OSDN Git Service

PR c++/22494
[pf3gnuchains/gcc-fork.git] / libgcc-math / dbl-64 / s_atan.c
1 /*
2  * IBM Accurate Mathematical Library
3  * written by International Business Machines Corp.
4  * Copyright (C) 2001 Free Software Foundation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU Lesser General Public License as published by
8  * the Free Software Foundation; either version 2.1 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 /************************************************************************/
21 /*  MODULE_NAME: atnat.c                                                */
22 /*                                                                      */
23 /*  FUNCTIONS:  uatan                                                   */
24 /*              atanMp                                                  */
25 /*              signArctan                                              */
26 /*                                                                      */
27 /*                                                                      */
28 /*  FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h                 */
29 /*                mpatan.c mpatan2.c mpsqrt.c                           */
30 /*                uatan.tbl                                             */
31 /*                                                                      */
32 /* An ultimate atan() routine. Given an IEEE double machine number x    */
33 /* it computes the correctly rounded (to nearest) value of atan(x).     */
34 /*                                                                      */
35 /* Assumption: Machine arithmetic operations are performed in           */
36 /* round to nearest mode of IEEE 754 standard.                          */
37 /*                                                                      */
38 /************************************************************************/
39
40 #include "dla.h"
41 #include "mpa.h"
42 #include "MathLib.h"
43 #include "uatan.tbl"
44 #include "atnat.h"
45
46 void __mpatan(mp_no *,mp_no *,int);          /* see definition in mpatan.c */
47 static double atanMp(double,const int[]);
48 double __signArctan(double,double);
49 /* An ultimate atan() routine. Given an IEEE double machine number x,    */
50 /* routine computes the correctly rounded (to nearest) value of atan(x). */
51 double atan(double x) {
52
53
54   double cor,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,u,u2,u3,
55          v,vv,w,ww,y,yy,z,zz;
56 #if 0
57   double y1,y2;
58 #endif
59   int i,ux,dx;
60 #if 0
61   int p;
62 #endif
63   static const int pr[M]={6,8,10,32};
64   number num;
65 #if 0
66   mp_no mpt1,mpx,mpy,mpy1,mpy2,mperr;
67 #endif
68
69   num.d = x;  ux = num.i[HIGH_HALF];  dx = num.i[LOW_HALF];
70
71   /* x=NaN */
72   if (((ux&0x7ff00000)==0x7ff00000) && (((ux&0x000fffff)|dx)!=0x00000000))
73     return x+x;
74
75   /* Regular values of x, including denormals +-0 and +-INF */
76   u = (x<ZERO) ? -x : x;
77   if (u<C) {
78     if (u<B) {
79       if (u<A) {                                           /* u < A */
80          return x; }
81       else {                                               /* A <= u < B */
82         v=x*x;  yy=x*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
83         if ((y=x+(yy-U1*x)) == x+(yy+U1*x))  return y;
84
85         EMULV(x,x,v,vv,t1,t2,t3,t4,t5)                       /* v+vv=x^2 */
86         s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
87         ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
88         MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
89         ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
90         MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
91         ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
92         MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
93         ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
94         MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
95         MUL2(x,ZERO,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
96         ADD2(x,ZERO,s2,ss2,s1,ss1,t1,t2)
97         if ((y=s1+(ss1-U5*s1)) == s1+(ss1+U5*s1))  return y;
98
99         return atanMp(x,pr);
100       } }
101     else {  /* B <= u < C */
102       i=(TWO52+TWO8*u)-TWO52;  i-=16;
103       z=u-cij[i][0].d;
104       yy=z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+
105                         z*(cij[i][5].d+z* cij[i][6].d))));
106       t1=cij[i][1].d;
107       if (i<112) {
108         if (i<48)  u2=U21;    /* u < 1/4        */
109         else       u2=U22; }  /* 1/4 <= u < 1/2 */
110       else {
111         if (i<176) u2=U23;    /* 1/2 <= u < 3/4 */
112         else       u2=U24; }  /* 3/4 <= u <= 1  */
113       if ((y=t1+(yy-u2*t1)) == t1+(yy+u2*t1))  return __signArctan(x,y);
114
115       z=u-hij[i][0].d;
116       s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+
117          z*(hij[i][14].d+z* hij[i][15].d))));
118       ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
119       MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
120       ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
121       MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
122       ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
123       MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
124       ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
125       MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
126       ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
127       if ((y=s2+(ss2-U6*s2)) == s2+(ss2+U6*s2))  return __signArctan(x,y);
128
129       return atanMp(x,pr);
130     }
131   }
132   else {
133     if (u<D) { /* C <= u < D */
134       w=ONE/u;
135       EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)
136       ww=w*((ONE-t1)-t2);
137       i=(TWO52+TWO8*w)-TWO52;  i-=16;
138       z=(w-cij[i][0].d)+ww;
139       yy=HPI1-z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+
140                              z*(cij[i][5].d+z* cij[i][6].d))));
141       t1=HPI-cij[i][1].d;
142       if (i<112)  u3=U31;  /* w <  1/2 */
143       else        u3=U32;  /* w >= 1/2 */
144       if ((y=t1+(yy-u3)) == t1+(yy+u3))  return __signArctan(x,y);
145
146       DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
147       t1=w-hij[i][0].d;
148       EADD(t1,ww,z,zz)
149       s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+
150          z*(hij[i][14].d+z* hij[i][15].d))));
151       ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
152       MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
153       ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
154       MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
155       ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
156       MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
157       ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
158       MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
159       ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
160       SUB2(HPI,HPI1,s2,ss2,s1,ss1,t1,t2)
161       if ((y=s1+(ss1-U7)) == s1+(ss1+U7))  return __signArctan(x,y);
162
163     return atanMp(x,pr);
164     }
165     else {
166       if (u<E) { /* D <= u < E */
167         w=ONE/u;   v=w*w;
168         EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)
169         yy=w*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
170         ww=w*((ONE-t1)-t2);
171         ESUB(HPI,w,t3,cor)
172         yy=((HPI1+cor)-ww)-yy;
173         if ((y=t3+(yy-U4)) == t3+(yy+U4))  return __signArctan(x,y);
174
175         DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
176         MUL2(w,ww,w,ww,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
177         s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
178         ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
179         MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
180         ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
181         MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
182         ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
183         MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
184         ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
185         MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
186         MUL2(w,ww,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
187         ADD2(w,ww,s2,ss2,s1,ss1,t1,t2)
188         SUB2(HPI,HPI1,s1,ss1,s2,ss2,t1,t2)
189         if ((y=s2+(ss2-U8)) == s2+(ss2+U8))  return __signArctan(x,y);
190
191       return atanMp(x,pr);
192       }
193       else {
194         /* u >= E */
195         if (x>0) return  HPI;
196         else     return MHPI; }
197     }
198   }
199
200 }
201
202
203   /* Fix the sign of y and return */
204 double  __signArctan(double x,double y){
205
206     if (x<ZERO) return -y;
207     else        return  y;
208 }
209
210  /* Final stages. Compute atan(x) by multiple precision arithmetic */
211 static double atanMp(double x,const int pr[]){
212   mp_no mpx,mpy,mpy2,mperr,mpt1,mpy1;
213   double y1,y2;
214   int i,p;
215
216 for (i=0; i<M; i++) {
217     p = pr[i];
218     __dbl_mp(x,&mpx,p);          __mpatan(&mpx,&mpy,p);
219     __dbl_mp(u9[i].d,&mpt1,p);   __mul(&mpy,&mpt1,&mperr,p);
220     __add(&mpy,&mperr,&mpy1,p);  __sub(&mpy,&mperr,&mpy2,p);
221     __mp_dbl(&mpy1,&y1,p);       __mp_dbl(&mpy2,&y2,p);
222     if (y1==y2)   return y1;
223   }
224   return y1; /*if unpossible to do exact computing */
225 }
226
227 #ifdef NO_LONG_DOUBLE
228 weak_alias (atan, atanl)
229 #endif