OSDN Git Service

PR testsuite/46230
[pf3gnuchains/gcc-fork.git] / gcc / tree-ssa-reassoc.c
index a3facd8..197591e 100644 (file)
@@ -1,5 +1,5 @@
 /* Reassociation for trees.
-   Copyright (C) 2005, 2007 Free Software Foundation, Inc.
+   Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
    Contributed by Daniel Berlin <dan@dberlin.org>
 
 This file is part of GCC.
@@ -22,11 +22,10 @@ along with GCC; see the file COPYING3.  If not see
 #include "system.h"
 #include "coretypes.h"
 #include "tm.h"
-#include "errors.h"
-#include "ggc.h"
 #include "tree.h"
 #include "basic-block.h"
-#include "diagnostic.h"
+#include "tree-pretty-print.h"
+#include "gimple-pretty-print.h"
 #include "tree-inline.h"
 #include "tree-flow.h"
 #include "gimple.h"
@@ -107,34 +106,34 @@ along with GCC; see the file COPYING3.  If not see
     mergetmp2 = d + e
 
     and put mergetmp2 on the merge worklist.
-    
+
     so merge worklist = {mergetmp, c, mergetmp2}
-    
+
     Continue building binary ops of these operations until you have only
     one operation left on the worklist.
-    
+
     So we have
-    
+
     build binary op
     mergetmp3 = mergetmp + c
-    
+
     worklist = {mergetmp2, mergetmp3}
-    
+
     mergetmp4 = mergetmp2 + mergetmp3
-    
+
     worklist = {mergetmp4}
-    
+
     because we have one operation left, we can now just set the original
     statement equal to the result of that operation.
-    
+
     This will at least expose a + b  and d + e to redundancy elimination
     as binary operations.
-    
+
     For extra points, you can reuse the old statements to build the
     mergetmps, since you shouldn't run out.
 
     So why don't we do this?
-    
+
     Because it's expensive, and rarely will help.  Most trees we are
     reassociating have 3 or less ops.  If they have 2 ops, they already
     will be written into a nice single binary op.  If you have 3 ops, a
@@ -143,18 +142,18 @@ along with GCC; see the file COPYING3.  If not see
 
     mergetmp = op1 + op2
     newstmt = mergetmp + op3
-    
+
     instead of
     mergetmp = op2 + op3
     newstmt = mergetmp + op1
-    
+
     If all three are of the same rank, you can't expose them all in a
     single binary operator anyway, so the above is *still* the best you
     can do.
-    
+
     Thus, this is what we do.  When we have three ops left, we check to see
     what order to put them in, and call it a day.  As a nod to vector sum
-    reduction, we check if any of ops are a really a phi node that is a
+    reduction, we check if any of the ops are really a phi node that is a
     destructive update for the associating op, and keep the destructive
     update together for vector sum reduction recognition.  */
 
@@ -172,11 +171,15 @@ static struct
 typedef struct operand_entry
 {
   unsigned int rank;
+  int id;
   tree op;
 } *operand_entry_t;
 
 static alloc_pool operand_entry_pool;
 
+/* This is used to assign a unique ID to each struct operand_entry
+   so that qsort results are identical on different hosts.  */
+static int next_operand_entry_id;
 
 /* Starting rank number for a given basic block, so that we can rank
    operations using unmovable instructions in that BB based on the bb
@@ -193,7 +196,7 @@ static inline long
 find_operand_rank (tree e)
 {
   void **slot = pointer_map_contains (operand_rank, e);
-  return slot ? (long) *slot : -1;
+  return slot ? (long) (intptr_t) *slot : -1;
 }
 
 /* Insert {E,RANK} into the operand rank hashtable.  */
@@ -205,7 +208,7 @@ insert_operand_rank (tree e, long rank)
   gcc_assert (rank > 0);
   slot = pointer_map_insert (operand_rank, e);
   gcc_assert (!*slot);
-  *slot = (void *) rank;
+  *slot = (void *) (intptr_t) rank;
 }
 
 /* Given an expression E, return the rank of the expression.  */
@@ -243,7 +246,7 @@ get_rank (tree e)
        return 0;
 
       if (!is_gimple_assign (stmt)
-         || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
+         || gimple_vdef (stmt))
        return bb_rank[gimple_bb (stmt)->index];
 
       /* If we already have a rank for this expression, use that.  */
@@ -328,16 +331,31 @@ sort_by_operand_rank (const void *pa, const void *pb)
      to fold when added/multiplied//whatever are put next to each
      other.  Since all constants have rank 0, order them by type.  */
   if (oeb->rank == 0 &&  oea->rank == 0)
-    return constant_type (oeb->op) - constant_type (oea->op);
+    {
+      if (constant_type (oeb->op) != constant_type (oea->op))
+       return constant_type (oeb->op) - constant_type (oea->op);
+      else
+       /* To make sorting result stable, we use unique IDs to determine
+          order.  */
+        return oeb->id - oea->id;
+    }
 
   /* Lastly, make sure the versions that are the same go next to each
      other.  We use SSA_NAME_VERSION because it's stable.  */
   if ((oeb->rank - oea->rank == 0)
       && TREE_CODE (oea->op) == SSA_NAME
       && TREE_CODE (oeb->op) == SSA_NAME)
-    return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
+    {
+      if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
+       return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
+      else
+       return oeb->id - oea->id;
+    }
 
-  return oeb->rank - oea->rank;
+  if (oeb->rank != oea->rank)
+    return oeb->rank - oea->rank;
+  else
+    return oeb->id - oea->id;
 }
 
 /* Add an operand entry to *OPS for the tree operand OP.  */
@@ -349,6 +367,7 @@ add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
 
   oe->op = op;
   oe->rank = get_rank (op);
+  oe->id = next_operand_entry_id++;
   VEC_safe_push (operand_entry_t, heap, *ops, oe);
 }
 
@@ -448,8 +467,7 @@ eliminate_duplicate_pair (enum tree_code opcode,
            {
              VEC_free (operand_entry_t, heap, *ops);
              *ops = NULL;
-             add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op), 
-                                                integer_zero_node));
+             add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
              *all_done = true;
            }
          else
@@ -467,11 +485,13 @@ eliminate_duplicate_pair (enum tree_code opcode,
   return false;
 }
 
-/* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression,
-   look in OPS for a corresponding positive operation to cancel it
-   out.  If we find one, remove the other from OPS, replace
-   OPS[CURRINDEX] with 0, and return true.  Otherwise, return
-   false. */
+static VEC(tree, heap) *plus_negates;
+
+/* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
+   expression, look in OPS for a corresponding positive operation to cancel
+   it out.  If we find one, remove the other from OPS, replace
+   OPS[CURRINDEX] with 0 or -1, respectively, and return true.  Otherwise,
+   return false. */
 
 static bool
 eliminate_plus_minus_pair (enum tree_code opcode,
@@ -480,6 +500,7 @@ eliminate_plus_minus_pair (enum tree_code opcode,
                           operand_entry_t curr)
 {
   tree negateop;
+  tree notop;
   unsigned int i;
   operand_entry_t oe;
 
@@ -487,7 +508,8 @@ eliminate_plus_minus_pair (enum tree_code opcode,
     return false;
 
   negateop = get_unary_op (curr->op, NEGATE_EXPR);
-  if (negateop == NULL_TREE)
+  notop = get_unary_op (curr->op, BIT_NOT_EXPR);
+  if (negateop == NULL_TREE && notop == NULL_TREE)
     return false;
 
   /* Any non-negated version will have a rank that is one less than
@@ -512,8 +534,27 @@ eliminate_plus_minus_pair (enum tree_code opcode,
            }
 
          VEC_ordered_remove (operand_entry_t, *ops, i);
-         add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op), 
-                                           integer_zero_node));
+         add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
+         VEC_ordered_remove (operand_entry_t, *ops, currindex);
+         reassociate_stats.ops_eliminated ++;
+
+         return true;
+       }
+      else if (oe->op == notop)
+       {
+         tree op_type = TREE_TYPE (oe->op);
+
+         if (dump_file && (dump_flags & TDF_DETAILS))
+           {
+             fprintf (dump_file, "Equivalence: ");
+             print_generic_expr (dump_file, notop, 0);
+             fprintf (dump_file, " + ~");
+             print_generic_expr (dump_file, oe->op, 0);
+             fprintf (dump_file, " -> -1\n");
+           }
+
+         VEC_ordered_remove (operand_entry_t, *ops, i);
+         add_to_ops_vec (ops, build_int_cst_type (op_type, -1));
          VEC_ordered_remove (operand_entry_t, *ops, currindex);
          reassociate_stats.ops_eliminated ++;
 
@@ -521,6 +562,11 @@ eliminate_plus_minus_pair (enum tree_code opcode,
        }
     }
 
+  /* CURR->OP is a negate expr in a plus expr: save it for later
+     inspection in repropagate_negates().  */
+  if (negateop != NULL_TREE)
+    VEC_safe_push (tree, heap, plus_negates, curr->op);
+
   return false;
 }
 
@@ -575,12 +621,12 @@ eliminate_not_pairs (enum tree_code opcode,
            }
 
          if (opcode == BIT_AND_EXPR)
-           oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node);
+           oe->op = build_zero_cst (TREE_TYPE (oe->op));
          else if (opcode == BIT_IOR_EXPR)
            oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
                                          TYPE_PRECISION (TREE_TYPE (oe->op)));
 
-         reassociate_stats.ops_eliminated 
+         reassociate_stats.ops_eliminated
            += VEC_length (operand_entry_t, *ops) - 1;
          VEC_free (operand_entry_t, heap, *ops);
          *ops = NULL;
@@ -619,9 +665,9 @@ eliminate_using_constants (enum tree_code opcode,
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    fprintf (dump_file, "Found & 0, removing all other ops\n");
 
-                 reassociate_stats.ops_eliminated 
+                 reassociate_stats.ops_eliminated
                    += VEC_length (operand_entry_t, *ops) - 1;
-                 
+
                  VEC_free (operand_entry_t, heap, *ops);
                  *ops = NULL;
                  VEC_safe_push (operand_entry_t, heap, *ops, oelast);
@@ -647,15 +693,15 @@ eliminate_using_constants (enum tree_code opcode,
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    fprintf (dump_file, "Found | -1, removing all other ops\n");
 
-                 reassociate_stats.ops_eliminated 
+                 reassociate_stats.ops_eliminated
                    += VEC_length (operand_entry_t, *ops) - 1;
-                 
+
                  VEC_free (operand_entry_t, heap, *ops);
                  *ops = NULL;
                  VEC_safe_push (operand_entry_t, heap, *ops, oelast);
                  return;
                }
-           }     
+           }
          else if (integer_zerop (oelast->op))
            {
              if (VEC_length (operand_entry_t, *ops) != 1)
@@ -678,8 +724,8 @@ eliminate_using_constants (enum tree_code opcode,
                {
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    fprintf (dump_file, "Found * 0, removing all other ops\n");
-                 
-                 reassociate_stats.ops_eliminated 
+
+                 reassociate_stats.ops_eliminated
                    += VEC_length (operand_entry_t, *ops) - 1;
                  VEC_free (operand_entry_t, heap, *ops);
                  *ops = NULL;
@@ -727,6 +773,561 @@ eliminate_using_constants (enum tree_code opcode,
     }
 }
 
+
+static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
+                                bool, bool);
+
+/* Structure for tracking and counting operands.  */
+typedef struct oecount_s {
+  int cnt;
+  int id;
+  enum tree_code oecode;
+  tree op;
+} oecount;
+
+DEF_VEC_O(oecount);
+DEF_VEC_ALLOC_O(oecount,heap);
+
+/* The heap for the oecount hashtable and the sorted list of operands.  */
+static VEC (oecount, heap) *cvec;
+
+/* Hash function for oecount.  */
+
+static hashval_t
+oecount_hash (const void *p)
+{
+  const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
+  return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
+}
+
+/* Comparison function for oecount.  */
+
+static int
+oecount_eq (const void *p1, const void *p2)
+{
+  const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
+  const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
+  return (c1->oecode == c2->oecode
+         && c1->op == c2->op);
+}
+
+/* Comparison function for qsort sorting oecount elements by count.  */
+
+static int
+oecount_cmp (const void *p1, const void *p2)
+{
+  const oecount *c1 = (const oecount *)p1;
+  const oecount *c2 = (const oecount *)p2;
+  if (c1->cnt != c2->cnt)
+    return c1->cnt - c2->cnt;
+  else
+    /* If counts are identical, use unique IDs to stabilize qsort.  */
+    return c1->id - c2->id;
+}
+
+/* Walks the linear chain with result *DEF searching for an operation
+   with operand OP and code OPCODE removing that from the chain.  *DEF
+   is updated if there is only one operand but no operation left.  */
+
+static void
+zero_one_operation (tree *def, enum tree_code opcode, tree op)
+{
+  gimple stmt = SSA_NAME_DEF_STMT (*def);
+
+  do
+    {
+      tree name = gimple_assign_rhs1 (stmt);
+
+      /* If this is the operation we look for and one of the operands
+         is ours simply propagate the other operand into the stmts
+        single use.  */
+      if (gimple_assign_rhs_code (stmt) == opcode
+         && (name == op
+             || gimple_assign_rhs2 (stmt) == op))
+       {
+         gimple use_stmt;
+         use_operand_p use;
+         gimple_stmt_iterator gsi;
+         if (name == op)
+           name = gimple_assign_rhs2 (stmt);
+         gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
+         single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
+         if (gimple_assign_lhs (stmt) == *def)
+           *def = name;
+         SET_USE (use, name);
+         if (TREE_CODE (name) != SSA_NAME)
+           update_stmt (use_stmt);
+         gsi = gsi_for_stmt (stmt);
+         gsi_remove (&gsi, true);
+         release_defs (stmt);
+         return;
+       }
+
+      /* Continue walking the chain.  */
+      gcc_assert (name != op
+                 && TREE_CODE (name) == SSA_NAME);
+      stmt = SSA_NAME_DEF_STMT (name);
+    }
+  while (1);
+}
+
+/* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
+   the result.  Places the statement after the definition of either
+   OP1 or OP2.  Returns the new statement.  */
+
+static gimple
+build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
+{
+  gimple op1def = NULL, op2def = NULL;
+  gimple_stmt_iterator gsi;
+  tree op;
+  gimple sum;
+
+  /* Create the addition statement.  */
+  sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
+  op = make_ssa_name (tmpvar, sum);
+  gimple_assign_set_lhs (sum, op);
+
+  /* Find an insertion place and insert.  */
+  if (TREE_CODE (op1) == SSA_NAME)
+    op1def = SSA_NAME_DEF_STMT (op1);
+  if (TREE_CODE (op2) == SSA_NAME)
+    op2def = SSA_NAME_DEF_STMT (op2);
+  if ((!op1def || gimple_nop_p (op1def))
+      && (!op2def || gimple_nop_p (op2def)))
+    {
+      gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
+      gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
+    }
+  else if ((!op1def || gimple_nop_p (op1def))
+          || (op2def && !gimple_nop_p (op2def)
+              && stmt_dominates_stmt_p (op1def, op2def)))
+    {
+      if (gimple_code (op2def) == GIMPLE_PHI)
+       {
+         gsi = gsi_after_labels (gimple_bb (op2def));
+         gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
+       }
+      else
+       {
+         if (!stmt_ends_bb_p (op2def))
+           {
+             gsi = gsi_for_stmt (op2def);
+             gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
+           }
+         else
+           {
+             edge e;
+             edge_iterator ei;
+
+             FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
+               if (e->flags & EDGE_FALLTHRU)
+                 gsi_insert_on_edge_immediate (e, sum);
+           }
+       }
+    }
+  else
+    {
+      if (gimple_code (op1def) == GIMPLE_PHI)
+       {
+         gsi = gsi_after_labels (gimple_bb (op1def));
+         gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
+       }
+      else
+       {
+         if (!stmt_ends_bb_p (op1def))
+           {
+             gsi = gsi_for_stmt (op1def);
+             gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
+           }
+         else
+           {
+             edge e;
+             edge_iterator ei;
+
+             FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
+               if (e->flags & EDGE_FALLTHRU)
+                 gsi_insert_on_edge_immediate (e, sum);
+           }
+       }
+    }
+  update_stmt (sum);
+
+  return sum;
+}
+
+/* Perform un-distribution of divisions and multiplications.
+   A * X + B * X is transformed into (A + B) * X and A / X + B / X
+   to (A + B) / X for real X.
+
+   The algorithm is organized as follows.
+
+    - First we walk the addition chain *OPS looking for summands that
+      are defined by a multiplication or a real division.  This results
+      in the candidates bitmap with relevant indices into *OPS.
+
+    - Second we build the chains of multiplications or divisions for
+      these candidates, counting the number of occurences of (operand, code)
+      pairs in all of the candidates chains.
+
+    - Third we sort the (operand, code) pairs by number of occurence and
+      process them starting with the pair with the most uses.
+
+      * For each such pair we walk the candidates again to build a
+        second candidate bitmap noting all multiplication/division chains
+       that have at least one occurence of (operand, code).
+
+      * We build an alternate addition chain only covering these
+        candidates with one (operand, code) operation removed from their
+       multiplication/division chain.
+
+      * The first candidate gets replaced by the alternate addition chain
+        multiplied/divided by the operand.
+
+      * All candidate chains get disabled for further processing and
+        processing of (operand, code) pairs continues.
+
+  The alternate addition chains built are re-processed by the main
+  reassociation algorithm which allows optimizing a * x * y + b * y * x
+  to (a + b ) * x * y in one invocation of the reassociation pass.  */
+
+static bool
+undistribute_ops_list (enum tree_code opcode,
+                      VEC (operand_entry_t, heap) **ops, struct loop *loop)
+{
+  unsigned int length = VEC_length (operand_entry_t, *ops);
+  operand_entry_t oe1;
+  unsigned i, j;
+  sbitmap candidates, candidates2;
+  unsigned nr_candidates, nr_candidates2;
+  sbitmap_iterator sbi0;
+  VEC (operand_entry_t, heap) **subops;
+  htab_t ctable;
+  bool changed = false;
+  int next_oecount_id = 0;
+
+  if (length <= 1
+      || opcode != PLUS_EXPR)
+    return false;
+
+  /* Build a list of candidates to process.  */
+  candidates = sbitmap_alloc (length);
+  sbitmap_zero (candidates);
+  nr_candidates = 0;
+  FOR_EACH_VEC_ELT (operand_entry_t, *ops, i, oe1)
+    {
+      enum tree_code dcode;
+      gimple oe1def;
+
+      if (TREE_CODE (oe1->op) != SSA_NAME)
+       continue;
+      oe1def = SSA_NAME_DEF_STMT (oe1->op);
+      if (!is_gimple_assign (oe1def))
+       continue;
+      dcode = gimple_assign_rhs_code (oe1def);
+      if ((dcode != MULT_EXPR
+          && dcode != RDIV_EXPR)
+         || !is_reassociable_op (oe1def, dcode, loop))
+       continue;
+
+      SET_BIT (candidates, i);
+      nr_candidates++;
+    }
+
+  if (nr_candidates < 2)
+    {
+      sbitmap_free (candidates);
+      return false;
+    }
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "searching for un-distribute opportunities ");
+      print_generic_expr (dump_file,
+       VEC_index (operand_entry_t, *ops,
+                  sbitmap_first_set_bit (candidates))->op, 0);
+      fprintf (dump_file, " %d\n", nr_candidates);
+    }
+
+  /* Build linearized sub-operand lists and the counting table.  */
+  cvec = NULL;
+  ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
+  subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
+                    VEC_length (operand_entry_t, *ops));
+  EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
+    {
+      gimple oedef;
+      enum tree_code oecode;
+      unsigned j;
+
+      oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
+      oecode = gimple_assign_rhs_code (oedef);
+      linearize_expr_tree (&subops[i], oedef,
+                          associative_tree_code (oecode), false);
+
+      FOR_EACH_VEC_ELT (operand_entry_t, subops[i], j, oe1)
+       {
+         oecount c;
+         void **slot;
+         size_t idx;
+         c.oecode = oecode;
+         c.cnt = 1;
+         c.id = next_oecount_id++;
+         c.op = oe1->op;
+         VEC_safe_push (oecount, heap, cvec, &c);
+         idx = VEC_length (oecount, cvec) + 41;
+         slot = htab_find_slot (ctable, (void *)idx, INSERT);
+         if (!*slot)
+           {
+             *slot = (void *)idx;
+           }
+         else
+           {
+             VEC_pop (oecount, cvec);
+             VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
+           }
+       }
+    }
+  htab_delete (ctable);
+
+  /* Sort the counting table.  */
+  VEC_qsort (oecount, cvec, oecount_cmp);
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      oecount *c;
+      fprintf (dump_file, "Candidates:\n");
+      FOR_EACH_VEC_ELT (oecount, cvec, j, c)
+       {
+         fprintf (dump_file, "  %u %s: ", c->cnt,
+                  c->oecode == MULT_EXPR
+                  ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
+         print_generic_expr (dump_file, c->op, 0);
+         fprintf (dump_file, "\n");
+       }
+    }
+
+  /* Process the (operand, code) pairs in order of most occurence.  */
+  candidates2 = sbitmap_alloc (length);
+  while (!VEC_empty (oecount, cvec))
+    {
+      oecount *c = VEC_last (oecount, cvec);
+      if (c->cnt < 2)
+       break;
+
+      /* Now collect the operands in the outer chain that contain
+         the common operand in their inner chain.  */
+      sbitmap_zero (candidates2);
+      nr_candidates2 = 0;
+      EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
+       {
+         gimple oedef;
+         enum tree_code oecode;
+         unsigned j;
+         tree op = VEC_index (operand_entry_t, *ops, i)->op;
+
+         /* If we undistributed in this chain already this may be
+            a constant.  */
+         if (TREE_CODE (op) != SSA_NAME)
+           continue;
+
+         oedef = SSA_NAME_DEF_STMT (op);
+         oecode = gimple_assign_rhs_code (oedef);
+         if (oecode != c->oecode)
+           continue;
+
+         FOR_EACH_VEC_ELT (operand_entry_t, subops[i], j, oe1)
+           {
+             if (oe1->op == c->op)
+               {
+                 SET_BIT (candidates2, i);
+                 ++nr_candidates2;
+                 break;
+               }
+           }
+       }
+
+      if (nr_candidates2 >= 2)
+       {
+         operand_entry_t oe1, oe2;
+         tree tmpvar;
+         gimple prod;
+         int first = sbitmap_first_set_bit (candidates2);
+
+         /* Build the new addition chain.  */
+         oe1 = VEC_index (operand_entry_t, *ops, first);
+         if (dump_file && (dump_flags & TDF_DETAILS))
+           {
+             fprintf (dump_file, "Building (");
+             print_generic_expr (dump_file, oe1->op, 0);
+           }
+         tmpvar = create_tmp_reg (TREE_TYPE (oe1->op), NULL);
+         add_referenced_var (tmpvar);
+         zero_one_operation (&oe1->op, c->oecode, c->op);
+         EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
+           {
+             gimple sum;
+             oe2 = VEC_index (operand_entry_t, *ops, i);
+             if (dump_file && (dump_flags & TDF_DETAILS))
+               {
+                 fprintf (dump_file, " + ");
+                 print_generic_expr (dump_file, oe2->op, 0);
+               }
+             zero_one_operation (&oe2->op, c->oecode, c->op);
+             sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
+             oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
+             oe2->rank = 0;
+             oe1->op = gimple_get_lhs (sum);
+           }
+
+         /* Apply the multiplication/division.  */
+         prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
+         if (dump_file && (dump_flags & TDF_DETAILS))
+           {
+             fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
+             print_generic_expr (dump_file, c->op, 0);
+             fprintf (dump_file, "\n");
+           }
+
+         /* Record it in the addition chain and disable further
+            undistribution with this op.  */
+         oe1->op = gimple_assign_lhs (prod);
+         oe1->rank = get_rank (oe1->op);
+         VEC_free (operand_entry_t, heap, subops[first]);
+
+         changed = true;
+       }
+
+      VEC_pop (oecount, cvec);
+    }
+
+  for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
+    VEC_free (operand_entry_t, heap, subops[i]);
+  free (subops);
+  VEC_free (oecount, heap, cvec);
+  sbitmap_free (candidates);
+  sbitmap_free (candidates2);
+
+  return changed;
+}
+
+/* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
+   expression, examine the other OPS to see if any of them are comparisons
+   of the same values, which we may be able to combine or eliminate.
+   For example, we can rewrite (a < b) | (a == b) as (a <= b).  */
+
+static bool
+eliminate_redundant_comparison (enum tree_code opcode,
+                               VEC (operand_entry_t, heap) **ops,
+                               unsigned int currindex,
+                               operand_entry_t curr)
+{
+  tree op1, op2;
+  enum tree_code lcode, rcode;
+  gimple def1, def2;
+  int i;
+  operand_entry_t oe;
+
+  if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
+    return false;
+
+  /* Check that CURR is a comparison.  */
+  if (TREE_CODE (curr->op) != SSA_NAME)
+    return false;
+  def1 = SSA_NAME_DEF_STMT (curr->op);
+  if (!is_gimple_assign (def1))
+    return false;
+  lcode = gimple_assign_rhs_code (def1);
+  if (TREE_CODE_CLASS (lcode) != tcc_comparison)
+    return false;
+  op1 = gimple_assign_rhs1 (def1);
+  op2 = gimple_assign_rhs2 (def1);
+
+  /* Now look for a similar comparison in the remaining OPS.  */
+  for (i = currindex + 1;
+       VEC_iterate (operand_entry_t, *ops, i, oe);
+       i++)
+    {
+      tree t;
+
+      if (TREE_CODE (oe->op) != SSA_NAME)
+       continue;
+      def2 = SSA_NAME_DEF_STMT (oe->op);
+      if (!is_gimple_assign (def2))
+       continue;
+      rcode = gimple_assign_rhs_code (def2);
+      if (TREE_CODE_CLASS (rcode) != tcc_comparison)
+       continue;
+
+      /* If we got here, we have a match.  See if we can combine the
+        two comparisons.  */
+      if (opcode == BIT_IOR_EXPR)
+       t = maybe_fold_or_comparisons (lcode, op1, op2,
+                                      rcode, gimple_assign_rhs1 (def2),
+                                      gimple_assign_rhs2 (def2));
+      else
+       t = maybe_fold_and_comparisons (lcode, op1, op2,
+                                       rcode, gimple_assign_rhs1 (def2),
+                                       gimple_assign_rhs2 (def2));
+      if (!t)
+       continue;
+
+      /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
+        always give us a boolean_type_node value back.  If the original
+        BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
+        we need to convert.  */
+      if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
+       t = fold_convert (TREE_TYPE (curr->op), t);
+
+      if (dump_file && (dump_flags & TDF_DETAILS))
+       {
+         fprintf (dump_file, "Equivalence: ");
+         print_generic_expr (dump_file, curr->op, 0);
+         fprintf (dump_file, " %s ", op_symbol_code (opcode));
+         print_generic_expr (dump_file, oe->op, 0);
+         fprintf (dump_file, " -> ");
+         print_generic_expr (dump_file, t, 0);
+         fprintf (dump_file, "\n");
+       }
+
+      /* Now we can delete oe, as it has been subsumed by the new combined
+         expression t.  */
+      VEC_ordered_remove (operand_entry_t, *ops, i);
+      reassociate_stats.ops_eliminated ++;
+
+      /* If t is the same as curr->op, we're done.  Otherwise we must
+        replace curr->op with t.  Special case is if we got a constant
+        back, in which case we add it to the end instead of in place of
+        the current entry.  */
+      if (TREE_CODE (t) == INTEGER_CST)
+       {
+         VEC_ordered_remove (operand_entry_t, *ops, currindex);
+         add_to_ops_vec (ops, t);
+       }
+      else if (!operand_equal_p (t, curr->op, 0))
+       {
+         tree tmpvar;
+         gimple sum;
+         enum tree_code subcode;
+         tree newop1;
+         tree newop2;
+         gcc_assert (COMPARISON_CLASS_P (t));
+         tmpvar = create_tmp_var (TREE_TYPE (t), NULL);
+         add_referenced_var (tmpvar);
+         extract_ops_from_tree (t, &subcode, &newop1, &newop2);
+         STRIP_USELESS_TYPE_CONVERSION (newop1);
+         STRIP_USELESS_TYPE_CONVERSION (newop2);
+         gcc_checking_assert (is_gimple_val (newop1)
+                              && is_gimple_val (newop2));
+         sum = build_and_add_sum (tmpvar, newop1, newop2, subcode);
+         curr->op = gimple_get_lhs (sum);
+       }
+      return true;
+    }
+
+  return false;
+}
+
 /* Perform various identities and other optimizations on the list of
    operand entries, stored in OPS.  The tree code for the binary
    operation between all the operands is OPCODE.  */
@@ -787,7 +1388,8 @@ optimize_ops_list (enum tree_code opcode,
       if (eliminate_not_pairs (opcode, ops, i, oe))
        return;
       if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
-         || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)))
+         || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
+         || (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
        {
          if (done)
            return;
@@ -833,13 +1435,37 @@ is_phi_for_stmt (gimple stmt, tree operand)
   return false;
 }
 
+/* Remove def stmt of VAR if VAR has zero uses and recurse
+   on rhs1 operand if so.  */
+
+static void
+remove_visited_stmt_chain (tree var)
+{
+  gimple stmt;
+  gimple_stmt_iterator gsi;
+
+  while (1)
+    {
+      if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
+       return;
+      stmt = SSA_NAME_DEF_STMT (var);
+      if (!is_gimple_assign (stmt)
+         || !gimple_visited_p (stmt))
+       return;
+      var = gimple_assign_rhs1 (stmt);
+      gsi = gsi_for_stmt (stmt);
+      gsi_remove (&gsi, true);
+      release_defs (stmt);
+    }
+}
+
 /* Recursively rewrite our linearized statements so that the operators
    match those in OPS[OPINDEX], putting the computation in rank
    order.  */
 
 static void
 rewrite_expr_tree (gimple stmt, unsigned int opindex,
-                  VEC(operand_entry_t, heap) * ops)
+                  VEC(operand_entry_t, heap) * ops, bool moved)
 {
   tree rhs1 = gimple_assign_rhs1 (stmt);
   tree rhs2 = gimple_assign_rhs2 (stmt);
@@ -916,6 +1542,8 @@ rewrite_expr_tree (gimple stmt, unsigned int opindex,
          gimple_assign_set_rhs1 (stmt, oe1->op);
          gimple_assign_set_rhs2 (stmt, oe2->op);
          update_stmt (stmt);
+         if (rhs1 != oe1->op && rhs1 != oe2->op)
+           remove_visited_stmt_chain (rhs1);
 
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
@@ -935,6 +1563,24 @@ rewrite_expr_tree (gimple stmt, unsigned int opindex,
 
   if (oe->op != rhs2)
     {
+      if (!moved)
+       {
+         gimple_stmt_iterator gsinow, gsirhs1;
+         gimple stmt1 = stmt, stmt2;
+         unsigned int count;
+
+         gsinow = gsi_for_stmt (stmt);
+         count = VEC_length (operand_entry_t, ops) - opindex - 2;
+         while (count-- != 0)
+           {
+             stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
+             gsirhs1 = gsi_for_stmt (stmt2);
+             gsi_move_before (&gsirhs1, &gsinow);
+             gsi_prev (&gsinow);
+             stmt1 = stmt2;
+           }
+         moved = true;
+       }
 
       if (dump_file && (dump_flags & TDF_DETAILS))
        {
@@ -953,7 +1599,7 @@ rewrite_expr_tree (gimple stmt, unsigned int opindex,
     }
   /* Recurse on the LHS of the binary operator, which is guaranteed to
      be the non-leaf side.  */
-  rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops);
+  rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
 }
 
 /* Transform STMT, which is really (A +B) + (C + D) into the left
@@ -1023,8 +1669,6 @@ get_single_immediate_use (tree lhs)
   return NULL;
 }
 
-static VEC(tree, heap) *broken_up_subtracts;
-
 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
    representing the negated value.  Insertions of any necessary
    instructions go before GSI.
@@ -1067,7 +1711,6 @@ negate_value (tree tonegate, gimple_stmt_iterator *gsi)
   tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
   resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
                                             NULL_TREE, true, GSI_SAME_STMT);
-  VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate);
   return resultofnegate;
 }
 
@@ -1097,7 +1740,8 @@ should_break_up_subtract (gimple stmt)
   if (TREE_CODE (lhs) == SSA_NAME
       && (immusestmt = get_single_immediate_use (lhs))
       && is_gimple_assign (immusestmt)
-      && gimple_assign_rhs_code (immusestmt) == PLUS_EXPR)
+      && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
+         ||  gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
     return true;
   return false;
 }
@@ -1125,9 +1769,9 @@ break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
    Place the operands of the expression tree in the vector named OPS.  */
 
 static void
-linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt)
+linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
+                    bool is_associative, bool set_visited)
 {
-  gimple_stmt_iterator gsinow, gsilhs;
   tree binlhs = gimple_assign_rhs1 (stmt);
   tree binrhs = gimple_assign_rhs2 (stmt);
   gimple binlhsdef, binrhsdef;
@@ -1136,18 +1780,21 @@ linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt)
   enum tree_code rhscode = gimple_assign_rhs_code (stmt);
   struct loop *loop = loop_containing_stmt (stmt);
 
-  gimple_set_visited (stmt, true);
+  if (set_visited)
+    gimple_set_visited (stmt, true);
 
   if (TREE_CODE (binlhs) == SSA_NAME)
     {
       binlhsdef = SSA_NAME_DEF_STMT (binlhs);
-      binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode, loop);
+      binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
+                        && !stmt_could_throw_p (binlhsdef));
     }
 
   if (TREE_CODE (binrhs) == SSA_NAME)
     {
       binrhsdef = SSA_NAME_DEF_STMT (binrhs);
-      binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode, loop);
+      binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
+                        && !stmt_could_throw_p (binrhsdef));
     }
 
   /* If the LHS is not reassociable, but the RHS is, we need to swap
@@ -1160,6 +1807,13 @@ linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt)
     {
       tree temp;
 
+      /* If this is not a associative operation like division, give up.  */
+      if (!is_associative)
+       {
+         add_to_ops_vec (ops, binrhs);
+         return;
+       }
+
       if (!binrhsisreassoc)
        {
          add_to_ops_vec (ops, binrhs);
@@ -1200,10 +1854,8 @@ linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt)
   gcc_assert (TREE_CODE (binrhs) != SSA_NAME
              || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
                                      rhscode, loop));
-  gsinow = gsi_for_stmt (stmt);
-  gsilhs = gsi_for_stmt (SSA_NAME_DEF_STMT (binlhs));
-  gsi_move_before (&gsilhs, &gsinow);
-  linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs));
+  linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
+                      is_associative, set_visited);
   add_to_ops_vec (ops, binrhs);
 }
 
@@ -1216,18 +1868,19 @@ repropagate_negates (void)
   unsigned int i = 0;
   tree negate;
 
-  for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++)
+  FOR_EACH_VEC_ELT (tree, plus_negates, i, negate)
     {
       gimple user = get_single_immediate_use (negate);
 
+      if (!user || !is_gimple_assign (user))
+       continue;
+
       /* The negate operand can be either operand of a PLUS_EXPR
         (it can be the LHS if the RHS is a constant for example).
 
         Force the negate operand to the RHS of the PLUS_EXPR, then
         transform the PLUS_EXPR into a MINUS_EXPR.  */
-      if (user
-         && is_gimple_assign (user)
-         && gimple_assign_rhs_code (user) == PLUS_EXPR)
+      if (gimple_assign_rhs_code (user) == PLUS_EXPR)
        {
          /* If the negated operand appears on the LHS of the
             PLUS_EXPR, exchange the operands of the PLUS_EXPR
@@ -1250,21 +1903,75 @@ repropagate_negates (void)
              update_stmt (user);
            }
        }
+      else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
+       {
+         if (gimple_assign_rhs1 (user) == negate)
+           {
+             /* We have
+                  x = -a
+                  y = x - b
+                which we transform into
+                  x = a + b
+                  y = -x .
+                This pushes down the negate which we possibly can merge
+                into some other operation, hence insert it into the
+                plus_negates vector.  */
+             gimple feed = SSA_NAME_DEF_STMT (negate);
+             tree a = gimple_assign_rhs1 (feed);
+             tree rhs2 = gimple_assign_rhs2 (user);
+             gimple_stmt_iterator gsi = gsi_for_stmt (feed), gsi2;
+             gimple_replace_lhs (feed, negate);
+             gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, a, rhs2);
+             update_stmt (gsi_stmt (gsi));
+             gsi2 = gsi_for_stmt (user);
+             gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, negate, NULL);
+             update_stmt (gsi_stmt (gsi2));
+             gsi_move_before (&gsi, &gsi2);
+             VEC_safe_push (tree, heap, plus_negates,
+                            gimple_assign_lhs (gsi_stmt (gsi2)));
+           }
+         else
+           {
+             /* Transform "x = -a; y = b - x" into "y = b + a", getting
+                rid of one operation.  */
+             gimple feed = SSA_NAME_DEF_STMT (negate);
+             tree a = gimple_assign_rhs1 (feed);
+             tree rhs1 = gimple_assign_rhs1 (user);
+             gimple_stmt_iterator gsi = gsi_for_stmt (user);
+             gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
+             update_stmt (gsi_stmt (gsi));
+           }
+       }
     }
 }
 
+/* Returns true if OP is of a type for which we can do reassociation.
+   That is for integral or non-saturating fixed-point types, and for
+   floating point type when associative-math is enabled.  */
+
+static bool
+can_reassociate_p (tree op)
+{
+  tree type = TREE_TYPE (op);
+  if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
+      || NON_SAT_FIXED_POINT_TYPE_P (type)
+      || (flag_associative_math && FLOAT_TYPE_P (type)))
+    return true;
+  return false;
+}
+
 /* Break up subtract operations in block BB.
 
    We do this top down because we don't know whether the subtract is
    part of a possible chain of reassociation except at the top.
+
    IE given
    d = f + g
    c = a + e
    b = c - d
    q = b - r
    k = t - q
-   
+
    we want to break up k = t - q, but we won't until we've transformed q
    = b - r, which won't be broken up until we transform b = c - d.
 
@@ -1281,27 +1988,15 @@ break_up_subtract_bb (basic_block bb)
       gimple stmt = gsi_stmt (gsi);
       gimple_set_visited (stmt, false);
 
+      if (!is_gimple_assign (stmt)
+         || !can_reassociate_p (gimple_assign_lhs (stmt)))
+       continue;
+
       /* Look for simple gimple subtract operations.  */
-      if (is_gimple_assign (stmt)
-         && gimple_assign_rhs_code (stmt) == MINUS_EXPR)
+      if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
        {
-         tree lhs = gimple_assign_lhs (stmt);
-         tree rhs1 = gimple_assign_rhs1 (stmt);
-         tree rhs2 = gimple_assign_rhs2 (stmt);
-
-         /* If associative-math we can do reassociation for
-            non-integral types.  Or, we can do reassociation for
-            non-saturating fixed-point types.  */
-         if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
-              || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
-              || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
-             && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
-                 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
-                 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
-                 || !flag_associative_math)
-             && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
-                 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
-                 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
+         if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
+             || !can_reassociate_p (gimple_assign_rhs2 (stmt)))
            continue;
 
          /* Check for a subtract used only in an addition.  If this
@@ -1311,6 +2006,9 @@ break_up_subtract_bb (basic_block bb)
          if (should_break_up_subtract (stmt))
            break_up_subtract (stmt, &gsi);
        }
+      else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
+              && can_reassociate_p (gimple_assign_rhs1 (stmt)))
+       VEC_safe_push (tree, heap, plus_negates, gimple_assign_lhs (stmt));
     }
   for (son = first_dom_son (CDI_DOMINATORS, bb);
        son;
@@ -1331,7 +2029,8 @@ reassociate_bb (basic_block bb)
     {
       gimple stmt = gsi_stmt (gsi);
 
-      if (is_gimple_assign (stmt))
+      if (is_gimple_assign (stmt)
+         && !stmt_could_throw_p (stmt))
        {
          tree lhs, rhs1, rhs2;
          enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
@@ -1344,25 +2043,43 @@ reassociate_bb (basic_block bb)
          /* If this was part of an already processed statement,
             we don't need to touch it again. */
          if (gimple_visited_p (stmt))
-           continue;
+           {
+             /* This statement might have become dead because of previous
+                reassociations.  */
+             if (has_zero_uses (gimple_get_lhs (stmt)))
+               {
+                 gsi_remove (&gsi, true);
+                 release_defs (stmt);
+                 /* We might end up removing the last stmt above which
+                    places the iterator to the end of the sequence.
+                    Reset it to the last stmt in this case which might
+                    be the end of the sequence as well if we removed
+                    the last statement of the sequence.  In which case
+                    we need to bail out.  */
+                 if (gsi_end_p (gsi))
+                   {
+                     gsi = gsi_last_bb (bb);
+                     if (gsi_end_p (gsi))
+                       break;
+                   }
+               }
+             continue;
+           }
 
          lhs = gimple_assign_lhs (stmt);
          rhs1 = gimple_assign_rhs1 (stmt);
          rhs2 = gimple_assign_rhs2 (stmt);
 
-         /* If associative-math we can do reassociation for
-            non-integral types.  Or, we can do reassociation for
-            non-saturating fixed-point types.  */
-         if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
-              || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
-              || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
-             && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
-                 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
-                 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
-                 || !flag_associative_math)
-             && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
-                 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
-                 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
+         /* For non-bit or min/max operations we can't associate
+            all types.  Verify that here.  */
+         if (rhs_code != BIT_IOR_EXPR
+             && rhs_code != BIT_AND_EXPR
+             && rhs_code != BIT_XOR_EXPR
+             && rhs_code != MIN_EXPR
+             && rhs_code != MAX_EXPR
+             && (!can_reassociate_p (lhs)
+                 || !can_reassociate_p (rhs1)
+                 || !can_reassociate_p (rhs2)))
            continue;
 
          if (associative_tree_code (rhs_code))
@@ -1375,12 +2092,15 @@ reassociate_bb (basic_block bb)
                continue;
 
              gimple_set_visited (stmt, true);
-             linearize_expr_tree (&ops, stmt);
-             qsort (VEC_address (operand_entry_t, ops),
-                    VEC_length (operand_entry_t, ops),
-                    sizeof (operand_entry_t),
-                    sort_by_operand_rank);
+             linearize_expr_tree (&ops, stmt, true, true);
+             VEC_qsort (operand_entry_t, ops, sort_by_operand_rank);
              optimize_ops_list (rhs_code, &ops);
+             if (undistribute_ops_list (rhs_code, &ops,
+                                        loop_containing_stmt (stmt)))
+               {
+                 VEC_qsort (operand_entry_t, ops, sort_by_operand_rank);
+                 optimize_ops_list (rhs_code, &ops);
+               }
 
              if (VEC_length (operand_entry_t, ops) == 1)
                {
@@ -1389,11 +2109,13 @@ reassociate_bb (basic_block bb)
                      fprintf (dump_file, "Transforming ");
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                    }
-                 
+
+                 rhs1 = gimple_assign_rhs1 (stmt);
                  gimple_assign_set_rhs_from_tree (&gsi,
                                                   VEC_last (operand_entry_t,
                                                             ops)->op);
                  update_stmt (stmt);
+                 remove_visited_stmt_chain (rhs1);
 
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    {
@@ -1402,9 +2124,7 @@ reassociate_bb (basic_block bb)
                    }
                }
              else
-               {
-                 rewrite_expr_tree (stmt, 0, ops);
-               }
+               rewrite_expr_tree (stmt, 0, ops, false);
 
              VEC_free (operand_entry_t, heap, ops);
            }
@@ -1427,7 +2147,7 @@ dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
   operand_entry_t oe;
   unsigned int i;
 
-  for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++)
+  FOR_EACH_VEC_ELT (operand_entry_t, ops, i, oe)
     {
       fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
       print_generic_expr (file, oe->op, 0);
@@ -1436,7 +2156,7 @@ dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
 
 /* Dump the operand entry vector OPS to STDERR.  */
 
-void
+DEBUG_FUNCTION void
 debug_ops_vector (VEC (operand_entry_t, heap) *ops)
 {
   dump_ops_vector (stderr, ops);
@@ -1467,6 +2187,7 @@ init_reassoc (void)
 
   operand_entry_pool = create_alloc_pool ("operand entry pool",
                                          sizeof (struct operand_entry), 30);
+  next_operand_entry_id = 0;
 
   /* Reverse RPO (Reverse Post Order) will give us something where
      deeper loops come later.  */
@@ -1477,7 +2198,7 @@ init_reassoc (void)
   /* Give each argument a distinct rank.   */
   for (param = DECL_ARGUMENTS (current_function_decl);
        param;
-       param = TREE_CHAIN (param))
+       param = DECL_CHAIN (param))
     {
       if (gimple_default_def (cfun, param) != NULL)
        {
@@ -1500,7 +2221,7 @@ init_reassoc (void)
 
   free (bbs);
   calculate_dominance_info (CDI_POST_DOMINATORS);
-  broken_up_subtracts = NULL;
+  plus_negates = NULL;
 }
 
 /* Cleanup after the reassociation pass, and print stats if
@@ -1521,7 +2242,7 @@ fini_reassoc (void)
   pointer_map_destroy (operand_rank);
   free_alloc_pool (operand_entry_pool);
   free (bb_rank);
-  VEC_free (tree, heap, broken_up_subtracts);
+  VEC_free (tree, heap, plus_negates);
   free_dominance_info (CDI_POST_DOMINATORS);
   loop_optimizer_finalize ();
 }
@@ -1557,7 +2278,7 @@ struct gimple_opt_pass pass_reassoc =
   NULL,                                        /* next */
   0,                                   /* static_pass_number */
   TV_TREE_REASSOC,                     /* tv_id */
-  PROP_cfg | PROP_ssa | PROP_alias,    /* properties_required */
+  PROP_cfg | PROP_ssa,                 /* properties_required */
   0,                                   /* properties_provided */
   0,                                   /* properties_destroyed */
   0,                                   /* todo_flags_start */