OSDN Git Service

Daily bump.
[pf3gnuchains/gcc-fork.git] / gcc / expmed.c
index 08a8863..6895074 100644 (file)
@@ -1,13 +1,15 @@
 /* Medium-level subroutines: convert bit-field store and extract
    and shifts, multiplies and divides to rtl instructions.
    Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
-   1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
+   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
+   2011
+   Free Software Foundation, Inc.
 
 This file is part of GCC.
 
 GCC is free software; you can redistribute it and/or modify it under
 the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
+Software Foundation; either version 3, or (at your option) any later
 version.
 
 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
@@ -16,16 +18,15 @@ FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.
 
 You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING.  If not, write to the Free
-Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-02111-1307, USA.  */
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
 
 
 #include "config.h"
 #include "system.h"
 #include "coretypes.h"
 #include "tm.h"
-#include "toplev.h"
+#include "diagnostic-core.h"
 #include "rtl.h"
 #include "tree.h"
 #include "tm_p.h"
@@ -33,45 +34,47 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 #include "insn-config.h"
 #include "expr.h"
 #include "optabs.h"
-#include "real.h"
 #include "recog.h"
 #include "langhooks.h"
+#include "df.h"
+#include "target.h"
+#include "expmed.h"
+
+struct target_expmed default_target_expmed;
+#if SWITCHABLE_TARGET
+struct target_expmed *this_target_expmed = &default_target_expmed;
+#endif
 
 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
                                   unsigned HOST_WIDE_INT,
-                                  unsigned HOST_WIDE_INT, rtx);
+                                  unsigned HOST_WIDE_INT,
+                                  unsigned HOST_WIDE_INT,
+                                  unsigned HOST_WIDE_INT,
+                                  rtx);
 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
-                                  unsigned HOST_WIDE_INT, rtx);
+                                  unsigned HOST_WIDE_INT,
+                                  unsigned HOST_WIDE_INT,
+                                  unsigned HOST_WIDE_INT,
+                                  rtx);
 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
                                    unsigned HOST_WIDE_INT,
                                    unsigned HOST_WIDE_INT,
-                                   unsigned HOST_WIDE_INT, rtx, int);
+                                   unsigned HOST_WIDE_INT, rtx, int, bool);
 static rtx mask_rtx (enum machine_mode, int, int, int);
 static rtx lshift_value (enum machine_mode, rtx, int, int);
 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
                                    unsigned HOST_WIDE_INT, int);
 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
+static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
 
-/* Nonzero means divides or modulus operations are relatively cheap for
-   powers of two, so don't use branches; emit the operation instead.
-   Usually, this will mean that the MD file will emit non-branch
-   sequences.  */
-
-static int sdiv_pow2_cheap[NUM_MACHINE_MODES];
-static int smod_pow2_cheap[NUM_MACHINE_MODES];
+/* Test whether a value is zero of a power of two.  */
+#define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
 
 #ifndef SLOW_UNALIGNED_ACCESS
 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
 #endif
 
-/* For compilers that support multiple targets with different word sizes,
-   MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD.  An example
-   is the H8/300(H) compiler.  */
-
-#ifndef MAX_BITS_PER_WORD
-#define MAX_BITS_PER_WORD BITS_PER_WORD
-#endif
 
 /* Reduce conditional compilation elsewhere.  */
 #ifndef HAVE_insv
@@ -90,58 +93,47 @@ static int smod_pow2_cheap[NUM_MACHINE_MODES];
 #define gen_extzv(a,b,c,d) NULL_RTX
 #endif
 
-/* Cost of various pieces of RTL.  Note that some of these are indexed by
-   shift count and some by mode.  */
-static int zero_cost;
-static int add_cost[NUM_MACHINE_MODES];
-static int neg_cost[NUM_MACHINE_MODES];
-static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
-static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
-static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
-static int mul_cost[NUM_MACHINE_MODES];
-static int div_cost[NUM_MACHINE_MODES];
-static int mul_widen_cost[NUM_MACHINE_MODES];
-static int mul_highpart_cost[NUM_MACHINE_MODES];
-
 void
 init_expmed (void)
 {
   struct
   {
-    struct rtx_def reg;
+    struct rtx_def reg;                rtunion reg_fld[2];
     struct rtx_def plus;       rtunion plus_fld1;
     struct rtx_def neg;
-    struct rtx_def udiv;       rtunion udiv_fld1;
     struct rtx_def mult;       rtunion mult_fld1;
-    struct rtx_def div;                rtunion div_fld1;
-    struct rtx_def mod;                rtunion mod_fld1;
+    struct rtx_def sdiv;       rtunion sdiv_fld1;
+    struct rtx_def udiv;       rtunion udiv_fld1;
     struct rtx_def zext;
+    struct rtx_def sdiv_32;    rtunion sdiv_32_fld1;
+    struct rtx_def smod_32;    rtunion smod_32_fld1;
     struct rtx_def wide_mult;  rtunion wide_mult_fld1;
     struct rtx_def wide_lshr;  rtunion wide_lshr_fld1;
     struct rtx_def wide_trunc;
     struct rtx_def shift;      rtunion shift_fld1;
     struct rtx_def shift_mult; rtunion shift_mult_fld1;
     struct rtx_def shift_add;  rtunion shift_add_fld1;
-    struct rtx_def shift_sub;  rtunion shift_sub_fld1;
+    struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
+    struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
   } all;
 
   rtx pow2[MAX_BITS_PER_WORD];
   rtx cint[MAX_BITS_PER_WORD];
   int m, n;
   enum machine_mode mode, wider_mode;
+  int speed;
 
-  zero_cost = rtx_cost (const0_rtx, 0);
 
   for (m = 1; m < MAX_BITS_PER_WORD; m++)
     {
       pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
       cint[m] = GEN_INT (m);
     }
-
   memset (&all, 0, sizeof all);
 
   PUT_CODE (&all.reg, REG);
-  REGNO (&all.reg) = 10000;
+  /* Avoid using hard regs in ways which may be unsupported.  */
+  SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
 
   PUT_CODE (&all.plus, PLUS);
   XEXP (&all.plus, 0) = &all.reg;
@@ -150,21 +142,25 @@ init_expmed (void)
   PUT_CODE (&all.neg, NEG);
   XEXP (&all.neg, 0) = &all.reg;
 
-  PUT_CODE (&all.udiv, UDIV);
-  XEXP (&all.udiv, 0) = &all.reg;
-  XEXP (&all.udiv, 1) = &all.reg;
-
   PUT_CODE (&all.mult, MULT);
   XEXP (&all.mult, 0) = &all.reg;
   XEXP (&all.mult, 1) = &all.reg;
 
-  PUT_CODE (&all.div, DIV);
-  XEXP (&all.div, 0) = &all.reg;
-  XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
+  PUT_CODE (&all.sdiv, DIV);
+  XEXP (&all.sdiv, 0) = &all.reg;
+  XEXP (&all.sdiv, 1) = &all.reg;
 
-  PUT_CODE (&all.mod, MOD);
-  XEXP (&all.mod, 0) = &all.reg;
-  XEXP (&all.mod, 1) = XEXP (&all.div, 1);
+  PUT_CODE (&all.udiv, UDIV);
+  XEXP (&all.udiv, 0) = &all.reg;
+  XEXP (&all.udiv, 1) = &all.reg;
+
+  PUT_CODE (&all.sdiv_32, DIV);
+  XEXP (&all.sdiv_32, 0) = &all.reg;
+  XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
+
+  PUT_CODE (&all.smod_32, MOD);
+  XEXP (&all.smod_32, 0) = &all.reg;
+  XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
 
   PUT_CODE (&all.zext, ZERO_EXTEND);
   XEXP (&all.zext, 0) = &all.reg;
@@ -189,61 +185,88 @@ init_expmed (void)
   XEXP (&all.shift_add, 0) = &all.shift_mult;
   XEXP (&all.shift_add, 1) = &all.reg;
 
-  PUT_CODE (&all.shift_sub, MINUS);
-  XEXP (&all.shift_sub, 0) = &all.shift_mult;
-  XEXP (&all.shift_sub, 1) = &all.reg;
+  PUT_CODE (&all.shift_sub0, MINUS);
+  XEXP (&all.shift_sub0, 0) = &all.shift_mult;
+  XEXP (&all.shift_sub0, 1) = &all.reg;
 
-  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
-       mode != VOIDmode;
-       mode = GET_MODE_WIDER_MODE (mode))
-    {
-      PUT_MODE (&all.reg, mode);
-      PUT_MODE (&all.plus, mode);
-      PUT_MODE (&all.neg, mode);
-      PUT_MODE (&all.udiv, mode);
-      PUT_MODE (&all.mult, mode);
-      PUT_MODE (&all.div, mode);
-      PUT_MODE (&all.mod, mode);
-      PUT_MODE (&all.wide_trunc, mode);
-      PUT_MODE (&all.shift, mode);
-      PUT_MODE (&all.shift_mult, mode);
-      PUT_MODE (&all.shift_add, mode);
-      PUT_MODE (&all.shift_sub, mode);
-
-      add_cost[mode] = rtx_cost (&all.plus, SET);
-      neg_cost[mode] = rtx_cost (&all.neg, SET);
-      div_cost[mode] = rtx_cost (&all.udiv, SET);
-      mul_cost[mode] = rtx_cost (&all.mult, SET);
-
-      sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
-      smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 2 * add_cost[mode]);
-
-      wider_mode = GET_MODE_WIDER_MODE (mode);
-      if (wider_mode != VOIDmode)
-       {
-         PUT_MODE (&all.zext, wider_mode);
-         PUT_MODE (&all.wide_mult, wider_mode);
-         PUT_MODE (&all.wide_lshr, wider_mode);
-         XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
+  PUT_CODE (&all.shift_sub1, MINUS);
+  XEXP (&all.shift_sub1, 0) = &all.reg;
+  XEXP (&all.shift_sub1, 1) = &all.shift_mult;
 
-         mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
-         mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
-       }
-
-      shift_cost[mode][0] = 0;
-      shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
+  for (speed = 0; speed < 2; speed++)
+    {
+      crtl->maybe_hot_insn_p = speed;
+      zero_cost[speed] = set_src_cost (const0_rtx, speed);
 
-      n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
-      for (m = 1; m < n; m++)
+      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+          mode != VOIDmode;
+          mode = GET_MODE_WIDER_MODE (mode))
        {
-         XEXP (&all.shift, 1) = cint[m];
-         XEXP (&all.shift_mult, 1) = pow2[m];
+         PUT_MODE (&all.reg, mode);
+         PUT_MODE (&all.plus, mode);
+         PUT_MODE (&all.neg, mode);
+         PUT_MODE (&all.mult, mode);
+         PUT_MODE (&all.sdiv, mode);
+         PUT_MODE (&all.udiv, mode);
+         PUT_MODE (&all.sdiv_32, mode);
+         PUT_MODE (&all.smod_32, mode);
+         PUT_MODE (&all.wide_trunc, mode);
+         PUT_MODE (&all.shift, mode);
+         PUT_MODE (&all.shift_mult, mode);
+         PUT_MODE (&all.shift_add, mode);
+         PUT_MODE (&all.shift_sub0, mode);
+         PUT_MODE (&all.shift_sub1, mode);
+
+         add_cost[speed][mode] = set_src_cost (&all.plus, speed);
+         neg_cost[speed][mode] = set_src_cost (&all.neg, speed);
+         mul_cost[speed][mode] = set_src_cost (&all.mult, speed);
+         sdiv_cost[speed][mode] = set_src_cost (&all.sdiv, speed);
+         udiv_cost[speed][mode] = set_src_cost (&all.udiv, speed);
+
+         sdiv_pow2_cheap[speed][mode] = (set_src_cost (&all.sdiv_32, speed)
+                                         <= 2 * add_cost[speed][mode]);
+         smod_pow2_cheap[speed][mode] = (set_src_cost (&all.smod_32, speed)
+                                         <= 4 * add_cost[speed][mode]);
+
+         wider_mode = GET_MODE_WIDER_MODE (mode);
+         if (wider_mode != VOIDmode)
+           {
+             PUT_MODE (&all.zext, wider_mode);
+             PUT_MODE (&all.wide_mult, wider_mode);
+             PUT_MODE (&all.wide_lshr, wider_mode);
+             XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
+
+             mul_widen_cost[speed][wider_mode]
+               = set_src_cost (&all.wide_mult, speed);
+             mul_highpart_cost[speed][mode]
+               = set_src_cost (&all.wide_trunc, speed);
+           }
 
-         shift_cost[mode][m] = rtx_cost (&all.shift, SET);
-         shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
-         shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
+         shift_cost[speed][mode][0] = 0;
+         shiftadd_cost[speed][mode][0] = shiftsub0_cost[speed][mode][0]
+           = shiftsub1_cost[speed][mode][0] = add_cost[speed][mode];
+
+         n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
+         for (m = 1; m < n; m++)
+           {
+             XEXP (&all.shift, 1) = cint[m];
+             XEXP (&all.shift_mult, 1) = pow2[m];
+
+             shift_cost[speed][mode][m] = set_src_cost (&all.shift, speed);
+             shiftadd_cost[speed][mode][m] = set_src_cost (&all.shift_add,
+                                                           speed);
+             shiftsub0_cost[speed][mode][m] = set_src_cost (&all.shift_sub0,
+                                                            speed);
+             shiftsub1_cost[speed][mode][m] = set_src_cost (&all.shift_sub1,
+                                                            speed);
+           }
        }
     }
+  if (alg_hash_used_p)
+    memset (alg_hash, 0, sizeof (alg_hash));
+  else
+    alg_hash_used_p = true;
+  default_rtl_profile ();
 }
 
 /* Return an rtx representing minus the value of X.
@@ -268,7 +291,7 @@ negate_rtx (enum machine_mode mode, rtx x)
 enum machine_mode
 mode_for_extraction (enum extraction_pattern pattern, int opno)
 {
-  const struct insn_data *data;
+  const struct insn_data_d *data;
 
   switch (pattern)
     {
@@ -297,7 +320,7 @@ mode_for_extraction (enum extraction_pattern pattern, int opno)
       return MAX_MACHINE_MODE;
 
     default:
-      abort ();
+      gcc_unreachable ();
     }
 
   if (opno == -1)
@@ -309,34 +332,28 @@ mode_for_extraction (enum extraction_pattern pattern, int opno)
     return word_mode;
   return data->operand[opno].mode;
 }
-
 \f
-/* Generate code to store value from rtx VALUE
-   into a bit-field within structure STR_RTX
-   containing BITSIZE bits starting at bit BITNUM.
-   FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
-   ALIGN is the alignment that STR_RTX is known to have.
-   TOTAL_SIZE is the size of the structure in bytes, or -1 if varying.  */
+/* A subroutine of store_bit_field, with the same arguments.  Return true
+   if the operation could be implemented.
 
-/* ??? Note that there are two different ideas here for how
-   to determine the size to count bits within, for a register.
-   One is BITS_PER_WORD, and the other is the size of operand 3
-   of the insv pattern.
+   If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
+   no other way of implementing the operation.  If FALLBACK_P is false,
+   return false instead.  */
 
-   If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
-   else, we use the mode of operand 3.  */
-
-rtx
-store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
-                unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
-                rtx value)
+static bool
+store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
+                  unsigned HOST_WIDE_INT bitnum,
+                  unsigned HOST_WIDE_INT bitregion_start,
+                  unsigned HOST_WIDE_INT bitregion_end,
+                  enum machine_mode fieldmode,
+                  rtx value, bool fallback_p)
 {
   unsigned int unit
     = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
-  unsigned HOST_WIDE_INT offset = bitnum / unit;
-  unsigned HOST_WIDE_INT bitpos = bitnum % unit;
+  unsigned HOST_WIDE_INT offset, bitpos;
   rtx op0 = str_rtx;
   int byte_offset;
+  rtx orig_value;
 
   enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
 
@@ -347,65 +364,54 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
         meaningful at a much higher level; when structures are copied
         between memory and regs, the higher-numbered regs
         always get higher addresses.  */
-      offset += (SUBREG_BYTE (op0) / UNITS_PER_WORD);
-      /* We used to adjust BITPOS here, but now we do the whole adjustment
-        right after the loop.  */
+      int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
+      int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
+
+      byte_offset = 0;
+
+      /* Paradoxical subregs need special handling on big endian machines.  */
+      if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
+       {
+         int difference = inner_mode_size - outer_mode_size;
+
+         if (WORDS_BIG_ENDIAN)
+           byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
+         if (BYTES_BIG_ENDIAN)
+           byte_offset += difference % UNITS_PER_WORD;
+       }
+      else
+       byte_offset = SUBREG_BYTE (op0);
+
+      bitnum += byte_offset * BITS_PER_UNIT;
       op0 = SUBREG_REG (op0);
     }
 
+  /* No action is needed if the target is a register and if the field
+     lies completely outside that register.  This can occur if the source
+     code contains an out-of-bounds access to a small array.  */
+  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
+    return true;
+
   /* Use vec_set patterns for inserting parts of vectors whenever
      available.  */
   if (VECTOR_MODE_P (GET_MODE (op0))
       && !MEM_P (op0)
-      && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
-         != CODE_FOR_nothing)
+      && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
       && fieldmode == GET_MODE_INNER (GET_MODE (op0))
       && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
       && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
     {
+      struct expand_operand ops[3];
       enum machine_mode outermode = GET_MODE (op0);
       enum machine_mode innermode = GET_MODE_INNER (outermode);
-      int icode = (int) vec_set_optab->handlers[outermode].insn_code;
+      enum insn_code icode = optab_handler (vec_set_optab, outermode);
       int pos = bitnum / GET_MODE_BITSIZE (innermode);
-      rtx rtxpos = GEN_INT (pos);
-      rtx src = value;
-      rtx dest = op0;
-      rtx pat, seq;
-      enum machine_mode mode0 = insn_data[icode].operand[0].mode;
-      enum machine_mode mode1 = insn_data[icode].operand[1].mode;
-      enum machine_mode mode2 = insn_data[icode].operand[2].mode;
-
-      start_sequence ();
-
-      if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
-       src = copy_to_mode_reg (mode1, src);
-
-      if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
-       rtxpos = copy_to_mode_reg (mode1, rtxpos);
-
-      /* We could handle this, but we should always be called with a pseudo
-        for our targets and all insns should take them as outputs.  */
-      if (! (*insn_data[icode].operand[0].predicate) (dest, mode0)
-         || ! (*insn_data[icode].operand[1].predicate) (src, mode1)
-         || ! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
-       abort ();
-      pat = GEN_FCN (icode) (dest, src, rtxpos);
-      seq = get_insns ();
-      end_sequence ();
-      if (pat)
-       {
-         emit_insn (seq);
-         emit_insn (pat);
-         return dest;
-       }
-    }
 
-  if (flag_force_mem)
-    {
-      int old_generating_concat_p = generating_concat_p;
-      generating_concat_p = 0;
-      value = force_not_mem (value);
-      generating_concat_p = old_generating_concat_p;
+      create_fixed_operand (&ops[0], op0);
+      create_input_operand (&ops[1], value, innermode);
+      create_integer_operand (&ops[2], pos);
+      if (maybe_expand_insn (icode, 3, ops))
+       return true;
     }
 
   /* If the target is a register, overwriting the entire object, or storing
@@ -415,6 +421,8 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
      done with a simple store.  For targets that support fast unaligned
      memory, any naturally sized, unit aligned field can be done directly.  */
 
+  offset = bitnum / unit;
+  bitpos = bitnum % unit;
   byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
                 + (offset * UNITS_PER_WORD);
 
@@ -422,33 +430,21 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
       && bitsize == GET_MODE_BITSIZE (fieldmode)
       && (!MEM_P (op0)
          ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
-            || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
-            && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
+             || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
+            && ((GET_MODE (op0) == fieldmode && byte_offset == 0)
+                || validate_subreg (fieldmode, GET_MODE (op0), op0,
+                                    byte_offset)))
          : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
             || (offset * BITS_PER_UNIT % bitsize == 0
                 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
     {
-      if (GET_MODE (op0) != fieldmode)
-       {
-         if (GET_CODE (op0) == SUBREG)
-           {
-             if (GET_MODE (SUBREG_REG (op0)) == fieldmode
-                 || GET_MODE_CLASS (fieldmode) == MODE_INT
-                 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT)
-               op0 = SUBREG_REG (op0);
-             else
-               /* Else we've got some float mode source being extracted into
-                  a different float mode destination -- this combination of
-                  subregs results in Severe Tire Damage.  */
-               abort ();
-           }
-         if (REG_P (op0))
-           op0 = gen_rtx_SUBREG (fieldmode, op0, byte_offset);
-         else
-           op0 = adjust_address (op0, fieldmode, offset);
-       }
+      if (MEM_P (op0))
+       op0 = adjust_address (op0, fieldmode, offset);
+      else if (GET_MODE (op0) != fieldmode)
+       op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
+                                  byte_offset);
       emit_move_insn (op0, value);
-      return value;
+      return true;
     }
 
   /* Make sure we are playing with integral modes.  Pun with subregs
@@ -461,15 +457,17 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
       {
        if (MEM_P (op0))
          op0 = adjust_address (op0, imode, 0);
-       else if (imode != BLKmode)
-         op0 = gen_lowpart (imode, op0);
        else
-         abort ();
+         {
+           gcc_assert (imode != BLKmode);
+           op0 = gen_lowpart (imode, op0);
+         }
       }
   }
 
   /* We may be accessing data outside the field, which means
      we can alias adjacent data.  */
+  /* ?? not always for C++0x memory model ?? */
   if (MEM_P (op0))
     {
       op0 = shallow_copy_rtx (op0);
@@ -491,42 +489,36 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
   if (!MEM_P (op0)
       && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
       && bitsize == GET_MODE_BITSIZE (fieldmode)
-      && (movstrict_optab->handlers[fieldmode].insn_code
-         != CODE_FOR_nothing))
+      && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
     {
-      int icode = movstrict_optab->handlers[fieldmode].insn_code;
-
-      /* Get appropriate low part of the value being stored.  */
-      if (GET_CODE (value) == CONST_INT || REG_P (value))
-       value = gen_lowpart (fieldmode, value);
-      else if (!(GET_CODE (value) == SYMBOL_REF
-                || GET_CODE (value) == LABEL_REF
-                || GET_CODE (value) == CONST))
-       value = convert_to_mode (fieldmode, value, 0);
+      struct expand_operand ops[2];
+      enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
+      rtx arg0 = op0;
+      unsigned HOST_WIDE_INT subreg_off;
 
-      if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
-       value = copy_to_mode_reg (fieldmode, value);
-
-      if (GET_CODE (op0) == SUBREG)
+      if (GET_CODE (arg0) == SUBREG)
        {
-         if (GET_MODE (SUBREG_REG (op0)) == fieldmode
-             || GET_MODE_CLASS (fieldmode) == MODE_INT
-             || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT)
-           op0 = SUBREG_REG (op0);
-         else
-           /* Else we've got some float mode source being extracted into
-              a different float mode destination -- this combination of
-              subregs results in Severe Tire Damage.  */
-           abort ();
+         /* Else we've got some float mode source being extracted into
+            a different float mode destination -- this combination of
+            subregs results in Severe Tire Damage.  */
+         gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
+                     || GET_MODE_CLASS (fieldmode) == MODE_INT
+                     || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
+         arg0 = SUBREG_REG (arg0);
        }
 
-      emit_insn (GEN_FCN (icode)
-                (gen_rtx_SUBREG (fieldmode, op0,
-                                 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
-                                 + (offset * UNITS_PER_WORD)),
-                                 value));
+      subreg_off = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
+                  + (offset * UNITS_PER_WORD);
+      if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
+       {
+         arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
 
-      return value;
+         create_fixed_operand (&ops[0], arg0);
+         /* Shrink the source operand to FIELDMODE.  */
+         create_convert_operand_to (&ops[1], value, fieldmode, false);
+         if (maybe_expand_insn (icode, 2, ops))
+           return true;
+       }
     }
 
   /* Handle fields bigger than a word.  */
@@ -542,33 +534,57 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
       unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
       unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
       unsigned int i;
+      rtx last;
 
       /* This is the mode we must force value to, so that there will be enough
         subwords to extract.  Note that fieldmode will often (always?) be
         VOIDmode, because that is what store_field uses to indicate that this
-        is a bit field, but passing VOIDmode to operand_subword_force will
-        result in an abort.  */
+        is a bit field, but passing VOIDmode to operand_subword_force
+        is not allowed.  */
       fieldmode = GET_MODE (value);
       if (fieldmode == VOIDmode)
        fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
 
+      last = get_last_insn ();
       for (i = 0; i < nwords; i++)
        {
          /* If I is 0, use the low-order word in both field and target;
             if I is 1, use the next to lowest word; and so on.  */
-         unsigned int wordnum = (backwards ? nwords - i - 1 : i);
+         unsigned int wordnum = (backwards
+                                 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
+                                 - i - 1
+                                 : i);
          unsigned int bit_offset = (backwards
                                     ? MAX ((int) bitsize - ((int) i + 1)
                                            * BITS_PER_WORD,
                                            0)
                                     : (int) i * BITS_PER_WORD);
-
-         store_bit_field (op0, MIN (BITS_PER_WORD,
-                                    bitsize - i * BITS_PER_WORD),
-                          bitnum + bit_offset, word_mode,
-                          operand_subword_force (value, wordnum, fieldmode));
+         rtx value_word = operand_subword_force (value, wordnum, fieldmode);
+         unsigned HOST_WIDE_INT new_bitsize =
+           MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
+
+         /* If the remaining chunk doesn't have full wordsize we have
+            to make sure that for big endian machines the higher order
+            bits are used.  */
+         if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
+           value_word = simplify_expand_binop (word_mode, lshr_optab,
+                                               value_word,
+                                               GEN_INT (BITS_PER_WORD
+                                                        - new_bitsize),
+                                               NULL_RTX, true,
+                                               OPTAB_LIB_WIDEN);
+
+         if (!store_bit_field_1 (op0, new_bitsize,
+                                 bitnum + bit_offset,
+                                 bitregion_start, bitregion_end,
+                                 word_mode,
+                                 value_word, fallback_p))
+           {
+             delete_insns_since (last);
+             return false;
+           }
        }
-      return value;
+      return true;
     }
 
   /* From here on we can assume that the field to be stored in is
@@ -584,16 +600,14 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
        {
          if (!REG_P (op0))
            {
-             /* Since this is a destination (lvalue), we can't copy it to a
-                pseudo.  We can trivially remove a SUBREG that does not
-                change the size of the operand.  Such a SUBREG may have been
-                added above.  Otherwise, abort.  */
-             if (GET_CODE (op0) == SUBREG
-                 && (GET_MODE_SIZE (GET_MODE (op0))
-                     == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
-               op0 = SUBREG_REG (op0);
-             else
-               abort ();
+             /* Since this is a destination (lvalue), we can't copy
+                it to a pseudo.  We can remove a SUBREG that does not
+                change the size of the operand.  Such a SUBREG may
+                have been added above.  */
+             gcc_assert (GET_CODE (op0) == SUBREG
+                         && (GET_MODE_SIZE (GET_MODE (op0))
+                             == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
+             op0 = SUBREG_REG (op0);
            }
          op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
                                op0, (offset * UNITS_PER_WORD));
@@ -601,111 +615,93 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
       offset = 0;
     }
 
-  /* If VALUE is a floating-point mode, access it as an integer of the
-     corresponding size.  This can occur on a machine with 64 bit registers
-     that uses SFmode for float.  This can also occur for unaligned float
-     structure fields.  */
-  if (GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
+  /* If VALUE has a floating-point or complex mode, access it as an
+     integer of the corresponding size.  This can occur on a machine
+     with 64 bit registers that uses SFmode for float.  It can also
+     occur for unaligned float or complex fields.  */
+  orig_value = value;
+  if (GET_MODE (value) != VOIDmode
+      && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
       && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
-    value = gen_lowpart ((GET_MODE (value) == VOIDmode
-                         ? word_mode : int_mode_for_mode (GET_MODE (value))),
-                        value);
+    {
+      value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
+      emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
+    }
 
   /* Now OFFSET is nonzero only if OP0 is memory
      and is therefore always measured in bytes.  */
 
   if (HAVE_insv
       && GET_MODE (value) != BLKmode
-      && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
-      /* Ensure insv's size is wide enough for this field.  */
-      && (GET_MODE_BITSIZE (op_mode) >= bitsize)
+      && bitsize > 0
+      && GET_MODE_BITSIZE (op_mode) >= bitsize
+      /* Do not use insv for volatile bitfields when
+         -fstrict-volatile-bitfields is in effect.  */
+      && !(MEM_P (op0) && MEM_VOLATILE_P (op0)
+          && flag_strict_volatile_bitfields > 0)
       && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
-           && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
+           && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
+      /* Do not use insv if the bit region is restricted and
+        op_mode integer at offset doesn't fit into the
+        restricted region.  */
+      && !(MEM_P (op0) && bitregion_end
+          && bitnum - bitpos + GET_MODE_BITSIZE (op_mode)
+             > bitregion_end + 1))
     {
+      struct expand_operand ops[4];
       int xbitpos = bitpos;
       rtx value1;
       rtx xop0 = op0;
       rtx last = get_last_insn ();
-      rtx pat;
-      enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
-      int save_volatile_ok = volatile_ok;
-
-      volatile_ok = 1;
-
-      /* If this machine's insv can only insert into a register, copy OP0
-        into a register and save it back later.  */
-      /* This used to check flag_force_mem, but that was a serious
-        de-optimization now that flag_force_mem is enabled by -O2.  */
-      if (MEM_P (op0)
-         && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
-               (op0, VOIDmode)))
-       {
-         rtx tempreg;
-         enum machine_mode bestmode;
-
-         /* Get the mode to use for inserting into this field.  If OP0 is
-            BLKmode, get the smallest mode consistent with the alignment. If
-            OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
-            mode. Otherwise, use the smallest mode containing the field.  */
-
-         if (GET_MODE (op0) == BLKmode
-             || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
-           bestmode
-             = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
-                              MEM_VOLATILE_P (op0));
-         else
-           bestmode = GET_MODE (op0);
-
-         if (bestmode == VOIDmode
-             || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
-                 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
-           goto insv_loses;
-
-         /* Adjust address to point to the containing unit of that mode.
-            Compute offset as multiple of this unit, counting in bytes.  */
-         unit = GET_MODE_BITSIZE (bestmode);
-         offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
-         bitpos = bitnum % unit;
-         op0 = adjust_address (op0, bestmode,  offset);
-
-         /* Fetch that unit, store the bitfield in it, then store
-            the unit.  */
-         tempreg = copy_to_reg (op0);
-         store_bit_field (tempreg, bitsize, bitpos, fieldmode, value);
-         emit_move_insn (op0, tempreg);
-         return value;
-       }
-      volatile_ok = save_volatile_ok;
+      bool copy_back = false;
 
       /* Add OFFSET into OP0's address.  */
       if (MEM_P (xop0))
        xop0 = adjust_address (xop0, byte_mode, offset);
 
-      /* If xop0 is a register, we need it in MAXMODE
+      /* If xop0 is a register, we need it in OP_MODE
         to make it acceptable to the format of insv.  */
       if (GET_CODE (xop0) == SUBREG)
        /* We can't just change the mode, because this might clobber op0,
           and we will need the original value of op0 if insv fails.  */
-       xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
-      if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
-       xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
-
-      /* On big-endian machines, we count bits from the most significant.
-        If the bit field insn does not, we must invert.  */
-
-      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
-       xbitpos = unit - bitsize - xbitpos;
+       xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
+      if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
+       xop0 = gen_lowpart_SUBREG (op_mode, xop0);
+
+      /* If the destination is a paradoxical subreg such that we need a
+        truncate to the inner mode, perform the insertion on a temporary and
+        truncate the result to the original destination.  Note that we can't
+        just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
+        X) 0)) is (reg:N X).  */
+      if (GET_CODE (xop0) == SUBREG
+         && REG_P (SUBREG_REG (xop0))
+         && (!TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
+                                             op_mode)))
+       {
+         rtx tem = gen_reg_rtx (op_mode);
+         emit_move_insn (tem, xop0);
+         xop0 = tem;
+         copy_back = true;
+       }
 
       /* We have been counting XBITPOS within UNIT.
         Count instead within the size of the register.  */
-      if (BITS_BIG_ENDIAN && !MEM_P (xop0))
-       xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
+      if (BYTES_BIG_ENDIAN && !MEM_P (xop0))
+       xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
 
-      unit = GET_MODE_BITSIZE (maxmode);
+      unit = GET_MODE_BITSIZE (op_mode);
 
-      /* Convert VALUE to maxmode (which insv insn wants) in VALUE1.  */
+      /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
+         "backwards" from the size of the unit we are inserting into.
+        Otherwise, we count bits from the most significant on a
+        BYTES/BITS_BIG_ENDIAN machine.  */
+
+      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+       xbitpos = unit - bitsize - xbitpos;
+
+      /* Convert VALUE to op_mode (which insv insn wants) in VALUE1.  */
       value1 = value;
-      if (GET_MODE (value) != maxmode)
+      if (GET_MODE (value) != op_mode)
        {
          if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
            {
@@ -713,51 +709,162 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
                 if it has all the bits we will actually use.  However,
                 if we must narrow it, be sure we do it correctly.  */
 
-             if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
+             if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
                {
                  rtx tmp;
 
-                 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
+                 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
                  if (! tmp)
-                   tmp = simplify_gen_subreg (maxmode,
+                   tmp = simplify_gen_subreg (op_mode,
                                               force_reg (GET_MODE (value),
                                                          value1),
                                               GET_MODE (value), 0);
                  value1 = tmp;
                }
              else
-               value1 = gen_lowpart (maxmode, value1);
+               value1 = gen_lowpart (op_mode, value1);
            }
-         else if (GET_CODE (value) == CONST_INT)
-           value1 = gen_int_mode (INTVAL (value), maxmode);
-         else if (!CONSTANT_P (value))
+         else if (CONST_INT_P (value))
+           value1 = gen_int_mode (INTVAL (value), op_mode);
+         else
            /* Parse phase is supposed to make VALUE's data type
               match that of the component reference, which is a type
               at least as wide as the field; so VALUE should have
               a mode that corresponds to that type.  */
-           abort ();
+           gcc_assert (CONSTANT_P (value));
        }
 
-      /* If this machine's insv insists on a register,
-        get VALUE1 into a register.  */
-      if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
-            (value1, maxmode)))
-       value1 = force_reg (maxmode, value1);
+      create_fixed_operand (&ops[0], xop0);
+      create_integer_operand (&ops[1], bitsize);
+      create_integer_operand (&ops[2], xbitpos);
+      create_input_operand (&ops[3], value1, op_mode);
+      if (maybe_expand_insn (CODE_FOR_insv, 4, ops))
+       {
+         if (copy_back)
+           convert_move (op0, xop0, true);
+         return true;
+       }
+      delete_insns_since (last);
+    }
 
-      pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
-      if (pat)
-       emit_insn (pat);
+  /* If OP0 is a memory, try copying it to a register and seeing if a
+     cheap register alternative is available.  */
+  if (HAVE_insv && MEM_P (op0))
+    {
+      enum machine_mode bestmode;
+      unsigned HOST_WIDE_INT maxbits = MAX_FIXED_MODE_SIZE;
+
+      if (bitregion_end)
+       maxbits = bitregion_end - bitregion_start + 1;
+
+      /* Get the mode to use for inserting into this field.  If OP0 is
+        BLKmode, get the smallest mode consistent with the alignment. If
+        OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
+        mode. Otherwise, use the smallest mode containing the field.  */
+
+      if (GET_MODE (op0) == BLKmode
+         || GET_MODE_BITSIZE (GET_MODE (op0)) > maxbits
+         || (op_mode != MAX_MACHINE_MODE
+             && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
+       bestmode = get_best_mode (bitsize, bitnum,
+                                 bitregion_start, bitregion_end,
+                                 MEM_ALIGN (op0),
+                                 (op_mode == MAX_MACHINE_MODE
+                                  ? VOIDmode : op_mode),
+                                 MEM_VOLATILE_P (op0));
       else
+       bestmode = GET_MODE (op0);
+
+      if (bestmode != VOIDmode
+         && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
+         && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
+              && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
        {
+         rtx last, tempreg, xop0;
+         unsigned HOST_WIDE_INT xoffset, xbitpos;
+
+         last = get_last_insn ();
+
+         /* Adjust address to point to the containing unit of
+            that mode.  Compute the offset as a multiple of this unit,
+            counting in bytes.  */
+         unit = GET_MODE_BITSIZE (bestmode);
+         xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
+         xbitpos = bitnum % unit;
+         xop0 = adjust_address (op0, bestmode, xoffset);
+
+         /* Fetch that unit, store the bitfield in it, then store
+            the unit.  */
+         tempreg = copy_to_reg (xop0);
+         if (store_bit_field_1 (tempreg, bitsize, xbitpos,
+                                bitregion_start, bitregion_end,
+                                fieldmode, orig_value, false))
+           {
+             emit_move_insn (xop0, tempreg);
+             return true;
+           }
          delete_insns_since (last);
-         store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
        }
     }
-  else
-    insv_loses:
-    /* Insv is not available; store using shifts and boolean ops.  */
-    store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
-  return value;
+
+  if (!fallback_p)
+    return false;
+
+  store_fixed_bit_field (op0, offset, bitsize, bitpos,
+                        bitregion_start, bitregion_end, value);
+  return true;
+}
+
+/* Generate code to store value from rtx VALUE
+   into a bit-field within structure STR_RTX
+   containing BITSIZE bits starting at bit BITNUM.
+
+   BITREGION_START is bitpos of the first bitfield in this region.
+   BITREGION_END is the bitpos of the ending bitfield in this region.
+   These two fields are 0, if the C++ memory model does not apply,
+   or we are not interested in keeping track of bitfield regions.
+
+   FIELDMODE is the machine-mode of the FIELD_DECL node for this field.  */
+
+void
+store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
+                unsigned HOST_WIDE_INT bitnum,
+                unsigned HOST_WIDE_INT bitregion_start,
+                unsigned HOST_WIDE_INT bitregion_end,
+                enum machine_mode fieldmode,
+                rtx value)
+{
+  /* Under the C++0x memory model, we must not touch bits outside the
+     bit region.  Adjust the address to start at the beginning of the
+     bit region.  */
+  if (MEM_P (str_rtx) && bitregion_start > 0)
+    {
+      enum machine_mode bestmode;
+      enum machine_mode op_mode;
+      unsigned HOST_WIDE_INT offset;
+
+      op_mode = mode_for_extraction (EP_insv, 3);
+      if (op_mode == MAX_MACHINE_MODE)
+       op_mode = VOIDmode;
+
+      gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
+
+      offset = bitregion_start / BITS_PER_UNIT;
+      bitnum -= bitregion_start;
+      bitregion_end -= bitregion_start;
+      bitregion_start = 0;
+      bestmode = get_best_mode (bitsize, bitnum,
+                               bitregion_start, bitregion_end,
+                               MEM_ALIGN (str_rtx),
+                               op_mode,
+                               MEM_VOLATILE_P (str_rtx));
+      str_rtx = adjust_address (str_rtx, bestmode, offset);
+    }
+
+  if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
+                         bitregion_start, bitregion_end,
+                         fieldmode, value, true))
+    gcc_unreachable ();
 }
 \f
 /* Use shifts and boolean operations to store VALUE
@@ -772,11 +879,14 @@ store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
 static void
 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
                       unsigned HOST_WIDE_INT bitsize,
-                      unsigned HOST_WIDE_INT bitpos, rtx value)
+                      unsigned HOST_WIDE_INT bitpos,
+                      unsigned HOST_WIDE_INT bitregion_start,
+                      unsigned HOST_WIDE_INT bitregion_end,
+                      rtx value)
 {
   enum machine_mode mode;
   unsigned int total_bits = BITS_PER_WORD;
-  rtx subtarget, temp;
+  rtx temp;
   int all_zero = 0;
   int all_one = 0;
 
@@ -789,17 +899,23 @@ store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
 
   if (REG_P (op0) || GET_CODE (op0) == SUBREG)
     {
-      if (offset != 0)
-       abort ();
+      gcc_assert (!offset);
       /* Special treatment for a bit field split across two registers.  */
       if (bitsize + bitpos > BITS_PER_WORD)
        {
-         store_split_bit_field (op0, bitsize, bitpos, value);
+         store_split_bit_field (op0, bitsize, bitpos,
+                                bitregion_start, bitregion_end,
+                                value);
          return;
        }
     }
   else
     {
+      unsigned HOST_WIDE_INT maxbits = MAX_FIXED_MODE_SIZE;
+
+      if (bitregion_end)
+       maxbits = bitregion_end - bitregion_start + 1;
+
       /* Get the proper mode to use for this field.  We want a mode that
         includes the entire field.  If such a mode would be larger than
         a word, we won't be doing the extraction the normal way.
@@ -809,15 +925,23 @@ store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
       if (GET_MODE_BITSIZE (mode) == 0
          || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
        mode = word_mode;
-      mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
-                           MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
+
+      if (MEM_VOLATILE_P (op0)
+          && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
+         && GET_MODE_BITSIZE (GET_MODE (op0)) <= maxbits
+         && flag_strict_volatile_bitfields > 0)
+       mode = GET_MODE (op0);
+      else
+       mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
+                             bitregion_start, bitregion_end,
+                             MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
 
       if (mode == VOIDmode)
        {
          /* The only way this should occur is if the field spans word
             boundaries.  */
          store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
-                                value);
+                                bitregion_start, bitregion_end, value);
          return;
        }
 
@@ -862,7 +986,7 @@ store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
   /* Shift VALUE left by BITPOS bits.  If VALUE is not constant,
      we must first convert its mode to MODE.  */
 
-  if (GET_CODE (value) == CONST_INT)
+  if (CONST_INT_P (value))
     {
       HOST_WIDE_INT v = INTVAL (value);
 
@@ -884,13 +1008,7 @@ store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
                      && bitpos + bitsize != GET_MODE_BITSIZE (mode));
 
       if (GET_MODE (value) != mode)
-       {
-         if ((REG_P (value) || GET_CODE (value) == SUBREG)
-             && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
-           value = gen_lowpart (mode, value);
-         else
-           value = convert_to_mode (mode, value, 1);
-       }
+       value = convert_to_mode (mode, value, 1);
 
       if (must_and)
        value = expand_binop (mode, and_optab, value,
@@ -898,31 +1016,38 @@ store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
                              NULL_RTX, 1, OPTAB_LIB_WIDEN);
       if (bitpos > 0)
        value = expand_shift (LSHIFT_EXPR, mode, value,
-                             build_int_2 (bitpos, 0), NULL_RTX, 1);
+                             bitpos, NULL_RTX, 1);
     }
 
   /* Now clear the chosen bits in OP0,
      except that if VALUE is -1 we need not bother.  */
+  /* We keep the intermediates in registers to allow CSE to combine
+     consecutive bitfield assignments.  */
 
-  subtarget = (REG_P (op0) || ! flag_force_mem) ? op0 : 0;
+  temp = force_reg (mode, op0);
 
   if (! all_one)
     {
-      temp = expand_binop (mode, and_optab, op0,
+      temp = expand_binop (mode, and_optab, temp,
                           mask_rtx (mode, bitpos, bitsize, 1),
-                          subtarget, 1, OPTAB_LIB_WIDEN);
-      subtarget = temp;
+                          NULL_RTX, 1, OPTAB_LIB_WIDEN);
+      temp = force_reg (mode, temp);
     }
-  else
-    temp = op0;
 
   /* Now logical-or VALUE into OP0, unless it is zero.  */
 
   if (! all_zero)
-    temp = expand_binop (mode, ior_optab, temp, value,
-                        subtarget, 1, OPTAB_LIB_WIDEN);
+    {
+      temp = expand_binop (mode, ior_optab, temp, value,
+                          NULL_RTX, 1, OPTAB_LIB_WIDEN);
+      temp = force_reg (mode, temp);
+    }
+
   if (op0 != temp)
-    emit_move_insn (op0, temp);
+    {
+      op0 = copy_rtx (op0);
+      emit_move_insn (op0, temp);
+    }
 }
 \f
 /* Store a bit field that is split across multiple accessible memory objects.
@@ -936,7 +1061,10 @@ store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
 
 static void
 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
-                      unsigned HOST_WIDE_INT bitpos, rtx value)
+                      unsigned HOST_WIDE_INT bitpos,
+                      unsigned HOST_WIDE_INT bitregion_start,
+                      unsigned HOST_WIDE_INT bitregion_end,
+                      rtx value)
 {
   unsigned int unit;
   unsigned int bitsdone = 0;
@@ -951,7 +1079,7 @@ store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
   /* If VALUE is a constant other than a CONST_INT, get it into a register in
      WORD_MODE.  If we can do this using gen_lowpart_common, do so.  Note
      that VALUE might be a floating-point constant.  */
-  if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
+  if (CONSTANT_P (value) && !CONST_INT_P (value))
     {
       rtx word = gen_lowpart_common (word_mode, value);
 
@@ -974,6 +1102,16 @@ store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
       offset = (bitpos + bitsdone) / unit;
       thispos = (bitpos + bitsdone) % unit;
 
+      /* When region of bytes we can touch is restricted, decrease
+        UNIT close to the end of the region as needed.  */
+      if (bitregion_end
+         && unit > BITS_PER_UNIT
+         && bitpos + bitsdone - thispos + unit > bitregion_end + 1)
+       {
+         unit = unit / 2;
+         continue;
+       }
+
       /* THISSIZE must not overrun a word boundary.  Otherwise,
         store_fixed_bit_field will call us again, and we will mutually
         recurse forever.  */
@@ -993,7 +1131,7 @@ store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
            total_bits = GET_MODE_BITSIZE (GET_MODE (value));
 
          /* Fetch successively less significant portions.  */
-         if (GET_CODE (value) == CONST_INT)
+         if (CONST_INT_P (value))
            part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
                             >> (bitsize - bitsdone - thissize))
                            & (((HOST_WIDE_INT) 1 << thissize) - 1));
@@ -1003,18 +1141,18 @@ store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
               endianness compensation) to fetch the piece we want.  */
            part = extract_fixed_bit_field (word_mode, value, 0, thissize,
                                            total_bits - bitsize + bitsdone,
-                                           NULL_RTX, 1);
+                                           NULL_RTX, 1, false);
        }
       else
        {
          /* Fetch successively more significant portions.  */
-         if (GET_CODE (value) == CONST_INT)
+         if (CONST_INT_P (value))
            part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
                             >> bitsdone)
                            & (((HOST_WIDE_INT) 1 << thissize) - 1));
          else
            part = extract_fixed_bit_field (word_mode, value, 0, thissize,
-                                           bitsdone, NULL_RTX, 1);
+                                           bitsdone, NULL_RTX, 1, false);
        }
 
       /* If OP0 is a register, then handle OFFSET here.
@@ -1026,61 +1164,81 @@ store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
       if (GET_CODE (op0) == SUBREG)
        {
          int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
-         word = operand_subword_force (SUBREG_REG (op0), word_offset,
-                                       GET_MODE (SUBREG_REG (op0)));
+         enum machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
+         if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
+           word = word_offset ? const0_rtx : op0;
+         else
+           word = operand_subword_force (SUBREG_REG (op0), word_offset,
+                                         GET_MODE (SUBREG_REG (op0)));
          offset = 0;
        }
       else if (REG_P (op0))
        {
-         word = operand_subword_force (op0, offset, GET_MODE (op0));
+         enum machine_mode op0_mode = GET_MODE (op0);
+         if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
+           word = offset ? const0_rtx : op0;
+         else
+           word = operand_subword_force (op0, offset, GET_MODE (op0));
          offset = 0;
        }
       else
        word = op0;
 
       /* OFFSET is in UNITs, and UNIT is in bits.
-         store_fixed_bit_field wants offset in bytes.  */
-      store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
-                            thispos, part);
+        store_fixed_bit_field wants offset in bytes.  If WORD is const0_rtx,
+        it is just an out-of-bounds access.  Ignore it.  */
+      if (word != const0_rtx)
+       store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
+                              thispos, bitregion_start, bitregion_end, part);
       bitsdone += thissize;
     }
 }
 \f
-/* Generate code to extract a byte-field from STR_RTX
-   containing BITSIZE bits, starting at BITNUM,
-   and put it in TARGET if possible (if TARGET is nonzero).
-   Regardless of TARGET, we return the rtx for where the value is placed.
-   It may be a QUEUED.
+/* A subroutine of extract_bit_field_1 that converts return value X
+   to either MODE or TMODE.  MODE, TMODE and UNSIGNEDP are arguments
+   to extract_bit_field.  */
 
-   STR_RTX is the structure containing the byte (a REG or MEM).
-   UNSIGNEDP is nonzero if this is an unsigned bit field.
-   MODE is the natural mode of the field value once extracted.
-   TMODE is the mode the caller would like the value to have;
-   but the value may be returned with type MODE instead.
+static rtx
+convert_extracted_bit_field (rtx x, enum machine_mode mode,
+                            enum machine_mode tmode, bool unsignedp)
+{
+  if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
+    return x;
 
-   TOTAL_SIZE is the size in bytes of the containing structure,
-   or -1 if varying.
+  /* If the x mode is not a scalar integral, first convert to the
+     integer mode of that size and then access it as a floating-point
+     value via a SUBREG.  */
+  if (!SCALAR_INT_MODE_P (tmode))
+    {
+      enum machine_mode smode;
 
-   If a TARGET is specified and we can store in it at no extra cost,
-   we do so, and return TARGET.
-   Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
-   if they are equally easy.  */
+      smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
+      x = convert_to_mode (smode, x, unsignedp);
+      x = force_reg (smode, x);
+      return gen_lowpart (tmode, x);
+    }
 
-rtx
-extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
-                  unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
-                  enum machine_mode mode, enum machine_mode tmode)
+  return convert_to_mode (tmode, x, unsignedp);
+}
+
+/* A subroutine of extract_bit_field, with the same arguments.
+   If FALLBACK_P is true, fall back to extract_fixed_bit_field
+   if we can find no other means of implementing the operation.
+   if FALLBACK_P is false, return NULL instead.  */
+
+static rtx
+extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
+                    unsigned HOST_WIDE_INT bitnum,
+                    int unsignedp, bool packedp, rtx target,
+                    enum machine_mode mode, enum machine_mode tmode,
+                    bool fallback_p)
 {
   unsigned int unit
     = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
-  unsigned HOST_WIDE_INT offset = bitnum / unit;
-  unsigned HOST_WIDE_INT bitpos = bitnum % unit;
+  unsigned HOST_WIDE_INT offset, bitpos;
   rtx op0 = str_rtx;
-  rtx spec_target = target;
-  rtx spec_target_subreg = 0;
   enum machine_mode int_mode;
-  enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
-  enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
+  enum machine_mode ext_mode;
   enum machine_mode mode1;
   int byte_offset;
 
@@ -1089,15 +1247,16 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
 
   while (GET_CODE (op0) == SUBREG)
     {
-      bitpos += SUBREG_BYTE (op0) * BITS_PER_UNIT;
-      if (bitpos > unit)
-       {
-         offset += (bitpos / unit);
-         bitpos %= unit;
-       }
+      bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
       op0 = SUBREG_REG (op0);
     }
 
+  /* If we have an out-of-bounds access to a register, just return an
+     uninitialized register of the required mode.  This can occur if the
+     source code contains an out-of-bounds access to a small array.  */
+  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
+    return gen_reg_rtx (tmode);
+
   if (REG_P (op0)
       && mode == GET_MODE (op0)
       && bitnum == 0
@@ -1107,58 +1266,57 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
       return op0;
     }
 
+  /* See if we can get a better vector mode before extracting.  */
+  if (VECTOR_MODE_P (GET_MODE (op0))
+      && !MEM_P (op0)
+      && GET_MODE_INNER (GET_MODE (op0)) != tmode)
+    {
+      enum machine_mode new_mode;
+
+      if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
+       new_mode = MIN_MODE_VECTOR_FLOAT;
+      else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
+       new_mode = MIN_MODE_VECTOR_FRACT;
+      else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
+       new_mode = MIN_MODE_VECTOR_UFRACT;
+      else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
+       new_mode = MIN_MODE_VECTOR_ACCUM;
+      else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
+       new_mode = MIN_MODE_VECTOR_UACCUM;
+      else
+       new_mode = MIN_MODE_VECTOR_INT;
+
+      for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
+       if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
+           && targetm.vector_mode_supported_p (new_mode))
+         break;
+      if (new_mode != VOIDmode)
+       op0 = gen_lowpart (new_mode, op0);
+    }
+
   /* Use vec_extract patterns for extracting parts of vectors whenever
      available.  */
   if (VECTOR_MODE_P (GET_MODE (op0))
       && !MEM_P (op0)
-      && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
-         != CODE_FOR_nothing)
+      && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
       && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
          == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
     {
+      struct expand_operand ops[3];
       enum machine_mode outermode = GET_MODE (op0);
       enum machine_mode innermode = GET_MODE_INNER (outermode);
-      int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
+      enum insn_code icode = optab_handler (vec_extract_optab, outermode);
       unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
-      rtx rtxpos = GEN_INT (pos);
-      rtx src = op0;
-      rtx dest = NULL, pat, seq;
-      enum machine_mode mode0 = insn_data[icode].operand[0].mode;
-      enum machine_mode mode1 = insn_data[icode].operand[1].mode;
-      enum machine_mode mode2 = insn_data[icode].operand[2].mode;
 
-      if (innermode == tmode || innermode == mode)
-       dest = target;
-
-      if (!dest)
-       dest = gen_reg_rtx (innermode);
-
-      start_sequence ();
-
-      if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
-       dest = copy_to_mode_reg (mode0, dest);
-
-      if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
-       src = copy_to_mode_reg (mode1, src);
-
-      if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
-       rtxpos = copy_to_mode_reg (mode1, rtxpos);
-
-      /* We could handle this, but we should always be called with a pseudo
-        for our targets and all insns should take them as outputs.  */
-      if (! (*insn_data[icode].operand[0].predicate) (dest, mode0)
-         || ! (*insn_data[icode].operand[1].predicate) (src, mode1)
-         || ! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
-       abort ();
-
-      pat = GEN_FCN (icode) (dest, src, rtxpos);
-      seq = get_insns ();
-      end_sequence ();
-      if (pat)
+      create_output_operand (&ops[0], target, innermode);
+      create_input_operand (&ops[1], op0, outermode);
+      create_integer_operand (&ops[2], pos);
+      if (maybe_expand_insn (icode, 3, ops))
        {
-         emit_insn (seq);
-         emit_insn (pat);
-         return dest;
+         target = ops[0].value;
+         if (GET_MODE (target) != mode)
+           return gen_lowpart (tmode, target);
+         return target;
        }
     }
 
@@ -1171,9 +1329,32 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
        if (MEM_P (op0))
          op0 = adjust_address (op0, imode, 0);
        else if (imode != BLKmode)
-         op0 = gen_lowpart (imode, op0);
+         {
+           op0 = gen_lowpart (imode, op0);
+
+           /* If we got a SUBREG, force it into a register since we
+              aren't going to be able to do another SUBREG on it.  */
+           if (GET_CODE (op0) == SUBREG)
+             op0 = force_reg (imode, op0);
+         }
+       else if (REG_P (op0))
+         {
+           rtx reg, subreg;
+           imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
+                                           MODE_INT);
+           reg = gen_reg_rtx (imode);
+           subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
+           emit_move_insn (subreg, op0);
+           op0 = reg;
+           bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
+         }
        else
-         abort ();
+         {
+           rtx mem = assign_stack_temp (GET_MODE (op0),
+                                        GET_MODE_SIZE (GET_MODE (op0)), 0);
+           emit_move_insn (mem, op0);
+           op0 = adjust_address (mem, BLKmode, 0);
+         }
       }
   }
 
@@ -1192,6 +1373,8 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
      can also be extracted with a SUBREG.  For this, we need the
      byte offset of the value in op0.  */
 
+  bitpos = bitnum % unit;
+  offset = bitnum / unit;
   byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
 
   /* If OP0 is a register, BITPOS must count within a word.
@@ -1215,6 +1398,14 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
            ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
            : mode);
 
+  /* If the bitfield is volatile, we need to make sure the access
+     remains on a type-aligned boundary.  */
+  if (GET_CODE (op0) == MEM
+      && MEM_VOLATILE_P (op0)
+      && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
+      && flag_strict_volatile_bitfields > 0)
+    goto no_subreg_mode_swap;
+
   if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
        && bitpos % BITS_PER_WORD == 0)
        || (mode1 != BLKmode
@@ -1226,8 +1417,7 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
               ? bitpos + bitsize == BITS_PER_WORD
               : bitpos == 0)))
       && ((!MEM_P (op0)
-          && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
-                                    GET_MODE_BITSIZE (GET_MODE (op0)))
+          && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0))
           && GET_MODE_SIZE (mode1) != 0
           && byte_offset % GET_MODE_SIZE (mode1) == 0)
          || (MEM_P (op0)
@@ -1235,24 +1425,15 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
                  || (offset * BITS_PER_UNIT % bitsize == 0
                      && MEM_ALIGN (op0) % bitsize == 0)))))
     {
-      if (mode1 != GET_MODE (op0))
+      if (MEM_P (op0))
+       op0 = adjust_address (op0, mode1, offset);
+      else if (mode1 != GET_MODE (op0))
        {
-         if (GET_CODE (op0) == SUBREG)
-           {
-             if (GET_MODE (SUBREG_REG (op0)) == mode1
-                 || GET_MODE_CLASS (mode1) == MODE_INT
-                 || GET_MODE_CLASS (mode1) == MODE_PARTIAL_INT)
-               op0 = SUBREG_REG (op0);
-             else
-               /* Else we've got some float mode source being extracted into
-                  a different float mode destination -- this combination of
-                  subregs results in Severe Tire Damage.  */
-               goto no_subreg_mode_swap;
-           }
-         if (REG_P (op0))
-           op0 = gen_rtx_SUBREG (mode1, op0, byte_offset);
-         else
-           op0 = adjust_address (op0, mode1, offset);
+         rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
+                                        byte_offset);
+         if (sub == NULL)
+           goto no_subreg_mode_swap;
+         op0 = sub;
        }
       if (mode1 != mode)
        return convert_to_mode (tmode, op0, unsignedp);
@@ -1272,11 +1453,11 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
       unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
       unsigned int i;
 
-      if (target == 0 || !REG_P (target))
+      if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
        target = gen_reg_rtx (mode);
 
       /* Indicate for flow that the entire target reg is being set.  */
-      emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
+      emit_clobber (target);
 
       for (i = 0; i < nwords; i++)
        {
@@ -1296,11 +1477,10 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
          rtx result_part
            = extract_bit_field (op0, MIN (BITS_PER_WORD,
                                           bitsize - i * BITS_PER_WORD),
-                                bitnum + bit_offset, 1, target_part, mode,
+                                bitnum + bit_offset, 1, false, target_part, mode,
                                 word_mode);
 
-         if (target_part == 0)
-           abort ();
+         gcc_assert (target_part);
 
          if (result_part != target_part)
            emit_move_insn (target_part, result_part);
@@ -1327,11 +1507,9 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
 
       /* Signed bit field: sign-extend with two arithmetic shifts.  */
       target = expand_shift (LSHIFT_EXPR, mode, target,
-                            build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
-                            NULL_RTX, 0);
+                            GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
       return expand_shift (RSHIFT_EXPR, mode, target,
-                          build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
-                          NULL_RTX, 0);
+                          GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
     }
 
   /* From here on we know the desired field is smaller than a word.  */
@@ -1344,13 +1522,11 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
   int_mode = int_mode_for_mode (tmode);
   if (int_mode == BLKmode)
     int_mode = int_mode_for_mode (mode);
-  if (int_mode == BLKmode)
-    abort ();    /* Should probably push op0 out to memory and then
-                   do a load.  */
+  /* Should probably push op0 out to memory and then do a load.  */
+  gcc_assert (int_mode != BLKmode);
 
   /* OFFSET is the number of words or bytes (UNIT says which)
      from STR_RTX to the first word or byte containing part of the field.  */
-
   if (!MEM_P (op0))
     {
       if (offset != 0
@@ -1365,289 +1541,174 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
     }
 
   /* Now OFFSET is nonzero only for memory operands.  */
-
-  if (unsignedp)
+  ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
+  if (ext_mode != MAX_MACHINE_MODE
+      && bitsize > 0
+      && GET_MODE_BITSIZE (ext_mode) >= bitsize
+      /* Do not use extv/extzv for volatile bitfields when
+         -fstrict-volatile-bitfields is in effect.  */
+      && !(MEM_P (op0) && MEM_VOLATILE_P (op0)
+          && flag_strict_volatile_bitfields > 0)
+      /* If op0 is a register, we need it in EXT_MODE to make it
+        acceptable to the format of ext(z)v.  */
+      && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
+      && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
+          && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode))))
     {
-      if (HAVE_extzv
-         && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
-         && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
-               && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
-       {
-         unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
-         rtx bitsize_rtx, bitpos_rtx;
-         rtx last = get_last_insn ();
-         rtx xop0 = op0;
-         rtx xtarget = target;
-         rtx xspec_target = spec_target;
-         rtx xspec_target_subreg = spec_target_subreg;
-         rtx pat;
-         enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
-
-         if (MEM_P (xop0))
-           {
-             int save_volatile_ok = volatile_ok;
-             volatile_ok = 1;
+      struct expand_operand ops[4];
+      unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
+      rtx xop0 = op0;
+      rtx xtarget = target;
+      rtx xspec_target = target;
+      rtx xspec_target_subreg = 0;
+
+      /* If op0 is a register, we need it in EXT_MODE to make it
+        acceptable to the format of ext(z)v.  */
+      if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
+       xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
+      if (MEM_P (xop0))
+       /* Get ref to first byte containing part of the field.  */
+       xop0 = adjust_address (xop0, byte_mode, xoffset);
 
-             /* Is the memory operand acceptable?  */
-             if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
-                    (xop0, GET_MODE (xop0))))
-               {
-                 /* No, load into a reg and extract from there.  */
-                 enum machine_mode bestmode;
-
-                 /* Get the mode to use for inserting into this field.  If
-                    OP0 is BLKmode, get the smallest mode consistent with the
-                    alignment. If OP0 is a non-BLKmode object that is no
-                    wider than MAXMODE, use its mode. Otherwise, use the
-                    smallest mode containing the field.  */
-
-                 if (GET_MODE (xop0) == BLKmode
-                     || (GET_MODE_SIZE (GET_MODE (op0))
-                         > GET_MODE_SIZE (maxmode)))
-                   bestmode = get_best_mode (bitsize, bitnum,
-                                             MEM_ALIGN (xop0), maxmode,
-                                             MEM_VOLATILE_P (xop0));
-                 else
-                   bestmode = GET_MODE (xop0);
+      /* Now convert from counting within UNIT to counting in EXT_MODE.  */
+      if (BYTES_BIG_ENDIAN && !MEM_P (xop0))
+       xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
 
-                 if (bestmode == VOIDmode
-                     || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
-                         && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
-                   goto extzv_loses;
+      unit = GET_MODE_BITSIZE (ext_mode);
 
-                 /* Compute offset as multiple of this unit,
-                    counting in bytes.  */
-                 unit = GET_MODE_BITSIZE (bestmode);
-                 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
-                 xbitpos = bitnum % unit;
-                 xop0 = adjust_address (xop0, bestmode, xoffset);
+      /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
+         "backwards" from the size of the unit we are extracting from.
+        Otherwise, we count bits from the most significant on a
+        BYTES/BITS_BIG_ENDIAN machine.  */
 
-                 /* Fetch it to a register in that size.  */
-                 xop0 = force_reg (bestmode, xop0);
+      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+       xbitpos = unit - bitsize - xbitpos;
 
-                 /* XBITPOS counts within UNIT, which is what is expected.  */
-               }
-             else
-               /* Get ref to first byte containing part of the field.  */
-               xop0 = adjust_address (xop0, byte_mode, xoffset);
+      if (xtarget == 0)
+       xtarget = xspec_target = gen_reg_rtx (tmode);
 
-             volatile_ok = save_volatile_ok;
+      if (GET_MODE (xtarget) != ext_mode)
+       {
+         /* Don't use LHS paradoxical subreg if explicit truncation is needed
+            between the mode of the extraction (word_mode) and the target
+            mode.  Instead, create a temporary and use convert_move to set
+            the target.  */
+         if (REG_P (xtarget)
+             && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (xtarget), ext_mode))
+           {
+             xtarget = gen_lowpart (ext_mode, xtarget);
+             if (GET_MODE_PRECISION (ext_mode)
+                 > GET_MODE_PRECISION (GET_MODE (xspec_target)))
+               xspec_target_subreg = xtarget;
            }
+         else
+           xtarget = gen_reg_rtx (ext_mode);
+       }
 
-         /* If op0 is a register, we need it in MAXMODE (which is usually
-            SImode). to make it acceptable to the format of extzv.  */
-         if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
-           goto extzv_loses;
-         if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
-           xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
-
-         /* On big-endian machines, we count bits from the most significant.
-            If the bit field insn does not, we must invert.  */
-         if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
-           xbitpos = unit - bitsize - xbitpos;
+      create_output_operand (&ops[0], xtarget, ext_mode);
+      create_fixed_operand (&ops[1], xop0);
+      create_integer_operand (&ops[2], bitsize);
+      create_integer_operand (&ops[3], xbitpos);
+      if (maybe_expand_insn (unsignedp ? CODE_FOR_extzv : CODE_FOR_extv,
+                            4, ops))
+       {
+         xtarget = ops[0].value;
+         if (xtarget == xspec_target)
+           return xtarget;
+         if (xtarget == xspec_target_subreg)
+           return xspec_target;
+         return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
+       }
+    }
 
-         /* Now convert from counting within UNIT to counting in MAXMODE.  */
-         if (BITS_BIG_ENDIAN && !MEM_P (xop0))
-           xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
+  /* If OP0 is a memory, try copying it to a register and seeing if a
+     cheap register alternative is available.  */
+  if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
+    {
+      enum machine_mode bestmode;
+
+      /* Get the mode to use for inserting into this field.  If
+        OP0 is BLKmode, get the smallest mode consistent with the
+        alignment. If OP0 is a non-BLKmode object that is no
+        wider than EXT_MODE, use its mode. Otherwise, use the
+        smallest mode containing the field.  */
+
+      if (GET_MODE (op0) == BLKmode
+         || (ext_mode != MAX_MACHINE_MODE
+             && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
+       bestmode = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
+                                 (ext_mode == MAX_MACHINE_MODE
+                                  ? VOIDmode : ext_mode),
+                                 MEM_VOLATILE_P (op0));
+      else
+       bestmode = GET_MODE (op0);
 
-         unit = GET_MODE_BITSIZE (maxmode);
+      if (bestmode != VOIDmode
+         && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
+              && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
+       {
+         unsigned HOST_WIDE_INT xoffset, xbitpos;
 
-         if (xtarget == 0
-             || (flag_force_mem && MEM_P (xtarget)))
-           xtarget = xspec_target = gen_reg_rtx (tmode);
+         /* Compute the offset as a multiple of this unit,
+            counting in bytes.  */
+         unit = GET_MODE_BITSIZE (bestmode);
+         xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
+         xbitpos = bitnum % unit;
 
-         if (GET_MODE (xtarget) != maxmode)
+         /* Make sure the register is big enough for the whole field.  */
+         if (xoffset * BITS_PER_UNIT + unit
+             >= offset * BITS_PER_UNIT + bitsize)
            {
-             if (REG_P (xtarget))
-               {
-                 int wider = (GET_MODE_SIZE (maxmode)
-                              > GET_MODE_SIZE (GET_MODE (xtarget)));
-                 xtarget = gen_lowpart (maxmode, xtarget);
-                 if (wider)
-                   xspec_target_subreg = xtarget;
-               }
-             else
-               xtarget = gen_reg_rtx (maxmode);
-           }
+             rtx last, result, xop0;
 
-         /* If this machine's extzv insists on a register target,
-            make sure we have one.  */
-         if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
-                (xtarget, maxmode)))
-           xtarget = gen_reg_rtx (maxmode);
+             last = get_last_insn ();
 
-         bitsize_rtx = GEN_INT (bitsize);
-         bitpos_rtx = GEN_INT (xbitpos);
+             /* Fetch it to a register in that size.  */
+             xop0 = adjust_address (op0, bestmode, xoffset);
+             xop0 = force_reg (bestmode, xop0);
+             result = extract_bit_field_1 (xop0, bitsize, xbitpos,
+                                           unsignedp, packedp, target,
+                                           mode, tmode, false);
+             if (result)
+               return result;
 
-         pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
-         if (pat)
-           {
-             emit_insn (pat);
-             target = xtarget;
-             spec_target = xspec_target;
-             spec_target_subreg = xspec_target_subreg;
-           }
-         else
-           {
              delete_insns_since (last);
-             target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
-                                               bitpos, target, 1);
            }
        }
-      else
-      extzv_loses:
-       target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
-                                         bitpos, target, 1);
     }
-  else
-    {
-      if (HAVE_extv
-         && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
-         && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
-               && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
-       {
-         int xbitpos = bitpos, xoffset = offset;
-         rtx bitsize_rtx, bitpos_rtx;
-         rtx last = get_last_insn ();
-         rtx xop0 = op0, xtarget = target;
-         rtx xspec_target = spec_target;
-         rtx xspec_target_subreg = spec_target_subreg;
-         rtx pat;
-         enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
-
-         if (MEM_P (xop0))
-           {
-             /* Is the memory operand acceptable?  */
-             if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
-                    (xop0, GET_MODE (xop0))))
-               {
-                 /* No, load into a reg and extract from there.  */
-                 enum machine_mode bestmode;
-
-                 /* Get the mode to use for inserting into this field.  If
-                    OP0 is BLKmode, get the smallest mode consistent with the
-                    alignment. If OP0 is a non-BLKmode object that is no
-                    wider than MAXMODE, use its mode. Otherwise, use the
-                    smallest mode containing the field.  */
-
-                 if (GET_MODE (xop0) == BLKmode
-                     || (GET_MODE_SIZE (GET_MODE (op0))
-                         > GET_MODE_SIZE (maxmode)))
-                   bestmode = get_best_mode (bitsize, bitnum,
-                                             MEM_ALIGN (xop0), maxmode,
-                                             MEM_VOLATILE_P (xop0));
-                 else
-                   bestmode = GET_MODE (xop0);
-
-                 if (bestmode == VOIDmode
-                     || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
-                         && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
-                   goto extv_loses;
-
-                 /* Compute offset as multiple of this unit,
-                    counting in bytes.  */
-                 unit = GET_MODE_BITSIZE (bestmode);
-                 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
-                 xbitpos = bitnum % unit;
-                 xop0 = adjust_address (xop0, bestmode, xoffset);
-
-                 /* Fetch it to a register in that size.  */
-                 xop0 = force_reg (bestmode, xop0);
-
-                 /* XBITPOS counts within UNIT, which is what is expected.  */
-               }
-             else
-               /* Get ref to first byte containing part of the field.  */
-               xop0 = adjust_address (xop0, byte_mode, xoffset);
-           }
-
-         /* If op0 is a register, we need it in MAXMODE (which is usually
-            SImode) to make it acceptable to the format of extv.  */
-         if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
-           goto extv_loses;
-         if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
-           xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
-
-         /* On big-endian machines, we count bits from the most significant.
-            If the bit field insn does not, we must invert.  */
-         if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
-           xbitpos = unit - bitsize - xbitpos;
 
-         /* XBITPOS counts within a size of UNIT.
-            Adjust to count within a size of MAXMODE.  */
-         if (BITS_BIG_ENDIAN && !MEM_P (xop0))
-           xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
+  if (!fallback_p)
+    return NULL;
 
-         unit = GET_MODE_BITSIZE (maxmode);
-
-         if (xtarget == 0
-             || (flag_force_mem && MEM_P (xtarget)))
-           xtarget = xspec_target = gen_reg_rtx (tmode);
+  target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
+                                   bitpos, target, unsignedp, packedp);
+  return convert_extracted_bit_field (target, mode, tmode, unsignedp);
+}
 
-         if (GET_MODE (xtarget) != maxmode)
-           {
-             if (REG_P (xtarget))
-               {
-                 int wider = (GET_MODE_SIZE (maxmode)
-                              > GET_MODE_SIZE (GET_MODE (xtarget)));
-                 xtarget = gen_lowpart (maxmode, xtarget);
-                 if (wider)
-                   xspec_target_subreg = xtarget;
-               }
-             else
-               xtarget = gen_reg_rtx (maxmode);
-           }
+/* Generate code to extract a byte-field from STR_RTX
+   containing BITSIZE bits, starting at BITNUM,
+   and put it in TARGET if possible (if TARGET is nonzero).
+   Regardless of TARGET, we return the rtx for where the value is placed.
 
-         /* If this machine's extv insists on a register target,
-            make sure we have one.  */
-         if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
-                (xtarget, maxmode)))
-           xtarget = gen_reg_rtx (maxmode);
+   STR_RTX is the structure containing the byte (a REG or MEM).
+   UNSIGNEDP is nonzero if this is an unsigned bit field.
+   PACKEDP is nonzero if the field has the packed attribute.
+   MODE is the natural mode of the field value once extracted.
+   TMODE is the mode the caller would like the value to have;
+   but the value may be returned with type MODE instead.
 
-         bitsize_rtx = GEN_INT (bitsize);
-         bitpos_rtx = GEN_INT (xbitpos);
+   If a TARGET is specified and we can store in it at no extra cost,
+   we do so, and return TARGET.
+   Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
+   if they are equally easy.  */
 
-         pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
-         if (pat)
-           {
-             emit_insn (pat);
-             target = xtarget;
-             spec_target = xspec_target;
-             spec_target_subreg = xspec_target_subreg;
-           }
-         else
-           {
-             delete_insns_since (last);
-             target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
-                                               bitpos, target, 0);
-           }
-       }
-      else
-      extv_loses:
-       target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
-                                         bitpos, target, 0);
-    }
-  if (target == spec_target)
-    return target;
-  if (target == spec_target_subreg)
-    return spec_target;
-  if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
-    {
-      /* If the target mode is floating-point, first convert to the
-        integer mode of that size and then access it as a floating-point
-        value via a SUBREG.  */
-      if (GET_MODE_CLASS (tmode) != MODE_INT
-         && GET_MODE_CLASS (tmode) != MODE_PARTIAL_INT)
-       {
-         target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode),
-                                                  MODE_INT, 0),
-                                   target, unsignedp);
-         return gen_lowpart (tmode, target);
-       }
-      else
-       return convert_to_mode (tmode, target, unsignedp);
-    }
-  return target;
+rtx
+extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
+                  unsigned HOST_WIDE_INT bitnum, int unsignedp, bool packedp,
+                  rtx target, enum machine_mode mode, enum machine_mode tmode)
+{
+  return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp, packedp,
+                             target, mode, tmode, true);
 }
 \f
 /* Extract a bit field using shifts and boolean operations
@@ -1662,6 +1723,8 @@ extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
      which is significant on bigendian machines.)
 
    UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
+   PACKEDP is true if the field has the packed attribute.
+
    If TARGET is nonzero, attempts to store the value there
    and return TARGET, but this is not guaranteed.
    If TARGET is not used, create a pseudo-reg of mode TMODE for the value.  */
@@ -1671,7 +1734,7 @@ extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
                         unsigned HOST_WIDE_INT offset,
                         unsigned HOST_WIDE_INT bitsize,
                         unsigned HOST_WIDE_INT bitpos, rtx target,
-                        int unsignedp)
+                        int unsignedp, bool packedp)
 {
   unsigned int total_bits = BITS_PER_WORD;
   enum machine_mode mode;
@@ -1688,8 +1751,19 @@ extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
         includes the entire field.  If such a mode would be larger than
         a word, we won't be doing the extraction the normal way.  */
 
-      mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
-                           MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
+      if (MEM_VOLATILE_P (op0)
+         && flag_strict_volatile_bitfields > 0)
+       {
+         if (GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
+           mode = GET_MODE (op0);
+         else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
+           mode = GET_MODE (target);
+         else
+           mode = tmode;
+       }
+      else
+       mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT, 0, 0,
+                             MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
 
       if (mode == VOIDmode)
        /* The only way this should occur is if the field spans word
@@ -1698,24 +1772,79 @@ extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
                                        bitpos + offset * BITS_PER_UNIT,
                                        unsignedp);
 
-      total_bits = GET_MODE_BITSIZE (mode);
+      total_bits = GET_MODE_BITSIZE (mode);
+
+      /* Make sure bitpos is valid for the chosen mode.  Adjust BITPOS to
+        be in the range 0 to total_bits-1, and put any excess bytes in
+        OFFSET.  */
+      if (bitpos >= total_bits)
+       {
+         offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
+         bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
+                    * BITS_PER_UNIT);
+       }
+
+      /* If we're accessing a volatile MEM, we can't do the next
+        alignment step if it results in a multi-word access where we
+        otherwise wouldn't have one.  So, check for that case
+        here.  */
+      if (MEM_P (op0)
+         && MEM_VOLATILE_P (op0)
+         && flag_strict_volatile_bitfields > 0
+         && bitpos + bitsize <= total_bits
+         && bitpos + bitsize + (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT > total_bits)
+       {
+         if (STRICT_ALIGNMENT)
+           {
+             static bool informed_about_misalignment = false;
+             bool warned;
+
+             if (packedp)
+               {
+                 if (bitsize == total_bits)
+                   warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
+                                        "multiple accesses to volatile structure member"
+                                        " because of packed attribute");
+                 else
+                   warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
+                                        "multiple accesses to volatile structure bitfield"
+                                        " because of packed attribute");
+
+                 return extract_split_bit_field (op0, bitsize,
+                                                 bitpos + offset * BITS_PER_UNIT,
+                                                 unsignedp);
+               }
+
+             if (bitsize == total_bits)
+               warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
+                                    "mis-aligned access used for structure member");
+             else
+               warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
+                                    "mis-aligned access used for structure bitfield");
 
-      /* Make sure bitpos is valid for the chosen mode.  Adjust BITPOS to
-        be in the range 0 to total_bits-1, and put any excess bytes in
-        OFFSET.  */
-      if (bitpos >= total_bits)
+             if (! informed_about_misalignment && warned)
+               {
+                 informed_about_misalignment = true;
+                 inform (input_location,
+                         "when a volatile object spans multiple type-sized locations,"
+                         " the compiler must choose between using a single mis-aligned access to"
+                         " preserve the volatility, or using multiple aligned accesses to avoid"
+                         " runtime faults; this code may fail at runtime if the hardware does"
+                         " not allow this access");
+               }
+           }
+       }
+      else
        {
-         offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
-         bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
-                    * BITS_PER_UNIT);
+
+         /* Get ref to an aligned byte, halfword, or word containing the field.
+            Adjust BITPOS to be position within a word,
+            and OFFSET to be the offset of that word.
+            Then alter OP0 to refer to that word.  */
+         bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
+         offset -= (offset % (total_bits / BITS_PER_UNIT));
        }
 
-      /* Get ref to an aligned byte, halfword, or word containing the field.
-        Adjust BITPOS to be position within a word,
-        and OFFSET to be the offset of that word.
-        Then alter OP0 to refer to that word.  */
-      bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
-      offset -= (offset % (total_bits / BITS_PER_UNIT));
       op0 = adjust_address (op0, mode, offset);
     }
 
@@ -1735,12 +1864,11 @@ extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
        {
          /* If the field does not already start at the lsb,
             shift it so it does.  */
-         tree amount = build_int_2 (bitpos, 0);
          /* Maybe propagate the target for the shift.  */
          /* But not if we will return it--could confuse integrate.c.  */
          rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
          if (tmode != mode) subtarget = 0;
-         op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
+         op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitpos, subtarget, 1);
        }
       /* Convert the value to the desired mode.  */
       if (mode != tmode)
@@ -1759,8 +1887,6 @@ extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
   /* To extract a signed bit-field, first shift its msb to the msb of the word,
      then arithmetic-shift its lsb to the lsb of the word.  */
   op0 = force_reg (mode, op0);
-  if (mode != tmode)
-    target = 0;
 
   /* Find the narrowest integer mode that contains the field.  */
 
@@ -1772,18 +1898,19 @@ extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
        break;
       }
 
+  if (mode != tmode)
+    target = 0;
+
   if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
     {
-      tree amount
-       = build_int_2 (GET_MODE_BITSIZE (mode) - (bitsize + bitpos), 0);
+      int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitpos);
       /* Maybe propagate the target for the shift.  */
       rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
       op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
     }
 
   return expand_shift (RSHIFT_EXPR, mode, op0,
-                      build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
-                      target, 0);
+                      GET_MODE_BITSIZE (mode) - bitsize, target, 0);
 }
 \f
 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
@@ -1795,39 +1922,15 @@ extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
 static rtx
 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
 {
-  HOST_WIDE_INT masklow, maskhigh;
-
-  if (bitsize == 0)
-    masklow = 0;
-  else if (bitpos < HOST_BITS_PER_WIDE_INT)
-    masklow = (HOST_WIDE_INT) -1 << bitpos;
-  else
-    masklow = 0;
-
-  if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
-    masklow &= ((unsigned HOST_WIDE_INT) -1
-               >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
-
-  if (bitpos <= HOST_BITS_PER_WIDE_INT)
-    maskhigh = -1;
-  else
-    maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
+  double_int mask;
 
-  if (bitsize == 0)
-    maskhigh = 0;
-  else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
-    maskhigh &= ((unsigned HOST_WIDE_INT) -1
-                >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
-  else
-    maskhigh = 0;
+  mask = double_int_mask (bitsize);
+  mask = double_int_lshift (mask, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
 
   if (complement)
-    {
-      maskhigh = ~maskhigh;
-      masklow = ~masklow;
-    }
+    mask = double_int_not (mask);
 
-  return immed_double_const (masklow, maskhigh, mode);
+  return immed_double_int_const (mask, mode);
 }
 
 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
@@ -1836,24 +1939,12 @@ mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
 static rtx
 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
 {
-  unsigned HOST_WIDE_INT v = INTVAL (value);
-  HOST_WIDE_INT low, high;
-
-  if (bitsize < HOST_BITS_PER_WIDE_INT)
-    v &= ~((HOST_WIDE_INT) -1 << bitsize);
-
-  if (bitpos < HOST_BITS_PER_WIDE_INT)
-    {
-      low = v << bitpos;
-      high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
-    }
-  else
-    {
-      low = 0;
-      high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
-    }
+  double_int val;
+  
+  val = double_int_zext (uhwi_to_double_int (INTVAL (value)), bitsize);
+  val = double_int_lshift (val, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
 
-  return immed_double_const (low, high, mode);
+  return immed_double_int_const (val, mode);
 }
 \f
 /* Extract a bit field that is split across two words
@@ -1922,7 +2013,7 @@ extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
         extract_fixed_bit_field wants offset in bytes.  */
       part = extract_fixed_bit_field (word_mode, word,
                                      offset * unit / BITS_PER_UNIT,
-                                     thissize, thispos, 0, 1);
+                                     thissize, thispos, 0, 1, false);
       bitsdone += thissize;
 
       /* Shift this part into place for the result.  */
@@ -1930,13 +2021,13 @@ extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
        {
          if (bitsize != bitsdone)
            part = expand_shift (LSHIFT_EXPR, word_mode, part,
-                                build_int_2 (bitsize - bitsdone, 0), 0, 1);
+                                bitsize - bitsdone, 0, 1);
        }
       else
        {
          if (bitsdone != thissize)
            part = expand_shift (LSHIFT_EXPR, word_mode, part,
-                                build_int_2 (bitsdone - thissize, 0), 0, 1);
+                                bitsdone - thissize, 0, 1);
        }
 
       if (first)
@@ -1955,10 +2046,83 @@ extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
     return result;
   /* Signed bit field: sign-extend with two arithmetic shifts.  */
   result = expand_shift (LSHIFT_EXPR, word_mode, result,
-                        build_int_2 (BITS_PER_WORD - bitsize, 0),
-                        NULL_RTX, 0);
+                        BITS_PER_WORD - bitsize, NULL_RTX, 0);
   return expand_shift (RSHIFT_EXPR, word_mode, result,
-                      build_int_2 (BITS_PER_WORD - bitsize, 0), NULL_RTX, 0);
+                      BITS_PER_WORD - bitsize, NULL_RTX, 0);
+}
+\f
+/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
+   the bit pattern.  SRC_MODE is the mode of SRC; if this is smaller than
+   MODE, fill the upper bits with zeros.  Fail if the layout of either
+   mode is unknown (as for CC modes) or if the extraction would involve
+   unprofitable mode punning.  Return the value on success, otherwise
+   return null.
+
+   This is different from gen_lowpart* in these respects:
+
+     - the returned value must always be considered an rvalue
+
+     - when MODE is wider than SRC_MODE, the extraction involves
+       a zero extension
+
+     - when MODE is smaller than SRC_MODE, the extraction involves
+       a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
+
+   In other words, this routine performs a computation, whereas the
+   gen_lowpart* routines are conceptually lvalue or rvalue subreg
+   operations.  */
+
+rtx
+extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
+{
+  enum machine_mode int_mode, src_int_mode;
+
+  if (mode == src_mode)
+    return src;
+
+  if (CONSTANT_P (src))
+    {
+      /* simplify_gen_subreg can't be used here, as if simplify_subreg
+        fails, it will happily create (subreg (symbol_ref)) or similar
+        invalid SUBREGs.  */
+      unsigned int byte = subreg_lowpart_offset (mode, src_mode);
+      rtx ret = simplify_subreg (mode, src, src_mode, byte);
+      if (ret)
+       return ret;
+
+      if (GET_MODE (src) == VOIDmode
+         || !validate_subreg (mode, src_mode, src, byte))
+       return NULL_RTX;
+
+      src = force_reg (GET_MODE (src), src);
+      return gen_rtx_SUBREG (mode, src, byte);
+    }
+
+  if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
+    return NULL_RTX;
+
+  if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
+      && MODES_TIEABLE_P (mode, src_mode))
+    {
+      rtx x = gen_lowpart_common (mode, src);
+      if (x)
+        return x;
+    }
+
+  src_int_mode = int_mode_for_mode (src_mode);
+  int_mode = int_mode_for_mode (mode);
+  if (src_int_mode == BLKmode || int_mode == BLKmode)
+    return NULL_RTX;
+
+  if (!MODES_TIEABLE_P (src_int_mode, src_mode))
+    return NULL_RTX;
+  if (!MODES_TIEABLE_P (int_mode, mode))
+    return NULL_RTX;
+
+  src = gen_lowpart (src_int_mode, src);
+  src = convert_modes (int_mode, src_int_mode, src, true);
+  src = gen_lowpart (mode, src);
+  return src;
 }
 \f
 /* Add INC into TARGET.  */
@@ -1987,35 +2151,56 @@ expand_dec (rtx target, rtx dec)
 \f
 /* Output a shift instruction for expression code CODE,
    with SHIFTED being the rtx for the value to shift,
-   and AMOUNT the tree for the amount to shift by.
+   and AMOUNT the rtx for the amount to shift by.
    Store the result in the rtx TARGET, if that is convenient.
    If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
    Return the rtx for where the value is.  */
 
-rtx
-expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
-             tree amount, rtx target, int unsignedp)
+static rtx
+expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
+               rtx amount, rtx target, int unsignedp)
 {
   rtx op1, temp = 0;
   int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
   int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
-  int try;
+  optab lshift_optab = ashl_optab;
+  optab rshift_arith_optab = ashr_optab;
+  optab rshift_uns_optab = lshr_optab;
+  optab lrotate_optab = rotl_optab;
+  optab rrotate_optab = rotr_optab;
+  enum machine_mode op1_mode;
+  int attempt;
+  bool speed = optimize_insn_for_speed_p ();
+
+  op1 = amount;
+  op1_mode = GET_MODE (op1);
+
+  /* Determine whether the shift/rotate amount is a vector, or scalar.  If the
+     shift amount is a vector, use the vector/vector shift patterns.  */
+  if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
+    {
+      lshift_optab = vashl_optab;
+      rshift_arith_optab = vashr_optab;
+      rshift_uns_optab = vlshr_optab;
+      lrotate_optab = vrotl_optab;
+      rrotate_optab = vrotr_optab;
+    }
 
   /* Previously detected shift-counts computed by NEGATE_EXPR
      and shifted in the other direction; but that does not work
      on all machines.  */
 
-  op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
-
   if (SHIFT_COUNT_TRUNCATED)
     {
-      if (GET_CODE (op1) == CONST_INT
+      if (CONST_INT_P (op1)
          && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
              (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
        op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
                       % GET_MODE_BITSIZE (mode));
       else if (GET_CODE (op1) == SUBREG
-              && subreg_lowpart_p (op1))
+              && subreg_lowpart_p (op1)
+              && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
+              && SCALAR_INT_MODE_P (GET_MODE (op1)))
        op1 = SUBREG_REG (op1);
     }
 
@@ -2025,10 +2210,12 @@ expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
   /* Check whether its cheaper to implement a left shift by a constant
      bit count by a sequence of additions.  */
   if (code == LSHIFT_EXPR
-      && GET_CODE (op1) == CONST_INT
+      && CONST_INT_P (op1)
       && INTVAL (op1) > 0
-      && INTVAL (op1) < GET_MODE_BITSIZE (mode)
-      && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
+      && INTVAL (op1) < GET_MODE_PRECISION (mode)
+      && INTVAL (op1) < MAX_BITS_PER_WORD
+      && shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
+      && shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
     {
       int i;
       for (i = 0; i < INTVAL (op1); i++)
@@ -2040,13 +2227,13 @@ expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
       return shifted;
     }
 
-  for (try = 0; temp == 0 && try < 3; try++)
+  for (attempt = 0; temp == 0 && attempt < 3; attempt++)
     {
       enum optab_methods methods;
 
-      if (try == 0)
+      if (attempt == 0)
        methods = OPTAB_DIRECT;
-      else if (try == 1)
+      else if (attempt == 1)
        methods = OPTAB_WIDEN;
       else
        methods = OPTAB_LIB_WIDEN;
@@ -2071,46 +2258,37 @@ expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
                 code below.  */
 
              rtx subtarget = target == shifted ? 0 : target;
+             rtx new_amount, other_amount;
              rtx temp1;
-             tree type = TREE_TYPE (amount);
-             tree new_amount = make_tree (type, op1);
-             tree other_amount
-               = fold (build (MINUS_EXPR, type,
-                              convert (type,
-                                       build_int_2 (GET_MODE_BITSIZE (mode),
-                                                    0)),
-                              amount));
+
+             new_amount = op1;
+             if (CONST_INT_P (op1))
+               other_amount = GEN_INT (GET_MODE_BITSIZE (mode)
+                                       - INTVAL (op1));
+             else
+               other_amount
+                 = simplify_gen_binary (MINUS, GET_MODE (op1),
+                                        GEN_INT (GET_MODE_PRECISION (mode)),
+                                        op1);
 
              shifted = force_reg (mode, shifted);
 
-             temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
-                                  mode, shifted, new_amount, subtarget, 1);
-             temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
-                                   mode, shifted, other_amount, 0, 1);
+             temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
+                                    mode, shifted, new_amount, 0, 1);
+             temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
+                                     mode, shifted, other_amount,
+                                     subtarget, 1);
              return expand_binop (mode, ior_optab, temp, temp1, target,
                                   unsignedp, methods);
            }
 
          temp = expand_binop (mode,
-                              left ? rotl_optab : rotr_optab,
+                              left ? lrotate_optab : rrotate_optab,
                               shifted, op1, target, unsignedp, methods);
-
-         /* If we don't have the rotate, but we are rotating by a constant
-            that is in range, try a rotate in the opposite direction.  */
-
-         if (temp == 0 && GET_CODE (op1) == CONST_INT
-             && INTVAL (op1) > 0
-             && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
-           temp = expand_binop (mode,
-                                left ? rotr_optab : rotl_optab,
-                                shifted,
-                                GEN_INT (GET_MODE_BITSIZE (mode)
-                                         - INTVAL (op1)),
-                                target, unsignedp, methods);
        }
       else if (unsignedp)
        temp = expand_binop (mode,
-                            left ? ashl_optab : lshr_optab,
+                            left ? lshift_optab : rshift_uns_optab,
                             shifted, op1, target, unsignedp, methods);
 
       /* Do arithmetic shifts.
@@ -2129,7 +2307,7 @@ expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
          /* Arithmetic shift */
 
          temp = expand_binop (mode,
-                              left ? ashl_optab : ashr_optab,
+                              left ? lshift_optab : rshift_arith_optab,
                               shifted, op1, target, unsignedp, methods1);
        }
 
@@ -2139,49 +2317,41 @@ expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
         define_expand for lshrsi3 was added to vax.md.  */
     }
 
-  if (temp == 0)
-    abort ();
+  gcc_assert (temp);
   return temp;
 }
-\f
-enum alg_code { alg_zero, alg_m, alg_shift,
-                 alg_add_t_m2, alg_sub_t_m2,
-                 alg_add_factor, alg_sub_factor,
-                 alg_add_t2_m, alg_sub_t2_m,
-                 alg_add, alg_subtract, alg_factor, alg_shiftop };
-
-/* This structure records a sequence of operations.
-   `ops' is the number of operations recorded.
-   `cost' is their total cost.
-   The operations are stored in `op' and the corresponding
-   logarithms of the integer coefficients in `log'.
-
-   These are the operations:
-   alg_zero            total := 0;
-   alg_m               total := multiplicand;
-   alg_shift           total := total * coeff
-   alg_add_t_m2                total := total + multiplicand * coeff;
-   alg_sub_t_m2                total := total - multiplicand * coeff;
-   alg_add_factor      total := total * coeff + total;
-   alg_sub_factor      total := total * coeff - total;
-   alg_add_t2_m                total := total * coeff + multiplicand;
-   alg_sub_t2_m                total := total * coeff - multiplicand;
-
-   The first operand must be either alg_zero or alg_m.  */
-
-struct algorithm
+
+/* Output a shift instruction for expression code CODE,
+   with SHIFTED being the rtx for the value to shift,
+   and AMOUNT the amount to shift by.
+   Store the result in the rtx TARGET, if that is convenient.
+   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
+   Return the rtx for where the value is.  */
+
+rtx
+expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
+             int amount, rtx target, int unsignedp)
+{
+  return expand_shift_1 (code, mode,
+                        shifted, GEN_INT (amount), target, unsignedp);
+}
+
+/* Output a shift instruction for expression code CODE,
+   with SHIFTED being the rtx for the value to shift,
+   and AMOUNT the tree for the amount to shift by.
+   Store the result in the rtx TARGET, if that is convenient.
+   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
+   Return the rtx for where the value is.  */
+
+rtx
+expand_variable_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
+                      tree amount, rtx target, int unsignedp)
 {
-  short cost;
-  short ops;
-  /* The size of the OP and LOG fields are not directly related to the
-     word size, but the worst-case algorithms will be if we have few
-     consecutive ones or zeros, i.e., a multiplicand like 10101010101...
-     In that case we will generate shift-by-2, add, shift-by-2, add,...,
-     in total wordsize operations.  */
-  enum alg_code op[MAX_BITS_PER_WORD];
-  char log[MAX_BITS_PER_WORD];
-};
+  return expand_shift_1 (code, mode,
+                        shifted, expand_normal (amount), target, unsignedp);
+}
 
+\f
 /* Indicates the type of fixup needed after a constant multiplication.
    BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
    the result should be negated, and ADD_VARIANT means that the
@@ -2189,16 +2359,16 @@ struct algorithm
 enum mult_variant {basic_variant, negate_variant, add_variant};
 
 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
-                       int, enum machine_mode mode);
+                       const struct mult_cost *, enum machine_mode mode);
 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
                                 struct algorithm *, enum mult_variant *, int);
 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
                              const struct algorithm *, enum mult_variant);
 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
-                                                int, unsigned HOST_WIDE_INT *,
-                                                int *, int *);
+                                                int, rtx *, int *, int *);
 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
 static rtx extract_high_half (enum machine_mode, rtx);
+static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
                                       int, int);
 /* Compute and return the best algorithm for multiplying by T.
@@ -2209,19 +2379,28 @@ static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
 
 static void
 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
-           int cost_limit, enum machine_mode mode)
+           const struct mult_cost *cost_limit, enum machine_mode mode)
 {
   int m;
   struct algorithm *alg_in, *best_alg;
-  int cost;
+  struct mult_cost best_cost;
+  struct mult_cost new_limit;
+  int op_cost, op_latency;
+  unsigned HOST_WIDE_INT orig_t = t;
   unsigned HOST_WIDE_INT q;
   int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
+  int hash_index;
+  bool cache_hit = false;
+  enum alg_code cache_alg = alg_zero;
+  bool speed = optimize_insn_for_speed_p ();
 
   /* Indicate that no algorithm is yet found.  If no algorithm
      is found, this value will be returned and indicate failure.  */
-  alg_out->cost = cost_limit;
+  alg_out->cost.cost = cost_limit->cost + 1;
+  alg_out->cost.latency = cost_limit->latency + 1;
 
-  if (cost_limit <= 0)
+  if (cost_limit->cost < 0
+      || (cost_limit->cost == 0 && cost_limit->latency <= 0))
     return;
 
   /* Restrict the bits of "t" to the multiplication's mode.  */
@@ -2231,7 +2410,8 @@ synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
   if (t == 1)
     {
       alg_out->ops = 1;
-      alg_out->cost = 0;
+      alg_out->cost.cost = 0;
+      alg_out->cost.latency = 0;
       alg_out->op[0] = alg_m;
       return;
     }
@@ -2240,12 +2420,13 @@ synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
      fail now.  */
   if (t == 0)
     {
-      if (zero_cost >= cost_limit)
+      if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
        return;
       else
        {
          alg_out->ops = 1;
-         alg_out->cost = zero_cost;
+         alg_out->cost.cost = zero_cost[speed];
+         alg_out->cost.latency = zero_cost[speed];
          alg_out->op[0] = alg_zero;
          return;
        }
@@ -2253,36 +2434,139 @@ synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
 
   /* We'll be needing a couple extra algorithm structures now.  */
 
-  alg_in = alloca (sizeof (struct algorithm));
-  best_alg = alloca (sizeof (struct algorithm));
+  alg_in = XALLOCA (struct algorithm);
+  best_alg = XALLOCA (struct algorithm);
+  best_cost = *cost_limit;
+
+  /* Compute the hash index.  */
+  hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
+
+  /* See if we already know what to do for T.  */
+  if (alg_hash[hash_index].t == t
+      && alg_hash[hash_index].mode == mode
+      && alg_hash[hash_index].mode == mode
+      && alg_hash[hash_index].speed == speed
+      && alg_hash[hash_index].alg != alg_unknown)
+    {
+      cache_alg = alg_hash[hash_index].alg;
+
+      if (cache_alg == alg_impossible)
+       {
+         /* The cache tells us that it's impossible to synthesize
+            multiplication by T within alg_hash[hash_index].cost.  */
+         if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
+           /* COST_LIMIT is at least as restrictive as the one
+              recorded in the hash table, in which case we have no
+              hope of synthesizing a multiplication.  Just
+              return.  */
+           return;
+
+         /* If we get here, COST_LIMIT is less restrictive than the
+            one recorded in the hash table, so we may be able to
+            synthesize a multiplication.  Proceed as if we didn't
+            have the cache entry.  */
+       }
+      else
+       {
+         if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
+           /* The cached algorithm shows that this multiplication
+              requires more cost than COST_LIMIT.  Just return.  This
+              way, we don't clobber this cache entry with
+              alg_impossible but retain useful information.  */
+           return;
+
+         cache_hit = true;
+
+         switch (cache_alg)
+           {
+           case alg_shift:
+             goto do_alg_shift;
+
+           case alg_add_t_m2:
+           case alg_sub_t_m2:
+             goto do_alg_addsub_t_m2;
+
+           case alg_add_factor:
+           case alg_sub_factor:
+             goto do_alg_addsub_factor;
+
+           case alg_add_t2_m:
+             goto do_alg_add_t2_m;
+
+           case alg_sub_t2_m:
+             goto do_alg_sub_t2_m;
+
+           default:
+             gcc_unreachable ();
+           }
+       }
+    }
 
   /* If we have a group of zero bits at the low-order part of T, try
      multiplying by the remaining bits and then doing a shift.  */
 
   if ((t & 1) == 0)
     {
+    do_alg_shift:
       m = floor_log2 (t & -t); /* m = number of low zero bits */
       if (m < maxm)
        {
          q = t >> m;
          /* The function expand_shift will choose between a shift and
             a sequence of additions, so the observed cost is given as
-            MIN (m * add_cost[mode], shift_cost[mode][m]).  */
-         cost = m * add_cost[mode];
-         if (shift_cost[mode][m] < cost)
-           cost = shift_cost[mode][m];
-         synth_mult (alg_in, q, cost_limit - cost, mode);
-
-         cost += alg_in->cost;
-         if (cost < cost_limit)
+            MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]).  */
+         op_cost = m * add_cost[speed][mode];
+         if (shift_cost[speed][mode][m] < op_cost)
+           op_cost = shift_cost[speed][mode][m];
+         new_limit.cost = best_cost.cost - op_cost;
+         new_limit.latency = best_cost.latency - op_cost;
+         synth_mult (alg_in, q, &new_limit, mode);
+
+         alg_in->cost.cost += op_cost;
+         alg_in->cost.latency += op_cost;
+         if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
              struct algorithm *x;
+             best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_shift;
-             cost_limit = cost;
+           }
+
+         /* See if treating ORIG_T as a signed number yields a better
+            sequence.  Try this sequence only for a negative ORIG_T
+            as it would be useless for a non-negative ORIG_T.  */
+         if ((HOST_WIDE_INT) orig_t < 0)
+           {
+             /* Shift ORIG_T as follows because a right shift of a
+                negative-valued signed type is implementation
+                defined.  */
+             q = ~(~orig_t >> m);
+             /* The function expand_shift will choose between a shift
+                and a sequence of additions, so the observed cost is
+                given as MIN (m * add_cost[speed][mode],
+                shift_cost[speed][mode][m]).  */
+             op_cost = m * add_cost[speed][mode];
+             if (shift_cost[speed][mode][m] < op_cost)
+               op_cost = shift_cost[speed][mode][m];
+             new_limit.cost = best_cost.cost - op_cost;
+             new_limit.latency = best_cost.latency - op_cost;
+             synth_mult (alg_in, q, &new_limit, mode);
+
+             alg_in->cost.cost += op_cost;
+             alg_in->cost.latency += op_cost;
+             if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+               {
+                 struct algorithm *x;
+                 best_cost = alg_in->cost;
+                 x = alg_in, alg_in = best_alg, best_alg = x;
+                 best_alg->log[best_alg->ops] = m;
+                 best_alg->op[best_alg->ops] = alg_shift;
+               }
            }
        }
+      if (cache_hit)
+       goto done;
     }
 
   /* If we have an odd number, add or subtract one.  */
@@ -2290,6 +2574,7 @@ synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
     {
       unsigned HOST_WIDE_INT w;
 
+    do_alg_addsub_t_m2:
       for (w = 1; (w & t) != 0; w <<= 1)
        ;
       /* If T was -1, then W will be zero after the loop.  This is another
@@ -2305,36 +2590,67 @@ synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
        {
          /* T ends with ...111.  Multiply by (T + 1) and subtract 1.  */
 
-         cost = add_cost[mode];
-         synth_mult (alg_in, t + 1, cost_limit - cost, mode);
+         op_cost = add_cost[speed][mode];
+         new_limit.cost = best_cost.cost - op_cost;
+         new_limit.latency = best_cost.latency - op_cost;
+         synth_mult (alg_in, t + 1, &new_limit, mode);
 
-         cost += alg_in->cost;
-         if (cost < cost_limit)
+         alg_in->cost.cost += op_cost;
+         alg_in->cost.latency += op_cost;
+         if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
              struct algorithm *x;
+             best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = 0;
              best_alg->op[best_alg->ops] = alg_sub_t_m2;
-             cost_limit = cost;
            }
        }
       else
        {
          /* T ends with ...01 or ...011.  Multiply by (T - 1) and add 1.  */
 
-         cost = add_cost[mode];
-         synth_mult (alg_in, t - 1, cost_limit - cost, mode);
+         op_cost = add_cost[speed][mode];
+         new_limit.cost = best_cost.cost - op_cost;
+         new_limit.latency = best_cost.latency - op_cost;
+         synth_mult (alg_in, t - 1, &new_limit, mode);
 
-         cost += alg_in->cost;
-         if (cost < cost_limit)
+         alg_in->cost.cost += op_cost;
+         alg_in->cost.latency += op_cost;
+         if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
              struct algorithm *x;
+             best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = 0;
              best_alg->op[best_alg->ops] = alg_add_t_m2;
-             cost_limit = cost;
            }
        }
+
+      /* We may be able to calculate a * -7, a * -15, a * -31, etc
+        quickly with a - a * n for some appropriate constant n.  */
+      m = exact_log2 (-orig_t + 1);
+      if (m >= 0 && m < maxm)
+       {
+         op_cost = shiftsub1_cost[speed][mode][m];
+         new_limit.cost = best_cost.cost - op_cost;
+         new_limit.latency = best_cost.latency - op_cost;
+         synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, &new_limit, mode);
+
+         alg_in->cost.cost += op_cost;
+         alg_in->cost.latency += op_cost;
+         if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+           {
+             struct algorithm *x;
+             best_cost = alg_in->cost;
+             x = alg_in, alg_in = best_alg, best_alg = x;
+             best_alg->log[best_alg->ops] = m;
+             best_alg->op[best_alg->ops] = alg_sub_t_m2;
+           }
+       }
+
+      if (cache_hit)
+       goto done;
     }
 
   /* Look for factors of t of the form
@@ -2347,99 +2663,173 @@ synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
      good sequence quickly, and therefore be able to prune (by decreasing
      COST_LIMIT) the search.  */
 
+ do_alg_addsub_factor:
   for (m = floor_log2 (t - 1); m >= 2; m--)
     {
       unsigned HOST_WIDE_INT d;
 
       d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
-      if (t % d == 0 && t > d && m < maxm)
+      if (t % d == 0 && t > d && m < maxm
+         && (!cache_hit || cache_alg == alg_add_factor))
        {
-         cost = add_cost[mode] + shift_cost[mode][m];
-         if (shiftadd_cost[mode][m] < cost)
-           cost = shiftadd_cost[mode][m];
-         synth_mult (alg_in, t / d, cost_limit - cost, mode);
+         /* If the target has a cheap shift-and-add instruction use
+            that in preference to a shift insn followed by an add insn.
+            Assume that the shift-and-add is "atomic" with a latency
+            equal to its cost, otherwise assume that on superscalar
+            hardware the shift may be executed concurrently with the
+            earlier steps in the algorithm.  */
+         op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
+         if (shiftadd_cost[speed][mode][m] < op_cost)
+           {
+             op_cost = shiftadd_cost[speed][mode][m];
+             op_latency = op_cost;
+           }
+         else
+           op_latency = add_cost[speed][mode];
 
-         cost += alg_in->cost;
-         if (cost < cost_limit)
+         new_limit.cost = best_cost.cost - op_cost;
+         new_limit.latency = best_cost.latency - op_latency;
+         synth_mult (alg_in, t / d, &new_limit, mode);
+
+         alg_in->cost.cost += op_cost;
+         alg_in->cost.latency += op_latency;
+         if (alg_in->cost.latency < op_cost)
+           alg_in->cost.latency = op_cost;
+         if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
              struct algorithm *x;
+             best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_add_factor;
-             cost_limit = cost;
            }
          /* Other factors will have been taken care of in the recursion.  */
          break;
        }
 
       d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
-      if (t % d == 0 && t > d && m < maxm)
+      if (t % d == 0 && t > d && m < maxm
+         && (!cache_hit || cache_alg == alg_sub_factor))
        {
-         cost = add_cost[mode] + shift_cost[mode][m];
-         if (shiftsub_cost[mode][m] < cost)
-           cost = shiftsub_cost[mode][m];
-         synth_mult (alg_in, t / d, cost_limit - cost, mode);
+         /* If the target has a cheap shift-and-subtract insn use
+            that in preference to a shift insn followed by a sub insn.
+            Assume that the shift-and-sub is "atomic" with a latency
+            equal to it's cost, otherwise assume that on superscalar
+            hardware the shift may be executed concurrently with the
+            earlier steps in the algorithm.  */
+         op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
+         if (shiftsub0_cost[speed][mode][m] < op_cost)
+           {
+             op_cost = shiftsub0_cost[speed][mode][m];
+             op_latency = op_cost;
+           }
+         else
+           op_latency = add_cost[speed][mode];
 
-         cost += alg_in->cost;
-         if (cost < cost_limit)
+         new_limit.cost = best_cost.cost - op_cost;
+         new_limit.latency = best_cost.latency - op_latency;
+         synth_mult (alg_in, t / d, &new_limit, mode);
+
+         alg_in->cost.cost += op_cost;
+         alg_in->cost.latency += op_latency;
+         if (alg_in->cost.latency < op_cost)
+           alg_in->cost.latency = op_cost;
+         if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
              struct algorithm *x;
+             best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_sub_factor;
-             cost_limit = cost;
            }
          break;
        }
     }
+  if (cache_hit)
+    goto done;
 
   /* Try shift-and-add (load effective address) instructions,
      i.e. do a*3, a*5, a*9.  */
   if ((t & 1) != 0)
     {
+    do_alg_add_t2_m:
       q = t - 1;
       q = q & -q;
       m = exact_log2 (q);
       if (m >= 0 && m < maxm)
        {
-         cost = shiftadd_cost[mode][m];
-         synth_mult (alg_in, (t - 1) >> m, cost_limit - cost, mode);
-
-         cost += alg_in->cost;
-         if (cost < cost_limit)
+         op_cost = shiftadd_cost[speed][mode][m];
+         new_limit.cost = best_cost.cost - op_cost;
+         new_limit.latency = best_cost.latency - op_cost;
+         synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
+
+         alg_in->cost.cost += op_cost;
+         alg_in->cost.latency += op_cost;
+         if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
              struct algorithm *x;
+             best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_add_t2_m;
-             cost_limit = cost;
            }
        }
+      if (cache_hit)
+       goto done;
 
+    do_alg_sub_t2_m:
       q = t + 1;
       q = q & -q;
       m = exact_log2 (q);
       if (m >= 0 && m < maxm)
        {
-         cost = shiftsub_cost[mode][m];
-         synth_mult (alg_in, (t + 1) >> m, cost_limit - cost, mode);
-
-         cost += alg_in->cost;
-         if (cost < cost_limit)
+         op_cost = shiftsub0_cost[speed][mode][m];
+         new_limit.cost = best_cost.cost - op_cost;
+         new_limit.latency = best_cost.latency - op_cost;
+         synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
+
+         alg_in->cost.cost += op_cost;
+         alg_in->cost.latency += op_cost;
+         if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
              struct algorithm *x;
+             best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_sub_t2_m;
-             cost_limit = cost;
            }
        }
+      if (cache_hit)
+       goto done;
     }
 
-  /* If cost_limit has not decreased since we stored it in alg_out->cost,
-     we have not found any algorithm.  */
-  if (cost_limit == alg_out->cost)
-    return;
+ done:
+  /* If best_cost has not decreased, we have not found any algorithm.  */
+  if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
+    {
+      /* We failed to find an algorithm.  Record alg_impossible for
+        this case (that is, <T, MODE, COST_LIMIT>) so that next time
+        we are asked to find an algorithm for T within the same or
+        lower COST_LIMIT, we can immediately return to the
+        caller.  */
+      alg_hash[hash_index].t = t;
+      alg_hash[hash_index].mode = mode;
+      alg_hash[hash_index].speed = speed;
+      alg_hash[hash_index].alg = alg_impossible;
+      alg_hash[hash_index].cost = *cost_limit;
+      return;
+    }
+
+  /* Cache the result.  */
+  if (!cache_hit)
+    {
+      alg_hash[hash_index].t = t;
+      alg_hash[hash_index].mode = mode;
+      alg_hash[hash_index].speed = speed;
+      alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
+      alg_hash[hash_index].cost.cost = best_cost.cost;
+      alg_hash[hash_index].cost.latency = best_cost.latency;
+    }
 
   /* If we are getting a too long sequence for `struct algorithm'
      to record, make this search fail.  */
@@ -2450,7 +2840,7 @@ synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
      We avoid using structure assignment because the majority of
      best_alg is normally undefined, and this is a critical function.  */
   alg_out->ops = best_alg->ops + 1;
-  alg_out->cost = cost_limit;
+  alg_out->cost = best_cost;
   memcpy (alg_out->op, best_alg->op,
          alg_out->ops * sizeof *alg_out->op);
   memcpy (alg_out->log, best_alg->log,
@@ -2473,29 +2863,69 @@ choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
                     int mult_cost)
 {
   struct algorithm alg2;
+  struct mult_cost limit;
+  int op_cost;
+  bool speed = optimize_insn_for_speed_p ();
+
+  /* Fail quickly for impossible bounds.  */
+  if (mult_cost < 0)
+    return false;
+
+  /* Ensure that mult_cost provides a reasonable upper bound.
+     Any constant multiplication can be performed with less
+     than 2 * bits additions.  */
+  op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
+  if (mult_cost > op_cost)
+    mult_cost = op_cost;
 
   *variant = basic_variant;
-  synth_mult (alg, val, mult_cost, mode);
+  limit.cost = mult_cost;
+  limit.latency = mult_cost;
+  synth_mult (alg, val, &limit, mode);
 
   /* This works only if the inverted value actually fits in an
      `unsigned int' */
   if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
     {
-      synth_mult (&alg2, -val, MIN (alg->cost, mult_cost) - neg_cost[mode],
-                 mode);
-      alg2.cost += neg_cost[mode];
-      if (alg2.cost < alg->cost)
+      op_cost = neg_cost[speed][mode];
+      if (MULT_COST_LESS (&alg->cost, mult_cost))
+       {
+         limit.cost = alg->cost.cost - op_cost;
+         limit.latency = alg->cost.latency - op_cost;
+       }
+      else
+       {
+         limit.cost = mult_cost - op_cost;
+         limit.latency = mult_cost - op_cost;
+       }
+
+      synth_mult (&alg2, -val, &limit, mode);
+      alg2.cost.cost += op_cost;
+      alg2.cost.latency += op_cost;
+      if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
        *alg = alg2, *variant = negate_variant;
     }
 
   /* This proves very useful for division-by-constant.  */
-  synth_mult (&alg2, val - 1, MIN (alg->cost, mult_cost) - add_cost[mode],
-             mode);
-  alg2.cost += add_cost[mode];
-  if (alg2.cost < alg->cost)
+  op_cost = add_cost[speed][mode];
+  if (MULT_COST_LESS (&alg->cost, mult_cost))
+    {
+      limit.cost = alg->cost.cost - op_cost;
+      limit.latency = alg->cost.latency - op_cost;
+    }
+  else
+    {
+      limit.cost = mult_cost - op_cost;
+      limit.latency = mult_cost - op_cost;
+    }
+
+  synth_mult (&alg2, val - 1, &limit, mode);
+  alg2.cost.cost += op_cost;
+  alg2.cost.latency += op_cost;
+  if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
     *alg = alg2, *variant = add_variant;
 
-  return alg->cost < mult_cost;
+  return MULT_COST_LESS (&alg->cost, mult_cost);
 }
 
 /* A subroutine of expand_mult, used for constant multiplications.
@@ -2513,10 +2943,9 @@ expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
   int opno;
   enum machine_mode nmode;
 
-  /* Avoid referencing memory over and over.
-     For speed, but also for correctness when mem is volatile.  */
-  if (MEM_P (op0))
-    op0 = force_reg (mode, op0);
+  /* Avoid referencing memory over and over and invalid sharing
+     on SUBREGs.  */
+  op0 = force_reg (mode, op0);
 
   /* ACCUM starts out either as OP0 or as a zero, depending on
      the first operation.  */
@@ -2532,38 +2961,37 @@ expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
       val_so_far = 1;
     }
   else
-    abort ();
+    gcc_unreachable ();
 
   for (opno = 1; opno < alg->ops; opno++)
     {
       int log = alg->log[opno];
-      int preserve = preserve_subexpressions_p ();
-      rtx shift_subtarget = preserve ? 0 : accum;
+      rtx shift_subtarget = optimize ? 0 : accum;
       rtx add_target
        = (opno == alg->ops - 1 && target != 0 && variant != add_variant
-          && ! preserve)
+          && !optimize)
          ? target : 0;
-      rtx accum_target = preserve ? 0 : accum;
+      rtx accum_target = optimize ? 0 : accum;
+      rtx accum_inner;
 
       switch (alg->op[opno])
        {
        case alg_shift:
-         accum = expand_shift (LSHIFT_EXPR, mode, accum,
-                               build_int_2 (log, 0), NULL_RTX, 0);
+         tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
+         /* REG_EQUAL note will be attached to the following insn.  */
+         emit_move_insn (accum, tem);
          val_so_far <<= log;
          break;
 
        case alg_add_t_m2:
-         tem = expand_shift (LSHIFT_EXPR, mode, op0,
-                             build_int_2 (log, 0), NULL_RTX, 0);
+         tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
          accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
                                 add_target ? add_target : accum_target);
          val_so_far += (HOST_WIDE_INT) 1 << log;
          break;
 
        case alg_sub_t_m2:
-         tem = expand_shift (LSHIFT_EXPR, mode, op0,
-                             build_int_2 (log, 0), NULL_RTX, 0);
+         tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
          accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
                                 add_target ? add_target : accum_target);
          val_so_far -= (HOST_WIDE_INT) 1 << log;
@@ -2571,8 +2999,7 @@ expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
 
        case alg_add_t2_m:
          accum = expand_shift (LSHIFT_EXPR, mode, accum,
-                               build_int_2 (log, 0), shift_subtarget,
-                               0);
+                               log, shift_subtarget, 0);
          accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
                                 add_target ? add_target : accum_target);
          val_so_far = (val_so_far << log) + 1;
@@ -2580,31 +3007,29 @@ expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
 
        case alg_sub_t2_m:
          accum = expand_shift (LSHIFT_EXPR, mode, accum,
-                               build_int_2 (log, 0), shift_subtarget, 0);
+                               log, shift_subtarget, 0);
          accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
                                 add_target ? add_target : accum_target);
          val_so_far = (val_so_far << log) - 1;
          break;
 
        case alg_add_factor:
-         tem = expand_shift (LSHIFT_EXPR, mode, accum,
-                             build_int_2 (log, 0), NULL_RTX, 0);
+         tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
          accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
                                 add_target ? add_target : accum_target);
          val_so_far += val_so_far << log;
          break;
 
        case alg_sub_factor:
-         tem = expand_shift (LSHIFT_EXPR, mode, accum,
-                             build_int_2 (log, 0), NULL_RTX, 0);
+         tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
          accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
-                                (add_target ? add_target
-                                 : preserve ? 0 : tem));
+                                (add_target
+                                 ? add_target : (optimize ? 0 : tem)));
          val_so_far = (val_so_far << log) - val_so_far;
          break;
 
        default:
-         abort ();
+         gcc_unreachable ();
        }
 
       /* Write a REG_EQUAL note on the last insn so that we can cse
@@ -2613,15 +3038,18 @@ expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
         that.  */
 
       tem = op0, nmode = mode;
+      accum_inner = accum;
       if (GET_CODE (accum) == SUBREG)
        {
-         nmode = GET_MODE (SUBREG_REG (accum));
+         accum_inner = SUBREG_REG (accum);
+         nmode = GET_MODE (accum_inner);
          tem = gen_lowpart (nmode, op0);
        }
 
       insn = get_last_insn ();
-      set_unique_reg_note (insn, REG_EQUAL,
-                          gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
+      set_dst_reg_note (insn, REG_EQUAL,
+                       gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)),
+                       accum_inner);
     }
 
   if (variant == negate_variant)
@@ -2639,8 +3067,7 @@ expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
      in the result mode, to avoid sign-/zero-extension confusion.  */
   val &= GET_MODE_MASK (mode);
   val_so_far &= GET_MODE_MASK (mode);
-  if (val != val_so_far)
-    abort ();
+  gcc_assert (val == val_so_far);
 
   return accum;
 }
@@ -2657,43 +3084,102 @@ rtx
 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
             int unsignedp)
 {
-  rtx const_op1 = op1;
   enum mult_variant variant;
   struct algorithm algorithm;
+  int max_cost;
+  bool speed = optimize_insn_for_speed_p ();
 
-  /* synth_mult does an `unsigned int' multiply.  As long as the mode is
-     less than or equal in size to `unsigned int' this doesn't matter.
-     If the mode is larger than `unsigned int', then synth_mult works only
-     if the constant value exactly fits in an `unsigned int' without any
-     truncation.  This means that multiplying by negative values does
-     not work; results are off by 2^32 on a 32 bit machine.  */
-
-  /* If we are multiplying in DImode, it may still be a win
-     to try to work with shifts and adds.  */
-  if (GET_CODE (op1) == CONST_DOUBLE
-      && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
-      && HOST_BITS_PER_INT >= BITS_PER_WORD
-      && CONST_DOUBLE_HIGH (op1) == 0)
-    const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
-  else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
-          && GET_CODE (op1) == CONST_INT
-          && INTVAL (op1) < 0)
-    const_op1 = 0;
-
-  /* We used to test optimize here, on the grounds that it's better to
-     produce a smaller program when -O is not used.
-     But this causes such a terrible slowdown sometimes
-     that it seems better to use synth_mult always.  */
-
-  if (const_op1 && GET_CODE (const_op1) == CONST_INT
+  /* Handling const0_rtx here allows us to use zero as a rogue value for
+     coeff below.  */
+  if (op1 == const0_rtx)
+    return const0_rtx;
+  if (op1 == const1_rtx)
+    return op0;
+  if (op1 == constm1_rtx)
+    return expand_unop (mode,
+                       GET_MODE_CLASS (mode) == MODE_INT
+                       && !unsignedp && flag_trapv
+                       ? negv_optab : neg_optab,
+                       op0, target, 0);
+
+  /* These are the operations that are potentially turned into a sequence
+     of shifts and additions.  */
+  if (SCALAR_INT_MODE_P (mode)
       && (unsignedp || !flag_trapv))
     {
-      int mult_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
+      HOST_WIDE_INT coeff = 0;
+      rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
+
+      /* synth_mult does an `unsigned int' multiply.  As long as the mode is
+        less than or equal in size to `unsigned int' this doesn't matter.
+        If the mode is larger than `unsigned int', then synth_mult works
+        only if the constant value exactly fits in an `unsigned int' without
+        any truncation.  This means that multiplying by negative values does
+        not work; results are off by 2^32 on a 32 bit machine.  */
+
+      if (CONST_INT_P (op1))
+       {
+         /* Attempt to handle multiplication of DImode values by negative
+            coefficients, by performing the multiplication by a positive
+            multiplier and then inverting the result.  */
+         if (INTVAL (op1) < 0
+             && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
+           {
+             /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
+                result is interpreted as an unsigned coefficient.
+                Exclude cost of op0 from max_cost to match the cost
+                calculation of the synth_mult.  */
+             max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
+                                       speed)
+                         - neg_cost[speed][mode]);
+             if (max_cost > 0
+                 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
+                                         &variant, max_cost))
+               {
+                 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
+                                               NULL_RTX, &algorithm,
+                                               variant);
+                 return expand_unop (mode, neg_optab, temp, target, 0);
+               }
+           }
+         else coeff = INTVAL (op1);
+       }
+      else if (GET_CODE (op1) == CONST_DOUBLE)
+       {
+         /* If we are multiplying in DImode, it may still be a win
+            to try to work with shifts and adds.  */
+         if (CONST_DOUBLE_HIGH (op1) == 0
+             && CONST_DOUBLE_LOW (op1) > 0)
+           coeff = CONST_DOUBLE_LOW (op1);
+         else if (CONST_DOUBLE_LOW (op1) == 0
+                  && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
+           {
+             int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
+                         + HOST_BITS_PER_WIDE_INT;
+             return expand_shift (LSHIFT_EXPR, mode, op0,
+                                  shift, target, unsignedp);
+           }
+       }
 
-      if (choose_mult_variant (mode, INTVAL (const_op1), &algorithm, &variant,
-                              mult_cost))
-       return expand_mult_const (mode, op0, INTVAL (const_op1), target,
-                                 &algorithm, variant);
+      /* We used to test optimize here, on the grounds that it's better to
+        produce a smaller program when -O is not used.  But this causes
+        such a terrible slowdown sometimes that it seems better to always
+        use synth_mult.  */
+      if (coeff != 0)
+       {
+         /* Special case powers of two.  */
+         if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
+           return expand_shift (LSHIFT_EXPR, mode, op0,
+                                floor_log2 (coeff), target, unsignedp);
+
+         /* Exclude cost of op0 from max_cost to match the cost
+            calculation of the synth_mult.  */
+         max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
+         if (choose_mult_variant (mode, coeff, &algorithm, &variant,
+                                  max_cost))
+           return expand_mult_const (mode, op0, coeff, target,
+                                     &algorithm, variant);
+       }
     }
 
   if (GET_CODE (op0) == CONST_DOUBLE)
@@ -2705,7 +3191,7 @@ expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
 
   /* Expand x*2.0 as x+x.  */
   if (GET_CODE (op1) == CONST_DOUBLE
-      && GET_MODE_CLASS (mode) == MODE_FLOAT)
+      && SCALAR_FLOAT_MODE_P (mode))
     {
       REAL_VALUE_TYPE d;
       REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
@@ -2725,10 +3211,62 @@ expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
                      && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
                      ? smulv_optab : smul_optab,
                      op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
-  if (op0 == 0)
-    abort ();
+  gcc_assert (op0);
   return op0;
 }
+
+/* Perform a widening multiplication and return an rtx for the result.
+   MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
+   TARGET is a suggestion for where to store the result (an rtx).
+   THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
+   or smul_widen_optab.
+
+   We check specially for a constant integer as OP1, comparing the
+   cost of a widening multiply against the cost of a sequence of shifts
+   and adds.  */
+
+rtx
+expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
+                     int unsignedp, optab this_optab)
+{
+  bool speed = optimize_insn_for_speed_p ();
+  rtx cop1;
+
+  if (CONST_INT_P (op1)
+      && GET_MODE (op0) != VOIDmode
+      && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
+                               this_optab == umul_widen_optab))
+      && CONST_INT_P (cop1)
+      && (INTVAL (cop1) >= 0
+         || HWI_COMPUTABLE_MODE_P (mode)))
+    {
+      HOST_WIDE_INT coeff = INTVAL (cop1);
+      int max_cost;
+      enum mult_variant variant;
+      struct algorithm algorithm;
+
+      /* Special case powers of two.  */
+      if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
+       {
+         op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
+         return expand_shift (LSHIFT_EXPR, mode, op0,
+                              floor_log2 (coeff), target, unsignedp);
+       }
+
+      /* Exclude cost of op0 from max_cost to match the cost
+        calculation of the synth_mult.  */
+      max_cost = mul_widen_cost[speed][mode];
+      if (choose_mult_variant (mode, coeff, &algorithm, &variant,
+                              max_cost))
+       {
+         op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
+         return expand_mult_const (mode, op0, coeff, target,
+                                   &algorithm, variant);
+       }
+    }
+  return expand_binop (mode, this_optab, op0, op1, target,
+                      unsignedp, OPTAB_LIB_WIDEN);
+}
 \f
 /* Return the smallest n such that 2**n >= X.  */
 
@@ -2757,8 +3295,7 @@ ceil_log2 (unsigned HOST_WIDE_INT x)
 static
 unsigned HOST_WIDE_INT
 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
-                  unsigned HOST_WIDE_INT *multiplier_ptr,
-                  int *post_shift_ptr, int *lgup_ptr)
+                  rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
 {
   HOST_WIDE_INT mhigh_hi, mlow_hi;
   unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
@@ -2770,18 +3307,15 @@ choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
   /* lgup = ceil(log2(divisor)); */
   lgup = ceil_log2 (d);
 
-  if (lgup > n)
-    abort ();
+  gcc_assert (lgup <= n);
 
   pow = n + lgup;
   pow2 = n + lgup - precision;
 
-  if (pow == 2 * HOST_BITS_PER_WIDE_INT)
-    {
-      /* We could handle this with some effort, but this case is much better
-        handled directly with a scc insn, so rely on caller using that.  */
-      abort ();
-    }
+  /* We could handle this with some effort, but this case is much
+     better handled directly with a scc insn, so rely on caller using
+     that.  */
+  gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
 
   /* mlow = 2^(N + lgup)/d */
  if (pow >= HOST_BITS_PER_WIDE_INT)
@@ -2805,13 +3339,11 @@ choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
   div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
                        &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
 
-  if (mhigh_hi && nh - d >= d)
-    abort ();
-  if (mhigh_hi > 1 || mlow_hi > 1)
-    abort ();
+  gcc_assert (!mhigh_hi || nh - d < d);
+  gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
   /* Assert that mlow < mhigh.  */
-  if (! (mlow_hi < mhigh_hi || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo)))
-    abort ();
+  gcc_assert (mlow_hi < mhigh_hi
+             || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
 
   /* If precision == N, then mlow, mhigh exceed 2^N
      (but they do not exceed 2^(N+1)).  */
@@ -2835,12 +3367,12 @@ choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
   if (n < HOST_BITS_PER_WIDE_INT)
     {
       unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
-      *multiplier_ptr = mhigh_lo & mask;
+      *multiplier_ptr = GEN_INT (mhigh_lo & mask);
       return mhigh_lo >= mask;
     }
   else
     {
-      *multiplier_ptr = mhigh_lo;
+      *multiplier_ptr = GEN_INT (mhigh_lo);
       return mhigh_hi;
     }
 }
@@ -2891,16 +3423,14 @@ expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
   enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
 
   tem = expand_shift (RSHIFT_EXPR, mode, op0,
-                     build_int_2 (GET_MODE_BITSIZE (mode) - 1, 0),
-                     NULL_RTX, 0);
+                     GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
   tem = expand_and (mode, tem, op1, NULL_RTX);
   adj_operand
     = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
                     adj_operand);
 
   tem = expand_shift (RSHIFT_EXPR, mode, op1,
-                     build_int_2 (GET_MODE_BITSIZE (mode) - 1, 0),
-                     NULL_RTX, 0);
+                     GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
   tem = expand_and (mode, tem, op0, NULL_RTX);
   target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
                          target);
@@ -2918,9 +3448,11 @@ extract_high_half (enum machine_mode mode, rtx op)
   if (mode == word_mode)
     return gen_highpart (mode, op);
 
+  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
+
   wider_mode = GET_MODE_WIDER_MODE (mode);
   op = expand_shift (RSHIFT_EXPR, wider_mode, op,
-                    build_int_2 (GET_MODE_BITSIZE (mode), 0), 0, 1);
+                    GET_MODE_BITSIZE (mode), 0, 1);
   return convert_modes (mode, wider_mode, op, 0);
 }
 
@@ -2936,13 +3468,16 @@ expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
   optab moptab;
   rtx tem;
   int size;
+  bool speed = optimize_insn_for_speed_p ();
+
+  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
 
   wider_mode = GET_MODE_WIDER_MODE (mode);
   size = GET_MODE_BITSIZE (mode);
 
   /* Firstly, try using a multiplication insn that only generates the needed
      high part of the product, and in the sign flavor of unsignedp.  */
-  if (mul_highpart_cost[mode] < max_cost)
+  if (mul_highpart_cost[speed][mode] < max_cost)
     {
       moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
       tem = expand_binop (mode, moptab, op0, narrow_op1, target,
@@ -2954,8 +3489,8 @@ expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
   /* Secondly, same as above, but use sign flavor opposite of unsignedp.
      Need to adjust the result after the multiplication.  */
   if (size - 1 < BITS_PER_WORD
-      && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
-         + 4 * add_cost[mode] < max_cost))
+      && (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
+         + 4 * add_cost[speed][mode] < max_cost))
     {
       moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
       tem = expand_binop (mode, moptab, op0, narrow_op1, target,
@@ -2968,8 +3503,8 @@ expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
 
   /* Try widening multiplication.  */
   moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
-  if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
-      && mul_widen_cost[wider_mode] < max_cost)
+  if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
+      && mul_widen_cost[speed][wider_mode] < max_cost)
     {
       tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
                          unsignedp, OPTAB_WIDEN);
@@ -2978,23 +3513,37 @@ expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
     }
 
   /* Try widening the mode and perform a non-widening multiplication.  */
-  moptab = smul_optab;
-  if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
+  if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
       && size - 1 < BITS_PER_WORD
-      && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
+      && mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
     {
-      tem = expand_binop (wider_mode, moptab, op0, op1, 0,
+      rtx insns, wop0, wop1;
+
+      /* We need to widen the operands, for example to ensure the
+        constant multiplier is correctly sign or zero extended.
+        Use a sequence to clean-up any instructions emitted by
+        the conversions if things don't work out.  */
+      start_sequence ();
+      wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
+      wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
+      tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
                          unsignedp, OPTAB_WIDEN);
+      insns = get_insns ();
+      end_sequence ();
+
       if (tem)
-       return extract_high_half (mode, tem);
+       {
+         emit_insn (insns);
+         return extract_high_half (mode, tem);
+       }
     }
 
   /* Try widening multiplication of opposite signedness, and adjust.  */
   moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
-  if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
+  if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
       && size - 1 < BITS_PER_WORD
-      && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
-         + 4 * add_cost[mode] < max_cost))
+      && (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
+         + 4 * add_cost[speed][mode] < max_cost))
     {
       tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
                          NULL_RTX, ! unsignedp, OPTAB_WIDEN);
@@ -3010,9 +3559,10 @@ expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
   return 0;
 }
 
-/* Emit code to multiply OP0 and CNST1, putting the high half of the result
-   in TARGET if that is convenient, and return where the result is.  If the
-   operation can not be performed, 0 is returned.
+/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
+   putting the high half of the result in TARGET if that is convenient,
+   and return where the result is.  If the operation can not be performed,
+   0 is returned.
 
    MODE is the mode of operation and result.
 
@@ -3020,40 +3570,40 @@ expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
 
    MAX_COST is the total allowed cost for the expanded RTL.  */
 
-rtx
-expand_mult_highpart (enum machine_mode mode, rtx op0,
-                     unsigned HOST_WIDE_INT cnst1, rtx target,
-                     int unsignedp, int max_cost)
+static rtx
+expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
+                     rtx target, int unsignedp, int max_cost)
 {
   enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
+  unsigned HOST_WIDE_INT cnst1;
   int extra_cost;
   bool sign_adjust = false;
   enum mult_variant variant;
   struct algorithm alg;
-  rtx op1, tem;
+  rtx tem;
+  bool speed = optimize_insn_for_speed_p ();
 
+  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
   /* We can't support modes wider than HOST_BITS_PER_INT.  */
-  if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
-    abort ();
+  gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
 
-  op1 = gen_int_mode (cnst1, wider_mode);
-  cnst1 &= GET_MODE_MASK (mode);
+  cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
 
-  /* We can't optimize modes wider than BITS_PER_WORD. 
-     ??? We might be able to perform double-word arithmetic if 
+  /* We can't optimize modes wider than BITS_PER_WORD.
+     ??? We might be able to perform double-word arithmetic if
      mode == word_mode, however all the cost calculations in
      synth_mult etc. assume single-word operations.  */
   if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
     return expand_mult_highpart_optab (mode, op0, op1, target,
                                       unsignedp, max_cost);
 
-  extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
+  extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
 
   /* Check whether we try to multiply by a negative constant.  */
   if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
     {
       sign_adjust = true;
-      extra_cost += add_cost[mode];
+      extra_cost += add_cost[speed][mode];
     }
 
   /* See whether shift/add multiplication is cheap enough.  */
@@ -3062,8 +3612,8 @@ expand_mult_highpart (enum machine_mode mode, rtx op0,
     {
       /* See whether the specialized multiplication optabs are
         cheaper than the shift/add version.  */
-      tem = expand_mult_highpart_optab (mode, op0, op1, target,
-                                       unsignedp, alg.cost + extra_cost);
+      tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
+                                       alg.cost.cost + extra_cost);
       if (tem)
        return tem;
 
@@ -3087,7 +3637,7 @@ expand_mult_highpart (enum machine_mode mode, rtx op0,
 static rtx
 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
 {
-  unsigned HOST_WIDE_INT mask;
+  unsigned HOST_WIDE_INT masklow, maskhigh;
   rtx result, temp, shift, label;
   int logd;
 
@@ -3095,31 +3645,32 @@ expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
   result = gen_reg_rtx (mode);
 
   /* Avoid conditional branches when they're expensive.  */
-  if (BRANCH_COST >= 2
-      && !optimize_size)
+  if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
+      && optimize_insn_for_speed_p ())
     {
       rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
                                      mode, 0, -1);
       if (signmask)
        {
          signmask = force_reg (mode, signmask);
-         mask = ((HOST_WIDE_INT) 1 << logd) - 1;
+         masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
          shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
 
          /* Use the rtx_cost of a LSHIFTRT instruction to determine
             which instruction sequence to use.  If logical right shifts
             are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
             use a LSHIFTRT, 1 ADD, 1 SUB and an AND.  */
-            
+
          temp = gen_rtx_LSHIFTRT (mode, result, shift);
-         if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
-             || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
+         if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
+             || (set_src_cost (temp, optimize_insn_for_speed_p ())
+                 > COSTS_N_INSNS (2)))
            {
              temp = expand_binop (mode, xor_optab, op0, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp = expand_binop (mode, sub_optab, temp, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
-             temp = expand_binop (mode, and_optab, temp, GEN_INT (mask),
+             temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp = expand_binop (mode, xor_optab, temp, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
@@ -3134,7 +3685,7 @@ expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
 
              temp = expand_binop (mode, add_optab, op0, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
-             temp = expand_binop (mode, and_optab, temp, GEN_INT (mask),
+             temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp = expand_binop (mode, sub_optab, temp, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
@@ -3148,28 +3699,117 @@ expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
      can avoid an explicit compare operation in the following comparison
      against zero.  */
 
-  mask = (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1)
-        | (((HOST_WIDE_INT) 1 << logd) - 1);
+  masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
+  if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+    {
+      masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
+      maskhigh = -1;
+    }
+  else
+    maskhigh = (HOST_WIDE_INT) -1
+                << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
+
+  temp = expand_binop (mode, and_optab, op0,
+                      immed_double_const (masklow, maskhigh, mode),
+                      result, 1, OPTAB_LIB_WIDEN);
+  if (temp != result)
+    emit_move_insn (result, temp);
+
+  label = gen_label_rtx ();
+  do_cmp_and_jump (result, const0_rtx, GE, mode, label);
+
+  temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
+                      0, OPTAB_LIB_WIDEN);
+  masklow = (HOST_WIDE_INT) -1 << logd;
+  maskhigh = -1;
+  temp = expand_binop (mode, ior_optab, temp,
+                      immed_double_const (masklow, maskhigh, mode),
+                      result, 1, OPTAB_LIB_WIDEN);
+  temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
+                      0, OPTAB_LIB_WIDEN);
+  if (temp != result)
+    emit_move_insn (result, temp);
+  emit_label (label);
+  return result;
+}
+
+/* Expand signed division of OP0 by a power of two D in mode MODE.
+   This routine is only called for positive values of D.  */
+
+static rtx
+expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
+{
+  rtx temp, label;
+  int logd;
+
+  logd = floor_log2 (d);
+
+  if (d == 2
+      && BRANCH_COST (optimize_insn_for_speed_p (),
+                     false) >= 1)
+    {
+      temp = gen_reg_rtx (mode);
+      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
+      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
+                          0, OPTAB_LIB_WIDEN);
+      return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
+    }
+
+#ifdef HAVE_conditional_move
+  if (BRANCH_COST (optimize_insn_for_speed_p (), false)
+      >= 2)
+    {
+      rtx temp2;
+
+      /* ??? emit_conditional_move forces a stack adjustment via
+        compare_from_rtx so, if the sequence is discarded, it will
+        be lost.  Do it now instead.  */
+      do_pending_stack_adjust ();
+
+      start_sequence ();
+      temp2 = copy_to_mode_reg (mode, op0);
+      temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
+                          NULL_RTX, 0, OPTAB_LIB_WIDEN);
+      temp = force_reg (mode, temp);
+
+      /* Construct "temp2 = (temp2 < 0) ? temp : temp2".  */
+      temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
+                                    mode, temp, temp2, mode, 0);
+      if (temp2)
+       {
+         rtx seq = get_insns ();
+         end_sequence ();
+         emit_insn (seq);
+         return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
+       }
+      end_sequence ();
+    }
+#endif
+
+  if (BRANCH_COST (optimize_insn_for_speed_p (),
+                  false) >= 2)
+    {
+      int ushift = GET_MODE_BITSIZE (mode) - logd;
 
-  temp = expand_binop (mode, and_optab, op0, GEN_INT (mask), result,
-                      1, OPTAB_LIB_WIDEN);
-  if (temp != result)
-    emit_move_insn (result, temp);
+      temp = gen_reg_rtx (mode);
+      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
+      if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
+       temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
+                            NULL_RTX, 0, OPTAB_LIB_WIDEN);
+      else
+       temp = expand_shift (RSHIFT_EXPR, mode, temp,
+                            ushift, NULL_RTX, 1);
+      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
+                          0, OPTAB_LIB_WIDEN);
+      return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
+    }
 
   label = gen_label_rtx ();
-  do_cmp_and_jump (result, const0_rtx, GE, mode, label);
-
-  temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
-                      0, OPTAB_LIB_WIDEN);
-  mask = (HOST_WIDE_INT) -1 << logd;
-  temp = expand_binop (mode, ior_optab, temp, GEN_INT (mask), result,
-                      1, OPTAB_LIB_WIDEN);
-  temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
-                      0, OPTAB_LIB_WIDEN);
-  if (temp != result)
-    emit_move_insn (result, temp);
+  temp = copy_to_mode_reg (mode, op0);
+  do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
+  expand_inc (temp, GEN_INT (d - 1));
   emit_label (label);
-  return result;
+  return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
 }
 \f
 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
@@ -3210,8 +3850,6 @@ expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
    (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
    */
 
-#define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
-
 rtx
 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
               rtx op0, rtx op1, rtx target, int unsignedp)
@@ -3221,14 +3859,15 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
   rtx quotient = 0, remainder = 0;
   rtx last;
   int size;
-  rtx insn, set;
+  rtx insn;
   optab optab1, optab2;
   int op1_is_constant, op1_is_pow2 = 0;
   int max_cost, extra_cost;
   static HOST_WIDE_INT last_div_const = 0;
   static HOST_WIDE_INT ext_op1;
+  bool speed = optimize_insn_for_speed_p ();
 
-  op1_is_constant = GET_CODE (op1) == CONST_INT;
+  op1_is_constant = CONST_INT_P (op1);
   if (op1_is_constant)
     {
       ext_op1 = INTVAL (op1);
@@ -3325,19 +3964,19 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
 
   for (compute_mode = mode; compute_mode != VOIDmode;
        compute_mode = GET_MODE_WIDER_MODE (compute_mode))
-    if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
-       || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
+    if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
+       || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
       break;
 
   if (compute_mode == VOIDmode)
     for (compute_mode = mode; compute_mode != VOIDmode;
         compute_mode = GET_MODE_WIDER_MODE (compute_mode))
-      if (optab1->handlers[compute_mode].libfunc
-         || optab2->handlers[compute_mode].libfunc)
+      if (optab_libfunc (optab1, compute_mode)
+         || optab_libfunc (optab2, compute_mode))
        break;
 
-  /* If we still couldn't find a mode, use MODE, but we'll probably abort
-     in expand_binop.  */
+  /* If we still couldn't find a mode, use MODE, but expand_binop will
+     probably die.  */
   if (compute_mode == VOIDmode)
     compute_mode = mode;
 
@@ -3357,11 +3996,10 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
   /* Only deduct something for a REM if the last divide done was
      for a different constant.   Then set the constant of the last
      divide.  */
-  max_cost = div_cost[compute_mode]
-    - (rem_flag && ! (last_div_const != 0 && op1_is_constant
-                     && INTVAL (op1) == last_div_const)
-       ? mul_cost[compute_mode] + add_cost[compute_mode]
-       : 0);
+  max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
+  if (rem_flag && ! (last_div_const != 0 && op1_is_constant
+                    && INTVAL (op1) == last_div_const))
+    max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
 
   last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
 
@@ -3373,7 +4011,7 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
 
       /* convert_modes may have placed op1 into a register, so we
         must recompute the following.  */
-      op1_is_constant = GET_CODE (op1) == CONST_INT;
+      op1_is_constant = CONST_INT_P (op1);
       op1_is_pow2 = (op1_is_constant
                     && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
                          || (! unsignedp
@@ -3414,9 +4052,10 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
          {
            if (unsignedp)
              {
-               unsigned HOST_WIDE_INT mh, ml;
+               unsigned HOST_WIDE_INT mh;
                int pre_shift, post_shift;
                int dummy;
+               rtx ml;
                unsigned HOST_WIDE_INT d = (INTVAL (op1)
                                            & GET_MODE_MASK (compute_mode));
 
@@ -3434,8 +4073,7 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                          return gen_lowpart (mode, remainder);
                      }
                    quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                                            build_int_2 (pre_shift, 0),
-                                            tquotient, 1);
+                                            pre_shift, tquotient, 1);
                  }
                else if (size <= HOST_BITS_PER_WIDE_INT)
                  {
@@ -3443,10 +4081,8 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                      {
                        /* Most significant bit of divisor is set; emit an scc
                           insn.  */
-                       quotient = emit_store_flag (tquotient, GEU, op0, op1,
-                                                   compute_mode, 1, 1);
-                       if (quotient == 0)
-                         goto fail1;
+                       quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
+                                                         compute_mode, 1, 1);
                      }
                    else
                      {
@@ -3465,8 +4101,7 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                            mh = choose_multiplier (d >> pre_shift, size,
                                                    size - pre_shift,
                                                    &ml, &post_shift, &dummy);
-                           if (mh)
-                             abort ();
+                           gcc_assert (!mh);
                          }
                        else
                          pre_shift = 0;
@@ -3479,9 +4114,9 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                              goto fail1;
 
                            extra_cost
-                             = (shift_cost[compute_mode][post_shift - 1]
-                                + shift_cost[compute_mode][1]
-                                + 2 * add_cost[compute_mode]);
+                             = (shift_cost[speed][compute_mode][post_shift - 1]
+                                + shift_cost[speed][compute_mode][1]
+                                + 2 * add_cost[speed][compute_mode]);
                            t1 = expand_mult_highpart (compute_mode, op0, ml,
                                                       NULL_RTX, 1,
                                                       max_cost - extra_cost);
@@ -3490,15 +4125,14 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                            t2 = force_operand (gen_rtx_MINUS (compute_mode,
                                                               op0, t1),
                                                NULL_RTX);
-                           t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
-                                              build_int_2 (1, 0), NULL_RTX,1);
+                           t3 = expand_shift (RSHIFT_EXPR, compute_mode,
+                                              t2, 1, NULL_RTX, 1);
                            t4 = force_operand (gen_rtx_PLUS (compute_mode,
                                                              t1, t3),
                                                NULL_RTX);
-                           quotient
-                             = expand_shift (RSHIFT_EXPR, compute_mode, t4,
-                                             build_int_2 (post_shift - 1, 0),
-                                             tquotient, 1);
+                           quotient = expand_shift
+                             (RSHIFT_EXPR, compute_mode, t4,
+                              post_shift - 1, tquotient, 1);
                          }
                        else
                          {
@@ -3508,21 +4142,20 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                                || post_shift >= BITS_PER_WORD)
                              goto fail1;
 
-                           t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                                              build_int_2 (pre_shift, 0),
-                                              NULL_RTX, 1);
+                           t1 = expand_shift
+                             (RSHIFT_EXPR, compute_mode, op0,
+                              pre_shift, NULL_RTX, 1);
                            extra_cost
-                             = (shift_cost[compute_mode][pre_shift]
-                                + shift_cost[compute_mode][post_shift]);
+                             = (shift_cost[speed][compute_mode][pre_shift]
+                                + shift_cost[speed][compute_mode][post_shift]);
                            t2 = expand_mult_highpart (compute_mode, t1, ml,
                                                       NULL_RTX, 1,
                                                       max_cost - extra_cost);
                            if (t2 == 0)
                              goto fail1;
-                           quotient
-                             = expand_shift (RSHIFT_EXPR, compute_mode, t2,
-                                             build_int_2 (post_shift, 0),
-                                             tquotient, 1);
+                           quotient = expand_shift
+                             (RSHIFT_EXPR, compute_mode, t2,
+                              post_shift, tquotient, 1);
                          }
                      }
                  }
@@ -3530,19 +4163,25 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                  break;
 
                insn = get_last_insn ();
-               if (insn != last
-                   && (set = single_set (insn)) != 0
-                   && SET_DEST (set) == quotient)
-                 set_unique_reg_note (insn,
-                                      REG_EQUAL,
-                                      gen_rtx_UDIV (compute_mode, op0, op1));
+               if (insn != last)
+                 set_dst_reg_note (insn, REG_EQUAL,
+                                   gen_rtx_UDIV (compute_mode, op0, op1),
+                                   quotient);
              }
            else                /* TRUNC_DIV, signed */
              {
                unsigned HOST_WIDE_INT ml;
                int lgup, post_shift;
+               rtx mlr;
                HOST_WIDE_INT d = INTVAL (op1);
-               unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
+               unsigned HOST_WIDE_INT abs_d;
+
+               /* Since d might be INT_MIN, we have to cast to
+                  unsigned HOST_WIDE_INT before negating to avoid
+                  undefined signed overflow.  */
+               abs_d = (d >= 0
+                        ? (unsigned HOST_WIDE_INT) d
+                        : - (unsigned HOST_WIDE_INT) d);
 
                /* n rem d = n rem -d */
                if (rem_flag && d < 0)
@@ -3556,7 +4195,8 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                else if (d == -1)
                  quotient = expand_unop (compute_mode, neg_optab, op0,
                                          tquotient, 0);
-               else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
+               else if (HOST_BITS_PER_WIDE_INT >= size
+                        && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
                  {
                    /* This case is not handled correctly below.  */
                    quotient = emit_store_flag (tquotient, EQ, op0, op1,
@@ -3565,15 +4205,17 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                      goto fail1;
                  }
                else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
-                        && (rem_flag ? smod_pow2_cheap[compute_mode]
-                                     : sdiv_pow2_cheap[compute_mode])
+                        && (rem_flag ? smod_pow2_cheap[speed][compute_mode]
+                                     : sdiv_pow2_cheap[speed][compute_mode])
                         /* We assume that cheap metric is true if the
                            optab has an expander for this mode.  */
-                        && (((rem_flag ? smod_optab : sdiv_optab)
-                             ->handlers[compute_mode].insn_code
+                        && ((optab_handler ((rem_flag ? smod_optab
+                                             : sdiv_optab),
+                                            compute_mode)
                              != CODE_FOR_nothing)
-                            || (sdivmod_optab->handlers[compute_mode]
-                                .insn_code != CODE_FOR_nothing)))
+                            || (optab_handler (sdivmod_optab,
+                                               compute_mode)
+                                != CODE_FOR_nothing)))
                  ;
                else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
                  {
@@ -3583,38 +4225,19 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                        if (remainder)
                          return gen_lowpart (mode, remainder);
                      }
-                   lgup = floor_log2 (abs_d);
-                   if (BRANCH_COST < 1 || (abs_d != 2 && BRANCH_COST < 3))
-                     {
-                       rtx label = gen_label_rtx ();
-                       rtx t1;
-
-                       t1 = copy_to_mode_reg (compute_mode, op0);
-                       do_cmp_and_jump (t1, const0_rtx, GE,
-                                        compute_mode, label);
-                       expand_inc (t1, gen_int_mode (abs_d - 1,
-                                                     compute_mode));
-                       emit_label (label);
-                       quotient = expand_shift (RSHIFT_EXPR, compute_mode, t1,
-                                                build_int_2 (lgup, 0),
-                                                tquotient, 0);
-                     }
+
+                   if (sdiv_pow2_cheap[speed][compute_mode]
+                       && ((optab_handler (sdiv_optab, compute_mode)
+                            != CODE_FOR_nothing)
+                           || (optab_handler (sdivmod_optab, compute_mode)
+                               != CODE_FOR_nothing)))
+                     quotient = expand_divmod (0, TRUNC_DIV_EXPR,
+                                               compute_mode, op0,
+                                               gen_int_mode (abs_d,
+                                                             compute_mode),
+                                               NULL_RTX, 0);
                    else
-                     {
-                       rtx t1, t2, t3;
-                       t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                                          build_int_2 (size - 1, 0),
-                                          NULL_RTX, 0);
-                       t2 = expand_shift (RSHIFT_EXPR, compute_mode, t1,
-                                          build_int_2 (size - lgup, 0),
-                                          NULL_RTX, 1);
-                       t3 = force_operand (gen_rtx_PLUS (compute_mode,
-                                                         op0, t2),
-                                           NULL_RTX);
-                       quotient = expand_shift (RSHIFT_EXPR, compute_mode, t3,
-                                                build_int_2 (lgup, 0),
-                                                tquotient, 0);
-                     }
+                     quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
 
                    /* We have computed OP0 / abs(OP1).  If OP1 is negative,
                       negate the quotient.  */
@@ -3622,18 +4245,14 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                      {
                        insn = get_last_insn ();
                        if (insn != last
-                           && (set = single_set (insn)) != 0
-                           && SET_DEST (set) == quotient
                            && abs_d < ((unsigned HOST_WIDE_INT) 1
                                        << (HOST_BITS_PER_WIDE_INT - 1)))
-                         set_unique_reg_note (insn,
-                                              REG_EQUAL,
-                                              gen_rtx_DIV (compute_mode,
-                                                           op0,
-                                                           GEN_INT
-                                                           (trunc_int_for_mode
-                                                            (abs_d,
-                                                             compute_mode))));
+                         set_dst_reg_note (insn, REG_EQUAL,
+                                           gen_rtx_DIV (compute_mode, op0,
+                                                        gen_int_mode
+                                                          (abs_d,
+                                                           compute_mode)),
+                                           quotient);
 
                        quotient = expand_unop (compute_mode, neg_optab,
                                                quotient, quotient, 0);
@@ -3642,7 +4261,8 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                else if (size <= HOST_BITS_PER_WIDE_INT)
                  {
                    choose_multiplier (abs_d, size, size - 1,
-                                      &ml, &post_shift, &lgup);
+                                      &mlr, &post_shift, &lgup);
+                   ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
                    if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
                      {
                        rtx t1, t2, t3;
@@ -3651,18 +4271,20 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                            || size - 1 >= BITS_PER_WORD)
                          goto fail1;
 
-                       extra_cost = (shift_cost[compute_mode][post_shift]
-                                     + shift_cost[compute_mode][size - 1]
-                                     + add_cost[compute_mode]);
-                       t1 = expand_mult_highpart (compute_mode, op0, ml,
+                       extra_cost = (shift_cost[speed][compute_mode][post_shift]
+                                     + shift_cost[speed][compute_mode][size - 1]
+                                     + add_cost[speed][compute_mode]);
+                       t1 = expand_mult_highpart (compute_mode, op0, mlr,
                                                   NULL_RTX, 0,
                                                   max_cost - extra_cost);
                        if (t1 == 0)
                          goto fail1;
-                       t2 = expand_shift (RSHIFT_EXPR, compute_mode, t1,
-                                          build_int_2 (post_shift, 0), NULL_RTX, 0);
-                       t3 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                                          build_int_2 (size - 1, 0), NULL_RTX, 0);
+                       t2 = expand_shift
+                         (RSHIFT_EXPR, compute_mode, t1,
+                          post_shift, NULL_RTX, 0);
+                       t3 = expand_shift
+                         (RSHIFT_EXPR, compute_mode, op0,
+                          size - 1, NULL_RTX, 0);
                        if (d < 0)
                          quotient
                            = force_operand (gen_rtx_MINUS (compute_mode,
@@ -3683,10 +4305,11 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                          goto fail1;
 
                        ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
-                       extra_cost = (shift_cost[compute_mode][post_shift]
-                                     + shift_cost[compute_mode][size - 1]
-                                     + 2 * add_cost[compute_mode]);
-                       t1 = expand_mult_highpart (compute_mode, op0, ml,
+                       mlr = gen_int_mode (ml, compute_mode);
+                       extra_cost = (shift_cost[speed][compute_mode][post_shift]
+                                     + shift_cost[speed][compute_mode][size - 1]
+                                     + 2 * add_cost[speed][compute_mode]);
+                       t1 = expand_mult_highpart (compute_mode, op0, mlr,
                                                   NULL_RTX, 0,
                                                   max_cost - extra_cost);
                        if (t1 == 0)
@@ -3694,12 +4317,12 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                        t2 = force_operand (gen_rtx_PLUS (compute_mode,
                                                          t1, op0),
                                            NULL_RTX);
-                       t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
-                                          build_int_2 (post_shift, 0),
-                                          NULL_RTX, 0);
-                       t4 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                                          build_int_2 (size - 1, 0),
-                                          NULL_RTX, 0);
+                       t3 = expand_shift
+                         (RSHIFT_EXPR, compute_mode, t2,
+                          post_shift, NULL_RTX, 0);
+                       t4 = expand_shift
+                         (RSHIFT_EXPR, compute_mode, op0,
+                          size - 1, NULL_RTX, 0);
                        if (d < 0)
                          quotient
                            = force_operand (gen_rtx_MINUS (compute_mode,
@@ -3716,12 +4339,10 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                  break;
 
                insn = get_last_insn ();
-               if (insn != last
-                   && (set = single_set (insn)) != 0
-                   && SET_DEST (set) == quotient)
-                 set_unique_reg_note (insn,
-                                      REG_EQUAL,
-                                      gen_rtx_DIV (compute_mode, op0, op1));
+               if (insn != last)
+                 set_dst_reg_note (insn, REG_EQUAL,
+                                   gen_rtx_DIV (compute_mode, op0, op1),
+                                   quotient);
              }
            break;
          }
@@ -3734,9 +4355,10 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
       /* We will come here only for signed operations.  */
        if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
          {
-           unsigned HOST_WIDE_INT mh, ml;
+           unsigned HOST_WIDE_INT mh;
            int pre_shift, lgup, post_shift;
            HOST_WIDE_INT d = INTVAL (op1);
+           rtx ml;
 
            if (d > 0)
              {
@@ -3753,9 +4375,9 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                        if (remainder)
                          return gen_lowpart (mode, remainder);
                      }
-                   quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                                            build_int_2 (pre_shift, 0),
-                                            tquotient, 0);
+                   quotient = expand_shift
+                     (RSHIFT_EXPR, compute_mode, op0,
+                      pre_shift, tquotient, 0);
                  }
                else
                  {
@@ -3763,28 +4385,27 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
 
                    mh = choose_multiplier (d, size, size - 1,
                                            &ml, &post_shift, &lgup);
-                   if (mh)
-                     abort ();
+                   gcc_assert (!mh);
 
                    if (post_shift < BITS_PER_WORD
                        && size - 1 < BITS_PER_WORD)
                      {
-                       t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                                          build_int_2 (size - 1, 0),
-                                          NULL_RTX, 0);
+                       t1 = expand_shift
+                         (RSHIFT_EXPR, compute_mode, op0,
+                          size - 1, NULL_RTX, 0);
                        t2 = expand_binop (compute_mode, xor_optab, op0, t1,
                                           NULL_RTX, 0, OPTAB_WIDEN);
-                       extra_cost = (shift_cost[compute_mode][post_shift]
-                                     + shift_cost[compute_mode][size - 1]
-                                     + 2 * add_cost[compute_mode]);
+                       extra_cost = (shift_cost[speed][compute_mode][post_shift]
+                                     + shift_cost[speed][compute_mode][size - 1]
+                                     + 2 * add_cost[speed][compute_mode]);
                        t3 = expand_mult_highpart (compute_mode, t2, ml,
                                                   NULL_RTX, 1,
                                                   max_cost - extra_cost);
                        if (t3 != 0)
                          {
-                           t4 = expand_shift (RSHIFT_EXPR, compute_mode, t3,
-                                              build_int_2 (post_shift, 0),
-                                              NULL_RTX, 1);
+                           t4 = expand_shift
+                             (RSHIFT_EXPR, compute_mode, t3,
+                              post_shift, NULL_RTX, 1);
                            quotient = expand_binop (compute_mode, xor_optab,
                                                     t4, t1, tquotient, 0,
                                                     OPTAB_WIDEN);
@@ -3799,8 +4420,9 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                                                  op0, constm1_rtx), NULL_RTX);
                t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
                                   0, OPTAB_WIDEN);
-               nsign = expand_shift (RSHIFT_EXPR, compute_mode, t2,
-                                     build_int_2 (size - 1, 0), NULL_RTX, 0);
+               nsign = expand_shift
+                 (RSHIFT_EXPR, compute_mode, t2,
+                  size - 1, NULL_RTX, 0);
                t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
                                    NULL_RTX);
                t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
@@ -3914,8 +4536,7 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                rtx t1, t2, t3;
                unsigned HOST_WIDE_INT d = INTVAL (op1);
                t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                                  build_int_2 (floor_log2 (d), 0),
-                                  tquotient, 1);
+                                  floor_log2 (d), tquotient, 1);
                t2 = expand_binop (compute_mode, and_optab, op0,
                                   GEN_INT (d - 1),
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
@@ -4012,8 +4633,7 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                rtx t1, t2, t3;
                unsigned HOST_WIDE_INT d = INTVAL (op1);
                t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                                  build_int_2 (floor_log2 (d), 0),
-                                  tquotient, 0);
+                                  floor_log2 (d), tquotient, 0);
                t2 = expand_binop (compute_mode, and_optab, op0,
                                   GEN_INT (d - 1),
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
@@ -4134,17 +4754,16 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
            pre_shift = floor_log2 (d & -d);
            ml = invert_mod2n (d >> pre_shift, size);
            t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
-                              build_int_2 (pre_shift, 0), NULL_RTX, unsignedp);
+                              pre_shift, NULL_RTX, unsignedp);
            quotient = expand_mult (compute_mode, t1,
                                    gen_int_mode (ml, compute_mode),
                                    NULL_RTX, 1);
 
            insn = get_last_insn ();
-           set_unique_reg_note (insn,
-                                REG_EQUAL,
-                                gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
-                                                compute_mode,
-                                                op0, op1));
+           set_dst_reg_note (insn, REG_EQUAL,
+                             gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
+                                             compute_mode, op0, op1),
+                             quotient);
          }
        break;
 
@@ -4167,8 +4786,7 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
                                          remainder, 1, OPTAB_LIB_WIDEN);
              }
            tem = plus_constant (op1, -1);
-           tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
-                               build_int_2 (1, 0), NULL_RTX, 1);
+           tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
            do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
            expand_inc (quotient, const1_rtx);
            expand_dec (remainder, op1);
@@ -4193,12 +4811,12 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
            abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
            abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
            tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
-                               build_int_2 (1, 0), NULL_RTX, 1);
+                               1, NULL_RTX, 1);
            do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
            tem = expand_binop (compute_mode, xor_optab, op0, op1,
                                NULL_RTX, 0, OPTAB_WIDEN);
            mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
-                               build_int_2 (size - 1, 0), NULL_RTX, 0);
+                                size - 1, NULL_RTX, 0);
            tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
                                NULL_RTX, 0, OPTAB_WIDEN);
            tem = expand_binop (compute_mode, sub_optab, tem, mask,
@@ -4214,7 +4832,7 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
        return gen_lowpart (mode, rem_flag ? remainder : quotient);
 
       default:
-       abort ();
+       gcc_unreachable ();
       }
 
   if (quotient == 0)
@@ -4237,7 +4855,7 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
            = sign_expand_binop (compute_mode, umod_optab, smod_optab,
                                 op0, op1, target,
                                 unsignedp,
-                                ((optab2->handlers[compute_mode].insn_code
+                                ((optab_handler (optab2, compute_mode)
                                   != CODE_FOR_nothing)
                                  ? OPTAB_DIRECT : OPTAB_WIDEN));
          if (remainder == 0)
@@ -4265,7 +4883,7 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
        = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
                             op0, op1, rem_flag ? NULL_RTX : target,
                             unsignedp,
-                            ((optab2->handlers[compute_mode].insn_code
+                            ((optab_handler (optab2, compute_mode)
                               != CODE_FOR_nothing)
                              ? OPTAB_DIRECT : OPTAB_WIDEN));
 
@@ -4296,10 +4914,24 @@ expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
        target = 0;
 
       if (quotient == 0)
-       /* No divide instruction either.  Use library for remainder.  */
-       remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
-                                      op0, op1, target,
-                                      unsignedp, OPTAB_LIB_WIDEN);
+       {
+         /* No divide instruction either.  Use library for remainder.  */
+         remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
+                                        op0, op1, target,
+                                        unsignedp, OPTAB_LIB_WIDEN);
+         /* No remainder function.  Try a quotient-and-remainder
+            function, keeping the remainder.  */
+         if (!remainder)
+           {
+             remainder = gen_reg_rtx (compute_mode);
+             if (!expand_twoval_binop_libfunc
+                 (unsignedp ? udivmod_optab : sdivmod_optab,
+                  op0, op1,
+                  NULL_RTX, remainder,
+                  unsignedp ? UMOD : MOD))
+               remainder = NULL_RTX;
+           }
+       }
       else
        {
          /* We divided.  Now finish doing X - Y * (X / Y).  */
@@ -4327,20 +4959,24 @@ make_tree (tree type, rtx x)
   switch (GET_CODE (x))
     {
     case CONST_INT:
-      t = build_int_2 (INTVAL (x),
-                      (TYPE_UNSIGNED (type)
-                       && (GET_MODE_BITSIZE (TYPE_MODE (type))
-                           < HOST_BITS_PER_WIDE_INT))
-                      || INTVAL (x) >= 0 ? 0 : -1);
-      TREE_TYPE (t) = type;
-      return t;
+      {
+       HOST_WIDE_INT hi = 0;
+
+       if (INTVAL (x) < 0
+           && !(TYPE_UNSIGNED (type)
+                && (GET_MODE_BITSIZE (TYPE_MODE (type))
+                    < HOST_BITS_PER_WIDE_INT)))
+         hi = -1;
+
+       t = build_int_cst_wide (type, INTVAL (x), hi);
+
+       return t;
+      }
 
     case CONST_DOUBLE:
       if (GET_MODE (x) == VOIDmode)
-       {
-         t = build_int_2 (CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
-         TREE_TYPE (t) = type;
-       }
+       t = build_int_cst_wide (type,
+                               CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
       else
        {
          REAL_VALUE_TYPE d;
@@ -4353,153 +4989,99 @@ make_tree (tree type, rtx x)
 
     case CONST_VECTOR:
       {
-       int i, units;
-       rtx elt;
+       int units = CONST_VECTOR_NUNITS (x);
+       tree itype = TREE_TYPE (type);
        tree t = NULL_TREE;
+       int i;
 
-       units = CONST_VECTOR_NUNITS (x);
 
        /* Build a tree with vector elements.  */
        for (i = units - 1; i >= 0; --i)
          {
-           elt = CONST_VECTOR_ELT (x, i);
-           t = tree_cons (NULL_TREE, make_tree (type, elt), t);
+           rtx elt = CONST_VECTOR_ELT (x, i);
+           t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
          }
 
        return build_vector (type, t);
       }
 
     case PLUS:
-      return fold (build (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
-                         make_tree (type, XEXP (x, 1))));
+      return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
+                         make_tree (type, XEXP (x, 1)));
 
     case MINUS:
-      return fold (build (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
-                         make_tree (type, XEXP (x, 1))));
+      return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
+                         make_tree (type, XEXP (x, 1)));
 
     case NEG:
-      return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
+      return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
 
     case MULT:
-      return fold (build (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
-                         make_tree (type, XEXP (x, 1))));
+      return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
+                         make_tree (type, XEXP (x, 1)));
 
     case ASHIFT:
-      return fold (build (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
-                         make_tree (type, XEXP (x, 1))));
+      return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
+                         make_tree (type, XEXP (x, 1)));
 
     case LSHIFTRT:
-      t = lang_hooks.types.unsigned_type (type);
-      return fold (convert (type,
-                           build (RSHIFT_EXPR, t,
-                                  make_tree (t, XEXP (x, 0)),
-                                  make_tree (type, XEXP (x, 1)))));
+      t = unsigned_type_for (type);
+      return fold_convert (type, build2 (RSHIFT_EXPR, t,
+                                        make_tree (t, XEXP (x, 0)),
+                                        make_tree (type, XEXP (x, 1))));
 
     case ASHIFTRT:
-      t = lang_hooks.types.signed_type (type);
-      return fold (convert (type,
-                           build (RSHIFT_EXPR, t,
-                                  make_tree (t, XEXP (x, 0)),
-                                  make_tree (type, XEXP (x, 1)))));
+      t = signed_type_for (type);
+      return fold_convert (type, build2 (RSHIFT_EXPR, t,
+                                        make_tree (t, XEXP (x, 0)),
+                                        make_tree (type, XEXP (x, 1))));
 
     case DIV:
       if (TREE_CODE (type) != REAL_TYPE)
-       t = lang_hooks.types.signed_type (type);
+       t = signed_type_for (type);
       else
        t = type;
 
-      return fold (convert (type,
-                           build (TRUNC_DIV_EXPR, t,
-                                  make_tree (t, XEXP (x, 0)),
-                                  make_tree (t, XEXP (x, 1)))));
+      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
+                                        make_tree (t, XEXP (x, 0)),
+                                        make_tree (t, XEXP (x, 1))));
     case UDIV:
-      t = lang_hooks.types.unsigned_type (type);
-      return fold (convert (type,
-                           build (TRUNC_DIV_EXPR, t,
-                                  make_tree (t, XEXP (x, 0)),
-                                  make_tree (t, XEXP (x, 1)))));
+      t = unsigned_type_for (type);
+      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
+                                        make_tree (t, XEXP (x, 0)),
+                                        make_tree (t, XEXP (x, 1))));
 
     case SIGN_EXTEND:
     case ZERO_EXTEND:
       t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
                                          GET_CODE (x) == ZERO_EXTEND);
-      return fold (convert (type, make_tree (t, XEXP (x, 0))));
+      return fold_convert (type, make_tree (t, XEXP (x, 0)));
+
+    case CONST:
+      return make_tree (type, XEXP (x, 0));
+
+    case SYMBOL_REF:
+      t = SYMBOL_REF_DECL (x);
+      if (t)
+       return fold_convert (type, build_fold_addr_expr (t));
+      /* else fall through.  */
 
     default:
-      t = build_decl (VAR_DECL, NULL_TREE, type);
+      t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
 
-      /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
-        ptr_mode.  So convert.  */
+      /* If TYPE is a POINTER_TYPE, we might need to convert X from
+        address mode to pointer mode.  */
       if (POINTER_TYPE_P (type))
-       x = convert_memory_address (TYPE_MODE (type), x);
+       x = convert_memory_address_addr_space
+             (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
 
       /* Note that we do *not* use SET_DECL_RTL here, because we do not
         want set_decl_rtl to go adjusting REG_ATTRS for this temporary.  */
-      t->decl.rtl = x;
+      t->decl_with_rtl.rtl = x;
 
       return t;
     }
 }
-
-/* Check whether the multiplication X * MULT + ADD overflows.
-   X, MULT and ADD must be CONST_*.
-   MODE is the machine mode for the computation.
-   X and MULT must have mode MODE.  ADD may have a different mode.
-   So can X (defaults to same as MODE).
-   UNSIGNEDP is nonzero to do unsigned multiplication.  */
-
-bool
-const_mult_add_overflow_p (rtx x, rtx mult, rtx add, enum machine_mode mode, int unsignedp)
-{
-  tree type, mult_type, add_type, result;
-
-  type = lang_hooks.types.type_for_mode (mode, unsignedp);
-
-  /* In order to get a proper overflow indication from an unsigned
-     type, we have to pretend that it's a sizetype.  */
-  mult_type = type;
-  if (unsignedp)
-    {
-      mult_type = copy_node (type);
-      TYPE_IS_SIZETYPE (mult_type) = 1;
-    }
-
-  add_type = (GET_MODE (add) == VOIDmode ? mult_type
-             : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
-
-  result = fold (build (PLUS_EXPR, mult_type,
-                       fold (build (MULT_EXPR, mult_type,
-                                    make_tree (mult_type, x),
-                                    make_tree (mult_type, mult))),
-                       make_tree (add_type, add)));
-
-  return TREE_CONSTANT_OVERFLOW (result);
-}
-
-/* Return an rtx representing the value of X * MULT + ADD.
-   TARGET is a suggestion for where to store the result (an rtx).
-   MODE is the machine mode for the computation.
-   X and MULT must have mode MODE.  ADD may have a different mode.
-   So can X (defaults to same as MODE).
-   UNSIGNEDP is nonzero to do unsigned multiplication.
-   This may emit insns.  */
-
-rtx
-expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
-                int unsignedp)
-{
-  tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
-  tree add_type = (GET_MODE (add) == VOIDmode
-                  ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
-                                                          unsignedp));
-  tree result =  fold (build (PLUS_EXPR, type,
-                             fold (build (MULT_EXPR, type,
-                                          make_tree (type, x),
-                                          make_tree (type, mult))),
-                             make_tree (add_type, add)));
-
-  return expand_expr (result, target, VOIDmode, 0);
-}
 \f
 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
    and returning TARGET.
@@ -4522,36 +5104,124 @@ expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
     emit_move_insn (target, tem);
   return target;
 }
-\f
-/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
-   and storing in TARGET.  Normally return TARGET.
-   Return 0 if that cannot be done.
 
-   MODE is the mode to use for OP0 and OP1 should they be CONST_INTs.  If
-   it is VOIDmode, they cannot both be CONST_INT.
+/* Helper function for emit_store_flag.  */
+static rtx
+emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
+            enum machine_mode mode, enum machine_mode compare_mode,
+            int unsignedp, rtx x, rtx y, int normalizep,
+            enum machine_mode target_mode)
+{
+  struct expand_operand ops[4];
+  rtx op0, last, comparison, subtarget;
+  enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
 
-   UNSIGNEDP is for the case where we have to widen the operands
-   to perform the operation.  It says to use zero-extension.
+  last = get_last_insn ();
+  x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
+  y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
+  if (!x || !y)
+    {
+      delete_insns_since (last);
+      return NULL_RTX;
+    }
 
-   NORMALIZEP is 1 if we should convert the result to be either zero
-   or one.  Normalize is -1 if we should convert the result to be
-   either zero or -1.  If NORMALIZEP is zero, the result will be left
-   "raw" out of the scc insn.  */
+  if (target_mode == VOIDmode)
+    target_mode = result_mode;
+  if (!target)
+    target = gen_reg_rtx (target_mode);
 
-rtx
-emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
-                enum machine_mode mode, int unsignedp, int normalizep)
+  comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
+
+  create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
+  create_fixed_operand (&ops[1], comparison);
+  create_fixed_operand (&ops[2], x);
+  create_fixed_operand (&ops[3], y);
+  if (!maybe_expand_insn (icode, 4, ops))
+    {
+      delete_insns_since (last);
+      return NULL_RTX;
+    }
+  subtarget = ops[0].value;
+
+  /* If we are converting to a wider mode, first convert to
+     TARGET_MODE, then normalize.  This produces better combining
+     opportunities on machines that have a SIGN_EXTRACT when we are
+     testing a single bit.  This mostly benefits the 68k.
+
+     If STORE_FLAG_VALUE does not have the sign bit set when
+     interpreted in MODE, we can do this conversion as unsigned, which
+     is usually more efficient.  */
+  if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
+    {
+      convert_move (target, subtarget,
+                   val_signbit_known_clear_p (result_mode,
+                                              STORE_FLAG_VALUE));
+      op0 = target;
+      result_mode = target_mode;
+    }
+  else
+    op0 = subtarget;
+
+  /* If we want to keep subexpressions around, don't reuse our last
+     target.  */
+  if (optimize)
+    subtarget = 0;
+
+  /* Now normalize to the proper value in MODE.  Sometimes we don't
+     have to do anything.  */
+  if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
+    ;
+  /* STORE_FLAG_VALUE might be the most negative number, so write
+     the comparison this way to avoid a compiler-time warning.  */
+  else if (- normalizep == STORE_FLAG_VALUE)
+    op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
+
+  /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
+     it hard to use a value of just the sign bit due to ANSI integer
+     constant typing rules.  */
+  else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
+    op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
+                       GET_MODE_BITSIZE (result_mode) - 1, subtarget,
+                       normalizep == 1);
+  else
+    {
+      gcc_assert (STORE_FLAG_VALUE & 1);
+
+      op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
+      if (normalizep == -1)
+       op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
+    }
+
+  /* If we were converting to a smaller mode, do the conversion now.  */
+  if (target_mode != result_mode)
+    {
+      convert_move (target, op0, 0);
+      return target;
+    }
+  else
+    return op0;
+}
+
+
+/* A subroutine of emit_store_flag only including "tricks" that do not
+   need a recursive call.  These are kept separate to avoid infinite
+   loops.  */
+
+static rtx
+emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
+                  enum machine_mode mode, int unsignedp, int normalizep,
+                  enum machine_mode target_mode)
 {
   rtx subtarget;
   enum insn_code icode;
   enum machine_mode compare_mode;
-  enum machine_mode target_mode = GET_MODE (target);
+  enum mode_class mclass;
+  enum rtx_code scode;
   rtx tem;
-  rtx last = get_last_insn ();
-  rtx pattern, comparison;
 
   if (unsignedp)
     code = unsigned_condition (code);
+  scode = swap_condition (code);
 
   /* If one operand is constant, make it the second one.  Only do this
      if the other operand is not constant as well.  */
@@ -4610,18 +5280,20 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
       if ((code == EQ || code == NE)
          && (op1 == const0_rtx || op1 == constm1_rtx))
        {
-         rtx op00, op01, op0both;
+         rtx op00, op01;
 
-         /* Do a logical OR or AND of the two words and compare the result.  */
+         /* Do a logical OR or AND of the two words and compare the
+            result.  */
          op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
          op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
-         op0both = expand_binop (word_mode,
-                                 op1 == const0_rtx ? ior_optab : and_optab,
-                                 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
-
-         if (op0both != 0)
-           return emit_store_flag (target, code, op0both, op1, word_mode,
-                                   unsignedp, normalizep);
+         tem = expand_binop (word_mode,
+                             op1 == const0_rtx ? ior_optab : and_optab,
+                             op00, op01, NULL_RTX, unsignedp,
+                             OPTAB_DIRECT);
+
+         if (tem != 0)
+           tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
+                                  unsignedp, normalizep);
        }
       else if ((code == LT || code == GE) && op1 == const0_rtx)
        {
@@ -4629,30 +5301,45 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
 
          /* If testing the sign bit, can just test on high word.  */
          op0h = simplify_gen_subreg (word_mode, op0, mode,
-                                     subreg_highpart_offset (word_mode, mode));
-         return emit_store_flag (target, code, op0h, op1, word_mode,
-                                 unsignedp, normalizep);
+                                     subreg_highpart_offset (word_mode,
+                                                             mode));
+         tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
+                                unsignedp, normalizep);
        }
-    }
+      else
+       tem = NULL_RTX;
 
-  /* From now on, we won't change CODE, so set ICODE now.  */
-  icode = setcc_gen_code[(int) code];
+      if (tem)
+       {
+         if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
+           return tem;
+         if (!target)
+           target = gen_reg_rtx (target_mode);
+
+         convert_move (target, tem,
+                       !val_signbit_known_set_p (word_mode,
+                                                 (normalizep ? normalizep
+                                                  : STORE_FLAG_VALUE)));
+         return target;
+       }
+    }
 
   /* If this is A < 0 or A >= 0, we can do this by taking the ones
      complement of A (for GE) and shifting the sign bit to the low bit.  */
   if (op1 == const0_rtx && (code == LT || code == GE)
       && GET_MODE_CLASS (mode) == MODE_INT
       && (normalizep || STORE_FLAG_VALUE == 1
-         || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
-             && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
-                 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
+         || val_signbit_p (mode, STORE_FLAG_VALUE)))
     {
       subtarget = target;
 
+      if (!target)
+       target_mode = mode;
+
       /* If the result is to be wider than OP0, it is best to convert it
         first.  If it is to be narrower, it is *incorrect* to convert it
         first.  */
-      if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
+      else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
        {
          op0 = convert_modes (target_mode, mode, op0, 0);
          mode = target_mode;
@@ -4671,7 +5358,7 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
           a logical shift from the sign bit to the low-order bit; for
           a -1/0 value, we do an arithmetic shift.  */
        op0 = expand_shift (RSHIFT_EXPR, mode, op0,
-                           size_int (GET_MODE_BITSIZE (mode) - 1),
+                           GET_MODE_BITSIZE (mode) - 1,
                            subtarget, normalizep != -1);
 
       if (mode != target_mode)
@@ -4680,148 +5367,183 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
       return op0;
     }
 
-  if (icode != CODE_FOR_nothing)
+  mclass = GET_MODE_CLASS (mode);
+  for (compare_mode = mode; compare_mode != VOIDmode;
+       compare_mode = GET_MODE_WIDER_MODE (compare_mode))
     {
-      insn_operand_predicate_fn pred;
-
-      /* We think we may be able to do this with a scc insn.  Emit the
-        comparison and then the scc insn.  */
-
-      do_pending_stack_adjust ();
-      last = get_last_insn ();
-
-      comparison
-       = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
-      if (CONSTANT_P (comparison))
+     enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
+     icode = optab_handler (cstore_optab, optab_mode);
+     if (icode != CODE_FOR_nothing)
        {
-         if (GET_CODE (comparison) == CONST_INT)
-           {
-             if (comparison == const0_rtx)
-               return const0_rtx;
-           }
-#ifdef FLOAT_STORE_FLAG_VALUE
-         else if (GET_CODE (comparison) == CONST_DOUBLE)
+         do_pending_stack_adjust ();
+         tem = emit_cstore (target, icode, code, mode, compare_mode,
+                            unsignedp, op0, op1, normalizep, target_mode);
+         if (tem)
+           return tem;
+
+         if (GET_MODE_CLASS (mode) == MODE_FLOAT)
            {
-             if (comparison == CONST0_RTX (GET_MODE (comparison)))
-               return const0_rtx;
+             tem = emit_cstore (target, icode, scode, mode, compare_mode,
+                                unsignedp, op1, op0, normalizep, target_mode);
+             if (tem)
+               return tem;
            }
-#endif
-         else
-           abort ();
-         if (normalizep == 1)
-           return const1_rtx;
-         if (normalizep == -1)
-           return constm1_rtx;
-         return const_true_rtx;
+         break;
        }
+    }
 
-      /* The code of COMPARISON may not match CODE if compare_from_rtx
-        decided to swap its operands and reverse the original code.
+  return 0;
+}
 
-        We know that compare_from_rtx returns either a CONST_INT or
-        a new comparison code, so it is safe to just extract the
-        code from COMPARISON.  */
-      code = GET_CODE (comparison);
+/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
+   and storing in TARGET.  Normally return TARGET.
+   Return 0 if that cannot be done.
 
-      /* Get a reference to the target in the proper mode for this insn.  */
-      compare_mode = insn_data[(int) icode].operand[0].mode;
-      subtarget = target;
-      pred = insn_data[(int) icode].operand[0].predicate;
-      if (preserve_subexpressions_p ()
-         || ! (*pred) (subtarget, compare_mode))
-       subtarget = gen_reg_rtx (compare_mode);
+   MODE is the mode to use for OP0 and OP1 should they be CONST_INTs.  If
+   it is VOIDmode, they cannot both be CONST_INT.
 
-      pattern = GEN_FCN (icode) (subtarget);
-      if (pattern)
-       {
-         emit_insn (pattern);
+   UNSIGNEDP is for the case where we have to widen the operands
+   to perform the operation.  It says to use zero-extension.
 
-         /* If we are converting to a wider mode, first convert to
-            TARGET_MODE, then normalize.  This produces better combining
-            opportunities on machines that have a SIGN_EXTRACT when we are
-            testing a single bit.  This mostly benefits the 68k.
+   NORMALIZEP is 1 if we should convert the result to be either zero
+   or one.  Normalize is -1 if we should convert the result to be
+   either zero or -1.  If NORMALIZEP is zero, the result will be left
+   "raw" out of the scc insn.  */
 
-            If STORE_FLAG_VALUE does not have the sign bit set when
-            interpreted in COMPARE_MODE, we can do this conversion as
-            unsigned, which is usually more efficient.  */
-         if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
-           {
-             convert_move (target, subtarget,
-                           (GET_MODE_BITSIZE (compare_mode)
-                            <= HOST_BITS_PER_WIDE_INT)
-                           && 0 == (STORE_FLAG_VALUE
-                                    & ((HOST_WIDE_INT) 1
-                                       << (GET_MODE_BITSIZE (compare_mode) -1))));
-             op0 = target;
-             compare_mode = target_mode;
-           }
-         else
-           op0 = subtarget;
+rtx
+emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
+                enum machine_mode mode, int unsignedp, int normalizep)
+{
+  enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
+  enum rtx_code rcode;
+  rtx subtarget;
+  rtx tem, last, trueval;
 
-         /* If we want to keep subexpressions around, don't reuse our
-            last target.  */
+  tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
+                          target_mode);
+  if (tem)
+    return tem;
 
-         if (preserve_subexpressions_p ())
-           subtarget = 0;
+  /* If we reached here, we can't do this with a scc insn, however there
+     are some comparisons that can be done in other ways.  Don't do any
+     of these cases if branches are very cheap.  */
+  if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
+    return 0;
+
+  /* See what we need to return.  We can only return a 1, -1, or the
+     sign bit.  */
+
+  if (normalizep == 0)
+    {
+      if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
+       normalizep = STORE_FLAG_VALUE;
+
+      else if (val_signbit_p (mode, STORE_FLAG_VALUE))
+       ;
+      else
+       return 0;
+    }
+
+  last = get_last_insn ();
+
+  /* If optimizing, use different pseudo registers for each insn, instead
+     of reusing the same pseudo.  This leads to better CSE, but slows
+     down the compiler, since there are more pseudos */
+  subtarget = (!optimize
+              && (target_mode == mode)) ? target : NULL_RTX;
+  trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
+
+  /* For floating-point comparisons, try the reverse comparison or try
+     changing the "orderedness" of the comparison.  */
+  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+    {
+      enum rtx_code first_code;
+      bool and_them;
+
+      rcode = reverse_condition_maybe_unordered (code);
+      if (can_compare_p (rcode, mode, ccp_store_flag)
+          && (code == ORDERED || code == UNORDERED
+             || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
+             || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
+       {
+          int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
+                         || (STORE_FLAG_VALUE == -1 && normalizep == 1));
 
-         /* Now normalize to the proper value in COMPARE_MODE.  Sometimes
-            we don't have to do anything.  */
-         if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
-           ;
-         /* STORE_FLAG_VALUE might be the most negative number, so write
-            the comparison this way to avoid a compiler-time warning.  */
-         else if (- normalizep == STORE_FLAG_VALUE)
-           op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
-
-         /* We don't want to use STORE_FLAG_VALUE < 0 below since this
-            makes it hard to use a value of just the sign bit due to
-            ANSI integer constant typing rules.  */
-         else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
-                  && (STORE_FLAG_VALUE
-                      & ((HOST_WIDE_INT) 1
-                         << (GET_MODE_BITSIZE (compare_mode) - 1))))
-           op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
-                               size_int (GET_MODE_BITSIZE (compare_mode) - 1),
-                               subtarget, normalizep == 1);
-         else if (STORE_FLAG_VALUE & 1)
+         /* For the reverse comparison, use either an addition or a XOR.  */
+          if (want_add
+             && rtx_cost (GEN_INT (normalizep), PLUS, 1,
+                          optimize_insn_for_speed_p ()) == 0)
            {
-             op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
-             if (normalizep == -1)
-               op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
+             tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+                                      STORE_FLAG_VALUE, target_mode);
+             if (tem)
+                return expand_binop (target_mode, add_optab, tem,
+                                    GEN_INT (normalizep),
+                                    target, 0, OPTAB_WIDEN);
            }
-         else
-           abort ();
-
-         /* If we were converting to a smaller mode, do the
-            conversion now.  */
-         if (target_mode != compare_mode)
+          else if (!want_add
+                  && rtx_cost (trueval, XOR, 1,
+                               optimize_insn_for_speed_p ()) == 0)
            {
-             convert_move (target, op0, 0);
-             return target;
+             tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+                                      normalizep, target_mode);
+             if (tem)
+                return expand_binop (target_mode, xor_optab, tem, trueval,
+                                    target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
            }
-         else
-           return op0;
        }
+
+      delete_insns_since (last);
+
+      /* Cannot split ORDERED and UNORDERED, only try the above trick.   */
+      if (code == ORDERED || code == UNORDERED)
+       return 0;
+
+      and_them = split_comparison (code, mode, &first_code, &code);
+
+      /* If there are no NaNs, the first comparison should always fall through.
+         Effectively change the comparison to the other one.  */
+      if (!HONOR_NANS (mode))
+       {
+          gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
+         return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
+                                   target_mode);
+       }
+
+#ifdef HAVE_conditional_move
+      /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
+        conditional move.  */
+      tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
+                              normalizep, target_mode);
+      if (tem == 0)
+       return 0;
+
+      if (and_them)
+        tem = emit_conditional_move (target, code, op0, op1, mode,
+                                    tem, const0_rtx, GET_MODE (tem), 0);
+      else
+        tem = emit_conditional_move (target, code, op0, op1, mode,
+                                    trueval, tem, GET_MODE (tem), 0);
+
+      if (tem == 0)
+        delete_insns_since (last);
+      return tem;
+#else
+      return 0;
+#endif
     }
 
-  delete_insns_since (last);
+  /* The remaining tricks only apply to integer comparisons.  */
 
-  /* If expensive optimizations, use different pseudo registers for each
-     insn, instead of reusing the same pseudo.  This leads to better CSE,
-     but slows down the compiler, since there are more pseudos */
-  subtarget = (!flag_expensive_optimizations
-              && (target_mode == mode)) ? target : NULL_RTX;
+  if (GET_MODE_CLASS (mode) != MODE_INT)
+    return 0;
 
-  /* If we reached here, we can't do this with a scc insn.  However, there
-     are some comparisons that can be done directly.  For example, if
-     this is an equality comparison of integers, we can try to exclusive-or
+  /* If this is an equality comparison of integers, we can try to exclusive-or
      (or subtract) the two operands and use a recursive call to try the
      comparison with zero.  Don't do any of these cases if branches are
      very cheap.  */
 
-  if (BRANCH_COST > 0
-      && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
-      && op1 != const0_rtx)
+  if ((code == EQ || code == NE) && op1 != const0_rtx)
     {
       tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
                          OPTAB_WIDEN);
@@ -4832,9 +5554,50 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
       if (tem != 0)
        tem = emit_store_flag (target, code, tem, const0_rtx,
                               mode, unsignedp, normalizep);
-      if (tem == 0)
-       delete_insns_since (last);
-      return tem;
+      if (tem != 0)
+       return tem;
+
+      delete_insns_since (last);
+    }
+
+  /* For integer comparisons, try the reverse comparison.  However, for
+     small X and if we'd have anyway to extend, implementing "X != 0"
+     as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0".  */
+  rcode = reverse_condition (code);
+  if (can_compare_p (rcode, mode, ccp_store_flag)
+      && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
+           && code == NE
+           && GET_MODE_SIZE (mode) < UNITS_PER_WORD
+           && op1 == const0_rtx))
+    {
+      int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
+                     || (STORE_FLAG_VALUE == -1 && normalizep == 1));
+
+      /* Again, for the reverse comparison, use either an addition or a XOR.  */
+      if (want_add
+         && rtx_cost (GEN_INT (normalizep), PLUS, 1,
+                      optimize_insn_for_speed_p ()) == 0)
+       {
+         tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+                                  STORE_FLAG_VALUE, target_mode);
+         if (tem != 0)
+            tem = expand_binop (target_mode, add_optab, tem,
+                               GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
+       }
+      else if (!want_add
+              && rtx_cost (trueval, XOR, 1,
+                           optimize_insn_for_speed_p ()) == 0)
+       {
+         tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+                                  normalizep, target_mode);
+         if (tem != 0)
+            tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
+                               INTVAL (trueval) >= 0, OPTAB_WIDEN);
+       }
+
+      if (tem != 0)
+       return tem;
+      delete_insns_since (last);
     }
 
   /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
@@ -4842,28 +5605,12 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
      do LE and GT if branches are expensive since they are expensive on
      2-operand machines.  */
 
-  if (BRANCH_COST == 0
-      || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
+  if (op1 != const0_rtx
       || (code != EQ && code != NE
-         && (BRANCH_COST <= 1 || (code != LE && code != GT))))
+         && (BRANCH_COST (optimize_insn_for_speed_p (),
+                          false) <= 1 || (code != LE && code != GT))))
     return 0;
 
-  /* See what we need to return.  We can only return a 1, -1, or the
-     sign bit.  */
-
-  if (normalizep == 0)
-    {
-      if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
-       normalizep = STORE_FLAG_VALUE;
-
-      else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
-              && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
-                  == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
-       ;
-      else
-       return 0;
-    }
-
   /* Try to put the result of the comparison in the sign bit.  Assume we can't
      do the necessary operation below.  */
 
@@ -4894,7 +5641,7 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
        subtarget = 0;
 
       tem = expand_shift (RSHIFT_EXPR, mode, op0,
-                         size_int (GET_MODE_BITSIZE (mode) - 1),
+                         GET_MODE_BITSIZE (mode) - 1,
                          subtarget, 0);
       tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
                          OPTAB_WIDEN);
@@ -4917,9 +5664,9 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
         that is compensated by the subsequent overflow when subtracting
         one / negating.  */
 
-      if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
+      if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
        tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
-      else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
+      else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
        tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
       else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
        {
@@ -4941,7 +5688,10 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
         that "or", which is an extra insn, so we only handle EQ if branches
         are expensive.  */
 
-      if (tem == 0 && (code == NE || BRANCH_COST > 1))
+      if (tem == 0
+         && (code == NE
+             || BRANCH_COST (optimize_insn_for_speed_p (),
+                             false) > 1))
        {
          if (rtx_equal_p (subtarget, op0))
            subtarget = 0;
@@ -4957,12 +5707,14 @@ emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
 
   if (tem && normalizep)
     tem = expand_shift (RSHIFT_EXPR, mode, tem,
-                       size_int (GET_MODE_BITSIZE (mode) - 1),
+                       GET_MODE_BITSIZE (mode) - 1,
                        subtarget, normalizep == 1);
 
   if (tem)
     {
-      if (GET_MODE (tem) != target_mode)
+      if (!target)
+        ;
+      else if (GET_MODE (tem) != target_mode)
        {
          convert_move (target, tem, 0);
          tem = target;
@@ -4986,95 +5738,82 @@ emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
                       enum machine_mode mode, int unsignedp, int normalizep)
 {
   rtx tem, label;
+  rtx trueval, falseval;
 
   /* First see if emit_store_flag can do the job.  */
   tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
   if (tem != 0)
     return tem;
 
-  if (normalizep == 0)
-    normalizep = 1;
+  if (!target)
+    target = gen_reg_rtx (word_mode);
 
-  /* If this failed, we have to do this with set/compare/jump/set code.  */
+  /* If this failed, we have to do this with set/compare/jump/set code.
+     For foo != 0, if foo is in OP0, just replace it with 1 if nonzero.  */
+  trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
+  if (code == NE
+      && GET_MODE_CLASS (mode) == MODE_INT
+      && REG_P (target)
+      && op0 == target
+      && op1 == const0_rtx)
+    {
+      label = gen_label_rtx ();
+      do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
+                              mode, NULL_RTX, NULL_RTX, label, -1);
+      emit_move_insn (target, trueval);
+      emit_label (label);
+      return target;
+    }
 
   if (!REG_P (target)
       || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
     target = gen_reg_rtx (GET_MODE (target));
 
-  emit_move_insn (target, const1_rtx);
+  /* Jump in the right direction if the target cannot implement CODE
+     but can jump on its reverse condition.  */
+  falseval = const0_rtx;
+  if (! can_compare_p (code, mode, ccp_jump)
+      && (! FLOAT_MODE_P (mode)
+          || code == ORDERED || code == UNORDERED
+          || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
+          || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
+    {
+      enum rtx_code rcode;
+      if (FLOAT_MODE_P (mode))
+        rcode = reverse_condition_maybe_unordered (code);
+      else
+        rcode = reverse_condition (code);
+
+      /* Canonicalize to UNORDERED for the libcall.  */
+      if (can_compare_p (rcode, mode, ccp_jump)
+          || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
+       {
+         falseval = trueval;
+         trueval = const0_rtx;
+         code = rcode;
+       }
+    }
+
+  emit_move_insn (target, trueval);
   label = gen_label_rtx ();
   do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
-                          NULL_RTX, label);
+                          NULL_RTX, label, -1);
 
-  emit_move_insn (target, const0_rtx);
+  emit_move_insn (target, falseval);
   emit_label (label);
 
   return target;
 }
 \f
 /* Perform possibly multi-word comparison and conditional jump to LABEL
-   if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
-
-   The algorithm is based on the code in expr.c:do_jump.
-
-   Note that this does not perform a general comparison.  Only variants
-   generated within expmed.c are correctly handled, others abort (but could
-   be handled if needed).  */
+   if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE.  This is
+   now a thin wrapper around do_compare_rtx_and_jump.  */
 
 static void
 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
                 rtx label)
 {
-  /* If this mode is an integer too wide to compare properly,
-     compare word by word.  Rely on cse to optimize constant cases.  */
-
-  if (GET_MODE_CLASS (mode) == MODE_INT
-      && ! can_compare_p (op, mode, ccp_jump))
-    {
-      rtx label2 = gen_label_rtx ();
-
-      switch (op)
-       {
-       case LTU:
-         do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
-         break;
-
-       case LEU:
-         do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
-         break;
-
-       case LT:
-         do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
-         break;
-
-       case GT:
-         do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
-         break;
-
-       case GE:
-         do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
-         break;
-
-         /* do_jump_by_parts_equality_rtx compares with zero.  Luckily
-            that's the only equality operations we do */
-       case EQ:
-         if (arg2 != const0_rtx || mode != GET_MODE(arg1))
-           abort ();
-         do_jump_by_parts_equality_rtx (arg1, label2, label);
-         break;
-
-       case NE:
-         if (arg2 != const0_rtx || mode != GET_MODE(arg1))
-           abort ();
-         do_jump_by_parts_equality_rtx (arg1, label, label2);
-         break;
-
-       default:
-         abort ();
-       }
-
-      emit_label (label2);
-    }
-  else
-    emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);
+  int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
+  do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
+                          NULL_RTX, NULL_RTX, label, -1);
 }