OSDN Git Service

PR target/23832
[pf3gnuchains/gcc-fork.git] / gcc / tree-vrp.c
index e6087a5..7642ced 100644 (file)
@@ -16,8 +16,8 @@ GNU General Public License for more details.
 
 You should have received a copy of the GNU General Public License
 along with GCC; see the file COPYING.  If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA.  */
+the Free Software Foundation, 51 Franklin Street, Fifth Floor,
+Boston, MA 02110-1301, USA.  */
 
 #include "config.h"
 #include "system.h"
@@ -94,76 +94,6 @@ static sbitmap blocks_visited;
    of values that SSA name N_I may take.  */
 static value_range_t **vr_value;
 
-/* Given a comparison code, return its opposite.  Note that this is *not*
-   the same as inverting its truth value (invert_tree_comparison).  Here we
-   just want to literally flip the comparison around.
-   
-   So, '<' gets '>', '<=' gets '>='.  Both '==' and '!=' are returned
-   unchanged.  */
-
-static enum tree_code
-opposite_comparison (enum tree_code code)
-{
-  switch (code)
-    {
-    case EQ_EXPR:
-    case NE_EXPR:
-    case ORDERED_EXPR:
-    case UNORDERED_EXPR:
-    case LTGT_EXPR:
-    case UNEQ_EXPR:
-      return code;
-    case GT_EXPR:
-      return LT_EXPR;
-    case GE_EXPR:
-      return LE_EXPR;
-    case LT_EXPR:
-      return GT_EXPR;
-    case LE_EXPR:
-      return GE_EXPR;
-    case UNGT_EXPR:
-      return UNLT_EXPR;
-    case UNGE_EXPR:
-      return UNLE_EXPR;
-    case UNLT_EXPR:
-      return UNGT_EXPR;
-    case UNLE_EXPR:
-      return UNGE_EXPR;
-    default:
-      gcc_unreachable ();
-    }
-}
-
-
-/* Return true if EXPR computes a non-zero value.  */
-
-bool
-expr_computes_nonzero (tree expr)
-{
-  /* Type casts won't change anything, so just strip them.  */
-  STRIP_NOPS (expr);
-
-  /* Calling alloca, guarantees that the value is non-NULL.  */
-  if (alloca_call_p (expr))
-    return true;
-
-  /* The address of a non-weak symbol is never NULL, unless the user
-     has requested not to remove NULL pointer checks.  */
-  if (flag_delete_null_pointer_checks
-      && TREE_CODE (expr) == ADDR_EXPR
-      && DECL_P (TREE_OPERAND (expr, 0))
-      && !DECL_WEAK (TREE_OPERAND (expr, 0)))
-    return true;
-
-  /* IOR of any value with a nonzero value will result in a nonzero
-     value.  */
-  if (TREE_CODE (expr) == BIT_IOR_EXPR
-      && integer_nonzerop (TREE_OPERAND (expr, 1)))
-    return true;
-
-  return false;
-}
-
 
 /* Return true if ARG is marked with the nonnull attribute in the
    current function signature.  */
@@ -334,7 +264,7 @@ get_value_range (tree var)
   /* If VAR is a default definition, the variable can take any value
      in VAR's type.  */
   sym = SSA_NAME_VAR (var);
-  if (var == var_ann (sym)->default_def)
+  if (var == default_def (sym))
     {
       /* Try to use the "nonnull" attribute to create ~[0, 0]
         anti-ranges for pointers.  Note that this is only valid with
@@ -433,13 +363,13 @@ symbolic_range_p (value_range_t *vr)
 }
 
 
-/* Like expr_computes_nonzero, but this function uses value ranges
+/* Like tree_expr_nonzero_p, but this function uses value ranges
    obtained so far.  */
 
 static bool
 vrp_expr_computes_nonzero (tree expr)
 {
-  if (expr_computes_nonzero (expr))
+  if (tree_expr_nonzero_p (expr))
     return true;
 
   /* If we have an expression of the form &X->a, then the expression
@@ -634,7 +564,23 @@ compare_values (tree val1, tree val2)
 
 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
           0 if VAL is not inside VR,
-        -2 if we cannot tell either way.  */
+        -2 if we cannot tell either way.
+
+   FIXME, the current semantics of this functions are a bit quirky
+         when taken in the context of VRP.  In here we do not care
+         about VR's type.  If VR is the anti-range ~[3, 5] the call
+         value_inside_range (4, VR) will return 1.
+
+         This is counter-intuitive in a strict sense, but the callers
+         currently expect this.  They are calling the function
+         merely to determine whether VR->MIN <= VAL <= VR->MAX.  The
+         callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
+         themselves.
+
+         This also applies to value_ranges_intersect_p and
+         range_includes_zero_p.  The semantics of VR_RANGE and
+         VR_ANTI_RANGE should be encoded here, but that also means
+         adapting the users of these functions to the new semantics.  */
 
 static inline int
 value_inside_range (tree val, value_range_t *vr)
@@ -666,7 +612,11 @@ value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
 }
 
 
-/* Return true if VR includes the value zero, false otheriwse.  */
+/* Return true if VR includes the value zero, false otherwise.  FIXME,
+   currently this will return false for an anti-range like ~[-4, 3].
+   This will be wrong when the semantics of value_inside_range are
+   modified (currently the users of this function expect these
+   semantics).  */
 
 static inline bool
 range_includes_zero_p (value_range_t *vr)
@@ -711,7 +661,7 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
         to flip around the comparison code to create the proper range
         for VAR.  */
       limit = TREE_OPERAND (cond, 0);
-      cond_code = opposite_comparison (TREE_CODE (cond));
+      cond_code = swap_tree_comparison (TREE_CODE (cond));
     }
 
   type = TREE_TYPE (limit);
@@ -844,17 +794,32 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
         LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
         not imply that VAR's range is [0, 0].  So, in the case of
         anti-ranges, we just assert the inequality using LIMIT and
-        not its anti-range.  */
-      if (limit_vr == NULL
-         || limit_vr->type == VR_ANTI_RANGE)
+        not its anti-range.
+
+        If LIMIT_VR is a range, we can only use it to build a new
+        anti-range if LIMIT_VR is a single-valued range.  For
+        instance, if LIMIT_VR is [0, 1], the predicate
+        VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
+        Rather, it means that for value 0 VAR should be ~[0, 0]
+        and for value 1, VAR should be ~[1, 1].  We cannot
+        represent these ranges.
+
+        The only situation in which we can build a valid
+        anti-range is when LIMIT_VR is a single-valued range
+        (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX).  In that case, 
+        build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX].  */
+      if (limit_vr
+         && limit_vr->type == VR_RANGE
+         && compare_values (limit_vr->min, limit_vr->max) == 0)
        {
-         min = limit;
-         max = limit;
+         min = limit_vr->min;
+         max = limit_vr->max;
        }
       else
        {
-         min = limit_vr->min;
-         max = limit_vr->max;
+         /* In any other case, we cannot use LIMIT's range to build a
+            valid anti-range.  */
+         min = max = limit;
        }
 
       /* If MIN and MAX cover the whole range for their type, then
@@ -884,7 +849,7 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
       if (cond_code == LT_EXPR)
        {
          tree one = build_int_cst (type, 1);
-         max = fold (build (MINUS_EXPR, type, max, one));
+         max = fold_build2 (MINUS_EXPR, type, max, one);
        }
 
       set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
@@ -907,7 +872,7 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
       if (cond_code == GT_EXPR)
        {
          tree one = build_int_cst (type, 1);
-         min = fold (build (PLUS_EXPR, type, min, one));
+         min = fold_build2 (PLUS_EXPR, type, min, one);
        }
 
       set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
@@ -915,29 +880,93 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
   else
     gcc_unreachable ();
 
-  /* If VAR already had a known range and the two ranges have a
-     non-empty intersection, we can refine the resulting range.
-     Since the assert expression creates an equivalency and at the
-     same time it asserts a predicate, we can take the intersection of
-     the two ranges to get better precision.  */
+  /* If VAR already had a known range, it may happen that the new
+     range we have computed and VAR's range are not compatible.  For
+     instance,
+
+       if (p_5 == NULL)
+         p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
+         x_7 = p_6->fld;
+         p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
+
+     While the above comes from a faulty program, it will cause an ICE
+     later because p_8 and p_6 will have incompatible ranges and at
+     the same time will be considered equivalent.  A similar situation
+     would arise from
+
+       if (i_5 > 10)
+         i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
+         if (i_5 < 5)
+           i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
+
+     Again i_6 and i_7 will have incompatible ranges.  It would be
+     pointless to try and do anything with i_7's range because
+     anything dominated by 'if (i_5 < 5)' will be optimized away.
+     Note, due to the wa in which simulation proceeds, the statement
+     i_7 = ASSERT_EXPR <...> we would never be visited because the
+     conditiona 'if (i_5 < 5)' always evaluates to false.  However,
+     this extra check does not hurt and may protect against future
+     changes to VRP that may get into a situation similar to the
+     NULL pointer dereference example.
+
+     Note that these compatibility tests are only needed when dealing
+     with ranges or a mix of range and anti-range.  If VAR_VR and VR_P
+     are both anti-ranges, they will always be compatible, because two
+     anti-ranges will always have a non-empty intersection.  */
+
   var_vr = get_value_range (var);
-  if (var_vr->type == VR_RANGE
-      && vr_p->type == VR_RANGE
-      && value_ranges_intersect_p (var_vr, vr_p))
+
+  /* We may need to make adjustments when VR_P and VAR_VR are numeric
+     ranges or anti-ranges.  */
+  if (vr_p->type == VR_VARYING
+      || vr_p->type == VR_UNDEFINED
+      || var_vr->type == VR_VARYING
+      || var_vr->type == VR_UNDEFINED
+      || symbolic_range_p (vr_p)
+      || symbolic_range_p (var_vr))
+    return;
+
+  if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
     {
-      /* Use the larger of the two minimums.  */
-      if (compare_values (vr_p->min, var_vr->min) == -1)
-       min = var_vr->min;
-      else
-       min = vr_p->min;
+      /* If the two ranges have a non-empty intersection, we can
+        refine the resulting range.  Since the assert expression
+        creates an equivalency and at the same time it asserts a
+        predicate, we can take the intersection of the two ranges to
+        get better precision.  */
+      if (value_ranges_intersect_p (var_vr, vr_p))
+       {
+         /* Use the larger of the two minimums.  */
+         if (compare_values (vr_p->min, var_vr->min) == -1)
+           min = var_vr->min;
+         else
+           min = vr_p->min;
 
-      /* Use the smaller of the two maximums.  */
-      if (compare_values (vr_p->max, var_vr->max) == 1)
-       max = var_vr->max;
-      else
-       max = vr_p->max;
+         /* Use the smaller of the two maximums.  */
+         if (compare_values (vr_p->max, var_vr->max) == 1)
+           max = var_vr->max;
+         else
+           max = vr_p->max;
 
-      set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
+         set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
+       }
+      else
+       {
+         /* The two ranges do not intersect, set the new range to
+            VARYING, because we will not be able to do anything
+            meaningful with it.  */
+         set_value_range_to_varying (vr_p);
+       }
+    }
+  else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
+           || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
+    {
+      /* A range and an anti-range will cancel each other only if
+        their ends are the same.  For instance, in the example above,
+        p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
+        so VR_P should be set to VR_VARYING.  */
+      if (compare_values (var_vr->min, vr_p->min) == 0
+         && compare_values (var_vr->max, vr_p->max) == 0)
+       set_value_range_to_varying (vr_p);
     }
 }
 
@@ -969,6 +998,82 @@ extract_range_from_ssa_name (value_range_t *vr, tree var)
 }
 
 
+/* Wrapper around int_const_binop.  If the operation overflows and we
+   are not using wrapping arithmetic, then adjust the result to be
+   -INF or +INF depending on CODE, VAL1 and VAL2.  */
+
+static inline tree
+vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
+{
+  tree res;
+
+  if (flag_wrapv)
+    return int_const_binop (code, val1, val2, 0);
+
+  /* If we are not using wrapping arithmetic, operate symbolically
+     on -INF and +INF.  */
+  res = int_const_binop (code, val1, val2, 0);
+
+  if (TYPE_UNSIGNED (TREE_TYPE (val1)))
+    {
+      int checkz = compare_values (res, val1);
+
+      /* Ensure that res = val1 + val2 >= val1
+         or that res = val1 - val2 <= val1.  */
+      if ((code == PLUS_EXPR && !(checkz == 1 || checkz == 0))
+          || (code == MINUS_EXPR && !(checkz == 0 || checkz == -1)))
+       {
+         res = copy_node (res);
+         TREE_OVERFLOW (res) = 1;
+       }
+    }
+  /* If the operation overflowed but neither VAL1 nor VAL2 are
+     overflown, return -INF or +INF depending on the operation
+     and the combination of signs of the operands.  */
+  else if (TREE_OVERFLOW (res)
+          && !TREE_OVERFLOW (val1)
+          && !TREE_OVERFLOW (val2))
+    {
+      int sgn1 = tree_int_cst_sgn (val1);
+      int sgn2 = tree_int_cst_sgn (val2);
+
+      /* Notice that we only need to handle the restricted set of
+        operations handled by extract_range_from_binary_expr.
+        Among them, only multiplication, addition and subtraction
+        can yield overflow without overflown operands because we
+        are working with integral types only... except in the
+        case VAL1 = -INF and VAL2 = -1 which overflows to +INF
+        for division too.  */
+
+      /* For multiplication, the sign of the overflow is given
+        by the comparison of the signs of the operands.  */
+      if ((code == MULT_EXPR && sgn1 == sgn2)
+          /* For addition, the operands must be of the same sign
+            to yield an overflow.  Its sign is therefore that
+            of one of the operands, for example the first.  */
+         || (code == PLUS_EXPR && sgn1 > 0)
+         /* For subtraction, the operands must be of different
+            signs to yield an overflow.  Its sign is therefore
+            that of the first operand or the opposite of that
+            of the second operand.  A first operand of 0 counts
+            as positive here, for the corner case 0 - (-INF),
+            which overflows, but must yield +INF.  */
+         || (code == MINUS_EXPR && sgn1 >= 0)
+         /* For division, the only case is -INF / -1 = +INF.  */
+         || code == TRUNC_DIV_EXPR
+         || code == FLOOR_DIV_EXPR
+         || code == CEIL_DIV_EXPR
+         || code == EXACT_DIV_EXPR
+         || code == ROUND_DIV_EXPR)
+       return TYPE_MAX_VALUE (TREE_TYPE (res));
+      else
+       return TYPE_MIN_VALUE (TREE_TYPE (res));
+    }
+
+  return res;
+}
+
+
 /* Extract range information from a binary expression EXPR based on
    the ranges of each of its operands and the expression code.  */
 
@@ -1052,7 +1157,14 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
         ivopts is generating expressions with pointer multiplication
         in them.  */
       if (code == PLUS_EXPR)
-       set_value_range_to_nonnull (vr, TREE_TYPE (expr));
+       {
+         if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
+           set_value_range_to_nonnull (vr, TREE_TYPE (expr));
+         else if (range_is_null (&vr0) && range_is_null (&vr1))
+           set_value_range_to_null (vr, TREE_TYPE (expr));
+         else
+           set_value_range_to_varying (vr);
+       }
       else
        {
          /* Subtracting from a pointer, may yield 0, so just drop the
@@ -1076,139 +1188,147 @@ extract_range_from_binary_expr (value_range_t *vr, tree expr)
       max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
     }
   else if (code == PLUS_EXPR
-          || code == MULT_EXPR
           || code == MIN_EXPR
           || code == MAX_EXPR)
     {
+      /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
+        VR_VARYING.  It would take more effort to compute a precise
+        range for such a case.  For example, if we have op0 == 1 and
+        op1 == -1 with their ranges both being ~[0,0], we would have
+        op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
+        Note that we are guaranteed to have vr0.type == vr1.type at
+        this point.  */
+      if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
+       {
+         set_value_range_to_varying (vr);
+         return;
+       }
+
       /* For operations that make the resulting range directly
         proportional to the original ranges, apply the operation to
         the same end of each range.  */
-      min = int_const_binop (code, vr0.min, vr1.min, 0);
-      max = int_const_binop (code, vr0.max, vr1.max, 0);
+      min = vrp_int_const_binop (code, vr0.min, vr1.min);
+      max = vrp_int_const_binop (code, vr0.max, vr1.max);
     }
-  else if (code == TRUNC_DIV_EXPR
+  else if (code == MULT_EXPR
+          || code == TRUNC_DIV_EXPR
           || code == FLOOR_DIV_EXPR
           || code == CEIL_DIV_EXPR
           || code == EXACT_DIV_EXPR
           || code == ROUND_DIV_EXPR)
     {
-      tree zero;
-
-      /* Divisions are a bit tricky to handle, depending on the mix of
-        signs we have in the two range, we will need to divide
-        different values to get the minimum and maximum values for
-        the new range.  If VR1 includes zero, the result is VARYING.  */
-      if (range_includes_zero_p (&vr1))
+      tree val[4];
+      size_t i;
+
+      /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
+        drop to VR_VARYING.  It would take more effort to compute a
+        precise range for such a case.  For example, if we have
+        op0 == 65536 and op1 == 65536 with their ranges both being
+        ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
+        we cannot claim that the product is in ~[0,0].  Note that we
+        are guaranteed to have vr0.type == vr1.type at this
+        point.  */
+      if (code == MULT_EXPR
+         && vr0.type == VR_ANTI_RANGE
+         && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
        {
          set_value_range_to_varying (vr);
          return;
        }
 
-      /* We have three main variations to handle for VR0: all negative
-        values, all positive values and a mix of negative and
-        positive.  For each of these, we need to consider if VR1 is
-        all negative or all positive.  In total, there are 6
-        combinations to handle.  */
-      zero = build_int_cst (TREE_TYPE (expr), 0);
-      if (compare_values (vr0.max, zero) == -1)
-       {
-         /* VR0 is all negative.  */
-         if (compare_values (vr1.min, zero) == 1)
-           {
-             /* If VR1 is all positive, the new range is obtained
-                with [VR0.MIN / VR1.MIN, VR0.MAX / VR1.MAX].  */
-             min = int_const_binop (code, vr0.min, vr1.min, 0);
-             max = int_const_binop (code, vr0.max, vr1.max, 0);
-           }
-         else
-           {
-             /* If VR1 is all negative, the new range is obtained
-                with [VR0.MAX / VR1.MIN, VR0.MIN / VR1.MAX].  */
-             gcc_assert (compare_values (vr1.max, zero) == -1);
-             min = int_const_binop (code, vr0.max, vr1.min, 0);
-             max = int_const_binop (code, vr0.min, vr1.max, 0);
-           }
-       }
-      else if (range_includes_zero_p (&vr0))
+      /* Multiplications and divisions are a bit tricky to handle,
+        depending on the mix of signs we have in the two ranges, we
+        need to operate on different values to get the minimum and
+        maximum values for the new range.  One approach is to figure
+        out all the variations of range combinations and do the
+        operations.
+
+        However, this involves several calls to compare_values and it
+        is pretty convoluted.  It's simpler to do the 4 operations
+        (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
+        MAX1) and then figure the smallest and largest values to form
+        the new range.  */
+
+      /* Divisions by zero result in a VARYING value.  */
+      if (code != MULT_EXPR
+         && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
        {
-         /* VR0 is a mix of negative and positive values.  */
-         if (compare_values (vr1.min, zero) == 1)
-           {
-             /* If VR1 is all positive, the new range is obtained
-                with [VR0.MIN / VR1.MIN, VR0.MAX / VR1.MIN].  */
-             min = int_const_binop (code, vr0.min, vr1.min, 0);
-             max = int_const_binop (code, vr0.max, vr1.min, 0);
-           }
-         else
-           {
-             /* If VR1 is all negative, the new range is obtained
-                with [VR0.MAX / VR1.MAX, VR0.MIN / VR1.MAX].  */
-             gcc_assert (compare_values (vr1.max, zero) == -1);
-             min = int_const_binop (code, vr0.max, vr1.max, 0);
-             max = int_const_binop (code, vr0.min, vr1.max, 0);
-           }
+         set_value_range_to_varying (vr);
+         return;
        }
-      else
+
+      /* Compute the 4 cross operations.  */
+      val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
+
+      val[1] = (vr1.max != vr1.min)
+              ? vrp_int_const_binop (code, vr0.min, vr1.max)
+              : NULL_TREE;
+
+      val[2] = (vr0.max != vr0.min)
+              ? vrp_int_const_binop (code, vr0.max, vr1.min)
+              : NULL_TREE;
+
+      val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
+              ? vrp_int_const_binop (code, vr0.max, vr1.max)
+              : NULL_TREE;
+
+      /* Set MIN to the minimum of VAL[i] and MAX to the maximum
+        of VAL[i].  */
+      min = val[0];
+      max = val[0];
+      for (i = 1; i < 4; i++)
        {
-         /* VR0 is all positive.  */
-         gcc_assert (compare_values (vr0.min, zero) == 1);
-         if (compare_values (vr1.min, zero) == 1)
-           {
-             /* If VR1 is all positive, the new range is obtained
-                with [VR0.MIN / VR1.MAX, VR0.MAX / VR1.MIN].  */
-             min = int_const_binop (code, vr0.min, vr1.max, 0);
-             max = int_const_binop (code, vr0.max, vr1.min, 0);
-           }
-         else
+         if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
+           break;
+
+         if (val[i])
            {
-             /* If VR1 is all negative, the new range is obtained
-                with [VR0.MAX / VR1.MAX, VR0.MIN / VR1.MIN].  */
-             gcc_assert (compare_values (vr1.max, zero) == -1);
-             min = int_const_binop (code, vr0.max, vr1.max, 0);
-             max = int_const_binop (code, vr0.min, vr1.min, 0);
+             if (TREE_OVERFLOW (val[i]))
+               {
+                 /* If we found an overflowed value, set MIN and MAX
+                    to it so that we set the resulting range to
+                    VARYING.  */
+                 min = max = val[i];
+                 break;
+               }
+
+             if (compare_values (val[i], min) == -1)
+               min = val[i];
+
+             if (compare_values (val[i], max) == 1)
+               max = val[i];
            }
        }
     }
   else if (code == MINUS_EXPR)
     {
-      /* For MINUS_EXPR, apply the operation to the opposite ends of
-        each range.  */
-      min = int_const_binop (code, vr0.min, vr1.max, 0);
-      max = int_const_binop (code, vr0.max, vr1.min, 0);
-    }
-  else
-    gcc_unreachable ();
-
-  /* If MAX overflowed, then the result depends on whether we are
-     using wrapping arithmetic or not.  */
-  if (TREE_OVERFLOW (max))
-    {
-      /* If we are using wrapping arithmetic, set the result to
-        VARYING.  */
-      if (flag_wrapv)
+      /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
+        VR_VARYING.  It would take more effort to compute a precise
+        range for such a case.  For example, if we have op0 == 1 and
+        op1 == 1 with their ranges both being ~[0,0], we would have
+        op0 - op1 == 0, so we cannot claim that the difference is in
+        ~[0,0].  Note that we are guaranteed to have
+        vr0.type == vr1.type at this point.  */
+      if (vr0.type == VR_ANTI_RANGE)
        {
          set_value_range_to_varying (vr);
          return;
        }
 
-      /* Otherwise, set MAX to +INF.  */
-      max = TYPE_MAX_VALUE (TREE_TYPE (expr));
+      /* For MINUS_EXPR, apply the operation to the opposite ends of
+        each range.  */
+      min = vrp_int_const_binop (code, vr0.min, vr1.max);
+      max = vrp_int_const_binop (code, vr0.max, vr1.min);
     }
+  else
+    gcc_unreachable ();
 
-  /* If MIN overflowed, then the result depends on whether we are
-     using wrapping arithmetic or not.  */
-  if (TREE_OVERFLOW (min))
+  /* If either MIN or MAX overflowed, then set the resulting range to
+     VARYING.  */
+  if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
     {
-      /* If we are using wrapping arithmetic, set the result to
-        VARYING.  */
-      if (flag_wrapv)
-       {
-         set_value_range_to_varying (vr);
-         return;
-       }
-
-      /* Otherwise, set MIN to -INF.  */
-      min = TYPE_MIN_VALUE (TREE_TYPE (expr));
+      set_value_range_to_varying (vr);
+      return;
     }
 
   cmp = compare_values (min, max);
@@ -1270,7 +1390,7 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
   /* Refuse to operate on varying and symbolic ranges.  Also, if the
      operand is neither a pointer nor an integral type, set the
      resulting range to VARYING.  TODO, in some cases we may be able
-     to derive anti-ranges (like non-zero values).  */
+     to derive anti-ranges (like nonzero values).  */
   if (vr0.type == VR_VARYING
       || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
          && !POINTER_TYPE_P (TREE_TYPE (op0)))
@@ -1284,7 +1404,7 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
      determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).  */
   if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
     {
-      if (range_is_nonnull (&vr0) || expr_computes_nonzero (expr))
+      if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
        set_value_range_to_nonnull (vr, TREE_TYPE (expr));
       else if (range_is_null (&vr0))
        set_value_range_to_null (vr, TREE_TYPE (expr));
@@ -1295,17 +1415,52 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
     }
 
   /* Handle unary expressions on integer ranges.  */
-  if ((code == NOP_EXPR || code == CONVERT_EXPR)
-      && (TYPE_SIZE (TREE_TYPE (vr0.min)) != TYPE_SIZE (TREE_TYPE (expr))))
-    {
+  if (code == NOP_EXPR || code == CONVERT_EXPR)
+    {
+      tree inner_type = TREE_TYPE (op0);
+      tree outer_type = TREE_TYPE (expr);
+
+      /* If VR0 represents a simple range, then try to convert
+        the min and max values for the range to the same type
+        as OUTER_TYPE.  If the results compare equal to VR0's
+        min and max values and the new min is still less than
+        or equal to the new max, then we can safely use the newly
+        computed range for EXPR.  This allows us to compute
+        accurate ranges through many casts.  */
+      if (vr0.type == VR_RANGE)
+       {
+         tree new_min, new_max;
+
+         /* Convert VR0's min/max to OUTER_TYPE.  */
+         new_min = fold_convert (outer_type, vr0.min);
+         new_max = fold_convert (outer_type, vr0.max);
+
+         /* Verify the new min/max values are gimple values and
+            that they compare equal to VR0's min/max values.  */
+         if (is_gimple_val (new_min)
+             && is_gimple_val (new_max)
+             && tree_int_cst_equal (new_min, vr0.min)
+             && tree_int_cst_equal (new_max, vr0.max)
+             && compare_values (new_min, new_max) <= 0
+             && compare_values (new_min, new_max) >= -1)
+           {
+             set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
+             return;
+           }
+       }
+
       /* When converting types of different sizes, set the result to
         VARYING.  Things like sign extensions and precision loss may
         change the range.  For instance, if x_3 is of type 'long long
         int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
         is impossible to know at compile time whether y_5 will be
         ~[0, 0].  */
-      set_value_range_to_varying (vr);
-      return;
+      if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
+         || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
+       {
+         set_value_range_to_varying (vr);
+         return;
+       }
     }
 
   /* Apply the operation to each end of the range and see what we end
@@ -1313,27 +1468,31 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
   if (code == NEGATE_EXPR
       && !TYPE_UNSIGNED (TREE_TYPE (expr)))
     {
-      /* Negating an anti-range doesn't really do anything to it.  The
-        new range will also not take on the same range of values
-        excluded by the original anti-range.  */
-      if (vr0.type == VR_ANTI_RANGE)
-       {
-         copy_value_range (vr, &vr0);
-         return;
-       }
-
       /* NEGATE_EXPR flips the range around.  */
-      min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)))
-           ? TYPE_MIN_VALUE (TREE_TYPE (expr))
-           : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+      min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
+            ? TYPE_MIN_VALUE (TREE_TYPE (expr))
+            : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
 
-      max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
-           ? TYPE_MAX_VALUE (TREE_TYPE (expr))
-           : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+      max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
+            ? TYPE_MAX_VALUE (TREE_TYPE (expr))
+            : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
     }
   else if (code == ABS_EXPR
            && !TYPE_UNSIGNED (TREE_TYPE (expr)))
     {
+      /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
+         useful range.  */
+      if (flag_wrapv
+         && ((vr0.type == VR_RANGE
+              && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
+             || (vr0.type == VR_ANTI_RANGE
+                 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
+                 && !range_includes_zero_p (&vr0))))
+       {
+         set_value_range_to_varying (vr);
+         return;
+       }
+       
       /* ABS_EXPR may flip the range around, if the original range
         included negative values.  */
       min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
@@ -1342,12 +1501,58 @@ extract_range_from_unary_expr (value_range_t *vr, tree expr)
 
       max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
 
-      /* If the range was reversed, swap MIN and MAX.  */
-      if (compare_values (min, max) == 1)
+      cmp = compare_values (min, max);
+
+      /* If a VR_ANTI_RANGEs contains zero, then we have
+        ~[-INF, min(MIN, MAX)].  */
+      if (vr0.type == VR_ANTI_RANGE)
+       { 
+         if (range_includes_zero_p (&vr0))
+           {
+             tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
+
+             /* Take the lower of the two values.  */
+             if (cmp != 1)
+               max = min;
+
+             /* Create ~[-INF, min (abs(MIN), abs(MAX))]
+                or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
+                flag_wrapv is set and the original anti-range doesn't include
+                TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE.  */
+             min = (flag_wrapv && vr0.min != type_min_value
+                    ? int_const_binop (PLUS_EXPR,
+                                       type_min_value,
+                                       integer_one_node, 0)
+                    : type_min_value);
+           }
+         else
+           {
+             /* All else has failed, so create the range [0, INF], even for
+                flag_wrapv since TYPE_MIN_VALUE is in the original
+                anti-range.  */
+             vr0.type = VR_RANGE;
+             min = build_int_cst (TREE_TYPE (expr), 0);
+             max = TYPE_MAX_VALUE (TREE_TYPE (expr));
+           }
+       }
+
+      /* If the range contains zero then we know that the minimum value in the
+         range will be zero.  */
+      else if (range_includes_zero_p (&vr0))
        {
-         tree t = min;
-         min = max;
-         max = t;
+         if (cmp == 1)
+           max = min;
+         min = build_int_cst (TREE_TYPE (expr), 0);
+       }
+      else
+       {
+          /* If the range was reversed, swap MIN and MAX.  */
+         if (cmp == 1)
+           {
+             tree t = min;
+             min = max;
+             max = t;
+           }
        }
     }
   else
@@ -1413,58 +1618,50 @@ extract_range_from_expr (value_range_t *vr, tree expr)
     extract_range_from_unary_expr (vr, expr);
   else if (TREE_CODE_CLASS (code) == tcc_comparison)
     extract_range_from_comparison (vr, expr);
-  else if (vrp_expr_computes_nonzero (expr))
-    set_value_range_to_nonnull (vr, TREE_TYPE (expr));
   else if (is_gimple_min_invariant (expr))
     set_value_range (vr, VR_RANGE, expr, expr, NULL);
+  else if (vrp_expr_computes_nonzero (expr))
+    set_value_range_to_nonnull (vr, TREE_TYPE (expr));
   else
     set_value_range_to_varying (vr);
 }
 
-
-/* Given a range VR, a loop L and a variable VAR, determine whether it
+/* Given a range VR, a LOOP and a variable VAR, determine whether it
    would be profitable to adjust VR using scalar evolution information
    for VAR.  If so, update VR with the new limits.  */
 
 static void
-adjust_range_with_scev (value_range_t *vr, struct loop *l, tree var)
+adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
+                       tree var)
 {
   tree init, step, chrec;
-  bool init_is_max;
+  bool init_is_max, unknown_max;
 
   /* TODO.  Don't adjust anti-ranges.  An anti-range may provide
      better opportunities than a regular range, but I'm not sure.  */
   if (vr->type == VR_ANTI_RANGE)
     return;
 
-  chrec = analyze_scalar_evolution (l, var);
+  chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
   if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
     return;
 
-  init = CHREC_LEFT (chrec);
-  step = CHREC_RIGHT (chrec);
+  init = initial_condition_in_loop_num (chrec, loop->num);
+  step = evolution_part_in_loop_num (chrec, loop->num);
 
   /* If STEP is symbolic, we can't know whether INIT will be the
      minimum or maximum value in the range.  */
-  if (!is_gimple_min_invariant (step))
+  if (step == NULL_TREE
+      || !is_gimple_min_invariant (step))
     return;
 
-  /* FIXME.  When dealing with unsigned types,
-     analyze_scalar_evolution sets STEP to very large unsigned values
-     when the evolution goes backwards.  This confuses this analysis
-     because we think that INIT is the smallest value that the range
-     can take, instead of the largest.  Ignore these chrecs for now.  */
-  if (INTEGRAL_TYPE_P (TREE_TYPE (step)) && TYPE_UNSIGNED (TREE_TYPE (step)))
+  /* Do not adjust ranges when chrec may wrap.  */
+  if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
+                            cfg_loops->parray[CHREC_VARIABLE (chrec)],
+                            &init_is_max, &unknown_max)
+      || unknown_max)
     return;
 
-  /* Do not adjust ranges when using wrapping arithmetic.  */
-  if (flag_wrapv)
-    return;
-
-  /* If STEP is negative, then INIT is the maximum value the range
-     will take.  Otherwise, INIT is the minimum value.  */
-  init_is_max = (tree_int_cst_sgn (step) < 0);
-
   if (!POINTER_TYPE_P (TREE_TYPE (init))
       && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
     {
@@ -1673,9 +1870,8 @@ compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
          || comp == LE_EXPR)
        return NULL_TREE;
 
-      /* ~[VAL, VAL] == VAL is always false.  */
-      if (compare_values (vr->min, val) == 0
-         && compare_values (vr->max, val) == 0)
+      /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2.  */
+      if (value_inside_range (val, vr) == 1)
        return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
 
       return NULL_TREE;
@@ -2159,7 +2355,7 @@ register_new_assert_for (tree name,
 
 
 /* Try to register an edge assertion for SSA name NAME on edge E for
-   the conditional jump pointed by SI.  Return true if an assertion
+   the conditional jump pointed to by SI.  Return true if an assertion
    for NAME could be registered.  */
 
 static bool
@@ -2209,7 +2405,7 @@ register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
              /* If the predicate is of the form VAL COMP NAME, flip
                 COMP around because we need to register NAME as the
                 first operand in the predicate.  */
-             comp_code = opposite_comparison (TREE_CODE (cond));
+             comp_code = swap_tree_comparison (TREE_CODE (cond));
              val = TREE_OPERAND (cond, 0);
            }
          else
@@ -2623,7 +2819,10 @@ insert_range_assertions (void)
 }
 
 
-/* Convert range assertion expressions into the implied copies.
+/* Convert range assertion expressions into the implied copies and
+   copy propagate away the copies.  Doing the trivial copy propagation
+   here avoids the need to run the full copy propagation pass after
+   VRP. 
    
    FIXME, this will eventually lead to copy propagation removing the
    names that had useful range information attached to them.  For
@@ -2637,7 +2836,12 @@ insert_range_assertions (void)
    things like jump threading.
    
    The problem with keeping ASSERT_EXPRs around is that passes after
-   VRP need to handle them appropriately.  */
+   VRP need to handle them appropriately. 
+
+   Another approach would be to make the range information a first
+   class property of the SSA_NAME so that it can be queried from
+   any pass.  This is made somewhat more complex by the need for
+   multiple ranges to be associated with one SSA_NAME.  */
 
 static void
 remove_range_assertions (void)
@@ -2645,8 +2849,11 @@ remove_range_assertions (void)
   basic_block bb;
   block_stmt_iterator si;
 
+  /* Note that the BSI iterator bump happens at the bottom of the
+     loop and no bump is necessary if we're removing the statement
+     referenced by the current BSI.  */
   FOR_EACH_BB (bb)
-    for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+    for (si = bsi_start (bb); !bsi_end_p (si);)
       {
        tree stmt = bsi_stmt (si);
 
@@ -2655,11 +2862,29 @@ remove_range_assertions (void)
          {
            tree rhs = TREE_OPERAND (stmt, 1);
            tree cond = fold (ASSERT_EXPR_COND (rhs));
+           use_operand_p use_p;
+           imm_use_iterator iter;
+
            gcc_assert (cond != boolean_false_node);
            TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
            update_stmt (stmt);
+
+           /* The statement is now a copy.  Propagate the RHS into
+              every use of the LHS.  */
+           FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
+             {
+               SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
+               update_stmt (USE_STMT (use_p));
+             }
+
+           /* And finally, remove the copy, it is not needed.  */
+           bsi_remove (&si);
          }
+       else
+         bsi_next (&si);
       }
+
+  sbitmap_free (blocks_visited);
 }
 
 
@@ -2690,9 +2915,7 @@ stmt_interesting_for_vrp (tree stmt)
 }
 
 
-/* Initialize local data structures for VRP.  Return true if VRP
-   is worth running (i.e. if we found any statements that could
-   benefit from range information).  */
+/* Initialize local data structures for VRP.  */
 
 static void
 vrp_initialize (void)
@@ -2766,7 +2989,7 @@ vrp_visit_assignment (tree stmt, tree *output_p)
         else about the range of LHS by examining scalar evolution
         information.  */
       if (cfg_loops && (l = loop_containing_stmt (stmt)))
-       adjust_range_with_scev (&new_vr, l, lhs);
+       adjust_range_with_scev (&new_vr, l, stmt, lhs);
 
       if (update_value_range (lhs, &new_vr))
        {
@@ -2855,7 +3078,7 @@ compare_name_with_value (enum tree_code comp, tree var, tree val)
 
 
 /* Given a comparison code COMP and names N1 and N2, compare all the
-   ranges equivalent to N1 against all the ranges equivalente to N2
+   ranges equivalent to N1 against all the ranges equivalent to N2
    to determine the value of N1 COMP N2.  Return the same value
    returned by compare_ranges.  */
 
@@ -3001,7 +3224,7 @@ vrp_evaluate_conditional (tree cond, bool use_equiv_p)
            return compare_name_with_value (TREE_CODE (cond), op0, op1);
          else if (TREE_CODE (op1) == SSA_NAME)
            return compare_name_with_value (
-                   opposite_comparison (TREE_CODE (cond)), op1, op0);
+                   swap_tree_comparison (TREE_CODE (cond)), op1, op0);
        }
       else
        {
@@ -3016,7 +3239,7 @@ vrp_evaluate_conditional (tree cond, bool use_equiv_p)
            return compare_range_with_value (TREE_CODE (cond), vr0, op1);
          else if (vr0 == NULL && vr1)
            return compare_range_with_value (
-                   opposite_comparison (TREE_CODE (cond)), vr1, op0);
+                   swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
        }
     }
 
@@ -3236,10 +3459,12 @@ vrp_meet (value_range_t *vr0, value_range_t *vr1)
              return;
            }
 
-         /* The resulting set of equivalencies is the intersection of
+         /* The resulting set of equivalences is the intersection of
             the two sets.  */
          if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
            bitmap_and_into (vr0->equiv, vr1->equiv);
+         else if (vr0->equiv && !vr1->equiv)
+           bitmap_clear (vr0->equiv);
 
          set_value_range (vr0, vr0->type, min, max, vr0->equiv);
        }
@@ -3253,10 +3478,12 @@ vrp_meet (value_range_t *vr0, value_range_t *vr1)
          && compare_values (vr0->max, vr1->max) == 0
          && compare_values (vr0->min, vr0->max) == 0)
        {
-         /* The resulting set of equivalencies is the intersection of
+         /* The resulting set of equivalences is the intersection of
             the two sets.  */
          if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
            bitmap_and_into (vr0->equiv, vr1->equiv);
+         else if (vr0->equiv && !vr1->equiv)
+           bitmap_clear (vr0->equiv);
        }
       else
        goto no_meet;
@@ -3270,8 +3497,18 @@ vrp_meet (value_range_t *vr0, value_range_t *vr1)
          && !symbolic_range_p (vr1)
          && !value_ranges_intersect_p (vr0, vr1))
        {
+         /* Copy most of VR1 into VR0.  Don't copy VR1's equivalence
+            set.  We need to compute the intersection of the two
+            equivalence sets.  */
          if (vr1->type == VR_ANTI_RANGE)
-           copy_value_range (vr0, vr1);
+           set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
+
+         /* The resulting set of equivalences is the intersection of
+            the two sets.  */
+         if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+           bitmap_and_into (vr0->equiv, vr1->equiv);
+         else if (vr0->equiv && !vr1->equiv)
+           bitmap_clear (vr0->equiv);
        }
       else
        goto no_meet;
@@ -3284,12 +3521,23 @@ vrp_meet (value_range_t *vr0, value_range_t *vr1)
 no_meet:
   /* The two range VR0 and VR1 do not meet.  Before giving up and
      setting the result to VARYING, see if we can at least derive a
-     useful anti-range.  */
+     useful anti-range.  FIXME, all this nonsense about distinguishing
+     anti-ranges from ranges is necessary because of the odd
+     semantics of range_includes_zero_p and friends.  */
   if (!symbolic_range_p (vr0)
-      && !range_includes_zero_p (vr0)
+      && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
+         || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
       && !symbolic_range_p (vr1)
-      && !range_includes_zero_p (vr1))
-    set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
+      && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
+         || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
+    {
+      set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
+
+      /* Since this meet operation did not result from the meeting of
+        two equivalent names, VR0 cannot have any equivalences.  */
+      if (vr0->equiv)
+       bitmap_clear (vr0->equiv);
+    }
   else
     set_value_range_to_varying (vr0);
 }
@@ -3364,7 +3612,7 @@ vrp_visit_phi_node (tree phi)
   /* To prevent infinite iterations in the algorithm, derive ranges
      when the new value is slightly bigger or smaller than the
      previous one.  */
-  if (lhs_vr->type == VR_RANGE)
+  if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
     {
       if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
        {
@@ -3406,6 +3654,269 @@ varying:
   return SSA_PROP_VARYING;
 }
 
+/* Simplify a division or modulo operator to a right shift or
+   bitwise and if the first operand is unsigned or is greater
+   than zero and the second operand is an exact power of two.  */
+
+static void
+simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
+{
+  tree val = NULL;
+  tree op = TREE_OPERAND (rhs, 0);
+  value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
+
+  if (TYPE_UNSIGNED (TREE_TYPE (op)))
+    {
+      val = integer_one_node;
+    }
+  else
+    {
+      val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
+    }
+
+  if (val && integer_onep (val))
+    {
+      tree t;
+      tree op0 = TREE_OPERAND (rhs, 0);
+      tree op1 = TREE_OPERAND (rhs, 1);
+
+      if (rhs_code == TRUNC_DIV_EXPR)
+       {
+         t = build_int_cst (NULL_TREE, tree_log2 (op1));
+         t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
+       }
+      else
+       {
+         t = build_int_cst (TREE_TYPE (op1), 1);
+         t = int_const_binop (MINUS_EXPR, op1, t, 0);
+         t = fold_convert (TREE_TYPE (op0), t);
+         t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
+       }
+
+      TREE_OPERAND (stmt, 1) = t;
+      update_stmt (stmt);
+    }
+}
+
+/* If the operand to an ABS_EXPR is >= 0, then eliminate the
+   ABS_EXPR.  If the operand is <= 0, then simplify the
+   ABS_EXPR into a NEGATE_EXPR.  */
+
+static void
+simplify_abs_using_ranges (tree stmt, tree rhs)
+{
+  tree val = NULL;
+  tree op = TREE_OPERAND (rhs, 0);
+  tree type = TREE_TYPE (op);
+  value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
+
+  if (TYPE_UNSIGNED (type))
+    {
+      val = integer_zero_node;
+    }
+  else if (vr)
+    {
+      val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
+      if (!val)
+       {
+         val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
+
+         if (val)
+           {
+             if (integer_zerop (val))
+               val = integer_one_node;
+             else if (integer_onep (val))
+               val = integer_zero_node;
+           }
+       }
+
+      if (val
+         && (integer_onep (val) || integer_zerop (val)))
+       {
+         tree t;
+
+         if (integer_onep (val))
+           t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
+         else
+           t = op;
+
+         TREE_OPERAND (stmt, 1) = t;
+         update_stmt (stmt);
+       }
+    }
+}
+
+/* We are comparing trees OP0 and OP1 using COND_CODE.  OP0 has
+   a known value range VR.
+
+   If there is one and only one value which will satisfy the
+   conditional, then return that value.  Else return NULL.  */
+
+static tree
+test_for_singularity (enum tree_code cond_code, tree op0,
+                     tree op1, value_range_t *vr)
+{
+  tree min = NULL;
+  tree max = NULL;
+
+  /* Extract minimum/maximum values which satisfy the
+     the conditional as it was written.  */
+  if (cond_code == LE_EXPR || cond_code == LT_EXPR)
+    {
+      min = TYPE_MIN_VALUE (TREE_TYPE (op0));
+
+      max = op1;
+      if (cond_code == LT_EXPR)
+       {
+         tree one = build_int_cst (TREE_TYPE (op0), 1);
+         max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
+       }
+    }
+  else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
+    {
+      max = TYPE_MAX_VALUE (TREE_TYPE (op0));
+
+      min = op1;
+      if (cond_code == GT_EXPR)
+       {
+         tree one = build_int_cst (TREE_TYPE (op0), 1);
+         max = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), max, one);
+       }
+    }
+
+  /* Now refine the minimum and maximum values using any
+     value range information we have for op0.  */
+  if (min && max)
+    {
+      if (compare_values (vr->min, min) == -1)
+       min = min;
+      else
+       min = vr->min;
+      if (compare_values (vr->max, max) == 1)
+       max = max;
+      else
+       max = vr->max;
+
+      /* If the new min/max values have converged to a
+        single value, then there is only one value which
+        can satisfy the condition, return that value.  */
+      if (min == max && is_gimple_min_invariant (min))
+       return min;
+    }
+  return NULL;
+}
+
+/* Simplify a conditional using a relational operator to an equality
+   test if the range information indicates only one value can satisfy
+   the original conditional.  */
+
+static void
+simplify_cond_using_ranges (tree stmt)
+{
+  tree cond = COND_EXPR_COND (stmt);
+  tree op0 = TREE_OPERAND (cond, 0);
+  tree op1 = TREE_OPERAND (cond, 1);
+  enum tree_code cond_code = TREE_CODE (cond);
+
+  if (cond_code != NE_EXPR
+      && cond_code != EQ_EXPR
+      && TREE_CODE (op0) == SSA_NAME
+      && INTEGRAL_TYPE_P (TREE_TYPE (op0))
+      && is_gimple_min_invariant (op1))
+    {
+      value_range_t *vr = get_value_range (op0);
+         
+      /* If we have range information for OP0, then we might be
+        able to simplify this conditional. */
+      if (vr->type == VR_RANGE)
+       {
+         tree new = test_for_singularity (cond_code, op0, op1, vr);
+
+         if (new)
+           {
+             if (dump_file)
+               {
+                 fprintf (dump_file, "Simplified relational ");
+                 print_generic_expr (dump_file, cond, 0);
+                 fprintf (dump_file, " into ");
+               }
+
+             COND_EXPR_COND (stmt)
+               = build (EQ_EXPR, boolean_type_node, op0, new);
+             update_stmt (stmt);
+
+             if (dump_file)
+               {
+                 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
+                 fprintf (dump_file, "\n");
+               }
+             return;
+
+           }
+
+         /* Try again after inverting the condition.  We only deal
+            with integral types here, so no need to worry about
+            issues with inverting FP comparisons.  */
+         cond_code = invert_tree_comparison (cond_code, false);
+         new = test_for_singularity (cond_code, op0, op1, vr);
+
+         if (new)
+           {
+             if (dump_file)
+               {
+                 fprintf (dump_file, "Simplified relational ");
+                 print_generic_expr (dump_file, cond, 0);
+                 fprintf (dump_file, " into ");
+               }
+
+             COND_EXPR_COND (stmt)
+               = build (NE_EXPR, boolean_type_node, op0, new);
+             update_stmt (stmt);
+
+             if (dump_file)
+               {
+                 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
+                 fprintf (dump_file, "\n");
+               }
+             return;
+
+           }
+       }
+    }
+}
+
+/* Simplify STMT using ranges if possible.  */
+
+void
+simplify_stmt_using_ranges (tree stmt)
+{
+  if (TREE_CODE (stmt) == MODIFY_EXPR)
+    {
+      tree rhs = TREE_OPERAND (stmt, 1);
+      enum tree_code rhs_code = TREE_CODE (rhs);
+
+      /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
+        and BIT_AND_EXPR respectively if the first operand is greater
+        than zero and the second operand is an exact power of two.  */
+      if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
+         && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
+         && integer_pow2p (TREE_OPERAND (rhs, 1)))
+       simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
+
+      /* Transform ABS (X) into X or -X as appropriate.  */
+      if (rhs_code == ABS_EXPR
+         && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
+         && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
+       simplify_abs_using_ranges (stmt, rhs);
+    }
+  else if (TREE_CODE (stmt) == COND_EXPR
+          && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
+    {
+      simplify_cond_using_ranges (stmt);
+    }
+}
+
+
 
 /* Traverse all the blocks folding conditionals with known ranges.  */
 
@@ -3485,12 +3996,12 @@ vrp_finalize (void)
    code we can also determine that p_5 cannot be NULL and, if q_2 had
    a non-varying range, p_5's range should also be compatible with it.
 
-   These equivalencies are created by two expressions: ASSERT_EXPR and
+   These equivalences are created by two expressions: ASSERT_EXPR and
    copy operations.  Since p_5 is an assertion on p_4, and p_4 was the
    result of another assertion, then we can use the fact that p_5 and
    p_4 are equivalent when evaluating p_5's range.
 
-   Together with value ranges, we also propagate these equivalencies
+   Together with value ranges, we also propagate these equivalences
    between names so that we can take advantage of information from
    multiple ranges when doing final replacement.  Note that this
    equivalency relation is transitive but not symmetric.