OSDN Git Service

2007-08-26 H.J. Lu <hongjiu.lu@intel.com>
[pf3gnuchains/gcc-fork.git] / gcc / tree-vect-transform.c
index bbac6fe..7c5b1b2 100644 (file)
@@ -1,12 +1,12 @@
 /* Transformation Utilities for Loop Vectorization.
 /* Transformation Utilities for Loop Vectorization.
-   Copyright (C) 2003,2004,2005 Free Software Foundation, Inc.
+   Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
    Contributed by Dorit Naishlos <dorit@il.ibm.com>
 
 This file is part of GCC.
 
 GCC is free software; you can redistribute it and/or modify it under
 the terms of the GNU General Public License as published by the Free
    Contributed by Dorit Naishlos <dorit@il.ibm.com>
 
 This file is part of GCC.
 
 GCC is free software; you can redistribute it and/or modify it under
 the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
+Software Foundation; either version 3, or (at your option) any later
 version.
 
 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 version.
 
 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
@@ -15,9 +15,8 @@ FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.
 
 You should have received a copy of the GNU General Public License
 for more details.
 
 You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING.  If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA.  */
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
 
 #include "config.h"
 #include "system.h"
 
 #include "config.h"
 #include "system.h"
@@ -35,6 +34,7 @@ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
 #include "cfgloop.h"
 #include "expr.h"
 #include "optabs.h"
 #include "cfgloop.h"
 #include "expr.h"
 #include "optabs.h"
+#include "params.h"
 #include "recog.h"
 #include "tree-data-ref.h"
 #include "tree-chrec.h"
 #include "recog.h"
 #include "tree-data-ref.h"
 #include "tree-chrec.h"
@@ -46,19 +46,19 @@ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
 #include "real.h"
 
 /* Utility functions for the code transformation.  */
 #include "real.h"
 
 /* Utility functions for the code transformation.  */
-static bool vect_transform_stmt (tree, block_stmt_iterator *);
-static void vect_align_data_ref (tree);
+static bool vect_transform_stmt (tree, block_stmt_iterator *, bool *);
 static tree vect_create_destination_var (tree, tree);
 static tree vect_create_data_ref_ptr 
 static tree vect_create_destination_var (tree, tree);
 static tree vect_create_data_ref_ptr 
-  (tree, block_stmt_iterator *, tree, tree *, bool); 
-static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
+  (tree, struct loop*, tree, tree *, tree *, bool, tree, bool *); 
+static tree vect_create_addr_base_for_vector_ref 
+  (tree, tree *, tree, struct loop *);
 static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
 static tree vect_get_vec_def_for_operand (tree, tree, tree *);
 static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
 static tree vect_get_vec_def_for_operand (tree, tree, tree *);
-static tree vect_init_vector (tree, tree);
+static tree vect_init_vector (tree, tree, tree, block_stmt_iterator *);
 static void vect_finish_stmt_generation 
 static void vect_finish_stmt_generation 
-  (tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
+  (tree stmt, tree vec_stmt, block_stmt_iterator *);
 static bool vect_is_simple_cond (tree, loop_vec_info); 
 static bool vect_is_simple_cond (tree, loop_vec_info); 
-static void update_vuses_to_preheader (tree, struct loop*);
+static void vect_create_epilog_for_reduction (tree, tree, enum tree_code, tree);
 static tree get_initial_def_for_reduction (tree, tree, tree *);
 
 /* Utility function dealing with loop peeling (not peeling itself).  */
 static tree get_initial_def_for_reduction (tree, tree, tree *);
 
 /* Utility function dealing with loop peeling (not peeling itself).  */
@@ -69,12 +69,606 @@ static void vect_update_ivs_after_vectorizer (loop_vec_info, tree, edge);
 static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
 static void vect_update_init_of_dr (struct data_reference *, tree niters);
 static void vect_update_inits_of_drs (loop_vec_info, tree);
 static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
 static void vect_update_init_of_dr (struct data_reference *, tree niters);
 static void vect_update_inits_of_drs (loop_vec_info, tree);
-static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
-static void vect_do_peeling_for_loop_bound 
-  (loop_vec_info, tree *, struct loops *);
 static int vect_min_worthwhile_factor (enum tree_code);
 
 
 static int vect_min_worthwhile_factor (enum tree_code);
 
 
+static int
+cost_for_stmt (tree stmt)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+  switch (STMT_VINFO_TYPE (stmt_info))
+  {
+  case load_vec_info_type:
+    return TARG_SCALAR_LOAD_COST;
+  case store_vec_info_type:
+    return TARG_SCALAR_STORE_COST;
+  case op_vec_info_type:
+  case condition_vec_info_type:
+  case assignment_vec_info_type:
+  case reduc_vec_info_type:
+  case induc_vec_info_type:
+  case type_promotion_vec_info_type:
+  case type_demotion_vec_info_type:
+  case type_conversion_vec_info_type:
+  case call_vec_info_type:
+    return TARG_SCALAR_STMT_COST;
+  case undef_vec_info_type:
+  default:
+    gcc_unreachable ();
+  }
+}
+
+
+/* Function vect_estimate_min_profitable_iters
+
+   Return the number of iterations required for the vector version of the
+   loop to be profitable relative to the cost of the scalar version of the
+   loop.
+
+   TODO: Take profile info into account before making vectorization
+   decisions, if available.  */
+
+int
+vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
+{
+  int i;
+  int min_profitable_iters;
+  int peel_iters_prologue;
+  int peel_iters_epilogue;
+  int vec_inside_cost = 0;
+  int vec_outside_cost = 0;
+  int scalar_single_iter_cost = 0;
+  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+  int nbbs = loop->num_nodes;
+  int byte_misalign;
+  int innerloop_iters, factor;
+
+  /* Cost model disabled.  */
+  if (!flag_vect_cost_model)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "cost model disabled.");      
+      return 0;
+    }
+
+  /* Requires loop versioning tests to handle misalignment.
+     FIXME: Make cost depend on number of stmts in may_misalign list.  */
+
+  if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
+    {
+      vec_outside_cost += TARG_COND_BRANCH_COST;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "cost model: Adding cost of checks for loop "
+                 "versioning.\n");
+    }
+
+  /* Count statements in scalar loop.  Using this as scalar cost for a single
+     iteration for now.
+
+     TODO: Add outer loop support.
+
+     TODO: Consider assigning different costs to different scalar
+     statements.  */
+
+  /* FORNOW.  */
+  if (loop->inner)
+    innerloop_iters = 50; /* FIXME */
+
+  for (i = 0; i < nbbs; i++)
+    {
+      block_stmt_iterator si;
+      basic_block bb = bbs[i];
+
+      if (bb->loop_father == loop->inner)
+       factor = innerloop_iters;
+      else
+       factor = 1;
+
+      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+        {
+          tree stmt = bsi_stmt (si);
+          stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+          if (!STMT_VINFO_RELEVANT_P (stmt_info)
+              && !STMT_VINFO_LIVE_P (stmt_info))
+            continue;
+          scalar_single_iter_cost += cost_for_stmt (stmt) * factor;
+          vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
+         /* FIXME: for stmts in the inner-loop in outer-loop vectorization,
+            some of the "outside" costs are generated inside the outer-loop.  */
+          vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
+        }
+    }
+
+  /* Add additional cost for the peeled instructions in prologue and epilogue
+     loop.
+
+     FORNOW: If we dont know the value of peel_iters for prologue or epilogue
+     at compile-time - we assume it's (vf-1)/2 (the worst would be vf-1).
+
+     TODO: Build an expression that represents peel_iters for prologue and
+     epilogue to be used in a run-time test.  */
+
+  byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
+
+  if (byte_misalign < 0)
+    {
+      peel_iters_prologue = (vf - 1)/2;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "cost model: "
+                 "prologue peel iters set to (vf-1)/2.");
+
+      /* If peeling for alignment is unknown, loop bound of main loop becomes
+         unknown.  */
+      peel_iters_epilogue = (vf - 1)/2;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "cost model: "
+                 "epilogue peel iters set to (vf-1)/2 because "
+                 "peeling for alignment is unknown .");
+    }
+  else 
+    {
+      if (byte_misalign)
+       {
+         struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
+         int element_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
+         tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
+         int nelements = TYPE_VECTOR_SUBPARTS (vectype);
+
+         peel_iters_prologue = nelements - (byte_misalign / element_size);
+       }
+      else
+       peel_iters_prologue = 0;
+
+      if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
+        {
+          peel_iters_epilogue = (vf - 1)/2;
+          if (vect_print_dump_info (REPORT_DETAILS))
+            fprintf (vect_dump, "cost model: "
+                     "epilogue peel iters set to (vf-1)/2 because "
+                     "loop iterations are unknown .");
+        }
+      else      
+       {
+         int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
+         peel_iters_prologue = niters < peel_iters_prologue ? 
+                                       niters : peel_iters_prologue;
+         peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
+       }
+    }
+
+  /* Requires a prologue loop when peeling to handle misalignment. Add cost of
+     two guards, one for the peeled loop and one for the vector loop.  */
+
+  if (peel_iters_prologue)
+    {
+      vec_outside_cost += 2 * TARG_COND_BRANCH_COST;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "cost model: Adding cost of checks for "
+                 "prologue.\n");
+    }
+
+ /* Requires an epilogue loop to finish up remaining iterations after vector
+    loop. Add cost of two guards, one for the peeled loop and one for the
+    vector loop.  */
+
+  if (peel_iters_epilogue
+      || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
+      || LOOP_VINFO_INT_NITERS (loop_vinfo) % vf)
+    {
+      vec_outside_cost += 2 * TARG_COND_BRANCH_COST;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "cost model : Adding cost of checks for "
+                 "epilogue.\n");
+    }
+
+  vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
+                      + (peel_iters_epilogue * scalar_single_iter_cost);
+
+  /* Allow targets add additional (outside-of-loop) costs. FORNOW, the only
+     information we provide for the target is whether testing against the
+     threshold involves a runtime test.  */
+  if (targetm.vectorize.builtin_vectorization_cost)
+    {
+      bool runtime_test = false;
+
+      /* If the number of iterations is unknown, or the
+        peeling-for-misalignment amount is unknown, we eill have to generate
+        a runtime test to test the loop count against the threshold.  */
+      if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
+         || (byte_misalign < 0))
+       runtime_test = true;
+      vec_outside_cost +=
+       targetm.vectorize.builtin_vectorization_cost (runtime_test);
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "cost model : Adding target out-of-loop cost = %d",
+                 targetm.vectorize.builtin_vectorization_cost (runtime_test));
+    }
+
+  /* Calculate number of iterations required to make the vector version 
+     profitable, relative to the loop bodies only. The following condition
+     must hold true: ((SIC*VF)-VIC)*niters > VOC*VF, where
+     SIC = scalar iteration cost, VIC = vector iteration cost,
+     VOC = vector outside cost and VF = vectorization factor.  */
+
+  if ((scalar_single_iter_cost * vf) > vec_inside_cost)
+    {
+      if (vec_outside_cost == 0)
+        min_profitable_iters = 1;
+      else
+        {
+          min_profitable_iters = (vec_outside_cost * vf)
+                                 / ((scalar_single_iter_cost * vf)
+                                    - vec_inside_cost);
+
+          if ((scalar_single_iter_cost * vf * min_profitable_iters)
+              <= ((vec_inside_cost * min_profitable_iters)
+                  + (vec_outside_cost * vf)))
+            min_profitable_iters++;
+        }
+    }
+  /* vector version will never be profitable.  */
+  else
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "cost model: vector iteration cost = %d "
+                 "is divisible by scalar iteration cost = %d by a factor "
+                 "greater than or equal to the vectorization factor = %d .",
+                 vec_inside_cost, scalar_single_iter_cost, vf);
+      return -1;
+    }
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    {
+      fprintf (vect_dump, "Cost model analysis: \n");
+      fprintf (vect_dump, "  Vector inside of loop cost: %d\n",
+              vec_inside_cost);
+      fprintf (vect_dump, "  Vector outside of loop cost: %d\n",
+              vec_outside_cost);
+      fprintf (vect_dump, "  Scalar cost: %d\n", scalar_single_iter_cost);
+      fprintf (vect_dump, "  prologue iterations: %d\n",
+               peel_iters_prologue);
+      fprintf (vect_dump, "  epilogue iterations: %d\n",
+               peel_iters_epilogue);
+      fprintf (vect_dump, "  Calculated minimum iters for profitability: %d\n",
+              min_profitable_iters);
+      fprintf (vect_dump, "  Actual minimum iters for profitability: %d\n",
+              min_profitable_iters < vf ? vf : min_profitable_iters);
+    }
+
+  min_profitable_iters = 
+       min_profitable_iters < vf ? vf : min_profitable_iters;
+
+  /* Because the condition we create is:
+     if (niters <= min_profitable_iters)
+       then skip the vectorized loop.  */
+  min_profitable_iters--;
+  return min_profitable_iters;
+}
+
+
+/* TODO: Close dependency between vect_model_*_cost and vectorizable_* 
+   functions. Design better to avoid maintenance issues.  */
+    
+/* Function vect_model_reduction_cost.  
+
+   Models cost for a reduction operation, including the vector ops 
+   generated within the strip-mine loop, the initial definition before
+   the loop, and the epilogue code that must be generated.  */
+
+static void
+vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
+                          int ncopies)
+{
+  int outer_cost = 0;
+  enum tree_code code;
+  optab optab;
+  tree vectype;
+  tree orig_stmt;
+  tree reduction_op;
+  enum machine_mode mode;
+  tree operation = GIMPLE_STMT_OPERAND (STMT_VINFO_STMT (stmt_info), 1);
+  int op_type = TREE_CODE_LENGTH (TREE_CODE (operation));
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+  /* Cost of reduction op inside loop.  */
+  STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) += ncopies * TARG_VEC_STMT_COST;
+
+  reduction_op = TREE_OPERAND (operation, op_type-1);
+  vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
+  mode = TYPE_MODE (vectype);
+  orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+
+  if (!orig_stmt) 
+    orig_stmt = STMT_VINFO_STMT (stmt_info);
+
+  code = TREE_CODE (GIMPLE_STMT_OPERAND (orig_stmt, 1));
+
+  /* Add in cost for initial definition.  */
+  outer_cost += TARG_SCALAR_TO_VEC_COST;
+
+  /* Determine cost of epilogue code.
+
+     We have a reduction operator that will reduce the vector in one statement.
+     Also requires scalar extract.  */
+
+  if (!nested_in_vect_loop_p (loop, orig_stmt))
+    {
+      if (reduc_code < NUM_TREE_CODES) 
+       outer_cost += TARG_VEC_STMT_COST + TARG_VEC_TO_SCALAR_COST;
+      else 
+       {
+         int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
+         tree bitsize =
+           TYPE_SIZE (TREE_TYPE ( GIMPLE_STMT_OPERAND (orig_stmt, 0)));
+         int element_bitsize = tree_low_cst (bitsize, 1);
+         int nelements = vec_size_in_bits / element_bitsize;
+
+         optab = optab_for_tree_code (code, vectype);
+
+         /* We have a whole vector shift available.  */
+         if (VECTOR_MODE_P (mode)
+             && optab_handler (optab, mode)->insn_code != CODE_FOR_nothing
+             && optab_handler (vec_shr_optab, mode)->insn_code != CODE_FOR_nothing)
+           /* Final reduction via vector shifts and the reduction operator. Also
+              requires scalar extract.  */
+           outer_cost += ((exact_log2(nelements) * 2) * TARG_VEC_STMT_COST
+                               + TARG_VEC_TO_SCALAR_COST); 
+         else
+           /* Use extracts and reduction op for final reduction.  For N elements,
+               we have N extracts and N-1 reduction ops.  */
+           outer_cost += ((nelements + nelements - 1) * TARG_VEC_STMT_COST);
+       }
+    }
+
+  STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
+             "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
+             STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
+}
+
+
+/* Function vect_model_induction_cost.
+
+   Models cost for induction operations.  */
+
+static void
+vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
+{
+  /* loop cost for vec_loop.  */
+  STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) = ncopies * TARG_VEC_STMT_COST;
+  /* prologue cost for vec_init and vec_step.  */
+  STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = 2 * TARG_SCALAR_TO_VEC_COST;
+  
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
+             "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
+             STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
+}
+
+
+/* Function vect_model_simple_cost.  
+
+   Models cost for simple operations, i.e. those that only emit ncopies of a 
+   single op.  Right now, this does not account for multiple insns that could
+   be generated for the single vector op.  We will handle that shortly.  */
+
+static void
+vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies, enum vect_def_type *dt)
+{
+  int i;
+
+  STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) = ncopies * TARG_VEC_STMT_COST;
+
+  /* FORNOW: Assuming maximum 2 args per stmts.  */
+  for (i=0; i<2; i++)
+    {
+      if (dt[i] == vect_constant_def || dt[i] == vect_invariant_def)
+       STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) += TARG_SCALAR_TO_VEC_COST; 
+    }
+  
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "vect_model_simple_cost: inside_cost = %d, "
+             "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
+             STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
+}
+
+
+/* Function vect_cost_strided_group_size 
+   For strided load or store, return the group_size only if it is the first
+   load or store of a group, else return 1.  This ensures that group size is
+   only returned once per group.  */
+
+static int
+vect_cost_strided_group_size (stmt_vec_info stmt_info)
+{
+  tree first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+
+  if (first_stmt == STMT_VINFO_STMT (stmt_info))
+    return DR_GROUP_SIZE (stmt_info);
+
+  return 1;
+}
+
+
+/* Function vect_model_store_cost
+
+   Models cost for stores.  In the case of strided accesses, one access
+   has the overhead of the strided access attributed to it.  */
+
+static void
+vect_model_store_cost (stmt_vec_info stmt_info, int ncopies, enum vect_def_type dt)
+{
+  int cost = 0;
+  int group_size;
+
+  if (dt == vect_constant_def || dt == vect_invariant_def)
+    STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = TARG_SCALAR_TO_VEC_COST;
+
+  /* Strided access?  */
+  if (DR_GROUP_FIRST_DR (stmt_info)) 
+    group_size = vect_cost_strided_group_size (stmt_info);
+  /* Not a strided access.  */
+  else
+    group_size = 1;
+
+  /* Is this an access in a group of stores, which provide strided access?  
+     If so, add in the cost of the permutes.  */
+  if (group_size > 1) 
+    {
+      /* Uses a high and low interleave operation for each needed permute.  */
+      cost = ncopies * exact_log2(group_size) * group_size 
+             * TARG_VEC_STMT_COST;
+
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "vect_model_store_cost: strided group_size = %d .",
+                 group_size);
+
+    }
+
+  /* Costs of the stores.  */
+  cost += ncopies * TARG_VEC_STORE_COST;
+
+  STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) = cost;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "vect_model_store_cost: inside_cost = %d, "
+             "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
+             STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
+}
+
+
+/* Function vect_model_load_cost
+
+   Models cost for loads.  In the case of strided accesses, the last access
+   has the overhead of the strided access attributed to it.  Since unaligned
+   accesses are supported for loads, we also account for the costs of the 
+   access scheme chosen.  */
+
+static void
+vect_model_load_cost (stmt_vec_info stmt_info, int ncopies)
+                
+{
+  int inner_cost = 0;
+  int group_size;
+  int alignment_support_cheme;
+  tree first_stmt;
+  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
+
+  /* Strided accesses?  */
+  first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+  if (first_stmt)
+    {
+      group_size = vect_cost_strided_group_size (stmt_info);
+      first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+    }
+  /* Not a strided access.  */
+  else
+    {
+      group_size = 1;
+      first_dr = dr;
+    }
+
+  alignment_support_cheme = vect_supportable_dr_alignment (first_dr);
+
+  /* Is this an access in a group of loads providing strided access?  
+     If so, add in the cost of the permutes.  */
+  if (group_size > 1) 
+    {
+      /* Uses an even and odd extract operations for each needed permute.  */
+      inner_cost = ncopies * exact_log2(group_size) * group_size
+                   * TARG_VEC_STMT_COST;
+
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "vect_model_load_cost: strided group_size = %d .",
+                 group_size);
+
+    }
+
+  /* The loads themselves.  */
+  switch (alignment_support_cheme)
+    {
+    case dr_aligned:
+      {
+        inner_cost += ncopies * TARG_VEC_LOAD_COST;
+
+        if (vect_print_dump_info (REPORT_DETAILS))
+          fprintf (vect_dump, "vect_model_load_cost: aligned.");
+
+        break;
+      }
+    case dr_unaligned_supported:
+      {
+        /* Here, we assign an additional cost for the unaligned load.  */
+        inner_cost += ncopies * TARG_VEC_UNALIGNED_LOAD_COST;
+
+        if (vect_print_dump_info (REPORT_DETAILS))
+          fprintf (vect_dump, "vect_model_load_cost: unaligned supported by "
+                   "hardware.");
+
+        break;
+      }
+    case dr_explicit_realign:
+      {
+        inner_cost += ncopies * (2*TARG_VEC_LOAD_COST + TARG_VEC_STMT_COST);
+
+        /* FIXME: If the misalignment remains fixed across the iterations of
+           the containing loop, the following cost should be added to the
+           outside costs.  */
+        if (targetm.vectorize.builtin_mask_for_load)
+          inner_cost += TARG_VEC_STMT_COST;
+
+        break;
+      }
+    case dr_explicit_realign_optimized:
+      {
+        int outer_cost = 0;
+
+        if (vect_print_dump_info (REPORT_DETAILS))
+          fprintf (vect_dump, "vect_model_load_cost: unaligned software "
+                   "pipelined.");
+
+        /* Unaligned software pipeline has a load of an address, an initial
+           load, and possibly a mask operation to "prime" the loop. However,
+           if this is an access in a group of loads, which provide strided
+           access, then the above cost should only be considered for one
+           access in the group. Inside the loop, there is a load op
+           and a realignment op.  */
+
+        if ((!DR_GROUP_FIRST_DR (stmt_info)) || group_size > 1)
+          {
+            outer_cost = 2*TARG_VEC_STMT_COST;
+            if (targetm.vectorize.builtin_mask_for_load)
+              outer_cost += TARG_VEC_STMT_COST;
+          }
+        
+        STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
+
+        inner_cost += ncopies * (TARG_VEC_LOAD_COST + TARG_VEC_STMT_COST);
+
+        break;
+      }
+
+    default:
+      gcc_unreachable ();
+    }
+
+  STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) = inner_cost;
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "vect_model_load_cost: inside_cost = %d, "
+             "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
+             STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
+
+}
+
+
 /* Function vect_get_new_vect_var.
 
    Returns a name for a new variable. The current naming scheme appends the 
 /* Function vect_get_new_vect_var.
 
    Returns a name for a new variable. The current naming scheme appends the 
@@ -104,10 +698,18 @@ vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
   }
 
   if (name)
   }
 
   if (name)
-    new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
+    {
+      char* tmp = concat (prefix, name, NULL);
+      new_vect_var = create_tmp_var (type, tmp);
+      free (tmp);
+    }
   else
     new_vect_var = create_tmp_var (type, prefix);
 
   else
     new_vect_var = create_tmp_var (type, prefix);
 
+  /* Mark vector typed variable as a gimple register variable.  */
+  if (TREE_CODE (type) == VECTOR_TYPE)
+    DECL_GIMPLE_REG_P (new_vect_var) = true;
+
   return new_vect_var;
 }
 
   return new_vect_var;
 }
 
@@ -121,6 +723,19 @@ vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
    STMT: The statement containing the data reference.
    NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
    OFFSET: Optional. If supplied, it is be added to the initial address.
    STMT: The statement containing the data reference.
    NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
    OFFSET: Optional. If supplied, it is be added to the initial address.
+   LOOP:    Specify relative to which loop-nest should the address be computed.
+            For example, when the dataref is in an inner-loop nested in an
+           outer-loop that is now being vectorized, LOOP can be either the
+           outer-loop, or the inner-loop. The first memory location accessed
+           by the following dataref ('in' points to short):
+
+               for (i=0; i<N; i++)
+                  for (j=0; j<M; j++)
+                    s += in[i+j]
+
+           is as follows:
+           if LOOP=i_loop:     &in             (relative to i_loop)
+           if LOOP=j_loop:     &in+i*2B        (relative to j_loop)
 
    Output:
    1. Return an SSA_NAME whose value is the address of the memory location of 
 
    Output:
    1. Return an SSA_NAME whose value is the address of the memory location of 
@@ -133,96 +748,110 @@ vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
 static tree
 vect_create_addr_base_for_vector_ref (tree stmt,
                                       tree *new_stmt_list,
 static tree
 vect_create_addr_base_for_vector_ref (tree stmt,
                                       tree *new_stmt_list,
-                                     tree offset)
+                                     tree offset,
+                                     struct loop *loop)
 {
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
 {
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+  struct loop *containing_loop = (bb_for_stmt (stmt))->loop_father;
   tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
   tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
-  tree base_name = build_fold_indirect_ref (data_ref_base);
-  tree ref = DR_REF (dr);
-  tree scalar_type = TREE_TYPE (ref);
-  tree scalar_ptr_type = build_pointer_type (scalar_type);
+  tree base_name;
+  tree data_ref_base_var;
+  tree new_base_stmt;
   tree vec_stmt;
   tree vec_stmt;
-  tree new_temp;
   tree addr_base, addr_expr;
   tree dest, new_stmt;
   tree base_offset = unshare_expr (DR_OFFSET (dr));
   tree init = unshare_expr (DR_INIT (dr));
   tree addr_base, addr_expr;
   tree dest, new_stmt;
   tree base_offset = unshare_expr (DR_OFFSET (dr));
   tree init = unshare_expr (DR_INIT (dr));
+  tree vect_ptr_type, addr_expr2;
+  tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
+
+  gcc_assert (loop);
+  if (loop != containing_loop)
+    {
+      loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+      struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+      gcc_assert (nested_in_vect_loop_p (loop, stmt));
+
+      data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
+      base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
+      init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
+    }
+
+  /* Create data_ref_base */
+  base_name = build_fold_indirect_ref (data_ref_base);
+  data_ref_base_var = create_tmp_var (TREE_TYPE (data_ref_base), "batmp");
+  add_referenced_var (data_ref_base_var);
+  data_ref_base = force_gimple_operand (data_ref_base, &new_base_stmt,
+                                       true, data_ref_base_var);
+  append_to_statement_list_force(new_base_stmt, new_stmt_list);
 
   /* Create base_offset */
   base_offset = size_binop (PLUS_EXPR, base_offset, init);
 
   /* Create base_offset */
   base_offset = size_binop (PLUS_EXPR, base_offset, init);
+  base_offset = fold_convert (sizetype, base_offset);
   dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
   dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
-  add_referenced_tmp_var (dest);
-  base_offset = force_gimple_operand (base_offset, &new_stmt, false, dest);  
+  add_referenced_var (dest);
+  base_offset = force_gimple_operand (base_offset, &new_stmt, true, dest); 
   append_to_statement_list_force (new_stmt, new_stmt_list);
 
   if (offset)
     {
   append_to_statement_list_force (new_stmt, new_stmt_list);
 
   if (offset)
     {
-      tree tmp = create_tmp_var (TREE_TYPE (base_offset), "offset");
-      add_referenced_tmp_var (tmp);
-      offset = fold_build2 (MULT_EXPR, TREE_TYPE (offset), offset,
-                           DR_STEP (dr));
+      tree tmp = create_tmp_var (sizetype, "offset");
+
+      add_referenced_var (tmp);
+      offset = fold_build2 (MULT_EXPR, TREE_TYPE (offset), offset, step);
       base_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (base_offset),
                                 base_offset, offset);
       base_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (base_offset),
                                 base_offset, offset);
-      base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);  
+      base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);
       append_to_statement_list_force (new_stmt, new_stmt_list);
     }
   
   /* base + base_offset */
       append_to_statement_list_force (new_stmt, new_stmt_list);
     }
   
   /* base + base_offset */
-  addr_base = fold_build2 (PLUS_EXPR, TREE_TYPE (data_ref_base), data_ref_base,
-                          base_offset);
+  addr_base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (data_ref_base), 
+                          data_ref_base, base_offset);
+
+  vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
 
   /* addr_expr = addr_base */
 
   /* addr_expr = addr_base */
-  addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
+  addr_expr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
                                      get_name (base_name));
                                      get_name (base_name));
-  add_referenced_tmp_var (addr_expr);
-  vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
-  new_temp = make_ssa_name (addr_expr, vec_stmt);
-  TREE_OPERAND (vec_stmt, 0) = new_temp;
-  append_to_statement_list_force (vec_stmt, new_stmt_list);
+  add_referenced_var (addr_expr);
+  vec_stmt = fold_convert (vect_ptr_type, addr_base);
+  addr_expr2 = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
+                                     get_name (base_name));
+  add_referenced_var (addr_expr2);
+  vec_stmt = force_gimple_operand (vec_stmt, &new_stmt, false, addr_expr2);
+  append_to_statement_list_force (new_stmt, new_stmt_list);
 
   if (vect_print_dump_info (REPORT_DETAILS))
     {
       fprintf (vect_dump, "created ");
       print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
     }
 
   if (vect_print_dump_info (REPORT_DETAILS))
     {
       fprintf (vect_dump, "created ");
       print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
     }
-  return new_temp;
+  return vec_stmt;
 }
 
 
 }
 
 
-/* Function vect_align_data_ref.
-
-   Handle misalignment of a memory accesses.
+/* Function vect_create_data_ref_ptr.
 
 
-   FORNOW: Can't handle misaligned accesses. 
-   Make sure that the dataref is aligned.  */
-
-static void
-vect_align_data_ref (tree stmt)
-{
-  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
-
-  /* FORNOW: can't handle misaligned accesses; 
-             all accesses expected to be aligned.  */
-  gcc_assert (aligned_access_p (dr));
-}
-
-
-/* Function vect_create_data_ref_ptr.
-
-   Create a memory reference expression for vector access, to be used in a
-   vector load/store stmt. The reference is based on a new pointer to vector
-   type (vp).
+   Create a new pointer to vector type (vp), that points to the first location
+   accessed in the loop by STMT, along with the def-use update chain to 
+   appropriately advance the pointer through the loop iterations. Also set
+   aliasing information for the pointer.  This vector pointer is used by the
+   callers to this function to create a memory reference expression for vector
+   load/store access.
 
    Input:
    1. STMT: a stmt that references memory. Expected to be of the form
 
    Input:
    1. STMT: a stmt that references memory. Expected to be of the form
-         MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
-   2. BSI: block_stmt_iterator where new stmts can be added.
+         GIMPLE_MODIFY_STMT <name, data-ref> or
+        GIMPLE_MODIFY_STMT <data-ref, name>.
+   2. AT_LOOP: the loop where the vector memref is to be created.
    3. OFFSET (optional): an offset to be added to the initial address accessed
         by the data-ref in STMT.
    4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
         pointing to the initial address.
    3. OFFSET (optional): an offset to be added to the initial address accessed
         by the data-ref in STMT.
    4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
         pointing to the initial address.
+   5. TYPE: if not NULL indicates the required type of the data-ref
 
    Output:
    1. Declare a new ptr to vector_type, and have it point to the base of the
 
    Output:
    1. Declare a new ptr to vector_type, and have it point to the base of the
@@ -239,22 +868,27 @@ vect_align_data_ref (tree stmt)
 
       Return the initial_address in INITIAL_ADDRESS.
 
 
       Return the initial_address in INITIAL_ADDRESS.
 
-   2. If ONLY_INIT is true, return the initial pointer.  Otherwise, create
-      a data-reference in the loop based on the new vector pointer vp.  This
-      new data reference will by some means be updated each iteration of
-      the loop.  Return the pointer vp'.
+   2. If ONLY_INIT is true, just return the initial pointer.  Otherwise, also
+      update the pointer in each iteration of the loop.  
+
+      Return the increment stmt that updates the pointer in PTR_INCR.
 
 
-   FORNOW: handle only aligned and consecutive accesses.  */
+   3. Set INV_P to true if the access pattern of the data reference in the 
+      vectorized loop is invariant. Set it to false otherwise.
+
+   4. Return the pointer.  */
 
 static tree
 
 static tree
-vect_create_data_ref_ptr (tree stmt,
-                         block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
-                         tree offset, tree *initial_address, bool only_init)
+vect_create_data_ref_ptr (tree stmt, struct loop *at_loop,
+                         tree offset, tree *initial_address, tree *ptr_incr,
+                         bool only_init, tree type, bool *inv_p)
 {
   tree base_name;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
 {
   tree base_name;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+  struct loop *containing_loop = (bb_for_stmt (stmt))->loop_father;
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   tree vect_ptr_type;
   tree vect_ptr;
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   tree vect_ptr_type;
   tree vect_ptr;
@@ -262,11 +896,31 @@ vect_create_data_ref_ptr (tree stmt,
   tree new_temp;
   tree vec_stmt;
   tree new_stmt_list = NULL_TREE;
   tree new_temp;
   tree vec_stmt;
   tree new_stmt_list = NULL_TREE;
-  edge pe = loop_preheader_edge (loop);
+  edge pe;
   basic_block new_bb;
   tree vect_ptr_init;
   struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
   basic_block new_bb;
   tree vect_ptr_init;
   struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+  tree vptr;
+  block_stmt_iterator incr_bsi;
+  bool insert_after;
+  tree indx_before_incr, indx_after_incr;
+  tree incr;
+  tree step;
+
+  /* Check the step (evolution) of the load in LOOP, and record
+     whether it's invariant.  */
+  if (nested_in_vect_loop)
+    step = STMT_VINFO_DR_STEP (stmt_info);
+  else
+    step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
+    
+  if (tree_int_cst_compare (step, size_zero_node) == 0)
+    *inv_p = true;
+  else
+    *inv_p = false;
 
 
+  /* Create an expression for the first address accessed by this load
+     in LOOP.  */ 
   base_name =  build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
 
   if (vect_print_dump_info (REPORT_DETAILS))
   base_name =  build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
 
   if (vect_print_dump_info (REPORT_DETAILS))
@@ -286,34 +940,67 @@ vect_create_data_ref_ptr (tree stmt,
     }
 
   /** (1) Create the new vector-pointer variable:  **/
     }
 
   /** (1) Create the new vector-pointer variable:  **/
-
-  vect_ptr_type = build_pointer_type (vectype);
+  if (type)  
+    vect_ptr_type = build_pointer_type (type);
+  else
+    vect_ptr_type = build_pointer_type (vectype);
   vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
                                     get_name (base_name));
   vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
                                     get_name (base_name));
-  add_referenced_tmp_var (vect_ptr);
-  
-  
+  add_referenced_var (vect_ptr);
+
   /** (2) Add aliasing information to the new vector-pointer:
           (The points-to info (DR_PTR_INFO) may be defined later.)  **/
   
   /** (2) Add aliasing information to the new vector-pointer:
           (The points-to info (DR_PTR_INFO) may be defined later.)  **/
   
-  tag = DR_MEMTAG (dr);
+  tag = DR_SYMBOL_TAG (dr);
   gcc_assert (tag);
 
   gcc_assert (tag);
 
-  /* If tag is a variable (and NOT_A_TAG) than a new type alias
+  /* If tag is a variable (and NOT_A_TAG) than a new symbol memory
      tag must be created with tag added to its may alias list.  */
      tag must be created with tag added to its may alias list.  */
-  if (var_ann (tag)->mem_tag_kind == NOT_A_TAG)
-    new_type_alias (vect_ptr, tag);
+  if (!MTAG_P (tag))
+    new_type_alias (vect_ptr, tag, DR_REF (dr));
   else
   else
-    var_ann (vect_ptr)->type_mem_tag = tag;
+    set_symbol_mem_tag (vect_ptr, tag);
 
   var_ann (vect_ptr)->subvars = DR_SUBVARS (dr);
 
 
   var_ann (vect_ptr)->subvars = DR_SUBVARS (dr);
 
+  /** Note: If the dataref is in an inner-loop nested in LOOP, and we are
+      vectorizing LOOP (i.e. outer-loop vectorization), we need to create two
+      def-use update cycles for the pointer: One relative to the outer-loop
+      (LOOP), which is what steps (3) and (4) below do. The other is relative
+      to the inner-loop (which is the inner-most loop containing the dataref),
+      and this is done be step (5) below. 
+
+      When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
+      inner-most loop, and so steps (3),(4) work the same, and step (5) is
+      redundant.  Steps (3),(4) create the following:
+
+       vp0 = &base_addr;
+       LOOP:   vp1 = phi(vp0,vp2)
+               ...  
+               ...
+               vp2 = vp1 + step
+               goto LOOP
+                       
+      If there is an inner-loop nested in loop, then step (5) will also be
+      applied, and an additional update in the inner-loop will be created:
+
+       vp0 = &base_addr;
+       LOOP:   vp1 = phi(vp0,vp2)
+               ...
+        inner:     vp3 = phi(vp1,vp4)
+                  vp4 = vp3 + inner_step
+                  if () goto inner
+               ...
+               vp2 = vp1 + step
+               if () goto LOOP   */
+
   /** (3) Calculate the initial address the vector-pointer, and set
           the vector-pointer to point to it before the loop:  **/
 
   /* Create: (&(base[init_val+offset]) in the loop preheader.  */
   /** (3) Calculate the initial address the vector-pointer, and set
           the vector-pointer to point to it before the loop:  **/
 
   /* Create: (&(base[init_val+offset]) in the loop preheader.  */
+
   new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
   new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
-                                                   offset);
+                                                   offset, loop);
   pe = loop_preheader_edge (loop);
   new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
   gcc_assert (!new_bb);
   pe = loop_preheader_edge (loop);
   new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
   gcc_assert (!new_bb);
@@ -321,36 +1008,42 @@ vect_create_data_ref_ptr (tree stmt,
 
   /* Create: p = (vectype *) initial_base  */
   vec_stmt = fold_convert (vect_ptr_type, new_temp);
 
   /* Create: p = (vectype *) initial_base  */
   vec_stmt = fold_convert (vect_ptr_type, new_temp);
-  vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
+  vec_stmt = build_gimple_modify_stmt (vect_ptr, vec_stmt);
   vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
   vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
-  TREE_OPERAND (vec_stmt, 0) = vect_ptr_init;
+  GIMPLE_STMT_OPERAND (vec_stmt, 0) = vect_ptr_init;
   new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
   gcc_assert (!new_bb);
 
 
   new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
   gcc_assert (!new_bb);
 
 
-  /** (4) Handle the updating of the vector-pointer inside the loop: **/
+  /** (4) Handle the updating of the vector-pointer inside the loop.
+         This is needed when ONLY_INIT is false, and also when AT_LOOP
+         is the inner-loop nested in LOOP (during outer-loop vectorization).
+   **/
 
 
-  if (only_init) /* No update in loop is required.  */
+  if (only_init && at_loop == loop) /* No update in loop is required.  */
     {
       /* Copy the points-to information if it exists. */
       if (DR_PTR_INFO (dr))
         duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
     {
       /* Copy the points-to information if it exists. */
       if (DR_PTR_INFO (dr))
         duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
-      return vect_ptr_init;
+      vptr = vect_ptr_init;
     }
   else
     {
     }
   else
     {
-      block_stmt_iterator incr_bsi;
-      bool insert_after;
-      tree indx_before_incr, indx_after_incr;
-      tree incr;
+      /* The step of the vector pointer is the Vector Size.  */
+      tree step = TYPE_SIZE_UNIT (vectype);
+      /* One exception to the above is when the scalar step of the load in 
+        LOOP is zero. In this case the step here is also zero.  */
+      if (*inv_p)
+       step = size_zero_node;
 
       standard_iv_increment_position (loop, &incr_bsi, &insert_after);
 
       standard_iv_increment_position (loop, &incr_bsi, &insert_after);
+
       create_iv (vect_ptr_init,
       create_iv (vect_ptr_init,
-                fold_convert (vect_ptr_type, TYPE_SIZE_UNIT (vectype)),
+                fold_convert (vect_ptr_type, step),
                 NULL_TREE, loop, &incr_bsi, insert_after,
                 &indx_before_incr, &indx_after_incr);
       incr = bsi_stmt (incr_bsi);
                 NULL_TREE, loop, &incr_bsi, insert_after,
                 &indx_before_incr, &indx_after_incr);
       incr = bsi_stmt (incr_bsi);
-      set_stmt_info ((tree_ann_t)stmt_ann (incr),
+      set_stmt_info (stmt_ann (incr),
                     new_stmt_vec_info (incr, loop_vinfo));
 
       /* Copy the points-to information if it exists. */
                     new_stmt_vec_info (incr, loop_vinfo));
 
       /* Copy the points-to information if it exists. */
@@ -361,9 +1054,127 @@ vect_create_data_ref_ptr (tree stmt,
        }
       merge_alias_info (vect_ptr_init, indx_before_incr);
       merge_alias_info (vect_ptr_init, indx_after_incr);
        }
       merge_alias_info (vect_ptr_init, indx_before_incr);
       merge_alias_info (vect_ptr_init, indx_after_incr);
+      if (ptr_incr)
+       *ptr_incr = incr;
+
+      vptr = indx_before_incr;
+    }
+
+  if (!nested_in_vect_loop || only_init)
+    return vptr;
+
+
+  /** (5) Handle the updating of the vector-pointer inside the inner-loop
+         nested in LOOP, if exists: **/
+
+  gcc_assert (nested_in_vect_loop);
+  if (!only_init)
+    {
+      standard_iv_increment_position (containing_loop, &incr_bsi, 
+                                     &insert_after);
+      create_iv (vptr, fold_convert (vect_ptr_type, DR_STEP (dr)), NULL_TREE, 
+                containing_loop, &incr_bsi, insert_after, &indx_before_incr, 
+                &indx_after_incr);
+      incr = bsi_stmt (incr_bsi);
+      set_stmt_info (stmt_ann (incr), new_stmt_vec_info (incr, loop_vinfo));
+
+      /* Copy the points-to information if it exists. */
+      if (DR_PTR_INFO (dr))
+       {
+         duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
+         duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
+       }
+      merge_alias_info (vect_ptr_init, indx_before_incr);
+      merge_alias_info (vect_ptr_init, indx_after_incr);
+      if (ptr_incr)
+       *ptr_incr = incr;
+
+      return indx_before_incr; 
+    }
+  else
+    gcc_unreachable ();
+}
+
+
+/* Function bump_vector_ptr
+
+   Increment a pointer (to a vector type) by vector-size. If requested,
+   i.e. if PTR-INCR is given, then also connect the new increment stmt 
+   to the existing def-use update-chain of the pointer, by modifying
+   the PTR_INCR as illustrated below:
+
+   The pointer def-use update-chain before this function:
+                        DATAREF_PTR = phi (p_0, p_2)
+                        ....
+        PTR_INCR:       p_2 = DATAREF_PTR + step 
+
+   The pointer def-use update-chain after this function:
+                        DATAREF_PTR = phi (p_0, p_2)
+                        ....
+                        NEW_DATAREF_PTR = DATAREF_PTR + BUMP
+                        ....
+        PTR_INCR:       p_2 = NEW_DATAREF_PTR + step
+
+   Input:
+   DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated 
+                 in the loop.
+   PTR_INCR - optional. The stmt that updates the pointer in each iteration of 
+             the loop.  The increment amount across iterations is expected
+             to be vector_size.      
+   BSI - location where the new update stmt is to be placed.
+   STMT - the original scalar memory-access stmt that is being vectorized.
+   BUMP - optional. The offset by which to bump the pointer. If not given,
+         the offset is assumed to be vector_size.
+
+   Output: Return NEW_DATAREF_PTR as illustrated above.
+   
+*/
+
+static tree
+bump_vector_ptr (tree dataref_ptr, tree ptr_incr, block_stmt_iterator *bsi,
+                 tree stmt, tree bump)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+  tree vptr_type = TREE_TYPE (dataref_ptr);
+  tree ptr_var = SSA_NAME_VAR (dataref_ptr);
+  tree update = TYPE_SIZE_UNIT (vectype);
+  tree incr_stmt;
+  ssa_op_iter iter;
+  use_operand_p use_p;
+  tree new_dataref_ptr;
+
+  if (bump)
+    update = bump;
+    
+  incr_stmt = build_gimple_modify_stmt (ptr_var,
+                                       build2 (POINTER_PLUS_EXPR, vptr_type,
+                                               dataref_ptr, update));
+  new_dataref_ptr = make_ssa_name (ptr_var, incr_stmt);
+  GIMPLE_STMT_OPERAND (incr_stmt, 0) = new_dataref_ptr;
+  vect_finish_stmt_generation (stmt, incr_stmt, bsi);
+
+  /* Copy the points-to information if it exists. */
+  if (DR_PTR_INFO (dr))
+    duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
+  merge_alias_info (new_dataref_ptr, dataref_ptr);
+
+  if (!ptr_incr)
+    return new_dataref_ptr;
+
+  /* Update the vector-pointer's cross-iteration increment.  */
+  FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
+    {
+      tree use = USE_FROM_PTR (use_p);
 
 
-      return indx_before_incr;
+      if (use == dataref_ptr)
+        SET_USE (use_p, new_dataref_ptr);
+      else
+        gcc_assert (tree_int_cst_compare (use, update) == 0);
     }
     }
+
+  return new_dataref_ptr;
 }
 
 
 }
 
 
@@ -387,8 +1198,8 @@ vect_create_destination_var (tree scalar_dest, tree vectype)
   new_name = get_name (scalar_dest);
   if (!new_name)
     new_name = "var_";
   new_name = get_name (scalar_dest);
   if (!new_name)
     new_name = "var_";
-  vec_dest = vect_get_new_vect_var (type, vect_simple_var, new_name);
-  add_referenced_tmp_var (vec_dest);
+  vec_dest = vect_get_new_vect_var (type, kind, new_name);
+  add_referenced_var (vec_dest);
 
   return vec_dest;
 }
 
   return vec_dest;
 }
@@ -397,33 +1208,42 @@ vect_create_destination_var (tree scalar_dest, tree vectype)
 /* Function vect_init_vector.
 
    Insert a new stmt (INIT_STMT) that initializes a new vector variable with
 /* Function vect_init_vector.
 
    Insert a new stmt (INIT_STMT) that initializes a new vector variable with
-   the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
-   used in the vectorization of STMT.  */
+   the vector elements of VECTOR_VAR. Place the initialization at BSI if it
+   is not NULL. Otherwise, place the initialization at the loop preheader.
+   Return the DEF of INIT_STMT. 
+   It will be used in the vectorization of STMT.  */
 
 static tree
 
 static tree
-vect_init_vector (tree stmt, tree vector_var)
+vect_init_vector (tree stmt, tree vector_var, tree vector_type,
+                 block_stmt_iterator *bsi)
 {
   stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
 {
   stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
-  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
-  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   tree new_var;
   tree init_stmt;
   tree new_var;
   tree init_stmt;
-  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo); 
   tree vec_oprnd;
   edge pe;
   tree new_temp;
   basic_block new_bb;
  
   tree vec_oprnd;
   edge pe;
   tree new_temp;
   basic_block new_bb;
  
-  new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
-  add_referenced_tmp_var (new_var); 
-  init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
+  new_var = vect_get_new_vect_var (vector_type, vect_simple_var, "cst_");
+  add_referenced_var (new_var); 
+  init_stmt = build_gimple_modify_stmt (new_var, vector_var);
   new_temp = make_ssa_name (new_var, init_stmt);
   new_temp = make_ssa_name (new_var, init_stmt);
-  TREE_OPERAND (init_stmt, 0) = new_temp;
+  GIMPLE_STMT_OPERAND (init_stmt, 0) = new_temp;
 
 
-  pe = loop_preheader_edge (loop);
-  new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
-  gcc_assert (!new_bb);
+  if (bsi)
+    vect_finish_stmt_generation (stmt, init_stmt, bsi);
+  else
+    {
+      loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+      struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+      if (nested_in_vect_loop_p (loop, stmt))
+        loop = loop->inner;
+      pe = loop_preheader_edge (loop);
+      new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
+      gcc_assert (!new_bb);
+    }
 
   if (vect_print_dump_info (REPORT_DETAILS))
     {
 
   if (vect_print_dump_info (REPORT_DETAILS))
     {
@@ -431,11 +1251,278 @@ vect_init_vector (tree stmt, tree vector_var)
       print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
     }
 
       print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
     }
 
-  vec_oprnd = TREE_OPERAND (init_stmt, 0);
+  vec_oprnd = GIMPLE_STMT_OPERAND (init_stmt, 0);
   return vec_oprnd;
 }
 
 
   return vec_oprnd;
 }
 
 
+/* Function get_initial_def_for_induction
+
+   Input:
+   STMT - a stmt that performs an induction operation in the loop.
+   IV_PHI - the initial value of the induction variable
+
+   Output:
+   Return a vector variable, initialized with the first VF values of
+   the induction variable. E.g., for an iv with IV_PHI='X' and
+   evolution S, for a vector of 4 units, we want to return: 
+   [X, X + S, X + 2*S, X + 3*S].  */
+
+static tree
+get_initial_def_for_induction (tree iv_phi)
+{
+  stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  tree scalar_type = TREE_TYPE (PHI_RESULT_TREE (iv_phi));
+  tree vectype = get_vectype_for_scalar_type (scalar_type);
+  int nunits =  TYPE_VECTOR_SUBPARTS (vectype);
+  edge pe = loop_preheader_edge (loop);
+  struct loop *iv_loop;
+  basic_block new_bb;
+  tree vec, vec_init, vec_step, t;
+  tree access_fn;
+  tree new_var;
+  tree new_name;
+  tree init_stmt;
+  tree induction_phi, induc_def, new_stmt, vec_def, vec_dest;
+  tree init_expr, step_expr;
+  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+  int i;
+  bool ok;
+  int ncopies = vf / nunits;
+  tree expr;
+  stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
+  bool nested_in_vect_loop = false;
+  tree stmts;
+  imm_use_iterator imm_iter;
+  use_operand_p use_p;
+  tree exit_phi;
+  edge latch_e;
+  tree loop_arg;
+  block_stmt_iterator si;
+  basic_block bb = bb_for_stmt (iv_phi);
+
+  gcc_assert (phi_info);
+  gcc_assert (ncopies >= 1);
+
+  /* Find the first insertion point in the BB.  */
+  si = bsi_after_labels (bb);
+
+  if (INTEGRAL_TYPE_P (scalar_type))
+    step_expr = build_int_cst (scalar_type, 0);
+  else
+    step_expr = build_real (scalar_type, dconst0);
+
+  /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop?  */
+  if (nested_in_vect_loop_p (loop, iv_phi))
+    {
+      nested_in_vect_loop = true;
+      iv_loop = loop->inner;
+    }
+  else
+    iv_loop = loop;
+  gcc_assert (iv_loop == (bb_for_stmt (iv_phi))->loop_father);
+
+  latch_e = loop_latch_edge (iv_loop);
+  loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
+
+  access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
+  gcc_assert (access_fn);
+  ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
+                                  &init_expr, &step_expr);
+  gcc_assert (ok);
+  pe = loop_preheader_edge (iv_loop);
+
+  /* Create the vector that holds the initial_value of the induction.  */
+  if (nested_in_vect_loop)
+    {
+      /* iv_loop is nested in the loop to be vectorized.  init_expr had already
+        been created during vectorization of previous stmts; We obtain it from
+        the STMT_VINFO_VEC_STMT of the defining stmt. */
+      tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi, loop_preheader_edge (iv_loop));
+      vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
+    }
+  else
+    {
+      /* iv_loop is the loop to be vectorized. Create:
+        vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr)  */
+      new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
+      add_referenced_var (new_var);
+
+      new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
+      if (stmts)
+       {
+         new_bb = bsi_insert_on_edge_immediate (pe, stmts);
+         gcc_assert (!new_bb);
+       }
+
+      t = NULL_TREE;
+      t = tree_cons (NULL_TREE, init_expr, t);
+      for (i = 1; i < nunits; i++)
+       {
+         tree tmp;
+
+         /* Create: new_name_i = new_name + step_expr  */
+         tmp = fold_build2 (PLUS_EXPR, scalar_type, new_name, step_expr);
+         init_stmt = build_gimple_modify_stmt (new_var, tmp);
+         new_name = make_ssa_name (new_var, init_stmt);
+         GIMPLE_STMT_OPERAND (init_stmt, 0) = new_name;
+
+         new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
+         gcc_assert (!new_bb);
+
+         if (vect_print_dump_info (REPORT_DETAILS))
+           {
+             fprintf (vect_dump, "created new init_stmt: ");
+             print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
+           }
+         t = tree_cons (NULL_TREE, new_name, t);
+       }
+      /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1]  */
+      vec = build_constructor_from_list (vectype, nreverse (t));
+      vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
+    }
+
+
+  /* Create the vector that holds the step of the induction.  */
+  if (nested_in_vect_loop)
+    /* iv_loop is nested in the loop to be vectorized. Generate:
+       vec_step = [S, S, S, S]  */
+    new_name = step_expr;
+  else
+    {
+      /* iv_loop is the loop to be vectorized. Generate:
+         vec_step = [VF*S, VF*S, VF*S, VF*S]  */
+      expr = build_int_cst (scalar_type, vf);
+      new_name = fold_build2 (MULT_EXPR, scalar_type, expr, step_expr);
+    }
+
+  t = NULL_TREE;
+  for (i = 0; i < nunits; i++)
+    t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
+  vec = build_constructor_from_list (vectype, t);
+  vec_step = vect_init_vector (iv_phi, vec, vectype, NULL);
+
+
+  /* Create the following def-use cycle:
+     loop prolog:
+         vec_init = ...
+        vec_step = ...
+     loop:
+         vec_iv = PHI <vec_init, vec_loop>
+         ...
+         STMT
+         ...
+         vec_loop = vec_iv + vec_step;  */
+
+  /* Create the induction-phi that defines the induction-operand.  */
+  vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
+  add_referenced_var (vec_dest);
+  induction_phi = create_phi_node (vec_dest, iv_loop->header);
+  set_stmt_info (get_stmt_ann (induction_phi),
+                 new_stmt_vec_info (induction_phi, loop_vinfo));
+  induc_def = PHI_RESULT (induction_phi);
+
+  /* Create the iv update inside the loop  */
+  new_stmt = build_gimple_modify_stmt (NULL_TREE,
+                                      build2 (PLUS_EXPR, vectype,
+                                              induc_def, vec_step));
+  vec_def = make_ssa_name (vec_dest, new_stmt);
+  GIMPLE_STMT_OPERAND (new_stmt, 0) = vec_def;
+  bsi_insert_before (&si, new_stmt, BSI_SAME_STMT);
+  set_stmt_info (get_stmt_ann (new_stmt),
+                new_stmt_vec_info (new_stmt, loop_vinfo));
+
+  /* Set the arguments of the phi node:  */
+  add_phi_arg (induction_phi, vec_init, pe);
+  add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop));
+
+
+  /* In case that vectorization factor (VF) is bigger than the number
+     of elements that we can fit in a vectype (nunits), we have to generate
+     more than one vector stmt - i.e - we need to "unroll" the
+     vector stmt by a factor VF/nunits.  For more details see documentation
+     in vectorizable_operation.  */
+  
+  if (ncopies > 1)
+    {
+      stmt_vec_info prev_stmt_vinfo;
+      /* FORNOW. This restriction should be relaxed.  */
+      gcc_assert (!nested_in_vect_loop);
+
+      /* Create the vector that holds the step of the induction.  */
+      expr = build_int_cst (scalar_type, nunits);
+      new_name = fold_build2 (MULT_EXPR, scalar_type, expr, step_expr);
+      t = NULL_TREE;
+      for (i = 0; i < nunits; i++)
+       t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
+      vec = build_constructor_from_list (vectype, t);
+      vec_step = vect_init_vector (iv_phi, vec, vectype, NULL);
+
+      vec_def = induc_def;
+      prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
+      for (i = 1; i < ncopies; i++)
+       {
+         tree tmp;
+
+         /* vec_i = vec_prev + vec_step  */
+         tmp = build2 (PLUS_EXPR, vectype, vec_def, vec_step);
+         new_stmt = build_gimple_modify_stmt (NULL_TREE, tmp);
+         vec_def = make_ssa_name (vec_dest, new_stmt);
+         GIMPLE_STMT_OPERAND (new_stmt, 0) = vec_def;
+         bsi_insert_before (&si, new_stmt, BSI_SAME_STMT);
+         set_stmt_info (get_stmt_ann (new_stmt),
+                        new_stmt_vec_info (new_stmt, loop_vinfo));
+         STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
+         prev_stmt_vinfo = vinfo_for_stmt (new_stmt); 
+       }
+    }
+
+  if (nested_in_vect_loop)
+    {
+      /* Find the loop-closed exit-phi of the induction, and record
+         the final vector of induction results:  */
+      exit_phi = NULL;
+      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
+        {
+         if (!flow_bb_inside_loop_p (iv_loop, bb_for_stmt (USE_STMT (use_p))))
+           {
+             exit_phi = USE_STMT (use_p);
+             break;
+           }
+        }
+      if (exit_phi) 
+       {
+         stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
+         /* FORNOW. Currently not supporting the case that an inner-loop induction
+            is not used in the outer-loop (i.e. only outside the outer-loop).  */
+         gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
+                     && !STMT_VINFO_LIVE_P (stmt_vinfo));
+
+         STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
+         if (vect_print_dump_info (REPORT_DETAILS))
+           {
+             fprintf (vect_dump, "vector of inductions after inner-loop:");
+             print_generic_expr (vect_dump, new_stmt, TDF_SLIM);
+           }
+       }
+    }
+
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    {
+      fprintf (vect_dump, "transform induction: created def-use cycle:");
+      print_generic_expr (vect_dump, induction_phi, TDF_SLIM);
+      fprintf (vect_dump, "\n");
+      print_generic_expr (vect_dump, SSA_NAME_DEF_STMT (vec_def), TDF_SLIM);
+    }
+
+  STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
+  return induc_def;
+}
+
+
 /* Function vect_get_vec_def_for_operand.
 
    OP is an operand in STMT. This function returns a (vector) def that will be
 /* Function vect_get_vec_def_for_operand.
 
    OP is an operand in STMT. This function returns a (vector) def that will be
@@ -458,7 +1545,6 @@ vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
   tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
   int nunits = TYPE_VECTOR_SUBPARTS (vectype);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
   tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
   int nunits = TYPE_VECTOR_SUBPARTS (vectype);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
-  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   tree vec_inv;
   tree vec_cst;
   tree t = NULL_TREE;
   tree vec_inv;
   tree vec_cst;
   tree t = NULL_TREE;
@@ -466,6 +1552,7 @@ vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
   int i;
   enum vect_def_type dt;
   bool is_simple_use;
   int i;
   enum vect_def_type dt;
   bool is_simple_use;
+  tree vector_type;
 
   if (vect_print_dump_info (REPORT_DETAILS))
     {
 
   if (vect_print_dump_info (REPORT_DETAILS))
     {
@@ -505,8 +1592,10 @@ vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
           {
             t = tree_cons (NULL_TREE, op, t);
           }
           {
             t = tree_cons (NULL_TREE, op, t);
           }
-        vec_cst = build_vector (vectype, t);
-        return vect_init_vector (stmt, vec_cst);
+        vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
+        vec_cst = build_vector (vector_type, t);
+
+        return vect_init_vector (stmt, vec_cst, vector_type, NULL);
       }
 
     /* Case 2: operand is defined outside the loop - loop invariant.  */
       }
 
     /* Case 2: operand is defined outside the loop - loop invariant.  */
@@ -525,8 +1614,9 @@ vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
           }
 
        /* FIXME: use build_constructor directly.  */
           }
 
        /* FIXME: use build_constructor directly.  */
-        vec_inv = build_constructor_from_list (vectype, t);
-        return vect_init_vector (stmt, vec_inv);
+       vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
+        vec_inv = build_constructor_from_list (vector_type, t);
+        return vect_init_vector (stmt, vec_inv, vector_type, NULL);
       }
 
     /* Case 3: operand is defined inside the loop.  */
       }
 
     /* Case 3: operand is defined inside the loop.  */
@@ -539,14 +1629,20 @@ vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
         def_stmt_info = vinfo_for_stmt (def_stmt);
         vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
         gcc_assert (vec_stmt);
         def_stmt_info = vinfo_for_stmt (def_stmt);
         vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
         gcc_assert (vec_stmt);
-        vec_oprnd = TREE_OPERAND (vec_stmt, 0);
+       if (TREE_CODE (vec_stmt) == PHI_NODE)
+         vec_oprnd = PHI_RESULT (vec_stmt);
+       else
+         vec_oprnd = GIMPLE_STMT_OPERAND (vec_stmt, 0);
         return vec_oprnd;
       }
 
     /* Case 4: operand is defined by a loop header phi - reduction  */
     case vect_reduction_def:
       {
         return vec_oprnd;
       }
 
     /* Case 4: operand is defined by a loop header phi - reduction  */
     case vect_reduction_def:
       {
+       struct loop *loop;
+
         gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
         gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
+       loop = (bb_for_stmt (def_stmt))->loop_father; 
 
         /* Get the def before the loop  */
         op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
 
         /* Get the def before the loop  */
         op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
@@ -556,9 +1652,14 @@ vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
     /* Case 5: operand is defined by loop-header phi - induction.  */
     case vect_induction_def:
       {
     /* Case 5: operand is defined by loop-header phi - induction.  */
     case vect_induction_def:
       {
-        if (vect_print_dump_info (REPORT_DETAILS))
-          fprintf (vect_dump, "induction - unsupported.");
-        internal_error ("no support for induction"); /* FORNOW */
+       gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
+
+        /* Get the def from the vectorized stmt.  */
+        def_stmt_info = vinfo_for_stmt (def_stmt);
+        vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
+        gcc_assert (vec_stmt && (TREE_CODE (vec_stmt) == PHI_NODE));
+        vec_oprnd = PHI_RESULT (vec_stmt);
+        return vec_oprnd;
       }
 
     default:
       }
 
     default:
@@ -567,15 +1668,101 @@ vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
 }
 
 
 }
 
 
+/* Function vect_get_vec_def_for_stmt_copy
+
+   Return a vector-def for an operand. This function is used when the 
+   vectorized stmt to be created (by the caller to this function) is a "copy" 
+   created in case the vectorized result cannot fit in one vector, and several 
+   copies of the vector-stmt are required. In this case the vector-def is 
+   retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
+   of the stmt that defines VEC_OPRND. 
+   DT is the type of the vector def VEC_OPRND.
+
+   Context:
+        In case the vectorization factor (VF) is bigger than the number
+   of elements that can fit in a vectype (nunits), we have to generate
+   more than one vector stmt to vectorize the scalar stmt. This situation
+   arises when there are multiple data-types operated upon in the loop; the 
+   smallest data-type determines the VF, and as a result, when vectorizing
+   stmts operating on wider types we need to create 'VF/nunits' "copies" of the
+   vector stmt (each computing a vector of 'nunits' results, and together
+   computing 'VF' results in each iteration).  This function is called when 
+   vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
+   which VF=16 and nunits=4, so the number of copies required is 4):
+
+   scalar stmt:         vectorized into:        STMT_VINFO_RELATED_STMT
+   S1: x = load         VS1.0:  vx.0 = memref0      VS1.1
+                        VS1.1:  vx.1 = memref1      VS1.2
+                        VS1.2:  vx.2 = memref2      VS1.3
+                        VS1.3:  vx.3 = memref3 
+
+   S2: z = x + ...      VSnew.0:  vz0 = vx.0 + ...  VSnew.1
+                        VSnew.1:  vz1 = vx.1 + ...  VSnew.2
+                        VSnew.2:  vz2 = vx.2 + ...  VSnew.3
+                        VSnew.3:  vz3 = vx.3 + ...
+
+   The vectorization of S1 is explained in vectorizable_load.
+   The vectorization of S2:
+        To create the first vector-stmt out of the 4 copies - VSnew.0 - 
+   the function 'vect_get_vec_def_for_operand' is called to 
+   get the relevant vector-def for each operand of S2. For operand x it
+   returns  the vector-def 'vx.0'.
+
+        To create the remaining copies of the vector-stmt (VSnew.j), this 
+   function is called to get the relevant vector-def for each operand.  It is 
+   obtained from the respective VS1.j stmt, which is recorded in the 
+   STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
+
+        For example, to obtain the vector-def 'vx.1' in order to create the 
+   vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'. 
+   Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the 
+   STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
+   and return its def ('vx.1').
+   Overall, to create the above sequence this function will be called 3 times:
+        vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
+        vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
+        vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2);  */
+
+static tree
+vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
+{
+  tree vec_stmt_for_operand;
+  stmt_vec_info def_stmt_info;
+
+  /* Do nothing; can reuse same def.  */
+  if (dt == vect_invariant_def || dt == vect_constant_def )
+    return vec_oprnd;
+
+  vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
+  def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
+  gcc_assert (def_stmt_info);
+  vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
+  gcc_assert (vec_stmt_for_operand);
+  vec_oprnd = GIMPLE_STMT_OPERAND (vec_stmt_for_operand, 0);
+  return vec_oprnd;
+}
+
+
 /* Function vect_finish_stmt_generation.
 
    Insert a new stmt.  */
 
 static void
 /* Function vect_finish_stmt_generation.
 
    Insert a new stmt.  */
 
 static void
-vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
+vect_finish_stmt_generation (tree stmt, tree vec_stmt, 
+                            block_stmt_iterator *bsi)
 {
 {
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+
+  gcc_assert (stmt == bsi_stmt (*bsi));
+  gcc_assert (TREE_CODE (stmt) != LABEL_EXPR);
+
   bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
 
   bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
 
+  set_stmt_info (get_stmt_ann (vec_stmt), 
+                new_stmt_vec_info (vec_stmt, loop_vinfo)); 
+
   if (vect_print_dump_info (REPORT_DETAILS))
     {
       fprintf (vect_dump, "add new stmt: ");
   if (vect_print_dump_info (REPORT_DETAILS))
     {
       fprintf (vect_dump, "add new stmt: ");
@@ -593,8 +1780,6 @@ vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
 }
 
 
 }
 
 
-#define ADJUST_IN_EPILOG 1
-
 /* Function get_initial_def_for_reduction
 
    Input:
 /* Function get_initial_def_for_reduction
 
    Input:
@@ -602,18 +1787,18 @@ vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
    INIT_VAL - the initial value of the reduction variable
 
    Output:
    INIT_VAL - the initial value of the reduction variable
 
    Output:
-   SCALAR_DEF - a tree that holds a value to be added to the final result
-       of the reduction (used for "ADJUST_IN_EPILOG" - see below).
+   ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
+        of the reduction (used for adjusting the epilog - see below).
    Return a vector variable, initialized according to the operation that STMT
    Return a vector variable, initialized according to the operation that STMT
-       performs. This vector will be used as the initial value of the
-       vector of partial results.
+        performs. This vector will be used as the initial value of the
+        vector of partial results.
 
 
-   Option1 ("ADJUST_IN_EPILOG"): Initialize the vector as follows:
+   Option1 (adjust in epilog): Initialize the vector as follows:
      add:         [0,0,...,0,0]
      mult:        [1,1,...,1,1]
      min/max:     [init_val,init_val,..,init_val,init_val]
      bit and/or:  [init_val,init_val,..,init_val,init_val]
      add:         [0,0,...,0,0]
      mult:        [1,1,...,1,1]
      min/max:     [init_val,init_val,..,init_val,init_val]
      bit and/or:  [init_val,init_val,..,init_val,init_val]
-   and when necessary (e.g. add/mult case) let the caller know 
+   and when necessary (e.g. add/mult case) let the caller know
    that it needs to adjust the result by init_val.
 
    Option2: Initialize the vector as follows:
    that it needs to adjust the result by init_val.
 
    Option2: Initialize the vector as follows:
@@ -634,159 +1819,163 @@ vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
    or [0,0,0,0] and let the caller know that it needs to adjust
    the result at the end by 'init_val'.
 
    or [0,0,0,0] and let the caller know that it needs to adjust
    the result at the end by 'init_val'.
 
-   FORNOW: We use the "ADJUST_IN_EPILOG" scheme.
-   TODO: Use some cost-model to estimate which scheme is more profitable.
-*/
+   FORNOW, we are using the 'adjust in epilog' scheme, because this way the
+   initialization vector is simpler (same element in all entries).
+   A cost model should help decide between these two schemes.  */
 
 static tree
 
 static tree
-get_initial_def_for_reduction (tree stmt, tree init_val, tree *scalar_def)
+get_initial_def_for_reduction (tree stmt, tree init_val, tree *adjustment_def)
 {
   stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
 {
   stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
   tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
-  int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
-  int nelements;
-  enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
+  int nunits =  TYPE_VECTOR_SUBPARTS (vectype);
+  enum tree_code code = TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1));
   tree type = TREE_TYPE (init_val);
   tree type = TREE_TYPE (init_val);
-  tree def;
-  tree vec, t = NULL_TREE;
-  bool need_epilog_adjust;
+  tree vecdef;
+  tree def_for_init;
+  tree init_def;
+  tree t = NULL_TREE;
   int i;
   int i;
+  tree vector_type;
+  bool nested_in_vect_loop = false; 
 
   gcc_assert (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type));
 
   gcc_assert (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type));
+  if (nested_in_vect_loop_p (loop, stmt))
+    nested_in_vect_loop = true;
+  else
+    gcc_assert (loop == (bb_for_stmt (stmt))->loop_father);
+
+  vecdef = vect_get_vec_def_for_operand (init_val, stmt, NULL);
 
   switch (code)
   {
 
   switch (code)
   {
+  case WIDEN_SUM_EXPR:
+  case DOT_PROD_EXPR:
   case PLUS_EXPR:
   case PLUS_EXPR:
+      if (nested_in_vect_loop)
+       *adjustment_def = vecdef;
+      else
+       *adjustment_def = init_val;
+    /* Create a vector of zeros for init_def.  */
     if (INTEGRAL_TYPE_P (type))
     if (INTEGRAL_TYPE_P (type))
-      def = build_int_cst (type, 0);
+      def_for_init = build_int_cst (type, 0);
     else
     else
-      def = build_real (type, dconst0);
-
-#ifdef ADJUST_IN_EPILOG
-    /* All the 'nunits' elements are set to 0. The final result will be
-       adjusted by 'init_val' at the loop epilog.  */
-    nelements = nunits;
-    need_epilog_adjust = true;
-#else
-    /* 'nunits - 1' elements are set to 0; The last element is set to 
-        'init_val'.  No further adjustments at the epilog are needed.  */
-    nelements = nunits - 1;
-    need_epilog_adjust = false;
-#endif
+      def_for_init = build_real (type, dconst0);
+      for (i = nunits - 1; i >= 0; --i)
+    t = tree_cons (NULL_TREE, def_for_init, t);
+    vector_type = get_vectype_for_scalar_type (TREE_TYPE (def_for_init));
+    init_def = build_vector (vector_type, t);
     break;
 
   case MIN_EXPR:
   case MAX_EXPR:
     break;
 
   case MIN_EXPR:
   case MAX_EXPR:
-    def = init_val;
-    nelements = nunits;
-    need_epilog_adjust = false;
+    *adjustment_def = NULL_TREE;
+    init_def = vecdef;
     break;
 
   default:
     gcc_unreachable ();
   }
 
     break;
 
   default:
     gcc_unreachable ();
   }
 
-  for (i = nelements - 1; i >= 0; --i)
-    t = tree_cons (NULL_TREE, def, t);
-
-  if (nelements == nunits - 1)
-    {
-      /* Set the last element of the vector.  */
-      t = tree_cons (NULL_TREE, init_val, t);
-      nelements += 1;
-    }
-  gcc_assert (nelements == nunits);
-  
-  if (TREE_CODE (init_val) == INTEGER_CST || TREE_CODE (init_val) == REAL_CST)
-    vec = build_vector (vectype, t);
-  else
-    vec = build_constructor_from_list (vectype, t);
-    
-  if (!need_epilog_adjust)
-    *scalar_def = NULL_TREE;
-  else
-    *scalar_def = init_val;
-
-  return vect_init_vector (stmt, vec);
+  return init_def;
 }
 
 
 }
 
 
-/* Function vect_create_epilog_for_reduction:
+/* Function vect_create_epilog_for_reduction
     
    Create code at the loop-epilog to finalize the result of a reduction
     
    Create code at the loop-epilog to finalize the result of a reduction
-   computation.
+   computation. 
   
   
-   LOOP_EXIT_VECT_DEF is a vector of partial results. We need to "reduce" it
-   into a single result, by applying the operation REDUC_CODE on the
-   partial-results-vector. For this, we need to create a new phi node at the
-   loop exit to preserve loop-closed form, as illustrated below.
-
-   STMT is the original scalar reduction stmt that is being vectorized.
-   REDUCTION_OP is the scalar reduction-variable.
+   VECT_DEF is a vector of partial results. 
+   REDUC_CODE is the tree-code for the epilog reduction.
+   STMT is the scalar reduction stmt that is being vectorized.
    REDUCTION_PHI is the phi-node that carries the reduction computation.
    REDUCTION_PHI is the phi-node that carries the reduction computation.
-   This function also sets the arguments for the REDUCTION_PHI:
-   The loop-entry argument is the (vectorized) initial-value of REDUCTION_OP.
-   The loop-latch argument is VECT_DEF - the vector of partial sums.
 
 
-     This function transforms this:
+   This function:
+   1. Creates the reduction def-use cycle: sets the arguments for 
+      REDUCTION_PHI:
+      The loop-entry argument is the vectorized initial-value of the reduction.
+      The loop-latch argument is VECT_DEF - the vector of partial sums.
+   2. "Reduces" the vector of partial results VECT_DEF into a single result,
+      by applying the operation specified by REDUC_CODE if available, or by 
+      other means (whole-vector shifts or a scalar loop).
+      The function also creates a new phi node at the loop exit to preserve 
+      loop-closed form, as illustrated below.
+  
+     The flow at the entry to this function:
     
         loop:
     
         loop:
-          vec_def = phi <null, null>    # REDUCTION_PHI
-          ....
-          VECT_DEF = ...
-
+          vec_def = phi <null, null>            # REDUCTION_PHI
+          VECT_DEF = vector_stmt                # vectorized form of STMT
+          s_loop = scalar_stmt                  # (scalar) STMT
         loop_exit:
         loop_exit:
-          s_out0 = phi <s_loop>         # EXIT_PHI
-
+          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
           use <s_out0>
           use <s_out0>
 
           use <s_out0>
           use <s_out0>
 
-     Into:
+     The above is transformed by this function into:
 
         loop:
 
         loop:
-          vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
-          ....
-          VECT_DEF = ...
-
+          vec_def = phi <vec_init, VECT_DEF>    # REDUCTION_PHI
+          VECT_DEF = vector_stmt                # vectorized form of STMT
+          s_loop = scalar_stmt                  # (scalar) STMT 
         loop_exit:
         loop_exit:
-          s_out0 = phi <s_loop>         # EXIT_PHI
-          v_out1 = phi <VECT_DEF>       # NEW_EXIT_PHI
-
-          v_out2 = reduc_expr <v_out1>
+          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
+          v_out1 = phi <VECT_DEF>               # NEW_EXIT_PHI
+          v_out2 = reduce <v_out1>
           s_out3 = extract_field <v_out2, 0>
           s_out3 = extract_field <v_out2, 0>
-
-          use <s_out3>
-          use <s_out3>
+          s_out4 = adjust_result <s_out3>
+          use <s_out4>
+          use <s_out4>
 */
 
 static void
 */
 
 static void
-vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
+vect_create_epilog_for_reduction (tree vect_def, tree stmt,
                                   enum tree_code reduc_code, tree reduction_phi)
 {
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
                                   enum tree_code reduc_code, tree reduction_phi)
 {
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
-  enum machine_mode mode = TYPE_MODE (vectype);
+  tree vectype;
+  enum machine_mode mode;
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   basic_block exit_bb;
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   basic_block exit_bb;
-  tree scalar_dest = TREE_OPERAND (stmt, 0);
-  tree scalar_type = TREE_TYPE (scalar_dest);
+  tree scalar_dest;
+  tree scalar_type;
   tree new_phi;
   block_stmt_iterator exit_bsi;
   tree vec_dest;
   tree new_phi;
   block_stmt_iterator exit_bsi;
   tree vec_dest;
-  tree new_temp;
+  tree new_temp = NULL_TREE;
   tree new_name;
   tree new_name;
-  tree epilog_stmt;
-  tree new_scalar_dest, exit_phi;
+  tree epilog_stmt = NULL_TREE;
+  tree new_scalar_dest, exit_phi, new_dest;
   tree bitsize, bitpos, bytesize; 
   tree bitsize, bitpos, bytesize; 
-  enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
-  tree scalar_initial_def;
+  enum tree_code code = TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1));
+  tree adjustment_def;
   tree vec_initial_def;
   tree orig_name;
   imm_use_iterator imm_iter;
   use_operand_p use_p;
   tree vec_initial_def;
   tree orig_name;
   imm_use_iterator imm_iter;
   use_operand_p use_p;
-  bool extract_scalar_result;
+  bool extract_scalar_result = false;
+  tree reduction_op, expr;
+  tree orig_stmt;
+  tree use_stmt;
+  tree operation = GIMPLE_STMT_OPERAND (stmt, 1);
+  bool nested_in_vect_loop = false;
+  int op_type;
+  
+  if (nested_in_vect_loop_p (loop, stmt))
+    {
+      loop = loop->inner;
+      nested_in_vect_loop = true;
+    }
   
   
+  op_type = TREE_OPERAND_LENGTH (operation);
+  reduction_op = TREE_OPERAND (operation, op_type-1);
+  vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
+  mode = TYPE_MODE (vectype);
+
   /*** 1. Create the reduction def-use cycle  ***/
   
   /* 1.1 set the loop-entry arg of the reduction-phi:  */
   /*** 1. Create the reduction def-use cycle  ***/
   
   /* 1.1 set the loop-entry arg of the reduction-phi:  */
@@ -794,10 +1983,9 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
      the scalar def before the loop, that defines the initial value
      of the reduction variable.  */
   vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
      the scalar def before the loop, that defines the initial value
      of the reduction variable.  */
   vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
-                                                 &scalar_initial_def);
+                                                 &adjustment_def);
   add_phi_arg (reduction_phi, vec_initial_def, loop_preheader_edge (loop));
 
   add_phi_arg (reduction_phi, vec_initial_def, loop_preheader_edge (loop));
 
-
   /* 1.2 set the loop-latch arg for the reduction-phi:  */
   add_phi_arg (reduction_phi, vect_def, loop_latch_edge (loop));
 
   /* 1.2 set the loop-latch arg for the reduction-phi:  */
   add_phi_arg (reduction_phi, vect_def, loop_latch_edge (loop));
 
@@ -810,26 +1998,86 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
     }
 
 
     }
 
 
-  /*** 2. Create epilog code ***/
+  /*** 2. Create epilog code
+         The reduction epilog code operates across the elements of the vector
+          of partial results computed by the vectorized loop.
+          The reduction epilog code consists of:
+          step 1: compute the scalar result in a vector (v_out2)
+          step 2: extract the scalar result (s_out3) from the vector (v_out2)
+          step 3: adjust the scalar result (s_out3) if needed.
 
 
-  /* 2.1 Create new loop-exit-phi to preserve loop-closed form:
-        v_out1 = phi <v_loop>  */
+          Step 1 can be accomplished using one the following three schemes:
+          (scheme 1) using reduc_code, if available.
+          (scheme 2) using whole-vector shifts, if available.
+          (scheme 3) using a scalar loop. In this case steps 1+2 above are 
+                     combined.
+                
+          The overall epilog code looks like this:
 
 
-  exit_bb = loop->single_exit->dest;
-  new_phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
-  SET_PHI_ARG_DEF (new_phi, loop->single_exit->dest_idx, vect_def);
+          s_out0 = phi <s_loop>         # original EXIT_PHI
+          v_out1 = phi <VECT_DEF>       # NEW_EXIT_PHI
+          v_out2 = reduce <v_out1>              # step 1
+          s_out3 = extract_field <v_out2, 0>    # step 2
+          s_out4 = adjust_result <s_out3>       # step 3
 
 
-  exit_bsi = bsi_start (exit_bb);
+          (step 3 is optional, and step2 1 and 2 may be combined).
+          Lastly, the uses of s_out0 are replaced by s_out4.
 
 
+         ***/
 
 
+  /* 2.1 Create new loop-exit-phi to preserve loop-closed form:
+        v_out1 = phi <v_loop>  */
+
+  exit_bb = single_exit (loop)->dest;
+  new_phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
+  SET_PHI_ARG_DEF (new_phi, single_exit (loop)->dest_idx, vect_def);
+  exit_bsi = bsi_after_labels (exit_bb);
+
+  /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3 
+         (i.e. when reduc_code is not available) and in the final adjustment
+        code (if needed).  Also get the original scalar reduction variable as
+         defined in the loop.  In case STMT is a "pattern-stmt" (i.e. - it 
+         represents a reduction pattern), the tree-code and scalar-def are 
+         taken from the original stmt that the pattern-stmt (STMT) replaces.  
+         Otherwise (it is a regular reduction) - the tree-code and scalar-def
+         are taken from STMT.  */ 
+
+  orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+  if (!orig_stmt)
+    {
+      /* Regular reduction  */
+      orig_stmt = stmt;
+    }
+  else
+    {
+      /* Reduction pattern  */
+      stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
+      gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
+      gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
+    }
+  code = TREE_CODE (GIMPLE_STMT_OPERAND (orig_stmt, 1));
+  scalar_dest = GIMPLE_STMT_OPERAND (orig_stmt, 0);
+  scalar_type = TREE_TYPE (scalar_dest);
   new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
   bitsize = TYPE_SIZE (scalar_type);
   bytesize = TYPE_SIZE_UNIT (scalar_type);
 
   new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
   bitsize = TYPE_SIZE (scalar_type);
   bytesize = TYPE_SIZE_UNIT (scalar_type);
 
-  /* 2.2 Create the reduction code.  */
+
+  /* In case this is a reduction in an inner-loop while vectorizing an outer
+     loop - we don't need to extract a single scalar result at the end of the
+     inner-loop.  The final vector of partial results will be used in the
+     vectorized outer-loop, or reduced to a scalar result at the end of the
+     outer-loop.  */
+  if (nested_in_vect_loop)
+    goto vect_finalize_reduction;
+
+  /* 2.3 Create the reduction code, using one of the three schemes described
+         above.  */
 
   if (reduc_code < NUM_TREE_CODES)
     {
 
   if (reduc_code < NUM_TREE_CODES)
     {
+      tree tmp;
+
       /*** Case 1:  Create:
           v_out2 = reduc_expr <v_out1>  */
 
       /*** Case 1:  Create:
           v_out2 = reduc_expr <v_out1>  */
 
@@ -837,11 +2085,11 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
        fprintf (vect_dump, "Reduce using direct vector reduction.");
 
       vec_dest = vect_create_destination_var (scalar_dest, vectype);
        fprintf (vect_dump, "Reduce using direct vector reduction.");
 
       vec_dest = vect_create_destination_var (scalar_dest, vectype);
-      epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
-                       build1 (reduc_code, vectype,  PHI_RESULT (new_phi)));
+      tmp = build1 (reduc_code, vectype,  PHI_RESULT (new_phi));
+      epilog_stmt = build_gimple_modify_stmt (vec_dest, tmp);
       new_temp = make_ssa_name (vec_dest, epilog_stmt);
       new_temp = make_ssa_name (vec_dest, epilog_stmt);
-      TREE_OPERAND (epilog_stmt, 0) = new_temp;
-      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
+      GIMPLE_STMT_OPERAND (epilog_stmt, 0) = new_temp;
+      bsi_insert_before (&exit_bsi, epilog_stmt, BSI_SAME_STMT);
 
       extract_scalar_result = true;
     }
 
       extract_scalar_result = true;
     }
@@ -849,17 +2097,12 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
     {
       enum tree_code shift_code = 0;
       bool have_whole_vector_shift = true;
     {
       enum tree_code shift_code = 0;
       bool have_whole_vector_shift = true;
-      enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1)); /* CHECKME */
       int bit_offset;
       int element_bitsize = tree_low_cst (bitsize, 1);
       int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
       tree vec_temp;
 
       int bit_offset;
       int element_bitsize = tree_low_cst (bitsize, 1);
       int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
       tree vec_temp;
 
-      /* The result of the reduction is expected to be at the least
-        significant bits of the vector.  This is merely convention,
-        as it's the extraction later that really matters, and that
-        is also under our control.  */
-      if (vec_shr_optab->handlers[mode].insn_code != CODE_FOR_nothing)
+      if (optab_handler (vec_shr_optab, mode)->insn_code != CODE_FOR_nothing)
        shift_code = VEC_RSHIFT_EXPR;
       else
        have_whole_vector_shift = false;
        shift_code = VEC_RSHIFT_EXPR;
       else
        have_whole_vector_shift = false;
@@ -875,13 +2118,13 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
       else
        {
          optab optab = optab_for_tree_code (code, vectype);
       else
        {
          optab optab = optab_for_tree_code (code, vectype);
-         if (optab->handlers[mode].insn_code == CODE_FOR_nothing)
+         if (optab_handler (optab, mode)->insn_code == CODE_FOR_nothing)
            have_whole_vector_shift = false;
        }
 
       if (have_whole_vector_shift)
         {
            have_whole_vector_shift = false;
        }
 
       if (have_whole_vector_shift)
         {
-         /*** Case 2:
+         /*** Case 2: Create:
             for (offset = VS/2; offset >= element_size; offset/=2)
                {
                  Create:  va' = vec_shift <va, offset>
             for (offset = VS/2; offset >= element_size; offset/=2)
                {
                  Create:  va' = vec_shift <va, offset>
@@ -899,23 +2142,17 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
               bit_offset /= 2)
            {
              tree bitpos = size_int (bit_offset);
               bit_offset /= 2)
            {
              tree bitpos = size_int (bit_offset);
-
-             epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
-             build2 (shift_code, vectype, new_temp, bitpos));
+             tree tmp = build2 (shift_code, vectype, new_temp, bitpos);
+             epilog_stmt = build_gimple_modify_stmt (vec_dest, tmp);
              new_name = make_ssa_name (vec_dest, epilog_stmt);
              new_name = make_ssa_name (vec_dest, epilog_stmt);
-             TREE_OPERAND (epilog_stmt, 0) = new_name;
-             bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-             if (vect_print_dump_info (REPORT_DETAILS))
-               print_generic_expr (vect_dump, epilog_stmt, TDF_SLIM);
+             GIMPLE_STMT_OPERAND (epilog_stmt, 0) = new_name;
+             bsi_insert_before (&exit_bsi, epilog_stmt, BSI_SAME_STMT);
 
 
-
-             epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
-             build2 (code, vectype, new_name, new_temp));
+             tmp = build2 (code, vectype, new_name, new_temp);
+             epilog_stmt = build_gimple_modify_stmt (vec_dest, tmp);
              new_temp = make_ssa_name (vec_dest, epilog_stmt);
              new_temp = make_ssa_name (vec_dest, epilog_stmt);
-             TREE_OPERAND (epilog_stmt, 0) = new_temp;
-             bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-             if (vect_print_dump_info (REPORT_DETAILS))
-               print_generic_expr (vect_dump, epilog_stmt, TDF_SLIM);
+             GIMPLE_STMT_OPERAND (epilog_stmt, 0) = new_temp;
+             bsi_insert_before (&exit_bsi, epilog_stmt, BSI_SAME_STMT);
            }
 
          extract_scalar_result = true;
            }
 
          extract_scalar_result = true;
@@ -924,10 +2161,11 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
         {
          tree rhs;
 
         {
          tree rhs;
 
-         /*** Case 3:
-            Create:  
+         /*** Case 3: Create:  
             s = extract_field <v_out2, 0>
             s = extract_field <v_out2, 0>
-            for (offset=element_size; offset<vector_size; offset+=element_size;)
+            for (offset = element_size; 
+                 offset < vector_size; 
+                 offset += element_size;)
               {
                 Create:  s' = extract_field <v_out2, offset>
                 Create:  s = op <s, s'>
               {
                 Create:  s' = extract_field <v_out2, offset>
                 Create:  s = op <s, s'>
@@ -938,63 +2176,52 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
 
          vec_temp = PHI_RESULT (new_phi);
          vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
 
          vec_temp = PHI_RESULT (new_phi);
          vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
-
          rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
                         bitsize_zero_node);
          rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
                         bitsize_zero_node);
-
          BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
          BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
-         epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, 
-                               rhs);
+         epilog_stmt = build_gimple_modify_stmt (new_scalar_dest, rhs);
          new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
          new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
-         TREE_OPERAND (epilog_stmt, 0) = new_temp;
-         bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-         if (vect_print_dump_info (REPORT_DETAILS))
-           print_generic_expr (vect_dump, epilog_stmt, TDF_SLIM);
+         GIMPLE_STMT_OPERAND (epilog_stmt, 0) = new_temp;
+         bsi_insert_before (&exit_bsi, epilog_stmt, BSI_SAME_STMT);
              
          for (bit_offset = element_bitsize;
               bit_offset < vec_size_in_bits;
               bit_offset += element_bitsize)
            { 
              
          for (bit_offset = element_bitsize;
               bit_offset < vec_size_in_bits;
               bit_offset += element_bitsize)
            { 
+             tree tmp;
              tree bitpos = bitsize_int (bit_offset);
              tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
                                 bitpos);
                
              BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
              tree bitpos = bitsize_int (bit_offset);
              tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
                                 bitpos);
                
              BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
-             epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
-                                   rhs);       
+             epilog_stmt = build_gimple_modify_stmt (new_scalar_dest, rhs);
              new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
              new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
-             TREE_OPERAND (epilog_stmt, 0) = new_name;
-             bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-             if (vect_print_dump_info (REPORT_DETAILS))
-               print_generic_expr (vect_dump, epilog_stmt, TDF_SLIM);
+             GIMPLE_STMT_OPERAND (epilog_stmt, 0) = new_name;
+             bsi_insert_before (&exit_bsi, epilog_stmt, BSI_SAME_STMT);
 
 
-
-             epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
-                               build2 (code, scalar_type, new_name, new_temp));
+             tmp = build2 (code, scalar_type, new_name, new_temp);
+             epilog_stmt = build_gimple_modify_stmt (new_scalar_dest, tmp);
              new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
              new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
-             TREE_OPERAND (epilog_stmt, 0) = new_temp;
-             bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-             if (vect_print_dump_info (REPORT_DETAILS))
-               print_generic_expr (vect_dump, epilog_stmt, TDF_SLIM);
+             GIMPLE_STMT_OPERAND (epilog_stmt, 0) = new_temp;
+             bsi_insert_before (&exit_bsi, epilog_stmt, BSI_SAME_STMT);
            }
 
          extract_scalar_result = false;
        }
     }
 
            }
 
          extract_scalar_result = false;
        }
     }
 
-
-  /* 2.3  Extract the final scalar result.  Create:
+  /* 2.4  Extract the final scalar result.  Create:
          s_out3 = extract_field <v_out2, bitpos>  */
   
   if (extract_scalar_result)
     {
       tree rhs;
 
          s_out3 = extract_field <v_out2, bitpos>  */
   
   if (extract_scalar_result)
     {
       tree rhs;
 
+      gcc_assert (!nested_in_vect_loop);
       if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "extract scalar result");
 
       if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "extract scalar result");
 
-      /* The result is in the low order bits.  */
-      if (BITS_BIG_ENDIAN)
+      if (BYTES_BIG_ENDIAN)
        bitpos = size_binop (MULT_EXPR,
                       bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
                       TYPE_SIZE (scalar_type));
        bitpos = size_binop (MULT_EXPR,
                       bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
                       TYPE_SIZE (scalar_type));
@@ -1003,41 +2230,50 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
 
       rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
       BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
 
       rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
       BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
-      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
+      epilog_stmt = build_gimple_modify_stmt (new_scalar_dest, rhs);
       new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
       new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
-      TREE_OPERAND (epilog_stmt, 0) = new_temp; 
-      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-      if (vect_print_dump_info (REPORT_DETAILS))
-       print_generic_expr (vect_dump, epilog_stmt, TDF_SLIM);
+      GIMPLE_STMT_OPERAND (epilog_stmt, 0) = new_temp; 
+      bsi_insert_before (&exit_bsi, epilog_stmt, BSI_SAME_STMT);
     }
 
     }
 
+vect_finalize_reduction:
 
 
-  /* 2.4 Adjust the final result by the initial value of the reduction
-        variable. (when such adjustment is not needed, then
-        'scalar_initial_def' is zero).
+  /* 2.5 Adjust the final result by the initial value of the reduction
+        variable. (When such adjustment is not needed, then
+        'adjustment_def' is zero).  For example, if code is PLUS we create:
+        new_temp = loop_exit_def + adjustment_def  */
 
 
-        Create: 
-        s_out = scalar_expr <s_out, scalar_initial_def>  */
-  
-  if (scalar_initial_def)
+  if (adjustment_def)
     {
     {
-      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
-                      build2 (code, scalar_type, new_temp, scalar_initial_def));
-      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
-      TREE_OPERAND (epilog_stmt, 0) = new_temp;
+      if (nested_in_vect_loop)
+       {
+         gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
+         expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
+         new_dest = vect_create_destination_var (scalar_dest, vectype);
+       }
+      else
+       {
+         gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
+         expr = build2 (code, scalar_type, new_temp, adjustment_def);
+         new_dest = vect_create_destination_var (scalar_dest, scalar_type);
+       }
+      epilog_stmt = build_gimple_modify_stmt (new_dest, expr);
+      new_temp = make_ssa_name (new_dest, epilog_stmt);
+      GIMPLE_STMT_OPERAND (epilog_stmt, 0) = new_temp;
+#if 0
       bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
       bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-
-      if (vect_print_dump_info (REPORT_DETAILS))
-        print_generic_expr (vect_dump, epilog_stmt, TDF_SLIM);
+#else
+      bsi_insert_before (&exit_bsi, epilog_stmt, BSI_SAME_STMT);
+#endif
     }
 
 
     }
 
 
-  /* 2.5 Replace uses of s_out0 with uses of s_out3  */
+  /* 2.6  Handle the loop-exit phi  */
 
 
-  /* Find the loop-closed-use at the loop exit of the original
-     scalar result.  (The reduction result is expected to have
-     two immediate uses - one at the latch block, and one at the
-     loop exit).  */
+  /* Replace uses of s_out0 with uses of s_out3:
+     Find the loop-closed-use at the loop exit of the original scalar result.
+     (The reduction result is expected to have two immediate uses - one at the 
+     latch block, and one at the loop exit).  */
   exit_phi = NULL;
   FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
     {
   exit_phi = NULL;
   FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
     {
@@ -1047,11 +2283,36 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
          break;
        }
     }
          break;
        }
     }
+  /* We expect to have found an exit_phi because of loop-closed-ssa form.  */
+  gcc_assert (exit_phi);
 
 
-  orig_name = PHI_RESULT (exit_phi);
+  if (nested_in_vect_loop)
+    {
+      stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
+
+      /* FORNOW. Currently not supporting the case that an inner-loop reduction
+        is not used in the outer-loop (but only outside the outer-loop).  */
+      gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo) 
+                 && !STMT_VINFO_LIVE_P (stmt_vinfo));
+
+      epilog_stmt = adjustment_def ? epilog_stmt :  new_phi;
+      STMT_VINFO_VEC_STMT (stmt_vinfo) = epilog_stmt;
+      set_stmt_info (get_stmt_ann (epilog_stmt),
+                     new_stmt_vec_info (epilog_stmt, loop_vinfo));
+
+      if (vect_print_dump_info (REPORT_DETAILS))
+        {
+          fprintf (vect_dump, "vector of partial results after inner-loop:");
+          print_generic_expr (vect_dump, epilog_stmt, TDF_SLIM);
+        }
+      return;
+    }
 
 
-  FOR_EACH_IMM_USE_SAFE (use_p, imm_iter, orig_name)
-    SET_USE (use_p, new_temp);
+  /* Replace the uses:  */
+  orig_name = PHI_RESULT (exit_phi);
+  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
+    FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+      SET_USE (use_p, new_temp);
 } 
 
 
 } 
 
 
@@ -1060,78 +2321,164 @@ vect_create_epilog_for_reduction (tree vect_def, tree stmt, tree reduction_op,
    Check if STMT performs a reduction operation that can be vectorized.
    If VEC_STMT is also passed, vectorize the STMT: create a vectorized
    stmt to replace it, put it in VEC_STMT, and insert it at BSI.
    Check if STMT performs a reduction operation that can be vectorized.
    If VEC_STMT is also passed, vectorize the STMT: create a vectorized
    stmt to replace it, put it in VEC_STMT, and insert it at BSI.
-   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
+   Return FALSE if not a vectorizable STMT, TRUE otherwise.
+
+   This function also handles reduction idioms (patterns) that have been 
+   recognized in advance during vect_pattern_recog. In this case, STMT may be
+   of this form:
+     X = pattern_expr (arg0, arg1, ..., X)
+   and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
+   sequence that had been detected and replaced by the pattern-stmt (STMT).
+  
+   In some cases of reduction patterns, the type of the reduction variable X is
+   different than the type of the other arguments of STMT.
+   In such cases, the vectype that is used when transforming STMT into a vector
+   stmt is different than the vectype that is used to determine the
+   vectorization factor, because it consists of a different number of elements 
+   than the actual number of elements that are being operated upon in parallel.
+
+   For example, consider an accumulation of shorts into an int accumulator.
+   On some targets it's possible to vectorize this pattern operating on 8
+   shorts at a time (hence, the vectype for purposes of determining the
+   vectorization factor should be V8HI); on the other hand, the vectype that
+   is used to create the vector form is actually V4SI (the type of the result).
+
+   Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
+   indicates what is the actual level of parallelism (V8HI in the example), so
+   that the right vectorization factor would be derived. This vectype
+   corresponds to the type of arguments to the reduction stmt, and should *NOT*
+   be used to create the vectorized stmt. The right vectype for the vectorized
+   stmt is obtained from the type of the result X:
+        get_vectype_for_scalar_type (TREE_TYPE (X))
+
+   This means that, contrary to "regular" reductions (or "regular" stmts in
+   general), the following equation:
+      STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
+   does *NOT* necessarily hold for reduction patterns.  */
 
 bool
 vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
 {
   tree vec_dest;
   tree scalar_dest;
 
 bool
 vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
 {
   tree vec_dest;
   tree scalar_dest;
-  tree op0, op1;
-  tree loop_vec_def;
+  tree op;
+  tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   tree operation;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   tree operation;
-  enum tree_code code, reduc_code = 0;
+  enum tree_code code, orig_code, epilog_reduc_code = 0;
   enum machine_mode vec_mode;
   int op_type;
   optab optab, reduc_optab;
   enum machine_mode vec_mode;
   int op_type;
   optab optab, reduc_optab;
-  tree new_temp;
-  tree def0, def1, def_stmt0, def_stmt1;
-  enum vect_def_type dt0, dt1;
+  tree new_temp = NULL_TREE;
+  tree def, def_stmt;
+  enum vect_def_type dt;
   tree new_phi;
   tree scalar_type;
   tree new_phi;
   tree scalar_type;
-  bool is_simple_use0;
-  bool is_simple_use1;
+  bool is_simple_use;
+  tree orig_stmt;
+  stmt_vec_info orig_stmt_info;
+  tree expr = NULL_TREE;
+  int i;
+  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+  int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+  stmt_vec_info prev_stmt_info;
+  tree reduc_def;
+  tree new_stmt = NULL_TREE;
+  int j;
+
+  if (nested_in_vect_loop_p (loop, stmt))
+    {
+      loop = loop->inner;
+      /* FORNOW. This restriction should be relaxed.  */
+      if (ncopies > 1)
+       {
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "multiple types in nested loop.");
+         return false;
+       }
+    }
 
 
-  /* Is vectorizable reduction?  */
+  gcc_assert (ncopies >= 1);
+
+  /* 1. Is vectorizable reduction?  */
 
   /* Not supportable if the reduction variable is used in the loop.  */
 
   /* Not supportable if the reduction variable is used in the loop.  */
-  if (STMT_VINFO_RELEVANT_P (stmt_info))
+  if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer)
     return false;
 
     return false;
 
-  if (!STMT_VINFO_LIVE_P (stmt_info))
+  /* Reductions that are not used even in an enclosing outer-loop,
+     are expected to be "live" (used out of the loop).  */
+  if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_loop
+      && !STMT_VINFO_LIVE_P (stmt_info))
     return false;
 
     return false;
 
-  /* Make sure it was already recognized as a reduction pattern.  */
+  /* Make sure it was already recognized as a reduction computation.  */
   if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
     return false;
 
   if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
     return false;
 
-  gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
+  /* 2. Has this been recognized as a reduction pattern? 
 
 
-  operation = TREE_OPERAND (stmt, 1);
-  code = TREE_CODE (operation);
-  op_type = TREE_CODE_LENGTH (code);
+     Check if STMT represents a pattern that has been recognized
+     in earlier analysis stages.  For stmts that represent a pattern,
+     the STMT_VINFO_RELATED_STMT field records the last stmt in
+     the original sequence that constitutes the pattern.  */
 
 
-  if (op_type != binary_op)
-    return false;
+  orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+  if (orig_stmt)
+    {
+      orig_stmt_info = vinfo_for_stmt (orig_stmt);
+      gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
+      gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
+      gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
+    }
+  /* 3. Check the operands of the operation. The first operands are defined
+        inside the loop body. The last operand is the reduction variable,
+        which is defined by the loop-header-phi.  */
 
 
-  op0 = TREE_OPERAND (operation, 0);
-  op1 = TREE_OPERAND (operation, 1);
-  scalar_dest = TREE_OPERAND (stmt, 0);
-  scalar_type = TREE_TYPE (scalar_dest);
+  gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
 
 
-  /* Check the first operand. It is expected to be defined inside the loop.  */
-  is_simple_use0 =
-        vect_is_simple_use (op0, loop_vinfo, &def_stmt0, &def0, &dt0);
-  is_simple_use1 =
-        vect_is_simple_use (op1, loop_vinfo, &def_stmt1, &def1, &dt1);
+  operation = GIMPLE_STMT_OPERAND (stmt, 1);
+  code = TREE_CODE (operation);
+  op_type = TREE_OPERAND_LENGTH (operation);
+  if (op_type != binary_op && op_type != ternary_op)
+    return false;
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
+  scalar_type = TREE_TYPE (scalar_dest);
 
 
-  gcc_assert (is_simple_use0);
-  gcc_assert (is_simple_use1);
-  gcc_assert (dt0 == vect_loop_def);
-  gcc_assert (dt1 == vect_reduction_def);
-  gcc_assert (TREE_CODE (def_stmt1) == PHI_NODE);
-  gcc_assert (stmt == vect_is_simple_reduction (loop, def_stmt1));
+  /* All uses but the last are expected to be defined in the loop.
+     The last use is the reduction variable.  */
+  for (i = 0; i < op_type-1; i++)
+    {
+      op = TREE_OPERAND (operation, i);
+      is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
+      gcc_assert (is_simple_use);
+      if (dt != vect_loop_def
+         && dt != vect_invariant_def
+         && dt != vect_constant_def
+         && dt != vect_induction_def)
+       return false;
+    }
 
 
-  if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt1)))
-   return false;
+  op = TREE_OPERAND (operation, i);
+  is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
+  gcc_assert (is_simple_use);
+  gcc_assert (dt == vect_reduction_def);
+  gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
+  if (orig_stmt) 
+    gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo, def_stmt));
+  else
+    gcc_assert (stmt == vect_is_simple_reduction (loop_vinfo, def_stmt));
+  
+  if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
+    return false;
 
 
-  /* Supportable by target?  */
+  /* 4. Supportable by target?  */
 
 
-  /* check support for the operation in the loop  */
+  /* 4.1. check support for the operation in the loop  */
   optab = optab_for_tree_code (code, vectype);
   if (!optab)
     {
   optab = optab_for_tree_code (code, vectype);
   if (!optab)
     {
@@ -1140,7 +2487,7 @@ vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
       return false;
     }
   vec_mode = TYPE_MODE (vectype);
       return false;
     }
   vec_mode = TYPE_MODE (vectype);
-  if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
+  if (optab_handler (optab, vec_mode)->insn_code == CODE_FOR_nothing)
     {
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "op not supported by target.");
     {
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "op not supported by target.");
@@ -1162,335 +2509,1730 @@ vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
       return false;
     }
 
       return false;
     }
 
-  /* check support for the epilog operation  */
-  if (!reduction_code_for_scalar_code (code, &reduc_code))
+  /* 4.2. Check support for the epilog operation.
+
+          If STMT represents a reduction pattern, then the type of the
+          reduction variable may be different than the type of the rest
+          of the arguments.  For example, consider the case of accumulation
+          of shorts into an int accumulator; The original code:
+                        S1: int_a = (int) short_a;
+          orig_stmt->   S2: int_acc = plus <int_a ,int_acc>;
+
+          was replaced with:
+                        STMT: int_acc = widen_sum <short_a, int_acc>
+
+          This means that:
+          1. The tree-code that is used to create the vector operation in the 
+             epilog code (that reduces the partial results) is not the 
+             tree-code of STMT, but is rather the tree-code of the original 
+             stmt from the pattern that STMT is replacing. I.e, in the example 
+             above we want to use 'widen_sum' in the loop, but 'plus' in the 
+             epilog.
+          2. The type (mode) we use to check available target support
+             for the vector operation to be created in the *epilog*, is 
+             determined by the type of the reduction variable (in the example 
+             above we'd check this: plus_optab[vect_int_mode]).
+             However the type (mode) we use to check available target support
+             for the vector operation to be created *inside the loop*, is
+             determined by the type of the other arguments to STMT (in the
+             example we'd check this: widen_sum_optab[vect_short_mode]).
+  
+          This is contrary to "regular" reductions, in which the types of all 
+          the arguments are the same as the type of the reduction variable. 
+          For "regular" reductions we can therefore use the same vector type 
+          (and also the same tree-code) when generating the epilog code and
+          when generating the code inside the loop.  */
+
+  if (orig_stmt)
+    {
+      /* This is a reduction pattern: get the vectype from the type of the
+         reduction variable, and get the tree-code from orig_stmt.  */
+      orig_code = TREE_CODE (GIMPLE_STMT_OPERAND (orig_stmt, 1));
+      vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
+      vec_mode = TYPE_MODE (vectype);
+    }
+  else
+    {
+      /* Regular reduction: use the same vectype and tree-code as used for
+         the vector code inside the loop can be used for the epilog code. */
+      orig_code = code;
+    }
+
+  if (!reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
     return false;
     return false;
-  reduc_optab = optab_for_tree_code (reduc_code, vectype);
+  reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype);
   if (!reduc_optab)
     {
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "no optab for reduction.");
   if (!reduc_optab)
     {
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "no optab for reduction.");
-      reduc_code = NUM_TREE_CODES;
+      epilog_reduc_code = NUM_TREE_CODES;
     }
     }
-  if (reduc_optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
+  if (optab_handler (reduc_optab, vec_mode)->insn_code == CODE_FOR_nothing)
     {
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "reduc op not supported by target.");
     {
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "reduc op not supported by target.");
-      reduc_code = NUM_TREE_CODES;
+      epilog_reduc_code = NUM_TREE_CODES;
+    }
+  if (!vec_stmt) /* transformation not required.  */
+    {
+      STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
+      vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies);
+      return true;
+    }
+
+  /** Transform.  **/
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "transform reduction.");
+
+  /* Create the destination vector  */
+  vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+  /* Create the reduction-phi that defines the reduction-operand.  */
+  new_phi = create_phi_node (vec_dest, loop->header);
+
+  /* In case the vectorization factor (VF) is bigger than the number
+     of elements that we can fit in a vectype (nunits), we have to generate
+     more than one vector stmt - i.e - we need to "unroll" the
+     vector stmt by a factor VF/nunits.  For more details see documentation
+     in vectorizable_operation.  */
+
+  prev_stmt_info = NULL;
+  for (j = 0; j < ncopies; j++)
+    {
+      /* Handle uses.  */
+      if (j == 0)
+        {
+          op = TREE_OPERAND (operation, 0);
+          loop_vec_def0 = vect_get_vec_def_for_operand (op, stmt, NULL);
+          if (op_type == ternary_op)
+            {
+              op = TREE_OPERAND (operation, 1);
+              loop_vec_def1 = vect_get_vec_def_for_operand (op, stmt, NULL);
+            }
+
+          /* Get the vector def for the reduction variable from the phi node */
+          reduc_def = PHI_RESULT (new_phi);
+        }
+      else
+        {
+          enum vect_def_type dt = vect_unknown_def_type; /* Dummy */
+          loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def0);
+          if (op_type == ternary_op)
+            loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def1);
+
+          /* Get the vector def for the reduction variable from the vectorized
+             reduction operation generated in the previous iteration (j-1)  */
+          reduc_def = GIMPLE_STMT_OPERAND (new_stmt ,0);
+        }
+
+      /* Arguments are ready. create the new vector stmt.  */
+      if (op_type == binary_op)
+        expr = build2 (code, vectype, loop_vec_def0, reduc_def);
+      else
+        expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1, 
+                      reduc_def);
+      new_stmt = build_gimple_modify_stmt (vec_dest, expr);
+      new_temp = make_ssa_name (vec_dest, new_stmt);
+      GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+      vect_finish_stmt_generation (stmt, new_stmt, bsi);
+
+      if (j == 0)
+       STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+      else
+       STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+      prev_stmt_info = vinfo_for_stmt (new_stmt);
+    }
+
+  /* Finalize the reduction-phi (set it's arguments) and create the
+     epilog reduction code.  */
+  vect_create_epilog_for_reduction (new_temp, stmt, epilog_reduc_code, new_phi);
+  return true;
+}
+
+/* Checks if CALL can be vectorized in type VECTYPE.  Returns
+   a function declaration if the target has a vectorized version
+   of the function, or NULL_TREE if the function cannot be vectorized.  */
+
+tree
+vectorizable_function (tree call, tree vectype_out, tree vectype_in)
+{
+  tree fndecl = get_callee_fndecl (call);
+  enum built_in_function code;
+
+  /* We only handle functions that do not read or clobber memory -- i.e.
+     const or novops ones.  */
+  if (!(call_expr_flags (call) & (ECF_CONST | ECF_NOVOPS)))
+    return NULL_TREE;
+
+  if (!fndecl
+      || TREE_CODE (fndecl) != FUNCTION_DECL
+      || !DECL_BUILT_IN (fndecl))
+    return NULL_TREE;
+
+  code = DECL_FUNCTION_CODE (fndecl);
+  return targetm.vectorize.builtin_vectorized_function (code, vectype_out,
+                                                       vectype_in);
+}
+
+/* Function vectorizable_call.
+
+   Check if STMT performs a function call that can be vectorized. 
+   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
+   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
+
+bool
+vectorizable_call (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+  tree vec_dest;
+  tree scalar_dest;
+  tree operation;
+  tree op, type;
+  tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
+  tree vectype_out, vectype_in;
+  int nunits_in;
+  int nunits_out;
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  tree fndecl, rhs, new_temp, def, def_stmt, rhs_type, lhs_type;
+  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+  tree new_stmt;
+  int ncopies, j, nargs;
+  call_expr_arg_iterator iter;
+  tree vargs;
+  enum { NARROW, NONE, WIDEN } modifier;
+
+  if (!STMT_VINFO_RELEVANT_P (stmt_info))
+    return false;
+
+  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
+    return false;
+
+  /* FORNOW: not yet supported.  */
+  if (STMT_VINFO_LIVE_P (stmt_info))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "value used after loop.");
+      return false;
+    }
+
+  /* Is STMT a vectorizable call?   */
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
+    return false;
+
+  if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) != SSA_NAME)
+    return false;
+
+  operation = GIMPLE_STMT_OPERAND (stmt, 1);
+  if (TREE_CODE (operation) != CALL_EXPR)
+    return false;
+
+  /* Process function arguments.  */
+  rhs_type = NULL_TREE;
+  nargs = 0;
+  FOR_EACH_CALL_EXPR_ARG (op, iter, operation)
+    {
+      /* Bail out if the function has more than two arguments, we
+        do not have interesting builtin functions to vectorize with
+        more than two arguments.  */
+      if (nargs >= 2)
+       return false;
+
+      /* We can only handle calls with arguments of the same type.  */
+      if (rhs_type
+         && rhs_type != TREE_TYPE (op))
+       {
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "argument types differ.");
+         return false;
+       }
+      rhs_type = TREE_TYPE (op);
+
+      if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt[nargs]))
+       {
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "use not simple.");
+         return false;
+       }
+
+      ++nargs;
+    }
+
+  /* No arguments is also not good.  */
+  if (nargs == 0)
+    return false;
+
+  vectype_in = get_vectype_for_scalar_type (rhs_type);
+  nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+
+  lhs_type = TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 0));
+  vectype_out = get_vectype_for_scalar_type (lhs_type);
+  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+
+  /* FORNOW */
+  if (nunits_in == nunits_out / 2)
+    modifier = NARROW;
+  else if (nunits_out == nunits_in)
+    modifier = NONE;
+  else if (nunits_out == nunits_in / 2)
+    modifier = WIDEN;
+  else
+    return false;
+
+  /* For now, we only vectorize functions if a target specific builtin
+     is available.  TODO -- in some cases, it might be profitable to
+     insert the calls for pieces of the vector, in order to be able
+     to vectorize other operations in the loop.  */
+  fndecl = vectorizable_function (operation, vectype_out, vectype_in);
+  if (fndecl == NULL_TREE)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "function is not vectorizable.");
+
+      return false;
+    }
+
+  gcc_assert (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS));
+
+  if (modifier == NARROW)
+    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
+  else
+    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+  /* Sanity check: make sure that at least one copy of the vectorized stmt
+     needs to be generated.  */
+  gcc_assert (ncopies >= 1);
+
+  /* FORNOW. This restriction should be relaxed.  */
+  if (nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+      fprintf (vect_dump, "multiple types in nested loop.");
+      return false;
+    }
+
+  if (!vec_stmt) /* transformation not required.  */
+    {
+      STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "=== vectorizable_call ===");
+      vect_model_simple_cost (stmt_info, ncopies, dt);
+      return true;
+    }
+
+  /** Transform.  **/
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "transform operation.");
+
+  /* FORNOW. This restriction should be relaxed.  */
+  if (nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "multiple types in nested loop.");
+      return false;
+    }
+
+  /* Handle def.  */
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
+  vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
+
+  prev_stmt_info = NULL;
+  switch (modifier)
+    {
+    case NONE:
+      for (j = 0; j < ncopies; ++j)
+       {
+         /* Build argument list for the vectorized call.  */
+         /* FIXME: Rewrite this so that it doesn't
+            construct a temporary list.  */
+         vargs = NULL_TREE;
+         nargs = 0;
+         FOR_EACH_CALL_EXPR_ARG (op, iter, operation)
+           {
+             if (j == 0)
+               vec_oprnd0
+                 = vect_get_vec_def_for_operand (op, stmt, NULL);
+             else
+               vec_oprnd0
+                 = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd0);
+
+             vargs = tree_cons (NULL_TREE, vec_oprnd0, vargs);
+
+             ++nargs;
+           }
+         vargs = nreverse (vargs);
+
+         rhs = build_function_call_expr (fndecl, vargs);
+         new_stmt = build_gimple_modify_stmt (vec_dest, rhs);
+         new_temp = make_ssa_name (vec_dest, new_stmt);
+         GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+
+         vect_finish_stmt_generation (stmt, new_stmt, bsi);
+
+         if (j == 0)
+           STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+         else
+           STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+         prev_stmt_info = vinfo_for_stmt (new_stmt);
+       }
+
+      break;
+
+    case NARROW:
+      for (j = 0; j < ncopies; ++j)
+       {
+         /* Build argument list for the vectorized call.  */
+         /* FIXME: Rewrite this so that it doesn't
+            construct a temporary list.  */
+         vargs = NULL_TREE;
+         nargs = 0;
+         FOR_EACH_CALL_EXPR_ARG (op, iter, operation)
+           {
+             if (j == 0)
+               {
+                 vec_oprnd0
+                   = vect_get_vec_def_for_operand (op, stmt, NULL);
+                 vec_oprnd1
+                   = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd0);
+               }
+             else
+               {
+                 vec_oprnd0
+                   = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd1);
+                 vec_oprnd1
+                   = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd0);
+               }
+
+             vargs = tree_cons (NULL_TREE, vec_oprnd0, vargs);
+             vargs = tree_cons (NULL_TREE, vec_oprnd1, vargs);
+
+             ++nargs;
+           }
+         vargs = nreverse (vargs);
+
+         rhs = build_function_call_expr (fndecl, vargs);
+         new_stmt = build_gimple_modify_stmt (vec_dest, rhs);
+         new_temp = make_ssa_name (vec_dest, new_stmt);
+         GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+
+         vect_finish_stmt_generation (stmt, new_stmt, bsi);
+
+         if (j == 0)
+           STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+         else
+           STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+         prev_stmt_info = vinfo_for_stmt (new_stmt);
+       }
+
+      *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+
+      break;
+
+    case WIDEN:
+      /* No current target implements this case.  */
+      return false;
+    }
+
+  /* The call in STMT might prevent it from being removed in dce.
+     We however cannot remove it here, due to the way the ssa name
+     it defines is mapped to the new definition.  So just replace
+     rhs of the statement with something harmless.  */
+  type = TREE_TYPE (scalar_dest);
+  GIMPLE_STMT_OPERAND (stmt, 1) = fold_convert (type, integer_zero_node);
+  update_stmt (stmt);
+
+  return true;
+}
+
+
+/* Function vect_gen_widened_results_half
+
+   Create a vector stmt whose code, type, number of arguments, and result
+   variable are CODE, VECTYPE, OP_TYPE, and VEC_DEST, and its arguments are 
+   VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
+   In the case that CODE is a CALL_EXPR, this means that a call to DECL
+   needs to be created (DECL is a function-decl of a target-builtin).
+   STMT is the original scalar stmt that we are vectorizing.  */
+
+static tree
+vect_gen_widened_results_half (enum tree_code code, tree vectype, tree decl,
+                               tree vec_oprnd0, tree vec_oprnd1, int op_type,
+                               tree vec_dest, block_stmt_iterator *bsi,
+                              tree stmt)
+{ 
+  tree expr; 
+  tree new_stmt; 
+  tree new_temp; 
+  tree sym; 
+  ssa_op_iter iter;
+  /* Generate half of the widened result:  */ 
+  if (code == CALL_EXPR) 
+    {  
+      /* Target specific support  */ 
+      if (op_type == binary_op)
+       expr = build_call_expr (decl, 2, vec_oprnd0, vec_oprnd1);
+      else
+       expr = build_call_expr (decl, 1, vec_oprnd0);
+    } 
+  else 
+    { 
+      /* Generic support */ 
+      gcc_assert (op_type == TREE_CODE_LENGTH (code)); 
+      if (op_type == binary_op) 
+        expr = build2 (code, vectype, vec_oprnd0, vec_oprnd1); 
+      else  
+        expr = build1 (code, vectype, vec_oprnd0); 
+    } 
+  new_stmt = build_gimple_modify_stmt (vec_dest, expr);
+  new_temp = make_ssa_name (vec_dest, new_stmt); 
+  GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp; 
+  vect_finish_stmt_generation (stmt, new_stmt, bsi); 
+
+  if (code == CALL_EXPR)
+    {
+      FOR_EACH_SSA_TREE_OPERAND (sym, new_stmt, iter, SSA_OP_ALL_VIRTUALS)
+        {
+          if (TREE_CODE (sym) == SSA_NAME)
+            sym = SSA_NAME_VAR (sym);
+          mark_sym_for_renaming (sym);
+        }
+    }
+
+  return new_stmt;
+}
+
+
+/* Function vectorizable_conversion.
+
+Check if STMT performs a conversion operation, that can be vectorized. 
+If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
+stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
+
+bool
+vectorizable_conversion (tree stmt, block_stmt_iterator * bsi,
+                                  tree * vec_stmt)
+{
+  tree vec_dest;
+  tree scalar_dest;
+  tree operation;
+  tree op0;
+  tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
+  tree decl1 = NULL_TREE, decl2 = NULL_TREE;
+  tree new_temp;
+  tree def, def_stmt;
+  enum vect_def_type dt0;
+  tree new_stmt;
+  stmt_vec_info prev_stmt_info;
+  int nunits_in;
+  int nunits_out;
+  tree vectype_out, vectype_in;
+  int ncopies, j;
+  tree expr;
+  tree rhs_type, lhs_type;
+  tree builtin_decl;
+  enum { NARROW, NONE, WIDEN } modifier;
+
+  /* Is STMT a vectorizable conversion?   */
+
+  if (!STMT_VINFO_RELEVANT_P (stmt_info))
+    return false;
+
+  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
+    return false;
+
+  if (STMT_VINFO_LIVE_P (stmt_info))
+    {
+      /* FORNOW: not yet supported.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "value used after loop.");
+      return false;
+    }
+
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
+    return false;
+
+  if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) != SSA_NAME)
+    return false;
+
+  operation = GIMPLE_STMT_OPERAND (stmt, 1);
+  code = TREE_CODE (operation);
+  if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
+    return false;
+
+  /* Check types of lhs and rhs */
+  op0 = TREE_OPERAND (operation, 0);
+  rhs_type = TREE_TYPE (op0);
+  vectype_in = get_vectype_for_scalar_type (rhs_type);
+  nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
+  lhs_type = TREE_TYPE (scalar_dest);
+  vectype_out = get_vectype_for_scalar_type (lhs_type);
+  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+
+  /* FORNOW */
+  if (nunits_in == nunits_out / 2)
+    modifier = NARROW;
+  else if (nunits_out == nunits_in)
+    modifier = NONE;
+  else if (nunits_out == nunits_in / 2)
+    modifier = WIDEN;
+  else
+    return false;
+
+  if (modifier == NONE)
+    gcc_assert (STMT_VINFO_VECTYPE (stmt_info) == vectype_out);
+
+  /* Bail out if the types are both integral or non-integral */
+  if ((INTEGRAL_TYPE_P (rhs_type) && INTEGRAL_TYPE_P (lhs_type))
+      || (!INTEGRAL_TYPE_P (rhs_type) && !INTEGRAL_TYPE_P (lhs_type)))
+    return false;
+
+  if (modifier == NARROW)
+    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
+  else
+    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+  /* Sanity check: make sure that at least one copy of the vectorized stmt
+     needs to be generated.  */
+  gcc_assert (ncopies >= 1);
+
+  /* FORNOW. This restriction should be relaxed.  */
+  if (nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+      fprintf (vect_dump, "multiple types in nested loop.");
+      return false;
+    }
+
+  /* Check the operands of the operation.  */
+  if (!vect_is_simple_use (op0, loop_vinfo, &def_stmt, &def, &dt0))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "use not simple.");
+      return false;
+    }
+
+  /* Supportable by target?  */
+  if ((modifier == NONE
+       && !targetm.vectorize.builtin_conversion (code, vectype_in))
+      || (modifier == WIDEN
+         && !supportable_widening_operation (code, stmt, vectype_in,
+                                             &decl1, &decl2,
+                                             &code1, &code2))
+      || (modifier == NARROW
+         && !supportable_narrowing_operation (code, stmt, vectype_in,
+                                              &code1)))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "op not supported by target.");
+      return false;
+    }
+
+  if (modifier != NONE)
+    STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
+
+  if (!vec_stmt)               /* transformation not required.  */
+    {
+      STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
+      return true;
+    }
+
+  /** Transform.  **/
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "transform conversion.");
+
+  /* Handle def.  */
+  vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
+
+  prev_stmt_info = NULL;
+  switch (modifier)
+    {
+    case NONE:
+      for (j = 0; j < ncopies; j++)
+       {
+         tree sym;
+         ssa_op_iter iter;
+
+         if (j == 0)
+           vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+         else
+           vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt0, vec_oprnd0);
+
+         builtin_decl =
+           targetm.vectorize.builtin_conversion (code, vectype_in);
+         new_stmt = build_call_expr (builtin_decl, 1, vec_oprnd0);
+
+         /* Arguments are ready. create the new vector stmt.  */
+         new_stmt = build_gimple_modify_stmt (vec_dest, new_stmt);
+         new_temp = make_ssa_name (vec_dest, new_stmt);
+         GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+         vect_finish_stmt_generation (stmt, new_stmt, bsi);
+         FOR_EACH_SSA_TREE_OPERAND (sym, new_stmt, iter, SSA_OP_ALL_VIRTUALS)
+           {
+             if (TREE_CODE (sym) == SSA_NAME)
+               sym = SSA_NAME_VAR (sym);
+             mark_sym_for_renaming (sym);
+           }
+
+         if (j == 0)
+           STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+         else
+           STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+         prev_stmt_info = vinfo_for_stmt (new_stmt);
+       }
+      break;
+
+    case WIDEN:
+      /* In case the vectorization factor (VF) is bigger than the number
+        of elements that we can fit in a vectype (nunits), we have to
+        generate more than one vector stmt - i.e - we need to "unroll"
+        the vector stmt by a factor VF/nunits.  */
+      for (j = 0; j < ncopies; j++)
+       {
+         if (j == 0)
+           vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+         else
+           vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt0, vec_oprnd0);
+
+         STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
+
+         /* Generate first half of the widened result:  */
+         new_stmt
+           = vect_gen_widened_results_half (code1, vectype_out, decl1, 
+                                            vec_oprnd0, vec_oprnd1,
+                                            unary_op, vec_dest, bsi, stmt);
+         if (j == 0)
+           STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+         else
+           STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+         prev_stmt_info = vinfo_for_stmt (new_stmt);
+
+         /* Generate second half of the widened result:  */
+         new_stmt
+           = vect_gen_widened_results_half (code2, vectype_out, decl2,
+                                            vec_oprnd0, vec_oprnd1,
+                                            unary_op, vec_dest, bsi, stmt);
+         STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+         prev_stmt_info = vinfo_for_stmt (new_stmt);
+       }
+      break;
+
+    case NARROW:
+      /* In case the vectorization factor (VF) is bigger than the number
+        of elements that we can fit in a vectype (nunits), we have to
+        generate more than one vector stmt - i.e - we need to "unroll"
+        the vector stmt by a factor VF/nunits.  */
+      for (j = 0; j < ncopies; j++)
+       {
+         /* Handle uses.  */
+         if (j == 0)
+           {
+             vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+             vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt0, vec_oprnd0);
+           }
+         else
+           {
+             vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt0, vec_oprnd1);
+             vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt0, vec_oprnd0);
+           }
+
+         /* Arguments are ready. Create the new vector stmt.  */
+         expr = build2 (code1, vectype_out, vec_oprnd0, vec_oprnd1);
+         new_stmt = build_gimple_modify_stmt (vec_dest, expr);
+         new_temp = make_ssa_name (vec_dest, new_stmt);
+         GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+         vect_finish_stmt_generation (stmt, new_stmt, bsi);
+
+         if (j == 0)
+           STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+         else
+           STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+         prev_stmt_info = vinfo_for_stmt (new_stmt);
+       }
+
+      *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+    }
+  return true;
+}
+
+
+/* Function vectorizable_assignment.
+
+   Check if STMT performs an assignment (copy) that can be vectorized. 
+   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
+   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
+
+bool
+vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+  tree vec_dest;
+  tree scalar_dest;
+  tree op;
+  tree vec_oprnd;
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  tree new_temp;
+  tree def, def_stmt;
+  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+  int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+  gcc_assert (ncopies >= 1);
+  if (ncopies > 1)
+    return false; /* FORNOW */
+
+  if (!STMT_VINFO_RELEVANT_P (stmt_info))
+    return false;
+
+  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
+    return false;
+
+  /* FORNOW: not yet supported.  */
+  if (STMT_VINFO_LIVE_P (stmt_info))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "value used after loop.");
+      return false;
+    }
+
+  /* Is vectorizable assignment?  */
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
+    return false;
+
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
+  if (TREE_CODE (scalar_dest) != SSA_NAME)
+    return false;
+
+  op = GIMPLE_STMT_OPERAND (stmt, 1);
+  if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt[0]))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "use not simple.");
+      return false;
+    }
+
+  if (!vec_stmt) /* transformation not required.  */
+    {
+      STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "=== vectorizable_assignment ===");
+      vect_model_simple_cost (stmt_info, ncopies, dt);
+      return true;
+    }
+
+  /** Transform.  **/
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "transform assignment.");
+
+  /* Handle def.  */
+  vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+  /* Handle use.  */
+  op = GIMPLE_STMT_OPERAND (stmt, 1);
+  vec_oprnd = vect_get_vec_def_for_operand (op, stmt, NULL);
+
+  /* Arguments are ready. create the new vector stmt.  */
+  *vec_stmt = build_gimple_modify_stmt (vec_dest, vec_oprnd);
+  new_temp = make_ssa_name (vec_dest, *vec_stmt);
+  GIMPLE_STMT_OPERAND (*vec_stmt, 0) = new_temp;
+  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+  
+  return true;
+}
+
+
+/* Function vect_min_worthwhile_factor.
+
+   For a loop where we could vectorize the operation indicated by CODE,
+   return the minimum vectorization factor that makes it worthwhile
+   to use generic vectors.  */
+static int
+vect_min_worthwhile_factor (enum tree_code code)
+{
+  switch (code)
+    {
+    case PLUS_EXPR:
+    case MINUS_EXPR:
+    case NEGATE_EXPR:
+      return 4;
+
+    case BIT_AND_EXPR:
+    case BIT_IOR_EXPR:
+    case BIT_XOR_EXPR:
+    case BIT_NOT_EXPR:
+      return 2;
+
+    default:
+      return INT_MAX;
+    }
+}
+
+
+/* Function vectorizable_induction
+
+   Check if PHI performs an induction computation that can be vectorized.
+   If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
+   phi to replace it, put it in VEC_STMT, and add it to the same basic block.
+   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
+
+bool
+vectorizable_induction (tree phi, block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
+                        tree *vec_stmt)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (phi);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+  int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+  tree vec_def;
+
+  gcc_assert (ncopies >= 1);
+
+  if (!STMT_VINFO_RELEVANT_P (stmt_info))
+    return false;
+
+  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
+
+  if (STMT_VINFO_LIVE_P (stmt_info))
+    {
+      /* FORNOW: not yet supported.  */
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "value used after loop.");
+      return false;
+    }
+
+  if (TREE_CODE (phi) != PHI_NODE)
+    return false;
+
+  if (!vec_stmt) /* transformation not required.  */
+    {
+      STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "=== vectorizable_induction ===");
+      vect_model_induction_cost (stmt_info, ncopies);
+      return true;
+    }
+
+  /** Transform.  **/
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "transform induction phi.");
+
+  vec_def = get_initial_def_for_induction (phi);
+  *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
+  return true;
+}
+
+
+/* Function vectorizable_operation.
+
+   Check if STMT performs a binary or unary operation that can be vectorized. 
+   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
+   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
+
+bool
+vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+  tree vec_dest;
+  tree scalar_dest;
+  tree operation;
+  tree op0, op1 = NULL;
+  tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  enum tree_code code;
+  enum machine_mode vec_mode;
+  tree new_temp;
+  int op_type;
+  optab optab;
+  int icode;
+  enum machine_mode optab_op2_mode;
+  tree def, def_stmt;
+  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+  tree new_stmt;
+  stmt_vec_info prev_stmt_info;
+  int nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
+  int nunits_out;
+  tree vectype_out;
+  int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+  int j;
+
+  gcc_assert (ncopies >= 1);
+  /* FORNOW. This restriction should be relaxed.  */
+  if (nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "multiple types in nested loop.");
+      return false;
+    }
+
+  if (!STMT_VINFO_RELEVANT_P (stmt_info))
+    return false;
+
+  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
+    return false;
+
+  /* FORNOW: not yet supported.  */
+  if (STMT_VINFO_LIVE_P (stmt_info))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "value used after loop.");
+      return false;
+    }
+
+  /* Is STMT a vectorizable binary/unary operation?   */
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
+    return false;
+
+  if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) != SSA_NAME)
+    return false;
+
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
+  vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
+  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+  if (nunits_out != nunits_in)
+    return false;
+
+  operation = GIMPLE_STMT_OPERAND (stmt, 1);
+  code = TREE_CODE (operation);
+
+  /* For pointer addition, we should use the normal plus for
+     the vector addition.  */
+  if (code == POINTER_PLUS_EXPR)
+    code = PLUS_EXPR;
+
+  optab = optab_for_tree_code (code, vectype);
+
+  /* Support only unary or binary operations.  */
+  op_type = TREE_OPERAND_LENGTH (operation);
+  if (op_type != unary_op && op_type != binary_op)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
+      return false;
+    }
+
+  op0 = TREE_OPERAND (operation, 0);
+  if (!vect_is_simple_use (op0, loop_vinfo, &def_stmt, &def, &dt[0]))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "use not simple.");
+      return false;
+    }
+
+  if (op_type == binary_op)
+    {
+      op1 = TREE_OPERAND (operation, 1);
+      if (!vect_is_simple_use (op1, loop_vinfo, &def_stmt, &def, &dt[1]))
+       {
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "use not simple.");
+         return false;
+       }
+    }
+
+  /* Supportable by target?  */
+  if (!optab)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "no optab.");
+      return false;
+    }
+  vec_mode = TYPE_MODE (vectype);
+  icode = (int) optab_handler (optab, vec_mode)->insn_code;
+  if (icode == CODE_FOR_nothing)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "op not supported by target.");
+      if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
+          || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+            < vect_min_worthwhile_factor (code))
+        return false;
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "proceeding using word mode.");
+    }
+
+  /* Worthwhile without SIMD support?  */
+  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+      && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+        < vect_min_worthwhile_factor (code))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "not worthwhile without SIMD support.");
+      return false;
+    }
+
+  if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
+    {
+      /* FORNOW: not yet supported.  */
+      if (!VECTOR_MODE_P (vec_mode))
+       return false;
+
+      /* Invariant argument is needed for a vector shift
+        by a scalar shift operand.  */
+      optab_op2_mode = insn_data[icode].operand[2].mode;
+      if (! (VECTOR_MODE_P (optab_op2_mode)
+            || dt[1] == vect_constant_def
+            || dt[1] == vect_invariant_def))
+       {
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "operand mode requires invariant argument.");
+         return false;
+       }
     }
     }
+
   if (!vec_stmt) /* transformation not required.  */
     {
   if (!vec_stmt) /* transformation not required.  */
     {
-      STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
+      STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "=== vectorizable_operation ===");
+      vect_model_simple_cost (stmt_info, ncopies, dt);
       return true;
     }
 
   /** Transform.  **/
 
   if (vect_print_dump_info (REPORT_DETAILS))
       return true;
     }
 
   /** Transform.  **/
 
   if (vect_print_dump_info (REPORT_DETAILS))
-    fprintf (vect_dump, "transform reduction.");
+    fprintf (vect_dump, "transform binary/unary operation.");
 
 
-  /* Create the destination vector  */
+  /* Handle def.  */
   vec_dest = vect_create_destination_var (scalar_dest, vectype);
 
   vec_dest = vect_create_destination_var (scalar_dest, vectype);
 
+  /* In case the vectorization factor (VF) is bigger than the number
+     of elements that we can fit in a vectype (nunits), we have to generate
+     more than one vector stmt - i.e - we need to "unroll" the
+     vector stmt by a factor VF/nunits. In doing so, we record a pointer
+     from one copy of the vector stmt to the next, in the field
+     STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
+     stages to find the correct vector defs to be used when vectorizing
+     stmts that use the defs of the current stmt. The example below illustrates
+     the vectorization process when VF=16 and nunits=4 (i.e - we need to create
+     4 vectorized stmts):
+
+     before vectorization:
+                                RELATED_STMT    VEC_STMT
+        S1:     x = memref      -               -
+        S2:     z = x + 1       -               -
+
+     step 1: vectorize stmt S1 (done in vectorizable_load. See more details
+             there):
+                                RELATED_STMT    VEC_STMT
+        VS1_0:  vx0 = memref0   VS1_1           -
+        VS1_1:  vx1 = memref1   VS1_2           -
+        VS1_2:  vx2 = memref2   VS1_3           -
+        VS1_3:  vx3 = memref3   -               -
+        S1:     x = load        -               VS1_0
+        S2:     z = x + 1       -               -
+
+     step2: vectorize stmt S2 (done here):
+        To vectorize stmt S2 we first need to find the relevant vector
+        def for the first operand 'x'. This is, as usual, obtained from
+        the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
+        that defines 'x' (S1). This way we find the stmt VS1_0, and the
+        relevant vector def 'vx0'. Having found 'vx0' we can generate
+        the vector stmt VS2_0, and as usual, record it in the
+        STMT_VINFO_VEC_STMT of stmt S2.
+        When creating the second copy (VS2_1), we obtain the relevant vector
+        def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
+        stmt VS1_0. This way we find the stmt VS1_1 and the relevant
+        vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
+        pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
+        Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
+        chain of stmts and pointers:
+                                RELATED_STMT    VEC_STMT
+        VS1_0:  vx0 = memref0   VS1_1           -
+        VS1_1:  vx1 = memref1   VS1_2           -
+        VS1_2:  vx2 = memref2   VS1_3           -
+        VS1_3:  vx3 = memref3   -               -
+        S1:     x = load        -               VS1_0
+        VS2_0:  vz0 = vx0 + v1  VS2_1           -
+        VS2_1:  vz1 = vx1 + v1  VS2_2           -
+        VS2_2:  vz2 = vx2 + v1  VS2_3           -
+        VS2_3:  vz3 = vx3 + v1  -               -
+        S2:     z = x + 1       -               VS2_0  */
+
+  prev_stmt_info = NULL;
+  for (j = 0; j < ncopies; j++)
+    {
+      /* Handle uses.  */
+      if (j == 0)
+       {
+         vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+         if (op_type == binary_op)
+           {
+             if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
+               {
+                 /* Vector shl and shr insn patterns can be defined with
+                    scalar operand 2 (shift operand).  In this case, use
+                    constant or loop invariant op1 directly, without
+                    extending it to vector mode first.  */
+                 optab_op2_mode = insn_data[icode].operand[2].mode;
+                 if (!VECTOR_MODE_P (optab_op2_mode))
+                   {
+                     if (vect_print_dump_info (REPORT_DETAILS))
+                       fprintf (vect_dump, "operand 1 using scalar mode.");
+                     vec_oprnd1 = op1;
+                   }
+               }
+             if (!vec_oprnd1)
+               vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
+           }
+       }
+      else
+       {
+         vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
+         if (op_type == binary_op)
+           vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd1);
+       }
 
 
-  /* Create the reduction-phi that defines the reduction-operand.  */
-  new_phi = create_phi_node (vec_dest, loop->header);
-
-
-  /* Prepare the operand that is defined inside the loop body  */
-  loop_vec_def = vect_get_vec_def_for_operand (op0, stmt, NULL);
+      /* Arguments are ready. create the new vector stmt.  */
 
 
-  /* Create the vectorized operation that computes the partial results  */
-  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
-                build2 (code, vectype, loop_vec_def, PHI_RESULT (new_phi)));
-  new_temp = make_ssa_name (vec_dest, *vec_stmt);
-  TREE_OPERAND (*vec_stmt, 0) = new_temp;
-  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+      if (op_type == binary_op)
+        new_stmt = build_gimple_modify_stmt (vec_dest,
+                    build2 (code, vectype, vec_oprnd0, vec_oprnd1));
+      else
+        new_stmt = build_gimple_modify_stmt (vec_dest,
+                    build1 (code, vectype, vec_oprnd0));
+      new_temp = make_ssa_name (vec_dest, new_stmt);
+      GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+      vect_finish_stmt_generation (stmt, new_stmt, bsi);
 
 
+      if (j == 0)
+       STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+      else
+       STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+      prev_stmt_info = vinfo_for_stmt (new_stmt);
+    }
 
 
-  /* Finalize the reduction-phi (set it's arguments) and create the
-     epilog reduction code.  */
-  vect_create_epilog_for_reduction (new_temp, stmt, op1, reduc_code, new_phi);
   return true;
 }
 
 
   return true;
 }
 
 
-/* Function vectorizable_assignment.
+/* Function vectorizable_type_demotion
 
 
-   Check if STMT performs an assignment (copy) that can be vectorized. 
-   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
+   Check if STMT performs a binary or unary operation that involves
+   type demotion, and if it can be vectorized.
+   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
    stmt to replace it, put it in VEC_STMT, and insert it at BSI.
    Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
 
 bool
    stmt to replace it, put it in VEC_STMT, and insert it at BSI.
    Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
 
 bool
-vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+vectorizable_type_demotion (tree stmt, block_stmt_iterator *bsi,
+                           tree *vec_stmt)
 {
   tree vec_dest;
   tree scalar_dest;
 {
   tree vec_dest;
   tree scalar_dest;
-  tree op;
-  tree vec_oprnd;
+  tree operation;
+  tree op0;
+  tree vec_oprnd0=NULL, vec_oprnd1=NULL;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  enum tree_code code, code1 = ERROR_MARK;
   tree new_temp;
   tree def, def_stmt;
   tree new_temp;
   tree def, def_stmt;
-  enum vect_def_type dt;
+  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+  tree new_stmt;
+  stmt_vec_info prev_stmt_info;
+  int nunits_in;
+  int nunits_out;
+  tree vectype_out;
+  int ncopies;
+  int j;
+  tree expr;
+  tree vectype_in;
 
 
-  /* Is vectorizable assignment?  */
   if (!STMT_VINFO_RELEVANT_P (stmt_info))
     return false;
 
   if (!STMT_VINFO_RELEVANT_P (stmt_info))
     return false;
 
-  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
+  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
+    return false;
+
+  /* FORNOW: not yet supported.  */
+  if (STMT_VINFO_LIVE_P (stmt_info))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "value used after loop.");
+      return false;
+    }
+
+  /* Is STMT a vectorizable type-demotion operation?  */
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
+    return false;
 
 
-  if (TREE_CODE (stmt) != MODIFY_EXPR)
+  if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) != SSA_NAME)
     return false;
 
     return false;
 
-  scalar_dest = TREE_OPERAND (stmt, 0);
-  if (TREE_CODE (scalar_dest) != SSA_NAME)
+  operation = GIMPLE_STMT_OPERAND (stmt, 1);
+  code = TREE_CODE (operation);
+  if (code != NOP_EXPR && code != CONVERT_EXPR)
     return false;
 
     return false;
 
-  op = TREE_OPERAND (stmt, 1);
-  if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
+  op0 = TREE_OPERAND (operation, 0);
+  vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op0));
+  nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
+  vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
+  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+  if (nunits_in != nunits_out / 2) /* FORNOW */
+    return false;
+
+  ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
+  gcc_assert (ncopies >= 1);
+  /* FORNOW. This restriction should be relaxed.  */
+  if (nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "multiple types in nested loop.");
+      return false;
+    }
+
+  if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
+         && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
+        || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
+            && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
+            && (code == NOP_EXPR || code == CONVERT_EXPR))))
+    return false;
+
+  /* Check the operands of the operation.  */
+  if (!vect_is_simple_use (op0, loop_vinfo, &def_stmt, &def, &dt[0]))
     {
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "use not simple.");
       return false;
     }
 
     {
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "use not simple.");
       return false;
     }
 
+  /* Supportable by target?  */
+  if (!supportable_narrowing_operation (code, stmt, vectype_in, &code1))
+    return false;
+
+  STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
+
   if (!vec_stmt) /* transformation not required.  */
     {
   if (!vec_stmt) /* transformation not required.  */
     {
-      STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
+      STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "=== vectorizable_demotion ===");
+      vect_model_simple_cost (stmt_info, ncopies, dt);
       return true;
     }
 
   /** Transform.  **/
   if (vect_print_dump_info (REPORT_DETAILS))
       return true;
     }
 
   /** Transform.  **/
   if (vect_print_dump_info (REPORT_DETAILS))
-    fprintf (vect_dump, "transform assignment.");
+    fprintf (vect_dump, "transform type demotion operation. ncopies = %d.",
+            ncopies);
 
   /* Handle def.  */
 
   /* Handle def.  */
-  vec_dest = vect_create_destination_var (scalar_dest, vectype);
-
-  /* Handle use.  */
-  op = TREE_OPERAND (stmt, 1);
-  vec_oprnd = vect_get_vec_def_for_operand (op, stmt, NULL);
-
-  /* Arguments are ready. create the new vector stmt.  */
-  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
-  new_temp = make_ssa_name (vec_dest, *vec_stmt);
-  TREE_OPERAND (*vec_stmt, 0) = new_temp;
-  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+  vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
   
   
-  return true;
-}
-
-
-/* Function vect_min_worthwhile_factor.
-
-   For a loop where we could vectorize the operation indicated by CODE,
-   return the minimum vectorization factor that makes it worthwhile
-   to use generic vectors.  */
-static int
-vect_min_worthwhile_factor (enum tree_code code)
-{
-  switch (code)
+  /* In case the vectorization factor (VF) is bigger than the number
+     of elements that we can fit in a vectype (nunits), we have to generate
+     more than one vector stmt - i.e - we need to "unroll" the
+     vector stmt by a factor VF/nunits.   */
+  prev_stmt_info = NULL;
+  for (j = 0; j < ncopies; j++)
     {
     {
-    case PLUS_EXPR:
-    case MINUS_EXPR:
-    case NEGATE_EXPR:
-      return 4;
+      /* Handle uses.  */
+      if (j == 0)
+       {
+         vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+         vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
+       }
+      else
+       {
+         vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd1);
+         vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
+       }
 
 
-    case BIT_AND_EXPR:
-    case BIT_IOR_EXPR:
-    case BIT_XOR_EXPR:
-    case BIT_NOT_EXPR:
-      return 2;
+      /* Arguments are ready. Create the new vector stmt.  */
+      expr = build2 (code1, vectype_out, vec_oprnd0, vec_oprnd1);
+      new_stmt = build_gimple_modify_stmt (vec_dest, expr);
+      new_temp = make_ssa_name (vec_dest, new_stmt);
+      GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+      vect_finish_stmt_generation (stmt, new_stmt, bsi);
 
 
-    default:
-      return INT_MAX;
+      if (j == 0)
+       STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+      else
+       STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+      prev_stmt_info = vinfo_for_stmt (new_stmt);
     }
     }
+
+  *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+  return true;
 }
 
 
 }
 
 
-/* Function vectorizable_operation.
+/* Function vectorizable_type_promotion
 
 
-   Check if STMT performs a binary or unary operation that can be vectorized. 
-   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
+   Check if STMT performs a binary or unary operation that involves
+   type promotion, and if it can be vectorized.
+   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
    stmt to replace it, put it in VEC_STMT, and insert it at BSI.
    Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
 
 bool
    stmt to replace it, put it in VEC_STMT, and insert it at BSI.
    Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
 
 bool
-vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+vectorizable_type_promotion (tree stmt, block_stmt_iterator *bsi,
+                             tree *vec_stmt)
 {
   tree vec_dest;
   tree scalar_dest;
   tree operation;
   tree op0, op1 = NULL;
 {
   tree vec_dest;
   tree scalar_dest;
   tree operation;
   tree op0, op1 = NULL;
-  tree vec_oprnd0, vec_oprnd1=NULL;
+  tree vec_oprnd0=NULL, vec_oprnd1=NULL;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
-  int i;
-  enum tree_code code;
-  enum machine_mode vec_mode;
-  tree new_temp;
-  int op_type;
-  tree op;
-  optab optab;
-  int icode;
-  enum machine_mode optab_op2_mode;
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
+  tree decl1 = NULL_TREE, decl2 = NULL_TREE;
+  int op_type; 
   tree def, def_stmt;
   tree def, def_stmt;
-  enum vect_def_type dt;
-
-  /* Is STMT a vectorizable binary/unary operation?   */
+  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+  tree new_stmt;
+  stmt_vec_info prev_stmt_info;
+  int nunits_in;
+  int nunits_out;
+  tree vectype_out;
+  int ncopies;
+  int j;
+  tree vectype_in;
+  
   if (!STMT_VINFO_RELEVANT_P (stmt_info))
     return false;
 
   if (!STMT_VINFO_RELEVANT_P (stmt_info))
     return false;
 
-  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
+  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
+    return false;
 
 
+  /* FORNOW: not yet supported.  */
   if (STMT_VINFO_LIVE_P (stmt_info))
     {
   if (STMT_VINFO_LIVE_P (stmt_info))
     {
-      /* FORNOW: not yet supported.  */
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "value used after loop.");
       return false;
     }
 
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "value used after loop.");
       return false;
     }
 
-  if (TREE_CODE (stmt) != MODIFY_EXPR)
+  /* Is STMT a vectorizable type-promotion operation?  */
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
     return false;
 
     return false;
 
-  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
+  if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) != SSA_NAME)
     return false;
 
     return false;
 
-  operation = TREE_OPERAND (stmt, 1);
+  operation = GIMPLE_STMT_OPERAND (stmt, 1);
   code = TREE_CODE (operation);
   code = TREE_CODE (operation);
-  optab = optab_for_tree_code (code, vectype);
+  if (code != NOP_EXPR && code != CONVERT_EXPR
+      && code != WIDEN_MULT_EXPR)
+    return false;
 
 
-  /* Support only unary or binary operations.  */
-  op_type = TREE_CODE_LENGTH (code);
-  if (op_type != unary_op && op_type != binary_op)
+  op0 = TREE_OPERAND (operation, 0);
+  vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op0));
+  nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
+  vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
+  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+  if (nunits_out != nunits_in / 2) /* FORNOW */
+    return false;
+
+  ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+  gcc_assert (ncopies >= 1);
+  /* FORNOW. This restriction should be relaxed.  */
+  if (nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
     {
       if (vect_print_dump_info (REPORT_DETAILS))
     {
       if (vect_print_dump_info (REPORT_DETAILS))
-       fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
+        fprintf (vect_dump, "multiple types in nested loop.");
       return false;
     }
 
       return false;
     }
 
-  for (i = 0; i < op_type; i++)
+  if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
+         && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
+        || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
+            && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
+            && (code == CONVERT_EXPR || code == NOP_EXPR))))
+    return false;
+
+  /* Check the operands of the operation.  */
+  if (!vect_is_simple_use (op0, loop_vinfo, &def_stmt, &def, &dt[0]))
     {
     {
-      op = TREE_OPERAND (operation, i);
-      if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
-       {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "use not simple.");
+      return false;
+    }
+
+  op_type = TREE_CODE_LENGTH (code);
+  if (op_type == binary_op)
+    {
+      op1 = TREE_OPERAND (operation, 1);
+      if (!vect_is_simple_use (op1, loop_vinfo, &def_stmt, &def, &dt[1]))
+        {
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "use not simple.");
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "use not simple.");
-         return false;
-       }       
-    } 
+          return false;
+        }
+    }
 
   /* Supportable by target?  */
 
   /* Supportable by target?  */
-  if (!optab)
+  if (!supportable_widening_operation (code, stmt, vectype_in,
+                                      &decl1, &decl2, &code1, &code2))
+    return false;
+
+  STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
+
+  if (!vec_stmt) /* transformation not required.  */
     {
     {
+      STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
       if (vect_print_dump_info (REPORT_DETAILS))
       if (vect_print_dump_info (REPORT_DETAILS))
-       fprintf (vect_dump, "no optab.");
-      return false;
+        fprintf (vect_dump, "=== vectorizable_promotion ===");
+      vect_model_simple_cost (stmt_info, 2*ncopies, dt);
+      return true;
     }
     }
-  vec_mode = TYPE_MODE (vectype);
-  icode = (int) optab->handlers[(int) vec_mode].insn_code;
-  if (icode == CODE_FOR_nothing)
+
+  /** Transform.  **/
+
+  if (vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "transform type promotion operation. ncopies = %d.",
+                        ncopies);
+
+  /* Handle def.  */
+  vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
+
+  /* In case the vectorization factor (VF) is bigger than the number
+     of elements that we can fit in a vectype (nunits), we have to generate
+     more than one vector stmt - i.e - we need to "unroll" the
+     vector stmt by a factor VF/nunits.   */
+
+  prev_stmt_info = NULL;
+  for (j = 0; j < ncopies; j++)
     {
     {
-      if (vect_print_dump_info (REPORT_DETAILS))
-       fprintf (vect_dump, "op not supported by target.");
-      if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
-          || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
-            < vect_min_worthwhile_factor (code))
-        return false;
-      if (vect_print_dump_info (REPORT_DETAILS))
-       fprintf (vect_dump, "proceeding using word mode.");
+      /* Handle uses.  */
+      if (j == 0)
+        {
+         vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+         if (op_type == binary_op)
+           vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
+        }
+      else
+        {
+         vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
+         if (op_type == binary_op)
+           vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd1);
+        }
+
+      /* Arguments are ready. Create the new vector stmt.  We are creating 
+         two vector defs because the widened result does not fit in one vector.
+         The vectorized stmt can be expressed as a call to a taregt builtin,
+         or a using a tree-code.  */
+      /* Generate first half of the widened result:  */
+      new_stmt = vect_gen_widened_results_half (code1, vectype_out, decl1, 
+                        vec_oprnd0, vec_oprnd1, op_type, vec_dest, bsi, stmt);
+      if (j == 0)
+        STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+      else
+        STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+      prev_stmt_info = vinfo_for_stmt (new_stmt);
+
+      /* Generate second half of the widened result:  */
+      new_stmt = vect_gen_widened_results_half (code2, vectype_out, decl2,
+                        vec_oprnd0, vec_oprnd1, op_type, vec_dest, bsi, stmt);
+      STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+      prev_stmt_info = vinfo_for_stmt (new_stmt);
+
     }
 
     }
 
-  /* Worthwhile without SIMD support?  */
-  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
-      && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
-        < vect_min_worthwhile_factor (code))
+  *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+  return true;
+}
+
+
+/* Function vect_strided_store_supported.
+
+   Returns TRUE is INTERLEAVE_HIGH and INTERLEAVE_LOW operations are supported,
+   and FALSE otherwise.  */
+
+static bool
+vect_strided_store_supported (tree vectype)
+{
+  optab interleave_high_optab, interleave_low_optab;
+  int mode;
+
+  mode = (int) TYPE_MODE (vectype);
+      
+  /* Check that the operation is supported.  */
+  interleave_high_optab = optab_for_tree_code (VEC_INTERLEAVE_HIGH_EXPR, 
+                                              vectype);
+  interleave_low_optab = optab_for_tree_code (VEC_INTERLEAVE_LOW_EXPR, 
+                                             vectype);
+  if (!interleave_high_optab || !interleave_low_optab)
     {
       if (vect_print_dump_info (REPORT_DETAILS))
     {
       if (vect_print_dump_info (REPORT_DETAILS))
-       fprintf (vect_dump, "not worthwhile without SIMD support.");
+       fprintf (vect_dump, "no optab for interleave.");
       return false;
     }
 
       return false;
     }
 
-  if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
+  if (optab_handler (interleave_high_optab, mode)->insn_code 
+      == CODE_FOR_nothing
+      || optab_handler (interleave_low_optab, mode)->insn_code 
+      == CODE_FOR_nothing)
     {
     {
-      /* FORNOW: not yet supported.  */
-      if (!VECTOR_MODE_P (vec_mode))
-       return false;
-
-      /* Invariant argument is needed for a vector shift
-        by a scalar shift operand.  */
-      optab_op2_mode = insn_data[icode].operand[2].mode;
-      if (! (VECTOR_MODE_P (optab_op2_mode)
-            || dt == vect_constant_def
-            || dt == vect_invariant_def))
-       {
-         if (vect_print_dump_info (REPORT_DETAILS))
-           fprintf (vect_dump, "operand mode requires invariant argument.");
-         return false;
-       }
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "interleave op not supported by target.");
+      return false;
     }
     }
+  return true;
+}
 
 
-  if (!vec_stmt) /* transformation not required.  */
-    {
-      STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
-      return true;
-    }
 
 
-  /** Transform.  **/
+/* Function vect_permute_store_chain.
 
 
-  if (vect_print_dump_info (REPORT_DETAILS))
-    fprintf (vect_dump, "transform binary/unary operation.");
+   Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
+   a power of 2, generate interleave_high/low stmts to reorder the data 
+   correctly for the stores. Return the final references for stores in
+   RESULT_CHAIN.
 
 
-  /* Handle def.  */
-  scalar_dest = TREE_OPERAND (stmt, 0);
-  vec_dest = vect_create_destination_var (scalar_dest, vectype);
+   E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
+   The input is 4 vectors each containing 8 elements. We assign a number to each
+   element, the input sequence is:
 
 
-  /* Handle uses.  */
-  op0 = TREE_OPERAND (operation, 0);
-  vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+   1st vec:   0  1  2  3  4  5  6  7
+   2nd vec:   8  9 10 11 12 13 14 15
+   3rd vec:  16 17 18 19 20 21 22 23 
+   4th vec:  24 25 26 27 28 29 30 31
 
 
-  if (op_type == binary_op)
-    {
-      op1 = TREE_OPERAND (operation, 1);
+   The output sequence should be:
 
 
-      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
-       {
-         /* Vector shl and shr insn patterns can be defined with
-            scalar operand 2 (shift operand).  In this case, use
-            constant or loop invariant op1 directly, without
-            extending it to vector mode first.  */
+   1st vec:  0  8 16 24  1  9 17 25
+   2nd vec:  2 10 18 26  3 11 19 27
+   3rd vec:  4 12 20 28  5 13 21 30
+   4th vec:  6 14 22 30  7 15 23 31
 
 
-         optab_op2_mode = insn_data[icode].operand[2].mode;
-         if (!VECTOR_MODE_P (optab_op2_mode))
-           {
-             if (vect_print_dump_info (REPORT_DETAILS))
-               fprintf (vect_dump, "operand 1 using scalar mode.");
-             vec_oprnd1 = op1;
-           }
-       }
+   i.e., we interleave the contents of the four vectors in their order.
 
 
-      if (!vec_oprnd1)
-       vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL); 
-    }
+   We use interleave_high/low instructions to create such output. The input of 
+   each interleave_high/low operation is two vectors:
+   1st vec    2nd vec 
+   0 1 2 3    4 5 6 7 
+   the even elements of the result vector are obtained left-to-right from the 
+   high/low elements of the first vector. The odd elements of the result are 
+   obtained left-to-right from the high/low elements of the second vector.
+   The output of interleave_high will be:   0 4 1 5
+   and of interleave_low:                   2 6 3 7
 
 
-  /* Arguments are ready. create the new vector stmt.  */
+   
+   The permutation is done in log LENGTH stages. In each stage interleave_high
+   and interleave_low stmts are created for each pair of vectors in DR_CHAIN, 
+   where the first argument is taken from the first half of DR_CHAIN and the 
+   second argument from it's second half. 
+   In our example, 
+
+   I1: interleave_high (1st vec, 3rd vec)
+   I2: interleave_low (1st vec, 3rd vec)
+   I3: interleave_high (2nd vec, 4th vec)
+   I4: interleave_low (2nd vec, 4th vec)
+
+   The output for the first stage is:
+
+   I1:  0 16  1 17  2 18  3 19
+   I2:  4 20  5 21  6 22  7 23
+   I3:  8 24  9 25 10 26 11 27
+   I4: 12 28 13 29 14 30 15 31
+
+   The output of the second stage, i.e. the final result is:
+
+   I1:  0  8 16 24  1  9 17 25
+   I2:  2 10 18 26  3 11 19 27
+   I3:  4 12 20 28  5 13 21 30
+   I4:  6 14 22 30  7 15 23 31.  */
+static bool
+vect_permute_store_chain (VEC(tree,heap) *dr_chain, 
+                         unsigned int length, 
+                         tree stmt, 
+                         block_stmt_iterator *bsi,
+                         VEC(tree,heap) **result_chain)
+{
+  tree perm_dest, perm_stmt, vect1, vect2, high, low;
+  tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+  tree scalar_dest, tmp;
+  int i;
+  unsigned int j;
+  VEC(tree,heap) *first, *second;
+  
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
+  first = VEC_alloc (tree, heap, length/2);
+  second = VEC_alloc (tree, heap, length/2);
 
 
-  if (op_type == binary_op)
-    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
-               build2 (code, vectype, vec_oprnd0, vec_oprnd1));
-  else
-    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
-               build1 (code, vectype, vec_oprnd0));
-  new_temp = make_ssa_name (vec_dest, *vec_stmt);
-  TREE_OPERAND (*vec_stmt, 0) = new_temp;
-  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+  /* Check that the operation is supported.  */
+  if (!vect_strided_store_supported (vectype))
+    return false;
+
+  *result_chain = VEC_copy (tree, heap, dr_chain);
 
 
+  for (i = 0; i < exact_log2 (length); i++)
+    {
+      for (j = 0; j < length/2; j++)
+       {
+         vect1 = VEC_index (tree, dr_chain, j);
+         vect2 = VEC_index (tree, dr_chain, j+length/2);
+
+         /* Create interleaving stmt:
+            in the case of big endian: 
+                                high = interleave_high (vect1, vect2) 
+             and in the case of little endian: 
+                                high = interleave_low (vect1, vect2).  */
+         perm_dest = create_tmp_var (vectype, "vect_inter_high");
+         DECL_GIMPLE_REG_P (perm_dest) = 1;
+         add_referenced_var (perm_dest);
+          if (BYTES_BIG_ENDIAN)
+           tmp = build2 (VEC_INTERLEAVE_HIGH_EXPR, vectype, vect1, vect2); 
+         else
+           tmp = build2 (VEC_INTERLEAVE_LOW_EXPR, vectype, vect1, vect2);
+         perm_stmt = build_gimple_modify_stmt (perm_dest, tmp);
+         high = make_ssa_name (perm_dest, perm_stmt);
+         GIMPLE_STMT_OPERAND (perm_stmt, 0) = high;
+         vect_finish_stmt_generation (stmt, perm_stmt, bsi);
+         VEC_replace (tree, *result_chain, 2*j, high);
+
+         /* Create interleaving stmt:
+             in the case of big endian:
+                               low  = interleave_low (vect1, vect2) 
+             and in the case of little endian:
+                               low  = interleave_high (vect1, vect2).  */     
+         perm_dest = create_tmp_var (vectype, "vect_inter_low");
+         DECL_GIMPLE_REG_P (perm_dest) = 1;
+         add_referenced_var (perm_dest);
+         if (BYTES_BIG_ENDIAN)
+           tmp = build2 (VEC_INTERLEAVE_LOW_EXPR, vectype, vect1, vect2);
+         else
+           tmp = build2 (VEC_INTERLEAVE_HIGH_EXPR, vectype, vect1, vect2);
+         perm_stmt = build_gimple_modify_stmt (perm_dest, tmp);
+         low = make_ssa_name (perm_dest, perm_stmt);
+         GIMPLE_STMT_OPERAND (perm_stmt, 0) = low;
+         vect_finish_stmt_generation (stmt, perm_stmt, bsi);
+         VEC_replace (tree, *result_chain, 2*j+1, low);
+       }
+      dr_chain = VEC_copy (tree, heap, *result_chain);
+    }
   return true;
 }
 
   return true;
 }
 
@@ -1509,29 +4251,63 @@ vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
   tree scalar_dest;
   tree data_ref;
   tree op;
   tree scalar_dest;
   tree data_ref;
   tree op;
-  tree vec_oprnd1;
+  tree vec_oprnd = NULL_TREE;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   enum machine_mode vec_mode;
   tree dummy;
   enum machine_mode vec_mode;
   tree dummy;
-  enum dr_alignment_support alignment_support_cheme;
-  ssa_op_iter iter;
+  enum dr_alignment_support alignment_support_scheme;
   tree def, def_stmt;
   enum vect_def_type dt;
   tree def, def_stmt;
   enum vect_def_type dt;
+  stmt_vec_info prev_stmt_info = NULL;
+  tree dataref_ptr = NULL_TREE;
+  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+  int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+  int j;
+  tree next_stmt, first_stmt;
+  bool strided_store = false;
+  unsigned int group_size, i;
+  VEC(tree,heap) *dr_chain = NULL, *oprnds = NULL, *result_chain = NULL;
+  bool inv_p;
+
+  gcc_assert (ncopies >= 1);
+
+  /* FORNOW. This restriction should be relaxed.  */
+  if (nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "multiple types in nested loop.");
+      return false;
+    }
+
+  if (!STMT_VINFO_RELEVANT_P (stmt_info))
+    return false;
+
+  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
+    return false;
+
+  if (STMT_VINFO_LIVE_P (stmt_info))
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "value used after loop.");
+      return false;
+    }
 
   /* Is vectorizable store? */
 
 
   /* Is vectorizable store? */
 
-  if (TREE_CODE (stmt) != MODIFY_EXPR)
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
     return false;
 
     return false;
 
-  scalar_dest = TREE_OPERAND (stmt, 0);
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
   if (TREE_CODE (scalar_dest) != ARRAY_REF
   if (TREE_CODE (scalar_dest) != ARRAY_REF
-      && TREE_CODE (scalar_dest) != INDIRECT_REF)
+      && TREE_CODE (scalar_dest) != INDIRECT_REF
+      && !DR_GROUP_FIRST_DR (stmt_info))
     return false;
 
     return false;
 
-  op = TREE_OPERAND (stmt, 1);
+  op = GIMPLE_STMT_OPERAND (stmt, 1);
   if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
     {
       if (vect_print_dump_info (REPORT_DETAILS))
   if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
     {
       if (vect_print_dump_info (REPORT_DETAILS))
@@ -1542,57 +4318,700 @@ vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
   vec_mode = TYPE_MODE (vectype);
   /* FORNOW. In some cases can vectorize even if data-type not supported
      (e.g. - array initialization with 0).  */
   vec_mode = TYPE_MODE (vectype);
   /* FORNOW. In some cases can vectorize even if data-type not supported
      (e.g. - array initialization with 0).  */
-  if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
+  if (optab_handler (mov_optab, (int)vec_mode)->insn_code == CODE_FOR_nothing)
     return false;
 
   if (!STMT_VINFO_DATA_REF (stmt_info))
     return false;
 
     return false;
 
   if (!STMT_VINFO_DATA_REF (stmt_info))
     return false;
 
+  if (DR_GROUP_FIRST_DR (stmt_info))
+    {
+      strided_store = true;
+      if (!vect_strided_store_supported (vectype))
+       return false;      
+    }
 
   if (!vec_stmt) /* transformation not required.  */
     {
       STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
 
   if (!vec_stmt) /* transformation not required.  */
     {
       STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
+      vect_model_store_cost (stmt_info, ncopies, dt);
       return true;
     }
 
   /** Transform.  **/
 
       return true;
     }
 
   /** Transform.  **/
 
+  if (strided_store)
+    {
+      first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+      first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+      group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
+
+      DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
+
+      /* FORNOW */
+      gcc_assert (!nested_in_vect_loop_p (loop, stmt));
+
+      /* We vectorize all the stmts of the interleaving group when we
+        reach the last stmt in the group.  */
+      if (DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt)) 
+         < DR_GROUP_SIZE (vinfo_for_stmt (first_stmt)))
+       {
+         *vec_stmt = NULL_TREE;
+         return true;
+       }
+    }
+  else 
+    {
+      first_stmt = stmt;
+      first_dr = dr;
+      group_size = 1;
+    }
+  
   if (vect_print_dump_info (REPORT_DETAILS))
   if (vect_print_dump_info (REPORT_DETAILS))
-    fprintf (vect_dump, "transform store");
+    fprintf (vect_dump, "transform store. ncopies = %d",ncopies);
+
+  dr_chain = VEC_alloc (tree, heap, group_size);
+  oprnds = VEC_alloc (tree, heap, group_size);
+
+  alignment_support_scheme = vect_supportable_dr_alignment (first_dr);
+  gcc_assert (alignment_support_scheme);
+  gcc_assert (alignment_support_scheme == dr_aligned);  /* FORNOW */
+
+  /* In case the vectorization factor (VF) is bigger than the number
+     of elements that we can fit in a vectype (nunits), we have to generate
+     more than one vector stmt - i.e - we need to "unroll" the
+     vector stmt by a factor VF/nunits.  For more details see documentation in 
+     vect_get_vec_def_for_copy_stmt.  */
+
+  /* In case of interleaving (non-unit strided access):
+
+        S1:  &base + 2 = x2
+        S2:  &base = x0
+        S3:  &base + 1 = x1
+        S4:  &base + 3 = x3
+
+     We create vectorized stores starting from base address (the access of the
+     first stmt in the chain (S2 in the above example), when the last store stmt
+     of the chain (S4) is reached:
+
+        VS1: &base = vx2
+       VS2: &base + vec_size*1 = vx0
+       VS3: &base + vec_size*2 = vx1
+       VS4: &base + vec_size*3 = vx3
+
+     Then permutation statements are generated:
+
+        VS5: vx5 = VEC_INTERLEAVE_HIGH_EXPR < vx0, vx3 >
+        VS6: vx6 = VEC_INTERLEAVE_LOW_EXPR < vx0, vx3 >
+       ...
+       
+     And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
+     (the order of the data-refs in the output of vect_permute_store_chain
+     corresponds to the order of scalar stmts in the interleaving chain - see
+     the documentation of vect_permute_store_chain()).
+
+     In case of both multiple types and interleaving, above vector stores and
+     permutation stmts are created for every copy. The result vector stmts are
+     put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
+     STMT_VINFO_RELATED_STMT for the next copies.     
+  */
+
+  prev_stmt_info = NULL;
+  for (j = 0; j < ncopies; j++)
+    {
+      tree new_stmt;
+      tree ptr_incr;
+
+      if (j == 0)
+       {
+         /* For interleaved stores we collect vectorized defs for all the 
+            stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then used
+            as an input to vect_permute_store_chain(), and OPRNDS as an input
+            to vect_get_vec_def_for_stmt_copy() for the next copy.
+            If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
+            OPRNDS are of size 1.  */
+         next_stmt = first_stmt;         
+         for (i = 0; i < group_size; i++)
+           {
+             /* Since gaps are not supported for interleaved stores, GROUP_SIZE
+                is the exact number of stmts in the chain. Therefore, NEXT_STMT
+                can't be NULL_TREE.  In case that there is no interleaving, 
+                GROUP_SIZE is 1, and only one iteration of the loop will be 
+                executed.  */
+             gcc_assert (next_stmt);
+             op = GIMPLE_STMT_OPERAND (next_stmt, 1);
+             vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt, NULL);
+             VEC_quick_push(tree, dr_chain, vec_oprnd); 
+             VEC_quick_push(tree, oprnds, vec_oprnd); 
+             next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
+           }
+         dataref_ptr = vect_create_data_ref_ptr (first_stmt, NULL, NULL_TREE, 
+                                                 &dummy, &ptr_incr, false,
+                                                 TREE_TYPE (vec_oprnd), &inv_p);
+         gcc_assert (!inv_p);
+       }
+      else 
+       {
+         /* For interleaved stores we created vectorized defs for all the 
+            defs stored in OPRNDS in the previous iteration (previous copy). 
+            DR_CHAIN is then used as an input to vect_permute_store_chain(), 
+            and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
+            next copy.
+            If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
+            OPRNDS are of size 1.  */
+         for (i = 0; i < group_size; i++)
+           {
+             vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, 
+                                                  VEC_index (tree, oprnds, i));
+             VEC_replace(tree, dr_chain, i, vec_oprnd);
+             VEC_replace(tree, oprnds, i, vec_oprnd);
+           }
+         dataref_ptr = 
+               bump_vector_ptr (dataref_ptr, ptr_incr, bsi, stmt, NULL_TREE);
+       }
 
 
-  alignment_support_cheme = vect_supportable_dr_alignment (dr);
-  gcc_assert (alignment_support_cheme);
-  gcc_assert (alignment_support_cheme == dr_aligned);  /* FORNOW */
+      if (strided_store)
+       {
+         result_chain = VEC_alloc (tree, heap, group_size);     
+         /* Permute.  */
+         if (!vect_permute_store_chain (dr_chain, group_size, stmt, bsi, 
+                                        &result_chain))
+           return false;
+       }
 
 
-  /* Handle use - get the vectorized def from the defining stmt.  */
-  vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt, NULL);
+      next_stmt = first_stmt;
+      for (i = 0; i < group_size; i++)
+       {
+         /* For strided stores vectorized defs are interleaved in 
+            vect_permute_store_chain().  */
+         if (strided_store)
+           vec_oprnd = VEC_index(tree, result_chain, i);
+
+         data_ref = build_fold_indirect_ref (dataref_ptr);
+         /* Arguments are ready. Create the new vector stmt.  */
+         new_stmt = build_gimple_modify_stmt (data_ref, vec_oprnd);
+         vect_finish_stmt_generation (stmt, new_stmt, bsi);
+         mark_symbols_for_renaming (new_stmt);
+         
+          if (j == 0)
+            STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt =  new_stmt;
+         else
+           STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+         prev_stmt_info = vinfo_for_stmt (new_stmt);
+         next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
+         if (!next_stmt)
+           break;
+         /* Bump the vector pointer.  */
+         dataref_ptr = 
+               bump_vector_ptr (dataref_ptr, ptr_incr, bsi, stmt, NULL_TREE);
+       }
+    }
 
 
-  /* Handle def.  */
-  /* FORNOW: make sure the data reference is aligned.  */
-  vect_align_data_ref (stmt);
-  data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
-  data_ref = build_fold_indirect_ref (data_ref);
+  return true;
+}
 
 
-  /* Arguments are ready. create the new vector stmt.  */
-  *vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
-  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
 
 
-  /* Copy the V_MAY_DEFS representing the aliasing of the original array
-     element's definition to the vector's definition then update the
-     defining statement.  The original is being deleted so the same
-     SSA_NAMEs can be used.  */
-  copy_virtual_operands (*vec_stmt, stmt);
+/* Function vect_setup_realignment
+  
+   This function is called when vectorizing an unaligned load using
+   the dr_explicit_realign[_optimized] scheme.
+   This function generates the following code at the loop prolog:
+
+      p = initial_addr;
+   x  msq_init = *(floor(p));   # prolog load
+      realignment_token = call target_builtin; 
+    loop:
+   x  msq = phi (msq_init, ---)
+
+   The stmts marked with x are generated only for the case of 
+   dr_explicit_realign_optimized.
+
+   The code above sets up a new (vector) pointer, pointing to the first 
+   location accessed by STMT, and a "floor-aligned" load using that pointer.
+   It also generates code to compute the "realignment-token" (if the relevant
+   target hook was defined), and creates a phi-node at the loop-header bb
+   whose arguments are the result of the prolog-load (created by this
+   function) and the result of a load that takes place in the loop (to be
+   created by the caller to this function).
+
+   For the case of dr_explicit_realign_optimized:
+   The caller to this function uses the phi-result (msq) to create the 
+   realignment code inside the loop, and sets up the missing phi argument,
+   as follows:
+    loop: 
+      msq = phi (msq_init, lsq)
+      lsq = *(floor(p'));        # load in loop
+      result = realign_load (msq, lsq, realignment_token);
+
+   For the case of dr_explicit_realign:
+    loop:
+      msq = *(floor(p));       # load in loop
+      p' = p + (VS-1);
+      lsq = *(floor(p'));      # load in loop
+      result = realign_load (msq, lsq, realignment_token);
+
+   Input:
+   STMT - (scalar) load stmt to be vectorized. This load accesses
+          a memory location that may be unaligned.
+   BSI - place where new code is to be inserted.
+   ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
+                             is used.  
+   
+   Output:
+   REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
+                       target hook, if defined.
+   Return value - the result of the loop-header phi node.  */
+
+static tree
+vect_setup_realignment (tree stmt, block_stmt_iterator *bsi,
+                        tree *realignment_token,
+                       enum dr_alignment_support alignment_support_scheme,
+                       tree init_addr,
+                       struct loop **at_loop)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  edge pe;
+  tree scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
+  tree vec_dest;
+  tree inc;
+  tree ptr;
+  tree data_ref;
+  tree new_stmt;
+  basic_block new_bb;
+  tree msq_init = NULL_TREE;
+  tree new_temp;
+  tree phi_stmt;
+  tree msq = NULL_TREE;
+  tree stmts = NULL_TREE;
+  bool inv_p;
+  bool compute_in_loop = false;
+  bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+  struct loop *containing_loop = (bb_for_stmt (stmt))->loop_father;
+  struct loop *loop_for_initial_load;
+
+  gcc_assert (alignment_support_scheme == dr_explicit_realign
+             || alignment_support_scheme == dr_explicit_realign_optimized);
+
+  /* We need to generate three things:
+     1. the misalignment computation
+     2. the extra vector load (for the optimized realignment scheme).
+     3. the phi node for the two vectors from which the realignment is
+      done (for the optimized realignment scheme).
+   */
+
+  /* 1. Determine where to generate the misalignment computation.
+
+     If INIT_ADDR is NULL_TREE, this indicates that the misalignment
+     calculation will be generated by this function, outside the loop (in the
+     preheader).  Otherwise, INIT_ADDR had already been computed for us by the
+     caller, inside the loop.
+
+     Background: If the misalignment remains fixed throughout the iterations of
+     the loop, then both realignment schemes are applicable, and also the
+     misalignment computation can be done outside LOOP.  This is because we are
+     vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
+     are a multiple of VS (the Vector Size), and therefore the misalignment in
+     different vectorized LOOP iterations is always the same.
+     The problem arises only if the memory access is in an inner-loop nested
+     inside LOOP, which is now being vectorized using outer-loop vectorization.
+     This is the only case when the misalignment of the memory access may not
+     remain fixed thtoughout the iterations of the inner-loop (as exaplained in
+     detail in vect_supportable_dr_alignment).  In this case, not only is the
+     optimized realignment scheme not applicable, but also the misalignment
+     computation (and generation of the realignment token that is passed to
+     REALIGN_LOAD) have to be done inside the loop.
+
+     In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
+     or not, which in turn determines if the misalignment is computed inside
+     the inner-loop, or outside LOOP.  */
+
+  if (init_addr != NULL_TREE)
+    {
+      compute_in_loop = true;
+      gcc_assert (alignment_support_scheme == dr_explicit_realign);
+    }
+
+
+  /* 2. Determine where to generate the extra vector load.
+
+     For the optimized realignment scheme, instead of generating two vector
+     loads in each iteration, we generate a single extra vector load in the
+     preheader of the loop, and in each iteration reuse the result of the
+     vector load from the previous iteration.  In case the memory access is in
+     an inner-loop nested inside LOOP, which is now being vectorized using
+     outer-loop vectorization, we need to determine whether this initial vector
+     load should be generated at the preheader of the inner-loop, or can be
+     generated at the preheader of LOOP.  If the memory access has no evolution
+     in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
+     to be generated inside LOOP (in the preheader of the inner-loop).  */
+
+  if (nested_in_vect_loop)
+    {
+      tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
+      bool invariant_in_outerloop =
+            (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
+      loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
+    }
+  else
+    loop_for_initial_load = loop;
+  if (at_loop)
+    *at_loop = loop_for_initial_load;
+
+  /* 3. For the case of the optimized realignment, create the first vector
+      load at the loop preheader.  */
+
+  if (alignment_support_scheme == dr_explicit_realign_optimized)
+    {
+      /* Create msq_init = *(floor(p1)) in the loop preheader  */
+
+      gcc_assert (!compute_in_loop);
+      pe = loop_preheader_edge (loop_for_initial_load);
+      vec_dest = vect_create_destination_var (scalar_dest, vectype);
+      ptr = vect_create_data_ref_ptr (stmt, loop_for_initial_load, NULL_TREE,
+                               &init_addr, &inc, true, NULL_TREE, &inv_p);
+      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, ptr);
+      new_stmt = build_gimple_modify_stmt (vec_dest, data_ref);
+      new_temp = make_ssa_name (vec_dest, new_stmt);
+      GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+      new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
+      gcc_assert (!new_bb);
+      msq_init = GIMPLE_STMT_OPERAND (new_stmt, 0);
+    }
+
+  /* 4. Create realignment token using a target builtin, if available.
+      It is done either inside the containing loop, or before LOOP (as
+      determined above).  */
+
+  if (targetm.vectorize.builtin_mask_for_load)
+    {
+      tree builtin_decl;
+
+      /* Compute INIT_ADDR - the initial addressed accessed by this memref.  */
+      if (compute_in_loop)
+       gcc_assert (init_addr); /* already computed by the caller.  */
+      else
+       {
+         /* Generate the INIT_ADDR computation outside LOOP.  */
+         init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
+                                                       NULL_TREE, loop);
+         pe = loop_preheader_edge (loop);
+         new_bb = bsi_insert_on_edge_immediate (pe, stmts);
+         gcc_assert (!new_bb);
+       }
+
+      builtin_decl = targetm.vectorize.builtin_mask_for_load ();
+      new_stmt = build_call_expr (builtin_decl, 1, init_addr);
+      vec_dest = vect_create_destination_var (scalar_dest, 
+                                             TREE_TYPE (new_stmt));
+      new_stmt = build_gimple_modify_stmt (vec_dest, new_stmt);
+      new_temp = make_ssa_name (vec_dest, new_stmt);
+      GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+
+      if (compute_in_loop)
+       bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
+      else
+       {
+         /* Generate the misalignment computation outside LOOP.  */
+         pe = loop_preheader_edge (loop);
+         new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
+         gcc_assert (!new_bb);
+       }
+
+      *realignment_token = GIMPLE_STMT_OPERAND (new_stmt, 0);
+
+      /* The result of the CALL_EXPR to this builtin is determined from
+         the value of the parameter and no global variables are touched
+         which makes the builtin a "const" function.  Requiring the
+         builtin to have the "const" attribute makes it unnecessary
+         to call mark_call_clobbered.  */
+      gcc_assert (TREE_READONLY (builtin_decl));
+    }
+
+  if (alignment_support_scheme == dr_explicit_realign)
+    return msq;
+
+  gcc_assert (!compute_in_loop);
+  gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
+
+
+  /* 5. Create msq = phi <msq_init, lsq> in loop  */
+
+  pe = loop_preheader_edge (containing_loop);
+  vec_dest = vect_create_destination_var (scalar_dest, vectype);
+  msq = make_ssa_name (vec_dest, NULL_TREE);
+  phi_stmt = create_phi_node (msq, containing_loop->header);
+  SSA_NAME_DEF_STMT (msq) = phi_stmt;
+  add_phi_arg (phi_stmt, msq_init, pe);
+
+  return msq;
+}
+
+
+/* Function vect_strided_load_supported.
+
+   Returns TRUE is EXTRACT_EVEN and EXTRACT_ODD operations are supported,
+   and FALSE otherwise.  */
+
+static bool
+vect_strided_load_supported (tree vectype)
+{
+  optab perm_even_optab, perm_odd_optab;
+  int mode;
+
+  mode = (int) TYPE_MODE (vectype);
+
+  perm_even_optab = optab_for_tree_code (VEC_EXTRACT_EVEN_EXPR, vectype);
+  if (!perm_even_optab)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "no optab for perm_even.");
+      return false;
+    }
+
+  if (optab_handler (perm_even_optab, mode)->insn_code == CODE_FOR_nothing)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "perm_even op not supported by target.");
+      return false;
+    }
+
+  perm_odd_optab = optab_for_tree_code (VEC_EXTRACT_ODD_EXPR, vectype);
+  if (!perm_odd_optab)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "no optab for perm_odd.");
+      return false;
+    }
+
+  if (optab_handler (perm_odd_optab, mode)->insn_code == CODE_FOR_nothing)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+       fprintf (vect_dump, "perm_odd op not supported by target.");
+      return false;
+    }
+  return true;
+}
+
+
+/* Function vect_permute_load_chain.
+
+   Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
+   a power of 2, generate extract_even/odd stmts to reorder the input data 
+   correctly. Return the final references for loads in RESULT_CHAIN.
+
+   E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
+   The input is 4 vectors each containing 8 elements. We assign a number to each
+   element, the input sequence is:
+
+   1st vec:   0  1  2  3  4  5  6  7
+   2nd vec:   8  9 10 11 12 13 14 15
+   3rd vec:  16 17 18 19 20 21 22 23 
+   4th vec:  24 25 26 27 28 29 30 31
+
+   The output sequence should be:
+
+   1st vec:  0 4  8 12 16 20 24 28
+   2nd vec:  1 5  9 13 17 21 25 29
+   3rd vec:  2 6 10 14 18 22 26 30 
+   4th vec:  3 7 11 15 19 23 27 31
+
+   i.e., the first output vector should contain the first elements of each
+   interleaving group, etc.
+
+   We use extract_even/odd instructions to create such output. The input of each
+   extract_even/odd operation is two vectors
+   1st vec    2nd vec 
+   0 1 2 3    4 5 6 7 
+
+   and the output is the vector of extracted even/odd elements. The output of 
+   extract_even will be:   0 2 4 6
+   and of extract_odd:     1 3 5 7
+
+   
+   The permutation is done in log LENGTH stages. In each stage extract_even and
+   extract_odd stmts are created for each pair of vectors in DR_CHAIN in their 
+   order. In our example, 
+
+   E1: extract_even (1st vec, 2nd vec)
+   E2: extract_odd (1st vec, 2nd vec)
+   E3: extract_even (3rd vec, 4th vec)
+   E4: extract_odd (3rd vec, 4th vec)
+
+   The output for the first stage will be:
+
+   E1:  0  2  4  6  8 10 12 14
+   E2:  1  3  5  7  9 11 13 15
+   E3: 16 18 20 22 24 26 28 30 
+   E4: 17 19 21 23 25 27 29 31
+
+   In order to proceed and create the correct sequence for the next stage (or
+   for the correct output, if the second stage is the last one, as in our 
+   example), we first put the output of extract_even operation and then the 
+   output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
+   The input for the second stage is:
+
+   1st vec (E1):  0  2  4  6  8 10 12 14
+   2nd vec (E3): 16 18 20 22 24 26 28 30  
+   3rd vec (E2):  1  3  5  7  9 11 13 15    
+   4th vec (E4): 17 19 21 23 25 27 29 31
+
+   The output of the second stage:
 
 
-  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_VMAYDEF)
+   E1: 0 4  8 12 16 20 24 28
+   E2: 2 6 10 14 18 22 26 30
+   E3: 1 5  9 13 17 21 25 29
+   E4: 3 7 11 15 19 23 27 31
+
+   And RESULT_CHAIN after reordering:
+
+   1st vec (E1):  0 4  8 12 16 20 24 28
+   2nd vec (E3):  1 5  9 13 17 21 25 29
+   3rd vec (E2):  2 6 10 14 18 22 26 30 
+   4th vec (E4):  3 7 11 15 19 23 27 31.  */
+
+static bool
+vect_permute_load_chain (VEC(tree,heap) *dr_chain, 
+                        unsigned int length, 
+                        tree stmt, 
+                        block_stmt_iterator *bsi,
+                        VEC(tree,heap) **result_chain)
+{
+  tree perm_dest, perm_stmt, data_ref, first_vect, second_vect;
+  tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+  tree tmp;
+  int i;
+  unsigned int j;
+
+  /* Check that the operation is supported.  */
+  if (!vect_strided_load_supported (vectype))
+    return false;
+
+  *result_chain = VEC_copy (tree, heap, dr_chain);
+  for (i = 0; i < exact_log2 (length); i++)
     {
     {
-      SSA_NAME_DEF_STMT (def) = *vec_stmt;
+      for (j = 0; j < length; j +=2)
+       {
+         first_vect = VEC_index (tree, dr_chain, j);
+         second_vect = VEC_index (tree, dr_chain, j+1);
+
+         /* data_ref = permute_even (first_data_ref, second_data_ref);  */
+         perm_dest = create_tmp_var (vectype, "vect_perm_even");
+         DECL_GIMPLE_REG_P (perm_dest) = 1;
+         add_referenced_var (perm_dest);
 
 
-      /* If this virtual def has a use outside the loop and a loop peel is 
-        performed then the def may be renamed by the peel.  Mark it for 
-        renaming so the later use will also be renamed.  */
-      mark_sym_for_renaming (SSA_NAME_VAR (def));
+         tmp = build2 (VEC_EXTRACT_EVEN_EXPR, vectype,
+                       first_vect, second_vect);
+         perm_stmt = build_gimple_modify_stmt (perm_dest, tmp);
+
+         data_ref = make_ssa_name (perm_dest, perm_stmt);
+         GIMPLE_STMT_OPERAND (perm_stmt, 0) = data_ref;
+         vect_finish_stmt_generation (stmt, perm_stmt, bsi);
+         mark_symbols_for_renaming (perm_stmt);
+
+         VEC_replace (tree, *result_chain, j/2, data_ref);           
+             
+         /* data_ref = permute_odd (first_data_ref, second_data_ref);  */
+         perm_dest = create_tmp_var (vectype, "vect_perm_odd");
+         DECL_GIMPLE_REG_P (perm_dest) = 1;
+         add_referenced_var (perm_dest);
+
+         tmp = build2 (VEC_EXTRACT_ODD_EXPR, vectype, 
+                       first_vect, second_vect);
+         perm_stmt = build_gimple_modify_stmt (perm_dest, tmp);
+         data_ref = make_ssa_name (perm_dest, perm_stmt);
+         GIMPLE_STMT_OPERAND (perm_stmt, 0) = data_ref;
+         vect_finish_stmt_generation (stmt, perm_stmt, bsi);
+         mark_symbols_for_renaming (perm_stmt);
+
+         VEC_replace (tree, *result_chain, j/2+length/2, data_ref);
+       }
+      dr_chain = VEC_copy (tree, heap, *result_chain);
     }
     }
+  return true;
+}
+
+
+/* Function vect_transform_strided_load.
+
+   Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
+   to perform their permutation and ascribe the result vectorized statements to
+   the scalar statements.
+*/
+
+static bool
+vect_transform_strided_load (tree stmt, VEC(tree,heap) *dr_chain, int size,
+                            block_stmt_iterator *bsi)
+{
+  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  tree first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+  tree next_stmt, new_stmt;
+  VEC(tree,heap) *result_chain = NULL;
+  unsigned int i, gap_count;
+  tree tmp_data_ref;
+
+  /* DR_CHAIN contains input data-refs that are a part of the interleaving. 
+     RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted 
+     vectors, that are ready for vector computation.  */
+  result_chain = VEC_alloc (tree, heap, size);
+  /* Permute.  */
+  if (!vect_permute_load_chain (dr_chain, size, stmt, bsi, &result_chain))
+    return false;
+
+  /* Put a permuted data-ref in the VECTORIZED_STMT field.  
+     Since we scan the chain starting from it's first node, their order 
+     corresponds the order of data-refs in RESULT_CHAIN.  */
+  next_stmt = first_stmt;
+  gap_count = 1;
+  for (i = 0; VEC_iterate (tree, result_chain, i, tmp_data_ref); i++)
+    {
+      if (!next_stmt)
+       break;
+
+      /* Skip the gaps. Loads created for the gaps will be removed by dead
+       code elimination pass later.
+       DR_GROUP_GAP is the number of steps in elements from the previous
+       access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
+       correspond to the gaps.
+      */
+      if (gap_count < DR_GROUP_GAP (vinfo_for_stmt (next_stmt)))
+      {
+        gap_count++;
+        continue;
+      }
 
 
+      while (next_stmt)
+        {
+         new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
+         /* We assume that if VEC_STMT is not NULL, this is a case of multiple
+            copies, and we put the new vector statement in the first available
+            RELATED_STMT.  */
+         if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
+           STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
+         else
+            {
+             tree prev_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
+             tree rel_stmt = STMT_VINFO_RELATED_STMT (
+                                                      vinfo_for_stmt (prev_stmt));
+             while (rel_stmt)
+               {
+                 prev_stmt = rel_stmt;
+                 rel_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
+               }
+             STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) = new_stmt;
+            }
+         next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
+         gap_count = 1;
+         /* If NEXT_STMT accesses the same DR as the previous statement,
+            put the same TMP_DATA_REF as its vectorized statement; otherwise
+            get the next data-ref from RESULT_CHAIN.  */
+         if (!next_stmt || !DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
+           break;
+        }
+    }
   return true;
 }
 
   return true;
 }
 
@@ -1613,206 +5032,416 @@ vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
   tree data_ref = NULL;
   tree op;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   tree data_ref = NULL;
   tree op;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+  stmt_vec_info prev_stmt_info; 
+  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  struct loop *containing_loop = (bb_for_stmt (stmt))->loop_father;
+  bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   tree new_temp;
   int mode;
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   tree new_temp;
   int mode;
-  tree init_addr;
-  tree new_stmt;
+  tree new_stmt = NULL_TREE;
   tree dummy;
   tree dummy;
-  basic_block new_bb;
-  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
-  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-  edge pe = loop_preheader_edge (loop);
-  enum dr_alignment_support alignment_support_cheme;
+  enum dr_alignment_support alignment_support_scheme;
+  tree dataref_ptr = NULL_TREE;
+  tree ptr_incr;
+  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+  int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+  int i, j, group_size;
+  tree msq = NULL_TREE, lsq;
+  tree offset = NULL_TREE;
+  tree realignment_token = NULL_TREE;
+  tree phi = NULL_TREE;
+  VEC(tree,heap) *dr_chain = NULL;
+  bool strided_load = false;
+  tree first_stmt;
+  tree scalar_type;
+  bool inv_p;
+  bool compute_in_loop = false;
+  struct loop *at_loop;
+
+  gcc_assert (ncopies >= 1);
+
+  /* FORNOW. This restriction should be relaxed.  */
+  if (nested_in_vect_loop && ncopies > 1)
+    {
+      if (vect_print_dump_info (REPORT_DETAILS))
+        fprintf (vect_dump, "multiple types in nested loop.");
+      return false;
+    }
 
 
-  /* Is vectorizable load? */
   if (!STMT_VINFO_RELEVANT_P (stmt_info))
     return false;
 
   if (!STMT_VINFO_RELEVANT_P (stmt_info))
     return false;
 
-  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
+  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
+    return false;
 
 
+  /* FORNOW: not yet supported.  */
   if (STMT_VINFO_LIVE_P (stmt_info))
     {
   if (STMT_VINFO_LIVE_P (stmt_info))
     {
-      /* FORNOW: not yet supported.  */
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "value used after loop.");
       return false;
     }
 
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "value used after loop.");
       return false;
     }
 
-  if (TREE_CODE (stmt) != MODIFY_EXPR)
+  /* Is vectorizable load? */
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
     return false;
 
     return false;
 
-  scalar_dest = TREE_OPERAND (stmt, 0);
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
   if (TREE_CODE (scalar_dest) != SSA_NAME)
     return false;
 
   if (TREE_CODE (scalar_dest) != SSA_NAME)
     return false;
 
-  op = TREE_OPERAND (stmt, 1);
-  if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
+  op = GIMPLE_STMT_OPERAND (stmt, 1);
+  if (TREE_CODE (op) != ARRAY_REF 
+      && TREE_CODE (op) != INDIRECT_REF
+      && !DR_GROUP_FIRST_DR (stmt_info))
     return false;
 
   if (!STMT_VINFO_DATA_REF (stmt_info))
     return false;
 
     return false;
 
   if (!STMT_VINFO_DATA_REF (stmt_info))
     return false;
 
+  scalar_type = TREE_TYPE (DR_REF (dr));
   mode = (int) TYPE_MODE (vectype);
 
   /* FORNOW. In some cases can vectorize even if data-type not supported
     (e.g. - data copies).  */
   mode = (int) TYPE_MODE (vectype);
 
   /* FORNOW. In some cases can vectorize even if data-type not supported
     (e.g. - data copies).  */
-  if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
+  if (optab_handler (mov_optab, mode)->insn_code == CODE_FOR_nothing)
     {
       if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "Aligned load, but unsupported type.");
       return false;
     }
 
     {
       if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "Aligned load, but unsupported type.");
       return false;
     }
 
+  /* Check if the load is a part of an interleaving chain.  */
+  if (DR_GROUP_FIRST_DR (stmt_info))
+    {
+      strided_load = true;
+      /* FORNOW */
+      gcc_assert (! nested_in_vect_loop);
+
+      /* Check if interleaving is supported.  */
+      if (!vect_strided_load_supported (vectype))
+       return false;
+    }
+
   if (!vec_stmt) /* transformation not required.  */
     {
       STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
   if (!vec_stmt) /* transformation not required.  */
     {
       STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
+      vect_model_load_cost (stmt_info, ncopies);
       return true;
     }
 
       return true;
     }
 
-  /** Transform.  **/
-
   if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "transform load.");
 
   if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "transform load.");
 
-  alignment_support_cheme = vect_supportable_dr_alignment (dr);
-  gcc_assert (alignment_support_cheme);
+  /** Transform.  **/
 
 
-  if (alignment_support_cheme == dr_aligned
-      || alignment_support_cheme == dr_unaligned_supported)
+  if (strided_load)
+    {
+      first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+      /* Check if the chain of loads is already vectorized.  */
+      if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
+       {
+         *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+         return true;
+       }
+      first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+      group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
+      dr_chain = VEC_alloc (tree, heap, group_size);
+    }
+  else
     {
     {
-      /* Create:
+      first_stmt = stmt;
+      first_dr = dr;
+      group_size = 1;
+    }
+
+  alignment_support_scheme = vect_supportable_dr_alignment (first_dr);
+  gcc_assert (alignment_support_scheme);
+
+  /* In case the vectorization factor (VF) is bigger than the number
+     of elements that we can fit in a vectype (nunits), we have to generate
+     more than one vector stmt - i.e - we need to "unroll" the
+     vector stmt by a factor VF/nunits. In doing so, we record a pointer
+     from one copy of the vector stmt to the next, in the field
+     STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
+     stages to find the correct vector defs to be used when vectorizing
+     stmts that use the defs of the current stmt. The example below illustrates
+     the vectorization process when VF=16 and nunits=4 (i.e - we need to create
+     4 vectorized stmts):
+
+     before vectorization:
+                                RELATED_STMT    VEC_STMT
+        S1:     x = memref      -               -
+        S2:     z = x + 1       -               -
+
+     step 1: vectorize stmt S1:
+        We first create the vector stmt VS1_0, and, as usual, record a
+        pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
+        Next, we create the vector stmt VS1_1, and record a pointer to
+        it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
+        Similarly, for VS1_2 and VS1_3. This is the resulting chain of
+        stmts and pointers:
+                                RELATED_STMT    VEC_STMT
+        VS1_0:  vx0 = memref0   VS1_1           -
+        VS1_1:  vx1 = memref1   VS1_2           -
+        VS1_2:  vx2 = memref2   VS1_3           -
+        VS1_3:  vx3 = memref3   -               -
+        S1:     x = load        -               VS1_0
+        S2:     z = x + 1       -               -
+
+     See in documentation in vect_get_vec_def_for_stmt_copy for how the 
+     information we recorded in RELATED_STMT field is used to vectorize 
+     stmt S2.  */
+
+  /* In case of interleaving (non-unit strided access):
+
+     S1:  x2 = &base + 2
+     S2:  x0 = &base
+     S3:  x1 = &base + 1
+     S4:  x3 = &base + 3
+
+     Vectorized loads are created in the order of memory accesses 
+     starting from the access of the first stmt of the chain:
+
+     VS1: vx0 = &base
+     VS2: vx1 = &base + vec_size*1
+     VS3: vx3 = &base + vec_size*2
+     VS4: vx4 = &base + vec_size*3
+
+     Then permutation statements are generated:
+
+     VS5: vx5 = VEC_EXTRACT_EVEN_EXPR < vx0, vx1 >
+     VS6: vx6 = VEC_EXTRACT_ODD_EXPR < vx0, vx1 >
+       ...
+
+     And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
+     (the order of the data-refs in the output of vect_permute_load_chain
+     corresponds to the order of scalar stmts in the interleaving chain - see
+     the documentation of vect_permute_load_chain()).
+     The generation of permutation stmts and recording them in
+     STMT_VINFO_VEC_STMT is done in vect_transform_strided_load().
+
+     In case of both multiple types and interleaving, the vector loads and 
+     permutation stmts above are created for every copy. The result vector stmts
+     are put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
+     STMT_VINFO_RELATED_STMT for the next copies.  */
+
+  /* If the data reference is aligned (dr_aligned) or potentially unaligned
+     on a target that supports unaligned accesses (dr_unaligned_supported)
+     we generate the following code:
          p = initial_addr;
          indx = 0;
          loop {
          p = initial_addr;
          indx = 0;
          loop {
+          p = p + indx * vectype_size;
            vec_dest = *(p);
            indx = indx + 1;
          }
            vec_dest = *(p);
            indx = indx + 1;
          }
-      */
-
-      vec_dest = vect_create_destination_var (scalar_dest, vectype);
-      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
-      if (aligned_access_p (dr))
-        data_ref = build_fold_indirect_ref (data_ref);
-      else
-       {
-         int mis = DR_MISALIGNMENT (dr);
-         tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
-         tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
-         data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
-       }
-      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
-      new_temp = make_ssa_name (vec_dest, new_stmt);
-      TREE_OPERAND (new_stmt, 0) = new_temp;
-      vect_finish_stmt_generation (stmt, new_stmt, bsi);
-      copy_virtual_operands (new_stmt, stmt);
-    }
-  else if (alignment_support_cheme == dr_unaligned_software_pipeline)
-    {
-      /* Create:
-        p1 = initial_addr;
-        msq_init = *(floor(p1))
-        p2 = initial_addr + VS - 1;
-        magic = have_builtin ? builtin_result : initial_address;
-        indx = 0;
-        loop {
-          p2' = p2 + indx * vectype_size
-          lsq = *(floor(p2'))
-          vec_dest = realign_load (msq, lsq, magic)
-          indx = indx + 1;
-          msq = lsq;
-        }
-      */
-
-      tree offset;
-      tree magic;
-      tree phi_stmt;
-      tree msq_init;
-      tree msq, lsq;
-      tree dataref_ptr;
-      tree params;
 
 
-      /* <1> Create msq_init = *(floor(p1)) in the loop preheader  */
-      vec_dest = vect_create_destination_var (scalar_dest, vectype);
-      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, 
-                                          &init_addr, true);
-      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
-      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
-      new_temp = make_ssa_name (vec_dest, new_stmt);
-      TREE_OPERAND (new_stmt, 0) = new_temp;
-      new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
-      gcc_assert (!new_bb);
-      msq_init = TREE_OPERAND (new_stmt, 0);
-      copy_virtual_operands (new_stmt, stmt);
-      update_vuses_to_preheader (new_stmt, loop);
+     Otherwise, the data reference is potentially unaligned on a target that
+     does not support unaligned accesses (dr_explicit_realign_optimized) - 
+     then generate the following code, in which the data in each iteration is
+     obtained by two vector loads, one from the previous iteration, and one
+     from the current iteration:
+         p1 = initial_addr;
+         msq_init = *(floor(p1))
+         p2 = initial_addr + VS - 1;
+         realignment_token = call target_builtin;
+         indx = 0;
+         loop {
+           p2 = p2 + indx * vectype_size
+           lsq = *(floor(p2))
+           vec_dest = realign_load (msq, lsq, realignment_token)
+           indx = indx + 1;
+           msq = lsq;
+         }   */
 
 
+  /* If the misalignment remains the same throughout the execution of the
+     loop, we can create the init_addr and permutation mask at the loop
+     preheader. Otherwise, it needs to be created inside the loop.
+     This can only occur when vectorizing memory accesses in the inner-loop
+     nested within an outer-loop that is being vectorized.  */
 
 
-      /* <2> Create lsq = *(floor(p2')) in the loop  */ 
-      offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
-      vec_dest = vect_create_destination_var (scalar_dest, vectype);
-      dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
-      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
-      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
-      new_temp = make_ssa_name (vec_dest, new_stmt);
-      TREE_OPERAND (new_stmt, 0) = new_temp;
-      vect_finish_stmt_generation (stmt, new_stmt, bsi);
-      lsq = TREE_OPERAND (new_stmt, 0);
-      copy_virtual_operands (new_stmt, stmt);
+  if (nested_in_vect_loop_p (loop, stmt)
+      && (TREE_INT_CST_LOW (DR_STEP (dr)) % UNITS_PER_SIMD_WORD != 0))
+    {
+      gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
+      compute_in_loop = true;
+    }
 
 
+  if ((alignment_support_scheme == dr_explicit_realign_optimized
+       || alignment_support_scheme == dr_explicit_realign)
+      && !compute_in_loop)
+    {
+      msq = vect_setup_realignment (first_stmt, bsi, &realignment_token,
+                                   alignment_support_scheme, NULL_TREE,
+                                   &at_loop);
+      if (alignment_support_scheme == dr_explicit_realign_optimized)
+       {
+         phi = SSA_NAME_DEF_STMT (msq);
+         offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
+       }
+    }
+  else
+    at_loop = loop;
+
+  prev_stmt_info = NULL;
+  for (j = 0; j < ncopies; j++)
+    { 
+      /* 1. Create the vector pointer update chain.  */
+      if (j == 0)
+        dataref_ptr = vect_create_data_ref_ptr (first_stmt,
+                                               at_loop, offset, 
+                                               &dummy, &ptr_incr, false, 
+                                               NULL_TREE, &inv_p);
+      else
+        dataref_ptr = 
+               bump_vector_ptr (dataref_ptr, ptr_incr, bsi, stmt, NULL_TREE);
 
 
-      /* <3> */
-      if (targetm.vectorize.builtin_mask_for_load)
+      for (i = 0; i < group_size; i++)
        {
        {
-         /* Create permutation mask, if required, in loop preheader.  */
-         tree builtin_decl;
-         params = build_tree_list (NULL_TREE, init_addr);
+         /* 2. Create the vector-load in the loop.  */
+         switch (alignment_support_scheme)
+           {
+           case dr_aligned:
+             gcc_assert (aligned_access_p (first_dr));
+             data_ref = build_fold_indirect_ref (dataref_ptr);
+             break;
+           case dr_unaligned_supported:
+             {
+               int mis = DR_MISALIGNMENT (first_dr);
+               tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
+
+               tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
+               data_ref =
+                 build2 (MISALIGNED_INDIRECT_REF, vectype, dataref_ptr, tmis);
+               break;
+             }
+           case dr_explicit_realign:
+             {
+               tree ptr, bump;
+               tree vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
+
+               if (compute_in_loop)
+                 msq = vect_setup_realignment (first_stmt, bsi, 
+                                               &realignment_token,
+                                               dr_explicit_realign, 
+                                               dataref_ptr, NULL);
+
+               data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
+               vec_dest = vect_create_destination_var (scalar_dest, vectype);
+               new_stmt = build_gimple_modify_stmt (vec_dest, data_ref);
+               new_temp = make_ssa_name (vec_dest, new_stmt);
+               GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+               vect_finish_stmt_generation (stmt, new_stmt, bsi);
+               copy_virtual_operands (new_stmt, stmt);
+               mark_symbols_for_renaming (new_stmt);
+               msq = new_temp;
+
+               bump = size_binop (MULT_EXPR, vs_minus_1,
+                                  TYPE_SIZE_UNIT (scalar_type));
+               ptr = bump_vector_ptr (dataref_ptr, NULL_TREE, bsi, stmt, bump);
+               data_ref = build1 (ALIGN_INDIRECT_REF, vectype, ptr);
+               break;
+             }
+           case dr_explicit_realign_optimized:
+             data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
+             break;
+           default:
+             gcc_unreachable ();
+           }
          vec_dest = vect_create_destination_var (scalar_dest, vectype);
          vec_dest = vect_create_destination_var (scalar_dest, vectype);
-         builtin_decl = targetm.vectorize.builtin_mask_for_load ();
-         new_stmt = build_function_call_expr (builtin_decl, params);
-         new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
+         new_stmt = build_gimple_modify_stmt (vec_dest, data_ref);
          new_temp = make_ssa_name (vec_dest, new_stmt);
          new_temp = make_ssa_name (vec_dest, new_stmt);
-         TREE_OPERAND (new_stmt, 0) = new_temp;
-         new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
-         gcc_assert (!new_bb);
-         magic = TREE_OPERAND (new_stmt, 0);
-
-         /* The result of the CALL_EXPR to this builtin is determined from
-            the value of the parameter and no global variables are touched
-            which makes the builtin a "const" function.  Requiring the
-            builtin to have the "const" attribute makes it unnecessary
-            to call mark_call_clobbered_vars_to_rename.  */
-         gcc_assert (TREE_READONLY (builtin_decl));
+         GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+         vect_finish_stmt_generation (stmt, new_stmt, bsi);
+         mark_symbols_for_renaming (new_stmt);
+
+         /* 3. Handle explicit realignment if necessary/supported. Create in
+               loop: vec_dest = realign_load (msq, lsq, realignment_token)  */
+         if (alignment_support_scheme == dr_explicit_realign_optimized
+             || alignment_support_scheme == dr_explicit_realign)
+           {
+             lsq = GIMPLE_STMT_OPERAND (new_stmt, 0);
+             if (!realignment_token)
+               realignment_token = dataref_ptr;
+             vec_dest = vect_create_destination_var (scalar_dest, vectype);
+             new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, 
+                                realignment_token);
+             new_stmt = build_gimple_modify_stmt (vec_dest, new_stmt);
+             new_temp = make_ssa_name (vec_dest, new_stmt);
+             GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+             vect_finish_stmt_generation (stmt, new_stmt, bsi);
+
+             if (alignment_support_scheme == dr_explicit_realign_optimized)
+               {
+                 if (i == group_size - 1 && j == ncopies - 1)
+                   add_phi_arg (phi, lsq, loop_latch_edge (containing_loop));
+                 msq = lsq;
+               }
+           }
+
+         /* 4. Handle invariant-load.  */
+         if (inv_p)
+           {
+             gcc_assert (!strided_load);
+             gcc_assert (nested_in_vect_loop_p (loop, stmt));
+             if (j == 0)
+               {
+                 int k;
+                 tree t = NULL_TREE;
+                 tree vec_inv, bitpos, bitsize = TYPE_SIZE (scalar_type);
+
+                 /* CHECKME: bitpos depends on endianess?  */
+                 bitpos = bitsize_zero_node;
+                 vec_inv = build3 (BIT_FIELD_REF, scalar_type, new_temp, 
+                                                           bitsize, bitpos);
+                 BIT_FIELD_REF_UNSIGNED (vec_inv) = 
+                                                TYPE_UNSIGNED (scalar_type);
+                 vec_dest = 
+                       vect_create_destination_var (scalar_dest, NULL_TREE);
+                 new_stmt = build_gimple_modify_stmt (vec_dest, vec_inv);
+                  new_temp = make_ssa_name (vec_dest, new_stmt);
+                  GIMPLE_STMT_OPERAND (new_stmt, 0) = new_temp;
+                  vect_finish_stmt_generation (stmt, new_stmt, bsi);
+
+                 for (k = nunits - 1; k >= 0; --k)
+                   t = tree_cons (NULL_TREE, new_temp, t);
+                 /* FIXME: use build_constructor directly.  */
+                 vec_inv = build_constructor_from_list (vectype, t);
+                 new_temp = vect_init_vector (stmt, vec_inv, vectype, bsi);
+                 new_stmt = SSA_NAME_DEF_STMT (new_temp);
+               }
+             else
+               gcc_unreachable (); /* FORNOW. */
+           }
+
+         if (strided_load)
+           VEC_quick_push (tree, dr_chain, new_temp);
+         if (i < group_size - 1)
+           dataref_ptr = 
+               bump_vector_ptr (dataref_ptr, ptr_incr, bsi, stmt, NULL_TREE);    
+       }
+
+      if (strided_load)
+       {
+         if (!vect_transform_strided_load (stmt, dr_chain, group_size, bsi))
+           return false;         
+         *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+         dr_chain = VEC_alloc (tree, heap, group_size);
        }
       else
        {
        }
       else
        {
-         /* Use current address instead of init_addr for reduced reg pressure.
-          */
-         magic = dataref_ptr;
+         if (j == 0)
+           STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+         else
+           STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+         prev_stmt_info = vinfo_for_stmt (new_stmt);
        }
        }
-
-
-      /* <4> Create msq = phi <msq_init, lsq> in loop  */ 
-      vec_dest = vect_create_destination_var (scalar_dest, vectype);
-      msq = make_ssa_name (vec_dest, NULL_TREE);
-      phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
-      SSA_NAME_DEF_STMT (msq) = phi_stmt;
-      add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
-      add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));
-
-
-      /* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop  */
-      vec_dest = vect_create_destination_var (scalar_dest, vectype);
-      new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
-      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
-      new_temp = make_ssa_name (vec_dest, new_stmt); 
-      TREE_OPERAND (new_stmt, 0) = new_temp;
-      vect_finish_stmt_generation (stmt, new_stmt, bsi);
     }
     }
-  else
-    gcc_unreachable ();
 
 
-  *vec_stmt = new_stmt;
   return true;
 }
 
   return true;
 }
 
@@ -1830,26 +5459,30 @@ vectorizable_live_operation (tree stmt,
   tree operation;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
   tree operation;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
   loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   int i;
   int i;
-  enum tree_code code;
   int op_type;
   tree op;
   tree def, def_stmt;
   enum vect_def_type dt; 
 
   int op_type;
   tree op;
   tree def, def_stmt;
   enum vect_def_type dt; 
 
-  if (!STMT_VINFO_LIVE_P (stmt_info))
+  gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
+
+  if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
     return false;
 
     return false;
 
-  if (TREE_CODE (stmt) != MODIFY_EXPR)
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
     return false;
 
     return false;
 
-  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
+  if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) != SSA_NAME)
     return false;
 
     return false;
 
-  operation = TREE_OPERAND (stmt, 1);
-  code = TREE_CODE (operation);
+  /* FORNOW. CHECKME. */
+  if (nested_in_vect_loop_p (loop, stmt))
+    return false;
 
 
-  op_type = TREE_CODE_LENGTH (code);
+  operation = GIMPLE_STMT_OPERAND (stmt, 1);
+  op_type = TREE_OPERAND_LENGTH (operation);
 
   /* FORNOW: support only if all uses are invariant. This means
      that the scalar operations can remain in place, unvectorized.
 
   /* FORNOW: support only if all uses are invariant. This means
      that the scalar operations can remain in place, unvectorized.
@@ -1902,7 +5535,8 @@ vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
       if (!vect_is_simple_use (lhs, loop_vinfo, &lhs_def_stmt, &def, &dt))
        return false;
     }
       if (!vect_is_simple_use (lhs, loop_vinfo, &lhs_def_stmt, &def, &dt))
        return false;
     }
-  else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST)
+  else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
+          && TREE_CODE (lhs) != FIXED_CST)
     return false;
 
   if (TREE_CODE (rhs) == SSA_NAME)
     return false;
 
   if (TREE_CODE (rhs) == SSA_NAME)
@@ -1911,7 +5545,8 @@ vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
       if (!vect_is_simple_use (rhs, loop_vinfo, &rhs_def_stmt, &def, &dt))
        return false;
     }
       if (!vect_is_simple_use (rhs, loop_vinfo, &rhs_def_stmt, &def, &dt))
        return false;
     }
-  else if (TREE_CODE (rhs) != INTEGER_CST  && TREE_CODE (rhs) != REAL_CST)
+  else if (TREE_CODE (rhs) != INTEGER_CST  && TREE_CODE (rhs) != REAL_CST
+          && TREE_CODE (rhs) != FIXED_CST)
     return false;
 
   return true;
     return false;
 
   return true;
@@ -1942,24 +5577,32 @@ vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
   enum machine_mode vec_mode;
   tree def;
   enum vect_def_type dt;
   enum machine_mode vec_mode;
   tree def;
   enum vect_def_type dt;
+  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+  int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+  gcc_assert (ncopies >= 1);
+  if (ncopies > 1)
+    return false; /* FORNOW */
 
   if (!STMT_VINFO_RELEVANT_P (stmt_info))
     return false;
 
 
   if (!STMT_VINFO_RELEVANT_P (stmt_info))
     return false;
 
-  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
+  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
+    return false;
 
 
+  /* FORNOW: not yet supported.  */
   if (STMT_VINFO_LIVE_P (stmt_info))
     {
   if (STMT_VINFO_LIVE_P (stmt_info))
     {
-      /* FORNOW: not yet supported.  */
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "value used after loop.");
       return false;
     }
 
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "value used after loop.");
       return false;
     }
 
-  if (TREE_CODE (stmt) != MODIFY_EXPR)
+  /* Is vectorizable conditional operation?  */
+  if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
     return false;
 
     return false;
 
-  op = TREE_OPERAND (stmt, 1);
+  op = GIMPLE_STMT_OPERAND (stmt, 1);
 
   if (TREE_CODE (op) != COND_EXPR)
     return false;
 
   if (TREE_CODE (op) != COND_EXPR)
     return false;
@@ -1971,6 +5614,11 @@ vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
   if (!vect_is_simple_cond (cond_expr, loop_vinfo))
     return false;
 
   if (!vect_is_simple_cond (cond_expr, loop_vinfo))
     return false;
 
+  /* We do not handle two different vector types for the condition
+     and the values.  */
+  if (TREE_TYPE (TREE_OPERAND (cond_expr, 0)) != TREE_TYPE (vectype))
+    return false;
+
   if (TREE_CODE (then_clause) == SSA_NAME)
     {
       tree then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
   if (TREE_CODE (then_clause) == SSA_NAME)
     {
       tree then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
@@ -1979,7 +5627,8 @@ vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
        return false;
     }
   else if (TREE_CODE (then_clause) != INTEGER_CST 
        return false;
     }
   else if (TREE_CODE (then_clause) != INTEGER_CST 
-          && TREE_CODE (then_clause) != REAL_CST)
+          && TREE_CODE (then_clause) != REAL_CST
+          && TREE_CODE (then_clause) != FIXED_CST)
     return false;
 
   if (TREE_CODE (else_clause) == SSA_NAME)
     return false;
 
   if (TREE_CODE (else_clause) == SSA_NAME)
@@ -1990,7 +5639,8 @@ vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
        return false;
     }
   else if (TREE_CODE (else_clause) != INTEGER_CST 
        return false;
     }
   else if (TREE_CODE (else_clause) != INTEGER_CST 
-          && TREE_CODE (else_clause) != REAL_CST)
+          && TREE_CODE (else_clause) != REAL_CST
+          && TREE_CODE (else_clause) != FIXED_CST)
     return false;
 
 
     return false;
 
 
@@ -2005,7 +5655,7 @@ vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
   /* Transform */
 
   /* Handle def.  */
   /* Transform */
 
   /* Handle def.  */
-  scalar_dest = TREE_OPERAND (stmt, 0);
+  scalar_dest = GIMPLE_STMT_OPERAND (stmt, 0);
   vec_dest = vect_create_destination_var (scalar_dest, vectype);
 
   /* Handle cond expr.  */
   vec_dest = vect_create_destination_var (scalar_dest, vectype);
 
   /* Handle cond expr.  */
@@ -2019,12 +5669,12 @@ vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
   /* Arguments are ready. create the new vector stmt.  */
   vec_compare = build2 (TREE_CODE (cond_expr), vectype, 
                        vec_cond_lhs, vec_cond_rhs);
   /* Arguments are ready. create the new vector stmt.  */
   vec_compare = build2 (TREE_CODE (cond_expr), vectype, 
                        vec_cond_lhs, vec_cond_rhs);
-  vec_cond_expr = build (VEC_COND_EXPR, vectype, 
-                        vec_compare, vec_then_clause, vec_else_clause);
+  vec_cond_expr = build3 (VEC_COND_EXPR, vectype, 
+                         vec_compare, vec_then_clause, vec_else_clause);
 
 
-  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_cond_expr);
+  *vec_stmt = build_gimple_modify_stmt (vec_dest, vec_cond_expr);
   new_temp = make_ssa_name (vec_dest, *vec_stmt);
   new_temp = make_ssa_name (vec_dest, *vec_stmt);
-  TREE_OPERAND (*vec_stmt, 0) = new_temp;
+  GIMPLE_STMT_OPERAND (*vec_stmt, 0) = new_temp;
   vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
   
   return true;
   vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
   
   return true;
@@ -2035,71 +5685,116 @@ vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
    Create a vectorized stmt to replace STMT, and insert it at BSI.  */
 
 bool
    Create a vectorized stmt to replace STMT, and insert it at BSI.  */
 
 bool
-vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
+vect_transform_stmt (tree stmt, block_stmt_iterator *bsi, bool *strided_store)
 {
   bool is_store = false;
   tree vec_stmt = NULL_TREE;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
 {
   bool is_store = false;
   tree vec_stmt = NULL_TREE;
   stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+  tree orig_stmt_in_pattern;
   bool done;
 
   bool done;
 
-  if (STMT_VINFO_RELEVANT_P (stmt_info))
+  switch (STMT_VINFO_TYPE (stmt_info))
     {
     {
-      switch (STMT_VINFO_TYPE (stmt_info))
-      {
-      case op_vec_info_type:
-       done = vectorizable_operation (stmt, bsi, &vec_stmt);
-       gcc_assert (done);
-       break;
-
-      case assignment_vec_info_type:
-       done = vectorizable_assignment (stmt, bsi, &vec_stmt);
-       gcc_assert (done);
-       break;
-
-      case load_vec_info_type:
-       done = vectorizable_load (stmt, bsi, &vec_stmt);
-       gcc_assert (done);
-       break;
-
-      case store_vec_info_type:
-       done = vectorizable_store (stmt, bsi, &vec_stmt);
-       gcc_assert (done);
+    case type_demotion_vec_info_type:
+      done = vectorizable_type_demotion (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      break;
+
+    case type_promotion_vec_info_type:
+      done = vectorizable_type_promotion (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      break;
+
+    case type_conversion_vec_info_type:
+      done = vectorizable_conversion (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      break;
+
+    case induc_vec_info_type:
+      done = vectorizable_induction (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      break;
+
+    case op_vec_info_type:
+      done = vectorizable_operation (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      break;
+
+    case assignment_vec_info_type:
+      done = vectorizable_assignment (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      break;
+
+    case load_vec_info_type:
+      done = vectorizable_load (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      break;
+
+    case store_vec_info_type:
+      done = vectorizable_store (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      if (DR_GROUP_FIRST_DR (stmt_info))
+       {
+         /* In case of interleaving, the whole chain is vectorized when the
+            last store in the chain is reached. Store stmts before the last
+            one are skipped, and there vec_stmt_info shouldn't be freed
+            meanwhile.  */
+         *strided_store = true;
+         if (STMT_VINFO_VEC_STMT (stmt_info))
+           is_store = true;
+         }
+      else
        is_store = true;
        is_store = true;
-       break;
+      break;
 
 
-      case condition_vec_info_type:
-       done = vectorizable_condition (stmt, bsi, &vec_stmt);
-       gcc_assert (done);
-       break;
+    case condition_vec_info_type:
+      done = vectorizable_condition (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      break;
 
 
-      default:
-       if (vect_print_dump_info (REPORT_DETAILS))
-         fprintf (vect_dump, "stmt not supported.");
-       gcc_unreachable ();
-      }
+    case call_vec_info_type:
+      done = vectorizable_call (stmt, bsi, &vec_stmt);
+      break;
 
 
-      STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
+    case reduc_vec_info_type:
+      done = vectorizable_reduction (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+      break;
+
+    default:
+      if (!STMT_VINFO_LIVE_P (stmt_info))
+       {
+         if (vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "stmt not supported.");
+         gcc_unreachable ();
+       }
     }
 
     }
 
-  if (STMT_VINFO_LIVE_P (stmt_info))
+  if (STMT_VINFO_LIVE_P (stmt_info)
+      && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
     {
     {
-      switch (STMT_VINFO_TYPE (stmt_info))
-      {
-      case reduc_vec_info_type:
-        done = vectorizable_reduction (stmt, bsi, &vec_stmt);
-        gcc_assert (done);
-        break;
-
-      default:
-        done = vectorizable_live_operation (stmt, bsi, &vec_stmt);
-        gcc_assert (done);
-      }
+      done = vectorizable_live_operation (stmt, bsi, &vec_stmt);
+      gcc_assert (done);
+    }
 
 
-      if (vec_stmt)
-        {
-          gcc_assert (!STMT_VINFO_VEC_STMT (stmt_info));
-          STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
-        }
+  if (vec_stmt)
+    {
+      STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
+      orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
+      if (orig_stmt_in_pattern)
+       {
+         stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
+         /* STMT was inserted by the vectorizer to replace a computation idiom.
+            ORIG_STMT_IN_PATTERN is a stmt in the original sequence that 
+            computed this idiom.  We need to record a pointer to VEC_STMT in 
+            the stmt_info of ORIG_STMT_IN_PATTERN.  See more details in the 
+            documentation of vect_pattern_recog.  */
+         if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
+           {
+             gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
+             STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
+           }
+       }
     }
 
   return is_store; 
     }
 
   return is_store; 
@@ -2118,7 +5813,7 @@ vect_build_loop_niters (loop_vec_info loop_vinfo)
   tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
 
   var = create_tmp_var (TREE_TYPE (ni), "niters");
   tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
 
   var = create_tmp_var (TREE_TYPE (ni), "niters");
-  add_referenced_tmp_var (var);
+  add_referenced_var (var);
   ni_name = force_gimple_operand (ni, &stmt, false, var);
 
   pe = loop_preheader_edge (loop);
   ni_name = force_gimple_operand (ni, &stmt, false, var);
 
   pe = loop_preheader_edge (loop);
@@ -2168,29 +5863,33 @@ vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
 
   /* Create: ratio = ni >> log2(vf) */
 
 
   /* Create: ratio = ni >> log2(vf) */
 
-  var = create_tmp_var (TREE_TYPE (ni), "bnd");
-  add_referenced_tmp_var (var);
-  ratio_name = make_ssa_name (var, NULL_TREE);
-  stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
-          build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
-  SSA_NAME_DEF_STMT (ratio_name) = stmt;
+  ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf);
+  if (!is_gimple_val (ratio_name))
+    {
+      var = create_tmp_var (TREE_TYPE (ni), "bnd");
+      add_referenced_var (var);
 
 
-  pe = loop_preheader_edge (loop);
-  new_bb = bsi_insert_on_edge_immediate (pe, stmt);
-  gcc_assert (!new_bb);
+      ratio_name = force_gimple_operand (ratio_name, &stmt, true, var);
+      pe = loop_preheader_edge (loop);
+      new_bb = bsi_insert_on_edge_immediate (pe, stmt);
+      gcc_assert (!new_bb);
+    }
        
   /* Create: ratio_mult_vf = ratio << log2 (vf).  */
 
        
   /* Create: ratio_mult_vf = ratio << log2 (vf).  */
 
-  var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
-  add_referenced_tmp_var (var);
-  ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
-  stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
-          build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
-  SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;
+  ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
+                                   ratio_name, log_vf);
+  if (!is_gimple_val (ratio_mult_vf_name))
+    {
+      var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
+      add_referenced_var (var);
 
 
-  pe = loop_preheader_edge (loop);
-  new_bb = bsi_insert_on_edge_immediate (pe, stmt);
-  gcc_assert (!new_bb);
+      ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmt,
+                                                true, var);
+      pe = loop_preheader_edge (loop);
+      new_bb = bsi_insert_on_edge_immediate (pe, stmt);
+      gcc_assert (!new_bb);
+    }
 
   *ni_name_ptr = ni_name;
   *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
 
   *ni_name_ptr = ni_name;
   *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
@@ -2200,82 +5899,6 @@ vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
 }
 
 
 }
 
 
-/* Function update_vuses_to_preheader.
-
-   Input:
-   STMT - a statement with potential VUSEs.
-   LOOP - the loop whose preheader will contain STMT.
-
-   It's possible to vectorize a loop even though an SSA_NAME from a VUSE
-   appears to be defined in a V_MAY_DEF in another statement in a loop.
-   One such case is when the VUSE is at the dereference of a __restricted__
-   pointer in a load and the V_MAY_DEF is at the dereference of a different
-   __restricted__ pointer in a store.  Vectorization may result in
-   copy_virtual_uses being called to copy the problematic VUSE to a new
-   statement that is being inserted in the loop preheader.  This procedure
-   is called to change the SSA_NAME in the new statement's VUSE from the
-   SSA_NAME updated in the loop to the related SSA_NAME available on the
-   path entering the loop.
-
-   When this function is called, we have the following situation:
-
-        # vuse <name1>
-        S1: vload
-    do {
-        # name1 = phi < name0 , name2>
-
-        # vuse <name1>
-        S2: vload
-
-        # name2 = vdef <name1>
-        S3: vstore
-
-    }while...
-
-   Stmt S1 was created in the loop preheader block as part of misaligned-load
-   handling. This function fixes the name of the vuse of S1 from 'name1' to
-   'name0'.  */
-
-static void
-update_vuses_to_preheader (tree stmt, struct loop *loop)
-{
-  basic_block header_bb = loop->header;
-  edge preheader_e = loop_preheader_edge (loop);
-  ssa_op_iter iter;
-  use_operand_p use_p;
-
-  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VUSE)
-    {
-      tree ssa_name = USE_FROM_PTR (use_p);
-      tree def_stmt = SSA_NAME_DEF_STMT (ssa_name);
-      tree name_var = SSA_NAME_VAR (ssa_name);
-      basic_block bb = bb_for_stmt (def_stmt);
-
-      /* For a use before any definitions, def_stmt is a NOP_EXPR.  */
-      if (!IS_EMPTY_STMT (def_stmt)
-         && flow_bb_inside_loop_p (loop, bb))
-        {
-          /* If the block containing the statement defining the SSA_NAME
-             is in the loop then it's necessary to find the definition
-             outside the loop using the PHI nodes of the header.  */
-         tree phi;
-         bool updated = false;
-
-         for (phi = phi_nodes (header_bb); phi; phi = TREE_CHAIN (phi))
-           {
-             if (SSA_NAME_VAR (PHI_RESULT (phi)) == name_var)
-               {
-                 SET_USE (use_p, PHI_ARG_DEF (phi, preheader_e->dest_idx));
-                 updated = true;
-                 break;
-               }
-           }
-         gcc_assert (updated);
-       }
-    }
-}
-
-
 /*   Function vect_update_ivs_after_vectorizer.
 
      "Advance" the induction variables of LOOP to the value they should take
 /*   Function vect_update_ivs_after_vectorizer.
 
      "Advance" the induction variables of LOOP to the value they should take
@@ -2322,7 +5945,7 @@ vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
                                  edge update_e)
 {
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
                                  edge update_e)
 {
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-  basic_block exit_bb = loop->single_exit->dest;
+  basic_block exit_bb = single_exit (loop)->dest;
   tree phi, phi1;
   basic_block update_bb = update_e->dest;
 
   tree phi, phi1;
   basic_block update_bb = update_e->dest;
 
@@ -2339,7 +5962,7 @@ vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
       tree evolution_part;
       tree init_expr;
       tree step_expr;
       tree evolution_part;
       tree init_expr;
       tree step_expr;
-      tree var, stmt, ni, ni_name;
+      tree var, ni, ni_name;
       block_stmt_iterator last_bsi;
 
       if (vect_print_dump_info (REPORT_DETAILS))
       block_stmt_iterator last_bsi;
 
       if (vect_print_dump_info (REPORT_DETAILS))
@@ -2378,20 +6001,29 @@ vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
       init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, 
                                                               loop->num));
 
       init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, 
                                                               loop->num));
 
-      ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
-                 build2 (MULT_EXPR, TREE_TYPE (niters),
-                      niters, step_expr), init_expr);
+      if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
+       ni = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (init_expr), 
+                         init_expr, 
+                         fold_convert (sizetype, 
+                                       fold_build2 (MULT_EXPR, TREE_TYPE (niters),
+                                                    niters, step_expr)));
+      else
+       ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
+                         fold_build2 (MULT_EXPR, TREE_TYPE (init_expr),
+                                      fold_convert (TREE_TYPE (init_expr),
+                                                    niters),
+                                      step_expr),
+                         init_expr);
+
+
 
       var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
 
       var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
-      add_referenced_tmp_var (var);
+      add_referenced_var (var);
 
 
-      ni_name = force_gimple_operand (ni, &stmt, false, var);
-      
-      /* Insert stmt into exit_bb.  */
       last_bsi = bsi_last (exit_bb);
       last_bsi = bsi_last (exit_bb);
-      if (stmt)
-        bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);   
-
+      ni_name = force_gimple_operand_bsi (&last_bsi, ni, false, var,
+                                         true, BSI_SAME_STMT);
+      
       /* Fix phi expressions in the successor bb.  */
       SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
     }
       /* Fix phi expressions in the successor bb.  */
       SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
     }
@@ -2409,8 +6041,7 @@ vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
    NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).  */
 
 static void 
    NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).  */
 
 static void 
-vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
-                               struct loops *loops)
+vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio)
 {
   tree ni_name, ratio_mult_vf_name;
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
 {
   tree ni_name, ratio_mult_vf_name;
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
@@ -2418,6 +6049,9 @@ vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
   edge update_e;
   basic_block preheader;
   int loop_num;
   edge update_e;
   basic_block preheader;
   int loop_num;
+  unsigned int th;
+  int min_scalar_loop_bound;
+  int min_profitable_iters;
 
   if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
 
   if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
@@ -2433,8 +6067,29 @@ vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
                                   &ratio_mult_vf_name, ratio);
 
   loop_num  = loop->num; 
                                   &ratio_mult_vf_name, ratio);
 
   loop_num  = loop->num; 
-  new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->single_exit,
-                                           ratio_mult_vf_name, ni_name, false);
+
+  /* Analyze cost to set threshhold for vectorized loop.  */
+  min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
+  min_scalar_loop_bound = (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND))
+                          * LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+
+  /* Use the cost model only if it is more conservative than user specified
+     threshold.  */
+
+  th = (unsigned) min_scalar_loop_bound;
+  if (min_profitable_iters
+      && (!min_scalar_loop_bound
+          || min_profitable_iters > min_scalar_loop_bound))
+    th = (unsigned) min_profitable_iters;
+
+  if (min_profitable_iters
+      && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
+      && vect_print_dump_info (REPORT_DETAILS))
+    fprintf (vect_dump, "vectorization may not be profitable.");
+
+  new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
+                                            ratio_mult_vf_name, ni_name, false,
+                                            th);
   gcc_assert (new_loop);
   gcc_assert (loop_num == loop->num);
 #ifdef ENABLE_CHECKING
   gcc_assert (new_loop);
   gcc_assert (loop_num == loop->num);
 #ifdef ENABLE_CHECKING
@@ -2448,7 +6103,7 @@ vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
      is on the path where the LOOP IVs are used and need to be updated.  */
 
   preheader = loop_preheader_edge (new_loop)->src;
      is on the path where the LOOP IVs are used and need to be updated.  */
 
   preheader = loop_preheader_edge (new_loop)->src;
-  if (EDGE_PRED (preheader, 0)->src == loop->single_exit->dest)
+  if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
     update_e = EDGE_PRED (preheader, 0);
   else
     update_e = EDGE_PRED (preheader, 1);
     update_e = EDGE_PRED (preheader, 0);
   else
     update_e = EDGE_PRED (preheader, 1);
@@ -2482,13 +6137,24 @@ vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
    prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
    
    (elem_size = element type size; an element is the scalar element 
    prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
    
    (elem_size = element type size; an element is the scalar element 
-       whose type is the inner type of the vectype)  */
+       whose type is the inner type of the vectype)  
+
+   For interleaving,
+
+   prolog_niters = min ( LOOP_NITERS , 
+                        (VF/group_size - addr_mis/elem_size)&(VF/group_size-1) )
+        where group_size is the size of the interleaved group.
+
+   The above formulas assume that VF == number of elements in the vector. This
+   may not hold when there are multiple-types in the loop.
+   In this case, for some data-references in the loop the VF does not represent
+   the number of elements that fit in the vector.  Therefore, instead of VF we
+   use TYPE_VECTOR_SUBPARTS.  */
 
 static tree 
 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
 {
   struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
 
 static tree 
 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
 {
   struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
-  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   tree var, stmt;
   tree iters, iters_name;
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   tree var, stmt;
   tree iters, iters_name;
@@ -2499,32 +6165,44 @@ vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
   tree niters_type = TREE_TYPE (loop_niters);
   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
   int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
   tree niters_type = TREE_TYPE (loop_niters);
+  int group_size = 1;
+  int element_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
+  int nelements = TYPE_VECTOR_SUBPARTS (vectype);
+
+  if (DR_GROUP_FIRST_DR (stmt_info))
+    {
+      /* For interleaved access element size must be multiplied by the size of
+        the interleaved group.  */
+      group_size = DR_GROUP_SIZE (vinfo_for_stmt (
+                                              DR_GROUP_FIRST_DR (stmt_info)));
+      element_size *= group_size;
+    }
 
   pe = loop_preheader_edge (loop); 
 
   if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
     {
       int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
 
   pe = loop_preheader_edge (loop); 
 
   if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
     {
       int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
-      int element_size = vectype_align/vf;
       int elem_misalign = byte_misalign / element_size;
 
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "known alignment = %d.", byte_misalign);
       int elem_misalign = byte_misalign / element_size;
 
       if (vect_print_dump_info (REPORT_DETAILS))
         fprintf (vect_dump, "known alignment = %d.", byte_misalign);
-      iters = build_int_cst (niters_type, (vf - elem_misalign)&(vf-1));
+      iters = build_int_cst (niters_type, 
+                            (nelements - elem_misalign)&(nelements/group_size-1));
     }
   else
     {
       tree new_stmts = NULL_TREE;
     }
   else
     {
       tree new_stmts = NULL_TREE;
-      tree start_addr =
-        vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
+      tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt, 
+                                               &new_stmts, NULL_TREE, loop);
       tree ptr_type = TREE_TYPE (start_addr);
       tree size = TYPE_SIZE (ptr_type);
       tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
       tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
       tree elem_size_log =
       tree ptr_type = TREE_TYPE (start_addr);
       tree size = TYPE_SIZE (ptr_type);
       tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
       tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
       tree elem_size_log =
-        build_int_cst (type, exact_log2 (vectype_align/vf));
-      tree vf_minus_1 = build_int_cst (type, vf - 1);
-      tree vf_tree = build_int_cst (type, vf);
+        build_int_cst (type, exact_log2 (vectype_align/nelements));
+      tree nelements_minus_1 = build_int_cst (type, nelements - 1);
+      tree nelements_tree = build_int_cst (type, nelements);
       tree byte_misalign;
       tree elem_misalign;
 
       tree byte_misalign;
       tree elem_misalign;
 
@@ -2533,15 +6211,15 @@ vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
   
       /* Create:  byte_misalign = addr & (vectype_size - 1)  */
       byte_misalign = 
   
       /* Create:  byte_misalign = addr & (vectype_size - 1)  */
       byte_misalign = 
-        build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
+        fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr), vectype_size_minus_1);
   
       /* Create:  elem_misalign = byte_misalign / element_size  */
       elem_misalign =
   
       /* Create:  elem_misalign = byte_misalign / element_size  */
       elem_misalign =
-        build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
+        fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
 
 
-      /* Create:  (niters_type) (VF - elem_misalign)&(VF - 1)  */
-      iters = build2 (MINUS_EXPR, type, vf_tree, elem_misalign);
-      iters = build2 (BIT_AND_EXPR, type, iters, vf_minus_1);
+      /* Create:  (niters_type) (nelements - elem_misalign)&(nelements - 1)  */
+      iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
+      iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
       iters = fold_convert (niters_type, iters);
     }
 
       iters = fold_convert (niters_type, iters);
     }
 
@@ -2550,7 +6228,7 @@ vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
      greater than vf; since the misalignment ('iters') is at most vf, there's
      no need to generate the MIN_EXPR in this case.  */
   if (TREE_CODE (loop_niters) != INTEGER_CST)
      greater than vf; since the misalignment ('iters') is at most vf, there's
      no need to generate the MIN_EXPR in this case.  */
   if (TREE_CODE (loop_niters) != INTEGER_CST)
-    iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);
+    iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
 
   if (vect_print_dump_info (REPORT_DETAILS))
     {
 
   if (vect_print_dump_info (REPORT_DETAILS))
     {
@@ -2559,7 +6237,7 @@ vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
     }
 
   var = create_tmp_var (niters_type, "prolog_loop_niters");
     }
 
   var = create_tmp_var (niters_type, "prolog_loop_niters");
-  add_referenced_tmp_var (var);
+  add_referenced_var (var);
   iters_name = force_gimple_operand (iters, &stmt, false, var);
 
   /* Insert stmt on loop preheader edge.  */
   iters_name = force_gimple_operand (iters, &stmt, false, var);
 
   /* Insert stmt on loop preheader edge.  */
@@ -2596,23 +6274,21 @@ vect_update_init_of_dr (struct data_reference *dr, tree niters)
    NITERS iterations were peeled from the loop represented by LOOP_VINFO.  
    This function updates the information recorded for the data references in 
    the loop to account for the fact that the first NITERS iterations had 
    NITERS iterations were peeled from the loop represented by LOOP_VINFO.  
    This function updates the information recorded for the data references in 
    the loop to account for the fact that the first NITERS iterations had 
-   already been executed.  Specifically, it updates the initial_condition of the
-   access_function of all the data_references in the loop.  */
+   already been executed.  Specifically, it updates the initial_condition of
+   the access_function of all the data_references in the loop.  */
 
 static void
 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
 {
   unsigned int i;
 
 static void
 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
 {
   unsigned int i;
-  varray_type datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+  struct data_reference *dr;
 
 
-  if (vect_dump && (dump_flags & TDF_DETAILS))
+  if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
 
     fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
 
-  for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
-    {
-      struct data_reference *dr = VARRAY_GENERIC_PTR (datarefs, i);
-      vect_update_init_of_dr (dr, niters);
-    }
+  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+    vect_update_init_of_dr (dr, niters);
 }
 
 
 }
 
 
@@ -2625,7 +6301,7 @@ vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
    peeling is recorded in LOOP_VINFO_UNALIGNED_DR.  */
 
 static void
    peeling is recorded in LOOP_VINFO_UNALIGNED_DR.  */
 
 static void
-vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
+vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
 {
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   tree niters_of_prolog_loop, ni_name;
 {
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   tree niters_of_prolog_loop, ni_name;
@@ -2642,8 +6318,8 @@ vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
   
   /* Peel the prolog loop and iterate it niters_of_prolog_loop.  */
   new_loop = 
   
   /* Peel the prolog loop and iterate it niters_of_prolog_loop.  */
   new_loop = 
-       slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop), 
-                                      niters_of_prolog_loop, ni_name, true); 
+       slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop), 
+                                      niters_of_prolog_loop, ni_name, true, 0); 
   gcc_assert (new_loop);
 #ifdef ENABLE_CHECKING
   slpeel_verify_cfg_after_peeling (new_loop, loop);
   gcc_assert (new_loop);
 #ifdef ENABLE_CHECKING
   slpeel_verify_cfg_after_peeling (new_loop, loop);
@@ -2691,9 +6367,10 @@ static tree
 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
                                    tree *cond_expr_stmt_list)
 {
 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
                                    tree *cond_expr_stmt_list)
 {
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   VEC(tree,heap) *may_misalign_stmts
     = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
   VEC(tree,heap) *may_misalign_stmts
     = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
-  tree ref_stmt;
+  tree ref_stmt, tmp;
   int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
   tree mask_cst;
   unsigned int i;
   int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
   tree mask_cst;
   unsigned int i;
@@ -2726,19 +6403,17 @@ vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
 
       /* create: addr_tmp = (int)(address_of_first_vector) */
       addr_base = vect_create_addr_base_for_vector_ref (ref_stmt, 
 
       /* create: addr_tmp = (int)(address_of_first_vector) */
       addr_base = vect_create_addr_base_for_vector_ref (ref_stmt, 
-                                                       &new_stmt_list, 
-                                                       NULL_TREE);
+                                       &new_stmt_list, NULL_TREE, loop);
 
       if (new_stmt_list != NULL_TREE)
         append_to_statement_list_force (new_stmt_list, cond_expr_stmt_list);
 
       sprintf (tmp_name, "%s%d", "addr2int", i);
       addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
 
       if (new_stmt_list != NULL_TREE)
         append_to_statement_list_force (new_stmt_list, cond_expr_stmt_list);
 
       sprintf (tmp_name, "%s%d", "addr2int", i);
       addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
-      add_referenced_tmp_var (addr_tmp);
+      add_referenced_var (addr_tmp);
       addr_tmp_name = make_ssa_name (addr_tmp, NULL_TREE);
       addr_stmt = fold_convert (int_ptrsize_type, addr_base);
       addr_tmp_name = make_ssa_name (addr_tmp, NULL_TREE);
       addr_stmt = fold_convert (int_ptrsize_type, addr_base);
-      addr_stmt = build2 (MODIFY_EXPR, void_type_node,
-                          addr_tmp_name, addr_stmt);
+      addr_stmt = build_gimple_modify_stmt (addr_tmp_name, addr_stmt);
       SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
       append_to_statement_list_force (addr_stmt, cond_expr_stmt_list);
 
       SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
       append_to_statement_list_force (addr_stmt, cond_expr_stmt_list);
 
@@ -2749,12 +6424,11 @@ vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
           /* create: or_tmp = or_tmp | addr_tmp */
           sprintf (tmp_name, "%s%d", "orptrs", i);
           or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
           /* create: or_tmp = or_tmp | addr_tmp */
           sprintf (tmp_name, "%s%d", "orptrs", i);
           or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
-          add_referenced_tmp_var (or_tmp);
+          add_referenced_var (or_tmp);
           new_or_tmp_name = make_ssa_name (or_tmp, NULL_TREE);
           new_or_tmp_name = make_ssa_name (or_tmp, NULL_TREE);
-          or_stmt = build2 (MODIFY_EXPR, void_type_node, new_or_tmp_name,
-                            build2 (BIT_IOR_EXPR, int_ptrsize_type,
-                                   or_tmp_name,
-                                    addr_tmp_name));
+         tmp = build2 (BIT_IOR_EXPR, int_ptrsize_type,
+                       or_tmp_name, addr_tmp_name);
+          or_stmt = build_gimple_modify_stmt (new_or_tmp_name, tmp);
           SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
           append_to_statement_list_force (or_stmt, cond_expr_stmt_list);
           or_tmp_name = new_or_tmp_name;
           SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
           append_to_statement_list_force (or_stmt, cond_expr_stmt_list);
           or_tmp_name = new_or_tmp_name;
@@ -2768,23 +6442,160 @@ vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
 
   /* create: and_tmp = or_tmp & mask  */
   and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
 
   /* create: and_tmp = or_tmp & mask  */
   and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
-  add_referenced_tmp_var (and_tmp);
+  add_referenced_var (and_tmp);
   and_tmp_name = make_ssa_name (and_tmp, NULL_TREE);
 
   and_tmp_name = make_ssa_name (and_tmp, NULL_TREE);
 
-  and_stmt = build2 (MODIFY_EXPR, void_type_node,
-                     and_tmp_name,
-                     build2 (BIT_AND_EXPR, int_ptrsize_type,
-                             or_tmp_name, mask_cst));
+  tmp = build2 (BIT_AND_EXPR, int_ptrsize_type, or_tmp_name, mask_cst);
+  and_stmt = build_gimple_modify_stmt (and_tmp_name, tmp);
   SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
   append_to_statement_list_force (and_stmt, cond_expr_stmt_list);
 
   /* Make and_tmp the left operand of the conditional test against zero.
   SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
   append_to_statement_list_force (and_stmt, cond_expr_stmt_list);
 
   /* Make and_tmp the left operand of the conditional test against zero.
-     if and_tmp has a non-zero bit then some address is unaligned.  */
+     if and_tmp has a nonzero bit then some address is unaligned.  */
   ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
   return build2 (EQ_EXPR, boolean_type_node,
                  and_tmp_name, ptrsize_zero);
 }
 
   ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
   return build2 (EQ_EXPR, boolean_type_node,
                  and_tmp_name, ptrsize_zero);
 }
 
+/* Function vect_vfa_segment_size.
+
+   Create an expression that computes the size of segment
+   that will be accessed for a data reference.  The functions takes into
+   account that realignment loads may access one more vector.
+
+   Input:
+     DR: The data reference.
+     VECT_FACTOR: vectorization factor.
+
+   Return an exrpession whose value is the size of segment which will be
+   accessed by DR.  */
+
+static tree
+vect_vfa_segment_size (struct data_reference *dr, tree vect_factor)
+{
+  tree segment_length;
+
+  if (vect_supportable_dr_alignment (dr) == dr_explicit_realign_optimized)
+    {
+      tree vector_size =
+        build_int_cst (integer_type_node,
+          GET_MODE_SIZE (TYPE_MODE (STMT_VINFO_VECTYPE
+           (vinfo_for_stmt (DR_STMT (dr))))));
+
+      segment_length =
+       fold_convert (sizetype,
+         fold_build2 (PLUS_EXPR, integer_type_node,
+           fold_build2 (MULT_EXPR, integer_type_node, DR_STEP (dr),
+                        vect_factor),
+           vector_size));
+    }
+  else
+    {
+      segment_length =
+       fold_convert (sizetype,
+         fold_build2 (MULT_EXPR, integer_type_node, DR_STEP (dr),
+                      vect_factor));
+    }
+
+    return segment_length;
+}
+
+/* Function vect_create_cond_for_alias_checks.
+
+   Create a conditional expression that represents the run-time checks for
+   overlapping of address ranges represented by a list of data references
+   relations passed as input.
+
+   Input:
+   COND_EXPR  - input conditional expression.  New conditions will be chained
+                with logical and operation.
+   LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
+               to be checked.
+
+   Output:
+   COND_EXPR - conditional expression.
+   COND_EXPR_STMT_LIST - statements needed to construct the conditional
+                         expression.
+   The returned value is the conditional expression to be used in the if
+   statement that controls which version of the loop gets executed at runtime.
+*/
+
+static void
+vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
+                                  tree * cond_expr,
+                                  tree * cond_expr_stmt_list)
+{
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  VEC (ddr_p, heap) * may_alias_ddrs =
+    LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
+  tree vect_factor =
+    build_int_cst (integer_type_node, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
+
+  ddr_p ddr;
+  unsigned int i;
+  tree part_cond_expr;
+
+  /* Create expression
+     ((store_ptr_0 + store_segment_length_0) < load_ptr_0)
+     || (load_ptr_0 + load_segment_length_0) < store_ptr_0))
+     &&         
+     ...
+     &&
+     ((store_ptr_n + store_segment_length_n) < load_ptr_n)
+     || (load_ptr_n + load_segment_length_n) < store_ptr_n))  */
+
+  if (VEC_empty (ddr_p, may_alias_ddrs))
+    return;
+
+  for (i = 0; VEC_iterate (ddr_p, may_alias_ddrs, i, ddr); i++)
+    {
+      tree stmt_a = DR_STMT (DDR_A (ddr));
+      tree stmt_b = DR_STMT (DDR_B (ddr));
+
+      tree addr_base_a =
+        vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
+                                             NULL_TREE, loop);
+      tree addr_base_b =
+        vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
+                                             NULL_TREE, loop);
+
+      tree segment_length_a = vect_vfa_segment_size (DDR_A (ddr), vect_factor);
+      tree segment_length_b = vect_vfa_segment_size (DDR_B (ddr), vect_factor);
+
+      if (vect_print_dump_info (REPORT_DR_DETAILS))
+       {
+         fprintf (vect_dump,
+                  "create runtime check for data references ");
+         print_generic_expr (vect_dump, DR_REF (DDR_A (ddr)), TDF_SLIM);
+         fprintf (vect_dump, " and ");
+         print_generic_expr (vect_dump, DR_REF (DDR_B (ddr)), TDF_SLIM);
+       }
+
+
+      part_cond_expr = 
+       fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
+         fold_build2 (LT_EXPR, boolean_type_node,
+           fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_a),
+             addr_base_a,
+             segment_length_a),
+           addr_base_b),
+         fold_build2 (LT_EXPR, boolean_type_node,
+           fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_b),
+             addr_base_b,
+             segment_length_b),
+           addr_base_a));
+      
+      if (*cond_expr)
+       *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+                                 *cond_expr, part_cond_expr);
+      else
+       *cond_expr = part_cond_expr;
+    }
+    if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
+      fprintf (vect_dump, "created %u versioning for alias checks.\n",
+               VEC_length (ddr_p, may_alias_ddrs));
+
+}
 
 /* Function vect_transform_loop.
 
 
 /* Function vect_transform_loop.
 
@@ -2793,55 +6604,105 @@ vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
    stmts in the loop, and update the loop exit condition.  */
 
 void
    stmts in the loop, and update the loop exit condition.  */
 
 void
-vect_transform_loop (loop_vec_info loop_vinfo, 
-                    struct loops *loops ATTRIBUTE_UNUSED)
+vect_transform_loop (loop_vec_info loop_vinfo)
 {
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
   int nbbs = loop->num_nodes;
 {
   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
   basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
   int nbbs = loop->num_nodes;
-  block_stmt_iterator si;
+  block_stmt_iterator si, next_si;
   int i;
   tree ratio = NULL;
   int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
   int i;
   tree ratio = NULL;
   int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
-  bitmap_iterator bi;
-  unsigned int j;
+  bool strided_store;
 
   if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vec_transform_loop ===");
 
 
   if (vect_print_dump_info (REPORT_DETAILS))
     fprintf (vect_dump, "=== vec_transform_loop ===");
 
-  /* If the loop has data references that may or may not be aligned then
+  /* If the loop has data references that may or may not be aligned or/and
+     has data reference relations whose independence was not proven then
      two versions of the loop need to be generated, one which is vectorized
      and one which isn't.  A test is then generated to control which of the
      loops is executed.  The test checks for the alignment of all of the
      two versions of the loop need to be generated, one which is vectorized
      and one which isn't.  A test is then generated to control which of the
      loops is executed.  The test checks for the alignment of all of the
-     data references that may or may not be aligned. */
+     data references that may or may not be aligned.  An additional
+     sequence of runtime tests is generated for each pairs of DDRs whose
+     independence was not proven.  The vectorized version of loop is 
+     executed only if both alias and alignment tests are passed.  */
 
 
-  if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
+  if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
+      || VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
     {
       struct loop *nloop;
     {
       struct loop *nloop;
-      tree cond_expr;
+      tree cond_expr = NULL_TREE;
       tree cond_expr_stmt_list = NULL_TREE;
       basic_block condition_bb;
       block_stmt_iterator cond_exp_bsi;
       tree cond_expr_stmt_list = NULL_TREE;
       basic_block condition_bb;
       block_stmt_iterator cond_exp_bsi;
-
-      cond_expr = vect_create_cond_for_align_checks (loop_vinfo,
+      basic_block merge_bb;
+      basic_block new_exit_bb;
+      edge new_exit_e, e;
+      tree orig_phi, new_phi, arg;
+      unsigned prob = 4 * REG_BR_PROB_BASE / 5;
+      tree gimplify_stmt_list;
+
+      if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
+       cond_expr =
+         vect_create_cond_for_align_checks (loop_vinfo, &cond_expr_stmt_list);
+
+      if (VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
+       vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr,
                                                      &cond_expr_stmt_list);
                                                      &cond_expr_stmt_list);
+
+      cond_expr =
+        fold_build2 (NE_EXPR, boolean_type_node, cond_expr, integer_zero_node);
+      cond_expr =
+        force_gimple_operand (cond_expr, &gimplify_stmt_list, true,
+                              NULL_TREE);
+      append_to_statement_list (gimplify_stmt_list, &cond_expr_stmt_list);
+
       initialize_original_copy_tables ();
       initialize_original_copy_tables ();
-      nloop = loop_version (loops, loop, cond_expr, &condition_bb, true);
+      nloop = loop_version (loop, cond_expr, &condition_bb,
+                           prob, prob, REG_BR_PROB_BASE - prob, true);
       free_original_copy_tables();
       free_original_copy_tables();
+
+      /** Loop versioning violates an assumption we try to maintain during 
+        vectorization - that the loop exit block has a single predecessor.
+        After versioning, the exit block of both loop versions is the same
+        basic block (i.e. it has two predecessors). Just in order to simplify
+        following transformations in the vectorizer, we fix this situation
+        here by adding a new (empty) block on the exit-edge of the loop,
+        with the proper loop-exit phis to maintain loop-closed-form.  **/
+      
+      merge_bb = single_exit (loop)->dest;
+      gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
+      new_exit_bb = split_edge (single_exit (loop));
+      new_exit_e = single_exit (loop);
+      e = EDGE_SUCC (new_exit_bb, 0);
+
+      for (orig_phi = phi_nodes (merge_bb); orig_phi; 
+          orig_phi = PHI_CHAIN (orig_phi))
+       {
+          new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+                                    new_exit_bb);
+          arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
+          add_phi_arg (new_phi, arg, new_exit_e);
+         SET_PHI_ARG_DEF (orig_phi, e->dest_idx, PHI_RESULT (new_phi));
+       } 
+
+      /** end loop-exit-fixes after versioning  **/
+
       update_ssa (TODO_update_ssa);
       cond_exp_bsi = bsi_last (condition_bb);
       bsi_insert_before (&cond_exp_bsi, cond_expr_stmt_list, BSI_SAME_STMT);
     }
 
       update_ssa (TODO_update_ssa);
       cond_exp_bsi = bsi_last (condition_bb);
       bsi_insert_before (&cond_exp_bsi, cond_expr_stmt_list, BSI_SAME_STMT);
     }
 
-  /* CHECKME: we wouldn't need this if we calles update_ssa once
+  /* CHECKME: we wouldn't need this if we called update_ssa once
      for all loops.  */
      for all loops.  */
-  bitmap_zero (vect_vnames_to_rename);
+  bitmap_zero (vect_memsyms_to_rename);
 
   /* Peel the loop if there are data refs with unknown alignment.
      Only one data ref with unknown store is allowed.  */
 
   if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
 
   /* Peel the loop if there are data refs with unknown alignment.
      Only one data ref with unknown store is allowed.  */
 
   if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
-    vect_do_peeling_for_alignment (loop_vinfo, loops);
+    vect_do_peeling_for_alignment (loop_vinfo);
   
   /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
      compile time constant), or it is a constant that doesn't divide by the
   
   /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
      compile time constant), or it is a constant that doesn't divide by the
@@ -2854,7 +6715,7 @@ vect_transform_loop (loop_vec_info loop_vinfo,
   if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
       || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
           && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
   if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
       || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
           && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
-    vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
+    vect_do_peeling_for_loop_bound (loop_vinfo, &ratio);
   else
     ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
                LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
   else
     ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
                LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
@@ -2864,8 +6725,7 @@ vect_transform_loop (loop_vec_info loop_vinfo,
 
   gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
 
 
   gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
 
-  loop_split_edge_with (loop_preheader_edge (loop), NULL);
-
+  split_edge (loop_preheader_edge (loop));
 
   /* FORNOW: the vectorizer supports only loops which body consist
      of one basic block (header + empty latch). When the vectorizer will 
 
   /* FORNOW: the vectorizer supports only loops which body consist
      of one basic block (header + empty latch). When the vectorizer will 
@@ -2875,11 +6735,39 @@ vect_transform_loop (loop_vec_info loop_vinfo,
   for (i = 0; i < nbbs; i++)
     {
       basic_block bb = bbs[i];
   for (i = 0; i < nbbs; i++)
     {
       basic_block bb = bbs[i];
+      stmt_vec_info stmt_info;
+      tree phi;
+
+      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+        {
+         if (vect_print_dump_info (REPORT_DETAILS))
+           {
+             fprintf (vect_dump, "------>vectorizing phi: ");
+             print_generic_expr (vect_dump, phi, TDF_SLIM);
+           }
+         stmt_info = vinfo_for_stmt (phi);
+         if (!stmt_info)
+           continue;
+         if (!STMT_VINFO_RELEVANT_P (stmt_info)
+             && !STMT_VINFO_LIVE_P (stmt_info))
+           continue;
+
+         if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
+               != (unsigned HOST_WIDE_INT) vectorization_factor)
+             && vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "multiple-types.");
+
+         if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
+           {
+             if (vect_print_dump_info (REPORT_DETAILS))
+               fprintf (vect_dump, "transform phi.");
+             vect_transform_stmt (phi, NULL, NULL);
+           }
+       }
 
       for (si = bsi_start (bb); !bsi_end_p (si);)
        {
          tree stmt = bsi_stmt (si);
 
       for (si = bsi_start (bb); !bsi_end_p (si);)
        {
          tree stmt = bsi_stmt (si);
-         stmt_vec_info stmt_info;
          bool is_store;
 
          if (vect_print_dump_info (REPORT_DETAILS))
          bool is_store;
 
          if (vect_print_dump_info (REPORT_DETAILS))
@@ -2887,43 +6775,81 @@ vect_transform_loop (loop_vec_info loop_vinfo,
              fprintf (vect_dump, "------>vectorizing statement: ");
              print_generic_expr (vect_dump, stmt, TDF_SLIM);
            }   
              fprintf (vect_dump, "------>vectorizing statement: ");
              print_generic_expr (vect_dump, stmt, TDF_SLIM);
            }   
+
          stmt_info = vinfo_for_stmt (stmt);
          stmt_info = vinfo_for_stmt (stmt);
-         gcc_assert (stmt_info);
+
+         /* vector stmts created in the outer-loop during vectorization of
+            stmts in an inner-loop may not have a stmt_info, and do not
+            need to be vectorized.  */
+         if (!stmt_info)
+           {
+             bsi_next (&si);
+             continue;
+           }
+
          if (!STMT_VINFO_RELEVANT_P (stmt_info)
              && !STMT_VINFO_LIVE_P (stmt_info))
            {
              bsi_next (&si);
              continue;
            }
          if (!STMT_VINFO_RELEVANT_P (stmt_info)
              && !STMT_VINFO_LIVE_P (stmt_info))
            {
              bsi_next (&si);
              continue;
            }
-         /* FORNOW: Verify that all stmts operate on the same number of
-                    units and no inner unrolling is necessary.  */
-         gcc_assert 
-               (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
-                == (unsigned HOST_WIDE_INT) vectorization_factor);
+
+         gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
+         if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
+                != (unsigned HOST_WIDE_INT) vectorization_factor)
+             && vect_print_dump_info (REPORT_DETAILS))
+           fprintf (vect_dump, "multiple-types.");
 
          /* -------- vectorize statement ------------ */
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "transform statement.");
 
 
          /* -------- vectorize statement ------------ */
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "transform statement.");
 
-         is_store = vect_transform_stmt (stmt, &si);
-         if (is_store)
-           {
-             /* Free the attached stmt_vec_info and remove the stmt.  */
-             stmt_ann_t ann = stmt_ann (stmt);
-             free (stmt_info);
-             set_stmt_info ((tree_ann_t)ann, NULL);
-             bsi_remove (&si);
-             continue;
+         strided_store = false;
+         is_store = vect_transform_stmt (stmt, &si, &strided_store);
+          if (is_store)
+            {
+             stmt_ann_t ann;
+             if (DR_GROUP_FIRST_DR (stmt_info))
+               {
+                 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
+                    interleaving chain was completed - free all the stores in
+                    the chain.  */
+                 tree next = DR_GROUP_FIRST_DR (stmt_info);
+                 tree tmp;
+                 stmt_vec_info next_stmt_info;
+
+                 while (next)
+                   {
+                     next_si = bsi_for_stmt (next);
+                     next_stmt_info = vinfo_for_stmt (next);
+                     /* Free the attached stmt_vec_info and remove the stmt.  */
+                     ann = stmt_ann (next);
+                     tmp = DR_GROUP_NEXT_DR (next_stmt_info);
+                     free (next_stmt_info);
+                     set_stmt_info (ann, NULL);
+                     bsi_remove (&next_si, true);
+                     next = tmp;
+                   }
+                 bsi_remove (&si, true);
+                 continue;
+               }
+             else
+               {
+                 /* Free the attached stmt_vec_info and remove the stmt.  */
+                 ann = stmt_ann (stmt);
+                 free (stmt_info);
+                 set_stmt_info (ann, NULL);
+                 bsi_remove (&si, true);
+                 continue;
+               }
            }
            }
-
          bsi_next (&si);
        }                       /* stmts in BB */
     }                          /* BBs in loop */
 
   slpeel_make_loop_iterate_ntimes (loop, ratio);
 
          bsi_next (&si);
        }                       /* stmts in BB */
     }                          /* BBs in loop */
 
   slpeel_make_loop_iterate_ntimes (loop, ratio);
 
-  EXECUTE_IF_SET_IN_BITMAP (vect_vnames_to_rename, 0, j, bi)
-    mark_sym_for_renaming (SSA_NAME_VAR (ssa_name (j)));
+  mark_set_for_renaming (vect_memsyms_to_rename);
 
   /* The memory tags and pointers in vectorized statements need to
      have their SSA forms updated.  FIXME, why can't this be delayed
 
   /* The memory tags and pointers in vectorized statements need to
      have their SSA forms updated.  FIXME, why can't this be delayed
@@ -2932,4 +6858,6 @@ vect_transform_loop (loop_vec_info loop_vinfo,
 
   if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
     fprintf (vect_dump, "LOOP VECTORIZED.");
 
   if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
     fprintf (vect_dump, "LOOP VECTORIZED.");
+  if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
+    fprintf (vect_dump, "OUTER LOOP VECTORIZED.");
 }
 }