OSDN Git Service

2009-07-07 Manuel López-Ibáñez <manu@gcc.gnu.org>
[pf3gnuchains/gcc-fork.git] / gcc / tree-ssa-reassoc.c
index a3facd8..416409f 100644 (file)
@@ -1,5 +1,5 @@
 /* Reassociation for trees.
-   Copyright (C) 2005, 2007 Free Software Foundation, Inc.
+   Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
    Contributed by Daniel Berlin <dan@dberlin.org>
 
 This file is part of GCC.
@@ -22,7 +22,6 @@ along with GCC; see the file COPYING3.  If not see
 #include "system.h"
 #include "coretypes.h"
 #include "tm.h"
-#include "errors.h"
 #include "ggc.h"
 #include "tree.h"
 #include "basic-block.h"
@@ -154,7 +153,7 @@ along with GCC; see the file COPYING3.  If not see
     
     Thus, this is what we do.  When we have three ops left, we check to see
     what order to put them in, and call it a day.  As a nod to vector sum
-    reduction, we check if any of ops are a really a phi node that is a
+    reduction, we check if any of the ops are really a phi node that is a
     destructive update for the associating op, and keep the destructive
     update together for vector sum reduction recognition.  */
 
@@ -243,7 +242,7 @@ get_rank (tree e)
        return 0;
 
       if (!is_gimple_assign (stmt)
-         || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
+         || gimple_vdef (stmt))
        return bb_rank[gimple_bb (stmt)->index];
 
       /* If we already have a rank for this expression, use that.  */
@@ -727,6 +726,439 @@ eliminate_using_constants (enum tree_code opcode,
     }
 }
 
+
+static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
+                                bool, bool);
+
+/* Structure for tracking and counting operands.  */
+typedef struct oecount_s {
+  int cnt;
+  enum tree_code oecode;
+  tree op;
+} oecount;
+
+DEF_VEC_O(oecount);
+DEF_VEC_ALLOC_O(oecount,heap);
+
+/* The heap for the oecount hashtable and the sorted list of operands.  */
+static VEC (oecount, heap) *cvec;
+
+/* Hash function for oecount.  */
+
+static hashval_t
+oecount_hash (const void *p)
+{
+  const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
+  return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
+}
+
+/* Comparison function for oecount.  */
+
+static int
+oecount_eq (const void *p1, const void *p2)
+{
+  const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
+  const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
+  return (c1->oecode == c2->oecode
+         && c1->op == c2->op);
+}
+
+/* Comparison function for qsort sorting oecount elements by count.  */
+
+static int
+oecount_cmp (const void *p1, const void *p2)
+{
+  const oecount *c1 = (const oecount *)p1;
+  const oecount *c2 = (const oecount *)p2;
+  return c1->cnt - c2->cnt;
+}
+
+/* Walks the linear chain with result *DEF searching for an operation
+   with operand OP and code OPCODE removing that from the chain.  *DEF
+   is updated if there is only one operand but no operation left.  */
+
+static void
+zero_one_operation (tree *def, enum tree_code opcode, tree op)
+{
+  gimple stmt = SSA_NAME_DEF_STMT (*def);
+
+  do
+    {
+      tree name = gimple_assign_rhs1 (stmt);
+
+      /* If this is the operation we look for and one of the operands
+         is ours simply propagate the other operand into the stmts
+        single use.  */
+      if (gimple_assign_rhs_code (stmt) == opcode
+         && (name == op
+             || gimple_assign_rhs2 (stmt) == op))
+       {
+         gimple use_stmt;
+         use_operand_p use;
+         gimple_stmt_iterator gsi;
+         if (name == op)
+           name = gimple_assign_rhs2 (stmt);
+         gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
+         single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
+         if (gimple_assign_lhs (stmt) == *def)
+           *def = name;
+         SET_USE (use, name);
+         if (TREE_CODE (name) != SSA_NAME)
+           update_stmt (use_stmt);
+         gsi = gsi_for_stmt (stmt);
+         gsi_remove (&gsi, true);
+         release_defs (stmt);
+         return;
+       }
+
+      /* Continue walking the chain.  */
+      gcc_assert (name != op
+                 && TREE_CODE (name) == SSA_NAME);
+      stmt = SSA_NAME_DEF_STMT (name);
+    }
+  while (1);
+}
+
+/* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
+   the result.  Places the statement after the definition of either
+   OP1 or OP2.  Returns the new statement.  */
+
+static gimple
+build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
+{
+  gimple op1def = NULL, op2def = NULL;
+  gimple_stmt_iterator gsi;
+  tree op;
+  gimple sum;
+
+  /* Create the addition statement.  */
+  sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
+  op = make_ssa_name (tmpvar, sum);
+  gimple_assign_set_lhs (sum, op);
+
+  /* Find an insertion place and insert.  */
+  if (TREE_CODE (op1) == SSA_NAME)
+    op1def = SSA_NAME_DEF_STMT (op1);
+  if (TREE_CODE (op2) == SSA_NAME)
+    op2def = SSA_NAME_DEF_STMT (op2);
+  if ((!op1def || gimple_nop_p (op1def))
+      && (!op2def || gimple_nop_p (op2def)))
+    {
+      gsi = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR));
+      gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
+    }
+  else if ((!op1def || gimple_nop_p (op1def))
+          || (op2def && !gimple_nop_p (op2def)
+              && stmt_dominates_stmt_p (op1def, op2def)))
+    {
+      if (gimple_code (op2def) == GIMPLE_PHI)
+       {
+         gsi = gsi_start_bb (gimple_bb (op2def));
+         gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
+       }
+      else
+       {
+         if (!stmt_ends_bb_p (op2def))
+           {
+             gsi = gsi_for_stmt (op2def);
+             gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
+           }
+         else
+           {
+             edge e;
+             edge_iterator ei;
+
+             FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
+               if (e->flags & EDGE_FALLTHRU)
+                 gsi_insert_on_edge_immediate (e, sum);
+           }
+       }
+    }
+  else
+    {
+      if (gimple_code (op1def) == GIMPLE_PHI)
+       {
+         gsi = gsi_start_bb (gimple_bb (op1def));
+         gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
+       }
+      else
+       {
+         if (!stmt_ends_bb_p (op1def))
+           {
+             gsi = gsi_for_stmt (op1def);
+             gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
+           }
+         else
+           {
+             edge e;
+             edge_iterator ei;
+
+             FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
+               if (e->flags & EDGE_FALLTHRU)
+                 gsi_insert_on_edge_immediate (e, sum);
+           }
+       }
+    }
+  update_stmt (sum);
+
+  return sum;
+}
+
+/* Perform un-distribution of divisions and multiplications.
+   A * X + B * X is transformed into (A + B) * X and A / X + B / X
+   to (A + B) / X for real X.
+
+   The algorithm is organized as follows.
+
+    - First we walk the addition chain *OPS looking for summands that
+      are defined by a multiplication or a real division.  This results
+      in the candidates bitmap with relevant indices into *OPS.
+
+    - Second we build the chains of multiplications or divisions for
+      these candidates, counting the number of occurences of (operand, code)
+      pairs in all of the candidates chains.
+
+    - Third we sort the (operand, code) pairs by number of occurence and
+      process them starting with the pair with the most uses.
+
+      * For each such pair we walk the candidates again to build a
+        second candidate bitmap noting all multiplication/division chains
+       that have at least one occurence of (operand, code).
+
+      * We build an alternate addition chain only covering these
+        candidates with one (operand, code) operation removed from their
+       multiplication/division chain.
+
+      * The first candidate gets replaced by the alternate addition chain
+        multiplied/divided by the operand.
+
+      * All candidate chains get disabled for further processing and
+        processing of (operand, code) pairs continues.
+
+  The alternate addition chains built are re-processed by the main
+  reassociation algorithm which allows optimizing a * x * y + b * y * x
+  to (a + b ) * x * y in one invocation of the reassociation pass.  */
+
+static bool
+undistribute_ops_list (enum tree_code opcode,
+                      VEC (operand_entry_t, heap) **ops, struct loop *loop)
+{
+  unsigned int length = VEC_length (operand_entry_t, *ops);
+  operand_entry_t oe1;
+  unsigned i, j;
+  sbitmap candidates, candidates2;
+  unsigned nr_candidates, nr_candidates2;
+  sbitmap_iterator sbi0;
+  VEC (operand_entry_t, heap) **subops;
+  htab_t ctable;
+  bool changed = false;
+
+  if (length <= 1
+      || opcode != PLUS_EXPR)
+    return false;
+
+  /* Build a list of candidates to process.  */
+  candidates = sbitmap_alloc (length);
+  sbitmap_zero (candidates);
+  nr_candidates = 0;
+  for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe1); ++i)
+    {
+      enum tree_code dcode;
+      gimple oe1def;
+
+      if (TREE_CODE (oe1->op) != SSA_NAME)
+       continue;
+      oe1def = SSA_NAME_DEF_STMT (oe1->op);
+      if (!is_gimple_assign (oe1def))
+       continue;
+      dcode = gimple_assign_rhs_code (oe1def);
+      if ((dcode != MULT_EXPR
+          && dcode != RDIV_EXPR)
+         || !is_reassociable_op (oe1def, dcode, loop))
+       continue;
+
+      SET_BIT (candidates, i);
+      nr_candidates++;
+    }
+
+  if (nr_candidates < 2)
+    {
+      sbitmap_free (candidates);
+      return false;
+    }
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "searching for un-distribute opportunities ");
+      print_generic_expr (dump_file,
+       VEC_index (operand_entry_t, *ops,
+                  sbitmap_first_set_bit (candidates))->op, 0);
+      fprintf (dump_file, " %d\n", nr_candidates);
+    }
+
+  /* Build linearized sub-operand lists and the counting table.  */
+  cvec = NULL;
+  ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
+  subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
+                    VEC_length (operand_entry_t, *ops));
+  EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
+    {
+      gimple oedef;
+      enum tree_code oecode;
+      unsigned j;
+
+      oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
+      oecode = gimple_assign_rhs_code (oedef);
+      linearize_expr_tree (&subops[i], oedef,
+                          associative_tree_code (oecode), false);
+
+      for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
+       {
+         oecount c;
+         void **slot;
+         size_t idx;
+         c.oecode = oecode;
+         c.cnt = 1;
+         c.op = oe1->op;
+         VEC_safe_push (oecount, heap, cvec, &c);
+         idx = VEC_length (oecount, cvec) + 41;
+         slot = htab_find_slot (ctable, (void *)idx, INSERT);
+         if (!*slot)
+           {
+             *slot = (void *)idx;
+           }
+         else
+           {
+             VEC_pop (oecount, cvec);
+             VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
+           }
+       }
+    }
+  htab_delete (ctable);
+
+  /* Sort the counting table.  */
+  qsort (VEC_address (oecount, cvec), VEC_length (oecount, cvec),
+        sizeof (oecount), oecount_cmp);
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      oecount *c;
+      fprintf (dump_file, "Candidates:\n");
+      for (j = 0; VEC_iterate (oecount, cvec, j, c); ++j)
+       {
+         fprintf (dump_file, "  %u %s: ", c->cnt,
+                  c->oecode == MULT_EXPR
+                  ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
+         print_generic_expr (dump_file, c->op, 0);
+         fprintf (dump_file, "\n");
+       }
+    }
+
+  /* Process the (operand, code) pairs in order of most occurence.  */
+  candidates2 = sbitmap_alloc (length);
+  while (!VEC_empty (oecount, cvec))
+    {
+      oecount *c = VEC_last (oecount, cvec);
+      if (c->cnt < 2)
+       break;
+
+      /* Now collect the operands in the outer chain that contain
+         the common operand in their inner chain.  */
+      sbitmap_zero (candidates2);
+      nr_candidates2 = 0;
+      EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
+       {
+         gimple oedef;
+         enum tree_code oecode;
+         unsigned j;
+         tree op = VEC_index (operand_entry_t, *ops, i)->op;
+
+         /* If we undistributed in this chain already this may be
+            a constant.  */
+         if (TREE_CODE (op) != SSA_NAME)
+           continue;
+
+         oedef = SSA_NAME_DEF_STMT (op);
+         oecode = gimple_assign_rhs_code (oedef);
+         if (oecode != c->oecode)
+           continue;
+
+         for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
+           {
+             if (oe1->op == c->op)
+               {
+                 SET_BIT (candidates2, i);
+                 ++nr_candidates2;
+                 break;
+               }
+           }
+       }
+
+      if (nr_candidates2 >= 2)
+       {
+         operand_entry_t oe1, oe2;
+         tree tmpvar;
+         gimple prod;
+         int first = sbitmap_first_set_bit (candidates2);
+
+         /* Build the new addition chain.  */
+         oe1 = VEC_index (operand_entry_t, *ops, first);
+         if (dump_file && (dump_flags & TDF_DETAILS))
+           {
+             fprintf (dump_file, "Building (");
+             print_generic_expr (dump_file, oe1->op, 0);
+           }
+         tmpvar = create_tmp_var (TREE_TYPE (oe1->op), NULL);
+         add_referenced_var (tmpvar);
+         zero_one_operation (&oe1->op, c->oecode, c->op);
+         EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
+           {
+             gimple sum;
+             oe2 = VEC_index (operand_entry_t, *ops, i);
+             if (dump_file && (dump_flags & TDF_DETAILS))
+               {
+                 fprintf (dump_file, " + ");
+                 print_generic_expr (dump_file, oe2->op, 0);
+               }
+             zero_one_operation (&oe2->op, c->oecode, c->op);
+             sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
+             oe2->op = fold_convert (TREE_TYPE (oe2->op), integer_zero_node);
+             oe2->rank = 0;
+             oe1->op = gimple_get_lhs (sum);
+           }
+
+         /* Apply the multiplication/division.  */
+         prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
+         if (dump_file && (dump_flags & TDF_DETAILS))
+           {
+             fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
+             print_generic_expr (dump_file, c->op, 0);
+             fprintf (dump_file, "\n");
+           }
+
+         /* Record it in the addition chain and disable further
+            undistribution with this op.  */
+         oe1->op = gimple_assign_lhs (prod);
+         oe1->rank = get_rank (oe1->op);
+         VEC_free (operand_entry_t, heap, subops[first]);
+
+         changed = true;
+       }
+
+      VEC_pop (oecount, cvec);
+    }
+
+  for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
+    VEC_free (operand_entry_t, heap, subops[i]);
+  free (subops);
+  VEC_free (oecount, heap, cvec);
+  sbitmap_free (candidates);
+  sbitmap_free (candidates2);
+
+  return changed;
+}
+
+
 /* Perform various identities and other optimizations on the list of
    operand entries, stored in OPS.  The tree code for the binary
    operation between all the operands is OPCODE.  */
@@ -833,13 +1265,37 @@ is_phi_for_stmt (gimple stmt, tree operand)
   return false;
 }
 
+/* Remove def stmt of VAR if VAR has zero uses and recurse
+   on rhs1 operand if so.  */
+
+static void
+remove_visited_stmt_chain (tree var)
+{
+  gimple stmt;
+  gimple_stmt_iterator gsi;
+
+  while (1)
+    {
+      if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
+       return;
+      stmt = SSA_NAME_DEF_STMT (var);
+      if (!is_gimple_assign (stmt)
+         || !gimple_visited_p (stmt))
+       return;
+      var = gimple_assign_rhs1 (stmt);
+      gsi = gsi_for_stmt (stmt);
+      gsi_remove (&gsi, true);
+      release_defs (stmt);
+    }
+}
+
 /* Recursively rewrite our linearized statements so that the operators
    match those in OPS[OPINDEX], putting the computation in rank
    order.  */
 
 static void
 rewrite_expr_tree (gimple stmt, unsigned int opindex,
-                  VEC(operand_entry_t, heap) * ops)
+                  VEC(operand_entry_t, heap) * ops, bool moved)
 {
   tree rhs1 = gimple_assign_rhs1 (stmt);
   tree rhs2 = gimple_assign_rhs2 (stmt);
@@ -916,6 +1372,8 @@ rewrite_expr_tree (gimple stmt, unsigned int opindex,
          gimple_assign_set_rhs1 (stmt, oe1->op);
          gimple_assign_set_rhs2 (stmt, oe2->op);
          update_stmt (stmt);
+         if (rhs1 != oe1->op && rhs1 != oe2->op)
+           remove_visited_stmt_chain (rhs1);
 
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
@@ -935,6 +1393,24 @@ rewrite_expr_tree (gimple stmt, unsigned int opindex,
 
   if (oe->op != rhs2)
     {
+      if (!moved)
+       {
+         gimple_stmt_iterator gsinow, gsirhs1;
+         gimple stmt1 = stmt, stmt2;
+         unsigned int count;
+
+         gsinow = gsi_for_stmt (stmt);
+         count = VEC_length (operand_entry_t, ops) - opindex - 2;
+         while (count-- != 0)
+           {
+             stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
+             gsirhs1 = gsi_for_stmt (stmt2);
+             gsi_move_before (&gsirhs1, &gsinow);
+             gsi_prev (&gsinow);
+             stmt1 = stmt2;
+           }
+         moved = true;
+       }
 
       if (dump_file && (dump_flags & TDF_DETAILS))
        {
@@ -953,7 +1429,7 @@ rewrite_expr_tree (gimple stmt, unsigned int opindex,
     }
   /* Recurse on the LHS of the binary operator, which is guaranteed to
      be the non-leaf side.  */
-  rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops);
+  rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
 }
 
 /* Transform STMT, which is really (A +B) + (C + D) into the left
@@ -1097,7 +1573,8 @@ should_break_up_subtract (gimple stmt)
   if (TREE_CODE (lhs) == SSA_NAME
       && (immusestmt = get_single_immediate_use (lhs))
       && is_gimple_assign (immusestmt)
-      && gimple_assign_rhs_code (immusestmt) == PLUS_EXPR)
+      && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
+         ||  gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
     return true;
   return false;
 }
@@ -1125,9 +1602,9 @@ break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
    Place the operands of the expression tree in the vector named OPS.  */
 
 static void
-linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt)
+linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
+                    bool is_associative, bool set_visited)
 {
-  gimple_stmt_iterator gsinow, gsilhs;
   tree binlhs = gimple_assign_rhs1 (stmt);
   tree binrhs = gimple_assign_rhs2 (stmt);
   gimple binlhsdef, binrhsdef;
@@ -1136,7 +1613,8 @@ linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt)
   enum tree_code rhscode = gimple_assign_rhs_code (stmt);
   struct loop *loop = loop_containing_stmt (stmt);
 
-  gimple_set_visited (stmt, true);
+  if (set_visited)
+    gimple_set_visited (stmt, true);
 
   if (TREE_CODE (binlhs) == SSA_NAME)
     {
@@ -1160,6 +1638,13 @@ linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt)
     {
       tree temp;
 
+      /* If this is not a associative operation like division, give up.  */
+      if (!is_associative)
+       {
+         add_to_ops_vec (ops, binrhs);
+         return;
+       }
+
       if (!binrhsisreassoc)
        {
          add_to_ops_vec (ops, binrhs);
@@ -1200,10 +1685,8 @@ linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt)
   gcc_assert (TREE_CODE (binrhs) != SSA_NAME
              || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
                                      rhscode, loop));
-  gsinow = gsi_for_stmt (stmt);
-  gsilhs = gsi_for_stmt (SSA_NAME_DEF_STMT (binlhs));
-  gsi_move_before (&gsilhs, &gsinow);
-  linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs));
+  linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
+                      is_associative, set_visited);
   add_to_ops_vec (ops, binrhs);
 }
 
@@ -1344,7 +1827,28 @@ reassociate_bb (basic_block bb)
          /* If this was part of an already processed statement,
             we don't need to touch it again. */
          if (gimple_visited_p (stmt))
-           continue;
+           {
+             /* This statement might have become dead because of previous
+                reassociations.  */
+             if (has_zero_uses (gimple_get_lhs (stmt)))
+               {
+                 gsi_remove (&gsi, true);
+                 release_defs (stmt);
+                 /* We might end up removing the last stmt above which
+                    places the iterator to the end of the sequence.
+                    Reset it to the last stmt in this case which might
+                    be the end of the sequence as well if we removed
+                    the last statement of the sequence.  In which case
+                    we need to bail out.  */
+                 if (gsi_end_p (gsi))
+                   {
+                     gsi = gsi_last_bb (bb);
+                     if (gsi_end_p (gsi))
+                       break;
+                   }
+               }
+             continue;
+           }
 
          lhs = gimple_assign_lhs (stmt);
          rhs1 = gimple_assign_rhs1 (stmt);
@@ -1375,12 +1879,21 @@ reassociate_bb (basic_block bb)
                continue;
 
              gimple_set_visited (stmt, true);
-             linearize_expr_tree (&ops, stmt);
+             linearize_expr_tree (&ops, stmt, true, true);
              qsort (VEC_address (operand_entry_t, ops),
                     VEC_length (operand_entry_t, ops),
                     sizeof (operand_entry_t),
                     sort_by_operand_rank);
              optimize_ops_list (rhs_code, &ops);
+             if (undistribute_ops_list (rhs_code, &ops,
+                                        loop_containing_stmt (stmt)))
+               {
+                 qsort (VEC_address (operand_entry_t, ops),
+                        VEC_length (operand_entry_t, ops),
+                        sizeof (operand_entry_t),
+                        sort_by_operand_rank);
+                 optimize_ops_list (rhs_code, &ops);
+               }
 
              if (VEC_length (operand_entry_t, ops) == 1)
                {
@@ -1389,11 +1902,13 @@ reassociate_bb (basic_block bb)
                      fprintf (dump_file, "Transforming ");
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                    }
-                 
+
+                 rhs1 = gimple_assign_rhs1 (stmt);
                  gimple_assign_set_rhs_from_tree (&gsi,
                                                   VEC_last (operand_entry_t,
                                                             ops)->op);
                  update_stmt (stmt);
+                 remove_visited_stmt_chain (rhs1);
 
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    {
@@ -1402,9 +1917,7 @@ reassociate_bb (basic_block bb)
                    }
                }
              else
-               {
-                 rewrite_expr_tree (stmt, 0, ops);
-               }
+               rewrite_expr_tree (stmt, 0, ops, false);
 
              VEC_free (operand_entry_t, heap, ops);
            }
@@ -1557,7 +2070,7 @@ struct gimple_opt_pass pass_reassoc =
   NULL,                                        /* next */
   0,                                   /* static_pass_number */
   TV_TREE_REASSOC,                     /* tv_id */
-  PROP_cfg | PROP_ssa | PROP_alias,    /* properties_required */
+  PROP_cfg | PROP_ssa,                 /* properties_required */
   0,                                   /* properties_provided */
   0,                                   /* properties_destroyed */
   0,                                   /* todo_flags_start */