+      return;
+    }
+    rank = GFC_DESCRIPTOR_RANK (array);
+  if (rank <= 0)
+    runtime_error ("Rank of array needs to be > 0");
+
+  if (retarray->data == NULL)
+    {
+      retarray->dim[0].lbound = 0;
+      retarray->dim[0].ubound = rank-1;
+      retarray->dim[0].stride = 1;
+      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
+      retarray->offset = 0;
+      retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
+    }
+  else
+    {
+      if (GFC_DESCRIPTOR_RANK (retarray) != 1)
+       runtime_error ("rank of return array does not equal 1");
+
+      if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
+        runtime_error ("dimension of return array incorrect");
+    }
+
+    dstride = retarray->dim[0].stride;
+    dest = retarray->data;
+
+    for (n = 0; n < rank; n++)
+      dest[n * dstride] = 0 ;
+}
+
+#endif