OSDN Git Service

avcodec/dnxhdenc: DNxHR 444 and HQX support
[android-x86/external-ffmpeg.git] / libavcodec / dnxhdenc.c
1 /*
2  * VC3/DNxHD encoder
3  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4  * Copyright (c) 2011 MirriAd Ltd
5  *
6  * VC-3 encoder funded by the British Broadcasting Corporation
7  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8  *
9  * This file is part of FFmpeg.
10  *
11  * FFmpeg is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * FFmpeg is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with FFmpeg; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25
26 #include "libavutil/attributes.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/opt.h"
29 #include "libavutil/timer.h"
30
31 #include "avcodec.h"
32 #include "blockdsp.h"
33 #include "fdctdsp.h"
34 #include "internal.h"
35 #include "mpegvideo.h"
36 #include "pixblockdsp.h"
37 #include "profiles.h"
38 #include "dnxhdenc.h"
39
40 // The largest value that will not lead to overflow for 10-bit samples.
41 #define DNX10BIT_QMAT_SHIFT 18
42 #define RC_VARIANCE 1 // use variance or ssd for fast rc
43 #define LAMBDA_FRAC_BITS 10
44
45 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
46 static const AVOption options[] = {
47     { "nitris_compat", "encode with Avid Nitris compatibility",
48         offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
49     { "ibias", "intra quant bias",
50         offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
51         { .i64 = 0 }, INT_MIN, INT_MAX, VE },
52     { "profile",       NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
53         { .i64 = FF_PROFILE_DNXHD },
54         FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" },
55     { "dnxhd",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
56         0, 0, VE, "profile" },
57     { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
58         0, 0, VE, "profile" },
59     { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
60         0, 0, VE, "profile" },
61     { "dnxhr_hq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
62         0, 0, VE, "profile" },
63     { "dnxhr_sq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
64         0, 0, VE, "profile" },
65     { "dnxhr_lb",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
66         0, 0, VE, "profile" },
67     { NULL }
68 };
69
70 static const AVClass dnxhd_class = {
71     .class_name = "dnxhd",
72     .item_name  = av_default_item_name,
73     .option     = options,
74     .version    = LIBAVUTIL_VERSION_INT,
75 };
76
77 static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
78                                           const uint8_t *pixels,
79                                           ptrdiff_t line_size)
80 {
81     int i;
82     for (i = 0; i < 4; i++) {
83         block[0] = pixels[0];
84         block[1] = pixels[1];
85         block[2] = pixels[2];
86         block[3] = pixels[3];
87         block[4] = pixels[4];
88         block[5] = pixels[5];
89         block[6] = pixels[6];
90         block[7] = pixels[7];
91         pixels  += line_size;
92         block   += 8;
93     }
94     memcpy(block,      block -  8, sizeof(*block) * 8);
95     memcpy(block +  8, block - 16, sizeof(*block) * 8);
96     memcpy(block + 16, block - 24, sizeof(*block) * 8);
97     memcpy(block + 24, block - 32, sizeof(*block) * 8);
98 }
99
100 static av_always_inline
101 void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
102                                     const uint8_t *pixels,
103                                     ptrdiff_t line_size)
104 {
105     memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
106     memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
107     memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
108     memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
109     memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
110     memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
111     memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
112     memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
113 }
114
115 static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
116                                         int n, int qscale, int *overflow)
117 {
118     int i, j, level, last_non_zero, start_i;
119     const int *qmat;
120     const uint8_t *scantable= ctx->intra_scantable.scantable;
121     int bias;
122     int max = 0;
123     unsigned int threshold1, threshold2;
124
125     ctx->fdsp.fdct(block);
126
127     block[0] = (block[0] + 2) >> 2;
128     start_i = 1;
129     last_non_zero = 0;
130     qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
131     bias= ctx->intra_quant_bias * (1 << (16 - 8));
132     threshold1 = (1 << 16) - bias - 1;
133     threshold2 = (threshold1 << 1);
134
135     for (i = 63; i >= start_i; i--) {
136         j = scantable[i];
137         level = block[j] * qmat[j];
138
139         if (((unsigned)(level + threshold1)) > threshold2) {
140             last_non_zero = i;
141             break;
142         } else{
143             block[j]=0;
144         }
145     }
146
147     for (i = start_i; i <= last_non_zero; i++) {
148         j = scantable[i];
149         level = block[j] * qmat[j];
150
151         if (((unsigned)(level + threshold1)) > threshold2) {
152             if (level > 0) {
153                 level = (bias + level) >> 16;
154                 block[j] = level;
155             } else{
156                 level = (bias - level) >> 16;
157                 block[j] = -level;
158             }
159             max |= level;
160         } else {
161             block[j] = 0;
162         }
163     }
164     *overflow = ctx->max_qcoeff < max; //overflow might have happened
165
166     /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
167     if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
168         ff_block_permute(block, ctx->idsp.idct_permutation,
169                          scantable, last_non_zero);
170
171     return last_non_zero;
172 }
173
174 static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
175                                     int n, int qscale, int *overflow)
176 {
177     const uint8_t *scantable= ctx->intra_scantable.scantable;
178     const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
179     int last_non_zero = 0;
180     int i;
181
182     ctx->fdsp.fdct(block);
183
184     // Divide by 4 with rounding, to compensate scaling of DCT coefficients
185     block[0] = (block[0] + 2) >> 2;
186
187     for (i = 1; i < 64; ++i) {
188         int j = scantable[i];
189         int sign = FF_SIGNBIT(block[j]);
190         int level = (block[j] ^ sign) - sign;
191         level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
192         block[j] = (level ^ sign) - sign;
193         if (level)
194             last_non_zero = i;
195     }
196
197     /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
198     if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
199         ff_block_permute(block, ctx->idsp.idct_permutation,
200                          scantable, last_non_zero);
201
202     return last_non_zero;
203 }
204
205 static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
206 {
207     int i, j, level, run;
208     int max_level = 1 << (ctx->bit_depth + 2);
209
210     FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
211                       max_level, 4 * sizeof(*ctx->vlc_codes), fail);
212     FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
213                       max_level, 4 * sizeof(*ctx->vlc_bits), fail);
214     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
215                       63 * 2, fail);
216     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
217                       63, fail);
218
219     ctx->vlc_codes += max_level * 2;
220     ctx->vlc_bits  += max_level * 2;
221     for (level = -max_level; level < max_level; level++) {
222         for (run = 0; run < 2; run++) {
223             int index = (level << 1) | run;
224             int sign, offset = 0, alevel = level;
225
226             MASK_ABS(sign, alevel);
227             if (alevel > 64) {
228                 offset  = (alevel - 1) >> 6;
229                 alevel -= offset << 6;
230             }
231             for (j = 0; j < 257; j++) {
232                 if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
233                     (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
234                     (!run    || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
235                     av_assert1(!ctx->vlc_codes[index]);
236                     if (alevel) {
237                         ctx->vlc_codes[index] =
238                             (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
239                         ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
240                     } else {
241                         ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
242                         ctx->vlc_bits[index]  = ctx->cid_table->ac_bits[j];
243                     }
244                     break;
245                 }
246             }
247             av_assert0(!alevel || j < 257);
248             if (offset) {
249                 ctx->vlc_codes[index] =
250                     (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
251                 ctx->vlc_bits[index] += ctx->cid_table->index_bits;
252             }
253         }
254     }
255     for (i = 0; i < 62; i++) {
256         int run = ctx->cid_table->run[i];
257         av_assert0(run < 63);
258         ctx->run_codes[run] = ctx->cid_table->run_codes[i];
259         ctx->run_bits[run]  = ctx->cid_table->run_bits[i];
260     }
261     return 0;
262 fail:
263     return AVERROR(ENOMEM);
264 }
265
266 static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
267 {
268     // init first elem to 1 to avoid div by 0 in convert_matrix
269     uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
270     int qscale, i;
271     const uint8_t *luma_weight_table   = ctx->cid_table->luma_weight;
272     const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
273
274     FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
275                       (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
276     FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
277                       (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
278     FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
279                       (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
280                       fail);
281     FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
282                       (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
283                       fail);
284
285     if (ctx->bit_depth == 8) {
286         for (i = 1; i < 64; i++) {
287             int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
288             weight_matrix[j] = ctx->cid_table->luma_weight[i];
289         }
290         ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
291                           weight_matrix, ctx->intra_quant_bias, 1,
292                           ctx->m.avctx->qmax, 1);
293         for (i = 1; i < 64; i++) {
294             int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
295             weight_matrix[j] = ctx->cid_table->chroma_weight[i];
296         }
297         ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
298                           weight_matrix, ctx->intra_quant_bias, 1,
299                           ctx->m.avctx->qmax, 1);
300
301         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
302             for (i = 0; i < 64; i++) {
303                 ctx->qmatrix_l[qscale][i]      <<= 2;
304                 ctx->qmatrix_c[qscale][i]      <<= 2;
305                 ctx->qmatrix_l16[qscale][0][i] <<= 2;
306                 ctx->qmatrix_l16[qscale][1][i] <<= 2;
307                 ctx->qmatrix_c16[qscale][0][i] <<= 2;
308                 ctx->qmatrix_c16[qscale][1][i] <<= 2;
309             }
310         }
311     } else {
312         // 10-bit
313         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
314             for (i = 1; i < 64; i++) {
315                 int j = ff_zigzag_direct[i];
316
317                 /* The quantization formula from the VC-3 standard is:
318                  * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
319                  *             (qscale * weight_table[i]))
320                  * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
321                  * The s factor compensates scaling of DCT coefficients done by
322                  * the DCT routines, and therefore is not present in standard.
323                  * It's 8 for 8-bit samples and 4 for 10-bit ones.
324                  * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
325                  *     ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
326                  *     (qscale * weight_table[i])
327                  * For 10-bit samples, p / s == 2 */
328                 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
329                                             (qscale * luma_weight_table[i]);
330                 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
331                                             (qscale * chroma_weight_table[i]);
332             }
333         }
334     }
335
336     ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
337     ctx->m.q_chroma_intra_matrix   = ctx->qmatrix_c;
338     ctx->m.q_intra_matrix16        = ctx->qmatrix_l16;
339     ctx->m.q_intra_matrix          = ctx->qmatrix_l;
340
341     return 0;
342 fail:
343     return AVERROR(ENOMEM);
344 }
345
346 static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
347 {
348     FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1),
349                           ctx->m.mb_num * sizeof(RCEntry), fail);
350     if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
351         FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
352                           ctx->m.mb_num, sizeof(RCCMPEntry), fail);
353         FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp_tmp,
354                           ctx->m.mb_num, sizeof(RCCMPEntry), fail);
355     }
356     ctx->frame_bits = (ctx->coding_unit_size -
357                        ctx->data_offset - 4 - ctx->min_padding) * 8;
358     ctx->qscale = 1;
359     ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
360     return 0;
361 fail:
362     return AVERROR(ENOMEM);
363 }
364
365 static int dnxhd_get_hr_frame_size(const CIDEntry* profile, int mb_num)
366 {
367   int result = mb_num * profile->packet_scale.num / profile->packet_scale.den;
368   result = (result + 2048) / 4096 * 4096;
369   return FFMAX(result, 8192);
370 }
371
372 static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
373 {
374     DNXHDEncContext *ctx = avctx->priv_data;
375     int i, index, ret;
376
377     switch (avctx->pix_fmt) {
378     case AV_PIX_FMT_YUV422P:
379         ctx->bit_depth = 8;
380         break;
381     case AV_PIX_FMT_YUV422P10:
382     case AV_PIX_FMT_YUV444P10:
383     case AV_PIX_FMT_GBRP10:
384         ctx->bit_depth = 10;
385         break;
386     default:
387         av_log(avctx, AV_LOG_ERROR,
388                "pixel format is incompatible with DNxHD\n");
389         return AVERROR(EINVAL);
390     }
391
392     if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
393                                                   avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
394         (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
395                                                   avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
396         av_log(avctx, AV_LOG_ERROR,
397                "pixel format is incompatible with DNxHD profile\n");
398         return AVERROR(EINVAL);
399     }
400
401     if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
402         av_log(avctx, AV_LOG_ERROR,
403                "pixel format is incompatible with DNxHR HQX profile\n");
404         return AVERROR(EINVAL);
405     }
406
407     if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
408          ctx->profile == FF_PROFILE_DNXHR_SQ ||
409          ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
410         av_log(avctx, AV_LOG_ERROR,
411                "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
412         return AVERROR(EINVAL);
413     }
414
415     ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
416     avctx->profile = ctx->profile;
417     ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
418     if (!ctx->cid) {
419         av_log(avctx, AV_LOG_ERROR,
420                "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
421         ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
422         return AVERROR(EINVAL);
423     }
424     av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
425
426     if (ctx->cid >= 1270 && ctx->cid <= 1274)
427         avctx->codec_tag = MKTAG('A','V','d','h');
428
429     if (avctx->width < 256 || avctx->height < 120) {
430         av_log(avctx, AV_LOG_ERROR,
431                "Input dimensions too small, input must be at least 256x120\n");
432         return AVERROR(EINVAL);
433     }
434
435     index = ff_dnxhd_get_cid_table(ctx->cid);
436     av_assert0(index >= 0);
437
438     ctx->cid_table = &ff_dnxhd_cid_table[index];
439
440     ctx->m.avctx    = avctx;
441     ctx->m.mb_intra = 1;
442     ctx->m.h263_aic = 1;
443
444     avctx->bits_per_raw_sample = ctx->bit_depth;
445
446     ff_blockdsp_init(&ctx->bdsp, avctx);
447     ff_fdctdsp_init(&ctx->m.fdsp, avctx);
448     ff_mpv_idct_init(&ctx->m);
449     ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
450     ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
451     ff_dct_encode_init(&ctx->m);
452
453     if (ctx->profile != FF_PROFILE_DNXHD)
454         ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
455
456     if (!ctx->m.dct_quantize)
457         ctx->m.dct_quantize = ff_dct_quantize_c;
458
459     if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
460         ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize_444;
461         ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
462         ctx->block_width_l2     = 4;
463     } else if (ctx->bit_depth == 10) {
464         ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize;
465         ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
466         ctx->block_width_l2     = 4;
467     } else {
468         ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
469         ctx->block_width_l2     = 3;
470     }
471
472     if (ARCH_X86)
473         ff_dnxhdenc_init_x86(ctx);
474
475     ctx->m.mb_height = (avctx->height + 15) / 16;
476     ctx->m.mb_width  = (avctx->width  + 15) / 16;
477
478     if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
479         ctx->interlaced   = 1;
480         ctx->m.mb_height /= 2;
481     }
482
483     ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
484
485     if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
486         ctx->frame_size = dnxhd_get_hr_frame_size(ctx->cid_table,
487                                                   ctx->m.mb_num);
488         ctx->coding_unit_size = ctx->frame_size;
489     } else {
490         ctx->frame_size = ctx->cid_table->frame_size;
491         ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
492     }
493
494     if (ctx->m.mb_height > 68)
495         ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
496     else
497         ctx->data_offset = 0x280;
498
499 #if FF_API_QUANT_BIAS
500 FF_DISABLE_DEPRECATION_WARNINGS
501     if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
502         ctx->intra_quant_bias = avctx->intra_quant_bias;
503 FF_ENABLE_DEPRECATION_WARNINGS
504 #endif
505     // XXX tune lbias/cbias
506     if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
507         return ret;
508
509     /* Avid Nitris hardware decoder requires a minimum amount of padding
510      * in the coding unit payload */
511     if (ctx->nitris_compat)
512         ctx->min_padding = 1600;
513
514     if ((ret = dnxhd_init_vlc(ctx)) < 0)
515         return ret;
516     if ((ret = dnxhd_init_rc(ctx)) < 0)
517         return ret;
518
519     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
520                       ctx->m.mb_height * sizeof(uint32_t), fail);
521     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
522                       ctx->m.mb_height * sizeof(uint32_t), fail);
523     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
524                       ctx->m.mb_num * sizeof(uint16_t), fail);
525     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
526                       ctx->m.mb_num * sizeof(uint8_t), fail);
527
528 #if FF_API_CODED_FRAME
529 FF_DISABLE_DEPRECATION_WARNINGS
530     avctx->coded_frame->key_frame = 1;
531     avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
532 FF_ENABLE_DEPRECATION_WARNINGS
533 #endif
534
535     if (avctx->thread_count > MAX_THREADS) {
536         av_log(avctx, AV_LOG_ERROR, "too many threads\n");
537         return AVERROR(EINVAL);
538     }
539
540     if (avctx->qmax <= 1) {
541         av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
542         return AVERROR(EINVAL);
543     }
544
545     ctx->thread[0] = ctx;
546     for (i = 1; i < avctx->thread_count; i++) {
547         ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
548         memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
549     }
550
551     return 0;
552 fail:  // for FF_ALLOCZ_OR_GOTO
553     return AVERROR(ENOMEM);
554 }
555
556 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
557 {
558     DNXHDEncContext *ctx = avctx->priv_data;
559
560     memset(buf, 0, ctx->data_offset);
561
562     // * write prefix */
563     AV_WB16(buf + 0x02, ctx->data_offset);
564     if (ctx->cid >= 1270 && ctx->cid <= 1274)
565         buf[4] = 0x03;
566     else
567         buf[4] = 0x01;
568
569     buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
570     buf[6] = 0x80; // crc flag off
571     buf[7] = 0xa0; // reserved
572     AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
573     AV_WB16(buf + 0x1a, avctx->width);  // SPL
574     AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
575
576     buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
577     buf[0x22] = 0x88 + (ctx->interlaced << 2);
578     AV_WB32(buf + 0x28, ctx->cid); // CID
579     buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
580
581     buf[0x5f] = 0x01; // UDL
582
583     buf[0x167] = 0x02; // reserved
584     AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
585     buf[0x16d] = ctx->m.mb_height; // Ns
586     buf[0x16f] = 0x10; // reserved
587
588     ctx->msip = buf + 0x170;
589     return 0;
590 }
591
592 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
593 {
594     int nbits;
595     if (diff < 0) {
596         nbits = av_log2_16bit(-2 * diff);
597         diff--;
598     } else {
599         nbits = av_log2_16bit(2 * diff);
600     }
601     put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
602              (ctx->cid_table->dc_codes[nbits] << nbits) +
603              av_mod_uintp2(diff, nbits));
604 }
605
606 static av_always_inline
607 void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
608                         int last_index, int n)
609 {
610     int last_non_zero = 0;
611     int slevel, i, j;
612
613     dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
614     ctx->m.last_dc[n] = block[0];
615
616     for (i = 1; i <= last_index; i++) {
617         j = ctx->m.intra_scantable.permutated[i];
618         slevel = block[j];
619         if (slevel) {
620             int run_level = i - last_non_zero - 1;
621             int rlevel = (slevel << 1) | !!run_level;
622             put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
623             if (run_level)
624                 put_bits(&ctx->m.pb, ctx->run_bits[run_level],
625                          ctx->run_codes[run_level]);
626             last_non_zero = i;
627         }
628     }
629     put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
630 }
631
632 static av_always_inline
633 void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
634                         int qscale, int last_index)
635 {
636     const uint8_t *weight_matrix;
637     int level;
638     int i;
639
640     if (ctx->is_444) {
641         weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
642                                       : ctx->cid_table->chroma_weight;
643     } else {
644         weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
645                                 : ctx->cid_table->luma_weight;
646     }
647
648     for (i = 1; i <= last_index; i++) {
649         int j = ctx->m.intra_scantable.permutated[i];
650         level = block[j];
651         if (level) {
652             if (level < 0) {
653                 level = (1 - 2 * level) * qscale * weight_matrix[i];
654                 if (ctx->bit_depth == 10) {
655                     if (weight_matrix[i] != 8)
656                         level += 8;
657                     level >>= 4;
658                 } else {
659                     if (weight_matrix[i] != 32)
660                         level += 32;
661                     level >>= 6;
662                 }
663                 level = -level;
664             } else {
665                 level = (2 * level + 1) * qscale * weight_matrix[i];
666                 if (ctx->bit_depth == 10) {
667                     if (weight_matrix[i] != 8)
668                         level += 8;
669                     level >>= 4;
670                 } else {
671                     if (weight_matrix[i] != 32)
672                         level += 32;
673                     level >>= 6;
674                 }
675             }
676             block[j] = level;
677         }
678     }
679 }
680
681 static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
682 {
683     int score = 0;
684     int i;
685     for (i = 0; i < 64; i++)
686         score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
687     return score;
688 }
689
690 static av_always_inline
691 int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
692 {
693     int last_non_zero = 0;
694     int bits = 0;
695     int i, j, level;
696     for (i = 1; i <= last_index; i++) {
697         j = ctx->m.intra_scantable.permutated[i];
698         level = block[j];
699         if (level) {
700             int run_level = i - last_non_zero - 1;
701             bits += ctx->vlc_bits[(level << 1) |
702                     !!run_level] + ctx->run_bits[run_level];
703             last_non_zero = i;
704         }
705     }
706     return bits;
707 }
708
709 static av_always_inline
710 void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
711 {
712     const int bs = ctx->block_width_l2;
713     const int bw = 1 << bs;
714     int dct_y_offset = ctx->dct_y_offset;
715     int dct_uv_offset = ctx->dct_uv_offset;
716     int linesize = ctx->m.linesize;
717     int uvlinesize = ctx->m.uvlinesize;
718     const uint8_t *ptr_y = ctx->thread[0]->src[0] +
719                            ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
720     const uint8_t *ptr_u = ctx->thread[0]->src[1] +
721                            ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
722     const uint8_t *ptr_v = ctx->thread[0]->src[2] +
723                            ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
724     PixblockDSPContext *pdsp = &ctx->m.pdsp;
725     VideoDSPContext *vdsp = &ctx->m.vdsp;
726
727     if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
728                                                            (mb_y << 4) + 16 > ctx->m.avctx->height)) {
729         int y_w = ctx->m.avctx->width  - (mb_x << 4);
730         int y_h = ctx->m.avctx->height - (mb_y << 4);
731         int uv_w = (y_w + 1) / 2;
732         int uv_h = y_h;
733         linesize = 16;
734         uvlinesize = 8;
735
736         vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
737                                linesize, ctx->m.linesize,
738                                linesize, 16,
739                                0, 0, y_w, y_h);
740         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
741                                uvlinesize, ctx->m.uvlinesize,
742                                uvlinesize, 16,
743                                0, 0, uv_w, uv_h);
744         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
745                                uvlinesize, ctx->m.uvlinesize,
746                                uvlinesize, 16,
747                                0, 0, uv_w, uv_h);
748
749         dct_y_offset =  bw * linesize;
750         dct_uv_offset = bw * uvlinesize;
751         ptr_y = &ctx->edge_buf_y[0];
752         ptr_u = &ctx->edge_buf_uv[0][0];
753         ptr_v = &ctx->edge_buf_uv[1][0];
754     } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 3) + 8 > ctx->m.avctx->width ||
755                                                                   (mb_y << 3) + 8 > ctx->m.avctx->height)) {
756         int y_w = ctx->m.avctx->width  - (mb_x << 3);
757         int y_h = ctx->m.avctx->height - (mb_y << 3);
758         int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
759         int uv_h = y_h;
760         linesize = 16;
761         uvlinesize = 8 + 8 * ctx->is_444;
762
763         vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
764                                linesize, ctx->m.linesize,
765                                linesize / 2, 16,
766                                0, 0, y_w, y_h);
767         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
768                                uvlinesize, ctx->m.uvlinesize,
769                                uvlinesize / 2, 16,
770                                0, 0, uv_w, uv_h);
771         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
772                                uvlinesize, ctx->m.uvlinesize,
773                                uvlinesize / 2, 16,
774                                0, 0, uv_w, uv_h);
775
776         dct_y_offset =  bw * linesize;
777         dct_uv_offset = bw * uvlinesize;
778         ptr_y = &ctx->edge_buf_y[0];
779         ptr_u = &ctx->edge_buf_uv[0][0];
780         ptr_v = &ctx->edge_buf_uv[1][0];
781     }
782
783     if (!ctx->is_444) {
784         pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
785         pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
786         pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
787         pdsp->get_pixels(ctx->blocks[3], ptr_v,      uvlinesize);
788
789         if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
790             if (ctx->interlaced) {
791                 ctx->get_pixels_8x4_sym(ctx->blocks[4],
792                                         ptr_y + dct_y_offset,
793                                         linesize);
794                 ctx->get_pixels_8x4_sym(ctx->blocks[5],
795                                         ptr_y + dct_y_offset + bw,
796                                         linesize);
797                 ctx->get_pixels_8x4_sym(ctx->blocks[6],
798                                         ptr_u + dct_uv_offset,
799                                         uvlinesize);
800                 ctx->get_pixels_8x4_sym(ctx->blocks[7],
801                                         ptr_v + dct_uv_offset,
802                                         uvlinesize);
803             } else {
804                 ctx->bdsp.clear_block(ctx->blocks[4]);
805                 ctx->bdsp.clear_block(ctx->blocks[5]);
806                 ctx->bdsp.clear_block(ctx->blocks[6]);
807                 ctx->bdsp.clear_block(ctx->blocks[7]);
808             }
809         } else {
810             pdsp->get_pixels(ctx->blocks[4],
811                              ptr_y + dct_y_offset, linesize);
812             pdsp->get_pixels(ctx->blocks[5],
813                              ptr_y + dct_y_offset + bw, linesize);
814             pdsp->get_pixels(ctx->blocks[6],
815                              ptr_u + dct_uv_offset, uvlinesize);
816             pdsp->get_pixels(ctx->blocks[7],
817                              ptr_v + dct_uv_offset, uvlinesize);
818         }
819     } else {
820         pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
821         pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
822         pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
823         pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
824
825         pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
826         pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
827         pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
828         pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
829
830         pdsp->get_pixels(ctx->blocks[4], ptr_v,      uvlinesize);
831         pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
832         pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
833         pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
834     }
835 }
836
837 static av_always_inline
838 int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
839 {
840     int x;
841
842     if (ctx->is_444) {
843         x = (i >> 1) % 3;
844     } else {
845         const static uint8_t component[8]={0,0,1,2,0,0,1,2};
846         x = component[i];
847     }
848     return x;
849 }
850
851 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
852                                   int jobnr, int threadnr)
853 {
854     DNXHDEncContext *ctx = avctx->priv_data;
855     int mb_y = jobnr, mb_x;
856     int qscale = ctx->qscale;
857     LOCAL_ALIGNED_16(int16_t, block, [64]);
858     ctx = ctx->thread[threadnr];
859
860     ctx->m.last_dc[0] =
861     ctx->m.last_dc[1] =
862     ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
863
864     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
865         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
866         int ssd     = 0;
867         int ac_bits = 0;
868         int dc_bits = 0;
869         int i;
870
871         dnxhd_get_blocks(ctx, mb_x, mb_y);
872
873         for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
874             int16_t *src_block = ctx->blocks[i];
875             int overflow, nbits, diff, last_index;
876             int n = dnxhd_switch_matrix(ctx, i);
877
878             memcpy(block, src_block, 64 * sizeof(*block));
879             last_index = ctx->m.dct_quantize(&ctx->m, block,
880                                              ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
881                                              qscale, &overflow);
882             ac_bits   += dnxhd_calc_ac_bits(ctx, block, last_index);
883
884             diff = block[0] - ctx->m.last_dc[n];
885             if (diff < 0)
886                 nbits = av_log2_16bit(-2 * diff);
887             else
888                 nbits = av_log2_16bit(2 * diff);
889
890             av_assert1(nbits < ctx->bit_depth + 4);
891             dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
892
893             ctx->m.last_dc[n] = block[0];
894
895             if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
896                 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
897                 ctx->m.idsp.idct(block);
898                 ssd += dnxhd_ssd_block(block, src_block);
899             }
900         }
901         ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd  = ssd;
902         ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
903                                      (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
904     }
905     return 0;
906 }
907
908 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
909                                int jobnr, int threadnr)
910 {
911     DNXHDEncContext *ctx = avctx->priv_data;
912     int mb_y = jobnr, mb_x;
913     ctx = ctx->thread[threadnr];
914     init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
915                   ctx->slice_size[jobnr]);
916
917     ctx->m.last_dc[0] =
918     ctx->m.last_dc[1] =
919     ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
920     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
921         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
922         int qscale = ctx->mb_qscale[mb];
923         int i;
924
925         put_bits(&ctx->m.pb, 11, qscale);
926         put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
927
928         dnxhd_get_blocks(ctx, mb_x, mb_y);
929
930         for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
931             int16_t *block = ctx->blocks[i];
932             int overflow, n = dnxhd_switch_matrix(ctx, i);
933             int last_index = ctx->m.dct_quantize(&ctx->m, block,
934                                                  ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
935                                                  qscale, &overflow);
936             // START_TIMER;
937             dnxhd_encode_block(ctx, block, last_index, n);
938             // STOP_TIMER("encode_block");
939         }
940     }
941     if (put_bits_count(&ctx->m.pb) & 31)
942         put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
943     flush_put_bits(&ctx->m.pb);
944     return 0;
945 }
946
947 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
948 {
949     int mb_y, mb_x;
950     int offset = 0;
951     for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
952         int thread_size;
953         ctx->slice_offs[mb_y] = offset;
954         ctx->slice_size[mb_y] = 0;
955         for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
956             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
957             ctx->slice_size[mb_y] += ctx->mb_bits[mb];
958         }
959         ctx->slice_size[mb_y]   = (ctx->slice_size[mb_y] + 31) & ~31;
960         ctx->slice_size[mb_y] >>= 3;
961         thread_size = ctx->slice_size[mb_y];
962         offset += thread_size;
963     }
964 }
965
966 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
967                                int jobnr, int threadnr)
968 {
969     DNXHDEncContext *ctx = avctx->priv_data;
970     int mb_y = jobnr, mb_x, x, y;
971     int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
972                            ((avctx->height >> ctx->interlaced) & 0xF);
973
974     ctx = ctx->thread[threadnr];
975     if (ctx->bit_depth == 8) {
976         uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
977         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
978             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
979             int sum;
980             int varc;
981
982             if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
983                 sum  = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
984                 varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
985             } else {
986                 int bw = FFMIN(avctx->width - 16 * mb_x, 16);
987                 int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
988                 sum = varc = 0;
989                 for (y = 0; y < bh; y++) {
990                     for (x = 0; x < bw; x++) {
991                         uint8_t val = pix[x + y * ctx->m.linesize];
992                         sum  += val;
993                         varc += val * val;
994                     }
995                 }
996             }
997             varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
998
999             ctx->mb_cmp[mb].value = varc;
1000             ctx->mb_cmp[mb].mb    = mb;
1001         }
1002     } else { // 10-bit
1003         const int linesize = ctx->m.linesize >> 1;
1004         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
1005             uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
1006                             ((mb_y << 4) * linesize) + (mb_x << 4);
1007             unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
1008             int sum = 0;
1009             int sqsum = 0;
1010             int bw = FFMIN(avctx->width - 16 * mb_x, 16);
1011             int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
1012             int mean, sqmean;
1013             int i, j;
1014             // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
1015             for (i = 0; i < bh; ++i) {
1016                 for (j = 0; j < bw; ++j) {
1017                     // Turn 16-bit pixels into 10-bit ones.
1018                     const int sample = (unsigned) pix[j] >> 6;
1019                     sum   += sample;
1020                     sqsum += sample * sample;
1021                     // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
1022                 }
1023                 pix += linesize;
1024             }
1025             mean = sum >> 8; // 16*16 == 2^8
1026             sqmean = sqsum >> 8;
1027             ctx->mb_cmp[mb].value = sqmean - mean * mean;
1028             ctx->mb_cmp[mb].mb    = mb;
1029         }
1030     }
1031     return 0;
1032 }
1033
1034 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
1035 {
1036     int lambda, up_step, down_step;
1037     int last_lower = INT_MAX, last_higher = 0;
1038     int x, y, q;
1039
1040     for (q = 1; q < avctx->qmax; q++) {
1041         ctx->qscale = q;
1042         avctx->execute2(avctx, dnxhd_calc_bits_thread,
1043                         NULL, NULL, ctx->m.mb_height);
1044     }
1045     up_step = down_step = 2 << LAMBDA_FRAC_BITS;
1046     lambda  = ctx->lambda;
1047
1048     for (;;) {
1049         int bits = 0;
1050         int end  = 0;
1051         if (lambda == last_higher) {
1052             lambda++;
1053             end = 1; // need to set final qscales/bits
1054         }
1055         for (y = 0; y < ctx->m.mb_height; y++) {
1056             for (x = 0; x < ctx->m.mb_width; x++) {
1057                 unsigned min = UINT_MAX;
1058                 int qscale = 1;
1059                 int mb     = y * ctx->m.mb_width + x;
1060                 int rc = 0;
1061                 for (q = 1; q < avctx->qmax; q++) {
1062                     int i = (q*ctx->m.mb_num) + mb;
1063                     unsigned score = ctx->mb_rc[i].bits * lambda +
1064                                      ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
1065                     if (score < min) {
1066                         min    = score;
1067                         qscale = q;
1068                         rc = i;
1069                     }
1070                 }
1071                 bits += ctx->mb_rc[rc].bits;
1072                 ctx->mb_qscale[mb] = qscale;
1073                 ctx->mb_bits[mb]   = ctx->mb_rc[rc].bits;
1074             }
1075             bits = (bits + 31) & ~31; // padding
1076             if (bits > ctx->frame_bits)
1077                 break;
1078         }
1079         if (end) {
1080             if (bits > ctx->frame_bits)
1081                 return AVERROR(EINVAL);
1082             break;
1083         }
1084         if (bits < ctx->frame_bits) {
1085             last_lower = FFMIN(lambda, last_lower);
1086             if (last_higher != 0)
1087                 lambda = (lambda+last_higher)>>1;
1088             else
1089                 lambda -= down_step;
1090             down_step = FFMIN((int64_t)down_step*5, INT_MAX);
1091             up_step = 1<<LAMBDA_FRAC_BITS;
1092             lambda = FFMAX(1, lambda);
1093             if (lambda == last_lower)
1094                 break;
1095         } else {
1096             last_higher = FFMAX(lambda, last_higher);
1097             if (last_lower != INT_MAX)
1098                 lambda = (lambda+last_lower)>>1;
1099             else if ((int64_t)lambda + up_step > INT_MAX)
1100                 return AVERROR(EINVAL);
1101             else
1102                 lambda += up_step;
1103             up_step = FFMIN((int64_t)up_step*5, INT_MAX);
1104             down_step = 1<<LAMBDA_FRAC_BITS;
1105         }
1106     }
1107     ctx->lambda = lambda;
1108     return 0;
1109 }
1110
1111 static int dnxhd_find_qscale(DNXHDEncContext *ctx)
1112 {
1113     int bits = 0;
1114     int up_step = 1;
1115     int down_step = 1;
1116     int last_higher = 0;
1117     int last_lower = INT_MAX;
1118     int qscale;
1119     int x, y;
1120
1121     qscale = ctx->qscale;
1122     for (;;) {
1123         bits = 0;
1124         ctx->qscale = qscale;
1125         // XXX avoid recalculating bits
1126         ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
1127                                NULL, NULL, ctx->m.mb_height);
1128         for (y = 0; y < ctx->m.mb_height; y++) {
1129             for (x = 0; x < ctx->m.mb_width; x++)
1130                 bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
1131             bits = (bits+31)&~31; // padding
1132             if (bits > ctx->frame_bits)
1133                 break;
1134         }
1135         if (bits < ctx->frame_bits) {
1136             if (qscale == 1)
1137                 return 1;
1138             if (last_higher == qscale - 1) {
1139                 qscale = last_higher;
1140                 break;
1141             }
1142             last_lower = FFMIN(qscale, last_lower);
1143             if (last_higher != 0)
1144                 qscale = (qscale + last_higher) >> 1;
1145             else
1146                 qscale -= down_step++;
1147             if (qscale < 1)
1148                 qscale = 1;
1149             up_step = 1;
1150         } else {
1151             if (last_lower == qscale + 1)
1152                 break;
1153             last_higher = FFMAX(qscale, last_higher);
1154             if (last_lower != INT_MAX)
1155                 qscale = (qscale + last_lower) >> 1;
1156             else
1157                 qscale += up_step++;
1158             down_step = 1;
1159             if (qscale >= ctx->m.avctx->qmax)
1160                 return AVERROR(EINVAL);
1161         }
1162     }
1163     ctx->qscale = qscale;
1164     return 0;
1165 }
1166
1167 #define BUCKET_BITS 8
1168 #define RADIX_PASSES 4
1169 #define NBUCKETS (1 << BUCKET_BITS)
1170
1171 static inline int get_bucket(int value, int shift)
1172 {
1173     value >>= shift;
1174     value  &= NBUCKETS - 1;
1175     return NBUCKETS - 1 - value;
1176 }
1177
1178 static void radix_count(const RCCMPEntry *data, int size,
1179                         int buckets[RADIX_PASSES][NBUCKETS])
1180 {
1181     int i, j;
1182     memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
1183     for (i = 0; i < size; i++) {
1184         int v = data[i].value;
1185         for (j = 0; j < RADIX_PASSES; j++) {
1186             buckets[j][get_bucket(v, 0)]++;
1187             v >>= BUCKET_BITS;
1188         }
1189         av_assert1(!v);
1190     }
1191     for (j = 0; j < RADIX_PASSES; j++) {
1192         int offset = size;
1193         for (i = NBUCKETS - 1; i >= 0; i--)
1194             buckets[j][i] = offset -= buckets[j][i];
1195         av_assert1(!buckets[j][0]);
1196     }
1197 }
1198
1199 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
1200                             int size, int buckets[NBUCKETS], int pass)
1201 {
1202     int shift = pass * BUCKET_BITS;
1203     int i;
1204     for (i = 0; i < size; i++) {
1205         int v   = get_bucket(data[i].value, shift);
1206         int pos = buckets[v]++;
1207         dst[pos] = data[i];
1208     }
1209 }
1210
1211 static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
1212 {
1213     int buckets[RADIX_PASSES][NBUCKETS];
1214     radix_count(data, size, buckets);
1215     radix_sort_pass(tmp, data, size, buckets[0], 0);
1216     radix_sort_pass(data, tmp, size, buckets[1], 1);
1217     if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
1218         radix_sort_pass(tmp, data, size, buckets[2], 2);
1219         radix_sort_pass(data, tmp, size, buckets[3], 3);
1220     }
1221 }
1222
1223 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
1224 {
1225     int max_bits = 0;
1226     int ret, x, y;
1227     if ((ret = dnxhd_find_qscale(ctx)) < 0)
1228         return ret;
1229     for (y = 0; y < ctx->m.mb_height; y++) {
1230         for (x = 0; x < ctx->m.mb_width; x++) {
1231             int mb = y * ctx->m.mb_width + x;
1232             int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1233             int delta_bits;
1234             ctx->mb_qscale[mb] = ctx->qscale;
1235             ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1236             max_bits += ctx->mb_rc[rc].bits;
1237             if (!RC_VARIANCE) {
1238                 delta_bits = ctx->mb_rc[rc].bits -
1239                              ctx->mb_rc[rc + ctx->m.mb_num].bits;
1240                 ctx->mb_cmp[mb].mb = mb;
1241                 ctx->mb_cmp[mb].value =
1242                     delta_bits ? ((ctx->mb_rc[rc].ssd -
1243                                    ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
1244                                   delta_bits
1245                                : INT_MIN; // avoid increasing qscale
1246             }
1247         }
1248         max_bits += 31; // worst padding
1249     }
1250     if (!ret) {
1251         if (RC_VARIANCE)
1252             avctx->execute2(avctx, dnxhd_mb_var_thread,
1253                             NULL, NULL, ctx->m.mb_height);
1254         radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
1255         for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1256             int mb = ctx->mb_cmp[x].mb;
1257             int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1258             max_bits -= ctx->mb_rc[rc].bits -
1259                         ctx->mb_rc[rc + ctx->m.mb_num].bits;
1260             ctx->mb_qscale[mb] = ctx->qscale + 1;
1261             ctx->mb_bits[mb]   = ctx->mb_rc[rc + ctx->m.mb_num].bits;
1262         }
1263     }
1264     return 0;
1265 }
1266
1267 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
1268 {
1269     int i;
1270
1271     for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1272         ctx->thread[i]->m.linesize    = frame->linesize[0] << ctx->interlaced;
1273         ctx->thread[i]->m.uvlinesize  = frame->linesize[1] << ctx->interlaced;
1274         ctx->thread[i]->dct_y_offset  = ctx->m.linesize  *8;
1275         ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1276     }
1277
1278 #if FF_API_CODED_FRAME
1279 FF_DISABLE_DEPRECATION_WARNINGS
1280     ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
1281 FF_ENABLE_DEPRECATION_WARNINGS
1282 #endif
1283     ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1284 }
1285
1286 static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
1287                                 const AVFrame *frame, int *got_packet)
1288 {
1289     DNXHDEncContext *ctx = avctx->priv_data;
1290     int first_field = 1;
1291     int offset, i, ret;
1292     uint8_t *buf;
1293
1294     if ((ret = ff_alloc_packet2(avctx, pkt, ctx->frame_size, 0)) < 0)
1295         return ret;
1296     buf = pkt->data;
1297
1298     dnxhd_load_picture(ctx, frame);
1299
1300 encode_coding_unit:
1301     for (i = 0; i < 3; i++) {
1302         ctx->src[i] = frame->data[i];
1303         if (ctx->interlaced && ctx->cur_field)
1304             ctx->src[i] += frame->linesize[i];
1305     }
1306
1307     dnxhd_write_header(avctx, buf);
1308
1309     if (avctx->mb_decision == FF_MB_DECISION_RD)
1310         ret = dnxhd_encode_rdo(avctx, ctx);
1311     else
1312         ret = dnxhd_encode_fast(avctx, ctx);
1313     if (ret < 0) {
1314         av_log(avctx, AV_LOG_ERROR,
1315                "picture could not fit ratecontrol constraints, increase qmax\n");
1316         return ret;
1317     }
1318
1319     dnxhd_setup_threads_slices(ctx);
1320
1321     offset = 0;
1322     for (i = 0; i < ctx->m.mb_height; i++) {
1323         AV_WB32(ctx->msip + i * 4, offset);
1324         offset += ctx->slice_size[i];
1325         av_assert1(!(ctx->slice_size[i] & 3));
1326     }
1327
1328     avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1329
1330     av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
1331     memset(buf + ctx->data_offset + offset, 0,
1332            ctx->coding_unit_size - 4 - offset - ctx->data_offset);
1333
1334     AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
1335
1336     if (ctx->interlaced && first_field) {
1337         first_field     = 0;
1338         ctx->cur_field ^= 1;
1339         buf            += ctx->coding_unit_size;
1340         goto encode_coding_unit;
1341     }
1342
1343 #if FF_API_CODED_FRAME
1344 FF_DISABLE_DEPRECATION_WARNINGS
1345     avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
1346 FF_ENABLE_DEPRECATION_WARNINGS
1347 #endif
1348
1349     ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
1350
1351     pkt->flags |= AV_PKT_FLAG_KEY;
1352     *got_packet = 1;
1353     return 0;
1354 }
1355
1356 static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
1357 {
1358     DNXHDEncContext *ctx = avctx->priv_data;
1359     int max_level        = 1 << (ctx->bit_depth + 2);
1360     int i;
1361
1362     av_free(ctx->vlc_codes - max_level * 2);
1363     av_free(ctx->vlc_bits - max_level * 2);
1364     av_freep(&ctx->run_codes);
1365     av_freep(&ctx->run_bits);
1366
1367     av_freep(&ctx->mb_bits);
1368     av_freep(&ctx->mb_qscale);
1369     av_freep(&ctx->mb_rc);
1370     av_freep(&ctx->mb_cmp);
1371     av_freep(&ctx->mb_cmp_tmp);
1372     av_freep(&ctx->slice_size);
1373     av_freep(&ctx->slice_offs);
1374
1375     av_freep(&ctx->qmatrix_c);
1376     av_freep(&ctx->qmatrix_l);
1377     av_freep(&ctx->qmatrix_c16);
1378     av_freep(&ctx->qmatrix_l16);
1379
1380     for (i = 1; i < avctx->thread_count; i++)
1381         av_freep(&ctx->thread[i]);
1382
1383     return 0;
1384 }
1385
1386 static const AVCodecDefault dnxhd_defaults[] = {
1387     { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1388     { NULL },
1389 };
1390
1391 AVCodec ff_dnxhd_encoder = {
1392     .name           = "dnxhd",
1393     .long_name      = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1394     .type           = AVMEDIA_TYPE_VIDEO,
1395     .id             = AV_CODEC_ID_DNXHD,
1396     .priv_data_size = sizeof(DNXHDEncContext),
1397     .init           = dnxhd_encode_init,
1398     .encode2        = dnxhd_encode_picture,
1399     .close          = dnxhd_encode_end,
1400     .capabilities   = AV_CODEC_CAP_SLICE_THREADS,
1401     .pix_fmts       = (const enum AVPixelFormat[]) {
1402         AV_PIX_FMT_YUV422P,
1403         AV_PIX_FMT_YUV422P10,
1404         AV_PIX_FMT_YUV444P10,
1405         AV_PIX_FMT_GBRP10,
1406         AV_PIX_FMT_NONE
1407     },
1408     .priv_class     = &dnxhd_class,
1409     .defaults       = dnxhd_defaults,
1410     .profiles       = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
1411 };