OSDN Git Service

i965: Move hiz resolve to after renderbuffer resizing (v2)
[android-x86/external-mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /**************************************************************************
2  * 
3  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4  * All Rights Reserved.
5  * 
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  * 
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  * 
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  * 
26  **************************************************************************/
27
28 #include <sys/errno.h>
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32 #include "main/condrender.h"
33 #include "main/samplerobj.h"
34 #include "main/state.h"
35 #include "main/enums.h"
36 #include "main/macros.h"
37 #include "tnl/tnl.h"
38 #include "vbo/vbo_context.h"
39 #include "swrast/swrast.h"
40 #include "swrast_setup/swrast_setup.h"
41 #include "drivers/common/meta.h"
42
43 #include "brw_draw.h"
44 #include "brw_defines.h"
45 #include "brw_context.h"
46 #include "brw_state.h"
47
48 #include "intel_batchbuffer.h"
49 #include "intel_fbo.h"
50 #include "intel_mipmap_tree.h"
51 #include "intel_regions.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_PRIMS
54
55 static GLuint prim_to_hw_prim[GL_POLYGON+1] = {
56    _3DPRIM_POINTLIST,
57    _3DPRIM_LINELIST,
58    _3DPRIM_LINELOOP,
59    _3DPRIM_LINESTRIP,
60    _3DPRIM_TRILIST,
61    _3DPRIM_TRISTRIP,
62    _3DPRIM_TRIFAN,
63    _3DPRIM_QUADLIST,
64    _3DPRIM_QUADSTRIP,
65    _3DPRIM_POLYGON
66 };
67
68
69 static const GLenum reduced_prim[GL_POLYGON+1] = {  
70    GL_POINTS,
71    GL_LINES,
72    GL_LINES,
73    GL_LINES,
74    GL_TRIANGLES,
75    GL_TRIANGLES,
76    GL_TRIANGLES,
77    GL_TRIANGLES,
78    GL_TRIANGLES,
79    GL_TRIANGLES
80 };
81
82
83 /* When the primitive changes, set a state bit and re-validate.  Not
84  * the nicest and would rather deal with this by having all the
85  * programs be immune to the active primitive (ie. cope with all
86  * possibilities).  That may not be realistic however.
87  */
88 static void brw_set_prim(struct brw_context *brw,
89                          const struct _mesa_prim *prim)
90 {
91    struct gl_context *ctx = &brw->intel.ctx;
92    uint32_t hw_prim = prim_to_hw_prim[prim->mode];
93
94    DBG("PRIM: %s\n", _mesa_lookup_enum_by_nr(prim->mode));
95
96    /* Slight optimization to avoid the GS program when not needed:
97     */
98    if (prim->mode == GL_QUAD_STRIP &&
99        ctx->Light.ShadeModel != GL_FLAT &&
100        ctx->Polygon.FrontMode == GL_FILL &&
101        ctx->Polygon.BackMode == GL_FILL)
102       hw_prim = _3DPRIM_TRISTRIP;
103
104    if (prim->mode == GL_QUADS && prim->count == 4 &&
105        ctx->Light.ShadeModel != GL_FLAT &&
106        ctx->Polygon.FrontMode == GL_FILL &&
107        ctx->Polygon.BackMode == GL_FILL) {
108       hw_prim = _3DPRIM_TRIFAN;
109    }
110
111    if (hw_prim != brw->primitive) {
112       brw->primitive = hw_prim;
113       brw->state.dirty.brw |= BRW_NEW_PRIMITIVE;
114
115       if (reduced_prim[prim->mode] != brw->intel.reduced_primitive) {
116          brw->intel.reduced_primitive = reduced_prim[prim->mode];
117          brw->state.dirty.brw |= BRW_NEW_REDUCED_PRIMITIVE;
118       }
119    }
120 }
121
122 static void gen6_set_prim(struct brw_context *brw,
123                           const struct _mesa_prim *prim)
124 {
125    uint32_t hw_prim;
126
127    DBG("PRIM: %s\n", _mesa_lookup_enum_by_nr(prim->mode));
128
129    hw_prim = prim_to_hw_prim[prim->mode];
130
131    if (hw_prim != brw->primitive) {
132       brw->primitive = hw_prim;
133       brw->state.dirty.brw |= BRW_NEW_PRIMITIVE;
134    }
135 }
136
137
138 static GLuint trim(GLenum prim, GLuint length)
139 {
140    if (prim == GL_QUAD_STRIP)
141       return length > 3 ? (length - length % 2) : 0;
142    else if (prim == GL_QUADS)
143       return length - length % 4;
144    else 
145       return length;
146 }
147
148
149 static void brw_emit_prim(struct brw_context *brw,
150                           const struct _mesa_prim *prim,
151                           uint32_t hw_prim)
152 {
153    struct intel_context *intel = &brw->intel;
154    int verts_per_instance;
155    int vertex_access_type;
156    int start_vertex_location;
157    int base_vertex_location;
158
159    DBG("PRIM: %s %d %d\n", _mesa_lookup_enum_by_nr(prim->mode),
160        prim->start, prim->count);
161
162    start_vertex_location = prim->start;
163    base_vertex_location = prim->basevertex;
164    if (prim->indexed) {
165       vertex_access_type = GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
166       start_vertex_location += brw->ib.start_vertex_offset;
167       base_vertex_location += brw->vb.start_vertex_bias;
168    } else {
169       vertex_access_type = GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
170       start_vertex_location += brw->vb.start_vertex_bias;
171    }
172
173    verts_per_instance = trim(prim->mode, prim->count);
174
175    /* If nothing to emit, just return. */
176    if (verts_per_instance == 0)
177       return;
178
179    /* If we're set to always flush, do it before and after the primitive emit.
180     * We want to catch both missed flushes that hurt instruction/state cache
181     * and missed flushes of the render cache as it heads to other parts of
182     * the besides the draw code.
183     */
184    if (intel->always_flush_cache) {
185       intel_batchbuffer_emit_mi_flush(intel);
186    }
187
188    BEGIN_BATCH(6);
189    OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
190              hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
191              vertex_access_type);
192    OUT_BATCH(verts_per_instance);
193    OUT_BATCH(start_vertex_location);
194    OUT_BATCH(prim->num_instances);
195    OUT_BATCH(0); // start instance location
196    OUT_BATCH(base_vertex_location);
197    ADVANCE_BATCH();
198
199    intel->batch.need_workaround_flush = true;
200
201    if (intel->always_flush_cache) {
202       intel_batchbuffer_emit_mi_flush(intel);
203    }
204 }
205
206 static void gen7_emit_prim(struct brw_context *brw,
207                            const struct _mesa_prim *prim,
208                            uint32_t hw_prim)
209 {
210    struct intel_context *intel = &brw->intel;
211    int verts_per_instance;
212    int vertex_access_type;
213    int start_vertex_location;
214    int base_vertex_location;
215
216    DBG("PRIM: %s %d %d\n", _mesa_lookup_enum_by_nr(prim->mode),
217        prim->start, prim->count);
218
219    start_vertex_location = prim->start;
220    base_vertex_location = prim->basevertex;
221    if (prim->indexed) {
222       vertex_access_type = GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
223       start_vertex_location += brw->ib.start_vertex_offset;
224       base_vertex_location += brw->vb.start_vertex_bias;
225    } else {
226       vertex_access_type = GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
227       start_vertex_location += brw->vb.start_vertex_bias;
228    }
229
230    verts_per_instance = trim(prim->mode, prim->count);
231
232    /* If nothing to emit, just return. */
233    if (verts_per_instance == 0)
234       return;
235
236    /* If we're set to always flush, do it before and after the primitive emit.
237     * We want to catch both missed flushes that hurt instruction/state cache
238     * and missed flushes of the render cache as it heads to other parts of
239     * the besides the draw code.
240     */
241    if (intel->always_flush_cache) {
242       intel_batchbuffer_emit_mi_flush(intel);
243    }
244
245    BEGIN_BATCH(7);
246    OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2));
247    OUT_BATCH(hw_prim | vertex_access_type);
248    OUT_BATCH(verts_per_instance);
249    OUT_BATCH(start_vertex_location);
250    OUT_BATCH(prim->num_instances);
251    OUT_BATCH(0); // start instance location
252    OUT_BATCH(base_vertex_location);
253    ADVANCE_BATCH();
254
255    if (intel->always_flush_cache) {
256       intel_batchbuffer_emit_mi_flush(intel);
257    }
258 }
259
260
261 static void brw_merge_inputs( struct brw_context *brw,
262                        const struct gl_client_array *arrays[])
263 {
264    struct brw_vertex_info old = brw->vb.info;
265    GLuint i;
266
267    for (i = 0; i < brw->vb.nr_buffers; i++) {
268       drm_intel_bo_unreference(brw->vb.buffers[i].bo);
269       brw->vb.buffers[i].bo = NULL;
270    }
271    brw->vb.nr_buffers = 0;
272
273    memset(&brw->vb.info, 0, sizeof(brw->vb.info));
274
275    for (i = 0; i < VERT_ATTRIB_MAX; i++) {
276       brw->vb.inputs[i].buffer = -1;
277       brw->vb.inputs[i].glarray = arrays[i];
278       brw->vb.inputs[i].attrib = (gl_vert_attrib) i;
279
280       if (arrays[i]->StrideB != 0)
281          brw->vb.info.sizes[i/16] |= (brw->vb.inputs[i].glarray->Size - 1) <<
282             ((i%16) * 2);
283    }
284
285    /* Raise statechanges if input sizes have changed. */
286    if (memcmp(brw->vb.info.sizes, old.sizes, sizeof(old.sizes)) != 0)
287       brw->state.dirty.brw |= BRW_NEW_INPUT_DIMENSIONS;
288 }
289
290 /*
291  * \brief Resolve buffers before drawing.
292  *
293  * Resolve the depth buffer's HiZ buffer and resolve the depth buffer of each
294  * enabled depth texture.
295  *
296  * (In the future, this will also perform MSAA resolves).
297  */
298 static void
299 brw_predraw_resolve_buffers(struct brw_context *brw)
300 {
301    struct gl_context *ctx = &brw->intel.ctx;
302    struct intel_context *intel = &brw->intel;
303    struct intel_renderbuffer *depth_irb;
304    struct intel_texture_object *tex_obj;
305
306    /* Resolve the depth buffer's HiZ buffer. */
307    depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
308    if (depth_irb)
309       intel_renderbuffer_resolve_hiz(intel, depth_irb);
310
311    /* Resolve depth buffer of each enabled depth texture. */
312    for (int i = 0; i < BRW_MAX_TEX_UNIT; i++) {
313       if (!ctx->Texture.Unit[i]._ReallyEnabled)
314          continue;
315       tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
316       if (!tex_obj || !tex_obj->mt)
317          continue;
318       intel_miptree_all_slices_resolve_depth(intel, tex_obj->mt);
319    }
320 }
321
322 /**
323  * \brief Call this after drawing to mark which buffers need resolving
324  *
325  * If the depth buffer was written to and if it has an accompanying HiZ
326  * buffer, then mark that it needs a depth resolve.
327  *
328  * If the color buffer is a multisample window system buffer, then
329  * mark that it needs a downsample.
330  */
331 static void brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
332 {
333    struct intel_context *intel = &brw->intel;
334    struct gl_context *ctx = &brw->intel.ctx;
335    struct gl_framebuffer *fb = ctx->DrawBuffer;
336
337    struct intel_renderbuffer *front_irb = NULL;
338    struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
339    struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
340
341    if (intel->is_front_buffer_rendering)
342       front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
343
344    if (front_irb)
345       intel_renderbuffer_set_needs_downsample(front_irb);
346    if (back_irb)
347       intel_renderbuffer_set_needs_downsample(back_irb);
348    if (depth_irb && ctx->Depth.Mask)
349       intel_renderbuffer_set_needs_depth_resolve(depth_irb);
350 }
351
352 static int
353 verts_per_prim(GLenum mode)
354 {
355    switch (mode) {
356    case GL_POINTS:
357       return 1;
358    case GL_LINE_STRIP:
359    case GL_LINE_LOOP:
360    case GL_LINES:
361       return 2;
362    case GL_TRIANGLE_STRIP:
363    case GL_TRIANGLE_FAN:
364    case GL_POLYGON:
365    case GL_TRIANGLES:
366    case GL_QUADS:
367    case GL_QUAD_STRIP:
368       return 3;
369    default:
370       _mesa_problem(NULL,
371                     "unknown prim type in transform feedback primitive count");
372       return 0;
373    }
374 }
375
376 /**
377  * Update internal counters based on the the drawing operation described in
378  * prim.
379  */
380 static void
381 brw_update_primitive_count(struct brw_context *brw,
382                            const struct _mesa_prim *prim)
383 {
384    uint32_t count = count_tessellated_primitives(prim);
385    brw->sol.primitives_generated += count;
386    if (brw->intel.ctx.TransformFeedback.CurrentObject->Active &&
387        !brw->intel.ctx.TransformFeedback.CurrentObject->Paused) {
388       /* Update brw->sol.svbi_0_max_index to reflect the amount by which the
389        * hardware is going to increment SVBI 0 when this drawing operation
390        * occurs.  This is necessary because the kernel does not (yet) save and
391        * restore GPU registers when context switching, so we'll need to be
392        * able to reload SVBI 0 with the correct value in case we have to start
393        * a new batch buffer.
394        */
395       unsigned verts = verts_per_prim(prim->mode);
396       uint32_t space_avail =
397          (brw->sol.svbi_0_max_index - brw->sol.svbi_0_starting_index) / verts;
398       uint32_t primitives_written = MIN2 (space_avail, count);
399       brw->sol.svbi_0_starting_index += verts * primitives_written;
400
401       /* And update the TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN query. */
402       brw->sol.primitives_written += primitives_written;
403    }
404 }
405
406 /* May fail if out of video memory for texture or vbo upload, or on
407  * fallback conditions.
408  */
409 static bool brw_try_draw_prims( struct gl_context *ctx,
410                                      const struct gl_client_array *arrays[],
411                                      const struct _mesa_prim *prim,
412                                      GLuint nr_prims,
413                                      const struct _mesa_index_buffer *ib,
414                                      GLuint min_index,
415                                      GLuint max_index )
416 {
417    struct intel_context *intel = intel_context(ctx);
418    struct brw_context *brw = brw_context(ctx);
419    bool retval = true;
420    GLuint i;
421    bool fail_next = false;
422
423    if (ctx->NewState)
424       _mesa_update_state( ctx );
425
426    /* We have to validate the textures *before* checking for fallbacks;
427     * otherwise, the software fallback won't be able to rely on the
428     * texture state, the firstLevel and lastLevel fields won't be
429     * set in the intel texture object (they'll both be 0), and the 
430     * software fallback will segfault if it attempts to access any
431     * texture level other than level 0.
432     */
433    brw_validate_textures( brw );
434
435    intel_prepare_render(intel);
436
437    /* Resolves must occur after updating renderbuffers, updating context state,
438     * and finalizing textures but before setting up any hardware state for
439     * this draw call.
440     */
441    brw_predraw_resolve_buffers(brw);
442
443    /* Bind all inputs, derive varying and size information:
444     */
445    brw_merge_inputs( brw, arrays );
446
447    brw->ib.ib = ib;
448    brw->state.dirty.brw |= BRW_NEW_INDICES;
449
450    brw->vb.min_index = min_index;
451    brw->vb.max_index = max_index;
452    brw->state.dirty.brw |= BRW_NEW_VERTICES;
453
454    /* Have to validate state quite late.  Will rebuild tnl_program,
455     * which depends on varying information.  
456     * 
457     * Note this is where brw->vs->prog_data.inputs_read is calculated,
458     * so can't access it earlier.
459     */
460
461    for (i = 0; i < nr_prims; i++) {
462       int estimated_max_prim_size;
463
464       estimated_max_prim_size = 512; /* batchbuffer commands */
465       estimated_max_prim_size += (BRW_MAX_TEX_UNIT *
466                                   (sizeof(struct brw_sampler_state) +
467                                    sizeof(struct gen5_sampler_default_color)));
468       estimated_max_prim_size += 1024; /* gen6 VS push constants */
469       estimated_max_prim_size += 1024; /* gen6 WM push constants */
470       estimated_max_prim_size += 512; /* misc. pad */
471
472       /* Flush the batch if it's approaching full, so that we don't wrap while
473        * we've got validated state that needs to be in the same batch as the
474        * primitives.
475        */
476       intel_batchbuffer_require_space(intel, estimated_max_prim_size, false);
477       intel_batchbuffer_save_state(intel);
478
479       brw->num_instances = prim->num_instances;
480       if (intel->gen < 6)
481          brw_set_prim(brw, &prim[i]);
482       else
483          gen6_set_prim(brw, &prim[i]);
484
485 retry:
486       /* Note that before the loop, brw->state.dirty.brw was set to != 0, and
487        * that the state updated in the loop outside of this block is that in
488        * *_set_prim or intel_batchbuffer_flush(), which only impacts
489        * brw->state.dirty.brw.
490        */
491       if (brw->state.dirty.brw) {
492          intel->no_batch_wrap = true;
493          brw_upload_state(brw);
494
495          if (unlikely(brw->intel.Fallback)) {
496             intel->no_batch_wrap = false;
497             retval = false;
498             goto out;
499          }
500       }
501
502       if (intel->gen >= 7)
503          gen7_emit_prim(brw, &prim[i], brw->primitive);
504       else
505          brw_emit_prim(brw, &prim[i], brw->primitive);
506
507       intel->no_batch_wrap = false;
508
509       if (dri_bufmgr_check_aperture_space(&intel->batch.bo, 1)) {
510          if (!fail_next) {
511             intel_batchbuffer_reset_to_saved(intel);
512             intel_batchbuffer_flush(intel);
513             fail_next = true;
514             goto retry;
515          } else {
516             if (intel_batchbuffer_flush(intel) == -ENOSPC) {
517                static bool warned = false;
518
519                if (!warned) {
520                   fprintf(stderr, "i965: Single primitive emit exceeded"
521                           "available aperture space\n");
522                   warned = true;
523                }
524
525                retval = false;
526             }
527          }
528       }
529
530       if (!_mesa_meta_in_progress(ctx))
531          brw_update_primitive_count(brw, &prim[i]);
532    }
533
534    if (intel->always_flush_batch)
535       intel_batchbuffer_flush(intel);
536  out:
537
538    brw_state_cache_check_size(brw);
539    brw_postdraw_set_buffers_need_resolve(brw);
540
541    return retval;
542 }
543
544 void brw_draw_prims( struct gl_context *ctx,
545                      const struct _mesa_prim *prim,
546                      GLuint nr_prims,
547                      const struct _mesa_index_buffer *ib,
548                      GLboolean index_bounds_valid,
549                      GLuint min_index,
550                      GLuint max_index,
551                      struct gl_transform_feedback_object *tfb_vertcount )
552 {
553    const struct gl_client_array **arrays = ctx->Array._DrawArrays;
554    bool retval;
555
556    if (!_mesa_check_conditional_render(ctx))
557       return;
558
559    /* Handle primitive restart if needed */
560    if (brw_handle_primitive_restart(ctx, prim, nr_prims, ib)) {
561       /* The draw was handled, so we can exit now */
562       return;
563    }
564
565    if (!vbo_all_varyings_in_vbos(arrays)) {
566       if (!index_bounds_valid)
567          vbo_get_minmax_indices(ctx, prim, ib, &min_index, &max_index, nr_prims);
568
569       /* Decide if we want to rebase.  If so we end up recursing once
570        * only into this function.
571        */
572       if (min_index != 0 && !vbo_any_varyings_in_vbos(arrays)) {
573          vbo_rebase_prims(ctx, arrays,
574                           prim, nr_prims,
575                           ib, min_index, max_index,
576                           brw_draw_prims );
577          return;
578       }
579    }
580
581    /* Make a first attempt at drawing:
582     */
583    retval = brw_try_draw_prims(ctx, arrays, prim, nr_prims, ib, min_index, max_index);
584
585    /* Otherwise, we really are out of memory.  Pass the drawing
586     * command to the software tnl module and which will in turn call
587     * swrast to do the drawing.
588     */
589    if (!retval) {
590        _swsetup_Wakeup(ctx);
591        _tnl_wakeup(ctx);
592       _tnl_draw_prims(ctx, arrays, prim, nr_prims, ib, min_index, max_index);
593    }
594
595 }
596
597 void brw_draw_init( struct brw_context *brw )
598 {
599    struct gl_context *ctx = &brw->intel.ctx;
600    struct vbo_context *vbo = vbo_context(ctx);
601    int i;
602
603    /* Register our drawing function: 
604     */
605    vbo->draw_prims = brw_draw_prims;
606
607    for (i = 0; i < VERT_ATTRIB_MAX; i++)
608       brw->vb.inputs[i].buffer = -1;
609    brw->vb.nr_buffers = 0;
610    brw->vb.nr_enabled = 0;
611 }
612
613 void brw_draw_destroy( struct brw_context *brw )
614 {
615    int i;
616
617    for (i = 0; i < brw->vb.nr_buffers; i++) {
618       drm_intel_bo_unreference(brw->vb.buffers[i].bo);
619       brw->vb.buffers[i].bo = NULL;
620    }
621    brw->vb.nr_buffers = 0;
622
623    for (i = 0; i < brw->vb.nr_enabled; i++) {
624       brw->vb.enabled[i]->buffer = -1;
625    }
626    brw->vb.nr_enabled = 0;
627
628    drm_intel_bo_unreference(brw->ib.bo);
629    brw->ib.bo = NULL;
630 }