OSDN Git Service

2008-06-04 Junjie Gu <jgu@tensilica.com>
[pf3gnuchains/gcc-fork.git] / gcc / tree-data-ref.c
index db1d83b..bf9516c 100644 (file)
@@ -6,7 +6,7 @@ This file is part of GCC.
 
 GCC is free software; you can redistribute it and/or modify it under
 the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
+Software Foundation; either version 3, or (at your option) any later
 version.
 
 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
@@ -15,9 +15,8 @@ FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.
 
 You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING.  If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA.  */
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
 
 /* This pass walks a given loop structure searching for array
    references.  The information about the array accesses is recorded
@@ -89,7 +88,6 @@ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
 #include "tree-dump.h"
 #include "timevar.h"
 #include "cfgloop.h"
-#include "tree-chrec.h"
 #include "tree-data-ref.h"
 #include "tree-scalar-evolution.h"
 #include "tree-pass.h"
@@ -129,7 +127,7 @@ static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
 /* Returns true iff A divides B.  */
 
 static inline bool 
-tree_fold_divides_p (tree a, tree b)
+tree_fold_divides_p (const_tree a, const_tree b)
 {
   gcc_assert (TREE_CODE (a) == INTEGER_CST);
   gcc_assert (TREE_CODE (b) == INTEGER_CST);
@@ -158,6 +156,14 @@ dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs)
     dump_data_reference (file, dr);
 }
 
+/* Dump to STDERR all the dependence relations from DDRS.  */ 
+
+void 
+debug_data_dependence_relations (VEC (ddr_p, heap) *ddrs)
+{
+  dump_data_dependence_relations (stderr, ddrs);
+}
+
 /* Dump into FILE all the dependence relations from DDRS.  */ 
 
 void 
@@ -352,13 +358,20 @@ dump_data_dependence_relation (FILE *outf,
 {
   struct data_reference *dra, *drb;
 
+  fprintf (outf, "(Data Dep: \n");
+
+  if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+    {
+      fprintf (outf, "    (don't know)\n)\n");
+      return;
+    }
+
   dra = DDR_A (ddr);
   drb = DDR_B (ddr);
-  fprintf (outf, "(Data Dep: \n");
-  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
-    fprintf (outf, "    (don't know)\n");
-  
-  else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+  dump_data_reference (outf, dra);
+  dump_data_reference (outf, drb);
+
+  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
     fprintf (outf, "    (no dependence)\n");
   
   else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
@@ -490,7 +503,7 @@ dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs)
 /* Expresses EXP as VAR + OFF, where off is a constant.  The type of OFF
    will be ssizetype.  */
 
-static void
+void
 split_constant_offset (tree exp, tree *var, tree *off)
 {
   tree type = TREE_TYPE (exp), otype;
@@ -556,16 +569,61 @@ split_constant_offset (tree exp, tree *var, tree *off)
          {
            split_constant_offset (poffset, &poffset, &off1);
            off0 = size_binop (PLUS_EXPR, off0, off1);
-           base = fold_build2 (PLUS_EXPR, TREE_TYPE (base),
-                               base,
-                               fold_convert (TREE_TYPE (base), poffset));
+           if (POINTER_TYPE_P (TREE_TYPE (base)))
+             base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (base),
+                                 base, fold_convert (sizetype, poffset));
+           else
+             base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
+                                 fold_convert (TREE_TYPE (base), poffset));
          }
 
-       *var = fold_convert (type, base);
+       var0 = fold_convert (type, base);
+
+       /* If variable length types are involved, punt, otherwise casts
+          might be converted into ARRAY_REFs in gimplify_conversion.
+          To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
+          possibly no longer appears in current GIMPLE, might resurface.
+          This perhaps could run
+          if (TREE_CODE (var0) == NOP_EXPR
+              || TREE_CODE (var0) == CONVERT_EXPR)
+            {
+              gimplify_conversion (&var0);
+              // Attempt to fill in any within var0 found ARRAY_REF's
+              // element size from corresponding op embedded ARRAY_REF,
+              // if unsuccessful, just punt.
+            }  */
+       while (POINTER_TYPE_P (type))
+         type = TREE_TYPE (type);
+       if (int_size_in_bytes (type) < 0)
+         break;
+
+       *var = var0;
        *off = off0;
        return;
       }
 
+    case SSA_NAME:
+      {
+       tree def_stmt = SSA_NAME_DEF_STMT (exp);
+       if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT)
+         {
+           tree def_stmt_rhs = GIMPLE_STMT_OPERAND (def_stmt, 1);
+
+           if (!TREE_SIDE_EFFECTS (def_stmt_rhs) 
+               && EXPR_P (def_stmt_rhs)
+               && !REFERENCE_CLASS_P (def_stmt_rhs)
+               && !get_call_expr_in (def_stmt_rhs))
+             {
+               split_constant_offset (def_stmt_rhs, &var0, &off0);
+               var0 = fold_convert (type, var0);
+               *var = var0;
+               *off = off0;
+               return;
+             }
+         }
+       break;
+      }
+
     default:
       break;
     }
@@ -683,7 +741,7 @@ dr_analyze_indices (struct data_reference *dr, struct loop *nest)
        {
          op = TREE_OPERAND (aref, 1);
          access_fn = analyze_scalar_evolution (loop, op);
-         access_fn = resolve_mixers (nest, access_fn);
+         access_fn = instantiate_scev (nest, loop, access_fn);
          VEC_safe_push (tree, heap, access_fns, access_fn);
 
          TREE_OPERAND (aref, 1) = build_int_cst (TREE_TYPE (op), 0);
@@ -696,7 +754,7 @@ dr_analyze_indices (struct data_reference *dr, struct loop *nest)
     {
       op = TREE_OPERAND (aref, 0);
       access_fn = analyze_scalar_evolution (loop, op);
-      access_fn = resolve_mixers (nest, access_fn);
+      access_fn = instantiate_scev (nest, loop, access_fn);
       base = initial_condition (access_fn);
       split_constant_offset (base, &base, &off);
       access_fn = chrec_replace_initial_condition (access_fn,
@@ -735,8 +793,6 @@ dr_analyze_alias (struct data_reference *dr)
     }
 
   DR_SYMBOL_TAG (dr) = smt;
-  if (smt && var_can_have_subvars (smt))
-    DR_SUBVARS (dr) = get_subvars_for_var (smt);
 
   vops = BITMAP_ALLOC (NULL);
   FOR_EACH_SSA_TREE_OPERAND (op, stmt, it, SSA_OP_VIRTUAL_USES)
@@ -764,7 +820,7 @@ dr_address_invariant_p (struct data_reference *dr)
 
 /* Frees data reference DR.  */
 
-static void
+void
 free_data_ref (data_reference_p dr)
 {
   BITMAP_FREE (DR_VOPS (dr));
@@ -891,6 +947,18 @@ affine_function_zero_p (affine_fn fn)
          && affine_function_constant_p (fn));
 }
 
+/* Returns a signed integer type with the largest precision from TA
+   and TB.  */
+
+static tree
+signed_type_for_types (tree ta, tree tb)
+{
+  if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
+    return signed_type_for (ta);
+  else
+    return signed_type_for (tb);
+}
+
 /* Applies operation OP on affine functions FNA and FNB, and returns the
    result.  */
 
@@ -914,18 +982,23 @@ affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
 
   ret = VEC_alloc (tree, heap, m);
   for (i = 0; i < n; i++)
-    VEC_quick_push (tree, ret,
-                   fold_build2 (op, integer_type_node,
-                                VEC_index (tree, fna, i), 
-                                VEC_index (tree, fnb, i)));
+    {
+      tree type = signed_type_for_types (TREE_TYPE (VEC_index (tree, fna, i)),
+                                        TREE_TYPE (VEC_index (tree, fnb, i)));
+
+      VEC_quick_push (tree, ret,
+                     fold_build2 (op, type,
+                                  VEC_index (tree, fna, i), 
+                                  VEC_index (tree, fnb, i)));
+    }
 
   for (; VEC_iterate (tree, fna, i, coef); i++)
     VEC_quick_push (tree, ret,
-                   fold_build2 (op, integer_type_node,
+                   fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
                                 coef, integer_zero_node));
   for (; VEC_iterate (tree, fnb, i, coef); i++)
     VEC_quick_push (tree, ret,
-                   fold_build2 (op, integer_type_node,
+                   fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
                                 integer_zero_node, coef));
 
   return ret;
@@ -1020,7 +1093,7 @@ conflict_fn_no_dependence (void)
 /* Returns true if the address of OBJ is invariant in LOOP.  */
 
 static bool
-object_address_invariant_in_loop_p (struct loop *loop, tree obj)
+object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
 {
   while (handled_component_p (obj))
     {
@@ -1139,12 +1212,12 @@ disjoint_objects_p (tree a, tree b)
    true otherwise.  */
 
 static bool
-dr_may_alias_p (struct data_reference *a, struct data_reference *b)
+dr_may_alias_p (const struct data_reference *a, const struct data_reference *b)
 {
-  tree addr_a = DR_BASE_ADDRESS (a);
-  tree addr_b = DR_BASE_ADDRESS (b);
-  tree type_a, type_b;
-  tree decl_a = NULL_TREE, decl_b = NULL_TREE;
+  const_tree addr_a = DR_BASE_ADDRESS (a);
+  const_tree addr_b = DR_BASE_ADDRESS (b);
+  const_tree type_a, type_b;
+  const_tree decl_a = NULL_TREE, decl_b = NULL_TREE;
 
   /* If the sets of virtual operands are disjoint, the memory references do not
      alias.  */
@@ -1192,6 +1265,8 @@ dr_may_alias_p (struct data_reference *a, struct data_reference *b)
   return true;
 }
 
+static void compute_self_dependence (struct data_dependence_relation *);
+
 /* Initialize a data dependence relation between data accesses A and
    B.  NB_LOOPS is the number of loops surrounding the references: the
    size of the classic distance/direction vectors.  */
@@ -1209,6 +1284,9 @@ initialize_data_dependence_relation (struct data_reference *a,
   DDR_B (res) = b;
   DDR_LOOP_NEST (res) = NULL;
   DDR_REVERSED_P (res) = false;
+  DDR_SUBSCRIPTS (res) = NULL;
+  DDR_DIR_VECTS (res) = NULL;
+  DDR_DIST_VECTS (res) = NULL;
 
   if (a == NULL || b == NULL)
     {
@@ -1223,6 +1301,20 @@ initialize_data_dependence_relation (struct data_reference *a,
       return res;
     }
 
+  /* When the references are exactly the same, don't spend time doing
+     the data dependence tests, just initialize the ddr and return.  */
+  if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
+    {
+      DDR_AFFINE_P (res) = true;
+      DDR_ARE_DEPENDENT (res) = NULL_TREE;
+      DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
+      DDR_LOOP_NEST (res) = loop_nest;
+      DDR_INNER_LOOP (res) = 0;
+      DDR_SELF_REFERENCE (res) = true;
+      compute_self_dependence (res);
+      return res;
+    }
+
   /* If the references do not access the same object, we do not know
      whether they alias or not.  */
   if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
@@ -1248,8 +1340,7 @@ initialize_data_dependence_relation (struct data_reference *a,
   DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
   DDR_LOOP_NEST (res) = loop_nest;
   DDR_INNER_LOOP (res) = 0;
-  DDR_DIR_VECTS (res) = NULL;
-  DDR_DIST_VECTS (res) = NULL;
+  DDR_SELF_REFERENCE (res) = false;
 
   for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
     {
@@ -1313,6 +1404,7 @@ finalize_ddr_dependent (struct data_dependence_relation *ddr,
 
   DDR_ARE_DEPENDENT (ddr) = chrec;  
   free_subscripts (DDR_SUBSCRIPTS (ddr));
+  DDR_SUBSCRIPTS (ddr) = NULL;
 }
 
 /* The dependence relation DDR cannot be represented by a distance
@@ -1335,8 +1427,7 @@ non_affine_dependence_relation (struct data_dependence_relation *ddr)
    variables, i.e., if the ZIV (Zero Index Variable) test is true.  */
 
 static inline bool
-ziv_subscript_p (tree chrec_a, 
-                tree chrec_b)
+ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
 {
   return (evolution_function_is_constant_p (chrec_a)
          && evolution_function_is_constant_p (chrec_b));
@@ -1346,8 +1437,7 @@ ziv_subscript_p (tree chrec_a,
    variable, i.e., if the SIV (Single Index Variable) test is true.  */
 
 static bool
-siv_subscript_p (tree chrec_a,
-                tree chrec_b)
+siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
 {
   if ((evolution_function_is_constant_p (chrec_a)
        && evolution_function_is_univariate_p (chrec_b))
@@ -1440,15 +1530,16 @@ analyze_ziv_subscript (tree chrec_a,
                       conflict_function **overlaps_b, 
                       tree *last_conflicts)
 {
-  tree difference;
+  tree type, difference;
   dependence_stats.num_ziv++;
   
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, "(analyze_ziv_subscript \n");
-  
-  chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
-  chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
-  difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
+
+  type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
+  chrec_a = chrec_convert (type, chrec_a, NULL_TREE);
+  chrec_b = chrec_convert (type, chrec_b, NULL_TREE);
+  difference = chrec_fold_minus (type, chrec_a, chrec_b);
   
   switch (TREE_CODE (difference))
     {
@@ -1574,12 +1665,12 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                                  tree *last_conflicts)
 {
   bool value0, value1, value2;
-  tree difference, tmp;
+  tree type, difference, tmp;
 
-  chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
-  chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
-  difference = chrec_fold_minus 
-    (integer_type_node, initial_condition (chrec_b), chrec_a);
+  type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
+  chrec_a = chrec_convert (type, chrec_a, NULL_TREE);
+  chrec_b = chrec_convert (type, chrec_b, NULL_TREE);
+  difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
   
   if (!chrec_is_positive (initial_condition (difference), &value0))
     {
@@ -1622,10 +1713,8 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                      struct loop *loop = get_chrec_loop (chrec_b);
 
                      *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
-                     tmp = fold_build2 (EXACT_DIV_EXPR, integer_type_node,
-                                        fold_build1 (ABS_EXPR,
-                                                     integer_type_node,
-                                                     difference),
+                     tmp = fold_build2 (EXACT_DIV_EXPR, type,
+                                        fold_build1 (ABS_EXPR, type, difference),
                                         CHREC_RIGHT (chrec_b));
                      *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
                      *last_conflicts = integer_one_node;
@@ -1704,8 +1793,7 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
                      struct loop *loop = get_chrec_loop (chrec_b);
 
                      *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
-                     tmp = fold_build2 (EXACT_DIV_EXPR,
-                                        integer_type_node, difference, 
+                     tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
                                         CHREC_RIGHT (chrec_b));
                      *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
                      *last_conflicts = integer_one_node;
@@ -1761,16 +1849,42 @@ analyze_siv_subscript_cst_affine (tree chrec_a,
 /* Helper recursive function for initializing the matrix A.  Returns
    the initial value of CHREC.  */
 
-static int
+static tree
 initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
 {
   gcc_assert (chrec);
 
-  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
-    return int_cst_value (chrec);
+  switch (TREE_CODE (chrec))
+    {
+    case POLYNOMIAL_CHREC:
+      gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
 
-  A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
-  return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
+      A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
+      return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
+
+    case PLUS_EXPR:
+    case MULT_EXPR:
+    case MINUS_EXPR:
+      {
+       tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
+       tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
+
+       return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
+      }
+
+    case NOP_EXPR:
+      {
+       tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
+       return chrec_convert (chrec_type (chrec), op, NULL_TREE);
+      }
+
+    case INTEGER_CST:
+      return chrec;
+
+    default:
+      gcc_unreachable ();
+      return NULL_TREE;
+    }
 }
 
 #define FLOOR_DIV(x,y) ((x) / (y))
@@ -1798,9 +1912,15 @@ compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
       step_overlaps_a = step_b / gcd_steps_a_b;
       step_overlaps_b = step_a / gcd_steps_a_b;
 
-      tau2 = FLOOR_DIV (niter, step_overlaps_a);
-      tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
-      last_conflict = tau2;
+      if (niter > 0)
+       {
+         tau2 = FLOOR_DIV (niter, step_overlaps_a);
+         tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
+         last_conflict = tau2;
+         *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
+       }
+      else
+       *last_conflicts = chrec_dont_know;
 
       *overlaps_a = affine_fn_univar (integer_zero_node, dim, 
                                      build_int_cst (NULL_TREE,
@@ -1808,7 +1928,6 @@ compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
       *overlaps_b = affine_fn_univar (integer_zero_node, dim, 
                                      build_int_cst (NULL_TREE, 
                                                     step_overlaps_b));
-      *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
     }
 
   else
@@ -1964,7 +2083,6 @@ analyze_subscript_affine_affine (tree chrec_a,
 {
   unsigned nb_vars_a, nb_vars_b, dim;
   HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
-  HOST_WIDE_INT tau1, tau2;
   lambda_matrix A, U, S;
 
   if (eq_evolutions_p (chrec_a, chrec_b))
@@ -1998,8 +2116,8 @@ analyze_subscript_affine_affine (tree chrec_a,
   A = lambda_matrix_new (dim, 1);
   S = lambda_matrix_new (dim, 1);
 
-  init_a = initialize_matrix_A (A, chrec_a, 0, 1);
-  init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
+  init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
+  init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
   gamma = init_b - init_a;
 
   /* Don't do all the hard work of solving the Diophantine equation
@@ -2022,18 +2140,7 @@ analyze_subscript_affine_affine (tree chrec_a,
                                                   false);
          niter_b = estimated_loop_iterations_int (get_chrec_loop (chrec_b),
                                                   false);
-         if (niter_a < 0 || niter_b < 0)
-           {
-             if (dump_file && (dump_flags & TDF_DETAILS))
-               fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
-             *overlaps_a = conflict_fn_not_known ();
-             *overlaps_b = conflict_fn_not_known ();
-             *last_conflicts = chrec_dont_know;
-             goto end_analyze_subs_aa;
-           }
-
          niter = MIN (niter_a, niter_b);
-
          step_a = int_cst_value (CHREC_RIGHT (chrec_a));
          step_b = int_cst_value (CHREC_RIGHT (chrec_b));
 
@@ -2117,31 +2224,7 @@ analyze_subscript_affine_affine (tree chrec_a,
         
             | x0 = i0 + i1 * t, 
             | y0 = j0 + j1 * t.  */
-      
-         HOST_WIDE_INT i0, j0, i1, j1;
-
-         /* X0 and Y0 are the first iterations for which there is a
-            dependence.  X0, Y0 are two solutions of the Diophantine
-            equation: chrec_a (X0) = chrec_b (Y0).  */
-         HOST_WIDE_INT x0, y0;
-         HOST_WIDE_INT niter, niter_a, niter_b;
-
-         niter_a = estimated_loop_iterations_int (get_chrec_loop (chrec_a),
-                                                  false);
-         niter_b = estimated_loop_iterations_int (get_chrec_loop (chrec_b),
-                                                  false);
-
-         if (niter_a < 0 || niter_b < 0)
-           {
-             if (dump_file && (dump_flags & TDF_DETAILS))
-               fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
-             *overlaps_a = conflict_fn_not_known ();
-             *overlaps_b = conflict_fn_not_known ();
-             *last_conflicts = chrec_dont_know;
-             goto end_analyze_subs_aa;
-           }
-
-         niter = MIN (niter_a, niter_b);
+         HOST_WIDE_INT i0, j0, i1, j1;
 
          i0 = U[0][0] * gamma / gcd_alpha_beta;
          j0 = U[0][1] * gamma / gcd_alpha_beta;
@@ -2158,80 +2241,72 @@ analyze_subscript_affine_affine (tree chrec_a,
              *overlaps_a = conflict_fn_no_dependence ();
              *overlaps_b = conflict_fn_no_dependence ();
              *last_conflicts = integer_zero_node;
+             goto end_analyze_subs_aa;
            }
 
-         else 
+         if (i1 > 0 && j1 > 0)
            {
-             if (i1 > 0)
+             HOST_WIDE_INT niter_a = estimated_loop_iterations_int
+               (get_chrec_loop (chrec_a), false);
+             HOST_WIDE_INT niter_b = estimated_loop_iterations_int
+               (get_chrec_loop (chrec_b), false);
+             HOST_WIDE_INT niter = MIN (niter_a, niter_b);
+
+             /* (X0, Y0) is a solution of the Diophantine equation:
+                "chrec_a (X0) = chrec_b (Y0)".  */
+             HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
+                                       CEIL (-j0, j1));
+             HOST_WIDE_INT x0 = i1 * tau1 + i0;
+             HOST_WIDE_INT y0 = j1 * tau1 + j0;
+
+             /* (X1, Y1) is the smallest positive solution of the eq
+                "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
+                first conflict occurs.  */
+             HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
+             HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
+             HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
+
+             if (niter > 0)
                {
-                 tau1 = CEIL (-i0, i1);
-                 tau2 = FLOOR_DIV (niter - i0, i1);
+                 HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
+                                           FLOOR_DIV (niter - j0, j1));
+                 HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
 
-                 if (j1 > 0)
+                 /* If the overlap occurs outside of the bounds of the
+                    loop, there is no dependence.  */
+                 if (x1 > niter || y1 > niter)
                    {
-                     int last_conflict, min_multiple;
-                     tau1 = MAX (tau1, CEIL (-j0, j1));
-                     tau2 = MIN (tau2, FLOOR_DIV (niter - j0, j1));
-
-                     x0 = i1 * tau1 + i0;
-                     y0 = j1 * tau1 + j0;
-
-                     /* At this point (x0, y0) is one of the
-                        solutions to the Diophantine equation.  The
-                        next step has to compute the smallest
-                        positive solution: the first conflicts.  */
-                     min_multiple = MIN (x0 / i1, y0 / j1);
-                     x0 -= i1 * min_multiple;
-                     y0 -= j1 * min_multiple;
-
-                     tau1 = (x0 - i0)/i1;
-                     last_conflict = tau2 - tau1;
-
-                     /* If the overlap occurs outside of the bounds of the
-                        loop, there is no dependence.  */
-                     if (x0 > niter || y0  > niter)
-                       {
-                         *overlaps_a = conflict_fn_no_dependence ();
-                         *overlaps_b = conflict_fn_no_dependence ();
-                         *last_conflicts = integer_zero_node;
-                       }
-                     else
-                       {
-                         *overlaps_a
-                           = conflict_fn (1,
-                               affine_fn_univar (build_int_cst (NULL_TREE, x0),
-                                                 1,
-                                                 build_int_cst (NULL_TREE, i1)));
-                         *overlaps_b
-                           = conflict_fn (1,
-                               affine_fn_univar (build_int_cst (NULL_TREE, y0),
-                                                 1,
-                                                 build_int_cst (NULL_TREE, j1)));
-                         *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
-                       }
+                     *overlaps_a = conflict_fn_no_dependence ();
+                     *overlaps_b = conflict_fn_no_dependence ();
+                     *last_conflicts = integer_zero_node;
+                     goto end_analyze_subs_aa;
                    }
                  else
-                   {
-                     /* FIXME: For the moment, the upper bound of the
-                        iteration domain for j is not checked.  */
-                     if (dump_file && (dump_flags & TDF_DETAILS))
-                       fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
-                     *overlaps_a = conflict_fn_not_known ();
-                     *overlaps_b = conflict_fn_not_known ();
-                     *last_conflicts = chrec_dont_know;
-                   }
+                   *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
                }
-         
              else
-               {
-                 /* FIXME: For the moment, the upper bound of the
-                    iteration domain for i is not checked.  */
-                 if (dump_file && (dump_flags & TDF_DETAILS))
-                   fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
-                 *overlaps_a = conflict_fn_not_known ();
-                 *overlaps_b = conflict_fn_not_known ();
-                 *last_conflicts = chrec_dont_know;
-               }
+               *last_conflicts = chrec_dont_know;
+
+             *overlaps_a
+               = conflict_fn (1,
+                              affine_fn_univar (build_int_cst (NULL_TREE, x1),
+                                                1,
+                                                build_int_cst (NULL_TREE, i1)));
+             *overlaps_b
+               = conflict_fn (1,
+                              affine_fn_univar (build_int_cst (NULL_TREE, y1),
+                                                1,
+                                                build_int_cst (NULL_TREE, j1)));
+           }
+         else
+           {
+             /* FIXME: For the moment, the upper bound of the
+                iteration domain for i and j is not checked.  */
+             if (dump_file && (dump_flags & TDF_DETAILS))
+               fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
+             *overlaps_a = conflict_fn_not_known ();
+             *overlaps_b = conflict_fn_not_known ();
+             *last_conflicts = chrec_dont_know;
            }
        }
       else
@@ -2243,7 +2318,6 @@ analyze_subscript_affine_affine (tree chrec_a,
          *last_conflicts = chrec_dont_know;
        }
     }
-
   else
     {
       if (dump_file && (dump_flags & TDF_DETAILS))
@@ -2321,7 +2395,8 @@ analyze_siv_subscript (tree chrec_a,
                       tree chrec_b,
                       conflict_function **overlaps_a, 
                       conflict_function **overlaps_b, 
-                      tree *last_conflicts)
+                      tree *last_conflicts,
+                      int loop_nest_num)
 {
   dependence_stats.num_siv++;
   
@@ -2329,17 +2404,17 @@ analyze_siv_subscript (tree chrec_a,
     fprintf (dump_file, "(analyze_siv_subscript \n");
   
   if (evolution_function_is_constant_p (chrec_a)
-      && evolution_function_is_affine_p (chrec_b))
+      && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
     analyze_siv_subscript_cst_affine (chrec_a, chrec_b, 
                                      overlaps_a, overlaps_b, last_conflicts);
   
-  else if (evolution_function_is_affine_p (chrec_a)
+  else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
           && evolution_function_is_constant_p (chrec_b))
     analyze_siv_subscript_cst_affine (chrec_b, chrec_a, 
                                      overlaps_b, overlaps_a, last_conflicts);
   
-  else if (evolution_function_is_affine_p (chrec_a)
-          && evolution_function_is_affine_p (chrec_b))
+  else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
+          && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
     {
       if (!chrec_contains_symbols (chrec_a)
          && !chrec_contains_symbols (chrec_b))
@@ -2396,7 +2471,7 @@ analyze_siv_subscript (tree chrec_a,
    of CHREC does not divide CST, false otherwise.  */
 
 static bool
-gcd_of_steps_may_divide_p (tree chrec, tree cst)
+gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
 {
   HOST_WIDE_INT cd = 0, val;
   tree step;
@@ -2441,14 +2516,16 @@ analyze_miv_subscript (tree chrec_a,
      variables.  In the MIV case we have to solve a Diophantine
      equation with 2*n variables (if the subscript uses n IVs).
   */
-  tree difference;
+  tree type, difference;
+
   dependence_stats.num_miv++;
   if (dump_file && (dump_flags & TDF_DETAILS))
     fprintf (dump_file, "(analyze_miv_subscript \n");
 
-  chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
-  chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
-  difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
+  type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
+  chrec_a = chrec_convert (type, chrec_a, NULL_TREE);
+  chrec_b = chrec_convert (type, chrec_b, NULL_TREE);
+  difference = chrec_fold_minus (type, chrec_a, chrec_b);
   
   if (eq_evolutions_p (chrec_a, chrec_b))
     {
@@ -2599,7 +2676,7 @@ analyze_overlapping_iterations (tree chrec_a,
   else if (siv_subscript_p (chrec_a, chrec_b))
     analyze_siv_subscript (chrec_a, chrec_b, 
                           overlap_iterations_a, overlap_iterations_b, 
-                          last_conflicts);
+                          last_conflicts, lnn);
   
   else
     analyze_miv_subscript (chrec_a, chrec_b, 
@@ -2766,26 +2843,10 @@ build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
   return true;
 }
 
-/* Return true when the DDR contains two data references that have the
-   same access functions.  */
-
-static bool
-same_access_functions (struct data_dependence_relation *ddr)
-{
-  unsigned i;
-
-  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
-    if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
-                         DR_ACCESS_FN (DDR_B (ddr), i)))
-      return false;
-
-  return true;
-}
-
 /* Return true when the DDR contains only constant access functions.  */
 
 static bool
-constant_access_functions (struct data_dependence_relation *ddr)
+constant_access_functions (const struct data_dependence_relation *ddr)
 {
   unsigned i;
 
@@ -2797,9 +2858,9 @@ constant_access_functions (struct data_dependence_relation *ddr)
   return true;
 }
 
-
 /* Helper function for the case where DDR_A and DDR_B are the same
-   multivariate access function.  */
+   multivariate access function with a constant step.  For an example
+   see pr34635-1.c.  */
 
 static void
 add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
@@ -2810,10 +2871,14 @@ add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
   lambda_vector dist_v;
   int v1, v2, cd;
 
-  /* Polynomials with more than 2 variables are not handled yet.  */
-  if (TREE_CODE (c_0) != INTEGER_CST)
+  /* Polynomials with more than 2 variables are not handled yet.  When
+     the evolution steps are parameters, it is not possible to
+     represent the dependence using classical distance vectors.  */
+  if (TREE_CODE (c_0) != INTEGER_CST
+      || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
+      || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
     {
-      DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
+      DDR_AFFINE_P (ddr) = false;
       return;
     }
 
@@ -2865,7 +2930,17 @@ add_other_self_distances (struct data_dependence_relation *ddr)
                  return;
                }
 
-             add_multivariate_self_dist (ddr, DR_ACCESS_FN (DDR_A (ddr), 0));
+             access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
+
+             if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
+               add_multivariate_self_dist (ddr, access_fun);
+             else
+               /* The evolution step is not constant: it varies in
+                  the outer loop, so this cannot be represented by a
+                  distance vector.  For example in pr34635.c the
+                  evolution is {0, +, {0, +, 4}_1}_2.  */
+               DDR_AFFINE_P (ddr) = false;
+
              return;
            }
 
@@ -2939,7 +3014,7 @@ build_classic_dist_vector (struct data_dependence_relation *ddr,
   lambda_vector dist_v;
 
   if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
-    return true;
+    return false;
 
   if (same_access_functions (ddr))
     {
@@ -2991,11 +3066,13 @@ build_classic_dist_vector (struct data_dependence_relation *ddr,
       if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
        {
          lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
-         subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
-                                        loop_nest);
+         if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
+                                             loop_nest))
+           return false;
          compute_subscript_distance (ddr);
-         build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
-                                      save_v, &init_b, &index_carry);
+         if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
+                                           save_v, &init_b, &index_carry))
+           return false;
          save_dist_v (ddr, save_v);
          DDR_REVERSED_P (ddr) = true;
 
@@ -3025,21 +3102,26 @@ build_classic_dist_vector (struct data_dependence_relation *ddr,
        {
          lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
          lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
-         save_dist_v (ddr, save_v);
 
          if (DDR_NB_LOOPS (ddr) > 1)
            {
              lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
 
-             subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
-                                            loop_nest);
+             if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
+                                                 DDR_A (ddr), loop_nest))
+               return false;
              compute_subscript_distance (ddr);
-             build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
-                                          opposite_v, &init_b, &index_carry);
+             if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
+                                               opposite_v, &init_b,
+                                               &index_carry))
+               return false;
 
+             save_dist_v (ddr, save_v);
              add_outer_distances (ddr, dist_v, index_carry);
              add_outer_distances (ddr, opposite_v, index_carry);
            }
+         else
+           save_dist_v (ddr, save_v);
        }
     }
   else
@@ -3154,6 +3236,11 @@ subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
 
       else
        {
+         if (SUB_CONFLICTS_IN_A (subscript))
+           free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
+         if (SUB_CONFLICTS_IN_B (subscript))
+           free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
+
          SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
          SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
          SUB_LAST_CONFLICT (subscript) = last_conflicts;
@@ -3188,8 +3275,8 @@ subscript_dependence_tester (struct data_dependence_relation *ddr,
    constant with respect to LOOP_NEST.  */
 
 static bool 
-access_functions_are_affine_or_constant_p (struct data_reference *a,
-                                          struct loop *loop_nest)
+access_functions_are_affine_or_constant_p (const struct data_reference *a,
+                                          const struct loop *loop_nest)
 {
   unsigned int i;
   VEC(tree,heap) *fns = DR_ACCESS_FNS (a);
@@ -3385,9 +3472,11 @@ omega_setup_subscript (tree access_fun_a, tree access_fun_b,
                       omega_pb pb, bool *maybe_dependent)
 {
   int eq;
-  tree fun_a = chrec_convert (integer_type_node, access_fun_a, NULL_TREE);
-  tree fun_b = chrec_convert (integer_type_node, access_fun_b, NULL_TREE);
-  tree difference = chrec_fold_minus (integer_type_node, fun_a, fun_b);
+  tree type = signed_type_for_types (TREE_TYPE (access_fun_a),
+                                    TREE_TYPE (access_fun_b));
+  tree fun_a = chrec_convert (type, access_fun_a, NULL_TREE);
+  tree fun_b = chrec_convert (type, access_fun_b, NULL_TREE);
+  tree difference = chrec_fold_minus (type, fun_a, fun_b);
 
   /* When the fun_a - fun_b is not constant, the dependence is not
      captured by the classic distance vector representation.  */
@@ -3402,8 +3491,7 @@ omega_setup_subscript (tree access_fun_a, tree access_fun_b,
       return true;
     }
 
-  fun_b = chrec_fold_multiply (integer_type_node, fun_b, 
-                              integer_minus_one_node);
+  fun_b = chrec_fold_multiply (type, fun_b, integer_minus_one_node);
 
   eq = omega_add_zero_eq (pb, omega_black);
   if (!init_omega_eq_with_af (pb, eq, DDR_NB_LOOPS (ddr), fun_a, ddr)
@@ -3754,7 +3842,8 @@ compute_affine_dependence (struct data_dependence_relation *ddr,
     }
 
   /* Analyze only when the dependence relation is not yet known.  */
-  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
+  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
+      && !DDR_SELF_REFERENCE (ddr))
     {
       dependence_stats.num_dependence_tests++;
 
@@ -3844,11 +3933,16 @@ compute_self_dependence (struct data_dependence_relation *ddr)
   for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
        i++)
     {
+      if (SUB_CONFLICTS_IN_A (subscript))
+       free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
+      if (SUB_CONFLICTS_IN_B (subscript))
+       free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
+
       /* The accessed index overlaps for each iteration.  */
       SUB_CONFLICTS_IN_A (subscript)
-             = conflict_fn (1, affine_fn_cst (integer_zero_node));
+       = conflict_fn (1, affine_fn_cst (integer_zero_node));
       SUB_CONFLICTS_IN_B (subscript)
-             = conflict_fn (1, affine_fn_cst (integer_zero_node));
+       = conflict_fn (1, affine_fn_cst (integer_zero_node));
       SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
     }
 
@@ -3917,11 +4011,14 @@ get_references_in_stmt (tree stmt, VEC (data_ref_loc, heap) **references)
 
   if (TREE_CODE (stmt) ==  GIMPLE_MODIFY_STMT)
     {
+      tree base;
       op0 = &GIMPLE_STMT_OPERAND (stmt, 0);
       op1 = &GIMPLE_STMT_OPERAND (stmt, 1);
                
       if (DECL_P (*op1)
-         || REFERENCE_CLASS_P (*op1))
+         || (REFERENCE_CLASS_P (*op1)
+             && (base = get_base_address (*op1))
+             && TREE_CODE (base) != SSA_NAME))
        {
          ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
          ref->pos = op1;
@@ -3929,7 +4026,7 @@ get_references_in_stmt (tree stmt, VEC (data_ref_loc, heap) **references)
        }
 
       if (DECL_P (*op0)
-         || REFERENCE_CLASS_P (*op0))
+         || (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
        {
          ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
          ref->pos = op0;
@@ -3946,7 +4043,7 @@ get_references_in_stmt (tree stmt, VEC (data_ref_loc, heap) **references)
          op0 = &CALL_EXPR_ARG (call, i);
 
          if (DECL_P (*op0)
-             || REFERENCE_CLASS_P (*op0))
+             || (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
            {
              ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
              ref->pos = op0;
@@ -4083,18 +4180,20 @@ find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest)
   return true;
 }
 
-/* Given a loop nest LOOP, the following vectors are returned:
+/* Returns true when the data dependences have been computed, false otherwise.
+   Given a loop nest LOOP, the following vectors are returned:
    DATAREFS is initialized to all the array elements contained in this loop, 
    DEPENDENCE_RELATIONS contains the relations between the data references.  
    Compute read-read and self relations if 
    COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE.  */
 
-void
+bool
 compute_data_dependences_for_loop (struct loop *loop, 
                                   bool compute_self_and_read_read_dependences,
                                   VEC (data_reference_p, heap) **datarefs,
                                   VEC (ddr_p, heap) **dependence_relations)
 {
+  bool res = true;
   VEC (loop_p, heap) *vloops = VEC_alloc (loop_p, heap, 3);
 
   memset (&dependence_stats, 0, sizeof (dependence_stats));
@@ -4112,6 +4211,7 @@ compute_data_dependences_for_loop (struct loop *loop,
         chrec_dont_know.  */
       ddr = initialize_data_dependence_relation (NULL, NULL, vloops);
       VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
+      res = false;
     }
   else
     compute_all_dependences (*datarefs, dependence_relations, vloops,
@@ -4163,7 +4263,9 @@ compute_data_dependences_for_loop (struct loop *loop,
               dependence_stats.num_miv_independent);
       fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
               dependence_stats.num_miv_unimplemented);
-    }    
+    }
+
+  return res;
 }
 
 /* Entry point (for testing only).  Analyze all the data references
@@ -4266,8 +4368,12 @@ free_dependence_relation (struct data_dependence_relation *ddr)
   if (ddr == NULL)
     return;
 
-  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_SUBSCRIPTS (ddr))
+  if (DDR_SUBSCRIPTS (ddr))
     free_subscripts (DDR_SUBSCRIPTS (ddr));
+  if (DDR_DIST_VECTS (ddr))
+    VEC_free (lambda_vector, heap, DDR_DIST_VECTS (ddr));
+  if (DDR_DIR_VECTS (ddr))
+    VEC_free (lambda_vector, heap, DDR_DIR_VECTS (ddr));
 
   free (ddr);
 }
@@ -4312,3 +4418,639 @@ free_data_refs (VEC (data_reference_p, heap) *datarefs)
   VEC_free (data_reference_p, heap, datarefs);
 }
 
+\f
+
+/* Dump vertex I in RDG to FILE.  */
+
+void
+dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
+{
+  struct vertex *v = &(rdg->vertices[i]);
+  struct graph_edge *e;
+
+  fprintf (file, "(vertex %d: (%s%s) (in:", i, 
+          RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
+          RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
+
+  if (v->pred)
+    for (e = v->pred; e; e = e->pred_next)
+      fprintf (file, " %d", e->src);
+
+  fprintf (file, ") (out:");
+
+  if (v->succ)
+    for (e = v->succ; e; e = e->succ_next)
+      fprintf (file, " %d", e->dest);
+
+  fprintf (file, ") \n");
+  print_generic_stmt (file, RDGV_STMT (v), TDF_VOPS|TDF_MEMSYMS);
+  fprintf (file, ")\n");
+}
+
+/* Call dump_rdg_vertex on stderr.  */
+
+void
+debug_rdg_vertex (struct graph *rdg, int i)
+{
+  dump_rdg_vertex (stderr, rdg, i);
+}
+
+/* Dump component C of RDG to FILE.  If DUMPED is non-null, set the
+   dumped vertices to that bitmap.  */
+
+void dump_rdg_component (FILE *file, struct graph *rdg, int c, bitmap dumped)
+{
+  int i;
+
+  fprintf (file, "(%d\n", c);
+
+  for (i = 0; i < rdg->n_vertices; i++)
+    if (rdg->vertices[i].component == c)
+      {
+       if (dumped)
+         bitmap_set_bit (dumped, i);
+
+       dump_rdg_vertex (file, rdg, i);
+      }
+
+  fprintf (file, ")\n");
+}
+
+/* Call dump_rdg_vertex on stderr.  */
+
+void
+debug_rdg_component (struct graph *rdg, int c)
+{
+  dump_rdg_component (stderr, rdg, c, NULL);
+}
+
+/* Dump the reduced dependence graph RDG to FILE.  */
+
+void
+dump_rdg (FILE *file, struct graph *rdg)
+{
+  int i;
+  bitmap dumped = BITMAP_ALLOC (NULL);
+
+  fprintf (file, "(rdg\n");
+
+  for (i = 0; i < rdg->n_vertices; i++)
+    if (!bitmap_bit_p (dumped, i))
+      dump_rdg_component (file, rdg, rdg->vertices[i].component, dumped);
+
+  fprintf (file, ")\n");
+  BITMAP_FREE (dumped);
+}
+
+/* Call dump_rdg on stderr.  */
+
+void
+debug_rdg (struct graph *rdg)
+{
+  dump_rdg (stderr, rdg);
+}
+
+static void
+dot_rdg_1 (FILE *file, struct graph *rdg)
+{
+  int i;
+
+  fprintf (file, "digraph RDG {\n");
+
+  for (i = 0; i < rdg->n_vertices; i++)
+    {
+      struct vertex *v = &(rdg->vertices[i]);
+      struct graph_edge *e;
+
+      /* Highlight reads from memory.  */
+      if (RDG_MEM_READS_STMT (rdg, i))
+       fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
+
+      /* Highlight stores to memory.  */
+      if (RDG_MEM_WRITE_STMT (rdg, i))
+       fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
+
+      if (v->succ)
+       for (e = v->succ; e; e = e->succ_next)
+         switch (RDGE_TYPE (e))
+           {
+           case input_dd:
+             fprintf (file, "%d -> %d [label=input] \n", i, e->dest);
+             break;
+
+           case output_dd:
+             fprintf (file, "%d -> %d [label=output] \n", i, e->dest);
+             break;
+
+           case flow_dd:
+             /* These are the most common dependences: don't print these. */
+             fprintf (file, "%d -> %d \n", i, e->dest);
+             break;
+
+           case anti_dd:
+             fprintf (file, "%d -> %d [label=anti] \n", i, e->dest);
+             break;
+
+           default:
+             gcc_unreachable ();
+           }
+    }
+
+  fprintf (file, "}\n\n");
+}
+
+/* Display SCOP using dotty.  */
+
+void
+dot_rdg (struct graph *rdg)
+{
+  FILE *file = fopen ("/tmp/rdg.dot", "w");
+  gcc_assert (file != NULL);
+
+  dot_rdg_1 (file, rdg);
+  fclose (file);
+
+  system ("dotty /tmp/rdg.dot");
+}
+
+
+/* This structure is used for recording the mapping statement index in
+   the RDG.  */
+
+struct rdg_vertex_info GTY(())
+{
+  tree stmt;
+  int index;
+};
+
+/* Returns the index of STMT in RDG.  */
+
+int
+rdg_vertex_for_stmt (struct graph *rdg, tree stmt)
+{
+  struct rdg_vertex_info rvi, *slot;
+
+  rvi.stmt = stmt;
+  slot = (struct rdg_vertex_info *) htab_find (rdg->indices, &rvi);
+
+  if (!slot)
+    return -1;
+
+  return slot->index;
+}
+
+/* Creates an edge in RDG for each distance vector from DDR.  The
+   order that we keep track of in the RDG is the order in which
+   statements have to be executed.  */
+
+static void
+create_rdg_edge_for_ddr (struct graph *rdg, ddr_p ddr)
+{
+  struct graph_edge *e;
+  int va, vb;
+  data_reference_p dra = DDR_A (ddr);
+  data_reference_p drb = DDR_B (ddr);
+  unsigned level = ddr_dependence_level (ddr);
+
+  /* For non scalar dependences, when the dependence is REVERSED,
+     statement B has to be executed before statement A.  */
+  if (level > 0
+      && !DDR_REVERSED_P (ddr))
+    {
+      data_reference_p tmp = dra;
+      dra = drb;
+      drb = tmp;
+    }
+
+  va = rdg_vertex_for_stmt (rdg, DR_STMT (dra));
+  vb = rdg_vertex_for_stmt (rdg, DR_STMT (drb));
+
+  if (va < 0 || vb < 0)
+    return;
+
+  e = add_edge (rdg, va, vb);
+  e->data = XNEW (struct rdg_edge);
+
+  RDGE_LEVEL (e) = level;
+
+  /* Determines the type of the data dependence.  */
+  if (DR_IS_READ (dra) && DR_IS_READ (drb))
+    RDGE_TYPE (e) = input_dd;
+  else if (!DR_IS_READ (dra) && !DR_IS_READ (drb))
+    RDGE_TYPE (e) = output_dd;
+  else if (!DR_IS_READ (dra) && DR_IS_READ (drb))
+    RDGE_TYPE (e) = flow_dd;
+  else if (DR_IS_READ (dra) && !DR_IS_READ (drb))
+    RDGE_TYPE (e) = anti_dd;
+}
+
+/* Creates dependence edges in RDG for all the uses of DEF.  IDEF is
+   the index of DEF in RDG.  */
+
+static void
+create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
+{
+  use_operand_p imm_use_p;
+  imm_use_iterator iterator;
+           
+  FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
+    {
+      struct graph_edge *e;
+      int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
+
+      if (use < 0)
+       continue;
+
+      e = add_edge (rdg, idef, use);
+      e->data = XNEW (struct rdg_edge);
+      RDGE_TYPE (e) = flow_dd;
+    }
+}
+
+/* Creates the edges of the reduced dependence graph RDG.  */
+
+static void
+create_rdg_edges (struct graph *rdg, VEC (ddr_p, heap) *ddrs)
+{
+  int i;
+  struct data_dependence_relation *ddr;
+  def_operand_p def_p;
+  ssa_op_iter iter;
+
+  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+    if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
+      create_rdg_edge_for_ddr (rdg, ddr);
+
+  for (i = 0; i < rdg->n_vertices; i++)
+    FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
+                             iter, SSA_OP_DEF)
+      create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
+}
+
+/* Build the vertices of the reduced dependence graph RDG.  */
+
+static void
+create_rdg_vertices (struct graph *rdg, VEC (tree, heap) *stmts)
+{
+  int i, j;
+  tree stmt;
+
+  for (i = 0; VEC_iterate (tree, stmts, i, stmt); i++)
+    {
+      VEC (data_ref_loc, heap) *references;
+      data_ref_loc *ref;
+      struct vertex *v = &(rdg->vertices[i]);
+      struct rdg_vertex_info *rvi = XNEW (struct rdg_vertex_info);
+      struct rdg_vertex_info **slot;
+
+      rvi->stmt = stmt;
+      rvi->index = i;
+      slot = (struct rdg_vertex_info **) htab_find_slot (rdg->indices, rvi, INSERT);
+
+      if (!*slot)
+       *slot = rvi;
+      else
+       free (rvi);
+
+      v->data = XNEW (struct rdg_vertex);
+      RDG_STMT (rdg, i) = stmt;
+
+      RDG_MEM_WRITE_STMT (rdg, i) = false;
+      RDG_MEM_READS_STMT (rdg, i) = false;
+      if (TREE_CODE (stmt) == PHI_NODE)
+       continue;
+
+      get_references_in_stmt (stmt, &references);
+      for (j = 0; VEC_iterate (data_ref_loc, references, j, ref); j++)
+       if (!ref->is_read)
+         RDG_MEM_WRITE_STMT (rdg, i) = true;
+       else
+         RDG_MEM_READS_STMT (rdg, i) = true;
+
+      VEC_free (data_ref_loc, heap, references);
+    }
+}
+
+/* Initialize STMTS with all the statements of LOOP.  When
+   INCLUDE_PHIS is true, include also the PHI nodes.  The order in
+   which we discover statements is important as
+   generate_loops_for_partition is using the same traversal for
+   identifying statements. */
+
+static void
+stmts_from_loop (struct loop *loop, VEC (tree, heap) **stmts)
+{
+  unsigned int i;
+  basic_block *bbs = get_loop_body_in_dom_order (loop);
+
+  for (i = 0; i < loop->num_nodes; i++)
+    {
+      tree phi, stmt;
+      basic_block bb = bbs[i];
+      block_stmt_iterator bsi;
+
+      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+       VEC_safe_push (tree, heap, *stmts, phi);
+
+      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+       if (TREE_CODE (stmt = bsi_stmt (bsi)) != LABEL_EXPR)
+         VEC_safe_push (tree, heap, *stmts, stmt);
+    }
+
+  free (bbs);
+}
+
+/* Returns true when all the dependences are computable.  */
+
+static bool
+known_dependences_p (VEC (ddr_p, heap) *dependence_relations)
+{
+  ddr_p ddr;
+  unsigned int i;
+
+  for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
+    if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+      return false;
+  return true;
+}
+
+/* Computes a hash function for element ELT.  */
+
+static hashval_t
+hash_stmt_vertex_info (const void *elt)
+{
+  struct rdg_vertex_info *rvi = (struct rdg_vertex_info *) elt;
+  tree stmt = rvi->stmt;
+
+  return htab_hash_pointer (stmt);
+}
+
+/* Compares database elements E1 and E2.  */
+
+static int
+eq_stmt_vertex_info (const void *e1, const void *e2)
+{
+  const struct rdg_vertex_info *elt1 = (const struct rdg_vertex_info *) e1;
+  const struct rdg_vertex_info *elt2 = (const struct rdg_vertex_info *) e2;
+
+  return elt1->stmt == elt2->stmt;
+}
+
+/* Free the element E.  */
+
+static void
+hash_stmt_vertex_del (void *e)
+{
+  free (e);
+}
+
+/* Build the Reduced Dependence Graph (RDG) with one vertex per
+   statement of the loop nest, and one edge per data dependence or
+   scalar dependence.  */
+
+struct graph *
+build_rdg (struct loop *loop)
+{
+  int nb_data_refs = 10;
+  struct graph *rdg = NULL;
+  VEC (ddr_p, heap) *dependence_relations;
+  VEC (data_reference_p, heap) *datarefs;
+  VEC (tree, heap) *stmts = VEC_alloc (tree, heap, nb_data_refs);
+  
+  dependence_relations = VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs) ;
+  datarefs = VEC_alloc (data_reference_p, heap, nb_data_refs);
+  compute_data_dependences_for_loop (loop, 
+                                     false,
+                                     &datarefs,
+                                     &dependence_relations);
+
+  if (!known_dependences_p (dependence_relations))
+    goto end_rdg;
+
+  stmts_from_loop (loop, &stmts);
+  rdg = new_graph (VEC_length (tree, stmts));
+
+  rdg->indices = htab_create (nb_data_refs, hash_stmt_vertex_info,
+                             eq_stmt_vertex_info, hash_stmt_vertex_del);
+  create_rdg_vertices (rdg, stmts);
+  create_rdg_edges (rdg, dependence_relations);
+
+ end_rdg:
+  free_dependence_relations (dependence_relations);
+  free_data_refs (datarefs);
+  VEC_free (tree, heap, stmts);
+
+  return rdg;
+}
+
+/* Free the reduced dependence graph RDG.  */
+
+void
+free_rdg (struct graph *rdg)
+{
+  int i;
+
+  for (i = 0; i < rdg->n_vertices; i++)
+    free (rdg->vertices[i].data);
+
+  htab_delete (rdg->indices);
+  free_graph (rdg);
+}
+
+/* Initialize STMTS with all the statements of LOOP that contain a
+   store to memory.  */
+
+void
+stores_from_loop (struct loop *loop, VEC (tree, heap) **stmts)
+{
+  unsigned int i;
+  basic_block *bbs = get_loop_body_in_dom_order (loop);
+
+  for (i = 0; i < loop->num_nodes; i++)
+    {
+      basic_block bb = bbs[i];
+      block_stmt_iterator bsi;
+
+      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+       if (!ZERO_SSA_OPERANDS (bsi_stmt (bsi), SSA_OP_VDEF))
+         VEC_safe_push (tree, heap, *stmts, bsi_stmt (bsi));
+    }
+
+  free (bbs);
+}
+
+/* For a data reference REF, return the declaration of its base
+   address or NULL_TREE if the base is not determined.  */
+
+static inline tree
+ref_base_address (tree stmt, data_ref_loc *ref)
+{
+  tree base = NULL_TREE;
+  tree base_address;
+  struct data_reference *dr = XCNEW (struct data_reference);
+
+  DR_STMT (dr) = stmt;
+  DR_REF (dr) = *ref->pos;
+  dr_analyze_innermost (dr);
+  base_address = DR_BASE_ADDRESS (dr);
+
+  if (!base_address)
+    goto end;
+
+  switch (TREE_CODE (base_address))
+    {
+    case ADDR_EXPR:
+      base = TREE_OPERAND (base_address, 0);
+      break;
+
+    default:
+      base = base_address;
+      break;
+    }
+
+ end:
+  free_data_ref (dr);
+  return base;
+}
+
+/* Determines whether the statement from vertex V of the RDG has a
+   definition used outside the loop that contains this statement.  */
+
+bool
+rdg_defs_used_in_other_loops_p (struct graph *rdg, int v)
+{
+  tree stmt = RDG_STMT (rdg, v);
+  struct loop *loop = loop_containing_stmt (stmt);
+  use_operand_p imm_use_p;
+  imm_use_iterator iterator;
+  ssa_op_iter it;
+  def_operand_p def_p;
+
+  if (!loop)
+    return true;
+
+  FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, it, SSA_OP_DEF)
+    {
+      FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, DEF_FROM_PTR (def_p))
+       {
+         if (loop_containing_stmt (USE_STMT (imm_use_p)) != loop)
+           return true;
+       }
+    }
+
+  return false;
+}
+
+/* Determines whether statements S1 and S2 access to similar memory
+   locations.  Two memory accesses are considered similar when they
+   have the same base address declaration, i.e. when their
+   ref_base_address is the same.  */
+
+bool
+have_similar_memory_accesses (tree s1, tree s2)
+{
+  bool res = false;
+  unsigned i, j;
+  VEC (data_ref_loc, heap) *refs1, *refs2;
+  data_ref_loc *ref1, *ref2;
+
+  get_references_in_stmt (s1, &refs1);
+  get_references_in_stmt (s2, &refs2);
+
+  for (i = 0; VEC_iterate (data_ref_loc, refs1, i, ref1); i++)
+    {
+      tree base1 = ref_base_address (s1, ref1);
+
+      if (base1)
+       for (j = 0; VEC_iterate (data_ref_loc, refs2, j, ref2); j++)
+         if (base1 == ref_base_address (s2, ref2))
+           {
+             res = true;
+             goto end;
+           }
+    }
+
+ end:
+  VEC_free (data_ref_loc, heap, refs1);
+  VEC_free (data_ref_loc, heap, refs2);
+  return res;
+}
+
+/* Helper function for the hashtab.  */
+
+static int
+have_similar_memory_accesses_1 (const void *s1, const void *s2)
+{
+  return have_similar_memory_accesses ((tree) s1, (tree) s2);
+}
+
+/* Helper function for the hashtab.  */
+
+static hashval_t
+ref_base_address_1 (const void *s)
+{
+  tree stmt = (tree) s;
+  unsigned i;
+  VEC (data_ref_loc, heap) *refs;
+  data_ref_loc *ref;
+  hashval_t res = 0;
+
+  get_references_in_stmt (stmt, &refs);
+
+  for (i = 0; VEC_iterate (data_ref_loc, refs, i, ref); i++)
+    if (!ref->is_read)
+      {
+       res = htab_hash_pointer (ref_base_address (stmt, ref));
+       break;
+      }
+
+  VEC_free (data_ref_loc, heap, refs);
+  return res;
+}
+
+/* Try to remove duplicated write data references from STMTS.  */
+
+void
+remove_similar_memory_refs (VEC (tree, heap) **stmts)
+{
+  unsigned i;
+  tree stmt;
+  htab_t seen = htab_create (VEC_length (tree, *stmts), ref_base_address_1,
+                            have_similar_memory_accesses_1, NULL);
+
+  for (i = 0; VEC_iterate (tree, *stmts, i, stmt); )
+    {
+      void **slot;
+
+      slot = htab_find_slot (seen, stmt, INSERT);
+
+      if (*slot)
+       VEC_ordered_remove (tree, *stmts, i);
+      else
+       {
+         *slot = (void *) stmt;
+         i++;
+       }
+    }
+
+  htab_delete (seen);
+}
+
+/* Returns the index of PARAMETER in the parameters vector of the
+   ACCESS_MATRIX.  If PARAMETER does not exist return -1.  */
+
+int 
+access_matrix_get_index_for_parameter (tree parameter, 
+                                      struct access_matrix *access_matrix)
+{
+  int i;
+  VEC (tree,heap) *lambda_parameters = AM_PARAMETERS (access_matrix);
+  tree lambda_parameter;
+
+  for (i = 0; VEC_iterate (tree, lambda_parameters, i, lambda_parameter); i++)
+    if (lambda_parameter == parameter)
+      return i + AM_NB_INDUCTION_VARS (access_matrix);
+
+  return -1;
+}