OSDN Git Service

* real.c (toe64): Remove stale #endif from the last change.
[pf3gnuchains/gcc-fork.git] / gcc / reload1.c
index 735ed93..3520883 100644 (file)
@@ -1,5 +1,6 @@
 /* Reload pseudo regs into hard regs for insns that require hard regs.
-   Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
+   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+   1999, 2000 Free Software Foundation, Inc.
 
 This file is part of GNU CC.
 
@@ -25,20 +26,27 @@ Boston, MA 02111-1307, USA.  */
 #include "machmode.h"
 #include "hard-reg-set.h"
 #include "rtl.h"
+#include "tm_p.h"
 #include "obstack.h"
 #include "insn-config.h"
 #include "insn-flags.h"
 #include "insn-codes.h"
 #include "flags.h"
+#include "function.h"
 #include "expr.h"
 #include "regs.h"
 #include "basic-block.h"
 #include "reload.h"
 #include "recog.h"
 #include "output.h"
+#include "cselib.h"
 #include "real.h"
 #include "toplev.h"
 
+#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
+#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
+#endif
+
 /* This file contains the reload pass of the compiler, which is
    run after register allocation has been done.  It checks that
    each insn is valid (operands required to be in registers really
@@ -112,7 +120,7 @@ rtx *reg_equiv_address;
 rtx *reg_equiv_mem;
 
 /* Widest width in which each pseudo reg is referred to (via subreg).  */
-static int *reg_max_ref_width;
+static unsigned int *reg_max_ref_width;
 
 /* Element N is the list of insns that initialized reg N from its equivalent
    constant or memory slot.  */
@@ -160,7 +168,7 @@ static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
 /* This table is the inverse mapping of spill_regs:
    indexed by hard reg number,
    it contains the position of that reg in spill_regs,
-   or -1 for something that is not in spill_regs. 
+   or -1 for something that is not in spill_regs.
 
    ?!?  This is no longer accurate.  */
 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
@@ -209,13 +217,6 @@ static HARD_REG_SET used_spill_regs;
    a round-robin fashion.  */
 static int last_spill_reg;
 
-/* Describes order of preference for putting regs into spill_regs.
-   Contains the numbers of all the hard regs, in order most preferred first.
-   This order is different for each function.
-   It is set up by order_regs_for_reload.
-   Empty elements at the end contain -1.  */
-static short potential_reload_regs[FIRST_PSEUDO_REGISTER];
-
 /* Nonzero if indirect addressing is supported on the machine; this means
    that spilling (REG n) does not require reloading it into a register in
    order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))).  The
@@ -236,10 +237,14 @@ char double_reg_address_ok;
 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
 
 /* Width allocated so far for that stack slot.  */
-static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
+static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
 
 /* Record which pseudos needed to be spilled.  */
-static regset spilled_pseudos;
+static regset_head spilled_pseudos;
+
+/* Used for communication between order_regs_for_reload and count_pseudo.
+   Used to avoid counting one pseudo twice.  */
+static regset_head pseudos_counted;
 
 /* First uid used by insns created by reload in this function.
    Used in find_equiv_reg.  */
@@ -269,15 +274,16 @@ struct obstack reload_obstack;
 char *reload_startobj;
 
 /* The point after all insn_chain structures.  Used to quickly deallocate
-   memory used while processing one insn.  */
+   memory allocated in copy_reloads during calculate_needs_all_insns.  */
 char *reload_firstobj;
 
+/* This points before all local rtl generated by register elimination.
+   Used to quickly free all memory after processing one insn.  */
+static char *reload_insn_firstobj;
+
 #define obstack_chunk_alloc xmalloc
 #define obstack_chunk_free free
 
-/* List of labels that must never be deleted.  */
-extern rtx forced_labels;
-
 /* List of insn_chain instructions, one for every insn that reload needs to
    examine.  */
 struct insn_chain *reload_insn_chain;
@@ -361,88 +367,93 @@ static int (*offsets_at)[NUM_ELIMINABLE_REGS];
 /* Number of labels in the current function.  */
 
 static int num_labels;
-
-struct hard_reg_n_uses
-{
-  int regno;
-  unsigned int uses;
-};
 \f
-static void maybe_fix_stack_asms       PROTO((void));
-static void calculate_needs_all_insns  PROTO((int));
-static void calculate_needs            PROTO((struct insn_chain *));
-static void find_reload_regs           PROTO((struct insn_chain *chain,
+static void maybe_fix_stack_asms       PARAMS ((void));
+static void copy_reloads               PARAMS ((struct insn_chain *));
+static void calculate_needs_all_insns  PARAMS ((int));
+static int find_reg                    PARAMS ((struct insn_chain *, int,
                                               FILE *));
-static void find_tworeg_group          PROTO((struct insn_chain *, int,
-                                              FILE *));
-static void find_group                 PROTO((struct insn_chain *, int,
-                                              FILE *));
-static int possible_group_p            PROTO((struct insn_chain *, int));
-static void count_possible_groups      PROTO((struct insn_chain *, int));
-static int modes_equiv_for_class_p     PROTO((enum machine_mode,
-                                              enum machine_mode,
-                                              enum reg_class));
-static void delete_caller_save_insns   PROTO((void));
-
-static void spill_failure              PROTO((rtx));
-static void new_spill_reg              PROTO((struct insn_chain *, int, int,
-                                              int, FILE *));
-static void maybe_mark_pseudo_spilled  PROTO((int));
-static void delete_dead_insn           PROTO((rtx));
-static void alter_reg                          PROTO((int, int));
-static void set_label_offsets          PROTO((rtx, rtx, int));
-static int eliminate_regs_in_insn      PROTO((rtx, int));
-static void update_eliminable_offsets  PROTO((void));
-static void mark_not_eliminable                PROTO((rtx, rtx));
-static void set_initial_elim_offsets   PROTO((void));
-static void verify_initial_elim_offsets        PROTO((void));
-static void set_initial_label_offsets  PROTO((void));
-static void set_offsets_for_label      PROTO((rtx));
-static void init_elim_table            PROTO((void));
-static void update_eliminables         PROTO((HARD_REG_SET *));
-static void spill_hard_reg             PROTO((int, FILE *, int));
-static int finish_spills               PROTO((int, FILE *));
-static void ior_hard_reg_set           PROTO((HARD_REG_SET *, HARD_REG_SET *));
-static void scan_paradoxical_subregs   PROTO((rtx));
-static int hard_reg_use_compare                PROTO((const GENERIC_PTR, const GENERIC_PTR));
-static void count_pseudo               PROTO((struct hard_reg_n_uses *, int));
-static void order_regs_for_reload      PROTO((struct insn_chain *));
-static void reload_as_needed           PROTO((int));
-static void forget_old_reloads_1       PROTO((rtx, rtx));
-static int reload_reg_class_lower      PROTO((const GENERIC_PTR, const GENERIC_PTR));
-static void mark_reload_reg_in_use     PROTO((int, int, enum reload_type,
-                                              enum machine_mode));
-static void clear_reload_reg_in_use    PROTO((int, int, enum reload_type,
-                                              enum machine_mode));
-static int reload_reg_free_p           PROTO((int, int, enum reload_type));
-static int reload_reg_free_for_value_p PROTO((int, int, enum reload_type, rtx, rtx, int, int));
-static int reload_reg_reaches_end_p    PROTO((int, int, enum reload_type));
-static int allocate_reload_reg         PROTO((struct insn_chain *, int, int,
-                                              int));
-static void choose_reload_regs         PROTO((struct insn_chain *));
-static void merge_assigned_reloads     PROTO((rtx));
-static void emit_reload_insns          PROTO((struct insn_chain *));
-static void delete_output_reload       PROTO((rtx, int, int));
-static void delete_address_reloads     PROTO((rtx, rtx));
-static void delete_address_reloads_1   PROTO((rtx, rtx, rtx));
-static rtx inc_for_reload              PROTO((rtx, rtx, rtx, int));
-static int constraint_accepts_reg_p    PROTO((char *, rtx));
-static void reload_cse_regs_1          PROTO((rtx));
-static void reload_cse_invalidate_regno        PROTO((int, enum machine_mode, int));
-static int reload_cse_mem_conflict_p   PROTO((rtx, rtx));
-static void reload_cse_invalidate_mem  PROTO((rtx));
-static void reload_cse_invalidate_rtx  PROTO((rtx, rtx));
-static int reload_cse_regno_equal_p    PROTO((int, rtx, enum machine_mode));
-static int reload_cse_noop_set_p       PROTO((rtx, rtx));
-static int reload_cse_simplify_set     PROTO((rtx, rtx));
-static int reload_cse_simplify_operands        PROTO((rtx));
-static void reload_cse_check_clobber   PROTO((rtx, rtx));
-static void reload_cse_record_set      PROTO((rtx, rtx));
-static void reload_combine PROTO((void));
-static void reload_combine_note_use PROTO((rtx *, rtx));
-static void reload_combine_note_store PROTO((rtx, rtx));
-static void reload_cse_move2add PROTO((rtx));
-static void move2add_note_store PROTO((rtx, rtx));
+static void find_reload_regs           PARAMS ((struct insn_chain *, FILE *));
+static void select_reload_regs         PARAMS ((FILE *));
+static void delete_caller_save_insns   PARAMS ((void));
+
+static void spill_failure              PARAMS ((rtx, enum reg_class));
+static void count_spilled_pseudo       PARAMS ((int, int, int));
+static void delete_dead_insn           PARAMS ((rtx));
+static void alter_reg                          PARAMS ((int, int));
+static void set_label_offsets          PARAMS ((rtx, rtx, int));
+static void check_eliminable_occurrences       PARAMS ((rtx));
+static void elimination_effects                PARAMS ((rtx, enum machine_mode));
+static int eliminate_regs_in_insn      PARAMS ((rtx, int));
+static void update_eliminable_offsets  PARAMS ((void));
+static void mark_not_eliminable                PARAMS ((rtx, rtx, void *));
+static void set_initial_elim_offsets   PARAMS ((void));
+static void verify_initial_elim_offsets        PARAMS ((void));
+static void set_initial_label_offsets  PARAMS ((void));
+static void set_offsets_for_label      PARAMS ((rtx));
+static void init_elim_table            PARAMS ((void));
+static void update_eliminables         PARAMS ((HARD_REG_SET *));
+static void spill_hard_reg             PARAMS ((unsigned int, FILE *, int));
+static int finish_spills               PARAMS ((int, FILE *));
+static void ior_hard_reg_set           PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
+static void scan_paradoxical_subregs   PARAMS ((rtx));
+static void count_pseudo               PARAMS ((int));
+static void order_regs_for_reload      PARAMS ((struct insn_chain *));
+static void reload_as_needed           PARAMS ((int));
+static void forget_old_reloads_1       PARAMS ((rtx, rtx, void *));
+static int reload_reg_class_lower      PARAMS ((const PTR, const PTR));
+static void mark_reload_reg_in_use     PARAMS ((unsigned int, int,
+                                                enum reload_type,
+                                                enum machine_mode));
+static void clear_reload_reg_in_use    PARAMS ((unsigned int, int,
+                                                enum reload_type,
+                                                enum machine_mode));
+static int reload_reg_free_p           PARAMS ((unsigned int, int,
+                                                enum reload_type));
+static int reload_reg_free_for_value_p PARAMS ((int, int, enum reload_type,
+                                                rtx, rtx, int, int));
+static int reload_reg_reaches_end_p    PARAMS ((unsigned int, int,
+                                                enum reload_type));
+static int allocate_reload_reg         PARAMS ((struct insn_chain *, int,
+                                                int));
+static void failed_reload              PARAMS ((rtx, int));
+static int set_reload_reg              PARAMS ((int, int));
+static void choose_reload_regs_init    PARAMS ((struct insn_chain *, rtx *));
+static void choose_reload_regs         PARAMS ((struct insn_chain *));
+static void merge_assigned_reloads     PARAMS ((rtx));
+static void emit_input_reload_insns    PARAMS ((struct insn_chain *,
+                                                struct reload *, rtx, int));
+static void emit_output_reload_insns   PARAMS ((struct insn_chain *,
+                                                struct reload *, int));
+static void do_input_reload            PARAMS ((struct insn_chain *,
+                                                struct reload *, int));
+static void do_output_reload           PARAMS ((struct insn_chain *,
+                                                struct reload *, int));
+static void emit_reload_insns          PARAMS ((struct insn_chain *));
+static void delete_output_reload       PARAMS ((rtx, int, int));
+static void delete_address_reloads     PARAMS ((rtx, rtx));
+static void delete_address_reloads_1   PARAMS ((rtx, rtx, rtx));
+static rtx inc_for_reload              PARAMS ((rtx, rtx, rtx, int));
+static int constraint_accepts_reg_p    PARAMS ((const char *, rtx));
+static void reload_cse_regs_1          PARAMS ((rtx));
+static int reload_cse_noop_set_p       PARAMS ((rtx));
+static int reload_cse_simplify_set     PARAMS ((rtx, rtx));
+static int reload_cse_simplify_operands        PARAMS ((rtx));
+static void reload_combine             PARAMS ((void));
+static void reload_combine_note_use    PARAMS ((rtx *, rtx));
+static void reload_combine_note_store  PARAMS ((rtx, rtx, void *));
+static void reload_cse_move2add                PARAMS ((rtx));
+static void move2add_note_store                PARAMS ((rtx, rtx, void *));
+#ifdef AUTO_INC_DEC
+static void add_auto_inc_notes         PARAMS ((rtx, rtx));
+#endif
+static rtx gen_mode_int                        PARAMS ((enum machine_mode,
+                                                HOST_WIDE_INT));
+static void failed_reload              PARAMS ((rtx, int));
+static int set_reload_reg              PARAMS ((int, int));
+static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
+static void reload_cse_simplify                PARAMS ((rtx));
+extern void dump_needs                 PARAMS ((struct insn_chain *, FILE *));
 \f
 /* Initialize the reload pass once per compilation.  */
 
@@ -458,7 +469,8 @@ init_reload ()
   register rtx tem
     = gen_rtx_MEM (Pmode,
                   gen_rtx_PLUS (Pmode,
-                                gen_rtx_REG (Pmode, LAST_VIRTUAL_REGISTER + 1),
+                                gen_rtx_REG (Pmode,
+                                             LAST_VIRTUAL_REGISTER + 1),
                                 GEN_INT (4)));
   spill_indirect_levels = 0;
 
@@ -480,6 +492,7 @@ init_reload ()
       tem = gen_rtx_PLUS (Pmode,
                          gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
                          gen_rtx_REG (Pmode, i));
+
       /* This way, we make sure that reg+reg is an offsettable address.  */
       tem = plus_constant (tem, 4);
 
@@ -493,6 +506,9 @@ init_reload ()
   /* Initialize obstack for our rtl allocation.  */
   gcc_obstack_init (&reload_obstack);
   reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
+
+  INIT_REG_SET (&spilled_pseudos);
+  INIT_REG_SET (&pseudos_counted);
 }
 
 /* List of insn chains that are currently unused.  */
@@ -506,9 +522,10 @@ new_insn_chain ()
 
   if (unused_insn_chains == 0)
     {
-      c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
-      c->live_before = OBSTACK_ALLOC_REG_SET (&reload_obstack);
-      c->live_after = OBSTACK_ALLOC_REG_SET (&reload_obstack);
+      c = (struct insn_chain *)
+       obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
+      INIT_REG_SET (&c->live_throughout);
+      INIT_REG_SET (&c->dead_or_set);
     }
   else
     {
@@ -524,23 +541,26 @@ new_insn_chain ()
 
 /* Small utility function to set all regs in hard reg set TO which are
    allocated to pseudos in regset FROM.  */
+
 void
 compute_use_by_pseudos (to, from)
      HARD_REG_SET *to;
      regset from;
 {
-  int regno;
+  unsigned int regno;
+
   EXECUTE_IF_SET_IN_REG_SET
     (from, FIRST_PSEUDO_REGISTER, regno,
      {
        int r = reg_renumber[regno];
        int nregs;
+
        if (r < 0)
         {
           /* reload_combine uses the information from
-             basic_block_live_at_start, which might still contain registers
-             that have not actually been allocated since they have an
-             equivalence.  */
+             BASIC_BLOCK->global_live_at_start, which might still
+             contain registers that have not actually been allocated
+             since they have an equivalence.  */
           if (! reload_completed)
             abort ();
         }
@@ -649,32 +669,25 @@ reload (first, global, dumpfile)
      Record memory equivalents in reg_mem_equiv so they can
      be substituted eventually by altering the REG-rtx's.  */
 
-  reg_equiv_constant = (rtx *) xmalloc (max_regno * sizeof (rtx));
-  bzero ((char *) reg_equiv_constant, max_regno * sizeof (rtx));
-  reg_equiv_memory_loc = (rtx *) xmalloc (max_regno * sizeof (rtx));
-  bzero ((char *) reg_equiv_memory_loc, max_regno * sizeof (rtx));
-  reg_equiv_mem = (rtx *) xmalloc (max_regno * sizeof (rtx));
-  bzero ((char *) reg_equiv_mem, max_regno * sizeof (rtx));
-  reg_equiv_init = (rtx *) xmalloc (max_regno * sizeof (rtx));
-  bzero ((char *) reg_equiv_init, max_regno * sizeof (rtx));
-  reg_equiv_address = (rtx *) xmalloc (max_regno * sizeof (rtx));
-  bzero ((char *) reg_equiv_address, max_regno * sizeof (rtx));
-  reg_max_ref_width = (int *) xmalloc (max_regno * sizeof (int));
-  bzero ((char *) reg_max_ref_width, max_regno * sizeof (int));
-  reg_old_renumber = (short *) xmalloc (max_regno * sizeof (short));
-  bcopy (reg_renumber, reg_old_renumber, max_regno * sizeof (short));
+  reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
+  reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
+  reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
+  reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
+  reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
+  reg_max_ref_width = (int *) xcalloc (max_regno, sizeof (int));
+  reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
+  bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short));
   pseudo_forbidden_regs
     = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
   pseudo_previous_regs
-    = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
+    = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
 
   CLEAR_HARD_REG_SET (bad_spill_regs_global);
-  bzero ((char *) pseudo_previous_regs, max_regno * sizeof (HARD_REG_SET));
 
   /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
      Also find all paradoxical subregs and find largest such for each pseudo.
      On machines with small register classes, record hard registers that
-     are used for user variables.  These can never be used for spills. 
+     are used for user variables.  These can never be used for spills.
      Also look for a "constant" NOTE_INSN_SETJMP.  This means that all
      caller-saved registers must be marked live.  */
 
@@ -797,46 +810,16 @@ reload (first, global, dumpfile)
   for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
     if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
        || GET_CODE (insn) == CALL_INSN)
-      note_stores (PATTERN (insn), mark_not_eliminable);
-
-#ifndef REGISTER_CONSTRAINTS
-  /* If all the pseudo regs have hard regs,
-     except for those that are never referenced,
-     we know that no reloads are needed.  */
-  /* But that is not true if there are register constraints, since
-     in that case some pseudos might be in the wrong kind of hard reg.  */
-
-  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
-    if (reg_renumber[i] == -1 && REG_N_REFS (i) != 0)
-      break;
-
-  if (i == max_regno && num_eliminable == 0 && ! caller_save_needed)
-    {
-      free (real_known_ptr);
-      free (real_at_ptr);
-      free (reg_equiv_constant);
-      free (reg_equiv_memory_loc);
-      free (reg_equiv_mem);
-      free (reg_equiv_init);
-      free (reg_equiv_address);
-      free (reg_max_ref_width);
-      free (reg_old_renumber);
-      free (pseudo_previous_regs);
-      free (pseudo_forbidden_regs);
-      return 0;
-    }
-#endif
+      note_stores (PATTERN (insn), mark_not_eliminable, NULL);
 
   maybe_fix_stack_asms ();
 
   insns_need_reload = 0;
   something_needs_elimination = 0;
-  
+
   /* Initialize to -1, which means take the first spill register.  */
   last_spill_reg = -1;
 
-  spilled_pseudos = ALLOCA_REG_SET ();
-
   /* Spill any hard regs that we know we can't eliminate.  */
   CLEAR_HARD_REG_SET (used_spill_regs);
   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
@@ -860,15 +843,15 @@ reload (first, global, dumpfile)
     {
       int something_changed;
       int did_spill;
-      struct insn_chain *chain;
 
       HOST_WIDE_INT starting_frame_size;
 
-      /* Round size of stack frame to BIGGEST_ALIGNMENT.  This must be done
+      /* Round size of stack frame to stack_alignment_needed.  This must be done
         here because the stack size may be a part of the offset computation
         for register elimination, and there might have been new stack slots
         created in the last iteration of this loop.   */
-      assign_stack_local (BLKmode, 0, 0);
+      if (cfun->stack_alignment_needed)
+        assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
 
       starting_frame_size = get_frame_size ();
 
@@ -946,7 +929,7 @@ reload (first, global, dumpfile)
 
       calculate_needs_all_insns (global);
 
-      CLEAR_REG_SET (spilled_pseudos);
+      CLEAR_REG_SET (&spilled_pseudos);
       did_spill = 0;
 
       something_changed = 0;
@@ -979,12 +962,7 @@ reload (first, global, dumpfile)
            }
       }
 
-      CLEAR_HARD_REG_SET (used_spill_regs);
-      /* Try to satisfy the needs for each insn.  */
-      for (chain = insns_need_reload; chain != 0;
-          chain = chain->next_need_reload)
-       find_reload_regs (chain, dumpfile);
-
+      select_reload_regs (dumpfile);
       if (failure)
        goto failed;
 
@@ -996,6 +974,8 @@ reload (first, global, dumpfile)
 
       if (caller_save_needed)
        delete_caller_save_insns ();
+
+      obstack_free (&reload_obstack, reload_firstobj);
     }
 
   /* If global-alloc was run, notify it of any register eliminations we have
@@ -1060,13 +1040,14 @@ reload (first, global, dumpfile)
 
   if (! frame_pointer_needed)
     for (i = 0; i < n_basic_blocks; i++)
-      CLEAR_REGNO_REG_SET (basic_block_live_at_start[i],
+      CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
                           HARD_FRAME_POINTER_REGNUM);
 
   /* Come here (with failure set nonzero) if we can't get enough spill regs
      and we decide not to abort about it.  */
  failed:
 
+  CLEAR_REG_SET (&spilled_pseudos);
   reload_in_progress = 0;
 
   /* Now eliminate all pseudo regs by modifying them into
@@ -1083,11 +1064,13 @@ reload (first, global, dumpfile)
     {
       rtx addr = 0;
       int in_struct = 0;
+      int is_scalar = 0;
       int is_readonly = 0;
 
       if (reg_equiv_memory_loc[i])
        {
          in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
+         is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
          is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
        }
 
@@ -1102,14 +1085,15 @@ reload (first, global, dumpfile)
          if (reg_renumber[i] < 0)
            {
              rtx reg = regno_reg_rtx[i];
+             PUT_CODE (reg, MEM);
              XEXP (reg, 0) = addr;
              REG_USERVAR_P (reg) = 0;
              RTX_UNCHANGING_P (reg) = is_readonly;
              MEM_IN_STRUCT_P (reg) = in_struct;
+             MEM_SCALAR_P (reg) = is_scalar;
              /* We have no alias information about this newly created
                 MEM.  */
              MEM_ALIAS_SET (reg) = 0;
-             PUT_CODE (reg, MEM);
            }
          else if (reg_equiv_mem[i])
            XEXP (reg_equiv_mem[i], 0) = addr;
@@ -1123,9 +1107,10 @@ reload (first, global, dumpfile)
 
   /* Make a pass over all the insns and delete all USEs which we inserted
      only to tag a REG_EQUAL note on them.  Remove all REG_DEAD and REG_UNUSED
-     notes.  Delete all CLOBBER insns and simplify (subreg (reg)) operands.
-     Also remove all REG_RETVAL and REG_LIBCALL notes since they are no longer
-     useful or accurate.  */
+     notes.  Delete all CLOBBER insns that don't refer to the return value
+     and simplify (subreg (reg)) operands.  Also remove all REG_RETVAL and
+     REG_LIBCALL notes since they are no longer useful or accurate.  Strip
+     and regenerate REG_INC notes that may have been moved around.  */
 
   for (insn = first; insn; insn = NEXT_INSN (insn))
     if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
@@ -1134,7 +1119,9 @@ reload (first, global, dumpfile)
 
        if ((GET_CODE (PATTERN (insn)) == USE
             && find_reg_note (insn, REG_EQUAL, NULL_RTX))
-           || GET_CODE (PATTERN (insn)) == CLOBBER)
+           || (GET_CODE (PATTERN (insn)) == CLOBBER
+               && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
+                   || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
          {
            PUT_CODE (insn, NOTE);
            NOTE_SOURCE_FILE (insn) = 0;
@@ -1147,6 +1134,7 @@ reload (first, global, dumpfile)
          {
            if (REG_NOTE_KIND (*pnote) == REG_DEAD
                || REG_NOTE_KIND (*pnote) == REG_UNUSED
+               || REG_NOTE_KIND (*pnote) == REG_INC
                || REG_NOTE_KIND (*pnote) == REG_RETVAL
                || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
              *pnote = XEXP (*pnote, 1);
@@ -1154,6 +1142,10 @@ reload (first, global, dumpfile)
              pnote = &XEXP (*pnote, 1);
          }
 
+#ifdef AUTO_INC_DEC
+       add_auto_inc_notes (insn, PATTERN (insn));
+#endif
+
        /* And simplify (subreg (reg)) if it appears as an operand.  */
        cleanup_subreg_operands (insn);
       }
@@ -1163,13 +1155,21 @@ reload (first, global, dumpfile)
   if (flag_stack_check && ! STACK_CHECK_BUILTIN)
     {
       HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
+      static int verbose_warned = 0;
 
       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
          size += UNITS_PER_WORD;
 
       if (size > STACK_CHECK_MAX_FRAME_SIZE)
-       warning ("frame size too large for reliable stack checking");
+       {
+         warning ("frame size too large for reliable stack checking");
+         if (! verbose_warned)
+           {
+             warning ("try reducing the number of local variables");
+             verbose_warned = 1;
+           }
+       }
     }
 
   /* Indicate that we no longer have known memory locations or constants.  */
@@ -1193,8 +1193,6 @@ reload (first, global, dumpfile)
   free (pseudo_previous_regs);
   free (pseudo_forbidden_regs);
 
-  FREE_REG_SET (spilled_pseudos);
-
   CLEAR_HARD_REG_SET (used_spill_regs);
   for (i = 0; i < n_spills; i++)
     SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
@@ -1216,7 +1214,7 @@ static void
 maybe_fix_stack_asms ()
 {
 #ifdef STACK_REGS
-  char *constraints[MAX_RECOG_OPERANDS];
+  const char *constraints[MAX_RECOG_OPERANDS];
   enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
   struct insn_chain *chain;
 
@@ -1245,13 +1243,13 @@ maybe_fix_stack_asms ()
        }
 
       /* Get the operand values and constraints out of the insn.  */
-      decode_asm_operands (pat, recog_operand, recog_operand_loc,
+      decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
                           constraints, operand_mode);
 
       /* For every operand, see what registers are allowed.  */
       for (i = 0; i < noperands; i++)
        {
-         char *p = constraints[i];
+         const char *p = constraints[i];
          /* For every alternative, we compute the class of registers allowed
             for reloading in CLS, and merge its contents into the reg set
             ALLOWED.  */
@@ -1300,7 +1298,7 @@ maybe_fix_stack_asms ()
 
                default:
                  cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
-               
+
                }
            }
        }
@@ -1311,15 +1309,28 @@ maybe_fix_stack_asms ()
       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if (TEST_HARD_REG_BIT (allowed, i))
          {
-           CLEAR_REGNO_REG_SET (chain->live_before, i);
-           CLEAR_REGNO_REG_SET (chain->live_after, i);
+           CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
+           CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
          }
     }
 
 #endif
 }
-
 \f
+/* Copy the global variables n_reloads and rld into the corresponding elts
+   of CHAIN.  */
+static void
+copy_reloads (chain)
+     struct insn_chain *chain;
+{
+  chain->n_reloads = n_reloads;
+  chain->rld
+    = (struct reload *) obstack_alloc (&reload_obstack,
+                                      n_reloads * sizeof (struct reload));
+  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
+  reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
+}
+
 /* Walk the chain of insns, and determine for each whether it needs reloads
    and/or eliminations.  Build the corresponding insns_need_reload list, and
    set something_needs_elimination as appropriate.  */
@@ -1328,17 +1339,20 @@ calculate_needs_all_insns (global)
      int global;
 {
   struct insn_chain **pprev_reload = &insns_need_reload;
-  struct insn_chain **pchain;
+  struct insn_chain *chain;
 
   something_needs_elimination = 0;
 
-  for (pchain = &reload_insn_chain; *pchain != 0; pchain = &(*pchain)->next)
+  reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
+  for (chain = reload_insn_chain; chain != 0; chain = chain->next)
     {
-      rtx insn;
-      struct insn_chain *chain;
+      rtx insn = chain->insn;
 
-      chain = *pchain;
-      insn = chain->insn;
+      /* Clear out the shortcuts.  */
+      chain->n_reloads = 0;
+      chain->need_elim = 0;
+      chain->need_reload = 0;
+      chain->need_operand_change = 0;
 
       /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
         include REG_LABEL), we need to see what effects this has on the
@@ -1405,7 +1419,7 @@ calculate_needs_all_insns (global)
          /* Discard any register replacements done.  */
          if (did_elimination)
            {
-             obstack_free (&reload_obstack, reload_firstobj);
+             obstack_free (&reload_obstack, reload_insn_firstobj);
              PATTERN (insn) = old_body;
              INSN_CODE (insn) = old_code;
              REG_NOTES (insn) = old_notes;
@@ -1416,613 +1430,341 @@ calculate_needs_all_insns (global)
 
          if (n_reloads != 0)
            {
+             copy_reloads (chain);
              *pprev_reload = chain;
              pprev_reload = &chain->next_need_reload;
-
-             calculate_needs (chain);
            }
        }
     }
   *pprev_reload = 0;
 }
+\f
+/* Comparison function for qsort to decide which of two reloads
+   should be handled first.  *P1 and *P2 are the reload numbers.  */
 
-/* Compute the most additional registers needed by one instruction,
-   given by CHAIN.  Collect information separately for each class of regs.
-
-   To compute the number of reload registers of each class needed for an
-   insn, we must simulate what choose_reload_regs can do.  We do this by
-   splitting an insn into an "input" and an "output" part.  RELOAD_OTHER
-   reloads are used in both.  The input part uses those reloads,
-   RELOAD_FOR_INPUT reloads, which must be live over the entire input section
-   of reloads, and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and
-   RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the inputs.
-
-   The registers needed for output are RELOAD_OTHER and RELOAD_FOR_OUTPUT,
-   which are live for the entire output portion, and the maximum of all the
-   RELOAD_FOR_OUTPUT_ADDRESS reloads for each operand.
-
-   The total number of registers needed is the maximum of the
-   inputs and outputs.  */
-
-static void
-calculate_needs (chain)
-     struct insn_chain *chain;
+static int
+reload_reg_class_lower (r1p, r2p)
+     const PTR r1p;
+     const PTR r2p;
 {
-  int i;
-
-  /* Each `struct needs' corresponds to one RELOAD_... type.  */
-  struct {
-    struct needs other;
-    struct needs input;
-    struct needs output;
-    struct needs insn;
-    struct needs other_addr;
-    struct needs op_addr;
-    struct needs op_addr_reload;
-    struct needs in_addr[MAX_RECOG_OPERANDS];
-    struct needs in_addr_addr[MAX_RECOG_OPERANDS];
-    struct needs out_addr[MAX_RECOG_OPERANDS];
-    struct needs out_addr_addr[MAX_RECOG_OPERANDS];
-  } insn_needs;
-
-  bzero ((char *) chain->group_size, sizeof chain->group_size);
-  for (i = 0; i < N_REG_CLASSES; i++)
-    chain->group_mode[i] = VOIDmode;
-  bzero ((char *) &insn_needs, sizeof insn_needs);
-
-  /* Count each reload once in every class
-     containing the reload's own class.  */
-
-  for (i = 0; i < n_reloads; i++)
-    {
-      register enum reg_class *p;
-      enum reg_class class = reload_reg_class[i];
-      int size;
-      enum machine_mode mode;
-      struct needs *this_needs;
-
-      /* Don't count the dummy reloads, for which one of the
-        regs mentioned in the insn can be used for reloading.
-        Don't count optional reloads.
-        Don't count reloads that got combined with others.  */
-      if (reload_reg_rtx[i] != 0
-         || reload_optional[i] != 0
-         || (reload_out[i] == 0 && reload_in[i] == 0
-             && ! reload_secondary_p[i]))
-       continue;
-
-      mode = reload_inmode[i];
-      if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
-       mode = reload_outmode[i];
-      size = CLASS_MAX_NREGS (class, mode);
-
-      /* Decide which time-of-use to count this reload for.  */
-      switch (reload_when_needed[i])
-       {
-       case RELOAD_OTHER:
-         this_needs = &insn_needs.other;
-         break;
-       case RELOAD_FOR_INPUT:
-         this_needs = &insn_needs.input;
-         break;
-       case RELOAD_FOR_OUTPUT:
-         this_needs = &insn_needs.output;
-         break;
-       case RELOAD_FOR_INSN:
-         this_needs = &insn_needs.insn;
-         break;
-       case RELOAD_FOR_OTHER_ADDRESS:
-         this_needs = &insn_needs.other_addr;
-         break;
-       case RELOAD_FOR_INPUT_ADDRESS:
-         this_needs = &insn_needs.in_addr[reload_opnum[i]];
-         break;
-       case RELOAD_FOR_INPADDR_ADDRESS:
-         this_needs = &insn_needs.in_addr_addr[reload_opnum[i]];
-         break;
-       case RELOAD_FOR_OUTPUT_ADDRESS:
-         this_needs = &insn_needs.out_addr[reload_opnum[i]];
-         break;
-       case RELOAD_FOR_OUTADDR_ADDRESS:
-         this_needs = &insn_needs.out_addr_addr[reload_opnum[i]];
-         break;
-       case RELOAD_FOR_OPERAND_ADDRESS:
-         this_needs = &insn_needs.op_addr;
-         break;
-       case RELOAD_FOR_OPADDR_ADDR:
-         this_needs = &insn_needs.op_addr_reload;
-         break;
-       default:
-         abort();
-       }
+  register int r1 = *(const short *)r1p, r2 = *(const short *)r2p;
+  register int t;
 
-      if (size > 1)
-       {
-         enum machine_mode other_mode, allocate_mode;
-
-         /* Count number of groups needed separately from
-            number of individual regs needed.  */
-         this_needs->groups[(int) class]++;
-         p = reg_class_superclasses[(int) class];
-         while (*p != LIM_REG_CLASSES)
-           this_needs->groups[(int) *p++]++;
-
-         /* Record size and mode of a group of this class.  */
-         /* If more than one size group is needed,
-            make all groups the largest needed size.  */
-         if (chain->group_size[(int) class] < size)
-           {
-             other_mode = chain->group_mode[(int) class];
-             allocate_mode = mode;
+  /* Consider required reloads before optional ones.  */
+  t = rld[r1].optional - rld[r2].optional;
+  if (t != 0)
+    return t;
 
-             chain->group_size[(int) class] = size;
-             chain->group_mode[(int) class] = mode;
-           }
-         else
-           {
-             other_mode = mode;
-             allocate_mode = chain->group_mode[(int) class];
-           }
+  /* Count all solitary classes before non-solitary ones.  */
+  t = ((reg_class_size[(int) rld[r2].class] == 1)
+       - (reg_class_size[(int) rld[r1].class] == 1));
+  if (t != 0)
+    return t;
 
-         /* Crash if two dissimilar machine modes both need
-            groups of consecutive regs of the same class.  */
+  /* Aside from solitaires, consider all multi-reg groups first.  */
+  t = rld[r2].nregs - rld[r1].nregs;
+  if (t != 0)
+    return t;
 
-         if (other_mode != VOIDmode && other_mode != allocate_mode
-             && ! modes_equiv_for_class_p (allocate_mode,
-                                           other_mode, class))
-           fatal_insn ("Two dissimilar machine modes both need groups of consecutive regs of the same class",
-                       chain->insn);
-       }
-      else if (size == 1)
-       {
-         this_needs->regs[(unsigned char)reload_nongroup[i]][(int) class] += 1;
-         p = reg_class_superclasses[(int) class];
-         while (*p != LIM_REG_CLASSES)
-           this_needs->regs[(unsigned char)reload_nongroup[i]][(int) *p++] += 1;
-       }
-      else
-       abort ();
-    }
+  /* Consider reloads in order of increasing reg-class number.  */
+  t = (int) rld[r1].class - (int) rld[r2].class;
+  if (t != 0)
+    return t;
 
-  /* All reloads have been counted for this insn;
-     now merge the various times of use.
-     This sets insn_needs, etc., to the maximum total number
-     of registers needed at any point in this insn.  */
+  /* If reloads are equally urgent, sort by reload number,
+     so that the results of qsort leave nothing to chance.  */
+  return r1 - r2;
+}
+\f
+/* The cost of spilling each hard reg.  */
+static int spill_cost[FIRST_PSEUDO_REGISTER];
 
-  for (i = 0; i < N_REG_CLASSES; i++)
-    {
-      int j, in_max, out_max;
+/* When spilling multiple hard registers, we use SPILL_COST for the first
+   spilled hard reg and SPILL_ADD_COST for subsequent regs.  SPILL_ADD_COST
+   only the first hard reg for a multi-reg pseudo.  */
+static int spill_add_cost[FIRST_PSEUDO_REGISTER];
 
-      /* Compute normal and nongroup needs.  */
-      for (j = 0; j <= 1; j++)
-       {
-         int k;
-         for (in_max = 0, out_max = 0, k = 0; k < reload_n_operands; k++)
-           {
-             in_max = MAX (in_max,
-                           (insn_needs.in_addr[k].regs[j][i]
-                            + insn_needs.in_addr_addr[k].regs[j][i]));
-             out_max = MAX (out_max, insn_needs.out_addr[k].regs[j][i]);
-             out_max = MAX (out_max,
-                            insn_needs.out_addr_addr[k].regs[j][i]);
-           }
+/* Update the spill cost arrays, considering that pseudo REG is live.  */
 
-         /* RELOAD_FOR_INSN reloads conflict with inputs, outputs,
-            and operand addresses but not things used to reload
-            them.  Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads
-            don't conflict with things needed to reload inputs or
-            outputs.  */
+static void
+count_pseudo (reg)
+     int reg;
+{
+  int n_refs = REG_N_REFS (reg);
+  int r = reg_renumber[reg];
+  int nregs;
 
-         in_max = MAX (MAX (insn_needs.op_addr.regs[j][i],
-                            insn_needs.op_addr_reload.regs[j][i]),
-                       in_max);
+  if (REGNO_REG_SET_P (&pseudos_counted, reg)
+      || REGNO_REG_SET_P (&spilled_pseudos, reg))
+    return;
 
-         out_max = MAX (out_max, insn_needs.insn.regs[j][i]);
+  SET_REGNO_REG_SET (&pseudos_counted, reg);
 
-         insn_needs.input.regs[j][i]
-           = MAX (insn_needs.input.regs[j][i]
-                  + insn_needs.op_addr.regs[j][i]
-                  + insn_needs.insn.regs[j][i],
-                  in_max + insn_needs.input.regs[j][i]);
+  if (r < 0)
+    abort ();
+  
+  spill_add_cost[r] += n_refs;
 
-         insn_needs.output.regs[j][i] += out_max;
-         insn_needs.other.regs[j][i]
-           += MAX (MAX (insn_needs.input.regs[j][i],
-                        insn_needs.output.regs[j][i]),
-                   insn_needs.other_addr.regs[j][i]);
+  nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
+  while (nregs-- > 0)
+    spill_cost[r + nregs] += n_refs;
+}
 
-       }
+/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
+   contents of BAD_SPILL_REGS for the insn described by CHAIN.  */
+static void
+order_regs_for_reload (chain)
+     struct insn_chain *chain;
+{
+  register int i, j;
 
-      /* Now compute group needs.  */
-      for (in_max = 0, out_max = 0, j = 0; j < reload_n_operands; j++)
-       {
-         in_max = MAX (in_max, insn_needs.in_addr[j].groups[i]);
-         in_max = MAX (in_max, insn_needs.in_addr_addr[j].groups[i]);
-         out_max = MAX (out_max, insn_needs.out_addr[j].groups[i]);
-         out_max = MAX (out_max, insn_needs.out_addr_addr[j].groups[i]);
-       }
+  COPY_HARD_REG_SET (bad_spill_regs, bad_spill_regs_global);
 
-      in_max = MAX (MAX (insn_needs.op_addr.groups[i],
-                        insn_needs.op_addr_reload.groups[i]),
-                   in_max);
-      out_max = MAX (out_max, insn_needs.insn.groups[i]);
+  memset (spill_cost, 0, sizeof spill_cost);
+  memset (spill_add_cost, 0, sizeof spill_add_cost);
 
-      insn_needs.input.groups[i]
-       = MAX (insn_needs.input.groups[i]
-              + insn_needs.op_addr.groups[i]
-              + insn_needs.insn.groups[i],
-              in_max + insn_needs.input.groups[i]);
+  /* Count number of uses of each hard reg by pseudo regs allocated to it
+     and then order them by decreasing use.  */
 
-      insn_needs.output.groups[i] += out_max;
-      insn_needs.other.groups[i]
-       += MAX (MAX (insn_needs.input.groups[i],
-                    insn_needs.output.groups[i]),
-               insn_needs.other_addr.groups[i]);
+  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+    {
+      /* Test the various reasons why we can't use a register for
+        spilling in this insn.  */
+      if (fixed_regs[i]
+         || REGNO_REG_SET_P (&chain->live_throughout, i)
+         || REGNO_REG_SET_P (&chain->dead_or_set, i))
+       SET_HARD_REG_BIT (bad_spill_regs, i);
     }
+  /* Now find out which pseudos are allocated to it, and update
+     hard_reg_n_uses.  */
+  CLEAR_REG_SET (&pseudos_counted);
 
-  /* Record the needs for later.  */
-  chain->need = insn_needs.other;
+  EXECUTE_IF_SET_IN_REG_SET
+    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
+     {
+       count_pseudo (j);
+     });
+  EXECUTE_IF_SET_IN_REG_SET
+    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
+     {
+       count_pseudo (j);
+     });
+  CLEAR_REG_SET (&pseudos_counted);
 }
 \f
-/* Find a group of exactly 2 registers.
-
-   First try to fill out the group by spilling a single register which
-   would allow completion of the group.
+/* Vector of reload-numbers showing the order in which the reloads should
+   be processed.  */
+static short reload_order[MAX_RELOADS];
 
-   Then try to create a new group from a pair of registers, neither of
-   which are explicitly used.
+/* This is used to keep track of the spill regs used in one insn.  */
+static HARD_REG_SET used_spill_regs_local;
 
-   Then try to create a group from any pair of registers.  */
+/* We decided to spill hard register SPILLED, which has a size of
+   SPILLED_NREGS.  Determine how pseudo REG, which is live during the insn,
+   is affected.  We will add it to SPILLED_PSEUDOS if necessary, and we will
+   update SPILL_COST/SPILL_ADD_COST.  */
 
 static void
-find_tworeg_group (chain, class, dumpfile)
-     struct insn_chain *chain;
-     int class;
-     FILE *dumpfile;
+count_spilled_pseudo (spilled, spilled_nregs, reg)
+     int spilled, spilled_nregs, reg;
 {
-  int i;
-  /* First, look for a register that will complete a group.  */
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    {
-      int j, other;
-
-      j = potential_reload_regs[i];
-      if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j)
-         && ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0)
-              && TEST_HARD_REG_BIT (reg_class_contents[class], j)
-              && TEST_HARD_REG_BIT (reg_class_contents[class], other)
-              && HARD_REGNO_MODE_OK (other, chain->group_mode[class])
-              && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
-              /* We don't want one part of another group.
-                 We could get "two groups" that overlap!  */
-              && ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))
-             || (j < FIRST_PSEUDO_REGISTER - 1
-                 && (other = j + 1, spill_reg_order[other] >= 0)
-                 && TEST_HARD_REG_BIT (reg_class_contents[class], j)
-                 && TEST_HARD_REG_BIT (reg_class_contents[class], other)
-                 && HARD_REGNO_MODE_OK (j, chain->group_mode[class])
-                 && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
-                 && ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))))
-       {
-         register enum reg_class *p;
-
-         /* We have found one that will complete a group,
-            so count off one group as provided.  */
-         chain->need.groups[class]--;
-         p = reg_class_superclasses[class];
-         while (*p != LIM_REG_CLASSES)
-           {
-             if (chain->group_size [(int) *p] <= chain->group_size [class])
-               chain->need.groups[(int) *p]--;
-             p++;
-           }
+  int r = reg_renumber[reg];
+  int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
 
-         /* Indicate both these regs are part of a group.  */
-         SET_HARD_REG_BIT (chain->counted_for_groups, j);
-         SET_HARD_REG_BIT (chain->counted_for_groups, other);
-         break;
-       }
-    }
-  /* We can't complete a group, so start one.  */
-  if (i == FIRST_PSEUDO_REGISTER)
-    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-      {
-       int j, k;
-       j = potential_reload_regs[i];
-       /* Verify that J+1 is a potential reload reg.  */
-       for (k = 0; k < FIRST_PSEUDO_REGISTER; k++)
-         if (potential_reload_regs[k] == j + 1)
-           break;
-       if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
-           && k < FIRST_PSEUDO_REGISTER
-           && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
-           && TEST_HARD_REG_BIT (reg_class_contents[class], j)
-           && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
-           && HARD_REGNO_MODE_OK (j, chain->group_mode[class])
-           && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, j + 1)
-           && ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1))
-         break;
-      }
+  if (REGNO_REG_SET_P (&spilled_pseudos, reg)
+      || spilled + spilled_nregs <= r || r + nregs <= spilled)
+    return;
 
-  /* I should be the index in potential_reload_regs
-     of the new reload reg we have found.  */
+  SET_REGNO_REG_SET (&spilled_pseudos, reg);
 
-  new_spill_reg (chain, i, class, 0, dumpfile);
+  spill_add_cost[r] -= REG_N_REFS (reg);
+  while (nregs-- > 0)
+    spill_cost[r + nregs] -= REG_N_REFS (reg);
 }
 
-/* Find a group of more than 2 registers.
-   Look for a sufficient sequence of unspilled registers, and spill them all
-   at once.  */
+/* Find reload register to use for reload number ORDER.  */
 
-static void
-find_group (chain, class, dumpfile)
+static int
+find_reg (chain, order, dumpfile)
      struct insn_chain *chain;
-     int class;
+     int order;
      FILE *dumpfile;
 {
-  int i;
+  int rnum = reload_order[order];
+  struct reload *rl = rld + rnum;
+  int best_cost = INT_MAX;
+  int best_reg = -1;
+  unsigned int i, j;
+  int k;
+  HARD_REG_SET not_usable;
+  HARD_REG_SET used_by_other_reload;
+
+  COPY_HARD_REG_SET (not_usable, bad_spill_regs);
+  IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
+  IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
+
+  CLEAR_HARD_REG_SET (used_by_other_reload);
+  for (k = 0; k < order; k++)
+    {
+      int other = reload_order[k];
+
+      if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
+       for (j = 0; j < rld[other].nregs; j++)
+         SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
+    }
 
   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
     {
-      int j = potential_reload_regs[i];
+      unsigned int regno = i;
 
-      if (j >= 0
-         && j + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
-         && HARD_REGNO_MODE_OK (j, chain->group_mode[class]))
+      if (! TEST_HARD_REG_BIT (not_usable, regno)
+         && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
+         && HARD_REGNO_MODE_OK (regno, rl->mode))
        {
-         int k;
-         /* Check each reg in the sequence.  */
-         for (k = 0; k < chain->group_size[class]; k++)
-           if (! (spill_reg_order[j + k] < 0
-                  && ! TEST_HARD_REG_BIT (bad_spill_regs, j + k)
-                  && TEST_HARD_REG_BIT (reg_class_contents[class], j + k)))
-             break;
-         /* We got a full sequence, so spill them all.  */
-         if (k == chain->group_size[class])
-           {
-             register enum reg_class *p;
-             for (k = 0; k < chain->group_size[class]; k++)
-               {
-                 int idx;
-                 SET_HARD_REG_BIT (chain->counted_for_groups, j + k);
-                 for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
-                   if (potential_reload_regs[idx] == j + k)
-                     break;
-                 new_spill_reg (chain, idx, class, 0, dumpfile);
-               }
+         int this_cost = spill_cost[regno];
+         int ok = 1;
+         unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
 
-             /* We have found one that will complete a group,
-                so count off one group as provided.  */
-             chain->need.groups[class]--;
-             p = reg_class_superclasses[class];
-             while (*p != LIM_REG_CLASSES)
-               {
-                 if (chain->group_size [(int) *p]
-                     <= chain->group_size [class])
-                   chain->need.groups[(int) *p]--;
-                 p++;
-               }
-             return;
+         for (j = 1; j < this_nregs; j++)
+           {
+             this_cost += spill_add_cost[regno + j];
+             if ((TEST_HARD_REG_BIT (not_usable, regno + j))
+                 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
+               ok = 0;
+           }
+         if (! ok)
+           continue;
+         if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
+           this_cost--;
+         if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
+           this_cost--;
+         if (this_cost < best_cost
+             /* Among registers with equal cost, prefer caller-saved ones, or
+                use REG_ALLOC_ORDER if it is defined.  */
+             || (this_cost == best_cost
+#ifdef REG_ALLOC_ORDER
+                 && (inv_reg_alloc_order[regno]
+                     < inv_reg_alloc_order[best_reg])
+#else
+                 && call_used_regs[regno]
+                 && ! call_used_regs[best_reg]
+#endif
+                 ))
+           {
+             best_reg = regno;
+             best_cost = this_cost;
            }
        }
     }
-  /* There are no groups left.  */
-  spill_failure (chain->insn);
-  failure = 1;
-}
+  if (best_reg == -1)
+    return 0;
 
-/* If pseudo REG conflicts with one of our reload registers, mark it as
-   spilled.  */
-static void
-maybe_mark_pseudo_spilled (reg)
-     int reg;
-{
-  int i;
-  int r = reg_renumber[reg];
-  int nregs;
+  if (dumpfile)
+    fprintf (dumpfile, "Using reg %d for reload %d\n", best_reg, rnum);
 
-  if (r < 0)
-    abort ();
-  nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
-  for (i = 0; i < n_spills; i++)
-    if (r <= spill_regs[i] && r + nregs > spill_regs[i])
-      {
-       SET_REGNO_REG_SET (spilled_pseudos, reg);
-       return;
-      }
+  rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
+  rl->regno = best_reg;
+
+  EXECUTE_IF_SET_IN_REG_SET
+    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
+     {
+       count_spilled_pseudo (best_reg, rl->nregs, j);
+     });
+
+  EXECUTE_IF_SET_IN_REG_SET
+    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
+     {
+       count_spilled_pseudo (best_reg, rl->nregs, j);
+     });
+
+  for (i = 0; i < rl->nregs; i++)
+    {
+      if (spill_cost[best_reg + i] != 0
+         || spill_add_cost[best_reg + i] != 0)
+       abort ();
+      SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
+    }
+  return 1;
 }
 
 /* Find more reload regs to satisfy the remaining need of an insn, which
    is given by CHAIN.
    Do it by ascending class number, since otherwise a reg
    might be spilled for a big class and might fail to count
-   for a smaller class even though it belongs to that class.
-
-   Count spilled regs in `spills', and add entries to
-   `spill_regs' and `spill_reg_order'.
-
-   ??? Note there is a problem here.
-   When there is a need for a group in a high-numbered class,
-   and also need for non-group regs that come from a lower class,
-   the non-group regs are chosen first.  If there aren't many regs,
-   they might leave no room for a group.
-
-   This was happening on the 386.  To fix it, we added the code
-   that calls possible_group_p, so that the lower class won't
-   break up the last possible group.
-
-   Really fixing the problem would require changes above
-   in counting the regs already spilled, and in choose_reload_regs.
-   It might be hard to avoid introducing bugs there.  */
+   for a smaller class even though it belongs to that class.  */
 
 static void
 find_reload_regs (chain, dumpfile)
      struct insn_chain *chain;
      FILE *dumpfile;
 {
-  int i, class;
-  short *group_needs = chain->need.groups;
-  short *simple_needs = chain->need.regs[0];
-  short *nongroup_needs = chain->need.regs[1];
-
-  if (dumpfile)
-    fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
-
-  /* Compute the order of preference for hard registers to spill.
-     Store them by decreasing preference in potential_reload_regs.  */
+  int i;
 
-  order_regs_for_reload (chain);
-
-  /* So far, no hard regs have been spilled.  */
-  n_spills = 0;
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    spill_reg_order[i] = -1;
-
-  CLEAR_HARD_REG_SET (chain->used_spill_regs);
-  CLEAR_HARD_REG_SET (chain->counted_for_groups);
-  CLEAR_HARD_REG_SET (chain->counted_for_nongroups);
-
-  for (class = 0; class < N_REG_CLASSES; class++)
+  /* In order to be certain of getting the registers we need,
+     we must sort the reloads into order of increasing register class.
+     Then our grabbing of reload registers will parallel the process
+     that provided the reload registers.  */
+  for (i = 0; i < chain->n_reloads; i++)
     {
-      /* First get the groups of registers.
-        If we got single registers first, we might fragment
-        possible groups.  */
-      while (group_needs[class] > 0)
+      /* Show whether this reload already has a hard reg.  */
+      if (chain->rld[i].reg_rtx)
        {
-         /* If any single spilled regs happen to form groups,
-            count them now.  Maybe we don't really need
-            to spill another group.  */
-         count_possible_groups (chain, class);
-
-         if (group_needs[class] <= 0)
-           break;
-
-         /* Groups of size 2, the only groups used on most machines,
-            are treated specially.  */
-         if (chain->group_size[class] == 2)
-           find_tworeg_group (chain, class, dumpfile);
-         else
-           find_group (chain, class, dumpfile);
-         if (failure)
-           return;
+         int regno = REGNO (chain->rld[i].reg_rtx);
+         chain->rld[i].regno = regno;
+         chain->rld[i].nregs
+           = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
        }
+      else
+       chain->rld[i].regno = -1;
+      reload_order[i] = i;
+    }
 
-      /* Now similarly satisfy all need for single registers.  */
-
-      while (simple_needs[class] > 0 || nongroup_needs[class] > 0)
-       {
-         /* If we spilled enough regs, but they weren't counted
-            against the non-group need, see if we can count them now.
-            If so, we can avoid some actual spilling.  */
-         if (simple_needs[class] <= 0 && nongroup_needs[class] > 0)
-           for (i = 0; i < n_spills; i++)
-             {
-               int regno = spill_regs[i];
-               if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
-                   && !TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
-                   && !TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno)
-                   && nongroup_needs[class] > 0)
-                 {
-                   register enum reg_class *p;
+  n_reloads = chain->n_reloads;
+  memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
 
-                   SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
-                   nongroup_needs[class]--;
-                   p = reg_class_superclasses[class];
-                   while (*p != LIM_REG_CLASSES)
-                     nongroup_needs[(int) *p++]--;
-                 }
-             }
+  CLEAR_HARD_REG_SET (used_spill_regs_local);
 
-         if (simple_needs[class] <= 0 && nongroup_needs[class] <= 0)
-           break;
+  if (dumpfile)
+    fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
 
-         /* Consider the potential reload regs that aren't
-            yet in use as reload regs, in order of preference.
-            Find the most preferred one that's in this class.  */
+  qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
 
-         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-           {
-             int regno = potential_reload_regs[i];
-             if (regno >= 0
-                 && TEST_HARD_REG_BIT (reg_class_contents[class], regno)
-                 /* If this reg will not be available for groups,
-                    pick one that does not foreclose possible groups.
-                    This is a kludge, and not very general,
-                    but it should be sufficient to make the 386 work,
-                    and the problem should not occur on machines with
-                    more registers.  */
-                 && (nongroup_needs[class] == 0
-                     || possible_group_p (chain, regno)))
-               break;
-           }
+  /* Compute the order of preference for hard registers to spill.  */
 
-         /* If we couldn't get a register, try to get one even if we
-            might foreclose possible groups.  This may cause problems
-            later, but that's better than aborting now, since it is
-            possible that we will, in fact, be able to form the needed
-            group even with this allocation.  */
-
-         if (i >= FIRST_PSEUDO_REGISTER
-             && asm_noperands (chain->insn) < 0)
-           for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-             if (potential_reload_regs[i] >= 0
-                 && TEST_HARD_REG_BIT (reg_class_contents[class],
-                                       potential_reload_regs[i]))
-               break;
+  order_regs_for_reload (chain);
 
-         /* I should be the index in potential_reload_regs
-            of the new reload reg we have found.  */
+  for (i = 0; i < n_reloads; i++)
+    {
+      int r = reload_order[i];
 
-         new_spill_reg (chain, i, class, 1, dumpfile);
-         if (failure)
+      /* Ignore reloads that got marked inoperative.  */
+      if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
+         && ! rld[r].optional
+         && rld[r].regno == -1)
+       if (! find_reg (chain, i, dumpfile))
+         {
+           spill_failure (chain->insn, rld[r].class);
+           failure = 1;
            return;
-       }
+         }
     }
-  
-  /* We know which hard regs to use, now mark the pseudos that live in them
-     as needing to be kicked out.  */
-  EXECUTE_IF_SET_IN_REG_SET
-    (chain->live_before, FIRST_PSEUDO_REGISTER, i,
-     {
-       maybe_mark_pseudo_spilled (i);
-     });
-  EXECUTE_IF_SET_IN_REG_SET
-    (chain->live_after, FIRST_PSEUDO_REGISTER, i,
-     {
-       maybe_mark_pseudo_spilled (i);
-     });
 
-  IOR_HARD_REG_SET (used_spill_regs, chain->used_spill_regs);
+  COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
+  IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
+
+  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
 }
 
-void
-dump_needs (chain, dumpfile)
-     struct insn_chain *chain;
+static void
+select_reload_regs (dumpfile)
      FILE *dumpfile;
 {
-  static char *reg_class_names[] = REG_CLASS_NAMES;
-  int i;
-  struct needs *n = &chain->need;
-
-  for (i = 0; i < N_REG_CLASSES; i++)
-    {
-      if (n->regs[i][0] > 0)
-       fprintf (dumpfile,
-                ";; Need %d reg%s of class %s.\n",
-                n->regs[i][0], n->regs[i][0] == 1 ? "" : "s",
-                reg_class_names[i]);
-      if (n->regs[i][1] > 0)
-       fprintf (dumpfile,
-                ";; Need %d nongroup reg%s of class %s.\n",
-                n->regs[i][1], n->regs[i][1] == 1 ? "" : "s",
-                reg_class_names[i]);
-      if (n->groups[i] > 0)
-       fprintf (dumpfile,
-                ";; Need %d group%s (%smode) of class %s.\n",
-                n->groups[i], n->groups[i] == 1 ? "" : "s",
-                mode_name[(int) chain->group_mode[i]],
-                reg_class_names[i]);
-    }
+  struct insn_chain *chain;
+
+  /* Try to satisfy the needs for each insn.  */
+  for (chain = insns_need_reload; chain != 0;
+       chain = chain->next_need_reload)
+    find_reload_regs (chain, dumpfile);
 }
 \f
 /* Delete all insns that were inserted by emit_caller_save_insns during
@@ -2064,250 +1806,24 @@ delete_caller_save_insns ()
     }
 }
 \f
-/* Nonzero if, after spilling reg REGNO for non-groups,
-   it will still be possible to find a group if we still need one.  */
-
-static int
-possible_group_p (chain, regno)
-     struct insn_chain *chain;
-     int regno;
-{
-  int i;
-  int class = (int) NO_REGS;
-
-  for (i = 0; i < (int) N_REG_CLASSES; i++)
-    if (chain->need.groups[i] > 0)
-      {
-       class = i;
-       break;
-      }
-
-  if (class == (int) NO_REGS)
-    return 1;
-
-  /* Consider each pair of consecutive registers.  */
-  for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++)
-    {
-      /* Ignore pairs that include reg REGNO.  */
-      if (i == regno || i + 1 == regno)
-       continue;
-
-      /* Ignore pairs that are outside the class that needs the group.
-        ??? Here we fail to handle the case where two different classes
-        independently need groups.  But this never happens with our
-        current machine descriptions.  */
-      if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i)
-            && TEST_HARD_REG_BIT (reg_class_contents[class], i + 1)))
-       continue;
-
-      /* A pair of consecutive regs we can still spill does the trick.  */
-      if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0
-         && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
-         && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1))
-       return 1;
-
-      /* A pair of one already spilled and one we can spill does it
-        provided the one already spilled is not otherwise reserved.  */
-      if (spill_reg_order[i] < 0
-         && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
-         && spill_reg_order[i + 1] >= 0
-         && ! TEST_HARD_REG_BIT (chain->counted_for_groups, i + 1)
-         && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i + 1))
-       return 1;
-      if (spill_reg_order[i + 1] < 0
-         && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)
-         && spill_reg_order[i] >= 0
-         && ! TEST_HARD_REG_BIT (chain->counted_for_groups, i)
-         && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i))
-       return 1;
-    }
-
-  return 0;
-}
-
-/* Count any groups of CLASS that can be formed from the registers recently
-   spilled.  */
-
-static void
-count_possible_groups (chain, class)
-     struct insn_chain *chain;
-     int class;
-{
-  HARD_REG_SET new;
-  int i, j;
-
-  /* Now find all consecutive groups of spilled registers
-     and mark each group off against the need for such groups.
-     But don't count them against ordinary need, yet.  */
-
-  if (chain->group_size[class] == 0)
-    return;
-
-  CLEAR_HARD_REG_SET (new);
-
-  /* Make a mask of all the regs that are spill regs in class I.  */
-  for (i = 0; i < n_spills; i++)
-    {
-      int regno = spill_regs[i];
-
-      if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
-         && ! TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
-         && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno))
-       SET_HARD_REG_BIT (new, regno);
-    }
-
-  /* Find each consecutive group of them.  */
-  for (i = 0; i < FIRST_PSEUDO_REGISTER && chain->need.groups[class] > 0; i++)
-    if (TEST_HARD_REG_BIT (new, i)
-       && i + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
-       && HARD_REGNO_MODE_OK (i, chain->group_mode[class]))
-      {
-       for (j = 1; j < chain->group_size[class]; j++)
-         if (! TEST_HARD_REG_BIT (new, i + j))
-           break;
-
-       if (j == chain->group_size[class])
-         {
-           /* We found a group.  Mark it off against this class's need for
-              groups, and against each superclass too.  */
-           register enum reg_class *p;
-
-           chain->need.groups[class]--;
-           p = reg_class_superclasses[class];
-           while (*p != LIM_REG_CLASSES)
-             {
-               if (chain->group_size [(int) *p] <= chain->group_size [class])
-                 chain->need.groups[(int) *p]--;
-               p++;
-             }
-
-           /* Don't count these registers again.  */
-           for (j = 0; j < chain->group_size[class]; j++)
-             SET_HARD_REG_BIT (chain->counted_for_groups, i + j);
-         }
-
-       /* Skip to the last reg in this group.  When i is incremented above,
-          it will then point to the first reg of the next possible group.  */
-       i += j - 1;
-      }
-}
-\f
-/* ALLOCATE_MODE is a register mode that needs to be reloaded.  OTHER_MODE is
-   another mode that needs to be reloaded for the same register class CLASS.
-   If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
-   ALLOCATE_MODE will never be smaller than OTHER_MODE.
-
-   This code used to also fail if any reg in CLASS allows OTHER_MODE but not
-   ALLOCATE_MODE.  This test is unnecessary, because we will never try to put
-   something of mode ALLOCATE_MODE into an OTHER_MODE register.  Testing this
-   causes unnecessary failures on machines requiring alignment of register
-   groups when the two modes are different sizes, because the larger mode has
-   more strict alignment rules than the smaller mode.  */
-
-static int
-modes_equiv_for_class_p (allocate_mode, other_mode, class)
-     enum machine_mode allocate_mode, other_mode;
-     enum reg_class class;
-{
-  register int regno;
-  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
-    {
-      if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
-         && HARD_REGNO_MODE_OK (regno, allocate_mode)
-         && ! HARD_REGNO_MODE_OK (regno, other_mode))
-       return 0;
-    }
-  return 1;
-}
-\f
 /* Handle the failure to find a register to spill.
    INSN should be one of the insns which needed this particular spill reg.  */
 
 static void
-spill_failure (insn)
+spill_failure (insn, class)
      rtx insn;
+     enum reg_class class;
 {
+  static const char *const reg_class_names[] = REG_CLASS_NAMES;
   if (asm_noperands (PATTERN (insn)) >= 0)
-    error_for_asm (insn, "`asm' needs too many reloads");
+    error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
+                  reg_class_names[class]);
   else
-    fatal_insn ("Unable to find a register to spill.", insn);
-}
-
-/* Add a new register to the tables of available spill-registers.
-   CHAIN is the insn for which the register will be used; we decrease the
-   needs of that insn.
-   I is the index of this register in potential_reload_regs.
-   CLASS is the regclass whose need is being satisfied.
-   NONGROUP is 0 if this register is part of a group.
-   DUMPFILE is the same as the one that `reload' got.  */
-
-static void
-new_spill_reg (chain, i, class, nongroup, dumpfile)
-     struct insn_chain *chain;
-     int i;
-     int class;
-     int nongroup;
-     FILE *dumpfile;
-{
-  register enum reg_class *p;
-  int regno = potential_reload_regs[i];
-
-  if (i >= FIRST_PSEUDO_REGISTER)
-    {
-      spill_failure (chain->insn);
-      failure = 1;
-      return;
-    }
-
-  if (TEST_HARD_REG_BIT (bad_spill_regs, regno))
     {
-      static char *reg_class_names[] = REG_CLASS_NAMES;
-
-      if (asm_noperands (PATTERN (chain->insn)) < 0)
-       {
-       /* The error message is still correct - we know only that it wasn't
-          an asm statement that caused the problem, but one of the global
-          registers declared by the users might have screwed us.  */
-         error ("fixed or forbidden register %d (%s) was spilled for class %s.",
-                regno, reg_names[regno], reg_class_names[class]);
-         error ("This may be due to a compiler bug or to impossible asm");
-         error ("statements or clauses.");
-         fatal_insn ("This is the instruction:", chain->insn);
-       }
-      error_for_asm (chain->insn, "Invalid `asm' statement:");
-      error_for_asm (chain->insn,
-                    "fixed or forbidden register %d (%s) was spilled for class %s.",
-                    regno, reg_names[regno], reg_class_names[class]);
-      failure = 1;
-      return;
-    }
-
-  /* Make reg REGNO an additional reload reg.  */
-
-  potential_reload_regs[i] = -1;
-  spill_regs[n_spills] = regno;
-  spill_reg_order[regno] = n_spills;
-  if (dumpfile)
-    fprintf (dumpfile, "Spilling reg %d.\n", regno);
-  SET_HARD_REG_BIT (chain->used_spill_regs, regno);
-
-  /* Clear off the needs we just satisfied.  */
-
-  chain->need.regs[0][class]--;
-  p = reg_class_superclasses[class];
-  while (*p != LIM_REG_CLASSES)
-    chain->need.regs[0][(int) *p++]--;
-
-  if (nongroup && chain->need.regs[1][class] > 0)
-    {
-      SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
-      chain->need.regs[1][class]--;
-      p = reg_class_superclasses[class];
-      while (*p != LIM_REG_CLASSES)
-       chain->need.regs[1][(int) *p++]--;
+      error ("Unable to find a register to spill in class `%s'.",
+            reg_class_names[class]);
+      fatal_insn ("This is the insn:", insn);
     }
-
-  n_spills++;
 }
 \f
 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
@@ -2371,8 +1887,8 @@ alter_reg (i, from_reg)
       && reg_equiv_memory_loc[i] == 0)
     {
       register rtx x;
-      int inherent_size = PSEUDO_REGNO_BYTES (i);
-      int total_size = MAX (inherent_size, reg_max_ref_width[i]);
+      unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
+      unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
       int adjust = 0;
 
       /* Each pseudo reg has an inherent size which comes from its own mode,
@@ -2433,7 +1949,7 @@ alter_reg (i, from_reg)
                stack_slot = gen_rtx_MEM (mode_for_size (total_size
                                                         * BITS_PER_UNIT,
                                                         MODE_INT, 1),
-                                     plus_constant (XEXP (x, 0), adjust));
+                                         plus_constant (XEXP (x, 0), adjust));
            }
          spill_stack_slot[from_reg] = stack_slot;
          spill_stack_slot_width[from_reg] = total_size;
@@ -2449,7 +1965,7 @@ alter_reg (i, from_reg)
       if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
        {
          x = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
-                      plus_constant (XEXP (x, 0), adjust));
+                          plus_constant (XEXP (x, 0), adjust));
 
          /* If this was shared among registers, must ensure we never
             set it readonly since that can cause scheduling
@@ -2473,6 +1989,7 @@ mark_home_live (regno)
      int regno;
 {
   register int i, lim;
+
   i = reg_renumber[regno];
   if (i < 0)
     return;
@@ -2625,17 +2142,12 @@ set_label_offsets (x, insn, initial_p)
        if (p->offset != p->initial_offset)
          p->can_eliminate = 0;
       break;
-      
+
     default:
       break;
     }
 }
 \f
-/* Used for communication between the next two function to properly share
-   the vector for an ASM_OPERANDS.  */
-
-static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec;
-
 /* Scan X and replace any eliminable registers (such as fp) with a
    replacement (such as sp), plus an offset.
 
@@ -2655,9 +2167,6 @@ static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec;
    This means, do not set ref_outside_mem even if the reference
    is outside of MEMs.
 
-   If we see a modification to a register we know about, take the
-   appropriate action (see case SET, below).
-
    REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
    replacements done assuming all offsets are at their initial values.  If
    they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
@@ -2675,7 +2184,7 @@ eliminate_regs (x, mem_mode, insn)
   int regno;
   rtx new;
   int i, j;
-  char *fmt;
+  const char *fmt;
   int copied = 0;
 
   if (! current_function_decl)
@@ -2715,14 +2224,7 @@ eliminate_regs (x, mem_mode, insn)
          for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
               ep++)
            if (ep->from_rtx == x && ep->can_eliminate)
-             {
-               if (! mem_mode
-                   /* Refs inside notes don't count for this purpose.  */
-                   && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
-                                       || GET_CODE (insn) == INSN_LIST)))
-                 ep->ref_outside_mem = 1;
-               return plus_constant (ep->to_rtx, ep->previous_offset);
-             }
+             return plus_constant (ep->to_rtx, ep->previous_offset);
 
        }
       else if (reg_renumber[regno] < 0 && reg_equiv_constant
@@ -2732,6 +2234,20 @@ eliminate_regs (x, mem_mode, insn)
                               mem_mode, insn);
       return x;
 
+    /* You might think handling MINUS in a manner similar to PLUS is a
+       good idea.  It is not.  It has been tried multiple times and every
+       time the change has had to have been reverted.
+
+       Other parts of reload know a PLUS is special (gen_reload for example)
+       and require special code to handle code a reloaded PLUS operand.
+
+       Also consider backends where the flags register is clobbered by a
+       MINUS, but we can emit a PLUS that does not clobber flags (ia32,
+       lea instruction comes to mind).  If we try to reload a MINUS, we
+       may kill the flags register that was holding a useful value.
+
+       So, please before trying to handle MINUS, consider reload as a
+       whole instead of this little section as well as the backend issues.  */
     case PLUS:
       /* If this is the sum of an eliminable register and a constant, rework
         the sum.   */
@@ -2743,12 +2259,6 @@ eliminate_regs (x, mem_mode, insn)
               ep++)
            if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
              {
-               if (! mem_mode
-                   /* Refs inside notes don't count for this purpose.  */
-                   && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
-                                       || GET_CODE (insn) == INSN_LIST)))
-                 ep->ref_outside_mem = 1;
-
                /* The only time we want to replace a PLUS with a REG (this
                   occurs when the constant operand of the PLUS is the negative
                   of the offset) is when we are inside a MEM.  We won't want
@@ -2775,14 +2285,10 @@ eliminate_regs (x, mem_mode, insn)
         outermost PLUS.  We will do this by doing register replacement in
         our operands and seeing if a constant shows up in one of them.
 
-        We assume here this is part of an address (or a "load address" insn)
-        since an eliminable register is not likely to appear in any other
-        context.
-
-        If we have (plus (eliminable) (reg)), we want to produce
-        (plus (plus (replacement) (reg) (const))).  If this was part of a
-        normal add insn, (plus (replacement) (reg)) will be pushed as a
-        reload.  This is the desired action.  */
+        Note that there is no risk of modifying the structure of the insn,
+        since we only get called for its operands, thus we are either
+        modifying the address inside a MEM, or something like an address
+        operand of a load-address insn.  */
 
       {
        rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
@@ -2820,7 +2326,7 @@ eliminate_regs (x, mem_mode, insn)
       return x;
 
     case MULT:
-      /* If this is the product of an eliminable register and a 
+      /* If this is the product of an eliminable register and a
         constant, apply the distribute law and move the constant out
         so that we have (plus (mult ..) ..).  This is needed in order
         to keep load-address insns valid.   This case is pathological.
@@ -2847,6 +2353,7 @@ eliminate_regs (x, mem_mode, insn)
 
     case CALL:
     case COMPARE:
+    /* See comments before PLUS about handling MINUS.  */
     case MINUS:
     case DIV:      case UDIV:
     case MOD:      case UMOD:
@@ -2872,7 +2379,17 @@ eliminate_regs (x, mem_mode, insn)
        {
          new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
          if (new != XEXP (x, 0))
-           x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
+           {
+             /* If this is a REG_DEAD note, it is not valid anymore.
+                Using the eliminated version could result in creating a
+                REG_DEAD note for the stack or frame pointer.  */
+             if (GET_MODE (x) == REG_DEAD)
+               return (XEXP (x, 1)
+                       ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
+                       : NULL_RTX);
+
+             x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
+           }
        }
 
       /* ... fall through ...  */
@@ -2893,23 +2410,6 @@ eliminate_regs (x, mem_mode, insn)
     case POST_INC:
     case PRE_DEC:
     case POST_DEC:
-      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
-       if (ep->to_rtx == XEXP (x, 0))
-         {
-           int size = GET_MODE_SIZE (mem_mode);
-
-           /* If more bytes than MEM_MODE are pushed, account for them.  */
-#ifdef PUSH_ROUNDING
-           if (ep->to_rtx == stack_pointer_rtx)
-             size = PUSH_ROUNDING (size);
-#endif
-           if (code == PRE_DEC || code == POST_DEC)
-             ep->offset += size;
-           else
-             ep->offset -= size;
-         }
-
-      /* Fall through to generic unary operation case.  */
     case STRICT_LOW_PART:
     case NEG:          case NOT:
     case SIGN_EXTEND:  case ZERO_EXTEND:
@@ -2937,30 +2437,7 @@ eliminate_regs (x, mem_mode, insn)
          && reg_equiv_memory_loc != 0
          && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
        {
-#if 0
-         new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))],
-                               mem_mode, insn);
-
-         /* If we didn't change anything, we must retain the pseudo.  */
-         if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))])
-           new = SUBREG_REG (x);
-         else
-           {
-             /* In this case, we must show that the pseudo is used in this
-                insn so that delete_output_reload will do the right thing.  */
-             if (insn != 0 && GET_CODE (insn) != EXPR_LIST
-                 && GET_CODE (insn) != INSN_LIST)
-               REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode,
-                                                         SUBREG_REG (x)),
-                                                         insn))
-                 = gen_rtx_EXPR_LIST (REG_EQUAL, new, NULL_RTX);
-
-             /* Ensure NEW isn't shared in case we have to reload it.  */
-             new = copy_rtx (new);
-           }
-#else
          new = SUBREG_REG (x);
-#endif
        }
       else
        new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
@@ -2975,10 +2452,10 @@ eliminate_regs (x, mem_mode, insn)
 #ifdef WORD_REGISTER_OPERATIONS
                   /* On these machines, combine can create rtl of the form
                      (set (subreg:m1 (reg:m2 R) 0) ...)
-                     where m1 < m2, and expects something interesting to 
+                     where m1 < m2, and expects something interesting to
                      happen to the entire word.  Moreover, it will use the
                      (reg:m2 R) later, expecting all bits to be preserved.
-                     So if the number of words is the same, preserve the 
+                     So if the number of words is the same, preserve the
                      subreg so that push_reloads can see it.  */
                   && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
 #endif
@@ -3004,158 +2481,37 @@ eliminate_regs (x, mem_mode, insn)
 
       return x;
 
-    case USE:
-      /* If using a register that is the source of an eliminate we still
-        think can be performed, note it cannot be performed since we don't
-        know how this register is used.  */
-      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
-       if (ep->from_rtx == XEXP (x, 0))
-         ep->can_eliminate = 0;
+    case MEM:
+      /* This is only for the benefit of the debugging backends, which call
+        eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
+        removed after CSE.  */
+      if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
+       return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
 
-      new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
+      /* Our only special processing is to pass the mode of the MEM to our
+        recursive call and copy the flags.  While we are here, handle this
+        case more efficiently.  */
+      new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
       if (new != XEXP (x, 0))
-       return gen_rtx_fmt_e (code, GET_MODE (x), new);
-      return x;
+       {
+         new = gen_rtx_MEM (GET_MODE (x), new);
+         new->volatil = x->volatil;
+         new->unchanging = x->unchanging;
+         new->in_struct = x->in_struct;
+         return new;
+       }
+      else
+       return x;
 
+    case USE:
     case CLOBBER:
-      /* If clobbering a register that is the replacement register for an
-        elimination we still think can be performed, note that it cannot
-        be performed.  Otherwise, we need not be concerned about it.  */
-      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
-       if (ep->to_rtx == XEXP (x, 0))
-         ep->can_eliminate = 0;
-
-      new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
-      if (new != XEXP (x, 0))
-       return gen_rtx_fmt_e (code, GET_MODE (x), new);
-      return x;
-
     case ASM_OPERANDS:
-      {
-       rtx *temp_vec;
-       /* Properly handle sharing input and constraint vectors.  */
-       if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec)
-         {
-           /* When we come to a new vector not seen before,
-              scan all its elements; keep the old vector if none
-              of them changes; otherwise, make a copy.  */
-           old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x);
-           temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx));
-           for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
-             temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i),
-                                           mem_mode, insn);
-
-           for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
-             if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i))
-               break;
-
-           if (i == ASM_OPERANDS_INPUT_LENGTH (x))
-             new_asm_operands_vec = old_asm_operands_vec;
-           else
-             new_asm_operands_vec
-               = gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec);
-         }
-
-       /* If we had to copy the vector, copy the entire ASM_OPERANDS.  */
-       if (new_asm_operands_vec == old_asm_operands_vec)
-         return x;
-
-       new = gen_rtx_ASM_OPERANDS (VOIDmode, ASM_OPERANDS_TEMPLATE (x),
-                                   ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
-                                   ASM_OPERANDS_OUTPUT_IDX (x),
-                                   new_asm_operands_vec,
-                                   ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x),
-                                   ASM_OPERANDS_SOURCE_FILE (x),
-                                   ASM_OPERANDS_SOURCE_LINE (x));
-       new->volatil = x->volatil;
-       return new;
-      }
-
     case SET:
-      /* Check for setting a register that we know about.  */
-      if (GET_CODE (SET_DEST (x)) == REG)
-       {
-         /* See if this is setting the replacement register for an
-            elimination.
+      abort ();
 
-            If DEST is the hard frame pointer, we do nothing because we
-            assume that all assignments to the frame pointer are for
-            non-local gotos and are being done at a time when they are valid
-            and do not disturb anything else.  Some machines want to
-            eliminate a fake argument pointer (or even a fake frame pointer)
-            with either the real frame or the stack pointer.  Assignments to
-            the hard frame pointer must not prevent this elimination.  */
-
-         for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
-              ep++)
-           if (ep->to_rtx == SET_DEST (x)
-               && SET_DEST (x) != hard_frame_pointer_rtx)
-             {
-               /* If it is being incremented, adjust the offset.  Otherwise,
-                  this elimination can't be done.  */
-               rtx src = SET_SRC (x);
-
-               if (GET_CODE (src) == PLUS
-                   && XEXP (src, 0) == SET_DEST (x)
-                   && GET_CODE (XEXP (src, 1)) == CONST_INT)
-                 ep->offset -= INTVAL (XEXP (src, 1));
-               else
-                 ep->can_eliminate = 0;
-             }
-
-         /* Now check to see we are assigning to a register that can be
-            eliminated.  If so, it must be as part of a PARALLEL, since we
-            will not have been called if this is a single SET.  So indicate
-            that we can no longer eliminate this reg.  */
-         for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
-              ep++)
-           if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate)
-             ep->can_eliminate = 0;
-       }
-
-      /* Now avoid the loop below in this common case.  */
-      {
-       rtx new0 = eliminate_regs (SET_DEST (x), 0, insn);
-       rtx new1 = eliminate_regs (SET_SRC (x), 0, insn);
-
-       /* If SET_DEST changed from a REG to a MEM and INSN is an insn,
-          write a CLOBBER insn.  */
-       if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM
-           && insn != 0 && GET_CODE (insn) != EXPR_LIST
-           && GET_CODE (insn) != INSN_LIST)
-         emit_insn_after (gen_rtx_CLOBBER (VOIDmode, SET_DEST (x)), insn);
-
-       if (new0 != SET_DEST (x) || new1 != SET_SRC (x))
-         return gen_rtx_SET (VOIDmode, new0, new1);
-      }
-
-      return x;
-
-    case MEM:
-      /* This is only for the benefit of the debugging backends, which call
-        eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
-        removed after CSE.  */
-      if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
-       return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
-
-      /* Our only special processing is to pass the mode of the MEM to our
-        recursive call and copy the flags.  While we are here, handle this
-        case more efficiently.  */
-      new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
-      if (new != XEXP (x, 0))
-       {
-         new = gen_rtx_MEM (GET_MODE (x), new);
-         new->volatil = x->volatil;
-         new->unchanging = x->unchanging;
-         new->in_struct = x->in_struct;
-         return new;
-       }
-      else
-       return x;
-      
-    default:
-      break;
-    }
+    default:
+      break;
+    }
 
   /* Process each of our operands recursively.  If any have changed, make a
      copy of the rtx.  */
@@ -3184,8 +2540,8 @@ eliminate_regs (x, mem_mode, insn)
              new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
              if (new != XVECEXP (x, i, j) && ! copied_vec)
                {
-                 rtvec new_v = gen_rtvec_vv (XVECLEN (x, i),
-                                             XVEC (x, i)->elem);
+                 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
+                                            XVEC (x, i)->elem);
                  if (! copied)
                    {
                      rtx new_x = rtx_alloc (code);
@@ -3206,6 +2562,230 @@ eliminate_regs (x, mem_mode, insn)
 
   return x;
 }
+
+/* Scan rtx X for modifications of elimination target registers.  Update
+   the table of eliminables to reflect the changed state.  MEM_MODE is
+   the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM.  */
+
+static void
+elimination_effects (x, mem_mode)
+     rtx x;
+     enum machine_mode mem_mode;
+
+{
+  enum rtx_code code = GET_CODE (x);
+  struct elim_table *ep;
+  int regno;
+  int i, j;
+  const char *fmt;
+
+  switch (code)
+    {
+    case CONST_INT:
+    case CONST_DOUBLE:
+    case CONST:
+    case SYMBOL_REF:
+    case CODE_LABEL:
+    case PC:
+    case CC0:
+    case ASM_INPUT:
+    case ADDR_VEC:
+    case ADDR_DIFF_VEC:
+    case RETURN:
+      return;
+
+    case ADDRESSOF:
+      abort ();
+
+    case REG:
+      regno = REGNO (x);
+
+      /* First handle the case where we encounter a bare register that
+        is eliminable.  Replace it with a PLUS.  */
+      if (regno < FIRST_PSEUDO_REGISTER)
+       {
+         for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
+              ep++)
+           if (ep->from_rtx == x && ep->can_eliminate)
+             {
+               if (! mem_mode)
+                 ep->ref_outside_mem = 1;
+               return;
+             }
+
+       }
+      else if (reg_renumber[regno] < 0 && reg_equiv_constant
+              && reg_equiv_constant[regno]
+              && ! CONSTANT_P (reg_equiv_constant[regno]))
+       elimination_effects (reg_equiv_constant[regno], mem_mode);
+      return;
+
+    case PRE_INC:
+    case POST_INC:
+    case PRE_DEC:
+    case POST_DEC:
+      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+       if (ep->to_rtx == XEXP (x, 0))
+         {
+           int size = GET_MODE_SIZE (mem_mode);
+
+           /* If more bytes than MEM_MODE are pushed, account for them.  */
+#ifdef PUSH_ROUNDING
+           if (ep->to_rtx == stack_pointer_rtx)
+             size = PUSH_ROUNDING (size);
+#endif
+           if (code == PRE_DEC || code == POST_DEC)
+             ep->offset += size;
+           else
+             ep->offset -= size;
+         }
+
+      /* Fall through to generic unary operation case.  */
+    case STRICT_LOW_PART:
+    case NEG:          case NOT:
+    case SIGN_EXTEND:  case ZERO_EXTEND:
+    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
+    case FLOAT:        case FIX:
+    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
+    case ABS:
+    case SQRT:
+    case FFS:
+      elimination_effects (XEXP (x, 0), mem_mode);
+      return;
+
+    case SUBREG:
+      if (GET_CODE (SUBREG_REG (x)) == REG
+         && (GET_MODE_SIZE (GET_MODE (x))
+             <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+         && reg_equiv_memory_loc != 0
+         && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
+       return;
+
+      elimination_effects (SUBREG_REG (x), mem_mode);
+      return;
+
+    case USE:
+      /* If using a register that is the source of an eliminate we still
+        think can be performed, note it cannot be performed since we don't
+        know how this register is used.  */
+      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+       if (ep->from_rtx == XEXP (x, 0))
+         ep->can_eliminate = 0;
+
+      elimination_effects (XEXP (x, 0), mem_mode);
+      return;
+
+    case CLOBBER:
+      /* If clobbering a register that is the replacement register for an
+        elimination we still think can be performed, note that it cannot
+        be performed.  Otherwise, we need not be concerned about it.  */
+      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+       if (ep->to_rtx == XEXP (x, 0))
+         ep->can_eliminate = 0;
+
+      elimination_effects (XEXP (x, 0), mem_mode);
+      return;
+
+    case SET:
+      /* Check for setting a register that we know about.  */
+      if (GET_CODE (SET_DEST (x)) == REG)
+       {
+         /* See if this is setting the replacement register for an
+            elimination.
+
+            If DEST is the hard frame pointer, we do nothing because we
+            assume that all assignments to the frame pointer are for
+            non-local gotos and are being done at a time when they are valid
+            and do not disturb anything else.  Some machines want to
+            eliminate a fake argument pointer (or even a fake frame pointer)
+            with either the real frame or the stack pointer.  Assignments to
+            the hard frame pointer must not prevent this elimination.  */
+
+         for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
+              ep++)
+           if (ep->to_rtx == SET_DEST (x)
+               && SET_DEST (x) != hard_frame_pointer_rtx)
+             {
+               /* If it is being incremented, adjust the offset.  Otherwise,
+                  this elimination can't be done.  */
+               rtx src = SET_SRC (x);
+
+               if (GET_CODE (src) == PLUS
+                   && XEXP (src, 0) == SET_DEST (x)
+                   && GET_CODE (XEXP (src, 1)) == CONST_INT)
+                 ep->offset -= INTVAL (XEXP (src, 1));
+               else
+                 ep->can_eliminate = 0;
+             }
+       }
+
+      elimination_effects (SET_DEST (x), 0);
+      elimination_effects (SET_SRC (x), 0);
+      return;
+
+    case MEM:
+      if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
+       abort ();
+
+      /* Our only special processing is to pass the mode of the MEM to our
+        recursive call.  */
+      elimination_effects (XEXP (x, 0), GET_MODE (x));
+      return;
+
+    default:
+      break;
+    }
+
+  fmt = GET_RTX_FORMAT (code);
+  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
+    {
+      if (*fmt == 'e')
+       elimination_effects (XEXP (x, i), mem_mode);
+      else if (*fmt == 'E')
+       for (j = 0; j < XVECLEN (x, i); j++)
+         elimination_effects (XVECEXP (x, i, j), mem_mode);
+    }
+}
+
+/* Descend through rtx X and verify that no references to eliminable registers
+   remain.  If any do remain, mark the involved register as not
+   eliminable.  */
+static void
+check_eliminable_occurrences (x)
+     rtx x;
+{
+  const char *fmt;
+  int i;
+  enum rtx_code code;
+
+  if (x == 0)
+    return;
+  
+  code = GET_CODE (x);
+
+  if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
+    {
+      struct elim_table *ep;
+
+      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+       if (ep->from_rtx == x && ep->can_eliminate)
+         ep->can_eliminate = 0;
+      return;
+    }
+  
+  fmt = GET_RTX_FORMAT (code);
+  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
+    {
+      if (*fmt == 'e')
+       check_eliminable_occurrences (XEXP (x, i));
+      else if (*fmt == 'E')
+       {
+         int j;
+         for (j = 0; j < XVECLEN (x, i); j++)
+           check_eliminable_occurrences (XVECEXP (x, i, j));
+       }
+    }
+}
 \f
 /* Scan INSN and eliminate all eliminable registers in it.
 
@@ -3225,12 +2805,28 @@ eliminate_regs_in_insn (insn, replace)
      rtx insn;
      int replace;
 {
+  int icode = recog_memoized (insn);
   rtx old_body = PATTERN (insn);
+  int insn_is_asm = asm_noperands (old_body) >= 0;
   rtx old_set = single_set (insn);
   rtx new_body;
   int val = 0;
+  int i, any_changes;
+  rtx substed_operand[MAX_RECOG_OPERANDS];
+  rtx orig_operand[MAX_RECOG_OPERANDS];
   struct elim_table *ep;
 
+  if (! insn_is_asm && icode < 0)
+    {
+      if (GET_CODE (PATTERN (insn)) == USE
+         || GET_CODE (PATTERN (insn)) == CLOBBER
+         || GET_CODE (PATTERN (insn)) == ADDR_VEC
+         || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
+         || GET_CODE (PATTERN (insn)) == ASM_INPUT)
+       return 0;
+      abort ();
+    }
+
   if (! replace)
     push_obstacks (&reload_obstack, &reload_obstack);
 
@@ -3314,103 +2910,196 @@ eliminate_regs_in_insn (insn, replace)
               If REPLACE isn't set, we can't delete this insn, but needn't
               process it since it won't be used unless something changes.  */
            if (replace)
-             delete_dead_insn (insn);
+             {
+               delete_dead_insn (insn);
+               return 1;
+             }
            val = 1;
            goto done;
          }
+    }
 
-      /* Check for (set (reg) (plus (reg from) (offset))) where the offset
-        in the insn is the negative of the offset in FROM.  Substitute
-        (set (reg) (reg to)) for the insn and change its code.
+  /* We allow one special case which happens to work on all machines we
+     currently support: a single set with the source being a PLUS of an
+     eliminable register and a constant.  */
+  if (old_set
+      && GET_CODE (SET_SRC (old_set)) == PLUS
+      && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
+      && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
+      && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
+    {
+      rtx reg = XEXP (SET_SRC (old_set), 0);
+      int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
 
-        We have to do this here, rather than in eliminate_regs, so that we can
-        change the insn code.  */
+      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
+       if (ep->from_rtx == reg && ep->can_eliminate)
+         {
+           offset += ep->offset;
 
-      if (GET_CODE (SET_SRC (old_set)) == PLUS
-         && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
-         && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT)
-       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
-            ep++)
-         if (ep->from_rtx == XEXP (SET_SRC (old_set), 0)
-             && ep->can_eliminate)
-           {
-             /* We must stop at the first elimination that will be used.
-                If this one would replace the PLUS with a REG, do it
-                now.  Otherwise, quit the loop and let eliminate_regs
-                do its normal replacement.  */
-             if (ep->offset == - INTVAL (XEXP (SET_SRC (old_set), 1)))
-               {
-                 /* We assume here that we don't need a PARALLEL of
-                    any CLOBBERs for this assignment.  There's not
-                    much we can do if we do need it.  */
-                 PATTERN (insn) = gen_rtx_SET (VOIDmode,
-                                               SET_DEST (old_set),
-                                               ep->to_rtx);
-                 INSN_CODE (insn) = -1;
-                 val = 1;
-                 goto done;
-               }
+           if (offset == 0)
+             {
+               /* We assume here that we don't need a PARALLEL of
+                  any CLOBBERs for this assignment.  There's not
+                  much we can do if we do need it.  */
+               PATTERN (insn) = gen_rtx_SET (VOIDmode,
+                                             SET_DEST (old_set),
+                                             ep->to_rtx);
+               INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
+               if (INSN_CODE (insn) < 0)
+                 abort ();
+             }
+           else
+             {
+               new_body = old_body;
+               if (! replace)
+                 {
+                   new_body = copy_insn (old_body);
+                   if (REG_NOTES (insn))
+                     REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
+                 }
+               PATTERN (insn) = new_body;
+               old_set = single_set (insn);
+
+               XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
+               XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
+             }
+           val = 1;
+           /* This can't have an effect on elimination offsets, so skip right
+              to the end.  */
+           goto done;
+         }
+    }
+
+  /* Determine the effects of this insn on elimination offsets.  */
+  elimination_effects (old_body, 0);
+
+  /* Eliminate all eliminable registers occurring in operands that
+     can be handled by reload.  */
+  extract_insn (insn);
+  any_changes = 0;
+  for (i = 0; i < recog_data.n_operands; i++)
+    {
+      orig_operand[i] = recog_data.operand[i];
+      substed_operand[i] = recog_data.operand[i];
 
-             break;
+      /* For an asm statement, every operand is eliminable.  */
+      if (insn_is_asm || insn_data[icode].operand[i].eliminable)
+       {
+         /* Check for setting a register that we know about.  */
+         if (recog_data.operand_type[i] != OP_IN
+             && GET_CODE (orig_operand[i]) == REG)
+           {
+             /* If we are assigning to a register that can be eliminated, it
+                must be as part of a PARALLEL, since the code above handles
+                single SETs.  We must indicate that we can no longer
+                eliminate this reg.  */
+             for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
+                  ep++)
+               if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
+                 ep->can_eliminate = 0;
            }
+
+         substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
+                                              replace ? insn : NULL_RTX);
+         if (substed_operand[i] != orig_operand[i])
+           val = any_changes = 1;
+         /* Terminate the search in check_eliminable_occurrences at
+            this point.  */
+         *recog_data.operand_loc[i] = 0;
+
+       /* If an output operand changed from a REG to a MEM and INSN is an
+          insn, write a CLOBBER insn.  */
+         if (recog_data.operand_type[i] != OP_IN
+             && GET_CODE (orig_operand[i]) == REG
+             && GET_CODE (substed_operand[i]) == MEM
+             && replace)
+           emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
+                            insn);
+       }
     }
 
-  old_asm_operands_vec = 0;
+  for (i = 0; i < recog_data.n_dups; i++)
+    *recog_data.dup_loc[i]
+      = *recog_data.operand_loc[(int)recog_data.dup_num[i]];
 
-  /* Replace the body of this insn with a substituted form.  If we changed
-     something, return non-zero.  
+  /* If any eliminable remain, they aren't eliminable anymore.  */
+  check_eliminable_occurrences (old_body);
 
-     If we are replacing a body that was a (set X (plus Y Z)), try to
+  /* Substitute the operands; the new values are in the substed_operand
+     array.  */
+  for (i = 0; i < recog_data.n_operands; i++)
+    *recog_data.operand_loc[i] = substed_operand[i];
+  for (i = 0; i < recog_data.n_dups; i++)
+    *recog_data.dup_loc[i] = substed_operand[(int)recog_data.dup_num[i]];
+
+  /* If we are replacing a body that was a (set X (plus Y Z)), try to
      re-recognize the insn.  We do this in case we had a simple addition
      but now can do this as a load-address.  This saves an insn in this
-     common case.  */
+     common case.
+     If re-recognition fails, the old insn code number will still be used,
+     and some register operands may have changed into PLUS expressions.
+     These will be handled by find_reloads by loading them into a register
+     again.*/
 
-  new_body = eliminate_regs (old_body, 0, replace ? insn : NULL_RTX);
-  if (new_body != old_body)
+  if (val)
     {
       /* If we aren't replacing things permanently and we changed something,
         make another copy to ensure that all the RTL is new.  Otherwise
         things can go wrong if find_reload swaps commutative operands
         and one is inside RTL that has been copied while the other is not.  */
-
-      /* Don't copy an asm_operands because (1) there's no need and (2)
-        copy_rtx can't do it properly when there are multiple outputs.  */
-      if (! replace && asm_noperands (old_body) < 0)
-       new_body = copy_rtx (new_body);
+      new_body = old_body;
+      if (! replace)
+       {
+         new_body = copy_insn (old_body);
+         if (REG_NOTES (insn))
+           REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
+       }
+      PATTERN (insn) = new_body;
 
       /* If we had a move insn but now we don't, rerecognize it.  This will
         cause spurious re-recognition if the old move had a PARALLEL since
         the new one still will, but we can't call single_set without
         having put NEW_BODY into the insn and the re-recognition won't
         hurt in this rare case.  */
-      if (old_set != 0
+      /* ??? Why this huge if statement - why don't we just rerecognize the
+        thing always?  */
+      if (! insn_is_asm
+         && old_set != 0
          && ((GET_CODE (SET_SRC (old_set)) == REG
               && (GET_CODE (new_body) != SET
                   || GET_CODE (SET_SRC (new_body)) != REG))
              /* If this was a load from or store to memory, compare
-                the MEM in recog_operand to the one in the insn.  If they
-                are not equal, then rerecognize the insn.  */
+                the MEM in recog_data.operand to the one in the insn.
+                If they are not equal, then rerecognize the insn.  */
              || (old_set != 0
                  && ((GET_CODE (SET_SRC (old_set)) == MEM
-                      && SET_SRC (old_set) != recog_operand[1])
+                      && SET_SRC (old_set) != recog_data.operand[1])
                      || (GET_CODE (SET_DEST (old_set)) == MEM
-                         && SET_DEST (old_set) != recog_operand[0])))
+                         && SET_DEST (old_set) != recog_data.operand[0])))
              /* If this was an add insn before, rerecognize.  */
              || GET_CODE (SET_SRC (old_set)) == PLUS))
        {
-         if (! validate_change (insn, &PATTERN (insn), new_body, 0))
-           /* If recognition fails, store the new body anyway.
-              It's normal to have recognition failures here
-              due to bizarre memory addresses; reloading will fix them.  */
-           PATTERN (insn) = new_body;
+         int new_icode = recog (PATTERN (insn), insn, 0);
+         if (new_icode < 0)
+           INSN_CODE (insn) = icode;
        }
-      else
-       PATTERN (insn) = new_body;
+    }
 
-      val = 1;
+  /* Restore the old body.  If there were any changes to it, we made a copy
+     of it while the changes were still in place, so we'll correctly return
+     a modified insn below.  */
+  if (! replace)
+    {
+      /* Restore the old body.  */
+      for (i = 0; i < recog_data.n_operands; i++)
+       *recog_data.operand_loc[i] = orig_operand[i];
+      for (i = 0; i < recog_data.n_dups; i++)
+       *recog_data.dup_loc[i] = orig_operand[(int)recog_data.dup_num[i]];
     }
 
-  /* Loop through all elimination pairs.  See if any have changed.
+  /* Update all elimination pairs to reflect the status after the current
+     insn.  The changes we make were determined by the earlier call to
+     elimination_effects.
 
      We also detect a cases where register elimination cannot be done,
      namely, if a register would be both changed and referenced outside a MEM
@@ -3482,9 +3171,10 @@ update_eliminable_offsets ()
    the insns of the function.  */
 
 static void
-mark_not_eliminable (dest, x)
+mark_not_eliminable (dest, x, data)
      rtx dest;
      rtx x;
+     void *data ATTRIBUTE_UNUSED;
 {
   register unsigned int i;
 
@@ -3514,6 +3204,7 @@ mark_not_eliminable (dest, x)
    last call to set_initial_elim_offsets.  This is used to catch cases
    where something illegal happened during reload_as_needed that could
    cause incorrect code to be generated if we did not check for it.  */
+
 static void
 verify_initial_elim_offsets ()
 {
@@ -3532,7 +3223,7 @@ verify_initial_elim_offsets ()
   INITIAL_FRAME_POINTER_OFFSET (t);
   if (t != reg_eliminate[0].initial_offset)
     abort ();
-#endif  
+#endif
 }
 
 /* Reset all offsets on eliminable registers to their initial values.  */
@@ -3687,13 +3378,9 @@ init_elim_table ()
 #endif
 
   if (!reg_eliminate)
-    {
-      reg_eliminate = (struct elim_table *)
-       xmalloc(sizeof(struct elim_table) * NUM_ELIMINABLE_REGS);
-      bzero ((PTR) reg_eliminate,
-            sizeof(struct elim_table) * NUM_ELIMINABLE_REGS);
-    }
-  
+    reg_eliminate = (struct elim_table *)
+      xcalloc(sizeof(struct elim_table), NUM_ELIMINABLE_REGS);
+
   /* Does this function require a frame pointer?  */
 
   frame_pointer_needed = (! flag_omit_frame_pointer
@@ -3752,8 +3439,8 @@ init_elim_table ()
 
 static void
 spill_hard_reg (regno, dumpfile, cant_eliminate)
-     register int regno;
-     FILE *dumpfile;
+     unsigned int regno;
+     FILE *dumpfile ATTRIBUTE_UNUSED;
      int cant_eliminate;
 {
   register int i;
@@ -3769,23 +3456,24 @@ spill_hard_reg (regno, dumpfile, cant_eliminate)
 
   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
     if (reg_renumber[i] >= 0
-       && reg_renumber[i] <= regno
-       && (reg_renumber[i]
-           + HARD_REGNO_NREGS (reg_renumber[i],
+       && (unsigned int) reg_renumber[i] <= regno
+       && ((unsigned int) reg_renumber[i]
+           + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
                                PSEUDO_REGNO_MODE (i))
            > regno))
-      SET_REGNO_REG_SET (spilled_pseudos, i);
+      SET_REGNO_REG_SET (&spilled_pseudos, i);
 }
 
 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
    from within EXECUTE_IF_SET_IN_REG_SET.  Hence this awkwardness.  */
+
 static void
 ior_hard_reg_set (set1, set2)
      HARD_REG_SET *set1, *set2;
 {
   IOR_HARD_REG_SET (*set1, *set2);
 }
-  
+
 /* After find_reload_regs has been run for all insn that need reloads,
    and/or spill_hard_regs was called, this function is used to actually
    spill pseudo registers and try to reallocate them.  It also sets up the
@@ -3826,7 +3514,7 @@ finish_spills (global, dumpfile)
       spill_reg_order[i] = -1;
 
   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
-    if (REGNO_REG_SET_P (spilled_pseudos, i))
+    if (REGNO_REG_SET_P (&spilled_pseudos, i))
       {
        /* Record the current hard register the pseudo is allocated to in
           pseudo_previous_regs so we avoid reallocating it to the same
@@ -3850,13 +3538,13 @@ finish_spills (global, dumpfile)
       for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
        {
          EXECUTE_IF_SET_IN_REG_SET
-           (chain->live_before, FIRST_PSEUDO_REGISTER, i,
+           (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
             {
               ior_hard_reg_set (pseudo_forbidden_regs + i,
                                 &chain->used_spill_regs);
             });
          EXECUTE_IF_SET_IN_REG_SET
-           (chain->live_after, FIRST_PSEUDO_REGISTER, i,
+           (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
             {
               ior_hard_reg_set (pseudo_forbidden_regs + i,
                                 &chain->used_spill_regs);
@@ -3866,7 +3554,7 @@ finish_spills (global, dumpfile)
       /* Retry allocating the spilled pseudos.  For each reg, merge the
         various reg sets that indicate which hard regs can't be used,
         and call retry_global_alloc.
-         We change spill_pseudos here to only contain pseudos that did not
+        We change spill_pseudos here to only contain pseudos that did not
         get a new hard register.  */
       for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
        if (reg_old_renumber[i] != reg_renumber[i])
@@ -3877,7 +3565,7 @@ finish_spills (global, dumpfile)
            IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
            retry_global_alloc (i, forbidden);
            if (reg_renumber[i] >= 0)
-             CLEAR_REGNO_REG_SET (spilled_pseudos, i);
+             CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
          }
     }
 
@@ -3889,22 +3577,22 @@ finish_spills (global, dumpfile)
       HARD_REG_SET used_by_pseudos;
       HARD_REG_SET used_by_pseudos2;
 
-      AND_COMPL_REG_SET (chain->live_before, spilled_pseudos);
-      AND_COMPL_REG_SET (chain->live_after, spilled_pseudos);
+      AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
+      AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
 
       /* Mark any unallocated hard regs as available for spills.  That
         makes inheritance work somewhat better.  */
       if (chain->need_reload)
        {
-         REG_SET_TO_HARD_REG_SET (used_by_pseudos, chain->live_before);
-         REG_SET_TO_HARD_REG_SET (used_by_pseudos2, chain->live_after);
+         REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
+         REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
          IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
 
          /* Save the old value for the sanity test below.  */
          COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
 
-         compute_use_by_pseudos (&used_by_pseudos, chain->live_before);
-         compute_use_by_pseudos (&used_by_pseudos, chain->live_after);
+         compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
+         compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
          COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
          AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
 
@@ -3921,7 +3609,7 @@ finish_spills (global, dumpfile)
       int regno = reg_renumber[i];
       if (reg_old_renumber[i] == regno)
        continue;
-      
+
       alter_reg (i, reg_old_renumber[i]);
       reg_old_renumber[i] = regno;
       if (dumpfile)
@@ -3937,7 +3625,7 @@ finish_spills (global, dumpfile)
   return something_changed;
 }
 \f
-/* Find all paradoxical subregs within X and update reg_max_ref_width. 
+/* Find all paradoxical subregs within X and update reg_max_ref_width.
    Also mark any hard registers used to store user variables as
    forbidden from being used for spill registers.  */
 
@@ -3946,7 +3634,7 @@ scan_paradoxical_subregs (x)
      register rtx x;
 {
   register int i;
-  register char *fmt;
+  register const char *fmt;
   register enum rtx_code code = GET_CODE (x);
 
   switch (code)
@@ -3976,7 +3664,7 @@ scan_paradoxical_subregs (x)
        reg_max_ref_width[REGNO (SUBREG_REG (x))]
          = GET_MODE_SIZE (GET_MODE (x));
       return;
-      
+
     default:
       break;
     }
@@ -3995,152 +3683,6 @@ scan_paradoxical_subregs (x)
     }
 }
 \f
-static int
-hard_reg_use_compare (p1p, p2p)
-     const GENERIC_PTR p1p;
-     const GENERIC_PTR p2p;
-{  
-  struct hard_reg_n_uses *p1 = (struct hard_reg_n_uses *)p1p;
-  struct hard_reg_n_uses *p2 = (struct hard_reg_n_uses *)p2p;
-  int bad1 = TEST_HARD_REG_BIT (bad_spill_regs, p1->regno);
-  int bad2 = TEST_HARD_REG_BIT (bad_spill_regs, p2->regno);
-  if (bad1 && bad2)
-    return p1->regno - p2->regno;
-  if (bad1)
-    return 1;
-  if (bad2)
-    return -1;
-  if (p1->uses > p2->uses)
-    return 1;
-  if (p1->uses < p2->uses)
-    return -1;
-  /* If regs are equally good, sort by regno,
-     so that the results of qsort leave nothing to chance.  */
-  return p1->regno - p2->regno;
-}
-
-/* Used for communication between order_regs_for_reload and count_pseudo.
-   Used to avoid counting one pseudo twice.  */
-static regset pseudos_counted;
-
-/* Update the costs in N_USES, considering that pseudo REG is live.  */
-static void
-count_pseudo (n_uses, reg)
-     struct hard_reg_n_uses *n_uses;
-     int reg;
-{
-  int r = reg_renumber[reg];
-  int nregs;
-
-  if (REGNO_REG_SET_P (pseudos_counted, reg))
-    return;
-  SET_REGNO_REG_SET (pseudos_counted, reg);
-
-  if (r < 0)
-    abort ();
-
-  nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
-  while (nregs-- > 0)
-    n_uses[r++].uses += REG_N_REFS (reg);  
-}
-/* Choose the order to consider regs for use as reload registers
-   based on how much trouble would be caused by spilling one.
-   Store them in order of decreasing preference in potential_reload_regs.  */
-
-static void
-order_regs_for_reload (chain)
-     struct insn_chain *chain;
-{
-  register int i;
-  register int o = 0;
-  struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER];
-
-  pseudos_counted = ALLOCA_REG_SET ();
-
-  COPY_HARD_REG_SET (bad_spill_regs, bad_spill_regs_global);
-
-  /* Count number of uses of each hard reg by pseudo regs allocated to it
-     and then order them by decreasing use.  */
-
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    {
-      int j;
-
-      hard_reg_n_uses[i].regno = i;
-      hard_reg_n_uses[i].uses = 0;
-
-      /* Test the various reasons why we can't use a register for
-        spilling in this insn.  */
-      if (fixed_regs[i]
-         || REGNO_REG_SET_P (chain->live_before, i)
-         || REGNO_REG_SET_P (chain->live_after, i))
-       {
-         SET_HARD_REG_BIT (bad_spill_regs, i);
-         continue;
-       }
-
-      /* Now find out which pseudos are allocated to it, and update
-        hard_reg_n_uses.  */
-      CLEAR_REG_SET (pseudos_counted);
-
-      EXECUTE_IF_SET_IN_REG_SET
-       (chain->live_before, FIRST_PSEUDO_REGISTER, j,
-        {
-          count_pseudo (hard_reg_n_uses, j);
-        });
-      EXECUTE_IF_SET_IN_REG_SET
-       (chain->live_after, FIRST_PSEUDO_REGISTER, j,
-        {
-          count_pseudo (hard_reg_n_uses, j);
-        });
-    }
-
-  FREE_REG_SET (pseudos_counted);
-
-  /* Prefer registers not so far used, for use in temporary loading.
-     Among them, if REG_ALLOC_ORDER is defined, use that order.
-     Otherwise, prefer registers not preserved by calls.  */
-
-#ifdef REG_ALLOC_ORDER
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    {
-      int regno = reg_alloc_order[i];
-
-      if (hard_reg_n_uses[regno].uses == 0
-         && ! TEST_HARD_REG_BIT (bad_spill_regs, regno))
-       potential_reload_regs[o++] = regno;
-    }
-#else
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    {
-      if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i]
-         && ! TEST_HARD_REG_BIT (bad_spill_regs, i))
-       potential_reload_regs[o++] = i;
-    }
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    {
-      if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i]
-         && ! TEST_HARD_REG_BIT (bad_spill_regs, i))
-       potential_reload_regs[o++] = i;
-    }
-#endif
-
-  qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER,
-        sizeof hard_reg_n_uses[0], hard_reg_use_compare);
-
-  /* Now add the regs that are already used,
-     preferring those used less often.  The fixed and otherwise forbidden
-     registers will be at the end of this list.  */
-
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    if (hard_reg_n_uses[i].uses != 0
-       && ! TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
-      potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    if (TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
-      potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
-}
-\f
 /* Reload pseudo-registers into hard regs around each insn as needed.
    Additional register load insns are output before the insn that needs it
    and perhaps store insns after insns that modify the reloaded pseudo reg.
@@ -4155,16 +3697,15 @@ reload_as_needed (live_known)
      int live_known;
 {
   struct insn_chain *chain;
-#if defined (AUTO_INC_DEC) || defined (INSN_CLOBBERS_REGNO_P)
+#if defined (AUTO_INC_DEC)
   register int i;
 #endif
   rtx x;
 
   bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
   bzero ((char *) spill_reg_store, sizeof spill_reg_store);
-  reg_last_reload_reg = (rtx *) alloca (max_regno * sizeof (rtx));
-  bzero ((char *) reg_last_reload_reg, max_regno * sizeof (rtx));
-  reg_has_output_reload = (char *) alloca (max_regno);
+  reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
+  reg_has_output_reload = (char *) xmalloc (max_regno);
   CLEAR_HARD_REG_SET (reg_reloaded_valid);
 
   set_initial_elim_offsets ();
@@ -4246,7 +3787,7 @@ reload_as_needed (live_known)
                 Record the choices of reload reg in reload_reg_rtx.  */
              choose_reload_regs (chain);
 
-             /* Merge any reloads that we didn't combine for fear of 
+             /* Merge any reloads that we didn't combine for fear of
                 increasing the number of spill registers needed but now
                 discover can be safely merged.  */
              if (SMALL_REGISTER_CLASSES)
@@ -4285,13 +3826,13 @@ reload_as_needed (live_known)
             for this insn in order to be stored in
             (obeying register constraints).  That is correct; such reload
             registers ARE still valid.  */
-         note_stores (oldpat, forget_old_reloads_1);
+         note_stores (oldpat, forget_old_reloads_1, NULL);
 
          /* There may have been CLOBBER insns placed after INSN.  So scan
             between INSN and NEXT and use them to forget old reloads.  */
          for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
            if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
-             note_stores (PATTERN (x), forget_old_reloads_1);
+             note_stores (PATTERN (x), forget_old_reloads_1, NULL);
 
 #ifdef AUTO_INC_DEC
          /* Likewise for regs altered by auto-increment in this insn.
@@ -4300,7 +3841,7 @@ reload_as_needed (live_known)
             which have been performed by subst_reloads above.  */
          for (i = n_reloads - 1; i >= 0; i--)
            {
-             rtx in_reg = reload_in_reg[i];
+             rtx in_reg = rld[i].in_reg;
              if (in_reg)
                {
                  enum rtx_code code = GET_CODE (in_reg);
@@ -4311,14 +3852,14 @@ reload_as_needed (live_known)
                     or we can't use the reload register for inheritance.  */
                  if ((code == POST_INC || code == POST_DEC)
                      && TEST_HARD_REG_BIT (reg_reloaded_valid,
-                                           REGNO (reload_reg_rtx[i]))
+                                           REGNO (rld[i].reg_rtx))
                      /* Make sure it is the inc/dec pseudo, and not
                         some other (e.g. output operand) pseudo.  */
-                     && (reg_reloaded_contents[REGNO (reload_reg_rtx[i])]
+                     && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
                          == REGNO (XEXP (in_reg, 0))))
-                                             
+
                    {
-                     rtx reload_reg = reload_reg_rtx[i];
+                     rtx reload_reg = rld[i].reg_rtx;
                      enum machine_mode mode = GET_MODE (reload_reg);
                      int n = 0;
                      rtx p;
@@ -4356,22 +3897,43 @@ reload_as_needed (live_known)
                                                        reload_reg, p);
                                  break;
                                }
-                               
+
                            }
                          break;
                        }
                      if (n == 1)
-                       REG_NOTES (p) = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
-                                                          REG_NOTES (p));
+                       {
+                         REG_NOTES (p)
+                           = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
+                                                REG_NOTES (p));
+                         /* Mark this as having an output reload so that the
+                            REG_INC processing code below won't invalidate
+                            the reload for inheritance.  */
+                         SET_HARD_REG_BIT (reg_is_output_reload,
+                                           REGNO (reload_reg));
+                         reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
+                       }
                      else
-                       forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX);
+                       forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX, 
+                                             NULL);
+                   }
+                 else if ((code == PRE_INC || code == PRE_DEC)
+                          && TEST_HARD_REG_BIT (reg_reloaded_valid,
+                                                REGNO (rld[i].reg_rtx))
+                          /* Make sure it is the inc/dec pseudo, and not
+                             some other (e.g. output operand) pseudo.  */
+                          && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
+                              == REGNO (XEXP (in_reg, 0))))
+                   {
+                     SET_HARD_REG_BIT (reg_is_output_reload,
+                                       REGNO (rld[i].reg_rtx));
+                     reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
                    }
                }
            }
-#if 0 /* ??? Is this code obsolete now?  Need to check carefully. */
-         /* Likewise for regs altered by auto-increment in this insn.
-            But note that the reg-notes are not changed by reloading:
-            they still contain the pseudo-regs, not the spill regs.  */
+         /* If a pseudo that got a hard register is auto-incremented,
+            we must purge records of copying it into pseudos without
+            hard registers.  */
          for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
            if (REG_NOTE_KIND (x) == REG_INC)
              {
@@ -4379,14 +3941,13 @@ reload_as_needed (live_known)
                   If so, its last-reload info is still valid
                   because it is based on this insn's reload.  */
                for (i = 0; i < n_reloads; i++)
-                 if (reload_out[i] == XEXP (x, 0))
+                 if (rld[i].out == XEXP (x, 0))
                    break;
 
                if (i == n_reloads)
-                 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX);
+                 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
              }
 #endif
-#endif
        }
       /* A reload reg's contents are unknown after a label.  */
       if (GET_CODE (insn) == CODE_LABEL)
@@ -4396,21 +3957,11 @@ reload_as_needed (live_known)
         if it is a call-used reg.  */
       else if (GET_CODE (insn) == CALL_INSN)
        AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
-
-      /* In case registers overlap, allow certain insns to invalidate
-        particular hard registers.  */
-
-#ifdef INSN_CLOBBERS_REGNO_P
-      for (i = 0 ; i < FIRST_PSEUDO_REGISTER; i++)
-       if (TEST_HARD_REG_BIT (reg_reloaded_valid, i)
-           && INSN_CLOBBERS_REGNO_P (insn, i))
-         CLEAR_HARD_REG_BIT (reg_reloaded_valid, i);
-#endif
-
-#ifdef USE_C_ALLOCA
-      alloca (0);
-#endif
     }
+
+  /* Clean up.  */
+  free (reg_last_reload_reg);
+  free (reg_has_output_reload);
 }
 
 /* Discard all record of any value reloaded from X,
@@ -4421,12 +3972,13 @@ reload_as_needed (live_known)
    or it may be a pseudo reg that was reloaded from.  */
 
 static void
-forget_old_reloads_1 (x, ignored)
+forget_old_reloads_1 (x, ignored, data)
      rtx x;
      rtx ignored ATTRIBUTE_UNUSED;
+     void *data ATTRIBUTE_UNUSED;
 {
-  register int regno;
-  int nr;
+  unsigned int regno;
+  unsigned int nr;
   int offset = 0;
 
   /* note_stores does give us subregs of hard regs.  */
@@ -4445,7 +3997,8 @@ forget_old_reloads_1 (x, ignored)
     nr = 1;
   else
     {
-      int i;
+      unsigned int i;
+
       nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
       /* Storing into a spilled-reg invalidates its contents.
         This can happen if a block-local pseudo is allocated to that reg
@@ -4469,52 +4022,11 @@ forget_old_reloads_1 (x, ignored)
       reg_last_reload_reg[regno + nr] = 0;
 }
 \f
-/* For each reload, the mode of the reload register.  */
-static enum machine_mode reload_mode[MAX_RELOADS];
-
-/* For each reload, the largest number of registers it will require.  */
-static int reload_nregs[MAX_RELOADS];
-
-/* Comparison function for qsort to decide which of two reloads
-   should be handled first.  *P1 and *P2 are the reload numbers.  */
-
-static int
-reload_reg_class_lower (r1p, r2p)
-     const GENERIC_PTR r1p;
-     const GENERIC_PTR r2p;
-{
-  register int r1 = *(short *)r1p, r2 = *(short *)r2p;
-  register int t;
-
-  /* Consider required reloads before optional ones.  */
-  t = reload_optional[r1] - reload_optional[r2];
-  if (t != 0)
-    return t;
-
-  /* Count all solitary classes before non-solitary ones.  */
-  t = ((reg_class_size[(int) reload_reg_class[r2]] == 1)
-       - (reg_class_size[(int) reload_reg_class[r1]] == 1));
-  if (t != 0)
-    return t;
-
-  /* Aside from solitaires, consider all multi-reg groups first.  */
-  t = reload_nregs[r2] - reload_nregs[r1];
-  if (t != 0)
-    return t;
-
-  /* Consider reloads in order of increasing reg-class number.  */
-  t = (int) reload_reg_class[r1] - (int) reload_reg_class[r2];
-  if (t != 0)
-    return t;
-
-  /* If reloads are equally urgent, sort by reload number,
-     so that the results of qsort leave nothing to chance.  */
-  return r1 - r2;
-}
-\f
 /* The following HARD_REG_SETs indicate when each hard register is
    used for a reload of various parts of the current insn.  */
 
+/* If reg is unavailable for all reloads.  */
+static HARD_REG_SET reload_reg_unavailable;
 /* If reg is in use as a reload reg for a RELOAD_OTHER reload.  */
 static HARD_REG_SET reload_reg_used;
 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I.  */
@@ -4555,13 +4067,13 @@ static HARD_REG_SET reg_used_in_insn;
 
 static void
 mark_reload_reg_in_use (regno, opnum, type, mode)
-     int regno;
+     unsigned int regno;
      int opnum;
      enum reload_type type;
      enum machine_mode mode;
 {
-  int nregs = HARD_REGNO_NREGS (regno, mode);
-  int i;
+  unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
+  unsigned int i;
 
   for (i = regno; i < nregs + regno; i++)
     {
@@ -4620,13 +4132,13 @@ mark_reload_reg_in_use (regno, opnum, type, mode)
 
 static void
 clear_reload_reg_in_use (regno, opnum, type, mode)
-     int regno;
+     unsigned int regno;
      int opnum;
      enum reload_type type;
      enum machine_mode mode;
 {
-  int nregs = HARD_REGNO_NREGS (regno, mode);
-  int start_regno, end_regno;
+  unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
+  unsigned int start_regno, end_regno, r;
   int i;
   /* A complication is that for some reload types, inheritance might
      allow multiple reloads of the same types to share a reload register.
@@ -4695,21 +4207,21 @@ clear_reload_reg_in_use (regno, opnum, type, mode)
      more then what would be necessary if we used a HARD_REG_SET here.
      But this should only happen very infrequently, so there should
      be no reason to worry about it.  */
-    
+
   start_regno = regno;
   end_regno = regno + nregs;
   if (check_opnum || check_any)
     {
       for (i = n_reloads - 1; i >= 0; i--)
        {
-         if (reload_when_needed[i] == type
-             && (check_any || reload_opnum[i] == opnum)
-             && reload_reg_rtx[i])
+         if (rld[i].when_needed == type
+             && (check_any || rld[i].opnum == opnum)
+             && rld[i].reg_rtx)
            {
-             int conflict_start = true_regnum (reload_reg_rtx[i]);
-             int conflict_end
+             unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
+             unsigned int conflict_end
                = (conflict_start
-                  + HARD_REGNO_NREGS (conflict_start, reload_mode[i]));
+                  + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
 
              /* If there is an overlap with the first to-be-freed register,
                 adjust the interval start.  */
@@ -4722,8 +4234,9 @@ clear_reload_reg_in_use (regno, opnum, type, mode)
            }
        }
     }
-  for (i = start_regno; i < end_regno; i++)
-    CLEAR_HARD_REG_BIT (*used_in_set, i);
+
+  for (r = start_regno; r < end_regno; r++)
+    CLEAR_HARD_REG_BIT (*used_in_set, r);
 }
 
 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
@@ -4731,14 +4244,15 @@ clear_reload_reg_in_use (regno, opnum, type, mode)
 
 static int
 reload_reg_free_p (regno, opnum, type)
-     int regno;
+     unsigned int regno;
      int opnum;
      enum reload_type type;
 {
   int i;
 
   /* In use for a RELOAD_OTHER means it's not available for anything.  */
-  if (TEST_HARD_REG_BIT (reload_reg_used, regno))
+  if (TEST_HARD_REG_BIT (reload_reg_used, regno)
+      || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
     return 0;
 
   switch (type)
@@ -4797,8 +4311,8 @@ reload_reg_free_p (regno, opnum, type)
 
     case RELOAD_FOR_INPADDR_ADDRESS:
       /* Can't use a register if it is used for an input address
-         for this operand or used as an input in an earlier
-         one.  */
+        for this operand or used as an input in an earlier
+        one.  */
       if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
        return 0;
 
@@ -4822,8 +4336,8 @@ reload_reg_free_p (regno, opnum, type)
 
     case RELOAD_FOR_OUTADDR_ADDRESS:
       /* Can't use a register if it is used for an output address
-         for this operand or used as an output in this or a
-         later operand.  */
+        for this operand or used as an output in this or a
+        later operand.  */
       if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
        return 0;
 
@@ -4843,8 +4357,8 @@ reload_reg_free_p (regno, opnum, type)
 
     case RELOAD_FOR_OPADDR_ADDR:
       for (i = 0; i < reload_n_operands; i++)
-        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
-          return 0;
+       if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
+         return 0;
 
       return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
 
@@ -4890,7 +4404,7 @@ reload_reg_free_p (regno, opnum, type)
 
 static int
 reload_reg_reaches_end_p (regno, opnum, type)
-     int regno;
+     unsigned int regno;
      int opnum;
      enum reload_type type;
 {
@@ -4904,7 +4418,7 @@ reload_reg_reaches_end_p (regno, opnum, type)
       return 1;
 
       /* If this use is for part of the insn,
-        its value reaches if no subsequent part uses the same register. 
+        its value reaches if no subsequent part uses the same register.
         Just like the above function, don't try to do this with lots
         of fallthroughs.  */
 
@@ -4955,7 +4469,7 @@ reload_reg_reaches_end_p (regno, opnum, type)
 
     case RELOAD_FOR_INPUT:
       /* Similar to input address, except we start at the next operand for
-        both input and input address and we do not check for 
+        both input and input address and we do not check for
         RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
         would conflict.  */
 
@@ -5021,10 +4535,10 @@ int
 reloads_conflict (r1, r2)
      int r1, r2;
 {
-  enum reload_type r1_type = reload_when_needed[r1];
-  enum reload_type r2_type = reload_when_needed[r2];
-  int r1_opnum = reload_opnum[r1];
-  int r2_opnum = reload_opnum[r2];
+  enum reload_type r1_type = rld[r1].when_needed;
+  enum reload_type r2_type = rld[r2].when_needed;
+  int r1_opnum = rld[r1].opnum;
+  int r2_opnum = rld[r2].opnum;
 
   /* RELOAD_OTHER conflicts with everything.  */
   if (r2_type == RELOAD_OTHER)
@@ -5035,7 +4549,7 @@ reloads_conflict (r1, r2)
   switch (r1_type)
     {
     case RELOAD_FOR_INPUT:
-      return (r2_type == RELOAD_FOR_INSN 
+      return (r2_type == RELOAD_FOR_INSN
              || r2_type == RELOAD_FOR_OPERAND_ADDRESS
              || r2_type == RELOAD_FOR_OPADDR_ADDR
              || r2_type == RELOAD_FOR_INPUT
@@ -5064,14 +4578,14 @@ reloads_conflict (r1, r2)
              || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
 
     case RELOAD_FOR_OPADDR_ADDR:
-      return (r2_type == RELOAD_FOR_INPUT 
+      return (r2_type == RELOAD_FOR_INPUT
              || r2_type == RELOAD_FOR_OPADDR_ADDR);
 
     case RELOAD_FOR_OUTPUT:
       return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
              || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
                   || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
-                 && r2_opnum >= r1_opnum));
+                 && r2_opnum <= r1_opnum));
 
     case RELOAD_FOR_INSN:
       return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
@@ -5089,10 +4603,6 @@ reloads_conflict (r1, r2)
     }
 }
 \f
-/* Vector of reload-numbers showing the order in which the reloads should
-   be processed.  */
-short reload_order[MAX_RELOADS];
-
 /* Indexed by reload number, 1 if incoming value
    inherited from previous insns.  */
 char reload_inherited[MAX_RELOADS];
@@ -5130,7 +4640,7 @@ int reload_spill_index[MAX_RELOADS];
    register.  */
 static int
 reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
-                             ignore_address_reloads)
+                            ignore_address_reloads)
      int regno;
      int opnum;
      enum reload_type type;
@@ -5139,9 +4649,16 @@ reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
      int ignore_address_reloads;
 {
   int time1;
+  /* Set if we see an input reload that must not share its reload register
+     with any new earlyclobber, but might otherwise share the reload
+     register with an output or input-output reload.  */
+  int check_earlyclobber = 0;
   int i;
   int copy = 0;
 
+  if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
+    return 0;
+
   if (out == const0_rtx)
     {
       copy = 1;
@@ -5166,17 +4683,18 @@ reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
   switch (type)
     {
     case RELOAD_FOR_OTHER_ADDRESS:
-      time1 = 0;
+      /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads.  */
+      time1 = copy ? 0 : 1;
       break;
     case RELOAD_OTHER:
       time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
       break;
-    /* For each input, we might have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
-       RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT.  By adding 0 / 1 / 2 ,
-       respectively, to the time values for these, we get distinct time
-       values.  To get distinct time values for each operand, we have to
-       multiply opnum by at least three.  We round that up to four because
-       multiply by four is often cheaper.  */
+      /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
+        RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT.  By adding 0 / 1 / 2 ,
+        respectively, to the time values for these, we get distinct time
+        values.  To get distinct time values for each operand, we have to
+        multiply opnum by at least three.  We round that up to four because
+        multiply by four is often cheaper.  */
     case RELOAD_FOR_INPADDR_ADDRESS:
       time1 = opnum * 4 + 2;
       break;
@@ -5189,8 +4707,8 @@ reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
       time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
       break;
     case RELOAD_FOR_OPADDR_ADDR:
-    /* opnum * 4 + 4
-       <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
+      /* opnum * 4 + 4
+        <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
       time1 = MAX_RECOG_OPERANDS * 4 + 1;
       break;
     case RELOAD_FOR_OPERAND_ADDRESS:
@@ -5210,17 +4728,17 @@ reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
 
   for (i = 0; i < n_reloads; i++)
     {
-      rtx reg = reload_reg_rtx[i];
+      rtx reg = rld[i].reg_rtx;
       if (reg && GET_CODE (reg) == REG
          && ((unsigned) regno - true_regnum (reg)
              <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
          && i != reloadnum)
        {
-         if (! reload_in[i] || ! rtx_equal_p (reload_in[i], value)
-             || reload_out[i] || out)
+         if (! rld[i].in || ! rtx_equal_p (rld[i].in, value)
+             || rld[i].out || out)
            {
              int time2;
-             switch (reload_when_needed[i])
+             switch (rld[i].when_needed)
                {
                case RELOAD_FOR_OTHER_ADDRESS:
                  time2 = 0;
@@ -5237,67 +4755,73 @@ reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
                      /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
                         Then the address address is still needed to store
                         back the new address.  */
-                     && ! reload_out[reloadnum])
+                     && ! rld[reloadnum].out)
                    continue;
                  /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
                     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
                     reloads go away.  */
-                 if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i]
+                 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
                      && ignore_address_reloads
                      /* Unless we are reloading an auto_inc expression.  */
-                     && ! reload_out[reloadnum])
+                     && ! rld[reloadnum].out)
                    continue;
-                 time2 = reload_opnum[i] * 4 + 2;
+                 time2 = rld[i].opnum * 4 + 2;
                  break;
                case RELOAD_FOR_INPUT_ADDRESS:
-                 if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i]
+                 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
                      && ignore_address_reloads
-                     && ! reload_out[reloadnum])
+                     && ! rld[reloadnum].out)
                    continue;
-                 time2 = reload_opnum[i] * 4 + 3;
+                 time2 = rld[i].opnum * 4 + 3;
                  break;
                case RELOAD_FOR_INPUT:
-                 time2 = reload_opnum[i] * 4 + 4;
+                 time2 = rld[i].opnum * 4 + 4;
+                 check_earlyclobber = 1;
                  break;
-               /* reload_opnum[i] * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
-                  == MAX_RECOG_OPERAND * 4  */
+                 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
+                    == MAX_RECOG_OPERAND * 4  */
                case RELOAD_FOR_OPADDR_ADDR:
                  if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
                      && ignore_address_reloads
-                     && ! reload_out[reloadnum])
+                     && ! rld[reloadnum].out)
                    continue;
                  time2 = MAX_RECOG_OPERANDS * 4 + 1;
                  break;
                case RELOAD_FOR_OPERAND_ADDRESS:
                  time2 = MAX_RECOG_OPERANDS * 4 + 2;
+                 check_earlyclobber = 1;
                  break;
                case RELOAD_FOR_INSN:
                  time2 = MAX_RECOG_OPERANDS * 4 + 3;
                  break;
                case RELOAD_FOR_OUTPUT:
-               /* All RELOAD_FOR_OUTPUT reloads become live just after the
-                  instruction is executed.  */
+                 /* All RELOAD_FOR_OUTPUT reloads become live just after the
+                    instruction is executed.  */
                  time2 = MAX_RECOG_OPERANDS * 4 + 4;
                  break;
-               /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
-                  the RELOAD_FOR_OUTPUT reloads, so assign it the same time
-                  value.  */
+                 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
+                    the RELOAD_FOR_OUTPUT reloads, so assign it the same time
+                    value.  */
                case RELOAD_FOR_OUTADDR_ADDRESS:
                  if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
                      && ignore_address_reloads
-                     && ! reload_out[reloadnum])
+                     && ! rld[reloadnum].out)
                    continue;
-                 time2 = MAX_RECOG_OPERANDS * 4 + 4 + reload_opnum[i];
+                 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
                  break;
                case RELOAD_FOR_OUTPUT_ADDRESS:
-                 time2 = MAX_RECOG_OPERANDS * 4 + 5 + reload_opnum[i];
+                 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
                  break;
                case RELOAD_OTHER:
                  /* If there is no conflict in the input part, handle this
                     like an output reload.  */
-                 if (! reload_in[i] || rtx_equal_p (reload_in[i], value))
+                 if (! rld[i].in || rtx_equal_p (rld[i].in, value))
                    {
                      time2 = MAX_RECOG_OPERANDS * 4 + 4;
+                     /* Earlyclobbered outputs must conflict with inputs.  */
+                     if (earlyclobber_operand_p (rld[i].out))
+                       time2 = MAX_RECOG_OPERANDS * 4 + 3;
+                         
                      break;
                    }
                  time2 = 1;
@@ -5312,36 +4836,110 @@ reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
                  return 0;
                }
              if ((time1 >= time2
-                  && (! reload_in[i] || reload_out[i]
-                      || ! rtx_equal_p (reload_in[i], value)))
-                 || (out && reload_out_reg[reloadnum]
+                  && (! rld[i].in || rld[i].out
+                      || ! rtx_equal_p (rld[i].in, value)))
+                 || (out && rld[reloadnum].out_reg
                      && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
                return 0;
            }
        }
     }
+
+  /* Earlyclobbered outputs must conflict with inputs.  */
+  if (check_earlyclobber && out && earlyclobber_operand_p (out))
+    return 0;
+
   return 1;
 }
 
+/* Give an error message saying we failed to find a reload for INSN,
+   and clear out reload R.  */
+static void
+failed_reload (insn, r)
+     rtx insn;
+     int r;
+{
+  if (asm_noperands (PATTERN (insn)) < 0)
+    /* It's the compiler's fault.  */
+    fatal_insn ("Could not find a spill register", insn);
+
+  /* It's the user's fault; the operand's mode and constraint
+     don't match.  Disable this reload so we don't crash in final.  */
+  error_for_asm (insn,
+                "`asm' operand constraint incompatible with operand size");
+  rld[r].in = 0;
+  rld[r].out = 0;
+  rld[r].reg_rtx = 0;
+  rld[r].optional = 1;
+  rld[r].secondary_p = 1;
+}
+
+/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
+   for reload R.  If it's valid, get an rtx for it.  Return nonzero if
+   successful.  */
+static int
+set_reload_reg (i, r)
+     int i, r;
+{
+  int regno;
+  rtx reg = spill_reg_rtx[i];
+
+  if (reg == 0 || GET_MODE (reg) != rld[r].mode)
+    spill_reg_rtx[i] = reg
+      = gen_rtx_REG (rld[r].mode, spill_regs[i]);
+
+  regno = true_regnum (reg);
+
+  /* Detect when the reload reg can't hold the reload mode.
+     This used to be one `if', but Sequent compiler can't handle that.  */
+  if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
+    {
+      enum machine_mode test_mode = VOIDmode;
+      if (rld[r].in)
+       test_mode = GET_MODE (rld[r].in);
+      /* If rld[r].in has VOIDmode, it means we will load it
+        in whatever mode the reload reg has: to wit, rld[r].mode.
+        We have already tested that for validity.  */
+      /* Aside from that, we need to test that the expressions
+        to reload from or into have modes which are valid for this
+        reload register.  Otherwise the reload insns would be invalid.  */
+      if (! (rld[r].in != 0 && test_mode != VOIDmode
+            && ! HARD_REGNO_MODE_OK (regno, test_mode)))
+       if (! (rld[r].out != 0
+              && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
+         {
+           /* The reg is OK.  */
+           last_spill_reg = i;
+
+           /* Mark as in use for this insn the reload regs we use
+              for this.  */
+           mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
+                                   rld[r].when_needed, rld[r].mode);
+
+           rld[r].reg_rtx = reg;
+           reload_spill_index[r] = spill_regs[i];
+           return 1;
+         }
+    }
+  return 0;
+}
+
 /* Find a spill register to use as a reload register for reload R.
    LAST_RELOAD is non-zero if this is the last reload for the insn being
    processed.
 
-   Set reload_reg_rtx[R] to the register allocated.
+   Set rld[R].reg_rtx to the register allocated.
 
-   If NOERROR is nonzero, we return 1 if successful,
-   or 0 if we couldn't find a spill reg and we didn't change anything.  */
+   We return 1 if successful, or 0 if we couldn't find a spill reg and
+   we didn't change anything.  */
 
 static int
-allocate_reload_reg (chain, r, last_reload, noerror)
-     struct insn_chain *chain;
+allocate_reload_reg (chain, r, last_reload)
+     struct insn_chain *chain ATTRIBUTE_UNUSED;
      int r;
      int last_reload;
-     int noerror;
 {
-  rtx insn = chain->insn;
-  int i, pass, count, regno;
-  rtx new;
+  int i, pass, count;
 
   /* If we put this reload ahead, thinking it is a group,
      then insist on finding a group.  Otherwise we can grab a
@@ -5356,7 +4954,7 @@ allocate_reload_reg (chain, r, last_reload, noerror)
      Perhaps those classes should be avoided for reloading
      by use of more alternatives.  */
 
-  int force_group = reload_nregs[r] > 1 && ! last_reload;
+  int force_group = rld[r].nregs > 1 && ! last_reload;
 
   /* If we want a single register and haven't yet found one,
      take any reg in the right class and not in use.
@@ -5375,21 +4973,13 @@ allocate_reload_reg (chain, r, last_reload, noerror)
       /* I is the index in spill_regs.
         We advance it round-robin between insns to use all spill regs
         equally, so that inherited reloads have a chance
-        of leapfrogging each other.  Don't do this, however, when we have
-        group needs and failure would be fatal; if we only have a relatively
-        small number of spill registers, and more than one of them has
-        group needs, then by starting in the middle, we may end up 
-        allocating the first one in such a way that we are not left with
-        sufficient groups to handle the rest.  */
-
-      if (noerror || ! force_group)
-       i = last_spill_reg;
-      else
-       i = -1;
-         
+        of leapfrogging each other.  */
+
+      i = last_spill_reg;
+
       for (count = 0; count < n_spills; count++)
        {
-         int class = (int) reload_reg_class[r];
+         int class = (int) rld[r].class;
          int regnum;
 
          i++;
@@ -5397,19 +4987,19 @@ allocate_reload_reg (chain, r, last_reload, noerror)
            i -= n_spills;
          regnum = spill_regs[i];
 
-         if ((reload_reg_free_p (regnum, reload_opnum[r],
-                                 reload_when_needed[r])
-              || (reload_in[r]
-                     /* We check reload_reg_used to make sure we
-                        don't clobber the return register.  */
+         if ((reload_reg_free_p (regnum, rld[r].opnum,
+                                 rld[r].when_needed)
+              || (rld[r].in
+                  /* We check reload_reg_used to make sure we
+                     don't clobber the return register.  */
                   && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
                   && reload_reg_free_for_value_p (regnum,
-                                                 reload_opnum[r],
-                                                 reload_when_needed[r],
-                                                 reload_in[r],
-                                                 reload_out[r], r, 1)))
+                                                  rld[r].opnum,
+                                                  rld[r].when_needed,
+                                                  rld[r].in,
+                                                  rld[r].out, r, 1)))
              && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
-             && HARD_REGNO_MODE_OK (regnum, reload_mode[r])
+             && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
              /* Look first for regs to share, then for unshared.  But
                 don't share regs used for inherited reloads; they are
                 the ones we want to preserve.  */
@@ -5419,12 +5009,12 @@ allocate_reload_reg (chain, r, last_reload, noerror)
                      && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
                                              regnum))))
            {
-             int nr = HARD_REGNO_NREGS (regnum, reload_mode[r]);
+             int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
              /* Avoid the problem where spilling a GENERAL_OR_FP_REG
                 (on 68000) got us two FP regs.  If NR is 1,
                 we would reject both of them.  */
              if (force_group)
-               nr = CLASS_MAX_NREGS (reload_reg_class[r], reload_mode[r]);
+               nr = rld[r].nregs;
              /* If we need only one reg, we have already won.  */
              if (nr == 1)
                {
@@ -5434,22 +5024,17 @@ allocate_reload_reg (chain, r, last_reload, noerror)
                  break;
                }
              /* Otherwise check that as many consecutive regs as we need
-                are available here.
-                Also, don't use for a group registers that are
-                needed for nongroups.  */
-             if (! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regnum))
-               while (nr > 1)
-                 {
-                   regno = regnum + nr - 1;
-                   if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
-                         && spill_reg_order[regno] >= 0
-                         && reload_reg_free_p (regno, reload_opnum[r],
-                                               reload_when_needed[r])
-                         && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups,
-                                                 regno)))
-                     break;
-                   nr--;
-                 }
+                are available here.  */
+             while (nr > 1)
+               {
+                 int regno = regnum + nr - 1;
+                 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
+                       && spill_reg_order[regno] >= 0
+                       && reload_reg_free_p (regno, rld[r].opnum,
+                                             rld[r].when_needed)))
+                   break;
+                 nr--;
+               }
              if (nr == 1)
                break;
            }
@@ -5459,115 +5044,29 @@ allocate_reload_reg (chain, r, last_reload, noerror)
       if (count < n_spills)
        break;
     }
-
+    
   /* We should have found a spill register by now.  */
-  if (count == n_spills)
-    {
-      if (noerror)
-       return 0;
-      goto failure;
-    }
+  if (count >= n_spills)
+    return 0;
 
   /* I is the index in SPILL_REG_RTX of the reload register we are to
      allocate.  Get an rtx for it and find its register number.  */
 
-  new = spill_reg_rtx[i];
+  return set_reload_reg (i, r);
+}
+\f
+/* Initialize all the tables needed to allocate reload registers.
+   CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
+   is the array we use to restore the reg_rtx field for every reload.  */
+static void
+choose_reload_regs_init (chain, save_reload_reg_rtx)
+     struct insn_chain *chain;
+     rtx *save_reload_reg_rtx;
+{
+  int i;
 
-  if (new == 0 || GET_MODE (new) != reload_mode[r])
-    spill_reg_rtx[i] = new
-      = gen_rtx_REG (reload_mode[r], spill_regs[i]);
-           
-  regno = true_regnum (new);
-
-  /* Detect when the reload reg can't hold the reload mode.
-     This used to be one `if', but Sequent compiler can't handle that.  */
-  if (HARD_REGNO_MODE_OK (regno, reload_mode[r]))
-    {
-      enum machine_mode test_mode = VOIDmode;
-      if (reload_in[r])
-       test_mode = GET_MODE (reload_in[r]);
-      /* If reload_in[r] has VOIDmode, it means we will load it
-        in whatever mode the reload reg has: to wit, reload_mode[r].
-        We have already tested that for validity.  */
-      /* Aside from that, we need to test that the expressions
-        to reload from or into have modes which are valid for this
-        reload register.  Otherwise the reload insns would be invalid.  */
-      if (! (reload_in[r] != 0 && test_mode != VOIDmode
-            && ! HARD_REGNO_MODE_OK (regno, test_mode)))
-       if (! (reload_out[r] != 0
-              && ! HARD_REGNO_MODE_OK (regno, GET_MODE (reload_out[r]))))
-         {
-           /* The reg is OK.  */
-           last_spill_reg = i;
-
-           /* Mark as in use for this insn the reload regs we use
-              for this.  */
-           mark_reload_reg_in_use (spill_regs[i], reload_opnum[r],
-                                   reload_when_needed[r], reload_mode[r]);
-
-           reload_reg_rtx[r] = new;
-           reload_spill_index[r] = spill_regs[i];
-           return 1;
-         }
-    }
-
-  /* The reg is not OK.  */
-  if (noerror)
-    return 0;
-
- failure:
-  if (asm_noperands (PATTERN (insn)) < 0)
-    /* It's the compiler's fault.  */
-    fatal_insn ("Could not find a spill register", insn);
-
-  /* It's the user's fault; the operand's mode and constraint
-     don't match.  Disable this reload so we don't crash in final.  */
-  error_for_asm (insn,
-                "`asm' operand constraint incompatible with operand size");
-  reload_in[r] = 0;
-  reload_out[r] = 0;
-  reload_reg_rtx[r] = 0;
-  reload_optional[r] = 1;
-  reload_secondary_p[r] = 1;
-
-  return 1;
-}
-\f
-/* Assign hard reg targets for the pseudo-registers we must reload
-   into hard regs for this insn.
-   Also output the instructions to copy them in and out of the hard regs.
-
-   For machines with register classes, we are responsible for
-   finding a reload reg in the proper class.  */
-
-static void
-choose_reload_regs (chain)
-     struct insn_chain *chain;
-{
-  rtx insn = chain->insn;
-  register int i, j;
-  int max_group_size = 1;
-  enum reg_class group_class = NO_REGS;
-  int inheritance;
-  int pass;
-
-  rtx save_reload_reg_rtx[MAX_RELOADS];
-  char save_reload_inherited[MAX_RELOADS];
-  rtx save_reload_inheritance_insn[MAX_RELOADS];
-  rtx save_reload_override_in[MAX_RELOADS];
-  int save_reload_spill_index[MAX_RELOADS];
-  HARD_REG_SET save_reload_reg_used;
-  HARD_REG_SET save_reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
-  HARD_REG_SET save_reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
-  HARD_REG_SET save_reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
-  HARD_REG_SET save_reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
-  HARD_REG_SET save_reload_reg_used_in_input[MAX_RECOG_OPERANDS];
-  HARD_REG_SET save_reload_reg_used_in_output[MAX_RECOG_OPERANDS];
-  HARD_REG_SET save_reload_reg_used_in_op_addr;
-  HARD_REG_SET save_reload_reg_used_in_op_addr_reload;
-  HARD_REG_SET save_reload_reg_used_in_insn;
-  HARD_REG_SET save_reload_reg_used_in_other_addr;
-  HARD_REG_SET save_reload_reg_used_at_all;
+  for (i = 0; i < n_reloads; i++)
+    rld[i].reg_rtx = save_reload_reg_rtx[i];
 
   bzero (reload_inherited, MAX_RELOADS);
   bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
@@ -5583,12 +5082,12 @@ choose_reload_regs (chain)
   CLEAR_HARD_REG_SET (reg_used_in_insn);
   {
     HARD_REG_SET tmp;
-    REG_SET_TO_HARD_REG_SET (tmp, chain->live_before);
+    REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
     IOR_HARD_REG_SET (reg_used_in_insn, tmp);
-    REG_SET_TO_HARD_REG_SET (tmp, chain->live_after);
+    REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
     IOR_HARD_REG_SET (reg_used_in_insn, tmp);
-    compute_use_by_pseudos (&reg_used_in_insn, chain->live_before);
-    compute_use_by_pseudos (&reg_used_in_insn, chain->live_after);
+    compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
+    compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
   }
   for (i = 0; i < reload_n_operands; i++)
     {
@@ -5600,29 +5099,36 @@ choose_reload_regs (chain)
       CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
     }
 
-  IOR_COMPL_HARD_REG_SET (reload_reg_used, chain->used_spill_regs);
-  
-#if 0  /* Not needed, now that we can always retry without inheritance.  */
-  /* See if we have more mandatory reloads than spill regs.
-     If so, then we cannot risk optimizations that could prevent
-     reloads from sharing one spill register.
+  COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
 
-     Since we will try finding a better register than reload_reg_rtx
-     unless it is equal to reload_in or reload_out, count such reloads.  */
+  CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
 
-  {
-    int tem = 0;
-    for (j = 0; j < n_reloads; j++)
-      if (! reload_optional[j]
-         && (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j])
-         && (reload_reg_rtx[j] == 0
-             || (! rtx_equal_p (reload_reg_rtx[j], reload_in[j])
-                 && ! rtx_equal_p (reload_reg_rtx[j], reload_out[j]))))
-       tem++;
-    if (tem > n_spills)
-      must_reuse = 1;
-  }
-#endif
+  for (i = 0; i < n_reloads; i++)
+    /* If we have already decided to use a certain register,
+       don't use it in another way.  */
+    if (rld[i].reg_rtx)
+      mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
+                             rld[i].when_needed, rld[i].mode);
+}
+
+/* Assign hard reg targets for the pseudo-registers we must reload
+   into hard regs for this insn.
+   Also output the instructions to copy them in and out of the hard regs.
+
+   For machines with register classes, we are responsible for
+   finding a reload reg in the proper class.  */
+
+static void
+choose_reload_regs (chain)
+     struct insn_chain *chain;
+{
+  rtx insn = chain->insn;
+  register int i, j;
+  unsigned int max_group_size = 1;
+  enum reg_class group_class = NO_REGS;
+  int pass, win, inheritance;
+
+  rtx save_reload_reg_rtx[MAX_RELOADS];
 
   /* In order to be certain of getting the registers we need,
      we must sort the reloads into order of increasing register class.
@@ -5638,85 +5144,37 @@ choose_reload_regs (chain)
       reload_order[j] = j;
       reload_spill_index[j] = -1;
 
-      reload_mode[j]
-       = (reload_inmode[j] == VOIDmode
-          || (GET_MODE_SIZE (reload_outmode[j])
-              > GET_MODE_SIZE (reload_inmode[j])))
-         ? reload_outmode[j] : reload_inmode[j];
-
-      reload_nregs[j] = CLASS_MAX_NREGS (reload_reg_class[j], reload_mode[j]);
-
-      if (reload_nregs[j] > 1)
+      if (rld[j].nregs > 1)
        {
-         max_group_size = MAX (reload_nregs[j], max_group_size);
-         group_class = reg_class_superunion[(int)reload_reg_class[j]][(int)group_class];
+         max_group_size = MAX (rld[j].nregs, max_group_size);
+         group_class
+           = reg_class_superunion[(int)rld[j].class][(int)group_class];
        }
 
-      /* If we have already decided to use a certain register,
-        don't use it in another way.  */
-      if (reload_reg_rtx[j])
-       mark_reload_reg_in_use (REGNO (reload_reg_rtx[j]), reload_opnum[j],
-                               reload_when_needed[j], reload_mode[j]);
+      save_reload_reg_rtx[j] = rld[j].reg_rtx;
     }
 
   if (n_reloads > 1)
     qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
 
-  bcopy ((char *) reload_reg_rtx, (char *) save_reload_reg_rtx,
-        sizeof reload_reg_rtx);
-  bcopy (reload_inherited, save_reload_inherited, sizeof reload_inherited);
-  bcopy ((char *) reload_inheritance_insn,
-        (char *) save_reload_inheritance_insn,
-        sizeof reload_inheritance_insn);
-  bcopy ((char *) reload_override_in, (char *) save_reload_override_in,
-        sizeof reload_override_in);
-  bcopy ((char *) reload_spill_index, (char *) save_reload_spill_index,
-        sizeof reload_spill_index);
-  COPY_HARD_REG_SET (save_reload_reg_used, reload_reg_used);
-  COPY_HARD_REG_SET (save_reload_reg_used_at_all, reload_reg_used_at_all);
-  COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr,
-                    reload_reg_used_in_op_addr);
-
-  COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr_reload,
-                    reload_reg_used_in_op_addr_reload);
-
-  COPY_HARD_REG_SET (save_reload_reg_used_in_insn,
-                    reload_reg_used_in_insn);
-  COPY_HARD_REG_SET (save_reload_reg_used_in_other_addr,
-                    reload_reg_used_in_other_addr);
-
-  for (i = 0; i < reload_n_operands; i++)
-    {
-      COPY_HARD_REG_SET (save_reload_reg_used_in_output[i],
-                        reload_reg_used_in_output[i]);
-      COPY_HARD_REG_SET (save_reload_reg_used_in_input[i],
-                        reload_reg_used_in_input[i]);
-      COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr[i],
-                        reload_reg_used_in_input_addr[i]);
-      COPY_HARD_REG_SET (save_reload_reg_used_in_inpaddr_addr[i],
-                        reload_reg_used_in_inpaddr_addr[i]);
-      COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr[i],
-                        reload_reg_used_in_output_addr[i]);
-      COPY_HARD_REG_SET (save_reload_reg_used_in_outaddr_addr[i],
-                        reload_reg_used_in_outaddr_addr[i]);
-    }
-
   /* If -O, try first with inheritance, then turning it off.
      If not -O, don't do inheritance.
      Using inheritance when not optimizing leads to paradoxes
      with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
      because one side of the comparison might be inherited.  */
-
+  win = 0;
   for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
     {
+      choose_reload_regs_init (chain, save_reload_reg_rtx);
+
       /* Process the reloads in order of preference just found.
         Beyond this point, subregs can be found in reload_reg_rtx.
 
-        This used to look for an existing reloaded home for all
-        of the reloads, and only then perform any new reloads.
-        But that could lose if the reloads were done out of reg-class order
-        because a later reload with a looser constraint might have an old
-        home in a register needed by an earlier reload with a tighter constraint.
+        This used to look for an existing reloaded home for all of the
+        reloads, and only then perform any new reloads.  But that could lose
+        if the reloads were done out of reg-class order because a later
+        reload with a looser constraint might have an old home in a register
+        needed by an earlier reload with a tighter constraint.
 
         To solve this, we make two passes over the reloads, in the order
         described above.  In the first pass we try to inherit a reload
@@ -5727,15 +5185,14 @@ choose_reload_regs (chain)
         Then make a second pass over the reloads to allocate any reloads
         that haven't been given registers yet.  */
 
-      CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
-
       for (j = 0; j < n_reloads; j++)
        {
          register int r = reload_order[j];
+         rtx search_equiv = NULL_RTX;
 
          /* Ignore reloads that got marked inoperative.  */
-         if (reload_out[r] == 0 && reload_in[r] == 0
-             && ! reload_secondary_p[r])
+         if (rld[r].out == 0 && rld[r].in == 0
+             && ! rld[r].secondary_p)
            continue;
 
          /* If find_reloads chose to use reload_in or reload_out as a reload
@@ -5743,11 +5200,11 @@ choose_reload_regs (chain)
             found one since we might save an insn if we find the value lying
             around.
             Try also when reload_in is a pseudo without a hard reg.  */
-         if (reload_in[r] != 0 && reload_reg_rtx[r] != 0
-             && (rtx_equal_p (reload_in[r], reload_reg_rtx[r])
-                 || (rtx_equal_p (reload_out[r], reload_reg_rtx[r])
-                     && GET_CODE (reload_in[r]) != MEM
-                     && true_regnum (reload_in[r]) < FIRST_PSEUDO_REGISTER)))
+         if (rld[r].in != 0 && rld[r].reg_rtx != 0
+             && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
+                 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
+                     && GET_CODE (rld[r].in) != MEM
+                     && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
            continue;
 
 #if 0 /* No longer needed for correct operation.
@@ -5756,14 +5213,14 @@ choose_reload_regs (chain)
             until we are sure that any non-optional reloads have been allocated.
             The following code takes advantage of the fact that optional reloads
             are at the end of reload_order.  */
-         if (reload_optional[r] != 0)
+         if (rld[r].optional != 0)
            for (i = 0; i < j; i++)
-             if ((reload_out[reload_order[i]] != 0
-                  || reload_in[reload_order[i]] != 0
-                  || reload_secondary_p[reload_order[i]])
-                 && ! reload_optional[reload_order[i]]
-                 && reload_reg_rtx[reload_order[i]] == 0)
-               allocate_reload_reg (chain, reload_order[i], 0, inheritance);
+             if ((rld[reload_order[i]].out != 0
+                  || rld[reload_order[i]].in != 0
+                  || rld[reload_order[i]].secondary_p)
+                 && ! rld[reload_order[i]].optional
+                 && rld[reload_order[i]].reg_rtx == 0)
+               allocate_reload_reg (chain, reload_order[i], 0);
 #endif
 
          /* First see if this pseudo is already available as reloaded
@@ -5784,62 +5241,62 @@ choose_reload_regs (chain)
            {
              int word = 0;
              register int regno = -1;
-             enum machine_mode mode;
+             enum machine_mode mode = VOIDmode;
 
-             if (reload_in[r] == 0)
+             if (rld[r].in == 0)
                ;
-             else if (GET_CODE (reload_in[r]) == REG)
+             else if (GET_CODE (rld[r].in) == REG)
                {
-                 regno = REGNO (reload_in[r]);
-                 mode = GET_MODE (reload_in[r]);
+                 regno = REGNO (rld[r].in);
+                 mode = GET_MODE (rld[r].in);
                }
-             else if (GET_CODE (reload_in_reg[r]) == REG)
+             else if (GET_CODE (rld[r].in_reg) == REG)
                {
-                 regno = REGNO (reload_in_reg[r]);
-                 mode = GET_MODE (reload_in_reg[r]);
+                 regno = REGNO (rld[r].in_reg);
+                 mode = GET_MODE (rld[r].in_reg);
                }
-             else if (GET_CODE (reload_in_reg[r]) == SUBREG
-                      && GET_CODE (SUBREG_REG (reload_in_reg[r])) == REG)
+             else if (GET_CODE (rld[r].in_reg) == SUBREG
+                      && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
                {
-                 word = SUBREG_WORD (reload_in_reg[r]);
-                 regno = REGNO (SUBREG_REG (reload_in_reg[r]));
+                 word = SUBREG_WORD (rld[r].in_reg);
+                 regno = REGNO (SUBREG_REG (rld[r].in_reg));
                  if (regno < FIRST_PSEUDO_REGISTER)
                    regno += word;
-                 mode = GET_MODE (reload_in_reg[r]);
+                 mode = GET_MODE (rld[r].in_reg);
                }
 #ifdef AUTO_INC_DEC
-             else if ((GET_CODE (reload_in_reg[r]) == PRE_INC
-                       || GET_CODE (reload_in_reg[r]) == PRE_DEC
-                       || GET_CODE (reload_in_reg[r]) == POST_INC
-                       || GET_CODE (reload_in_reg[r]) == POST_DEC)
-                      && GET_CODE (XEXP (reload_in_reg[r], 0)) == REG)
+             else if ((GET_CODE (rld[r].in_reg) == PRE_INC
+                       || GET_CODE (rld[r].in_reg) == PRE_DEC
+                       || GET_CODE (rld[r].in_reg) == POST_INC
+                       || GET_CODE (rld[r].in_reg) == POST_DEC)
+                      && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
                {
-                 regno = REGNO (XEXP (reload_in_reg[r], 0));
-                 mode = GET_MODE (XEXP (reload_in_reg[r], 0));
-                 reload_out[r] = reload_in[r];
+                 regno = REGNO (XEXP (rld[r].in_reg, 0));
+                 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
+                 rld[r].out = rld[r].in;
                }
 #endif
 #if 0
              /* This won't work, since REGNO can be a pseudo reg number.
                 Also, it takes much more hair to keep track of all the things
                 that can invalidate an inherited reload of part of a pseudoreg.  */
-             else if (GET_CODE (reload_in[r]) == SUBREG
-                      && GET_CODE (SUBREG_REG (reload_in[r])) == REG)
-               regno = REGNO (SUBREG_REG (reload_in[r])) + SUBREG_WORD (reload_in[r]);
+             else if (GET_CODE (rld[r].in) == SUBREG
+                      && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
+               regno = REGNO (SUBREG_REG (rld[r].in)) + SUBREG_WORD (rld[r].in);
 #endif
 
              if (regno >= 0 && reg_last_reload_reg[regno] != 0)
                {
-                 enum reg_class class = reload_reg_class[r], last_class;
+                 enum reg_class class = rld[r].class, last_class;
                  rtx last_reg = reg_last_reload_reg[regno];
-                 
+
                  i = REGNO (last_reg) + word;
                  last_class = REGNO_REG_CLASS (i);
                  if ((GET_MODE_SIZE (GET_MODE (last_reg))
                       >= GET_MODE_SIZE (mode) + word * UNITS_PER_WORD)
                      && reg_reloaded_contents[i] == regno
                      && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
-                     && HARD_REGNO_MODE_OK (i, reload_mode[r])
+                     && HARD_REGNO_MODE_OK (i, rld[r].mode)
                      && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
                          /* Even if we can't use this register as a reload
                             register, we might use it for reload_override_in,
@@ -5858,18 +5315,18 @@ choose_reload_regs (chain)
 #endif
                              ))
 
-                     && (reload_nregs[r] == max_group_size
+                     && (rld[r].nregs == max_group_size
                          || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
                                                  i))
-                     && reload_reg_free_for_value_p (i, reload_opnum[r],
-                                                     reload_when_needed[r],
-                                                     reload_in[r],
+                     && reload_reg_free_for_value_p (i, rld[r].opnum,
+                                                     rld[r].when_needed,
+                                                     rld[r].in,
                                                      const0_rtx, r, 1))
                    {
                      /* If a group is needed, verify that all the subsequent
                         registers still have their values intact.  */
                      int nr
-                       = HARD_REGNO_NREGS (i, reload_mode[r]);
+                       = HARD_REGNO_NREGS (i, rld[r].mode);
                      int k;
 
                      for (k = 1; k < nr; k++)
@@ -5899,25 +5356,26 @@ choose_reload_regs (chain)
 
                          if (i1 != n_earlyclobbers
                              || ! (reload_reg_free_for_value_p
-                                   (i, reload_opnum[r], reload_when_needed[r],
-                                    reload_in[r], reload_out[r], r, 1))
+                                   (i, rld[r].opnum, rld[r].when_needed,
+                                    rld[r].in, rld[r].out, r, 1))
                              /* Don't use it if we'd clobber a pseudo reg.  */
                              || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
-                                 && reload_out[r]
+                                 && rld[r].out
                                  && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
+                             /* Don't clobber the frame pointer.  */
+                             || (i == HARD_FRAME_POINTER_REGNUM && rld[r].out)
                              /* Don't really use the inherited spill reg
                                 if we need it wider than we've got it.  */
-                             || (GET_MODE_SIZE (reload_mode[r])
+                             || (GET_MODE_SIZE (rld[r].mode)
                                  > GET_MODE_SIZE (mode))
-                             || ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
+                             || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
                                                      i)
 
                              /* If find_reloads chose reload_out as reload
                                 register, stay with it - that leaves the
                                 inherited register for subsequent reloads.  */
-                             || (reload_out[r] && reload_reg_rtx[r]
-                                 && rtx_equal_p (reload_out[r],
-                                                 reload_reg_rtx[r])))
+                             || (rld[r].out && rld[r].reg_rtx
+                                 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
                            {
                              reload_override_in[r] = last_reg;
                              reload_inheritance_insn[r]
@@ -5930,10 +5388,10 @@ choose_reload_regs (chain)
                              /* Mark the register as in use for this part of
                                 the insn.  */
                              mark_reload_reg_in_use (i,
-                                                     reload_opnum[r],
-                                                     reload_when_needed[r],
-                                                     reload_mode[r]);
-                             reload_reg_rtx[r] = last_reg;
+                                                     rld[r].opnum,
+                                                     rld[r].when_needed,
+                                                     rld[r].mode);
+                             rld[r].reg_rtx = last_reg;
                              reload_inherited[r] = 1;
                              reload_inheritance_insn[r]
                                = reg_reloaded_insn[i];
@@ -5949,20 +5407,34 @@ choose_reload_regs (chain)
 
          /* Here's another way to see if the value is already lying around.  */
          if (inheritance
-             && reload_in[r] != 0
+             && rld[r].in != 0
              && ! reload_inherited[r]
-             && reload_out[r] == 0
-             && (CONSTANT_P (reload_in[r])
-                 || GET_CODE (reload_in[r]) == PLUS
-                 || GET_CODE (reload_in[r]) == REG
-                 || GET_CODE (reload_in[r]) == MEM)
-             && (reload_nregs[r] == max_group_size
-                 || ! reg_classes_intersect_p (reload_reg_class[r], group_class)))
+             && rld[r].out == 0
+             && (CONSTANT_P (rld[r].in)
+                 || GET_CODE (rld[r].in) == PLUS
+                 || GET_CODE (rld[r].in) == REG
+                 || GET_CODE (rld[r].in) == MEM)
+             && (rld[r].nregs == max_group_size
+                 || ! reg_classes_intersect_p (rld[r].class, group_class)))
+           search_equiv = rld[r].in;
+         /* If this is an output reload from a simple move insn, look
+            if an equivalence for the input is available.  */
+         else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
+           {
+             rtx set = single_set (insn);
+
+             if (set
+                 && rtx_equal_p (rld[r].out, SET_DEST (set))
+                 && CONSTANT_P (SET_SRC (set)))
+               search_equiv = SET_SRC (set);
+           }
+
+         if (search_equiv)
            {
              register rtx equiv
-               = find_equiv_reg (reload_in[r], insn, reload_reg_class[r],
-                                 -1, NULL_PTR, 0, reload_mode[r]);
-             int regno;
+               = find_equiv_reg (search_equiv, insn, rld[r].class,
+                                 -1, NULL_PTR, 0, rld[r].mode);
+             int regno = 0;
 
              if (equiv != 0)
                {
@@ -5975,7 +5447,7 @@ choose_reload_regs (chain)
                         address and not all machines support SUBREGs
                         there.  */
                      regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
-                     equiv = gen_rtx_REG (reload_mode[r], regno);
+                     equiv = gen_rtx_REG (rld[r].mode, regno);
                    }
                  else
                    abort ();
@@ -5985,15 +5457,15 @@ choose_reload_regs (chain)
                 and of the desired class.  */
              if (equiv != 0
                  && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
-                      && ! reload_reg_free_for_value_p (regno, reload_opnum[r],
-                                                        reload_when_needed[r],
-                                                        reload_in[r],
-                                                        reload_out[r], r, 1))
-                     || ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
+                      && ! reload_reg_free_for_value_p (regno, rld[r].opnum,
+                                                        rld[r].when_needed,
+                                                        rld[r].in,
+                                                        rld[r].out, r, 1))
+                     || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
                                              regno)))
                equiv = 0;
 
-             if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, reload_mode[r]))
+             if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
                equiv = 0;
 
              /* We found a register that contains the value we need.
@@ -6019,7 +5491,7 @@ choose_reload_regs (chain)
 
              if (equiv != 0 && regno_clobbered_p (regno, insn))
                {
-                 switch (reload_when_needed[r])
+                 switch (rld[r].when_needed)
                    {
                    case RELOAD_FOR_OTHER_ADDRESS:
                    case RELOAD_FOR_INPADDR_ADDRESS:
@@ -6041,9 +5513,9 @@ choose_reload_regs (chain)
                 to load it, and use it as our reload reg.  */
              if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
                {
-                 int nr = HARD_REGNO_NREGS (regno, reload_mode[r]);
+                 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
                  int k;
-                 reload_reg_rtx[r] = equiv;
+                 rld[r].reg_rtx = equiv;
                  reload_inherited[r] = 1;
 
                  /* If reg_reloaded_valid is not set for this register,
@@ -6059,9 +5531,9 @@ choose_reload_regs (chain)
                      i = spill_reg_order[regno + k];
                      if (i >= 0)
                        {
-                         mark_reload_reg_in_use (regno, reload_opnum[r],
-                                                 reload_when_needed[r],
-                                                 reload_mode[r]);
+                         mark_reload_reg_in_use (regno, rld[r].opnum,
+                                                 rld[r].when_needed,
+                                                 rld[r].mode);
                          SET_HARD_REG_BIT (reload_reg_used_for_inherit,
                                            regno + k);
                        }
@@ -6071,7 +5543,7 @@ choose_reload_regs (chain)
 
          /* If we found a register to use already, or if this is an optional
             reload, we are done.  */
-         if (reload_reg_rtx[r] != 0 || reload_optional[r] != 0)
+         if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
            continue;
 
 #if 0 /* No longer needed for correct operation.  Might or might not
@@ -6090,22 +5562,22 @@ choose_reload_regs (chain)
            {
              int s = reload_order[i];
 
-             if ((reload_in[s] == 0 && reload_out[s] == 0
-                  && ! reload_secondary_p[s])
-                 || reload_optional[s])
+             if ((rld[s].in == 0 && rld[s].out == 0
+                  && ! rld[s].secondary_p)
+                 || rld[s].optional)
                continue;
 
-             if ((reload_reg_class[s] != reload_reg_class[r]
-                  && reg_classes_intersect_p (reload_reg_class[r],
-                                              reload_reg_class[s]))
-                 || reload_nregs[s] < reload_nregs[r])
-             break;
+             if ((rld[s].class != rld[r].class
+                  && reg_classes_intersect_p (rld[r].class,
+                                              rld[s].class))
+                 || rld[s].nregs < rld[r].nregs)
+               break;
            }
 
          if (i == n_reloads)
            continue;
 
-         allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance);
+         allocate_reload_reg (chain, r, j == n_reloads - 1);
 #endif
        }
 
@@ -6116,61 +5588,49 @@ choose_reload_regs (chain)
          register int r = reload_order[j];
 
          /* Ignore reloads that got marked inoperative.  */
-         if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
+         if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
            continue;
 
          /* Skip reloads that already have a register allocated or are
             optional.  */
-         if (reload_reg_rtx[r] != 0 || reload_optional[r])
+         if (rld[r].reg_rtx != 0 || rld[r].optional)
            continue;
 
-         if (! allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance))
+         if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
            break;
        }
 
       /* If that loop got all the way, we have won.  */
       if (j == n_reloads)
-       break;
+       {
+         win = 1;
+         break;
+       }
 
       /* Loop around and try without any inheritance.  */
+    }
+
+  if (! win)
+    {
       /* First undo everything done by the failed attempt
         to allocate with inheritance.  */
-      bcopy ((char *) save_reload_reg_rtx, (char *) reload_reg_rtx,
-            sizeof reload_reg_rtx);
-      bcopy ((char *) save_reload_inherited, (char *) reload_inherited,
-            sizeof reload_inherited);
-      bcopy ((char *) save_reload_inheritance_insn,
-            (char *) reload_inheritance_insn,
-            sizeof reload_inheritance_insn);
-      bcopy ((char *) save_reload_override_in, (char *) reload_override_in,
-            sizeof reload_override_in);
-      bcopy ((char *) save_reload_spill_index, (char *) reload_spill_index,
-            sizeof reload_spill_index);
-      COPY_HARD_REG_SET (reload_reg_used, save_reload_reg_used);
-      COPY_HARD_REG_SET (reload_reg_used_at_all, save_reload_reg_used_at_all);
-      COPY_HARD_REG_SET (reload_reg_used_in_op_addr,
-                        save_reload_reg_used_in_op_addr);
-      COPY_HARD_REG_SET (reload_reg_used_in_op_addr_reload,
-                        save_reload_reg_used_in_op_addr_reload);
-      COPY_HARD_REG_SET (reload_reg_used_in_insn,
-                        save_reload_reg_used_in_insn);
-      COPY_HARD_REG_SET (reload_reg_used_in_other_addr,
-                        save_reload_reg_used_in_other_addr);
+      choose_reload_regs_init (chain, save_reload_reg_rtx);
 
-      for (i = 0; i < reload_n_operands; i++)
+      /* Some sanity tests to verify that the reloads found in the first
+        pass are identical to the ones we have now.  */
+      if (chain->n_reloads != n_reloads)
+       abort ();
+
+      for (i = 0; i < n_reloads; i++)
        {
-         COPY_HARD_REG_SET (reload_reg_used_in_input[i],
-                            save_reload_reg_used_in_input[i]);
-         COPY_HARD_REG_SET (reload_reg_used_in_output[i],
-                            save_reload_reg_used_in_output[i]);
-         COPY_HARD_REG_SET (reload_reg_used_in_input_addr[i],
-                            save_reload_reg_used_in_input_addr[i]);
-         COPY_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i],
-                            save_reload_reg_used_in_inpaddr_addr[i]);
-         COPY_HARD_REG_SET (reload_reg_used_in_output_addr[i],
-                            save_reload_reg_used_in_output_addr[i]);
-         COPY_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i],
-                            save_reload_reg_used_in_outaddr_addr[i]);
+         if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
+           continue;
+         if (chain->rld[i].when_needed != rld[i].when_needed)
+           abort ();
+         for (j = 0; j < n_spills; j++)
+           if (spill_regs[j] == chain->rld[i].regno)
+             if (! set_reload_reg (j, i))
+               failed_reload (chain->insn, i);
        }
     }
 
@@ -6188,20 +5648,20 @@ choose_reload_regs (chain)
        {
          register int r = reload_order[j];
          rtx check_reg;
-         if (reload_inherited[r] && reload_reg_rtx[r])
-           check_reg = reload_reg_rtx[r];
+         if (reload_inherited[r] && rld[r].reg_rtx)
+           check_reg = rld[r].reg_rtx;
          else if (reload_override_in[r]
                   && (GET_CODE (reload_override_in[r]) == REG
-                            || GET_CODE (reload_override_in[r]) == SUBREG))
+                      || GET_CODE (reload_override_in[r]) == SUBREG))
            check_reg = reload_override_in[r];
          else
            continue;
          if (! reload_reg_free_for_value_p (true_regnum (check_reg),
-                                            reload_opnum[r],
-                                            reload_when_needed[r],
-                                            reload_in[r],
-                                            (reload_inherited[r]
-                                             ? reload_out[r] : const0_rtx),
+                                            rld[r].opnum,
+                                            rld[r].when_needed,
+                                            rld[r].in,
+                                            (reload_inherited[r]
+                                             ? rld[r].out : const0_rtx),
                                             r, 1))
            {
              if (pass)
@@ -6217,13 +5677,13 @@ choose_reload_regs (chain)
             is mentioned in reload_in of the reload we are going to inherit.
             A special case are auto_inc expressions; even if the input is
             inherited, we still need the address for the output.  We can
-            recognize them because they have RELOAD_OUT set but not
-            RELOAD_OUT_REG.
+            recognize them because they have RELOAD_OUT set to RELOAD_IN.
             If we suceeded removing some reload and we are doing a preliminary
             pass just to remove such reloads, make another pass, since the
             removal of one reload might allow us to inherit another one.  */
-         else if ((! reload_out[r] || reload_out_reg[r])
-                  && remove_address_replacements (reload_in[r]) && pass)
+         else if (rld[r].in
+                  && rld[r].out != rld[r].in
+                  && remove_address_replacements (rld[r].in) && pass)
            pass = 2;
        }
     }
@@ -6232,23 +5692,24 @@ choose_reload_regs (chain)
      actually override reload_in.  */
   for (j = 0; j < n_reloads; j++)
     if (reload_override_in[j])
-      reload_in[j] = reload_override_in[j];
+      rld[j].in = reload_override_in[j];
 
   /* If this reload won't be done because it has been cancelled or is
      optional and not inherited, clear reload_reg_rtx so other
      routines (such as subst_reloads) don't get confused.  */
   for (j = 0; j < n_reloads; j++)
-    if (reload_reg_rtx[j] != 0
-       && ((reload_optional[j] && ! reload_inherited[j])
-           || (reload_in[j] == 0 && reload_out[j] == 0
-               && ! reload_secondary_p[j])))
+    if (rld[j].reg_rtx != 0
+       && ((rld[j].optional && ! reload_inherited[j])
+           || (rld[j].in == 0 && rld[j].out == 0
+               && ! rld[j].secondary_p)))
       {
-       int regno = true_regnum (reload_reg_rtx[j]);
+       int regno = true_regnum (rld[j].reg_rtx);
 
        if (spill_reg_order[regno] >= 0)
-         clear_reload_reg_in_use (regno, reload_opnum[j],
-                                  reload_when_needed[j], reload_mode[j]);
-       reload_reg_rtx[j] = 0;
+         clear_reload_reg_in_use (regno, rld[j].opnum,
+                                  rld[j].when_needed, rld[j].mode);
+       rld[j].reg_rtx = 0;
+       reload_spill_index[j] = -1;
       }
 
   /* Record which pseudos and which spill regs have output reloads.  */
@@ -6259,30 +5720,30 @@ choose_reload_regs (chain)
       i = reload_spill_index[r];
 
       /* I is nonneg if this reload uses a register.
-        If reload_reg_rtx[r] is 0, this is an optional reload
+        If rld[r].reg_rtx is 0, this is an optional reload
         that we opted to ignore.  */
-      if (reload_out_reg[r] != 0 && GET_CODE (reload_out_reg[r]) == REG
-         && reload_reg_rtx[r] != 0)
+      if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
+         && rld[r].reg_rtx != 0)
        {
-         register int nregno = REGNO (reload_out_reg[r]);
+         register int nregno = REGNO (rld[r].out_reg);
          int nr = 1;
 
          if (nregno < FIRST_PSEUDO_REGISTER)
-           nr = HARD_REGNO_NREGS (nregno, reload_mode[r]);
+           nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
 
          while (--nr >= 0)
            reg_has_output_reload[nregno + nr] = 1;
 
          if (i >= 0)
            {
-             nr = HARD_REGNO_NREGS (i, reload_mode[r]);
+             nr = HARD_REGNO_NREGS (i, rld[r].mode);
              while (--nr >= 0)
                SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
            }
 
-         if (reload_when_needed[r] != RELOAD_OTHER
-             && reload_when_needed[r] != RELOAD_FOR_OUTPUT
-             && reload_when_needed[r] != RELOAD_FOR_INSN)
+         if (rld[r].when_needed != RELOAD_OTHER
+             && rld[r].when_needed != RELOAD_FOR_OUTPUT
+             && rld[r].when_needed != RELOAD_FOR_INSN)
            abort ();
        }
     }
@@ -6296,20 +5757,20 @@ deallocate_reload_reg (r)
 {
   int regno;
 
-  if (! reload_reg_rtx[r])
+  if (! rld[r].reg_rtx)
     return;
-  regno = true_regnum (reload_reg_rtx[r]);
-  reload_reg_rtx[r] = 0;
+  regno = true_regnum (rld[r].reg_rtx);
+  rld[r].reg_rtx = 0;
   if (spill_reg_order[regno] >= 0)
-    clear_reload_reg_in_use (regno, reload_opnum[r], reload_when_needed[r],
-                            reload_mode[r]);
+    clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
+                            rld[r].mode);
   reload_spill_index[r] = -1;
 }
 \f
 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
    reloads of the same item for fear that we might not have enough reload
    registers. However, normally they will get the same reload register
-   and hence actually need not be loaded twice.  
+   and hence actually need not be loaded twice.
 
    Here we check for the most common case of this phenomenon: when we have
    a number of reloads for the same object, each of which were allocated
@@ -6335,9 +5796,9 @@ merge_assigned_reloads (insn)
       int max_input_address_opnum = -1;
       int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
 
-      if (reload_in[i] == 0 || reload_when_needed[i] == RELOAD_OTHER
-         || reload_out[i] != 0 || reload_reg_rtx[i] == 0
-         || reg_set_p (reload_reg_rtx[i], insn))
+      if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
+         || rld[i].out != 0 || rld[i].reg_rtx == 0
+         || reg_set_p (rld[i].reg_rtx, insn))
        continue;
 
       /* Look at all other reloads.  Ensure that the only use of this
@@ -6348,32 +5809,32 @@ merge_assigned_reloads (insn)
 
       for (j = 0; j < n_reloads; j++)
        {
-         if (i == j || reload_reg_rtx[j] == 0
-             || ! reg_overlap_mentioned_p (reload_reg_rtx[j],
-                                           reload_reg_rtx[i]))
+         if (i == j || rld[j].reg_rtx == 0
+             || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
+                                           rld[i].reg_rtx))
            continue;
 
-         if (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
-             && reload_opnum[j] > max_input_address_opnum)
-           max_input_address_opnum = reload_opnum[j];
+         if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
+             && rld[j].opnum > max_input_address_opnum)
+           max_input_address_opnum = rld[j].opnum;
 
          /* If the reload regs aren't exactly the same (e.g, different modes)
             or if the values are different, we can't merge this reload.
             But if it is an input reload, we might still merge
             RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads.  */
 
-         if (! rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
-             || reload_out[j] != 0 || reload_in[j] == 0
-             || ! rtx_equal_p (reload_in[i], reload_in[j]))
+         if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
+             || rld[j].out != 0 || rld[j].in == 0
+             || ! rtx_equal_p (rld[i].in, rld[j].in))
            {
-             if (reload_when_needed[j] != RELOAD_FOR_INPUT
-                 || ((reload_when_needed[i] != RELOAD_FOR_INPUT_ADDRESS
-                      || reload_opnum[i] > reload_opnum[j])
-                     && reload_when_needed[i] != RELOAD_FOR_OTHER_ADDRESS))
+             if (rld[j].when_needed != RELOAD_FOR_INPUT
+                 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
+                      || rld[i].opnum > rld[j].opnum)
+                     && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
                break;
              conflicting_input = 1;
-             if (min_conflicting_input_opnum > reload_opnum[j])
-               min_conflicting_input_opnum = reload_opnum[j];
+             if (min_conflicting_input_opnum > rld[j].opnum)
+               min_conflicting_input_opnum = rld[j].opnum;
            }
        }
 
@@ -6384,14 +5845,14 @@ merge_assigned_reloads (insn)
          && max_input_address_opnum <= min_conflicting_input_opnum)
        {
          for (j = 0; j < n_reloads; j++)
-           if (i != j && reload_reg_rtx[j] != 0
-               && rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
+           if (i != j && rld[j].reg_rtx != 0
+               && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
                && (! conflicting_input
-                   || reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
-                   || reload_when_needed[j] == RELOAD_FOR_OTHER_ADDRESS))
+                   || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
+                   || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
              {
-               reload_when_needed[i] = RELOAD_OTHER;
-               reload_in[j] = 0;
+               rld[i].when_needed = RELOAD_OTHER;
+               rld[j].in = 0;
                reload_spill_index[j] = -1;
                transfer_replacements (i, j);
              }
@@ -6402,862 +5863,908 @@ merge_assigned_reloads (insn)
             this test is equivalent to looking for reloads for this operand
             number.  */
 
-         if (reload_when_needed[i] == RELOAD_OTHER)
+         if (rld[i].when_needed == RELOAD_OTHER)
            for (j = 0; j < n_reloads; j++)
-             if (reload_in[j] != 0
-                 && reload_when_needed[i] != RELOAD_OTHER
-                 && reg_overlap_mentioned_for_reload_p (reload_in[j],
-                                                        reload_in[i]))
-               reload_when_needed[j]
-                 = ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
-                     || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
+             if (rld[j].in != 0
+                 && rld[i].when_needed != RELOAD_OTHER
+                 && reg_overlap_mentioned_for_reload_p (rld[j].in,
+                                                        rld[i].in))
+               rld[j].when_needed
+                 = ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
+                     || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
                     ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
        }
     }
-}          
+}
 
 \f
-/* Output insns to reload values in and out of the chosen reload regs.  */
+/* These arrays are filled by emit_reload_insns and its subroutines.  */
+static rtx input_reload_insns[MAX_RECOG_OPERANDS];
+static rtx other_input_address_reload_insns = 0;
+static rtx other_input_reload_insns = 0;
+static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
+static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
+static rtx output_reload_insns[MAX_RECOG_OPERANDS];
+static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
+static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
+static rtx operand_reload_insns = 0;
+static rtx other_operand_reload_insns = 0;
+static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
+
+/* Values to be put in spill_reg_store are put here first.  */
+static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
+static HARD_REG_SET reg_reloaded_died;
+
+/* Generate insns to perform reload RL, which is for the insn in CHAIN and
+   has the number J.  OLD contains the value to be used as input.  */
 
 static void
-emit_reload_insns (chain)
+emit_input_reload_insns (chain, rl, old, j)
      struct insn_chain *chain;
+     struct reload *rl;
+     rtx old;
+     int j;
 {
   rtx insn = chain->insn;
+  register rtx reloadreg = rl->reg_rtx;
+  rtx oldequiv_reg = 0;
+  rtx oldequiv = 0;
+  int special = 0;
+  enum machine_mode mode;
+  rtx *where;
+
+  /* Determine the mode to reload in.
+     This is very tricky because we have three to choose from.
+     There is the mode the insn operand wants (rl->inmode).
+     There is the mode of the reload register RELOADREG.
+     There is the intrinsic mode of the operand, which we could find
+     by stripping some SUBREGs.
+     It turns out that RELOADREG's mode is irrelevant:
+     we can change that arbitrarily.
+
+     Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
+     then the reload reg may not support QImode moves, so use SImode.
+     If foo is in memory due to spilling a pseudo reg, this is safe,
+     because the QImode value is in the least significant part of a
+     slot big enough for a SImode.  If foo is some other sort of
+     memory reference, then it is impossible to reload this case,
+     so previous passes had better make sure this never happens.
+
+     Then consider a one-word union which has SImode and one of its
+     members is a float, being fetched as (SUBREG:SF union:SI).
+     We must fetch that as SFmode because we could be loading into
+     a float-only register.  In this case OLD's mode is correct.
+
+     Consider an immediate integer: it has VOIDmode.  Here we need
+     to get a mode from something else.
+
+     In some cases, there is a fourth mode, the operand's
+     containing mode.  If the insn specifies a containing mode for
+     this operand, it overrides all others.
+
+     I am not sure whether the algorithm here is always right,
+     but it does the right things in those cases.  */
+
+  mode = GET_MODE (old);
+  if (mode == VOIDmode)
+    mode = rl->inmode;
 
-  register int j;
-  rtx input_reload_insns[MAX_RECOG_OPERANDS];
-  rtx other_input_address_reload_insns = 0;
-  rtx other_input_reload_insns = 0;
-  rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
-  rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
-  rtx output_reload_insns[MAX_RECOG_OPERANDS];
-  rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
-  rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
-  rtx operand_reload_insns = 0;
-  rtx other_operand_reload_insns = 0;
-  rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
-  rtx following_insn = NEXT_INSN (insn);
-  rtx before_insn = PREV_INSN (insn);
-  int special;
-  /* Values to be put in spill_reg_store are put here first.  */
-  rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
-  HARD_REG_SET reg_reloaded_died;
+#ifdef SECONDARY_INPUT_RELOAD_CLASS
+  /* If we need a secondary register for this operation, see if
+     the value is already in a register in that class.  Don't
+     do this if the secondary register will be used as a scratch
+     register.  */
+
+  if (rl->secondary_in_reload >= 0
+      && rl->secondary_in_icode == CODE_FOR_nothing
+      && optimize)
+    oldequiv
+      = find_equiv_reg (old, insn,
+                       rld[rl->secondary_in_reload].class,
+                       -1, NULL_PTR, 0, mode);
+#endif
 
-  CLEAR_HARD_REG_SET (reg_reloaded_died);
+  /* If reloading from memory, see if there is a register
+     that already holds the same value.  If so, reload from there.
+     We can pass 0 as the reload_reg_p argument because
+     any other reload has either already been emitted,
+     in which case find_equiv_reg will see the reload-insn,
+     or has yet to be emitted, in which case it doesn't matter
+     because we will use this equiv reg right away.  */
+
+  if (oldequiv == 0 && optimize
+      && (GET_CODE (old) == MEM
+         || (GET_CODE (old) == REG
+             && REGNO (old) >= FIRST_PSEUDO_REGISTER
+             && reg_renumber[REGNO (old)] < 0)))
+    oldequiv = find_equiv_reg (old, insn, ALL_REGS,
+                              -1, NULL_PTR, 0, mode);
+
+  if (oldequiv)
+    {
+      unsigned int regno = true_regnum (oldequiv);
+
+      /* Don't use OLDEQUIV if any other reload changes it at an
+        earlier stage of this insn or at this stage.  */
+      if (! reload_reg_free_for_value_p (regno, rl->opnum,
+                                        rl->when_needed,
+                                        rl->in, const0_rtx, j,
+                                        0))
+       oldequiv = 0;
+
+      /* If it is no cheaper to copy from OLDEQUIV into the
+        reload register than it would be to move from memory,
+        don't use it. Likewise, if we need a secondary register
+        or memory.   */
+
+      if (oldequiv != 0
+         && ((REGNO_REG_CLASS (regno) != rl->class
+              && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
+                                      rl->class)
+                  >= MEMORY_MOVE_COST (mode, rl->class, 1)))
+#ifdef SECONDARY_INPUT_RELOAD_CLASS
+             || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
+                                               mode, oldequiv)
+                 != NO_REGS)
+#endif
+#ifdef SECONDARY_MEMORY_NEEDED
+             || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
+                                         rl->class,
+                                         mode)
+#endif
+             ))
+       oldequiv = 0;
+    }
 
-  for (j = 0; j < reload_n_operands; j++)
-    input_reload_insns[j] = input_address_reload_insns[j]
-      = inpaddr_address_reload_insns[j]
-      = output_reload_insns[j] = output_address_reload_insns[j]
-      = outaddr_address_reload_insns[j]
-      = other_output_reload_insns[j] = 0;
+  /* delete_output_reload is only invoked properly if old contains
+     the original pseudo register.  Since this is replaced with a
+     hard reg when RELOAD_OVERRIDE_IN is set, see if we can
+     find the pseudo in RELOAD_IN_REG.  */
+  if (oldequiv == 0
+      && reload_override_in[j]
+      && GET_CODE (rl->in_reg) == REG)
+    {
+      oldequiv = old;
+      old = rl->in_reg;
+    }
+  if (oldequiv == 0)
+    oldequiv = old;
+  else if (GET_CODE (oldequiv) == REG)
+    oldequiv_reg = oldequiv;
+  else if (GET_CODE (oldequiv) == SUBREG)
+    oldequiv_reg = SUBREG_REG (oldequiv);
+
+  /* If we are reloading from a register that was recently stored in
+     with an output-reload, see if we can prove there was
+     actually no need to store the old value in it.  */
+
+  if (optimize && GET_CODE (oldequiv) == REG
+      && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
+      && spill_reg_store[REGNO (oldequiv)]
+      && GET_CODE (old) == REG
+      && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
+         || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
+                         rl->out_reg)))
+    delete_output_reload (insn, j, REGNO (oldequiv));
+
+  /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
+     then load RELOADREG from OLDEQUIV.  Note that we cannot use
+     gen_lowpart_common since it can do the wrong thing when
+     RELOADREG has a multi-word mode.  Note that RELOADREG
+     must always be a REG here.  */
+
+  if (GET_MODE (reloadreg) != mode)
+    reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
+  while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
+    oldequiv = SUBREG_REG (oldequiv);
+  if (GET_MODE (oldequiv) != VOIDmode
+      && mode != GET_MODE (oldequiv))
+    oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
+
+  /* Switch to the right place to emit the reload insns.  */
+  switch (rl->when_needed)
+    {
+    case RELOAD_OTHER:
+      where = &other_input_reload_insns;
+      break;
+    case RELOAD_FOR_INPUT:
+      where = &input_reload_insns[rl->opnum];
+      break;
+    case RELOAD_FOR_INPUT_ADDRESS:
+      where = &input_address_reload_insns[rl->opnum];
+      break;
+    case RELOAD_FOR_INPADDR_ADDRESS:
+      where = &inpaddr_address_reload_insns[rl->opnum];
+      break;
+    case RELOAD_FOR_OUTPUT_ADDRESS:
+      where = &output_address_reload_insns[rl->opnum];
+      break;
+    case RELOAD_FOR_OUTADDR_ADDRESS:
+      where = &outaddr_address_reload_insns[rl->opnum];
+      break;
+    case RELOAD_FOR_OPERAND_ADDRESS:
+      where = &operand_reload_insns;
+      break;
+    case RELOAD_FOR_OPADDR_ADDR:
+      where = &other_operand_reload_insns;
+      break;
+    case RELOAD_FOR_OTHER_ADDRESS:
+      where = &other_input_address_reload_insns;
+      break;
+    default:
+      abort ();
+    }
 
-  /* Now output the instructions to copy the data into and out of the
-     reload registers.  Do these in the order that the reloads were reported,
-     since reloads of base and index registers precede reloads of operands
-     and the operands may need the base and index registers reloaded.  */
+  push_to_sequence (*where);
 
-  for (j = 0; j < n_reloads; j++)
+  /* Auto-increment addresses must be reloaded in a special way.  */
+  if (rl->out && ! rl->out_reg)
     {
-      register rtx old;
-      rtx oldequiv_reg = 0;
-      rtx this_reload_insn = 0;
-      int expect_occurrences = 1;
-
-      if (reload_reg_rtx[j]
-         && REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER)
-       new_spill_reg_store[REGNO (reload_reg_rtx[j])] = 0;
+      /* We are not going to bother supporting the case where a
+        incremented register can't be copied directly from
+        OLDEQUIV since this seems highly unlikely.  */
+      if (rl->secondary_in_reload >= 0)
+       abort ();
 
-      old = (reload_in[j] && GET_CODE (reload_in[j]) == MEM
-            ? reload_in_reg[j] : reload_in[j]);
+      if (reload_inherited[j])
+       oldequiv = reloadreg;
 
-      if (old != 0
-         /* AUTO_INC reloads need to be handled even if inherited.  We got an
-            AUTO_INC reload if reload_out is set but reload_out_reg isn't.  */
-         && (! reload_inherited[j] || (reload_out[j] && ! reload_out_reg[j]))
-         && ! rtx_equal_p (reload_reg_rtx[j], old)
-         && reload_reg_rtx[j] != 0)
-       {
-         register rtx reloadreg = reload_reg_rtx[j];
-         rtx oldequiv = 0;
-         enum machine_mode mode;
-         rtx *where;
-
-         /* Determine the mode to reload in.
-            This is very tricky because we have three to choose from.
-            There is the mode the insn operand wants (reload_inmode[J]).
-            There is the mode of the reload register RELOADREG.
-            There is the intrinsic mode of the operand, which we could find
-            by stripping some SUBREGs.
-            It turns out that RELOADREG's mode is irrelevant:
-            we can change that arbitrarily.
-
-            Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
-            then the reload reg may not support QImode moves, so use SImode.
-            If foo is in memory due to spilling a pseudo reg, this is safe,
-            because the QImode value is in the least significant part of a
-            slot big enough for a SImode.  If foo is some other sort of
-            memory reference, then it is impossible to reload this case,
-            so previous passes had better make sure this never happens.
-
-            Then consider a one-word union which has SImode and one of its
-            members is a float, being fetched as (SUBREG:SF union:SI).
-            We must fetch that as SFmode because we could be loading into
-            a float-only register.  In this case OLD's mode is correct.
-
-            Consider an immediate integer: it has VOIDmode.  Here we need
-            to get a mode from something else.
-
-            In some cases, there is a fourth mode, the operand's
-            containing mode.  If the insn specifies a containing mode for
-            this operand, it overrides all others.
-
-            I am not sure whether the algorithm here is always right,
-            but it does the right things in those cases.  */
-
-         mode = GET_MODE (old);
-         if (mode == VOIDmode)
-           mode = reload_inmode[j];
+      old = XEXP (rl->in_reg, 0);
 
-#ifdef SECONDARY_INPUT_RELOAD_CLASS
-         /* If we need a secondary register for this operation, see if
-            the value is already in a register in that class.  Don't
-            do this if the secondary register will be used as a scratch
-            register.  */
-
-         if (reload_secondary_in_reload[j] >= 0
-             && reload_secondary_in_icode[j] == CODE_FOR_nothing
-             && optimize)
-           oldequiv
-             = find_equiv_reg (old, insn,
-                               reload_reg_class[reload_secondary_in_reload[j]],
-                               -1, NULL_PTR, 0, mode);
-#endif
+      if (optimize && GET_CODE (oldequiv) == REG
+         && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
+         && spill_reg_store[REGNO (oldequiv)]
+         && GET_CODE (old) == REG
+         && (dead_or_set_p (insn,
+                            spill_reg_stored_to[REGNO (oldequiv)])
+             || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
+                             old)))
+       delete_output_reload (insn, j, REGNO (oldequiv));
+
+      /* Prevent normal processing of this reload.  */
+      special = 1;
+      /* Output a special code sequence for this case.  */
+      new_spill_reg_store[REGNO (reloadreg)]
+       = inc_for_reload (reloadreg, oldequiv, rl->out,
+                         rl->inc);
+    }
 
-         /* If reloading from memory, see if there is a register
-            that already holds the same value.  If so, reload from there.
-            We can pass 0 as the reload_reg_p argument because
-            any other reload has either already been emitted,
-            in which case find_equiv_reg will see the reload-insn,
-            or has yet to be emitted, in which case it doesn't matter
-            because we will use this equiv reg right away.  */
-
-         if (oldequiv == 0 && optimize
-             && (GET_CODE (old) == MEM
-                 || (GET_CODE (old) == REG
-                     && REGNO (old) >= FIRST_PSEUDO_REGISTER
-                     && reg_renumber[REGNO (old)] < 0)))
-           oldequiv = find_equiv_reg (old, insn, ALL_REGS,
-                                      -1, NULL_PTR, 0, mode);
-
-         if (oldequiv)
+  /* If we are reloading a pseudo-register that was set by the previous
+     insn, see if we can get rid of that pseudo-register entirely
+     by redirecting the previous insn into our reload register.  */
+
+  else if (optimize && GET_CODE (old) == REG
+          && REGNO (old) >= FIRST_PSEUDO_REGISTER
+          && dead_or_set_p (insn, old)
+          /* This is unsafe if some other reload
+             uses the same reg first.  */
+          && reload_reg_free_for_value_p (REGNO (reloadreg),
+                                          rl->opnum,
+                                          rl->when_needed,
+                                          old, rl->out,
+                                          j, 0))
+    {
+      rtx temp = PREV_INSN (insn);
+      while (temp && GET_CODE (temp) == NOTE)
+       temp = PREV_INSN (temp);
+      if (temp
+         && GET_CODE (temp) == INSN
+         && GET_CODE (PATTERN (temp)) == SET
+         && SET_DEST (PATTERN (temp)) == old
+         /* Make sure we can access insn_operand_constraint.  */
+         && asm_noperands (PATTERN (temp)) < 0
+         /* This is unsafe if prev insn rejects our reload reg.  */
+         && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
+                                      reloadreg)
+         /* This is unsafe if operand occurs more than once in current
+            insn.  Perhaps some occurrences aren't reloaded.  */
+         && count_occurrences (PATTERN (insn), old) == 1
+         /* Don't risk splitting a matching pair of operands.  */
+         && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
+       {
+         /* Store into the reload register instead of the pseudo.  */
+         SET_DEST (PATTERN (temp)) = reloadreg;
+
+         /* If the previous insn is an output reload, the source is
+            a reload register, and its spill_reg_store entry will
+            contain the previous destination.  This is now
+            invalid.  */
+         if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
+             && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
            {
-             int regno = true_regnum (oldequiv);
-
-             /* Don't use OLDEQUIV if any other reload changes it at an
-                earlier stage of this insn or at this stage.  */
-             if (! reload_reg_free_for_value_p (regno, reload_opnum[j],
-                                                reload_when_needed[j],
-                                                reload_in[j], const0_rtx, j,
-                                                0))
-               oldequiv = 0;
-
-             /* If it is no cheaper to copy from OLDEQUIV into the
-                reload register than it would be to move from memory,
-                don't use it. Likewise, if we need a secondary register
-                or memory.   */
-
-             if (oldequiv != 0
-                 && ((REGNO_REG_CLASS (regno) != reload_reg_class[j]
-                      && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
-                                              reload_reg_class[j])
-                          >= MEMORY_MOVE_COST (mode, reload_reg_class[j], 1)))
-#ifdef SECONDARY_INPUT_RELOAD_CLASS
-                     || (SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
-                                                       mode, oldequiv)
-                         != NO_REGS)
-#endif
-#ifdef SECONDARY_MEMORY_NEEDED
-                     || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
-                                                 reload_reg_class[j],
-                                                 mode)
-#endif
-                     ))
-               oldequiv = 0;
+             spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
+             spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
            }
 
-         /* delete_output_reload is only invoked properly if old contains
-            the original pseudo register.  Since this is replaced with a
-            hard reg when RELOAD_OVERRIDE_IN is set, see if we can
-            find the pseudo in RELOAD_IN_REG.  */
-         if (oldequiv == 0
-             && reload_override_in[j]
-             && GET_CODE (reload_in_reg[j]) == REG)
-           {
-             oldequiv = old;
-             old = reload_in_reg[j];
-           }
-         if (oldequiv == 0)
-           oldequiv = old;
-         else if (GET_CODE (oldequiv) == REG)
-           oldequiv_reg = oldequiv;
-         else if (GET_CODE (oldequiv) == SUBREG)
-           oldequiv_reg = SUBREG_REG (oldequiv);
-
-         /* If we are reloading from a register that was recently stored in
-            with an output-reload, see if we can prove there was
-            actually no need to store the old value in it.  */
-
-         if (optimize && GET_CODE (oldequiv) == REG
-             && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
-             && spill_reg_store[REGNO (oldequiv)]
-             && GET_CODE (old) == REG
-             && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
-                 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
-                                 reload_out_reg[j])))
-           delete_output_reload (insn, j, REGNO (oldequiv));
-
-         /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
-            then load RELOADREG from OLDEQUIV.  Note that we cannot use
-            gen_lowpart_common since it can do the wrong thing when
-            RELOADREG has a multi-word mode.  Note that RELOADREG
-            must always be a REG here.  */
-
-         if (GET_MODE (reloadreg) != mode)
-           reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
-         while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
-           oldequiv = SUBREG_REG (oldequiv);
-         if (GET_MODE (oldequiv) != VOIDmode
-             && mode != GET_MODE (oldequiv))
-           oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
-
-         /* Switch to the right place to emit the reload insns.  */
-         switch (reload_when_needed[j])
+         /* If these are the only uses of the pseudo reg,
+            pretend for GDB it lives in the reload reg we used.  */
+         if (REG_N_DEATHS (REGNO (old)) == 1
+             && REG_N_SETS (REGNO (old)) == 1)
            {
-           case RELOAD_OTHER:
-             where = &other_input_reload_insns;
-             break;
-           case RELOAD_FOR_INPUT:
-             where = &input_reload_insns[reload_opnum[j]];
-             break;
-           case RELOAD_FOR_INPUT_ADDRESS:
-             where = &input_address_reload_insns[reload_opnum[j]];
-             break;
-           case RELOAD_FOR_INPADDR_ADDRESS:
-             where = &inpaddr_address_reload_insns[reload_opnum[j]];
-             break;
-           case RELOAD_FOR_OUTPUT_ADDRESS:
-             where = &output_address_reload_insns[reload_opnum[j]];
-             break;
-           case RELOAD_FOR_OUTADDR_ADDRESS:
-             where = &outaddr_address_reload_insns[reload_opnum[j]];
-             break;
-           case RELOAD_FOR_OPERAND_ADDRESS:
-             where = &operand_reload_insns;
-             break;
-           case RELOAD_FOR_OPADDR_ADDR:
-             where = &other_operand_reload_insns;
-             break;
-           case RELOAD_FOR_OTHER_ADDRESS:
-             where = &other_input_address_reload_insns;
-             break;
-           default:
-             abort ();
+             reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
+             alter_reg (REGNO (old), -1);
            }
+         special = 1;
+       }
+    }
 
-         push_to_sequence (*where);
-         special = 0;
+  /* We can't do that, so output an insn to load RELOADREG.  */
 
-         /* Auto-increment addresses must be reloaded in a special way.  */
-         if (reload_out[j] && ! reload_out_reg[j])
-           {
-             /* We are not going to bother supporting the case where a
-                incremented register can't be copied directly from
-                OLDEQUIV since this seems highly unlikely.  */
-             if (reload_secondary_in_reload[j] >= 0)
-               abort ();
-
-             if (reload_inherited[j])
-               oldequiv = reloadreg;
-
-             old = XEXP (reload_in_reg[j], 0);
-
-             if (optimize && GET_CODE (oldequiv) == REG
-                 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
-                 && spill_reg_store[REGNO (oldequiv)]
-                 && GET_CODE (old) == REG
-                 && (dead_or_set_p (insn,
-                                    spill_reg_stored_to[REGNO (oldequiv)])
-                     || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
-                                     old)))
-               delete_output_reload (insn, j, REGNO (oldequiv));
-
-             /* Prevent normal processing of this reload.  */
-             special = 1;
-             /* Output a special code sequence for this case.  */
-             new_spill_reg_store[REGNO (reloadreg)]
-               = inc_for_reload (reloadreg, oldequiv, reload_out[j],
-                                 reload_inc[j]);
-           }
+#ifdef SECONDARY_INPUT_RELOAD_CLASS
+  /* If we have a secondary reload, pick up the secondary register
+     and icode, if any.  If OLDEQUIV and OLD are different or
+     if this is an in-out reload, recompute whether or not we
+     still need a secondary register and what the icode should
+     be.  If we still need a secondary register and the class or
+     icode is different, go back to reloading from OLD if using
+     OLDEQUIV means that we got the wrong type of register.  We
+     cannot have different class or icode due to an in-out reload
+     because we don't make such reloads when both the input and
+     output need secondary reload registers.  */
+
+  if (! special && rl->secondary_in_reload >= 0)
+    {
+      rtx second_reload_reg = 0;
+      int secondary_reload = rl->secondary_in_reload;
+      rtx real_oldequiv = oldequiv;
+      rtx real_old = old;
+      rtx tmp;
+      enum insn_code icode;
+
+      /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
+        and similarly for OLD.
+        See comments in get_secondary_reload in reload.c.  */
+      /* If it is a pseudo that cannot be replaced with its
+        equivalent MEM, we must fall back to reload_in, which
+        will have all the necessary substitutions registered.
+        Likewise for a pseudo that can't be replaced with its
+        equivalent constant.
+
+        Take extra care for subregs of such pseudos.  Note that
+        we cannot use reg_equiv_mem in this case because it is
+        not in the right mode.  */
+
+      tmp = oldequiv;
+      if (GET_CODE (tmp) == SUBREG)
+       tmp = SUBREG_REG (tmp);
+      if (GET_CODE (tmp) == REG
+         && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
+         && (reg_equiv_memory_loc[REGNO (tmp)] != 0
+             || reg_equiv_constant[REGNO (tmp)] != 0))
+       {
+         if (! reg_equiv_mem[REGNO (tmp)]
+             || num_not_at_initial_offset
+             || GET_CODE (oldequiv) == SUBREG)
+           real_oldequiv = rl->in;
+         else
+           real_oldequiv = reg_equiv_mem[REGNO (tmp)];
+       }
+
+      tmp = old;
+      if (GET_CODE (tmp) == SUBREG)
+       tmp = SUBREG_REG (tmp);
+      if (GET_CODE (tmp) == REG
+         && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
+         && (reg_equiv_memory_loc[REGNO (tmp)] != 0
+             || reg_equiv_constant[REGNO (tmp)] != 0))
+       {
+         if (! reg_equiv_mem[REGNO (tmp)]
+             || num_not_at_initial_offset
+             || GET_CODE (old) == SUBREG)
+           real_old = rl->in;
+         else
+           real_old = reg_equiv_mem[REGNO (tmp)];
+       }
+
+      second_reload_reg = rld[secondary_reload].reg_rtx;
+      icode = rl->secondary_in_icode;
 
-         /* If we are reloading a pseudo-register that was set by the previous
-            insn, see if we can get rid of that pseudo-register entirely
-            by redirecting the previous insn into our reload register.  */
-
-         else if (optimize && GET_CODE (old) == REG
-                  && REGNO (old) >= FIRST_PSEUDO_REGISTER
-                  && dead_or_set_p (insn, old)
-                  /* This is unsafe if some other reload
-                     uses the same reg first.  */
-                  && reload_reg_free_for_value_p (REGNO (reloadreg),
-                                                  reload_opnum[j],
-                                                  reload_when_needed[j], 
-                                                  old, reload_out[j],
-                                                  j, 0))
+      if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
+         || (rl->in != 0 && rl->out != 0))
+       {
+         enum reg_class new_class
+           = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
+                                           mode, real_oldequiv);
+
+         if (new_class == NO_REGS)
+           second_reload_reg = 0;
+         else
            {
-             rtx temp = PREV_INSN (insn);
-             while (temp && GET_CODE (temp) == NOTE)
-               temp = PREV_INSN (temp);
-             if (temp
-                 && GET_CODE (temp) == INSN
-                 && GET_CODE (PATTERN (temp)) == SET
-                 && SET_DEST (PATTERN (temp)) == old
-                 /* Make sure we can access insn_operand_constraint.  */
-                 && asm_noperands (PATTERN (temp)) < 0
-                 /* This is unsafe if prev insn rejects our reload reg.  */
-                 && constraint_accepts_reg_p (insn_operand_constraint[recog_memoized (temp)][0],
-                                              reloadreg)
-                 /* This is unsafe if operand occurs more than once in current
-                    insn.  Perhaps some occurrences aren't reloaded.  */
-                 && count_occurrences (PATTERN (insn), old) == 1
-                 /* Don't risk splitting a matching pair of operands.  */
-                 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
+             enum insn_code new_icode;
+             enum machine_mode new_mode;
+
+             if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
+                                      REGNO (second_reload_reg)))
+               oldequiv = old, real_oldequiv = real_old;
+             else
                {
-                 /* Store into the reload register instead of the pseudo.  */
-                 SET_DEST (PATTERN (temp)) = reloadreg;
-
-                 /* If the previous insn is an output reload, the source is
-                    a reload register, and its spill_reg_store entry will
-                    contain the previous destination.  This is now
-                    invalid.  */
-                 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
-                     && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
-                   {
-                     spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
-                     spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
-                   }
+                 new_icode = reload_in_optab[(int) mode];
+                 if (new_icode != CODE_FOR_nothing
+                     && ((insn_data[(int) new_icode].operand[0].predicate
+                          && ! ((*insn_data[(int) new_icode].operand[0].predicate)
+                                (reloadreg, mode)))
+                         || (insn_data[(int) new_icode].operand[1].predicate
+                             && ! ((*insn_data[(int) new_icode].operand[1].predicate)
+                                   (real_oldequiv, mode)))))
+                   new_icode = CODE_FOR_nothing;
+
+                 if (new_icode == CODE_FOR_nothing)
+                   new_mode = mode;
+                 else
+                   new_mode = insn_data[(int) new_icode].operand[2].mode;
 
-                 /* If these are the only uses of the pseudo reg,
-                    pretend for GDB it lives in the reload reg we used.  */
-                 if (REG_N_DEATHS (REGNO (old)) == 1
-                     && REG_N_SETS (REGNO (old)) == 1)
+                 if (GET_MODE (second_reload_reg) != new_mode)
                    {
-                     reg_renumber[REGNO (old)] = REGNO (reload_reg_rtx[j]);
-                     alter_reg (REGNO (old), -1);
+                     if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
+                                              new_mode))
+                       oldequiv = old, real_oldequiv = real_old;
+                     else
+                       second_reload_reg
+                         = gen_rtx_REG (new_mode,
+                                        REGNO (second_reload_reg));
                    }
-                 special = 1;
                }
            }
+       }
 
-         /* We can't do that, so output an insn to load RELOADREG.  */
+      /* If we still need a secondary reload register, check
+        to see if it is being used as a scratch or intermediate
+        register and generate code appropriately.  If we need
+        a scratch register, use REAL_OLDEQUIV since the form of
+        the insn may depend on the actual address if it is
+        a MEM.  */
 
-         if (! special)
+      if (second_reload_reg)
+       {
+         if (icode != CODE_FOR_nothing)
            {
-#ifdef SECONDARY_INPUT_RELOAD_CLASS
-             rtx second_reload_reg = 0;
-             enum insn_code icode;
-
-             /* If we have a secondary reload, pick up the secondary register
-                and icode, if any.  If OLDEQUIV and OLD are different or
-                if this is an in-out reload, recompute whether or not we
-                still need a secondary register and what the icode should
-                be.  If we still need a secondary register and the class or
-                icode is different, go back to reloading from OLD if using
-                OLDEQUIV means that we got the wrong type of register.  We
-                cannot have different class or icode due to an in-out reload
-                because we don't make such reloads when both the input and
-                output need secondary reload registers.  */
-
-             if (reload_secondary_in_reload[j] >= 0)
-               {
-                 int secondary_reload = reload_secondary_in_reload[j];
-                 rtx real_oldequiv = oldequiv;
-                 rtx real_old = old;
-
-                 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
-                    and similarly for OLD.
-                    See comments in get_secondary_reload in reload.c.  */
-                 /* If it is a pseudo that cannot be replaced with its
-                    equivalent MEM, we must fall back to reload_in, which
-                    will have all the necessary substitutions registered.  */
-                               
-                 if (GET_CODE (oldequiv) == REG
-                     && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
-                     && reg_equiv_memory_loc[REGNO (oldequiv)] != 0)
-                   {
-                     if (reg_equiv_address[REGNO (oldequiv)]
-                         || num_not_at_initial_offset)
-                       real_oldequiv = reload_in[j];
-                     else
-                       real_oldequiv = reg_equiv_mem[REGNO (oldequiv)];
-                   }
+             emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
+                                         second_reload_reg));
+             special = 1;
+           }
+         else
+           {
+             /* See if we need a scratch register to load the
+                intermediate register (a tertiary reload).  */
+             enum insn_code tertiary_icode
+               = rld[secondary_reload].secondary_in_icode;
 
-                 if (GET_CODE (old) == REG
-                     && REGNO (old) >= FIRST_PSEUDO_REGISTER
-                     && reg_equiv_memory_loc[REGNO (old)] != 0)
-                   {
-                     if (reg_equiv_address[REGNO (old)]
-                         || num_not_at_initial_offset)
-                       real_old = reload_in[j];
-                     else
-                       real_old = reg_equiv_mem[REGNO (old)];
-                   }
+             if (tertiary_icode != CODE_FOR_nothing)
+               {
+                 rtx third_reload_reg
+                   = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
 
-                 second_reload_reg = reload_reg_rtx[secondary_reload];
-                 icode = reload_secondary_in_icode[j];
+                 emit_insn ((GEN_FCN (tertiary_icode)
+                             (second_reload_reg, real_oldequiv,
+                              third_reload_reg)));
+               }
+             else
+               gen_reload (second_reload_reg, real_oldequiv,
+                           rl->opnum,
+                           rl->when_needed);
 
-                 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
-                     || (reload_in[j] != 0 && reload_out[j] != 0))
-                   {
-                     enum reg_class new_class
-                       = SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
-                                                       mode, real_oldequiv);
+             oldequiv = second_reload_reg;
+           }
+       }
+    }
+#endif
 
-                     if (new_class == NO_REGS)
-                       second_reload_reg = 0;
-                     else
-                       {
-                         enum insn_code new_icode;
-                         enum machine_mode new_mode;
+  if (! special && ! rtx_equal_p (reloadreg, oldequiv))
+    {
+      rtx real_oldequiv = oldequiv;
+
+      if ((GET_CODE (oldequiv) == REG
+          && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
+          && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
+              || reg_equiv_constant[REGNO (oldequiv)] != 0))
+         || (GET_CODE (oldequiv) == SUBREG
+             && GET_CODE (SUBREG_REG (oldequiv)) == REG
+             && (REGNO (SUBREG_REG (oldequiv))
+                 >= FIRST_PSEUDO_REGISTER)
+             && ((reg_equiv_memory_loc
+                  [REGNO (SUBREG_REG (oldequiv))] != 0)
+                 || (reg_equiv_constant
+                     [REGNO (SUBREG_REG (oldequiv))] != 0))))
+       real_oldequiv = rl->in;
+      gen_reload (reloadreg, real_oldequiv, rl->opnum,
+                 rl->when_needed);
+    }
 
-                         if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
-                                                  REGNO (second_reload_reg)))
-                           oldequiv = old, real_oldequiv = real_old;
-                         else
-                           {
-                             new_icode = reload_in_optab[(int) mode];
-                             if (new_icode != CODE_FOR_nothing
-                                 && ((insn_operand_predicate[(int) new_icode][0]
-                                      && ! ((*insn_operand_predicate[(int) new_icode][0])
-                                            (reloadreg, mode)))
-                                     || (insn_operand_predicate[(int) new_icode][1]
-                                         && ! ((*insn_operand_predicate[(int) new_icode][1])
-                                               (real_oldequiv, mode)))))
-                               new_icode = CODE_FOR_nothing;
-
-                             if (new_icode == CODE_FOR_nothing)
-                               new_mode = mode;
-                             else
-                               new_mode = insn_operand_mode[(int) new_icode][2];
+  /* End this sequence.  */
+  *where = get_insns ();
+  end_sequence ();
 
-                             if (GET_MODE (second_reload_reg) != new_mode)
-                               {
-                                 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
-                                                          new_mode))
-                                   oldequiv = old, real_oldequiv = real_old;
-                                 else
-                                   second_reload_reg
-                                     = gen_rtx_REG (new_mode,
-                                                    REGNO (second_reload_reg));
-                               }
-                           }
-                       }
-                   }
+  /* Update reload_override_in so that delete_address_reloads_1
+     can see the actual register usage.  */
+  if (oldequiv_reg)
+    reload_override_in[j] = oldequiv;
+}
 
-                 /* If we still need a secondary reload register, check
-                    to see if it is being used as a scratch or intermediate
-                    register and generate code appropriately.  If we need
-                    a scratch register, use REAL_OLDEQUIV since the form of
-                    the insn may depend on the actual address if it is 
-                    a MEM.  */
+/* Generate insns to for the output reload RL, which is for the insn described
+   by CHAIN and has the number J.  */
+static void
+emit_output_reload_insns (chain, rl, j)
+     struct insn_chain *chain;
+     struct reload *rl;
+     int j;
+{
+  rtx reloadreg = rl->reg_rtx;
+  rtx insn = chain->insn;
+  int special = 0;
+  rtx old = rl->out;
+  enum machine_mode mode = GET_MODE (old);
+  rtx p;
 
-                 if (second_reload_reg)
-                   {
-                     if (icode != CODE_FOR_nothing)
-                       {
-                         emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
-                                                     second_reload_reg));
-                         special = 1;
-                       }
-                     else
-                       {
-                         /* See if we need a scratch register to load the
-                            intermediate register (a tertiary reload).  */
-                         enum insn_code tertiary_icode
-                           = reload_secondary_in_icode[secondary_reload];
+  if (rl->when_needed == RELOAD_OTHER)
+    start_sequence ();
+  else
+    push_to_sequence (output_reload_insns[rl->opnum]);
 
-                         if (tertiary_icode != CODE_FOR_nothing)
-                           {
-                             rtx third_reload_reg
-                               = reload_reg_rtx[reload_secondary_in_reload[secondary_reload]];
+  /* Determine the mode to reload in.
+     See comments above (for input reloading).  */
 
-                             emit_insn ((GEN_FCN (tertiary_icode)
-                                         (second_reload_reg, real_oldequiv,
-                                          third_reload_reg)));
-                           }
-                         else
-                           gen_reload (second_reload_reg, real_oldequiv,
-                                       reload_opnum[j],
-                                       reload_when_needed[j]);
+  if (mode == VOIDmode)
+    {
+      /* VOIDmode should never happen for an output.  */
+      if (asm_noperands (PATTERN (insn)) < 0)
+       /* It's the compiler's fault.  */
+       fatal_insn ("VOIDmode on an output", insn);
+      error_for_asm (insn, "output operand is constant in `asm'");
+      /* Prevent crash--use something we know is valid.  */
+      mode = word_mode;
+      old = gen_rtx_REG (mode, REGNO (reloadreg));
+    }
 
-                         oldequiv = second_reload_reg;
-                       }
-                   }
-               }
-#endif
+  if (GET_MODE (reloadreg) != mode)
+    reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
 
-             if (! special && ! rtx_equal_p (reloadreg, oldequiv))
-               {
-                 rtx real_oldequiv = oldequiv;
-
-                 if ((GET_CODE (oldequiv) == REG
-                      && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
-                      && reg_equiv_memory_loc[REGNO (oldequiv)] != 0)
-                     || (GET_CODE (oldequiv) == SUBREG
-                         && GET_CODE (SUBREG_REG (oldequiv)) == REG
-                         && (REGNO (SUBREG_REG (oldequiv))
-                             >= FIRST_PSEUDO_REGISTER)
-                         && (reg_equiv_memory_loc
-                             [REGNO (SUBREG_REG (oldequiv))] != 0)))
-                   real_oldequiv = reload_in[j];
-                 gen_reload (reloadreg, real_oldequiv, reload_opnum[j],
-                             reload_when_needed[j]);
-               }
+#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
 
-           }
+  /* If we need two reload regs, set RELOADREG to the intermediate
+     one, since it will be stored into OLD.  We might need a secondary
+     register only for an input reload, so check again here.  */
 
-         this_reload_insn = get_last_insn ();
-         /* End this sequence.  */
-         *where = get_insns ();
-         end_sequence ();
+  if (rl->secondary_out_reload >= 0)
+    {
+      rtx real_old = old;
 
-         /* Update reload_override_in so that delete_address_reloads_1
-            can see the actual register usage.  */
-         if (oldequiv_reg)
-           reload_override_in[j] = oldequiv;
-       }
+      if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
+         && reg_equiv_mem[REGNO (old)] != 0)
+       real_old = reg_equiv_mem[REGNO (old)];
 
-      /* When inheriting a wider reload, we have a MEM in reload_in[j],
-        e.g. inheriting a SImode output reload for
-        (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10)))  */
-      if (optimize && reload_inherited[j] && reload_in[j]
-         && GET_CODE (reload_in[j]) == MEM
-         && GET_CODE (reload_in_reg[j]) == MEM
-         && reload_spill_index[j] >= 0
-         && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
+      if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
+                                         mode, real_old)
+          != NO_REGS))
        {
-         expect_occurrences
-           = count_occurrences (PATTERN (insn), reload_in[j]) == 1 ? 0 : -1;
-         reload_in[j]
-           = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
-       }
+         rtx second_reloadreg = reloadreg;
+         reloadreg = rld[rl->secondary_out_reload].reg_rtx;
 
-      /* If we are reloading a register that was recently stored in with an
-        output-reload, see if we can prove there was
-        actually no need to store the old value in it.  */
+         /* See if RELOADREG is to be used as a scratch register
+            or as an intermediate register.  */
+         if (rl->secondary_out_icode != CODE_FOR_nothing)
+           {
+             emit_insn ((GEN_FCN (rl->secondary_out_icode)
+                         (real_old, second_reloadreg, reloadreg)));
+             special = 1;
+           }
+         else
+           {
+             /* See if we need both a scratch and intermediate reload
+                register.  */
 
-      if (optimize
-         && (reload_inherited[j] || reload_override_in[j])
-         && reload_reg_rtx[j]
-         && GET_CODE (reload_reg_rtx[j]) == REG
-         && spill_reg_store[REGNO (reload_reg_rtx[j])] != 0
-#if 0
-         /* There doesn't seem to be any reason to restrict this to pseudos
-            and doing so loses in the case where we are copying from a
-            register of the wrong class.  */
-         && REGNO (spill_reg_stored_to[REGNO (reload_reg_rtx[j])])
-            >= FIRST_PSEUDO_REGISTER
-#endif
-            /* The insn might have already some references to stackslots
-               replaced by MEMs, while reload_out_reg still names the
-               original pseudo.  */
-         && (dead_or_set_p (insn,
-                            spill_reg_stored_to[REGNO (reload_reg_rtx[j])])
-             || rtx_equal_p (spill_reg_stored_to[REGNO (reload_reg_rtx[j])],
-                             reload_out_reg[j])))
-       delete_output_reload (insn, j, REGNO (reload_reg_rtx[j]));
+             int secondary_reload = rl->secondary_out_reload;
+             enum insn_code tertiary_icode
+               = rld[secondary_reload].secondary_out_icode;
 
-      /* Input-reloading is done.  Now do output-reloading,
-        storing the value from the reload-register after the main insn
-        if reload_out[j] is nonzero.
+             if (GET_MODE (reloadreg) != mode)
+               reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
 
-        ??? At some point we need to support handling output reloads of
-        JUMP_INSNs or insns that set cc0.  */
+             if (tertiary_icode != CODE_FOR_nothing)
+               {
+                 rtx third_reloadreg
+                   = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
+                 rtx tem;
+
+                 /* Copy primary reload reg to secondary reload reg.
+                    (Note that these have been swapped above, then
+                    secondary reload reg to OLD using our insn.  */
+
+                 /* If REAL_OLD is a paradoxical SUBREG, remove it
+                    and try to put the opposite SUBREG on
+                    RELOADREG.  */
+                 if (GET_CODE (real_old) == SUBREG
+                     && (GET_MODE_SIZE (GET_MODE (real_old))
+                         > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
+                     && 0 != (tem = gen_lowpart_common
+                              (GET_MODE (SUBREG_REG (real_old)),
+                               reloadreg)))
+                   real_old = SUBREG_REG (real_old), reloadreg = tem;
+
+                 gen_reload (reloadreg, second_reloadreg,
+                             rl->opnum, rl->when_needed);
+                 emit_insn ((GEN_FCN (tertiary_icode)
+                             (real_old, reloadreg, third_reloadreg)));
+                 special = 1;
+               }
 
-      /* If this is an output reload that stores something that is
-        not loaded in this same reload, see if we can eliminate a previous
-        store.  */
-      {
-       rtx pseudo = reload_out_reg[j];
-         
-       if (pseudo
-           && GET_CODE (pseudo) == REG
-           && ! rtx_equal_p (reload_in_reg[j], pseudo)
-           && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
-           && reg_last_reload_reg[REGNO (pseudo)])
-         {
-           int pseudo_no = REGNO (pseudo);
-           int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
-
-           /* We don't need to test full validity of last_regno for
-              inherit here; we only want to know if the store actually
-              matches the pseudo.  */
-           if (reg_reloaded_contents[last_regno] == pseudo_no
-               && spill_reg_store[last_regno]
-               && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
-             delete_output_reload (insn, j, last_regno);
-         }
-      }
+             else
+               /* Copy between the reload regs here and then to
+                  OUT later.  */
 
-      old = reload_out_reg[j];
-      if (old != 0
-         && reload_reg_rtx[j] != old
-         && reload_reg_rtx[j] != 0)
-       {
-         register rtx reloadreg = reload_reg_rtx[j];
-#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
-         register rtx second_reloadreg = 0;
-#endif
-         rtx note, p;
-         enum machine_mode mode;
-         int special = 0;
-
-         /* An output operand that dies right away does need a reload,
-            but need not be copied from it.  Show the new location in the
-            REG_UNUSED note.  */
-         if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
-             && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
-           {
-             XEXP (note, 0) = reload_reg_rtx[j];
-             continue;
+               gen_reload (reloadreg, second_reloadreg,
+                           rl->opnum, rl->when_needed);
            }
-         /* Likewise for a SUBREG of an operand that dies.  */
-         else if (GET_CODE (old) == SUBREG
-                  && GET_CODE (SUBREG_REG (old)) == REG
-                  && 0 != (note = find_reg_note (insn, REG_UNUSED,
-                                                 SUBREG_REG (old))))
-           {
-             XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
-                                                  reload_reg_rtx[j]);
-             continue;
-           }
-         else if (GET_CODE (old) == SCRATCH)
-           /* If we aren't optimizing, there won't be a REG_UNUSED note,
-              but we don't want to make an output reload.  */
-           continue;
-
-#if 0
-         /* Strip off of OLD any size-increasing SUBREGs such as
-            (SUBREG:SI foo:QI 0).  */
-
-         while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0
-                && (GET_MODE_SIZE (GET_MODE (old))
-                    > GET_MODE_SIZE (GET_MODE (SUBREG_REG (old)))))
-           old = SUBREG_REG (old);
+       }
+    }
 #endif
 
-         /* If is a JUMP_INSN, we can't support output reloads yet.  */
-         if (GET_CODE (insn) == JUMP_INSN)
-           abort ();
-
-         if (reload_when_needed[j] == RELOAD_OTHER)
-           start_sequence ();
-         else
-           push_to_sequence (output_reload_insns[reload_opnum[j]]);
+  /* Output the last reload insn.  */
+  if (! special)
+    {
+      rtx set;
+
+      /* Don't output the last reload if OLD is not the dest of
+        INSN and is in the src and is clobbered by INSN. */
+      if (! flag_expensive_optimizations
+         || GET_CODE (old) != REG
+         || !(set = single_set (insn))
+         || rtx_equal_p (old, SET_DEST (set))
+         || !reg_mentioned_p (old, SET_SRC (set))
+         || !regno_clobbered_p (REGNO (old), insn))
+       gen_reload (old, reloadreg, rl->opnum,
+                   rl->when_needed);
+    }
 
-         old = reload_out[j];
+  /* Look at all insns we emitted, just to be safe.  */
+  for (p = get_insns (); p; p = NEXT_INSN (p))
+    if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
+      {
+       rtx pat = PATTERN (p);
 
-         /* Determine the mode to reload in.
-            See comments above (for input reloading).  */
+       /* If this output reload doesn't come from a spill reg,
+          clear any memory of reloaded copies of the pseudo reg.
+          If this output reload comes from a spill reg,
+          reg_has_output_reload will make this do nothing.  */
+       note_stores (pat, forget_old_reloads_1, NULL);
 
-         mode = GET_MODE (old);
-         if (mode == VOIDmode)
-           {
-             /* VOIDmode should never happen for an output.  */
-             if (asm_noperands (PATTERN (insn)) < 0)
-               /* It's the compiler's fault.  */
-               fatal_insn ("VOIDmode on an output", insn);
-             error_for_asm (insn, "output operand is constant in `asm'");
-             /* Prevent crash--use something we know is valid.  */
-             mode = word_mode;
-             old = gen_rtx_REG (mode, REGNO (reloadreg));
-           }
+       if (reg_mentioned_p (rl->reg_rtx, pat))
+         {
+           rtx set = single_set (insn);
+           if (reload_spill_index[j] < 0
+               && set
+               && SET_SRC (set) == rl->reg_rtx)
+             {
+               int src = REGNO (SET_SRC (set));
 
-         if (GET_MODE (reloadreg) != mode)
-           reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
+               reload_spill_index[j] = src;
+               SET_HARD_REG_BIT (reg_is_output_reload, src);
+               if (find_regno_note (insn, REG_DEAD, src))
+                 SET_HARD_REG_BIT (reg_reloaded_died, src);
+             }
+           if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
+             {
+               int s = rl->secondary_out_reload;
+               set = single_set (p);
+               /* If this reload copies only to the secondary reload
+                  register, the secondary reload does the actual
+                  store.  */
+               if (s >= 0 && set == NULL_RTX)
+                 ; /* We can't tell what function the secondary reload
+                      has and where the actual store to the pseudo is
+                      made; leave new_spill_reg_store alone.  */
+               else if (s >= 0
+                        && SET_SRC (set) == rl->reg_rtx
+                        && SET_DEST (set) == rld[s].reg_rtx)
+                 {
+                   /* Usually the next instruction will be the
+                      secondary reload insn;  if we can confirm
+                      that it is, setting new_spill_reg_store to
+                      that insn will allow an extra optimization.  */
+                   rtx s_reg = rld[s].reg_rtx;
+                   rtx next = NEXT_INSN (p);
+                   rld[s].out = rl->out;
+                   rld[s].out_reg = rl->out_reg;
+                   set = single_set (next);
+                   if (set && SET_SRC (set) == s_reg
+                       && ! new_spill_reg_store[REGNO (s_reg)])
+                     {
+                       SET_HARD_REG_BIT (reg_is_output_reload,
+                                         REGNO (s_reg));
+                       new_spill_reg_store[REGNO (s_reg)] = next;
+                     }
+                 }
+               else
+                 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
+             }
+         }
+      }
 
-#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
+  if (rl->when_needed == RELOAD_OTHER)
+    {
+      emit_insns (other_output_reload_insns[rl->opnum]);
+      other_output_reload_insns[rl->opnum] = get_insns ();
+    }
+  else
+    output_reload_insns[rl->opnum] = get_insns ();
 
-         /* If we need two reload regs, set RELOADREG to the intermediate
-            one, since it will be stored into OLD.  We might need a secondary
-            register only for an input reload, so check again here.  */
+  end_sequence (); 
+}
 
-         if (reload_secondary_out_reload[j] >= 0)
-           {
-             rtx real_old = old;
+/* Do input reloading for reload RL, which is for the insn described by CHAIN
+   and has the number J.  */
+static void
+do_input_reload (chain, rl, j)
+     struct insn_chain *chain;
+     struct reload *rl;
+     int j;
+{
+  int expect_occurrences = 1;
+  rtx insn = chain->insn;
+  rtx old = (rl->in && GET_CODE (rl->in) == MEM
+            ? rl->in_reg : rl->in);
+
+  if (old != 0
+      /* AUTO_INC reloads need to be handled even if inherited.  We got an
+        AUTO_INC reload if reload_out is set but reload_out_reg isn't.  */
+      && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
+      && ! rtx_equal_p (rl->reg_rtx, old)
+      && rl->reg_rtx != 0)
+    {
+      emit_input_reload_insns (chain, rld + j, old, j);
+    }
 
-             if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
-                 && reg_equiv_mem[REGNO (old)] != 0)
-               real_old = reg_equiv_mem[REGNO (old)];
+  /* When inheriting a wider reload, we have a MEM in rl->in,
+     e.g. inheriting a SImode output reload for
+     (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10)))  */
+  if (optimize && reload_inherited[j] && rl->in
+      && GET_CODE (rl->in) == MEM
+      && GET_CODE (rl->in_reg) == MEM
+      && reload_spill_index[j] >= 0
+      && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
+    {
+      expect_occurrences
+       = count_occurrences (PATTERN (insn), rl->in) == 1 ? 0 : -1;
+      rl->in
+       = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
+    }
 
-             if((SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class[j],
-                                                mode, real_old)
-                 != NO_REGS))
-               {
-                 second_reloadreg = reloadreg;
-                 reloadreg = reload_reg_rtx[reload_secondary_out_reload[j]];
+  /* If we are reloading a register that was recently stored in with an
+     output-reload, see if we can prove there was
+     actually no need to store the old value in it.  */
 
-                 /* See if RELOADREG is to be used as a scratch register
-                    or as an intermediate register.  */
-                 if (reload_secondary_out_icode[j] != CODE_FOR_nothing)
-                   {
-                     emit_insn ((GEN_FCN (reload_secondary_out_icode[j])
-                                 (real_old, second_reloadreg, reloadreg)));
-                     special = 1;
-                   }
-                 else
-                   {
-                     /* See if we need both a scratch and intermediate reload
-                        register.  */
+  if (optimize
+      && (reload_inherited[j] || reload_override_in[j])
+      && rl->reg_rtx
+      && GET_CODE (rl->reg_rtx) == REG
+      && spill_reg_store[REGNO (rl->reg_rtx)] != 0
+#if 0
+      /* There doesn't seem to be any reason to restrict this to pseudos
+        and doing so loses in the case where we are copying from a
+        register of the wrong class.  */
+      && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
+         >= FIRST_PSEUDO_REGISTER)
+#endif
+      /* The insn might have already some references to stackslots
+        replaced by MEMs, while reload_out_reg still names the
+        original pseudo.  */
+      && (dead_or_set_p (insn,
+                        spill_reg_stored_to[REGNO (rl->reg_rtx)])
+         || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
+                         rl->out_reg)))
+    delete_output_reload (insn, j, REGNO (rl->reg_rtx));
+}
 
-                     int secondary_reload = reload_secondary_out_reload[j];
-                     enum insn_code tertiary_icode
-                       = reload_secondary_out_icode[secondary_reload];
+/* Do output reloading for reload RL, which is for the insn described by
+   CHAIN and has the number J.
+   ??? At some point we need to support handling output reloads of
+   JUMP_INSNs or insns that set cc0.  */
+static void
+do_output_reload (chain, rl, j)
+     struct insn_chain *chain;
+     struct reload *rl;
+     int j;
+{
+  rtx note, old;
+  rtx insn = chain->insn;
+  /* If this is an output reload that stores something that is
+     not loaded in this same reload, see if we can eliminate a previous
+     store.  */
+  rtx pseudo = rl->out_reg;
+
+  if (pseudo
+      && GET_CODE (pseudo) == REG
+      && ! rtx_equal_p (rl->in_reg, pseudo)
+      && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
+      && reg_last_reload_reg[REGNO (pseudo)])
+    {
+      int pseudo_no = REGNO (pseudo);
+      int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
+
+      /* We don't need to test full validity of last_regno for
+        inherit here; we only want to know if the store actually
+        matches the pseudo.  */
+      if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
+         && reg_reloaded_contents[last_regno] == pseudo_no
+         && spill_reg_store[last_regno]
+         && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
+       delete_output_reload (insn, j, last_regno);
+    }
 
-                     if (GET_MODE (reloadreg) != mode)
-                       reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
+  old = rl->out_reg;
+  if (old == 0
+      || rl->reg_rtx == old
+      || rl->reg_rtx == 0)
+    return;
 
-                     if (tertiary_icode != CODE_FOR_nothing)
-                       {
-                         rtx third_reloadreg
-                           = reload_reg_rtx[reload_secondary_out_reload[secondary_reload]];
-                         rtx tem;
-
-                         /* Copy primary reload reg to secondary reload reg.
-                            (Note that these have been swapped above, then
-                            secondary reload reg to OLD using our insn.  */
-
-                         /* If REAL_OLD is a paradoxical SUBREG, remove it
-                            and try to put the opposite SUBREG on
-                            RELOADREG.  */
-                         if (GET_CODE (real_old) == SUBREG
-                             && (GET_MODE_SIZE (GET_MODE (real_old))
-                                 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
-                             && 0 != (tem = gen_lowpart_common
-                                      (GET_MODE (SUBREG_REG (real_old)),
-                                       reloadreg)))
-                           real_old = SUBREG_REG (real_old), reloadreg = tem;
-
-                         gen_reload (reloadreg, second_reloadreg,
-                                     reload_opnum[j], reload_when_needed[j]);
-                         emit_insn ((GEN_FCN (tertiary_icode)
-                                     (real_old, reloadreg, third_reloadreg)));
-                         special = 1;
-                       }
+  /* An output operand that dies right away does need a reload,
+     but need not be copied from it.  Show the new location in the
+     REG_UNUSED note.  */
+  if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
+      && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
+    {
+      XEXP (note, 0) = rl->reg_rtx;
+      return;
+    }
+  /* Likewise for a SUBREG of an operand that dies.  */
+  else if (GET_CODE (old) == SUBREG
+          && GET_CODE (SUBREG_REG (old)) == REG
+          && 0 != (note = find_reg_note (insn, REG_UNUSED,
+                                         SUBREG_REG (old))))
+    {
+      XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
+                                          rl->reg_rtx);
+      return;
+    }
+  else if (GET_CODE (old) == SCRATCH)
+    /* If we aren't optimizing, there won't be a REG_UNUSED note,
+       but we don't want to make an output reload.  */
+    return;
 
-                     else
-                       /* Copy between the reload regs here and then to
-                          OUT later.  */
+  /* If is a JUMP_INSN, we can't support output reloads yet.  */
+  if (GET_CODE (insn) == JUMP_INSN)
+    abort ();
 
-                       gen_reload (reloadreg, second_reloadreg,
-                                   reload_opnum[j], reload_when_needed[j]);
-                   }
-               }
-           }
-#endif
+  emit_output_reload_insns (chain, rld + j, j);
+}
 
-         /* Output the last reload insn.  */
-         if (! special)
-           {
-             rtx set;
-
-             /* Don't output the last reload if OLD is not the dest of
-                INSN and is in the src and is clobbered by INSN. */
-             if (! flag_expensive_optimizations
-                 || GET_CODE (old) != REG
-                 || !(set = single_set (insn))
-                 || rtx_equal_p (old, SET_DEST (set))
-                 || !reg_mentioned_p (old, SET_SRC (set))
-                 || !regno_clobbered_p (REGNO (old), insn))
-               gen_reload (old, reloadreg, reload_opnum[j],
-                           reload_when_needed[j]);
-           }
+/* Output insns to reload values in and out of the chosen reload regs.  */
 
-         /* Look at all insns we emitted, just to be safe.  */
-         for (p = get_insns (); p; p = NEXT_INSN (p))
-           if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
-             {
-               rtx pat = PATTERN (p);
+static void
+emit_reload_insns (chain)
+     struct insn_chain *chain;
+{
+  rtx insn = chain->insn;
 
-               /* If this output reload doesn't come from a spill reg,
-                  clear any memory of reloaded copies of the pseudo reg.
-                  If this output reload comes from a spill reg,
-                  reg_has_output_reload will make this do nothing.  */
-               note_stores (pat, forget_old_reloads_1);
+  register int j;
+  rtx following_insn = NEXT_INSN (insn);
+  rtx before_insn = PREV_INSN (insn);
 
-               if (reg_mentioned_p (reload_reg_rtx[j], pat))
-                 {
-                   rtx set = single_set (insn);
-                   if (reload_spill_index[j] < 0
-                       && set
-                       && SET_SRC (set) == reload_reg_rtx[j])
-                     {
-                       int src = REGNO (SET_SRC (set));
+  CLEAR_HARD_REG_SET (reg_reloaded_died);
 
-                       reload_spill_index[j] = src;
-                       SET_HARD_REG_BIT (reg_is_output_reload, src);
-                       if (find_regno_note (insn, REG_DEAD, src))
-                         SET_HARD_REG_BIT (reg_reloaded_died, src);
-                     }
-                   if (REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER)
-                     {
-                       int s = reload_secondary_out_reload[j];
-                       set = single_set (p);
-                       /* If this reload copies only to the secondary reload
-                          register, the secondary reload does the actual
-                          store.  */
-                       if (s >= 0 && set == NULL_RTX)
-                         ; /* We can't tell what function the secondary reload
-                              has and where the actual store to the pseudo is
-                              made; leave new_spill_reg_store alone.  */
-                       else if (s >= 0
-                           && SET_SRC (set) == reload_reg_rtx[j]
-                           && SET_DEST (set) == reload_reg_rtx[s])
-                         {
-                           /* Usually the next instruction will be the
-                              secondary reload insn;  if we can confirm
-                              that it is, setting new_spill_reg_store to
-                              that insn will allow an extra optimization.  */
-                           rtx s_reg = reload_reg_rtx[s];
-                           rtx next = NEXT_INSN (p);
-                           reload_out[s] = reload_out[j];
-                           reload_out_reg[s] = reload_out_reg[j];
-                           set = single_set (next);
-                           if (set && SET_SRC (set) == s_reg
-                               && ! new_spill_reg_store[REGNO (s_reg)])
-                             {
-                               SET_HARD_REG_BIT (reg_is_output_reload,
-                                                 REGNO (s_reg));
-                               new_spill_reg_store[REGNO (s_reg)] = next;
-                             }
-                         }
-                       else
-                         new_spill_reg_store[REGNO (reload_reg_rtx[j])] = p;
-                     }
-                 }
-             }
+  for (j = 0; j < reload_n_operands; j++)
+    input_reload_insns[j] = input_address_reload_insns[j]
+      = inpaddr_address_reload_insns[j]
+      = output_reload_insns[j] = output_address_reload_insns[j]
+      = outaddr_address_reload_insns[j]
+      = other_output_reload_insns[j] = 0;
+  other_input_address_reload_insns = 0;
+  other_input_reload_insns = 0;
+  operand_reload_insns = 0;
+  other_operand_reload_insns = 0;
 
-         if (reload_when_needed[j] == RELOAD_OTHER)
-           {
-             emit_insns (other_output_reload_insns[reload_opnum[j]]);
-             other_output_reload_insns[reload_opnum[j]] = get_insns ();
-           }
-         else
-           output_reload_insns[reload_opnum[j]] = get_insns ();
+  /* Now output the instructions to copy the data into and out of the
+     reload registers.  Do these in the order that the reloads were reported,
+     since reloads of base and index registers precede reloads of operands
+     and the operands may need the base and index registers reloaded.  */
 
-         end_sequence ();
-       }
+  for (j = 0; j < n_reloads; j++)
+    {
+      if (rld[j].reg_rtx
+         && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
+       new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
+
+      do_input_reload (chain, rld + j, j);
+      do_output_reload (chain, rld + j, j);
     }
 
   /* Now write all the insns we made for reloads in the order expected by
@@ -7309,9 +6816,9 @@ emit_reload_insns (chain)
   if (n_basic_blocks)
     {
       if (BLOCK_HEAD (chain->block) == insn)
-        BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
+       BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
       if (BLOCK_END (chain->block) == insn)
-        BLOCK_END (chain->block) = PREV_INSN (following_insn);
+       BLOCK_END (chain->block) = PREV_INSN (following_insn);
     }
 
   /* For all the spill regs newly reloaded in this instruction,
@@ -7327,41 +6834,41 @@ emit_reload_insns (chain)
       register int i = reload_spill_index[r];
 
       /* If this is a non-inherited input reload from a pseudo, we must
-         clear any memory of a previous store to the same pseudo.  Only do
-         something if there will not be an output reload for the pseudo
-         being reloaded.  */
-      if (reload_in_reg[r] != 0
-          && ! (reload_inherited[r] || reload_override_in[r]))
-        {
-          rtx reg = reload_in_reg[r];
-
-          if (GET_CODE (reg) == SUBREG)
+        clear any memory of a previous store to the same pseudo.  Only do
+        something if there will not be an output reload for the pseudo
+        being reloaded.  */
+      if (rld[r].in_reg != 0
+         && ! (reload_inherited[r] || reload_override_in[r]))
+       {
+         rtx reg = rld[r].in_reg;
+
+         if (GET_CODE (reg) == SUBREG)
            reg = SUBREG_REG (reg);
-       
-          if (GET_CODE (reg) == REG
+
+         if (GET_CODE (reg) == REG
              && REGNO (reg) >= FIRST_PSEUDO_REGISTER
              && ! reg_has_output_reload[REGNO (reg)])
            {
              int nregno = REGNO (reg);
 
              if (reg_last_reload_reg[nregno])
-               {
-                 int last_regno = REGNO (reg_last_reload_reg[nregno]);
+               {
+                 int last_regno = REGNO (reg_last_reload_reg[nregno]);
 
-                 if (reg_reloaded_contents[last_regno] == nregno)
+                 if (reg_reloaded_contents[last_regno] == nregno)
                    spill_reg_store[last_regno] = 0;
-               }
+               }
            }
        }
-                 
+
       /* I is nonneg if this reload used a register.
-        If reload_reg_rtx[r] is 0, this is an optional reload
+        If rld[r].reg_rtx is 0, this is an optional reload
         that we opted to ignore.  */
 
-      if (i >= 0 && reload_reg_rtx[r] != 0)
+      if (i >= 0 && rld[r].reg_rtx != 0)
        {
          int nr
-           = HARD_REGNO_NREGS (i, GET_MODE (reload_reg_rtx[r]));
+           = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
          int k;
          int part_reaches_end = 0;
          int all_reaches_end = 1;
@@ -7370,8 +6877,8 @@ emit_reload_insns (chain)
             of the value lives to the end.  */
          for (k = 0; k < nr; k++)
            {
-             if (reload_reg_reaches_end_p (i + k, reload_opnum[r],
-                                           reload_when_needed[r]))
+             if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
+                                           rld[r].when_needed))
                part_reaches_end = 1;
              else
                all_reaches_end = 0;
@@ -7388,29 +6895,29 @@ emit_reload_insns (chain)
                CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
 
              /* Maybe the spill reg contains a copy of reload_out.  */
-             if (reload_out[r] != 0
-                 && (GET_CODE (reload_out[r]) == REG
+             if (rld[r].out != 0
+                 && (GET_CODE (rld[r].out) == REG
 #ifdef AUTO_INC_DEC
-                     || ! reload_out_reg[r]
+                     || ! rld[r].out_reg
 #endif
-                     || GET_CODE (reload_out_reg[r]) == REG))
+                     || GET_CODE (rld[r].out_reg) == REG))
                {
-                 rtx out = (GET_CODE (reload_out[r]) == REG
-                            ? reload_out[r]
-                            : reload_out_reg[r]
-                            ? reload_out_reg[r]
-/* AUTO_INC */              : XEXP (reload_in_reg[r], 0));
+                 rtx out = (GET_CODE (rld[r].out) == REG
+                            ? rld[r].out
+                            : rld[r].out_reg
+                            ? rld[r].out_reg
+/* AUTO_INC */              : XEXP (rld[r].in_reg, 0));
                  register int nregno = REGNO (out);
                  int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
                             : HARD_REGNO_NREGS (nregno,
-                                                GET_MODE (reload_reg_rtx[r])));
+                                                GET_MODE (rld[r].reg_rtx)));
 
                  spill_reg_store[i] = new_spill_reg_store[i];
                  spill_reg_stored_to[i] = out;
-                 reg_last_reload_reg[nregno] = reload_reg_rtx[r];
+                 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
 
                  /* If NREGNO is a hard register, it may occupy more than
-                    one register.  If it does, say what is in the 
+                    one register.  If it does, say what is in the
                     rest of the registers assuming that both registers
                     agree on how many words the object takes.  If not,
                     invalidate the subsequent registers.  */
@@ -7419,8 +6926,8 @@ emit_reload_insns (chain)
                    for (k = 1; k < nnr; k++)
                      reg_last_reload_reg[nregno + k]
                        = (nr == nnr
-                          ? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
-                                         REGNO (reload_reg_rtx[r]) + k)
+                          ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
+                                         REGNO (rld[r].reg_rtx) + k)
                           : 0);
 
                  /* Now do the inverse operation.  */
@@ -7439,38 +6946,38 @@ emit_reload_insns (chain)
              /* Maybe the spill reg contains a copy of reload_in.  Only do
                 something if there will not be an output reload for
                 the register being reloaded.  */
-             else if (reload_out_reg[r] == 0
-                      && reload_in[r] != 0
-                      && ((GET_CODE (reload_in[r]) == REG
-                           && REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER
-                           && ! reg_has_output_reload[REGNO (reload_in[r])])
-                          || (GET_CODE (reload_in_reg[r]) == REG
-                              && ! reg_has_output_reload[REGNO (reload_in_reg[r])]))
-                      && ! reg_set_p (reload_reg_rtx[r], PATTERN (insn)))
+             else if (rld[r].out_reg == 0
+                      && rld[r].in != 0
+                      && ((GET_CODE (rld[r].in) == REG
+                           && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
+                           && ! reg_has_output_reload[REGNO (rld[r].in)])
+                          || (GET_CODE (rld[r].in_reg) == REG
+                              && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
+                      && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
                {
                  register int nregno;
                  int nnr;
 
-                 if (GET_CODE (reload_in[r]) == REG
-                     && REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER)
-                   nregno = REGNO (reload_in[r]);
-                 else if (GET_CODE (reload_in_reg[r]) == REG)
-                   nregno = REGNO (reload_in_reg[r]);
+                 if (GET_CODE (rld[r].in) == REG
+                     && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
+                   nregno = REGNO (rld[r].in);
+                 else if (GET_CODE (rld[r].in_reg) == REG)
+                   nregno = REGNO (rld[r].in_reg);
                  else
-                   nregno = REGNO (XEXP (reload_in_reg[r], 0));
+                   nregno = REGNO (XEXP (rld[r].in_reg, 0));
 
                  nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
                         : HARD_REGNO_NREGS (nregno,
-                                            GET_MODE (reload_reg_rtx[r])));
-                 
-                 reg_last_reload_reg[nregno] = reload_reg_rtx[r];
+                                            GET_MODE (rld[r].reg_rtx)));
+
+                 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
 
                  if (nregno < FIRST_PSEUDO_REGISTER)
                    for (k = 1; k < nnr; k++)
                      reg_last_reload_reg[nregno + k]
                        = (nr == nnr
-                          ? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
-                                         REGNO (reload_reg_rtx[r]) + k)
+                          ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
+                                         REGNO (rld[r].reg_rtx) + k)
                           : 0);
 
                  /* Unless we inherited this reload, show we haven't
@@ -7478,7 +6985,7 @@ emit_reload_insns (chain)
                     Previous stores of inherited auto_inc expressions
                     also have to be discarded.  */
                  if (! reload_inherited[r]
-                     || (reload_out[r] && ! reload_out_reg[r]))
+                     || (rld[r].out && ! rld[r].out_reg))
                    spill_reg_store[i] = 0;
 
                  for (k = 0; k < nr; k++)
@@ -7500,8 +7007,8 @@ emit_reload_insns (chain)
            {
              for (k = 0; k < nr; k++)
                if (reload_reg_reaches_end_p (i + k,
-                                             reload_opnum[r],
-                                             reload_when_needed[r]))
+                                             rld[r].opnum,
+                                             rld[r].when_needed))
                  CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
            }
        }
@@ -7514,31 +7021,31 @@ emit_reload_insns (chain)
         that invalidates any previous reloaded copy of it.
         But forget_old_reloads_1 won't get to see it, because
         it thinks only about the original insn.  So invalidate it here.  */
-      if (i < 0 && reload_out[r] != 0
-         && (GET_CODE (reload_out[r]) == REG
-             || (GET_CODE (reload_out[r]) == MEM
-                 && GET_CODE (reload_out_reg[r]) == REG)))
+      if (i < 0 && rld[r].out != 0
+         && (GET_CODE (rld[r].out) == REG
+             || (GET_CODE (rld[r].out) == MEM
+                 && GET_CODE (rld[r].out_reg) == REG)))
        {
-         rtx out = (GET_CODE (reload_out[r]) == REG
-                    ? reload_out[r] : reload_out_reg[r]);
+         rtx out = (GET_CODE (rld[r].out) == REG
+                    ? rld[r].out : rld[r].out_reg);
          register int nregno = REGNO (out);
          if (nregno >= FIRST_PSEUDO_REGISTER)
            {
-             rtx src_reg, store_insn;
+             rtx src_reg, store_insn = NULL_RTX;
 
              reg_last_reload_reg[nregno] = 0;
 
              /* If we can find a hard register that is stored, record
                 the storing insn so that we may delete this insn with
                 delete_output_reload.  */
-             src_reg = reload_reg_rtx[r];
+             src_reg = rld[r].reg_rtx;
 
              /* If this is an optional reload, try to find the source reg
                 from an input reload.  */
              if (! src_reg)
                {
                  rtx set = single_set (insn);
-                 if (set && SET_DEST (set) == reload_out[r])
+                 if (set && SET_DEST (set) == rld[r].out)
                    {
                      int k;
 
@@ -7546,9 +7053,9 @@ emit_reload_insns (chain)
                      store_insn = insn;
                      for (k = 0; k < n_reloads; k++)
                        {
-                         if (reload_in[k] == src_reg)
+                         if (rld[k].in == src_reg)
                            {
-                             src_reg = reload_reg_rtx[k];
+                             src_reg = rld[k].reg_rtx;
                              break;
                            }
                        }
@@ -7560,7 +7067,7 @@ emit_reload_insns (chain)
                  && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
                {
                  int src_regno = REGNO (src_reg);
-                 int nr = HARD_REGNO_NREGS (src_regno, reload_mode[r]);
+                 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
                  /* The place where to find a death note varies with
                     PRESERVE_DEATH_INFO_REGNO_P .  The condition is not
                     necessarily checked exactly in the code that moves
@@ -7587,7 +7094,7 @@ emit_reload_insns (chain)
            }
          else
            {
-             int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (reload_out[r]));
+             int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (rld[r].out));
 
              while (num_regs-- > 0)
                reg_last_reload_reg[nregno + num_regs] = 0;
@@ -7599,7 +7106,7 @@ emit_reload_insns (chain)
 \f
 /* Emit code to perform a reload from IN (which may be a reload register) to
    OUT (which may also be a reload register).  IN or OUT is from operand
-   OPNUM with reload type TYPE. 
+   OPNUM with reload type TYPE.
 
    Returns first insn emitted.  */
 
@@ -7621,9 +7128,9 @@ gen_reload (out, in, opnum, type)
       && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
     in = SUBREG_REG (in), out = tem;
   else if (GET_CODE (out) == SUBREG
-      && (GET_MODE_SIZE (GET_MODE (out))
-         > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
-      && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
+          && (GET_MODE_SIZE (GET_MODE (out))
+              > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
+          && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
     out = SUBREG_REG (out), in = tem;
 
   /* How to do this reload can get quite tricky.  Normally, we are being
@@ -7710,17 +7217,28 @@ gen_reload (out, in, opnum, type)
       delete_insns_since (last);
 
       /* If that failed, we must use a conservative two-insn sequence.
-        use move to copy constant, MEM, or pseudo register to the reload
-        register since "move" will be able to handle an arbitrary operand,
-        unlike add which can't, in general.  Then add the registers.
+
+        Use a move to copy one operand into the reload register.  Prefer
+        to reload a constant, MEM or pseudo since the move patterns can
+        handle an arbitrary operand.  If OP1 is not a constant, MEM or
+        pseudo and OP1 is not a valid operand for an add instruction, then
+        reload OP1.
+
+        After reloading one of the operands into the reload register, add
+        the reload register to the output register.
 
         If there is another way to do this for a specific machine, a
         DEFINE_PEEPHOLE should be specified that recognizes the sequence
         we emit below.  */
 
+      code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
+
       if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
          || (GET_CODE (op1) == REG
-             && REGNO (op1) >= FIRST_PSEUDO_REGISTER))
+             && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
+         || (code != CODE_FOR_nothing
+             && ! ((*insn_data[code].operand[2].predicate)
+                   (op1, insn_data[code].operand[2].mode))))
        tem = op0, op0 = op1, op1 = tem;
 
       gen_reload (out, op0, opnum, type);
@@ -7828,7 +7346,7 @@ delete_output_reload (insn, j, last_reload_reg)
   int n_inherited = 0;
   register rtx i1;
   rtx substed;
-  
+
   /* Get the raw pseudo-register referred to.  */
 
   while (GET_CODE (reg) == SUBREG)
@@ -7839,14 +7357,14 @@ delete_output_reload (insn, j, last_reload_reg)
      insn than it is inherited.  */
   for (k = n_reloads - 1; k >= 0; k--)
     {
-      rtx reg2 = reload_in[k];
+      rtx reg2 = rld[k].in;
       if (! reg2)
        continue;
       if (GET_CODE (reg2) == MEM || reload_override_in[k])
-       reg2 = reload_in_reg[k];
+       reg2 = rld[k].in_reg;
 #ifdef AUTO_INC_DEC
-      if (reload_out[k] && ! reload_out_reg[k])
-       reg2 = XEXP (reload_in_reg[k], 0);
+      if (rld[k].out && ! rld[k].out_reg)
+       reg2 = XEXP (rld[k].in_reg, 0);
 #endif
       while (GET_CODE (reg2) == SUBREG)
        reg2 = SUBREG_REG (reg2);
@@ -7855,7 +7373,7 @@ delete_output_reload (insn, j, last_reload_reg)
          if (reload_inherited[k] || reload_override_in[k] || k == j)
            {
              n_inherited++;
-             reg2 = reload_out_reg[k];
+             reg2 = rld[k].out_reg;
              if (! reg2)
                continue;
              while (GET_CODE (reg2) == SUBREG)
@@ -7908,7 +7426,7 @@ delete_output_reload (insn, j, last_reload_reg)
      See if the pseudo reg has been completely replaced
      with reload regs.  If so, delete the store insn
      and forget we had a stack slot for the pseudo.  */
-  if (reload_out[j] != reload_in[j]
+  if (rld[j].out != rld[j].in
       && REG_N_DEATHS (REGNO (reg)) == 1
       && REG_N_SETS (REGNO (reg)) == 1
       && REG_BASIC_BLOCK (REGNO (reg)) >= 0
@@ -7966,7 +7484,7 @@ delete_output_reload (insn, j, last_reload_reg)
 
       /* For the debugging info,
         say the pseudo lives in this reload reg.  */
-      reg_renumber[REGNO (reg)] = REGNO (reload_reg_rtx[j]);
+      reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
       alter_reg (REGNO (reg), -1);
     }
   delete_address_reloads (output_reload_insn, insn);
@@ -8026,7 +7544,7 @@ delete_address_reloads_1 (dead_insn, x, current_insn)
 
   if (code != REG)
     {
-      char *fmt= GET_RTX_FORMAT (code);
+      const char *fmt= GET_RTX_FORMAT (code);
       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
        {
          if (fmt[i] == 'e')
@@ -8087,11 +7605,11 @@ delete_address_reloads_1 (dead_insn, x, current_insn)
              if (i2 == current_insn)
                {
                  for (j = n_reloads - 1; j >= 0; j--)
-                   if ((reload_reg_rtx[j] == dst && reload_inherited[j])
+                   if ((rld[j].reg_rtx == dst && reload_inherited[j])
                        || reload_override_in[j] == dst)
                      return;
                  for (j = n_reloads - 1; j >= 0; j--)
-                   if (reload_in[j] && reload_reg_rtx[j] == dst)
+                   if (rld[j].in && rld[j].reg_rtx == dst)
                      break;
                  if (j >= 0)
                    break;
@@ -8100,14 +7618,13 @@ delete_address_reloads_1 (dead_insn, x, current_insn)
            }
          if (GET_CODE (i2) == JUMP_INSN)
            break;
-         if (reg_set_p (dst, PATTERN (i2)))
-           break;
          /* If DST is still live at CURRENT_INSN, check if it is used for
-            any reload.  */
+            any reload.  Note that even if CURRENT_INSN sets DST, we still
+            have to check the reloads.  */
          if (i2 == current_insn)
            {
              for (j = n_reloads - 1; j >= 0; j--)
-               if ((reload_reg_rtx[j] == dst && reload_inherited[j])
+               if ((rld[j].reg_rtx == dst && reload_inherited[j])
                    || reload_override_in[j] == dst)
                  return;
              /* ??? We can't finish the loop here, because dst might be
@@ -8116,6 +7633,8 @@ delete_address_reloads_1 (dead_insn, x, current_insn)
                 spill_hard_reg.  There is no easy way to tell this, so we
                 have to scan till the end of the basic block.  */
            }
+         if (reg_set_p (dst, PATTERN (i2)))
+           break;
        }
     }
   delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
@@ -8179,7 +7698,7 @@ inc_for_reload (reloadreg, in, value, inc_amount)
       add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
                                         gen_rtx_PLUS (GET_MODE (incloc),
                                                       incloc, inc)));
-                                                         
+
       code = recog_memoized (add_insn);
       if (code >= 0)
        {
@@ -8235,7 +7754,7 @@ inc_for_reload (reloadreg, in, value, inc_amount)
 
 static int
 constraint_accepts_reg_p (string, reg)
-     char *string;
+     const char *string;
      rtx reg;
 {
   int value = 0;
@@ -8284,7 +7803,7 @@ count_occurrences (x, find)
 {
   register int i, j;
   register enum rtx_code code;
-  register char *format_ptr;
+  register const char *format_ptr;
   int count;
 
   if (x == find)
@@ -8314,7 +7833,7 @@ count_occurrences (x, find)
       if (SET_DEST (x) == find)
        return count_occurrences (SET_SRC (x), find);
       break;
-      
+
     default:
       break;
     }
@@ -8342,590 +7861,162 @@ count_occurrences (x, find)
   return count;
 }
 \f
-/* This array holds values which are equivalent to a hard register
-   during reload_cse_regs.  Each array element is an EXPR_LIST of
-   values.  Each time a hard register is set, we set the corresponding
-   array element to the value.  Each time a hard register is copied
-   into memory, we add the memory location to the corresponding array
-   element.  We don't store values or memory addresses with side
-   effects in this array.
-
-   If the value is a CONST_INT, then the mode of the containing
-   EXPR_LIST is the mode in which that CONST_INT was referenced.
-
-   We sometimes clobber a specific entry in a list.  In that case, we
-   just set XEXP (list-entry, 0) to 0.  */
-
-static rtx *reg_values;
-
-/* This is a preallocated REG rtx which we use as a temporary in
-   reload_cse_invalidate_regno, so that we don't need to allocate a
-   new one each time through a loop in that function.  */
-
-static rtx invalidate_regno_rtx;
-
-/* Invalidate any entries in reg_values which depend on REGNO,
-   including those for REGNO itself.  This is called if REGNO is
-   changing.  If CLOBBER is true, then always forget anything we
-   currently know about REGNO.  MODE is the mode of the assignment to
-   REGNO, which is used to determine how many hard registers are being
-   changed.  If MODE is VOIDmode, then only REGNO is being changed;
-   this is used when invalidating call clobbered registers across a
-   call.  */
-
-static void
-reload_cse_invalidate_regno (regno, mode, clobber)
-     int regno;
-     enum machine_mode mode;
-     int clobber;
-{
-  int endregno;
-  register int i;
-
-  /* Our callers don't always go through true_regnum; we may see a
-     pseudo-register here from a CLOBBER or the like.  We probably
-     won't ever see a pseudo-register that has a real register number,
-     for we check anyhow for safety.  */
-  if (regno >= FIRST_PSEUDO_REGISTER)
-    regno = reg_renumber[regno];
-  if (regno < 0)
-    return;
-
-  if (mode == VOIDmode)
-    endregno = regno + 1;
-  else
-    endregno = regno + HARD_REGNO_NREGS (regno, mode);
-
-  if (clobber)
-    for (i = regno; i < endregno; i++)
-      reg_values[i] = 0;
-
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    {
-      rtx x;
-
-      for (x = reg_values[i]; x; x = XEXP (x, 1))
-       {
-         if (XEXP (x, 0) != 0
-             && refers_to_regno_p (regno, endregno, XEXP (x, 0), NULL_PTR))
-           {
-             /* If this is the only entry on the list, clear
-                 reg_values[i].  Otherwise, just clear this entry on
-                 the list.  */
-             if (XEXP (x, 1) == 0 && x == reg_values[i])
-               {
-                 reg_values[i] = 0;
-                 break;
-               }
-             XEXP (x, 0) = 0;
-           }
-       }
-    }
-
-  /* We must look at earlier registers, in case REGNO is part of a
-     multi word value but is not the first register.  If an earlier
-     register has a value in a mode which overlaps REGNO, then we must
-     invalidate that earlier register.  Note that we do not need to
-     check REGNO or later registers (we must not check REGNO itself,
-     because we would incorrectly conclude that there was a conflict).  */
-
-  for (i = 0; i < regno; i++)
-    {
-      rtx x;
-
-      for (x = reg_values[i]; x; x = XEXP (x, 1))
-       {
-         if (XEXP (x, 0) != 0)
-           {
-             PUT_MODE (invalidate_regno_rtx, GET_MODE (x));
-             REGNO (invalidate_regno_rtx) = i;
-             if (refers_to_regno_p (regno, endregno, invalidate_regno_rtx,
-                                    NULL_PTR))
-               {
-                 reload_cse_invalidate_regno (i, VOIDmode, 1);
-                 break;
-               }
-           }
-       }
-    }
-}
-
-/* The memory at address MEM_BASE is being changed.
-   Return whether this change will invalidate VAL.  */
-
-static int
-reload_cse_mem_conflict_p (mem_base, val)
-     rtx mem_base;
-     rtx val;
-{
-  enum rtx_code code;
-  char *fmt;
-  int i;
-
-  code = GET_CODE (val);
-  switch (code)
-    {
-      /* Get rid of a few simple cases quickly. */
-    case REG:
-    case PC:
-    case CC0:
-    case SCRATCH:
-    case CONST:
-    case CONST_INT:
-    case CONST_DOUBLE:
-    case SYMBOL_REF:
-    case LABEL_REF:
-      return 0;
-
-    case MEM:
-      if (GET_MODE (mem_base) == BLKmode
-         || GET_MODE (val) == BLKmode)
-       return 1;
-      if (anti_dependence (val, mem_base))
-       return 1;
-      /* The address may contain nested MEMs.  */
-      break;
-
-    default:
-      break;
-    }
-
-  fmt = GET_RTX_FORMAT (code);
-
-  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
-    {
-      if (fmt[i] == 'e')
-       {
-         if (reload_cse_mem_conflict_p (mem_base, XEXP (val, i)))
-           return 1;
-       }
-      else if (fmt[i] == 'E')
-       {
-         int j;
-
-         for (j = 0; j < XVECLEN (val, i); j++)
-           if (reload_cse_mem_conflict_p (mem_base, XVECEXP (val, i, j)))
-             return 1;
-       }
-    }
-
-  return 0;
-}
-
-/* Invalidate any entries in reg_values which are changed because of a
-   store to MEM_RTX.  If this is called because of a non-const call
-   instruction, MEM_RTX is (mem:BLK const0_rtx).  */
-
-static void
-reload_cse_invalidate_mem (mem_rtx)
-     rtx mem_rtx;
-{
-  register int i;
-
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-    {
-      rtx x;
-
-      for (x = reg_values[i]; x; x = XEXP (x, 1))
-       {
-         if (XEXP (x, 0) != 0
-             && reload_cse_mem_conflict_p (mem_rtx, XEXP (x, 0)))
-           {
-             /* If this is the only entry on the list, clear
-                 reg_values[i].  Otherwise, just clear this entry on
-                 the list.  */
-             if (XEXP (x, 1) == 0 && x == reg_values[i])
-               {
-                 reg_values[i] = 0;
-                 break;
-               }
-             XEXP (x, 0) = 0;
-           }
-       }
-    }
-}
-
-/* Invalidate DEST, which is being assigned to or clobbered.  The
-   second parameter exists so that this function can be passed to
-   note_stores; it is ignored.  */
-
-static void
-reload_cse_invalidate_rtx (dest, ignore)
-     rtx dest;
-     rtx ignore ATTRIBUTE_UNUSED;
-{
-  while (GET_CODE (dest) == STRICT_LOW_PART
-        || GET_CODE (dest) == SIGN_EXTRACT
-        || GET_CODE (dest) == ZERO_EXTRACT
-        || GET_CODE (dest) == SUBREG)
-    dest = XEXP (dest, 0);
-
-  if (GET_CODE (dest) == REG)
-    reload_cse_invalidate_regno (REGNO (dest), GET_MODE (dest), 1);
-  else if (GET_CODE (dest) == MEM)
-    reload_cse_invalidate_mem (dest);
-}
-
-/* Do a very simple CSE pass over the hard registers.
-
-   This function detects no-op moves where we happened to assign two
-   different pseudo-registers to the same hard register, and then
-   copied one to the other.  Reload will generate a useless
-   instruction copying a register to itself.
-
-   This function also detects cases where we load a value from memory
-   into two different registers, and (if memory is more expensive than
-   registers) changes it to simply copy the first register into the
-   second register.  
-
-   Another optimization is performed that scans the operands of each
-   instruction to see whether the value is already available in a
-   hard register.  It then replaces the operand with the hard register
-   if possible, much like an optional reload would.  */
-
+/* INSN is a no-op; delete it.
+   If this sets the return value of the function, we must keep a USE around,
+   in case this is in a different basic block than the final USE.  Otherwise,
+   we could loose important register lifeness information on
+   SMALL_REGISTER_CLASSES machines, where return registers might be used as
+   spills:  subsequent passes assume that spill registers are dead at the end
+   of a basic block.
+   VALUE must be the return value in such a case, NULL otherwise.  */
 static void
-reload_cse_regs_1 (first)
-     rtx first;
+reload_cse_delete_noop_set (insn, value)
+     rtx insn, value;
 {
-  char *firstobj;
-  rtx callmem;
-  register int i;
-  rtx insn;
-
-  init_alias_analysis ();
-
-  reg_values = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx));
-  bzero ((char *)reg_values, FIRST_PSEUDO_REGISTER * sizeof (rtx));
-
-  /* Create our EXPR_LIST structures on reload_obstack, so that we can
-     free them when we are done.  */
-  push_obstacks (&reload_obstack, &reload_obstack);
-  firstobj = (char *) obstack_alloc (&reload_obstack, 0);
-
-  /* We pass this to reload_cse_invalidate_mem to invalidate all of
-     memory for a non-const call instruction.  */
-  callmem = gen_rtx_MEM (BLKmode, const0_rtx);
-
-  /* This is used in reload_cse_invalidate_regno to avoid consing a
-     new REG in a loop in that function.  */
-  invalidate_regno_rtx = gen_rtx_REG (VOIDmode, 0);
-
-  for (insn = first; insn; insn = NEXT_INSN (insn))
+  if (value)
     {
-      rtx body;
-
-      if (GET_CODE (insn) == CODE_LABEL)
-       {
-         /* Forget all the register values at a code label.  We don't
-             try to do anything clever around jumps.  */
-         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-           reg_values[i] = 0;
-
-         continue;
-       }
-
-#ifdef NON_SAVING_SETJMP 
-      if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
-         && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
-       {
-         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-           reg_values[i] = 0;
-
-         continue;
-       }
-#endif
-
-      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
-       continue;
-
-      /* If this is a call instruction, forget anything stored in a
-        call clobbered register, or, if this is not a const call, in
-        memory.  */
-      if (GET_CODE (insn) == CALL_INSN)
-       {
-         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
-           if (call_used_regs[i])
-             reload_cse_invalidate_regno (i, VOIDmode, 1);
-
-         if (! CONST_CALL_P (insn))
-           reload_cse_invalidate_mem (callmem);
-       }
-
-      body = PATTERN (insn);
-      if (GET_CODE (body) == SET)
-       {
-         int count = 0;
-         if (reload_cse_noop_set_p (body, insn))
-           {
-             /* If this sets the return value of the function, we must keep
-                a USE around, in case this is in a different basic block
-                than the final USE.  Otherwise, we could loose important
-                register lifeness information on SMALL_REGISTER_CLASSES
-                machines, where return registers might be used as spills:
-                subsequent passes assume that spill registers are dead at
-                the end of a basic block.  */
-             if (REG_FUNCTION_VALUE_P (SET_DEST (body)))
-               {
-                 pop_obstacks ();
-                 PATTERN (insn) = gen_rtx_USE (VOIDmode, SET_DEST (body));
-                 INSN_CODE (insn) = -1;
-                 REG_NOTES (insn) = NULL_RTX;
-                 push_obstacks (&reload_obstack, &reload_obstack);
-               }
-             else
-               {
-                 PUT_CODE (insn, NOTE);
-                 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
-                 NOTE_SOURCE_FILE (insn) = 0;
-               }
-
-             /* We're done with this insn.  */
-             continue;
-           }
-
-         /* It's not a no-op, but we can try to simplify it.  */
-         count += reload_cse_simplify_set (body, insn);
-
-         if (count > 0)
-           apply_change_group ();
-         else
-           reload_cse_simplify_operands (insn);
-           
-         reload_cse_record_set (body, body);
-       }
-      else if (GET_CODE (body) == PARALLEL)
-       {
-         int count = 0;
-         rtx value = NULL_RTX;
-
-         /* If every action in a PARALLEL is a noop, we can delete
-             the entire PARALLEL.  */
-         for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
-           {
-             rtx part = XVECEXP (body, 0, i);
-             if (GET_CODE (part) == SET)
-               {
-                 if (! reload_cse_noop_set_p (part, insn))
-                   break;
-                 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
-                   {
-                     if (value)
-                       break;
-                     value = SET_DEST (part);
-                   }
-               }
-             else if (GET_CODE (part) != CLOBBER)
-               break;
-           }
-         if (i < 0)
-           {
-             if (value)
-               {
-                 pop_obstacks ();
-                 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
-                 INSN_CODE (insn) = -1;
-                 REG_NOTES (insn) = NULL_RTX;
-                 push_obstacks (&reload_obstack, &reload_obstack);
-               }
-             else
-               {
-                 PUT_CODE (insn, NOTE);
-                 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
-                 NOTE_SOURCE_FILE (insn) = 0;
-               }
-
-             /* We're done with this insn.  */
-             continue;
-           }
-         
-         /* It's not a no-op, but we can try to simplify it.  */
-         for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
-           if (GET_CODE (XVECEXP (body, 0, i)) == SET)
-             count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
-
-         if (count > 0)
-           apply_change_group ();
-         else
-           reload_cse_simplify_operands (insn);
-
-         /* Look through the PARALLEL and record the values being
-             set, if possible.  Also handle any CLOBBERs.  */
-         for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
-           {
-             rtx x = XVECEXP (body, 0, i);
-
-             if (GET_CODE (x) == SET)
-               reload_cse_record_set (x, body);
-             else
-               note_stores (x, reload_cse_invalidate_rtx);
-           }
-       }
-      else
-       note_stores (body, reload_cse_invalidate_rtx);
-
-#ifdef AUTO_INC_DEC
-      /* Clobber any registers which appear in REG_INC notes.  We
-         could keep track of the changes to their values, but it is
-         unlikely to help.  */
-      {
-       rtx x;
-
-       for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
-         if (REG_NOTE_KIND (x) == REG_INC)
-           reload_cse_invalidate_rtx (XEXP (x, 0), NULL_RTX);
-      }
-#endif
-
-      /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
-         after we have processed the insn.  */
-      if (GET_CODE (insn) == CALL_INSN)
-       {
-         rtx x;
-
-         for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
-           if (GET_CODE (XEXP (x, 0)) == CLOBBER)
-             reload_cse_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX);
-       }
+      PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
+      INSN_CODE (insn) = -1;
+      REG_NOTES (insn) = NULL_RTX;
+    }
+  else
+    {
+      PUT_CODE (insn, NOTE);
+      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+      NOTE_SOURCE_FILE (insn) = 0;
     }
-
-  /* Free all the temporary structures we created, and go back to the
-     regular obstacks.  */
-  obstack_free (&reload_obstack, firstobj);
-  pop_obstacks ();
-}
-
-/* Call cse / combine like post-reload optimization phases.
-   FIRST is the first instruction.  */
-void
-reload_cse_regs (first)
-     rtx first;
-{
-  reload_cse_regs_1 (first);
-  reload_combine ();
-  reload_cse_move2add (first);
-  if (flag_expensive_optimizations)
-    reload_cse_regs_1 (first);
 }
 
-/* Return whether the values known for REGNO are equal to VAL.  MODE
-   is the mode of the object that VAL is being copied to; this matters
-   if VAL is a CONST_INT.  */
-
+/* See whether a single set SET is a noop.  */
 static int
-reload_cse_regno_equal_p (regno, val, mode)
-     int regno;
-     rtx val;
-     enum machine_mode mode;
+reload_cse_noop_set_p (set)
+     rtx set;
 {
-  rtx x;
-
-  if (val == 0)
-    return 0;
-
-  for (x = reg_values[regno]; x; x = XEXP (x, 1))
-    if (XEXP (x, 0) != 0
-       && rtx_equal_p (XEXP (x, 0), val)
-       && (! flag_float_store || GET_CODE (XEXP (x, 0)) != MEM
-           || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
-       && (GET_CODE (val) != CONST_INT
-           || mode == GET_MODE (x)
-           || (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
-               /* On a big endian machine if the value spans more than
-                  one register then this register holds the high part of
-                  it and we can't use it.
-
-                  ??? We should also compare with the high part of the
-                  value.  */
-               && !(WORDS_BIG_ENDIAN
-                    && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
-               && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
-                                         GET_MODE_BITSIZE (GET_MODE (x))))))
-      return 1;
-
-  return 0;
+  return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
 }
 
-/* See whether a single set is a noop.  SET is the set instruction we
-   are should check, and INSN is the instruction from which it came.  */
-
-static int
-reload_cse_noop_set_p (set, insn)
-     rtx set;
+/* Try to simplify INSN.  */
+static void
+reload_cse_simplify (insn)
      rtx insn;
 {
-  rtx src, dest;
-  enum machine_mode dest_mode;
-  int dreg, sreg;
-  int ret;
-
-  src = SET_SRC (set);
-  dest = SET_DEST (set);
-  dest_mode = GET_MODE (dest);
-
-  if (side_effects_p (src))
-    return 0;
+  rtx body = PATTERN (insn);
 
-  dreg = true_regnum (dest);
-  sreg = true_regnum (src);
+  if (GET_CODE (body) == SET)
+    {
+      int count = 0;
+      if (reload_cse_noop_set_p (body))
+       {
+         rtx value = SET_DEST (body);
+         if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
+           value = 0;
+         reload_cse_delete_noop_set (insn, value);
+         return;
+       }
 
-  /* Check for setting a register to itself.  In this case, we don't
-     have to worry about REG_DEAD notes.  */
-  if (dreg >= 0 && dreg == sreg)
-    return 1;
+      /* It's not a no-op, but we can try to simplify it.  */
+      count += reload_cse_simplify_set (body, insn);
 
-  ret = 0;
-  if (dreg >= 0)
+      if (count > 0)
+       apply_change_group ();
+      else
+       reload_cse_simplify_operands (insn);
+    }
+  else if (GET_CODE (body) == PARALLEL)
     {
-      /* Check for setting a register to itself.  */
-      if (dreg == sreg)
-       ret = 1;
-
-      /* Check for setting a register to a value which we already know
-         is in the register.  */
-      else if (reload_cse_regno_equal_p (dreg, src, dest_mode))
-       ret = 1;
+      int i;
+      int count = 0;
+      rtx value = NULL_RTX;
 
-      /* Check for setting a register DREG to another register SREG
-         where SREG is equal to a value which is already in DREG.  */
-      else if (sreg >= 0)
+      /* If every action in a PARALLEL is a noop, we can delete
+        the entire PARALLEL.  */
+      for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
        {
-         rtx x;
-
-         for (x = reg_values[sreg]; x; x = XEXP (x, 1))
+         rtx part = XVECEXP (body, 0, i);
+         if (GET_CODE (part) == SET)
            {
-             rtx tmp;
-
-             if (XEXP (x, 0) == 0)
-               continue;
-
-             if (dest_mode == GET_MODE (x))
-               tmp = XEXP (x, 0);
-             else if (GET_MODE_BITSIZE (dest_mode)
-                      < GET_MODE_BITSIZE (GET_MODE (x)))
-               tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
-             else
-               continue;
-
-             if (tmp
-                 && reload_cse_regno_equal_p (dreg, tmp, dest_mode))
+             if (! reload_cse_noop_set_p (part))
+               break;
+             if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
                {
-                 ret = 1;
-                 break;
+                 if (value)
+                   break;
+                 value = SET_DEST (part);
                }
            }
+         else if (GET_CODE (part) != CLOBBER)
+           break;
+       }
+
+      if (i < 0)
+       {
+         reload_cse_delete_noop_set (insn, value);
+         /* We're done with this insn.  */
+         return;
        }
+
+      /* It's not a no-op, but we can try to simplify it.  */
+      for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
+       if (GET_CODE (XVECEXP (body, 0, i)) == SET)
+         count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
+
+      if (count > 0)
+       apply_change_group ();
+      else
+       reload_cse_simplify_operands (insn);
     }
-  else if (GET_CODE (dest) == MEM)
+}
+
+/* Do a very simple CSE pass over the hard registers.
+
+   This function detects no-op moves where we happened to assign two
+   different pseudo-registers to the same hard register, and then
+   copied one to the other.  Reload will generate a useless
+   instruction copying a register to itself.
+
+   This function also detects cases where we load a value from memory
+   into two different registers, and (if memory is more expensive than
+   registers) changes it to simply copy the first register into the
+   second register.
+
+   Another optimization is performed that scans the operands of each
+   instruction to see whether the value is already available in a
+   hard register.  It then replaces the operand with the hard register
+   if possible, much like an optional reload would.  */
+
+static void
+reload_cse_regs_1 (first)
+     rtx first;
+{
+  rtx insn;
+
+  cselib_init ();  
+  init_alias_analysis ();
+
+  for (insn = first; insn; insn = NEXT_INSN (insn))
     {
-      /* Check for storing a register to memory when we know that the
-         register is equivalent to the memory location. */
-      if (sreg >= 0
-         && reload_cse_regno_equal_p (sreg, dest, dest_mode)
-         && ! side_effects_p (dest))
-       ret = 1;
+      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+       reload_cse_simplify (insn);
+
+      cselib_process_insn (insn);
     }
 
-  return ret;
+  /* Clean up.  */
+  end_alias_analysis ();
+  cselib_finish ();
+}
+
+/* Call cse / combine like post-reload optimization phases.
+   FIRST is the first instruction.  */
+void
+reload_cse_regs (first)
+     rtx first;
+{
+  reload_cse_regs_1 (first);
+  reload_combine ();
+  reload_cse_move2add (first);
+  if (flag_expensive_optimizations)
+    reload_cse_regs_1 (first);
 }
 
 /* Try to simplify a single SET instruction.  SET is the set pattern.
@@ -8939,11 +8030,13 @@ reload_cse_simplify_set (set, insn)
      rtx set;
      rtx insn;
 {
+  int did_change = 0;
   int dreg;
   rtx src;
-  enum machine_mode dest_mode;
   enum reg_class dclass;
-  register int i;
+  int old_cost;
+  cselib_val *val;
+  struct elt_loc_list *l;
 
   dreg = true_regnum (SET_DEST (set));
   if (dreg < 0)
@@ -8956,44 +8049,45 @@ reload_cse_simplify_set (set, insn)
   dclass = REGNO_REG_CLASS (dreg);
 
   /* If memory loads are cheaper than register copies, don't change them.  */
-  if (GET_CODE (src) == MEM
-      && MEMORY_MOVE_COST (GET_MODE (src), dclass, 1) < 2)
-    return 0;
+  if (GET_CODE (src) == MEM)
+    old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
+  else if (CONSTANT_P (src))
+    old_cost = rtx_cost (src, SET);
+  else if (GET_CODE (src) == REG)
+    old_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (src)), dclass);
+  else
+    /* ???   */
+    old_cost = rtx_cost (src, SET);
 
-  /* If the constant is cheaper than a register, don't change it.  */
-  if (CONSTANT_P (src)
-      && rtx_cost (src, SET) < 2)
+  val = cselib_lookup (src, VOIDmode, 0);
+  if (! val)
     return 0;
-
-  dest_mode = GET_MODE (SET_DEST (set));
-  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+  for (l = val->locs; l; l = l->next)
     {
-      if (i != dreg
-         && REGISTER_MOVE_COST (REGNO_REG_CLASS (i), dclass) == 2
-         && reload_cse_regno_equal_p (i, src, dest_mode))
-       {
-         int validated;
-
-         /* Pop back to the real obstacks while changing the insn.  */
-         pop_obstacks ();
-
-         validated = validate_change (insn, &SET_SRC (set),
-                                      gen_rtx_REG (dest_mode, i), 1);
-
-         /* Go back to the obstack we are using for temporary
-             storage.  */
-         push_obstacks (&reload_obstack, &reload_obstack);
-
-         if (validated)
-           return 1;
-       }
+      int this_cost;
+      if (CONSTANT_P (l->loc) && ! references_value_p (l->loc, 0))
+       this_cost = rtx_cost (l->loc, SET);
+      else if (GET_CODE (l->loc) == REG)
+       this_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (l->loc)),
+                                       dclass);
+      else
+       continue;
+      /* If equal costs, prefer registers over anything else.  That tends to
+        lead to smaller instructions on some machines.  */
+      if ((this_cost < old_cost
+          || (this_cost == old_cost
+              && GET_CODE (l->loc) == REG
+              && GET_CODE (SET_SRC (set)) != REG))
+         && validate_change (insn, &SET_SRC (set), copy_rtx (l->loc), 1))
+       old_cost = this_cost, did_change = 1;
     }
-  return 0;
+
+  return did_change;
 }
 
 /* Try to replace operands in INSN with equivalent values that are already
-   in registers.  This can be viewed as optional reloading.  
+   in registers.  This can be viewed as optional reloading.
+
    For each non-register operand in the insn, see if any hard regs are
    known to be equivalent to that operand.  Record the alternatives which
    can accept these hard registers.  Among all alternatives, select the
@@ -9006,11 +8100,13 @@ static int
 reload_cse_simplify_operands (insn)
      rtx insn;
 {
-#ifdef REGISTER_CONSTRAINTS
   int i,j;
 
-  char *constraints[MAX_RECOG_OPERANDS];
-  
+  /* For each operand, all registers that are equivalent to it.  */
+  HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
+
+  const char *constraints[MAX_RECOG_OPERANDS];
+
   /* Vector recording how bad an alternative is.  */
   int *alternative_reject;
   /* Vector recording how many registers can be introduced by choosing
@@ -9023,34 +8119,56 @@ reload_cse_simplify_operands (insn)
   /* Array of alternatives, sorted in order of decreasing desirability.  */
   int *alternative_order;
   rtx reg = gen_rtx_REG (VOIDmode, -1);
-  
+
   extract_insn (insn);
 
-  if (recog_n_alternatives == 0 || recog_n_operands == 0)
+  if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
     return 0;
 
   /* Figure out which alternative currently matches.  */
   if (! constrain_operands (1))
     fatal_insn_not_found (insn);
+  
+  alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
+  alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
+  alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
+  bzero ((char *)alternative_reject, recog_data.n_alternatives * sizeof (int));
+  bzero ((char *)alternative_nregs, recog_data.n_alternatives * sizeof (int));
+
+  /* For each operand, find out which regs are equivalent.  */
+  for (i = 0; i < recog_data.n_operands; i++)
+    {
+      cselib_val *v;
+      struct elt_loc_list *l;
+
+      CLEAR_HARD_REG_SET (equiv_regs[i]);
+
+      /* cselib blows up on CODE_LABELs.  Trying to fix that doesn't seem
+        right, so avoid the problem here.  */
+      if (GET_CODE (recog_data.operand[i]) == CODE_LABEL)
+       continue;
+
+      v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
+      if (! v)
+       continue;
 
-  alternative_reject = (int *) alloca (recog_n_alternatives * sizeof (int));
-  alternative_nregs = (int *) alloca (recog_n_alternatives * sizeof (int));
-  alternative_order = (int *) alloca (recog_n_alternatives * sizeof (int));
-  bzero ((char *)alternative_reject, recog_n_alternatives * sizeof (int));
-  bzero ((char *)alternative_nregs, recog_n_alternatives * sizeof (int));
+      for (l = v->locs; l; l = l->next)
+       if (GET_CODE (l->loc) == REG)
+         SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
+    }
 
-  for (i = 0; i < recog_n_operands; i++)
+  for (i = 0; i < recog_data.n_operands; i++)
     {
       enum machine_mode mode;
       int regno;
-      char *p;
+      const char *p;
 
-      op_alt_regno[i] = (int *) alloca (recog_n_alternatives * sizeof (int));
-      for (j = 0; j < recog_n_alternatives; j++)
+      op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
+      for (j = 0; j < recog_data.n_alternatives; j++)
        op_alt_regno[i][j] = -1;
 
-      p = constraints[i] = recog_constraints[i];
-      mode = recog_operand_mode[i];
+      p = constraints[i] = recog_data.constraints[i];
+      mode = recog_data.operand_mode[i];
 
       /* Add the reject values for each alternative given by the constraints
         for this operand.  */
@@ -9068,7 +8186,7 @@ reload_cse_simplify_operands (insn)
 
       /* We won't change operands which are already registers.  We
         also don't want to modify output operands.  */
-      regno = true_regnum (recog_operand[i]);
+      regno = true_regnum (recog_data.operand[i]);
       if (regno >= 0
          || constraints[i][0] == '='
          || constraints[i][0] == '+')
@@ -9078,7 +8196,7 @@ reload_cse_simplify_operands (insn)
        {
          int class = (int) NO_REGS;
 
-         if (! reload_cse_regno_equal_p (regno, recog_operand[i], mode))
+         if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
            continue;
 
          REGNO (reg) = regno;
@@ -9092,13 +8210,14 @@ reload_cse_simplify_operands (insn)
          for (;;)
            {
              char c = *p++;
-             
+
              switch (c)
                {
                case '=':  case '+':  case '?':
                case '#':  case '&':  case '!':
-               case '*':  case '%':  
+               case '*':  case '%':
                case '0':  case '1':  case '2':  case '3':  case '4':
+               case '5':  case '6':  case '7':  case '8':  case '9':
                case 'm':  case '<':  case '>':  case 'V':  case 'o':
                case 'E':  case 'F':  case 'G':  case 'H':
                case 's':  case 'i':  case 'n':
@@ -9127,8 +8246,9 @@ reload_cse_simplify_operands (insn)
                     a cheap CONST_INT. */
                  if (op_alt_regno[i][j] == -1
                      && reg_fits_class_p (reg, class, 0, mode)
-                     && (GET_CODE (recog_operand[i]) != CONST_INT
-                         || rtx_cost (recog_operand[i], SET) > rtx_cost (reg, SET)))
+                     && (GET_CODE (recog_data.operand[i]) != CONST_INT
+                         || (rtx_cost (recog_data.operand[i], SET)
+                             > rtx_cost (reg, SET))))
                    {
                      alternative_nregs[j]++;
                      op_alt_regno[i][j] = regno;
@@ -9145,21 +8265,21 @@ reload_cse_simplify_operands (insn)
 
   /* Record all alternatives which are better or equal to the currently
      matching one in the alternative_order array.  */
-  for (i = j = 0; i < recog_n_alternatives; i++)
+  for (i = j = 0; i < recog_data.n_alternatives; i++)
     if (alternative_reject[i] <= alternative_reject[which_alternative])
       alternative_order[j++] = i;
-  recog_n_alternatives = j;
+  recog_data.n_alternatives = j;
 
   /* Sort it.  Given a small number of alternatives, a dumb algorithm
      won't hurt too much.  */
-  for (i = 0; i < recog_n_alternatives - 1; i++)
+  for (i = 0; i < recog_data.n_alternatives - 1; i++)
     {
       int best = i;
       int best_reject = alternative_reject[alternative_order[i]];
       int best_nregs = alternative_nregs[alternative_order[i]];
       int tmp;
 
-      for (j = i + 1; j < recog_n_alternatives; j++)
+      for (j = i + 1; j < recog_data.n_alternatives; j++)
        {
          int this_reject = alternative_reject[alternative_order[j]];
          int this_nregs = alternative_nregs[alternative_order[j]];
@@ -9172,214 +8292,39 @@ reload_cse_simplify_operands (insn)
              best_nregs = this_nregs;
            }
        }
-      
+
       tmp = alternative_order[best];
       alternative_order[best] = alternative_order[i];
       alternative_order[i] = tmp;
     }
-  
+
   /* Substitute the operands as determined by op_alt_regno for the best
      alternative.  */
   j = alternative_order[0];
 
-  /* Pop back to the real obstacks while changing the insn.  */
-  pop_obstacks ();
-
-  for (i = 0; i < recog_n_operands; i++)
+  for (i = 0; i < recog_data.n_operands; i++)
     {
-      enum machine_mode mode = recog_operand_mode[i];
+      enum machine_mode mode = recog_data.operand_mode[i];
       if (op_alt_regno[i][j] == -1)
        continue;
 
-      validate_change (insn, recog_operand_loc[i],
+      validate_change (insn, recog_data.operand_loc[i],
                       gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
     }
 
-  for (i = recog_n_dups - 1; i >= 0; i--)
+  for (i = recog_data.n_dups - 1; i >= 0; i--)
     {
-      int op = recog_dup_num[i];
-      enum machine_mode mode = recog_operand_mode[op];
+      int op = recog_data.dup_num[i];
+      enum machine_mode mode = recog_data.operand_mode[op];
 
       if (op_alt_regno[op][j] == -1)
        continue;
 
-      validate_change (insn, recog_dup_loc[i],
+      validate_change (insn, recog_data.dup_loc[i],
                       gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
     }
 
-  /* Go back to the obstack we are using for temporary
-     storage.  */
-  push_obstacks (&reload_obstack, &reload_obstack);
-
   return apply_change_group ();
-#else
-  return 0;
-#endif
-}
-
-/* These two variables are used to pass information from
-   reload_cse_record_set to reload_cse_check_clobber.  */
-
-static int reload_cse_check_clobbered;
-static rtx reload_cse_check_src;
-
-/* See if DEST overlaps with RELOAD_CSE_CHECK_SRC. If it does, set
-   RELOAD_CSE_CHECK_CLOBBERED.  This is called via note_stores.  The
-   second argument, which is passed by note_stores, is ignored.  */
-
-static void
-reload_cse_check_clobber (dest, ignore)
-     rtx dest;
-     rtx ignore ATTRIBUTE_UNUSED;
-{
-  if (reg_overlap_mentioned_p (dest, reload_cse_check_src))
-    reload_cse_check_clobbered = 1;
-}
-
-/* Record the result of a SET instruction.  SET is the set pattern.
-   BODY is the pattern of the insn that it came from.  */
-
-static void
-reload_cse_record_set (set, body)
-     rtx set;
-     rtx body;
-{
-  rtx dest, src, x;
-  int dreg, sreg;
-  enum machine_mode dest_mode;
-
-  dest = SET_DEST (set);
-  src = SET_SRC (set);
-  dreg = true_regnum (dest);
-  sreg = true_regnum (src);
-  dest_mode = GET_MODE (dest);
-
-  /* Some machines don't define AUTO_INC_DEC, but they still use push
-     instructions.  We need to catch that case here in order to
-     invalidate the stack pointer correctly.  Note that invalidating
-     the stack pointer is different from invalidating DEST.  */
-  x = dest;
-  while (GET_CODE (x) == SUBREG
-        || GET_CODE (x) == ZERO_EXTRACT
-        || GET_CODE (x) == SIGN_EXTRACT
-        || GET_CODE (x) == STRICT_LOW_PART)
-    x = XEXP (x, 0);
-  if (push_operand (x, GET_MODE (x)))
-    {
-      reload_cse_invalidate_rtx (stack_pointer_rtx, NULL_RTX);
-      reload_cse_invalidate_rtx (dest, NULL_RTX);
-      return;
-    }
-
-  /* We can only handle an assignment to a register, or a store of a
-     register to a memory location.  For other cases, we just clobber
-     the destination.  We also have to just clobber if there are side
-     effects in SRC or DEST.  */
-  if ((dreg < 0 && GET_CODE (dest) != MEM)
-      || side_effects_p (src)
-      || side_effects_p (dest))
-    {
-      reload_cse_invalidate_rtx (dest, NULL_RTX);
-      return;
-    }
-
-#ifdef HAVE_cc0
-  /* We don't try to handle values involving CC, because it's a pain
-     to keep track of when they have to be invalidated.  */
-  if (reg_mentioned_p (cc0_rtx, src)
-      || reg_mentioned_p (cc0_rtx, dest))
-    {
-      reload_cse_invalidate_rtx (dest, NULL_RTX);
-      return;
-    }
-#endif
-
-  /* If BODY is a PARALLEL, then we need to see whether the source of
-     SET is clobbered by some other instruction in the PARALLEL.  */
-  if (GET_CODE (body) == PARALLEL)
-    {
-      int i;
-
-      for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
-       {
-         rtx x;
-
-         x = XVECEXP (body, 0, i);
-         if (x == set)
-           continue;
-
-         reload_cse_check_clobbered = 0;
-         reload_cse_check_src = src;
-         note_stores (x, reload_cse_check_clobber);
-         if (reload_cse_check_clobbered)
-           {
-             reload_cse_invalidate_rtx (dest, NULL_RTX);
-             return;
-           }
-       }
-    }
-
-  if (dreg >= 0)
-    {
-      int i;
-
-      /* This is an assignment to a register.  Update the value we
-         have stored for the register.  */
-      if (sreg >= 0)
-       {
-         rtx x;
-
-         /* This is a copy from one register to another.  Any values
-            which were valid for SREG are now valid for DREG.  If the
-            mode changes, we use gen_lowpart_common to extract only
-            the part of the value that is copied.  */
-         reg_values[dreg] = 0;
-         for (x = reg_values[sreg]; x; x = XEXP (x, 1))
-           {
-             rtx tmp;
-
-             if (XEXP (x, 0) == 0)
-               continue;
-             if (dest_mode == GET_MODE (XEXP (x, 0)))
-               tmp = XEXP (x, 0);
-             else if (GET_MODE_BITSIZE (dest_mode)
-                       > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
-               continue;
-             else
-               tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
-             if (tmp)
-               reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, tmp,
-                                                     reg_values[dreg]);
-           }         
-       }
-      else
-       reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, src, NULL_RTX);
-
-      /* We've changed DREG, so invalidate any values held by other
-         registers that depend upon it.  */
-      reload_cse_invalidate_regno (dreg, dest_mode, 0);
-
-      /* If this assignment changes more than one hard register,
-         forget anything we know about the others.  */
-      for (i = 1; i < HARD_REGNO_NREGS (dreg, dest_mode); i++)
-       reg_values[dreg + i] = 0;
-    }
-  else if (GET_CODE (dest) == MEM)
-    {
-      /* Invalidate conflicting memory locations.  */
-      reload_cse_invalidate_mem (dest);
-
-      /* If we're storing a register to memory, add DEST to the list
-         in REG_VALUES.  */
-      if (sreg >= 0 && ! side_effects_p (dest))
-       reg_values[sreg] = gen_rtx_EXPR_LIST (dest_mode, dest,
-                                   reg_values[sreg]);
-    }
-  else
-    {
-      /* We should have bailed out earlier.  */
-      abort ();
-    }
 }
 \f
 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
@@ -9469,8 +8414,8 @@ reload_combine ()
        {
          HARD_REG_SET live;
 
-         REG_SET_TO_HARD_REG_SET (live, basic_block_live_at_start[i]);
-         compute_use_by_pseudos (&live, basic_block_live_at_start[i]);
+         REG_SET_TO_HARD_REG_SET (live, BASIC_BLOCK (i)->global_live_at_start);
+         compute_use_by_pseudos (&live, BASIC_BLOCK (i)->global_live_at_start);
          COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
          IOR_HARD_REG_SET (ever_live_at_start, live);
        }
@@ -9493,7 +8438,7 @@ reload_combine ()
 
       /* We cannot do our optimization across labels.  Invalidating all the use
         information we have would be costly, so we just note where the label
-         is and then later disable any optimization that would cross it.  */
+        is and then later disable any optimization that would cross it.  */
       if (GET_CODE (insn) == CODE_LABEL)
        last_label_ruid = reload_combine_ruid;
       if (GET_CODE (insn) == BARRIER)
@@ -9506,13 +8451,13 @@ reload_combine ()
       reload_combine_ruid++;
 
       /* Look for (set (REGX) (CONST_INT))
-                 (set (REGX) (PLUS (REGX) (REGY)))
-                 ...
-                 ... (MEM (REGX)) ...
+        (set (REGX) (PLUS (REGX) (REGY)))
+        ...
+        ... (MEM (REGX)) ...
         and convert it to
-                 (set (REGZ) (CONST_INT))
-                 ...
-                 ... (MEM (PLUS (REGZ) (REGY)))... .
+        (set (REGZ) (CONST_INT))
+        ...
+        ... (MEM (PLUS (REGZ) (REGY)))... .
 
         First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
         and that we know all uses of REGX before it dies.  */
@@ -9533,7 +8478,7 @@ reload_combine ()
          rtx prev = prev_nonnote_insn (insn);
          rtx prev_set = prev ? single_set (prev) : NULL_RTX;
          int regno = REGNO (reg);
-         rtx const_reg;
+         rtx const_reg = NULL_RTX;
          rtx reg_sum = NULL_RTX;
 
          /* Now, we need an index register.
@@ -9553,11 +8498,11 @@ reload_combine ()
            }
          else
            {
-              /* Otherwise, look for a free index register.  Since we have
-                 checked above that neiter REG nor BASE are index registers,
-                 if we find anything at all, it will be different from these
-                 two registers.  */
-              for (i = first_index_reg; i <= last_index_reg; i++)
+             /* Otherwise, look for a free index register.  Since we have
+                checked above that neiter REG nor BASE are index registers,
+                if we find anything at all, it will be different from these
+                two registers.  */
+             for (i = first_index_reg; i <= last_index_reg; i++)
                {
                  if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
                      && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
@@ -9628,7 +8573,7 @@ reload_combine ()
                }
            }
        }
-      note_stores (PATTERN (insn), reload_combine_note_store);
+      note_stores (PATTERN (insn), reload_combine_note_store, NULL);
       if (GET_CODE (insn) == CALL_INSN)
        {
          rtx link;
@@ -9689,15 +8634,15 @@ reload_combine ()
 
 /* Check if DST is a register or a subreg of a register; if it is,
    update reg_state[regno].store_ruid and reg_state[regno].use_index
-   accordingly.  Called via note_stores from reload_combine.
-   The second argument, SET, is ignored.  */
+   accordingly.  Called via note_stores from reload_combine.  */
 static void
-reload_combine_note_store (dst, set)
-     rtx dst, set ATTRIBUTE_UNUSED;
+reload_combine_note_store (dst, set, data)
+     rtx dst, set;
+     void *data ATTRIBUTE_UNUSED;
 {
   int regno = 0;
   int i;
-  unsigned size = GET_MODE_SIZE (GET_MODE (dst));
+  enum machine_mode mode = GET_MODE (dst);
 
   if (GET_CODE (dst) == SUBREG)
     {
@@ -9707,16 +8652,25 @@ reload_combine_note_store (dst, set)
   if (GET_CODE (dst) != REG)
     return;
   regno += REGNO (dst);
+
   /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
-     careful with registers / register parts that are not full words.  */
-  if (size < (unsigned) UNITS_PER_WORD)
+     careful with registers / register parts that are not full words.
+
+     Similarly for ZERO_EXTRACT and SIGN_EXTRACT.  */
+  if (GET_CODE (set) != SET
+      || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
+      || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
+      || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
     {
-      reg_state[regno].use_index = -1;
-      reg_state[regno].store_ruid = reload_combine_ruid;
+      for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
+       {
+         reg_state[i].use_index = -1;
+         reg_state[i].store_ruid = reload_combine_ruid;
+       }
     }
   else
     {
-      for (i = size / UNITS_PER_WORD - 1 + regno; i >= regno; i--)
+      for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
        {
          reg_state[i].store_ruid = reload_combine_ruid;
          reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
@@ -9734,7 +8688,7 @@ reload_combine_note_use (xp, insn)
 {
   rtx x = *xp;
   enum rtx_code code = x->code;
-  char *fmt;
+  const char *fmt;
   int i, j;
   rtx offset = const0_rtx; /* For the REG case below.  */
 
@@ -9748,6 +8702,21 @@ reload_combine_note_use (xp, insn)
        }
       break;
 
+    case USE:
+      /* If this is the USE of a return value, we can't change it.  */
+      if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
+       {
+       /* Mark the return register as used in an unknown fashion.  */
+         rtx reg = XEXP (x, 0);
+         int regno = REGNO (reg);
+         int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
+
+         while (--nregs >= 0)
+           reg_state[regno + nregs].use_index = -1;
+         return;
+       }
+      break;
+
     case CLOBBER:
       if (GET_CODE (SET_DEST (x)) == REG)
        return;
@@ -9759,17 +8728,28 @@ reload_combine_note_use (xp, insn)
        break;
       offset = XEXP (x, 1);
       x = XEXP (x, 0);
-    /* Fall through.  */
+      /* Fall through.  */
     case REG:
       {
        int regno = REGNO (x);
        int use_index;
+       int nregs;
 
        /* Some spurious USEs of pseudo registers might remain.
           Just ignore them.  */
        if (regno >= FIRST_PSEUDO_REGISTER)
          return;
 
+       nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
+
+       /* We can't substitute into multi-hard-reg uses.  */
+       if (nregs > 1)
+         {
+           while (--nregs >= 0)
+             reg_state[regno + nregs].use_index = -1;
+           return;
+         }
+
        /* If this register is already used in some unknown fashion, we
           can't do anything.
           If we decrement the index from zero to -1, we can't store more
@@ -9829,6 +8809,7 @@ reload_combine_note_use (xp, insn)
    reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
    reg_set_luid[n] is larger than last_label_luid[n] .  */
 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
+
 /* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
    reg_mode[n] to be valid.
    If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
@@ -9839,11 +8820,31 @@ static int reg_set_luid[FIRST_PSEUDO_REGISTER];
 static rtx reg_offset[FIRST_PSEUDO_REGISTER];
 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
+
 /* move2add_luid is linearily increased while scanning the instructions
    from first to last.  It is used to set reg_set_luid in
    reload_cse_move2add and move2add_note_store.  */
 static int move2add_luid;
 
+/* Generate a CONST_INT and force it in the range of MODE.  */
+
+static rtx
+gen_mode_int (mode, value)
+     enum machine_mode mode;
+     HOST_WIDE_INT value;
+{
+  HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
+  int width = GET_MODE_BITSIZE (mode);
+
+  /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
+     sign extend it.  */
+  if (width > 0 && width < HOST_BITS_PER_WIDE_INT
+      && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
+    cval |= (HOST_WIDE_INT) -1 << width;
+
+  return GEN_INT (cval);
+}
+
 static void
 reload_cse_move2add (first)
      rtx first;
@@ -9880,9 +8881,9 @@ reload_cse_move2add (first)
          /* ??? We don't know how zero / sign extension is handled, hence
             we can't go from a narrower to a wider mode.  */
          if (reg_set_luid[regno] > last_label_luid
-            && (GET_MODE_SIZE (GET_MODE (reg))
-                <= GET_MODE_SIZE (reg_mode[regno]))
-            && GET_CODE (reg_offset[regno]) == CONST_INT)
+             && (GET_MODE_SIZE (GET_MODE (reg))
+                 <= GET_MODE_SIZE (reg_mode[regno]))
+             && GET_CODE (reg_offset[regno]) == CONST_INT)
            {
              /* Try to transform (set (REGX) (CONST_INT A))
                                  ...
@@ -9895,8 +8896,9 @@ reload_cse_move2add (first)
              if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
                {
                  int success = 0;
-                 rtx new_src = GEN_INT (INTVAL (src)
-                                        - INTVAL (reg_offset[regno]));
+                 rtx new_src
+                   = gen_mode_int (GET_MODE (reg),
+                                   INTVAL (src) - INTVAL (reg_offset[regno]));
                  /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
                     use (set (reg) (reg)) instead.
                     We don't delete this insn, nor do we convert it into a
@@ -9926,11 +8928,11 @@ reload_cse_move2add (first)
                                  ...
                                  (set (REGX) (plus (REGX) (CONST_INT B-A)))  */
              else if (GET_CODE (src) == REG
-                      && reg_base_reg[regno] == REGNO (src)
+                      && reg_base_reg[regno] == (int) REGNO (src)
                       && reg_set_luid[regno] > reg_set_luid[REGNO (src)])
                {
                  rtx next = next_nonnote_insn (insn);
-                 rtx set;
+                 rtx set = NULL_RTX;
                  if (next)
                    set = single_set (next);
                  if (next
@@ -9941,8 +8943,10 @@ reload_cse_move2add (first)
                      && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
                    {
                      rtx src3 = XEXP (SET_SRC (set), 1);
-                     rtx new_src = GEN_INT (INTVAL (src3)
-                                            - INTVAL (reg_offset[regno]));
+                     rtx new_src
+                       = gen_mode_int (GET_MODE (reg),
+                                       INTVAL (src3)
+                                       - INTVAL (reg_offset[regno]));
                      int success = 0;
 
                      if (new_src == const0_rtx)
@@ -9989,7 +8993,7 @@ reload_cse_move2add (first)
                }
            }
        }
-      note_stores (PATTERN (insn), move2add_note_store);
+      note_stores (PATTERN (insn), move2add_note_store, NULL);
       /* If this is a CALL_INSN, all call used registers are stored with
         unknown values.  */
       if (GET_CODE (insn) == CALL_INSN)
@@ -10009,25 +9013,31 @@ reload_cse_move2add (first)
 /* SET is a SET or CLOBBER that sets DST.
    Update reg_set_luid, reg_offset and reg_base_reg accordingly.
    Called from reload_cse_move2add via note_stores.  */
+
 static void
-move2add_note_store (dst, set)
+move2add_note_store (dst, set, data)
      rtx dst, set;
+     void *data ATTRIBUTE_UNUSED;
 {
-  int regno = 0;
-  int i;
-
+  unsigned int regno = 0;
+  unsigned int i;
   enum machine_mode mode = GET_MODE (dst);
+
   if (GET_CODE (dst) == SUBREG)
     {
       regno = SUBREG_WORD (dst);
       dst = SUBREG_REG (dst);
     }
+
   if (GET_CODE (dst) != REG)
     return;
 
   regno += REGNO (dst);
 
-  if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET)
+  if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
+      && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
+      && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
+      && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
     {
       rtx src = SET_SRC (set);
 
@@ -10037,6 +9047,7 @@ move2add_note_store (dst, set)
        case PLUS:
          {
            rtx src0 = XEXP (src, 0);
+
            if (GET_CODE (src0) == REG)
              {
                if (REGNO (src0) != regno
@@ -10045,9 +9056,11 @@ move2add_note_store (dst, set)
                    reg_base_reg[regno] = REGNO (src0);
                    reg_set_luid[regno] = move2add_luid;
                  }
+
                reg_offset[regno] = XEXP (src, 1);
                break;
              }
+
            reg_set_luid[regno] = move2add_luid;
            reg_offset[regno] = set;    /* Invalidate contents.  */
            break;
@@ -10068,7 +9081,9 @@ move2add_note_store (dst, set)
     }
   else
     {
-      for (i = regno + HARD_REGNO_NREGS (regno, mode) - 1; i >= regno; i--)
+      unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
+
+      for (i = regno; i < endregno; i++)
        {
          /* Indicate that this register has been recently written to,
             but the exact contents are not available.  */
@@ -10077,3 +9092,33 @@ move2add_note_store (dst, set)
        }
     }
 }
+
+#ifdef AUTO_INC_DEC
+static void
+add_auto_inc_notes (insn, x)
+     rtx insn;
+     rtx x;
+{
+  enum rtx_code code = GET_CODE (x);
+  const char *fmt;
+  int i, j;
+
+  if (code == MEM && auto_inc_p (XEXP (x, 0)))
+    {
+      REG_NOTES (insn)
+       = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
+      return;
+    }
+
+  /* Scan all the operand sub-expressions.  */
+  fmt = GET_RTX_FORMAT (code);
+  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+    {
+      if (fmt[i] == 'e')
+       add_auto_inc_notes (insn, XEXP (x, i));
+      else if (fmt[i] == 'E')
+       for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+         add_auto_inc_notes (insn, XVECEXP (x, i, j));
+    }
+}
+#endif