OSDN Git Service

runtime: Copy runtime_printf from other Go library.
[pf3gnuchains/gcc-fork.git] / libgo / runtime / mheap.c
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Page heap.
6 //
7 // See malloc.h for overview.
8 //
9 // When a MSpan is in the heap free list, state == MSpanFree
10 // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
11 //
12 // When a MSpan is allocated, state == MSpanInUse
13 // and heapmap(i) == span for all s->start <= i < s->start+s->npages.
14
15 #include "runtime.h"
16 #include "arch.h"
17 #include "malloc.h"
18
19 static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
20 static bool MHeap_Grow(MHeap*, uintptr);
21 static void MHeap_FreeLocked(MHeap*, MSpan*);
22 static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
23 static MSpan *BestFit(MSpan*, uintptr, MSpan*);
24
25 static void
26 RecordSpan(void *vh, byte *p)
27 {
28         MHeap *h;
29         MSpan *s;
30
31         h = vh;
32         s = (MSpan*)p;
33         s->allnext = h->allspans;
34         h->allspans = s;
35 }
36
37 // Initialize the heap; fetch memory using alloc.
38 void
39 runtime_MHeap_Init(MHeap *h, void *(*alloc)(uintptr))
40 {
41         uint32 i;
42
43         runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), alloc, RecordSpan, h);
44         runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), alloc, nil, nil);
45         // h->mapcache needs no init
46         for(i=0; i<nelem(h->free); i++)
47                 runtime_MSpanList_Init(&h->free[i]);
48         runtime_MSpanList_Init(&h->large);
49         for(i=0; i<nelem(h->central); i++)
50                 runtime_MCentral_Init(&h->central[i], i);
51 }
52
53 // Allocate a new span of npage pages from the heap
54 // and record its size class in the HeapMap and HeapMapCache.
55 MSpan*
56 runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct)
57 {
58         MSpan *s;
59
60         runtime_lock(h);
61         runtime_purgecachedstats(runtime_m());
62         s = MHeap_AllocLocked(h, npage, sizeclass);
63         if(s != nil) {
64                 mstats.heap_inuse += npage<<PageShift;
65                 if(acct) {
66                         mstats.heap_objects++;
67                         mstats.heap_alloc += npage<<PageShift;
68                 }
69         }
70         runtime_unlock(h);
71         return s;
72 }
73
74 static MSpan*
75 MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
76 {
77         uintptr n;
78         MSpan *s, *t;
79         PageID p;
80
81         // Try in fixed-size lists up to max.
82         for(n=npage; n < nelem(h->free); n++) {
83                 if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
84                         s = h->free[n].next;
85                         goto HaveSpan;
86                 }
87         }
88
89         // Best fit in list of large spans.
90         if((s = MHeap_AllocLarge(h, npage)) == nil) {
91                 if(!MHeap_Grow(h, npage))
92                         return nil;
93                 if((s = MHeap_AllocLarge(h, npage)) == nil)
94                         return nil;
95         }
96
97 HaveSpan:
98         // Mark span in use.
99         if(s->state != MSpanFree)
100                 runtime_throw("MHeap_AllocLocked - MSpan not free");
101         if(s->npages < npage)
102                 runtime_throw("MHeap_AllocLocked - bad npages");
103         runtime_MSpanList_Remove(s);
104         s->state = MSpanInUse;
105         mstats.heap_idle -= s->npages<<PageShift;
106         mstats.heap_released -= s->npreleased<<PageShift;
107         s->npreleased = 0;
108
109         if(s->npages > npage) {
110                 // Trim extra and put it back in the heap.
111                 t = runtime_FixAlloc_Alloc(&h->spanalloc);
112                 mstats.mspan_inuse = h->spanalloc.inuse;
113                 mstats.mspan_sys = h->spanalloc.sys;
114                 runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
115                 s->npages = npage;
116                 p = t->start;
117                 if(sizeof(void*) == 8)
118                         p -= ((uintptr)h->arena_start>>PageShift);
119                 if(p > 0)
120                         h->map[p-1] = s;
121                 h->map[p] = t;
122                 h->map[p+t->npages-1] = t;
123                 *(uintptr*)(t->start<<PageShift) = *(uintptr*)(s->start<<PageShift);  // copy "needs zeroing" mark
124                 t->state = MSpanInUse;
125                 MHeap_FreeLocked(h, t);
126         }
127
128         if(*(uintptr*)(s->start<<PageShift) != 0)
129                 runtime_memclr((byte*)(s->start<<PageShift), s->npages<<PageShift);
130
131         // Record span info, because gc needs to be
132         // able to map interior pointer to containing span.
133         s->sizeclass = sizeclass;
134         p = s->start;
135         if(sizeof(void*) == 8)
136                 p -= ((uintptr)h->arena_start>>PageShift);
137         for(n=0; n<npage; n++)
138                 h->map[p+n] = s;
139         return s;
140 }
141
142 // Allocate a span of exactly npage pages from the list of large spans.
143 static MSpan*
144 MHeap_AllocLarge(MHeap *h, uintptr npage)
145 {
146         return BestFit(&h->large, npage, nil);
147 }
148
149 // Search list for smallest span with >= npage pages.
150 // If there are multiple smallest spans, take the one
151 // with the earliest starting address.
152 static MSpan*
153 BestFit(MSpan *list, uintptr npage, MSpan *best)
154 {
155         MSpan *s;
156
157         for(s=list->next; s != list; s=s->next) {
158                 if(s->npages < npage)
159                         continue;
160                 if(best == nil
161                 || s->npages < best->npages
162                 || (s->npages == best->npages && s->start < best->start))
163                         best = s;
164         }
165         return best;
166 }
167
168 // Try to add at least npage pages of memory to the heap,
169 // returning whether it worked.
170 static bool
171 MHeap_Grow(MHeap *h, uintptr npage)
172 {
173         uintptr ask;
174         void *v;
175         MSpan *s;
176         PageID p;
177
178         // Ask for a big chunk, to reduce the number of mappings
179         // the operating system needs to track; also amortizes
180         // the overhead of an operating system mapping.
181         // Allocate a multiple of 64kB (16 pages).
182         npage = (npage+15)&~15;
183         ask = npage<<PageShift;
184         if(ask < HeapAllocChunk)
185                 ask = HeapAllocChunk;
186
187         v = runtime_MHeap_SysAlloc(h, ask);
188         if(v == nil) {
189                 if(ask > (npage<<PageShift)) {
190                         ask = npage<<PageShift;
191                         v = runtime_MHeap_SysAlloc(h, ask);
192                 }
193                 if(v == nil) {
194                         runtime_printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys);
195                         return false;
196                 }
197         }
198         mstats.heap_sys += ask;
199
200         // Create a fake "in use" span and free it, so that the
201         // right coalescing happens.
202         s = runtime_FixAlloc_Alloc(&h->spanalloc);
203         mstats.mspan_inuse = h->spanalloc.inuse;
204         mstats.mspan_sys = h->spanalloc.sys;
205         runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
206         p = s->start;
207         if(sizeof(void*) == 8)
208                 p -= ((uintptr)h->arena_start>>PageShift);
209         h->map[p] = s;
210         h->map[p + s->npages - 1] = s;
211         s->state = MSpanInUse;
212         MHeap_FreeLocked(h, s);
213         return true;
214 }
215
216 // Look up the span at the given address.
217 // Address is guaranteed to be in map
218 // and is guaranteed to be start or end of span.
219 MSpan*
220 runtime_MHeap_Lookup(MHeap *h, void *v)
221 {
222         uintptr p;
223         
224         p = (uintptr)v;
225         if(sizeof(void*) == 8)
226                 p -= (uintptr)h->arena_start;
227         return h->map[p >> PageShift];
228 }
229
230 // Look up the span at the given address.
231 // Address is *not* guaranteed to be in map
232 // and may be anywhere in the span.
233 // Map entries for the middle of a span are only
234 // valid for allocated spans.  Free spans may have
235 // other garbage in their middles, so we have to
236 // check for that.
237 MSpan*
238 runtime_MHeap_LookupMaybe(MHeap *h, void *v)
239 {
240         MSpan *s;
241         PageID p, q;
242
243         if((byte*)v < h->arena_start || (byte*)v >= h->arena_used)
244                 return nil;
245         p = (uintptr)v>>PageShift;
246         q = p;
247         if(sizeof(void*) == 8)
248                 q -= (uintptr)h->arena_start >> PageShift;
249         s = h->map[q];
250         if(s == nil || p < s->start || p - s->start >= s->npages)
251                 return nil;
252         if(s->state != MSpanInUse)
253                 return nil;
254         return s;
255 }
256
257 // Free the span back into the heap.
258 void
259 runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
260 {
261         runtime_lock(h);
262         runtime_purgecachedstats(runtime_m());
263         mstats.heap_inuse -= s->npages<<PageShift;
264         if(acct) {
265                 mstats.heap_alloc -= s->npages<<PageShift;
266                 mstats.heap_objects--;
267         }
268         MHeap_FreeLocked(h, s);
269         runtime_unlock(h);
270 }
271
272 static void
273 MHeap_FreeLocked(MHeap *h, MSpan *s)
274 {
275         uintptr *sp, *tp;
276         MSpan *t;
277         PageID p;
278
279         if(s->state != MSpanInUse || s->ref != 0) {
280                 runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d\n", s, s->start<<PageShift, s->state, s->ref);
281                 runtime_throw("MHeap_FreeLocked - invalid free");
282         }
283         mstats.heap_idle += s->npages<<PageShift;
284         s->state = MSpanFree;
285         s->unusedsince = 0;
286         s->npreleased = 0;
287         runtime_MSpanList_Remove(s);
288         sp = (uintptr*)(s->start<<PageShift);
289
290         // Coalesce with earlier, later spans.
291         p = s->start;
292         if(sizeof(void*) == 8)
293                 p -= (uintptr)h->arena_start >> PageShift;
294         if(p > 0 && (t = h->map[p-1]) != nil && t->state != MSpanInUse) {
295                 tp = (uintptr*)(t->start<<PageShift);
296                 *tp |= *sp;     // propagate "needs zeroing" mark
297                 s->start = t->start;
298                 s->npages += t->npages;
299                 s->npreleased = t->npreleased; // absorb released pages
300                 p -= t->npages;
301                 h->map[p] = s;
302                 runtime_MSpanList_Remove(t);
303                 t->state = MSpanDead;
304                 runtime_FixAlloc_Free(&h->spanalloc, t);
305                 mstats.mspan_inuse = h->spanalloc.inuse;
306                 mstats.mspan_sys = h->spanalloc.sys;
307         }
308         if(p+s->npages < nelem(h->map) && (t = h->map[p+s->npages]) != nil && t->state != MSpanInUse) {
309                 tp = (uintptr*)(t->start<<PageShift);
310                 *sp |= *tp;     // propagate "needs zeroing" mark
311                 s->npages += t->npages;
312                 s->npreleased += t->npreleased;
313                 h->map[p + s->npages - 1] = s;
314                 runtime_MSpanList_Remove(t);
315                 t->state = MSpanDead;
316                 runtime_FixAlloc_Free(&h->spanalloc, t);
317                 mstats.mspan_inuse = h->spanalloc.inuse;
318                 mstats.mspan_sys = h->spanalloc.sys;
319         }
320
321         // Insert s into appropriate list.
322         if(s->npages < nelem(h->free))
323                 runtime_MSpanList_Insert(&h->free[s->npages], s);
324         else
325                 runtime_MSpanList_Insert(&h->large, s);
326 }
327
328 // Release (part of) unused memory to OS.
329 // Goroutine created at startup.
330 // Loop forever.
331 void
332 runtime_MHeap_Scavenger(void* dummy)
333 {
334         MHeap *h;
335         MSpan *s, *list;
336         uint64 tick, now, forcegc, limit;
337         uint32 k, i;
338         uintptr released, sumreleased;
339         const byte *env;
340         bool trace;
341         Note note;
342
343         USED(dummy);
344
345         // If we go two minutes without a garbage collection, force one to run.
346         forcegc = 2*60*1e9;
347         // If a span goes unused for 5 minutes after a garbage collection,
348         // we hand it back to the operating system.
349         limit = 5*60*1e9;
350         // Make wake-up period small enough for the sampling to be correct.
351         if(forcegc < limit)
352                 tick = forcegc/2;
353         else
354                 tick = limit/2;
355
356         trace = false;
357         env = runtime_getenv("GOGCTRACE");
358         if(env != nil)
359                 trace = runtime_atoi(env) > 0;
360
361         h = &runtime_mheap;
362         for(k=0;; k++) {
363                 runtime_noteclear(&note);
364                 runtime_entersyscall();
365                 runtime_notetsleep(&note, tick);
366                 runtime_exitsyscall();
367
368                 runtime_lock(h);
369                 now = runtime_nanotime();
370                 if(now - mstats.last_gc > forcegc) {
371                         runtime_unlock(h);
372                         runtime_gc(1);
373                         runtime_lock(h);
374                         now = runtime_nanotime();
375                         if (trace)
376                                 runtime_printf("scvg%d: GC forced\n", k);
377                 }
378                 sumreleased = 0;
379                 for(i=0; i < nelem(h->free)+1; i++) {
380                         if(i < nelem(h->free))
381                                 list = &h->free[i];
382                         else
383                                 list = &h->large;
384                         if(runtime_MSpanList_IsEmpty(list))
385                                 continue;
386                         for(s=list->next; s != list; s=s->next) {
387                                 if(s->unusedsince != 0 && (now - s->unusedsince) > limit) {
388                                         released = (s->npages - s->npreleased) << PageShift;
389                                         mstats.heap_released += released;
390                                         sumreleased += released;
391                                         s->npreleased = s->npages;
392                                         runtime_SysUnused((void*)(s->start << PageShift), s->npages << PageShift);
393                                 }
394                         }
395                 }
396                 runtime_unlock(h);
397
398                 if(trace) {
399                         if(sumreleased > 0)
400                                 runtime_printf("scvg%d: %p MB released\n", k, sumreleased>>20);
401                         runtime_printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n",
402                                 k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20,
403                                 mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20);
404                 }
405         }
406 }
407
408 // Initialize a new span with the given start and npages.
409 void
410 runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
411 {
412         span->next = nil;
413         span->prev = nil;
414         span->start = start;
415         span->npages = npages;
416         span->freelist = nil;
417         span->ref = 0;
418         span->sizeclass = 0;
419         span->state = 0;
420         span->unusedsince = 0;
421         span->npreleased = 0;
422 }
423
424 // Initialize an empty doubly-linked list.
425 void
426 runtime_MSpanList_Init(MSpan *list)
427 {
428         list->state = MSpanListHead;
429         list->next = list;
430         list->prev = list;
431 }
432
433 void
434 runtime_MSpanList_Remove(MSpan *span)
435 {
436         if(span->prev == nil && span->next == nil)
437                 return;
438         span->prev->next = span->next;
439         span->next->prev = span->prev;
440         span->prev = nil;
441         span->next = nil;
442 }
443
444 bool
445 runtime_MSpanList_IsEmpty(MSpan *list)
446 {
447         return list->next == list;
448 }
449
450 void
451 runtime_MSpanList_Insert(MSpan *list, MSpan *span)
452 {
453         if(span->next != nil || span->prev != nil) {
454                 runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
455                 runtime_throw("MSpanList_Insert");
456         }
457         span->next = list->next;
458         span->prev = list;
459         span->next->prev = span;
460         span->prev->next = span;
461 }
462
463