OSDN Git Service

PR 10979
[pf3gnuchains/pf3gnuchains4x.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64     const Layout::Section_list& sections,
65     const Layout::Data_list& special_outputs)
66 {
67   for(Layout::Section_list::const_iterator p = sections.begin();
68       p != sections.end();
69       ++p)
70     gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72   for(Layout::Data_list::const_iterator p = special_outputs.begin();
73       p != special_outputs.end();
74       ++p)
75     gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77   
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82     const Layout::Section_list& sections)
83 {
84   for(Layout::Section_list::const_iterator p = sections.begin();
85       p != sections.end();
86       ++p)
87     {
88       Output_section* os = *p;
89       Section_info info;
90       info.output_section = os;
91       info.address = os->is_address_valid() ? os->address() : 0;
92       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93       info.offset = os->is_offset_valid()? os->offset() : -1 ;
94       this->section_infos_.push_back(info);
95     }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102     const Layout::Section_list& sections)
103 {
104   size_t i = 0;
105   for(Layout::Section_list::const_iterator p = sections.begin();
106       p != sections.end();
107       ++p, ++i)
108     {
109       Output_section* os = *p;
110       uint64_t address = os->is_address_valid() ? os->address() : 0;
111       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114       if (i >= this->section_infos_.size())
115         {
116           gold_fatal("Section_info of %s missing.\n", os->name());
117         }
118       const Section_info& info = this->section_infos_[i];
119       if (os != info.output_section)
120         gold_fatal("Section order changed.  Expecting %s but see %s\n",
121                    info.output_section->name(), os->name());
122       if (address != info.address
123           || data_size != info.data_size
124           || offset != info.offset)
125         gold_fatal("Section %s changed.\n", os->name());
126     }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections.  This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137   off_t file_size = this->layout_->finalize(this->input_objects_,
138                                             this->symtab_,
139                                             this->target_,
140                                             task);
141
142   // Now we know the final size of the output file and we know where
143   // each piece of information goes.
144
145   if (this->mapfile_ != NULL)
146     {
147       this->mapfile_->print_discarded_sections(this->input_objects_);
148       this->layout_->print_to_mapfile(this->mapfile_);
149     }
150
151   Output_file* of = new Output_file(parameters->options().output_file_name());
152   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153     of->set_is_temporary();
154   of->open(file_size);
155
156   // Queue up the final set of tasks.
157   gold::queue_final_tasks(this->options_, this->input_objects_,
158                           this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164   : number_of_input_files_(number_of_input_files),
165     script_options_(script_options),
166     namepool_(),
167     sympool_(),
168     dynpool_(),
169     signatures_(),
170     section_name_map_(),
171     segment_list_(),
172     section_list_(),
173     unattached_section_list_(),
174     special_output_list_(),
175     section_headers_(NULL),
176     tls_segment_(NULL),
177     relro_segment_(NULL),
178     increase_relro_(0),
179     symtab_section_(NULL),
180     symtab_xindex_(NULL),
181     dynsym_section_(NULL),
182     dynsym_xindex_(NULL),
183     dynamic_section_(NULL),
184     dynamic_symbol_(NULL),
185     dynamic_data_(NULL),
186     eh_frame_section_(NULL),
187     eh_frame_data_(NULL),
188     added_eh_frame_data_(false),
189     eh_frame_hdr_section_(NULL),
190     build_id_note_(NULL),
191     debug_abbrev_(NULL),
192     debug_info_(NULL),
193     group_signatures_(),
194     output_file_size_(-1),
195     have_added_input_section_(false),
196     sections_are_attached_(false),
197     input_requires_executable_stack_(false),
198     input_with_gnu_stack_note_(false),
199     input_without_gnu_stack_note_(false),
200     has_static_tls_(false),
201     any_postprocessing_sections_(false),
202     resized_signatures_(false),
203     have_stabstr_section_(false),
204     incremental_inputs_(NULL),
205     record_output_section_data_from_script_(false),
206     script_output_section_data_list_(),
207     segment_states_(NULL),
208     relaxation_debug_check_(NULL)
209 {
210   // Make space for more than enough segments for a typical file.
211   // This is just for efficiency--it's OK if we wind up needing more.
212   this->segment_list_.reserve(12);
213
214   // We expect two unattached Output_data objects: the file header and
215   // the segment headers.
216   this->special_output_list_.reserve(2);
217
218   // Initialize structure needed for an incremental build.
219   if (parameters->options().incremental())
220     this->incremental_inputs_ = new Incremental_inputs;
221
222   // The section name pool is worth optimizing in all cases, because
223   // it is small, but there are often overlaps due to .rel sections.
224   this->namepool_.set_optimize();
225 }
226
227 // Hash a key we use to look up an output section mapping.
228
229 size_t
230 Layout::Hash_key::operator()(const Layout::Key& k) const
231 {
232  return k.first + k.second.first + k.second.second;
233 }
234
235 // Returns whether the given section is in the list of
236 // debug-sections-used-by-some-version-of-gdb.  Currently,
237 // we've checked versions of gdb up to and including 6.7.1.
238
239 static const char* gdb_sections[] =
240 { ".debug_abbrev",
241   // ".debug_aranges",   // not used by gdb as of 6.7.1
242   ".debug_frame",
243   ".debug_info",
244   ".debug_line",
245   ".debug_loc",
246   ".debug_macinfo",
247   // ".debug_pubnames",  // not used by gdb as of 6.7.1
248   ".debug_ranges",
249   ".debug_str",
250 };
251
252 static const char* lines_only_debug_sections[] =
253 { ".debug_abbrev",
254   // ".debug_aranges",   // not used by gdb as of 6.7.1
255   // ".debug_frame",
256   ".debug_info",
257   ".debug_line",
258   // ".debug_loc",
259   // ".debug_macinfo",
260   // ".debug_pubnames",  // not used by gdb as of 6.7.1
261   // ".debug_ranges",
262   ".debug_str",
263 };
264
265 static inline bool
266 is_gdb_debug_section(const char* str)
267 {
268   // We can do this faster: binary search or a hashtable.  But why bother?
269   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
270     if (strcmp(str, gdb_sections[i]) == 0)
271       return true;
272   return false;
273 }
274
275 static inline bool
276 is_lines_only_debug_section(const char* str)
277 {
278   // We can do this faster: binary search or a hashtable.  But why bother?
279   for (size_t i = 0;
280        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
281        ++i)
282     if (strcmp(str, lines_only_debug_sections[i]) == 0)
283       return true;
284   return false;
285 }
286
287 // Whether to include this section in the link.
288
289 template<int size, bool big_endian>
290 bool
291 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
292                         const elfcpp::Shdr<size, big_endian>& shdr)
293 {
294   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
295     return false;
296
297   switch (shdr.get_sh_type())
298     {
299     case elfcpp::SHT_NULL:
300     case elfcpp::SHT_SYMTAB:
301     case elfcpp::SHT_DYNSYM:
302     case elfcpp::SHT_HASH:
303     case elfcpp::SHT_DYNAMIC:
304     case elfcpp::SHT_SYMTAB_SHNDX:
305       return false;
306
307     case elfcpp::SHT_STRTAB:
308       // Discard the sections which have special meanings in the ELF
309       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
310       // checking the sh_link fields of the appropriate sections.
311       return (strcmp(name, ".dynstr") != 0
312               && strcmp(name, ".strtab") != 0
313               && strcmp(name, ".shstrtab") != 0);
314
315     case elfcpp::SHT_RELA:
316     case elfcpp::SHT_REL:
317     case elfcpp::SHT_GROUP:
318       // If we are emitting relocations these should be handled
319       // elsewhere.
320       gold_assert(!parameters->options().relocatable()
321                   && !parameters->options().emit_relocs());
322       return false;
323
324     case elfcpp::SHT_PROGBITS:
325       if (parameters->options().strip_debug()
326           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
327         {
328           if (is_debug_info_section(name))
329             return false;
330         }
331       if (parameters->options().strip_debug_non_line()
332           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
333         {
334           // Debugging sections can only be recognized by name.
335           if (is_prefix_of(".debug", name)
336               && !is_lines_only_debug_section(name))
337             return false;
338         }
339       if (parameters->options().strip_debug_gdb()
340           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
341         {
342           // Debugging sections can only be recognized by name.
343           if (is_prefix_of(".debug", name)
344               && !is_gdb_debug_section(name))
345             return false;
346         }
347       if (parameters->options().strip_lto_sections()
348           && !parameters->options().relocatable()
349           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
350         {
351           // Ignore LTO sections containing intermediate code.
352           if (is_prefix_of(".gnu.lto_", name))
353             return false;
354         }
355       return true;
356
357     default:
358       return true;
359     }
360 }
361
362 // Return an output section named NAME, or NULL if there is none.
363
364 Output_section*
365 Layout::find_output_section(const char* name) const
366 {
367   for (Section_list::const_iterator p = this->section_list_.begin();
368        p != this->section_list_.end();
369        ++p)
370     if (strcmp((*p)->name(), name) == 0)
371       return *p;
372   return NULL;
373 }
374
375 // Return an output segment of type TYPE, with segment flags SET set
376 // and segment flags CLEAR clear.  Return NULL if there is none.
377
378 Output_segment*
379 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
380                             elfcpp::Elf_Word clear) const
381 {
382   for (Segment_list::const_iterator p = this->segment_list_.begin();
383        p != this->segment_list_.end();
384        ++p)
385     if (static_cast<elfcpp::PT>((*p)->type()) == type
386         && ((*p)->flags() & set) == set
387         && ((*p)->flags() & clear) == 0)
388       return *p;
389   return NULL;
390 }
391
392 // Return the output section to use for section NAME with type TYPE
393 // and section flags FLAGS.  NAME must be canonicalized in the string
394 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
395 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
396 // is used by the dynamic linker.  IS_RELRO is true for a relro
397 // section.  IS_LAST_RELRO is true for the last relro section.
398 // IS_FIRST_NON_RELRO is true for the first non-relro section.
399
400 Output_section*
401 Layout::get_output_section(const char* name, Stringpool::Key name_key,
402                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
403                            bool is_interp, bool is_dynamic_linker_section,
404                            bool is_relro, bool is_last_relro,
405                            bool is_first_non_relro)
406 {
407   elfcpp::Elf_Xword lookup_flags = flags;
408
409   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
410   // read-write with read-only sections.  Some other ELF linkers do
411   // not do this.  FIXME: Perhaps there should be an option
412   // controlling this.
413   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
414
415   const Key key(name_key, std::make_pair(type, lookup_flags));
416   const std::pair<Key, Output_section*> v(key, NULL);
417   std::pair<Section_name_map::iterator, bool> ins(
418     this->section_name_map_.insert(v));
419
420   if (!ins.second)
421     return ins.first->second;
422   else
423     {
424       // This is the first time we've seen this name/type/flags
425       // combination.  For compatibility with the GNU linker, we
426       // combine sections with contents and zero flags with sections
427       // with non-zero flags.  This is a workaround for cases where
428       // assembler code forgets to set section flags.  FIXME: Perhaps
429       // there should be an option to control this.
430       Output_section* os = NULL;
431
432       if (type == elfcpp::SHT_PROGBITS)
433         {
434           if (flags == 0)
435             {
436               Output_section* same_name = this->find_output_section(name);
437               if (same_name != NULL
438                   && same_name->type() == elfcpp::SHT_PROGBITS
439                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
440                 os = same_name;
441             }
442           else if ((flags & elfcpp::SHF_TLS) == 0)
443             {
444               elfcpp::Elf_Xword zero_flags = 0;
445               const Key zero_key(name_key, std::make_pair(type, zero_flags));
446               Section_name_map::iterator p =
447                   this->section_name_map_.find(zero_key);
448               if (p != this->section_name_map_.end())
449                 os = p->second;
450             }
451         }
452
453       if (os == NULL)
454         os = this->make_output_section(name, type, flags, is_interp,
455                                        is_dynamic_linker_section, is_relro,
456                                        is_last_relro, is_first_non_relro);
457       ins.first->second = os;
458       return os;
459     }
460 }
461
462 // Pick the output section to use for section NAME, in input file
463 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
464 // linker created section.  IS_INPUT_SECTION is true if we are
465 // choosing an output section for an input section found in a input
466 // file.  IS_INTERP is true if this is the .interp section.
467 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
468 // dynamic linker.  IS_RELRO is true for a relro section.
469 // IS_LAST_RELRO is true for the last relro section.
470 // IS_FIRST_NON_RELRO is true for the first non-relro section.  This
471 // will return NULL if the input section should be discarded.
472
473 Output_section*
474 Layout::choose_output_section(const Relobj* relobj, const char* name,
475                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
476                               bool is_input_section, bool is_interp,
477                               bool is_dynamic_linker_section, bool is_relro,
478                               bool is_last_relro, bool is_first_non_relro)
479 {
480   // We should not see any input sections after we have attached
481   // sections to segments.
482   gold_assert(!is_input_section || !this->sections_are_attached_);
483
484   // Some flags in the input section should not be automatically
485   // copied to the output section.
486   flags &= ~ (elfcpp::SHF_INFO_LINK
487               | elfcpp::SHF_LINK_ORDER
488               | elfcpp::SHF_GROUP
489               | elfcpp::SHF_MERGE
490               | elfcpp::SHF_STRINGS);
491
492   if (this->script_options_->saw_sections_clause())
493     {
494       // We are using a SECTIONS clause, so the output section is
495       // chosen based only on the name.
496
497       Script_sections* ss = this->script_options_->script_sections();
498       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
499       Output_section** output_section_slot;
500       name = ss->output_section_name(file_name, name, &output_section_slot);
501       if (name == NULL)
502         {
503           // The SECTIONS clause says to discard this input section.
504           return NULL;
505         }
506
507       // If this is an orphan section--one not mentioned in the linker
508       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
509       // default processing below.
510
511       if (output_section_slot != NULL)
512         {
513           if (*output_section_slot != NULL)
514             {
515               (*output_section_slot)->update_flags_for_input_section(flags);
516               return *output_section_slot;
517             }
518
519           // We don't put sections found in the linker script into
520           // SECTION_NAME_MAP_.  That keeps us from getting confused
521           // if an orphan section is mapped to a section with the same
522           // name as one in the linker script.
523
524           name = this->namepool_.add(name, false, NULL);
525
526           Output_section* os =
527             this->make_output_section(name, type, flags, is_interp,
528                                       is_dynamic_linker_section, is_relro,
529                                       is_last_relro, is_first_non_relro);
530           os->set_found_in_sections_clause();
531           *output_section_slot = os;
532           return os;
533         }
534     }
535
536   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
537
538   // Turn NAME from the name of the input section into the name of the
539   // output section.
540
541   size_t len = strlen(name);
542   if (is_input_section
543       && !this->script_options_->saw_sections_clause()
544       && !parameters->options().relocatable())
545     name = Layout::output_section_name(name, &len);
546
547   Stringpool::Key name_key;
548   name = this->namepool_.add_with_length(name, len, true, &name_key);
549
550   // Find or make the output section.  The output section is selected
551   // based on the section name, type, and flags.
552   return this->get_output_section(name, name_key, type, flags, is_interp,
553                                   is_dynamic_linker_section, is_relro,
554                                   is_last_relro, is_first_non_relro);
555 }
556
557 // Return the output section to use for input section SHNDX, with name
558 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
559 // index of a relocation section which applies to this section, or 0
560 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
561 // relocation section if there is one.  Set *OFF to the offset of this
562 // input section without the output section.  Return NULL if the
563 // section should be discarded.  Set *OFF to -1 if the section
564 // contents should not be written directly to the output file, but
565 // will instead receive special handling.
566
567 template<int size, bool big_endian>
568 Output_section*
569 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
570                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
571                unsigned int reloc_shndx, unsigned int, off_t* off)
572 {
573   *off = 0;
574
575   if (!this->include_section(object, name, shdr))
576     return NULL;
577
578   Output_section* os;
579
580   // In a relocatable link a grouped section must not be combined with
581   // any other sections.
582   if (parameters->options().relocatable()
583       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
584     {
585       name = this->namepool_.add(name, true, NULL);
586       os = this->make_output_section(name, shdr.get_sh_type(),
587                                      shdr.get_sh_flags(), false, false,
588                                      false, false, false);
589     }
590   else
591     {
592       os = this->choose_output_section(object, name, shdr.get_sh_type(),
593                                        shdr.get_sh_flags(), true, false,
594                                        false, false, false, false);
595       if (os == NULL)
596         return NULL;
597     }
598
599   // By default the GNU linker sorts input sections whose names match
600   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
601   // are sorted by name.  This is used to implement constructor
602   // priority ordering.  We are compatible.
603   if (!this->script_options_->saw_sections_clause()
604       && (is_prefix_of(".ctors.", name)
605           || is_prefix_of(".dtors.", name)
606           || is_prefix_of(".init_array.", name)
607           || is_prefix_of(".fini_array.", name)))
608     os->set_must_sort_attached_input_sections();
609
610   // FIXME: Handle SHF_LINK_ORDER somewhere.
611
612   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
613                                this->script_options_->saw_sections_clause());
614   this->have_added_input_section_ = true;
615
616   return os;
617 }
618
619 // Handle a relocation section when doing a relocatable link.
620
621 template<int size, bool big_endian>
622 Output_section*
623 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
624                      unsigned int,
625                      const elfcpp::Shdr<size, big_endian>& shdr,
626                      Output_section* data_section,
627                      Relocatable_relocs* rr)
628 {
629   gold_assert(parameters->options().relocatable()
630               || parameters->options().emit_relocs());
631
632   int sh_type = shdr.get_sh_type();
633
634   std::string name;
635   if (sh_type == elfcpp::SHT_REL)
636     name = ".rel";
637   else if (sh_type == elfcpp::SHT_RELA)
638     name = ".rela";
639   else
640     gold_unreachable();
641   name += data_section->name();
642
643   Output_section* os = this->choose_output_section(object, name.c_str(),
644                                                    sh_type,
645                                                    shdr.get_sh_flags(),
646                                                    false, false, false,
647                                                    false, false, false);
648
649   os->set_should_link_to_symtab();
650   os->set_info_section(data_section);
651
652   Output_section_data* posd;
653   if (sh_type == elfcpp::SHT_REL)
654     {
655       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
656       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
657                                            size,
658                                            big_endian>(rr);
659     }
660   else if (sh_type == elfcpp::SHT_RELA)
661     {
662       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
663       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
664                                            size,
665                                            big_endian>(rr);
666     }
667   else
668     gold_unreachable();
669
670   os->add_output_section_data(posd);
671   rr->set_output_data(posd);
672
673   return os;
674 }
675
676 // Handle a group section when doing a relocatable link.
677
678 template<int size, bool big_endian>
679 void
680 Layout::layout_group(Symbol_table* symtab,
681                      Sized_relobj<size, big_endian>* object,
682                      unsigned int,
683                      const char* group_section_name,
684                      const char* signature,
685                      const elfcpp::Shdr<size, big_endian>& shdr,
686                      elfcpp::Elf_Word flags,
687                      std::vector<unsigned int>* shndxes)
688 {
689   gold_assert(parameters->options().relocatable());
690   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
691   group_section_name = this->namepool_.add(group_section_name, true, NULL);
692   Output_section* os = this->make_output_section(group_section_name,
693                                                  elfcpp::SHT_GROUP,
694                                                  shdr.get_sh_flags(),
695                                                  false, false, false,
696                                                  false, false);
697
698   // We need to find a symbol with the signature in the symbol table.
699   // If we don't find one now, we need to look again later.
700   Symbol* sym = symtab->lookup(signature, NULL);
701   if (sym != NULL)
702     os->set_info_symndx(sym);
703   else
704     {
705       // Reserve some space to minimize reallocations.
706       if (this->group_signatures_.empty())
707         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
708
709       // We will wind up using a symbol whose name is the signature.
710       // So just put the signature in the symbol name pool to save it.
711       signature = symtab->canonicalize_name(signature);
712       this->group_signatures_.push_back(Group_signature(os, signature));
713     }
714
715   os->set_should_link_to_symtab();
716   os->set_entsize(4);
717
718   section_size_type entry_count =
719     convert_to_section_size_type(shdr.get_sh_size() / 4);
720   Output_section_data* posd =
721     new Output_data_group<size, big_endian>(object, entry_count, flags,
722                                             shndxes);
723   os->add_output_section_data(posd);
724 }
725
726 // Special GNU handling of sections name .eh_frame.  They will
727 // normally hold exception frame data as defined by the C++ ABI
728 // (http://codesourcery.com/cxx-abi/).
729
730 template<int size, bool big_endian>
731 Output_section*
732 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
733                         const unsigned char* symbols,
734                         off_t symbols_size,
735                         const unsigned char* symbol_names,
736                         off_t symbol_names_size,
737                         unsigned int shndx,
738                         const elfcpp::Shdr<size, big_endian>& shdr,
739                         unsigned int reloc_shndx, unsigned int reloc_type,
740                         off_t* off)
741 {
742   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
743   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
744
745   const char* const name = ".eh_frame";
746   Output_section* os = this->choose_output_section(object,
747                                                    name,
748                                                    elfcpp::SHT_PROGBITS,
749                                                    elfcpp::SHF_ALLOC,
750                                                    false, false, false,
751                                                    false, false, false);
752   if (os == NULL)
753     return NULL;
754
755   if (this->eh_frame_section_ == NULL)
756     {
757       this->eh_frame_section_ = os;
758       this->eh_frame_data_ = new Eh_frame();
759
760       if (parameters->options().eh_frame_hdr())
761         {
762           Output_section* hdr_os =
763             this->choose_output_section(NULL,
764                                         ".eh_frame_hdr",
765                                         elfcpp::SHT_PROGBITS,
766                                         elfcpp::SHF_ALLOC,
767                                         false, false, false,
768                                         false, false, false);
769
770           if (hdr_os != NULL)
771             {
772               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
773                                                         this->eh_frame_data_);
774               hdr_os->add_output_section_data(hdr_posd);
775
776               hdr_os->set_after_input_sections();
777
778               if (!this->script_options_->saw_phdrs_clause())
779                 {
780                   Output_segment* hdr_oseg;
781                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
782                                                        elfcpp::PF_R);
783                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R, false);
784                 }
785
786               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
787             }
788         }
789     }
790
791   gold_assert(this->eh_frame_section_ == os);
792
793   if (this->eh_frame_data_->add_ehframe_input_section(object,
794                                                       symbols,
795                                                       symbols_size,
796                                                       symbol_names,
797                                                       symbol_names_size,
798                                                       shndx,
799                                                       reloc_shndx,
800                                                       reloc_type))
801     {
802       os->update_flags_for_input_section(shdr.get_sh_flags());
803
804       // We found a .eh_frame section we are going to optimize, so now
805       // we can add the set of optimized sections to the output
806       // section.  We need to postpone adding this until we've found a
807       // section we can optimize so that the .eh_frame section in
808       // crtbegin.o winds up at the start of the output section.
809       if (!this->added_eh_frame_data_)
810         {
811           os->add_output_section_data(this->eh_frame_data_);
812           this->added_eh_frame_data_ = true;
813         }
814       *off = -1;
815     }
816   else
817     {
818       // We couldn't handle this .eh_frame section for some reason.
819       // Add it as a normal section.
820       bool saw_sections_clause = this->script_options_->saw_sections_clause();
821       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
822                                    saw_sections_clause);
823       this->have_added_input_section_ = true;
824     }
825
826   return os;
827 }
828
829 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
830 // the output section.
831
832 Output_section*
833 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
834                                 elfcpp::Elf_Xword flags,
835                                 Output_section_data* posd,
836                                 bool is_dynamic_linker_section,
837                                 bool is_relro, bool is_last_relro,
838                                 bool is_first_non_relro)
839 {
840   Output_section* os = this->choose_output_section(NULL, name, type, flags,
841                                                    false, false,
842                                                    is_dynamic_linker_section,
843                                                    is_relro, is_last_relro,
844                                                    is_first_non_relro);
845   if (os != NULL)
846     os->add_output_section_data(posd);
847   return os;
848 }
849
850 // Map section flags to segment flags.
851
852 elfcpp::Elf_Word
853 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
854 {
855   elfcpp::Elf_Word ret = elfcpp::PF_R;
856   if ((flags & elfcpp::SHF_WRITE) != 0)
857     ret |= elfcpp::PF_W;
858   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
859     ret |= elfcpp::PF_X;
860   return ret;
861 }
862
863 // Sometimes we compress sections.  This is typically done for
864 // sections that are not part of normal program execution (such as
865 // .debug_* sections), and where the readers of these sections know
866 // how to deal with compressed sections.  This routine doesn't say for
867 // certain whether we'll compress -- it depends on commandline options
868 // as well -- just whether this section is a candidate for compression.
869 // (The Output_compressed_section class decides whether to compress
870 // a given section, and picks the name of the compressed section.)
871
872 static bool
873 is_compressible_debug_section(const char* secname)
874 {
875   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
876 }
877
878 // Make a new Output_section, and attach it to segments as
879 // appropriate.  IS_INTERP is true if this is the .interp section.
880 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
881 // dynamic linker.  IS_RELRO is true if this is a relro section.
882 // IS_LAST_RELRO is true if this is the last relro section.
883 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
884
885 Output_section*
886 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
887                             elfcpp::Elf_Xword flags, bool is_interp,
888                             bool is_dynamic_linker_section, bool is_relro,
889                             bool is_last_relro, bool is_first_non_relro)
890 {
891   Output_section* os;
892   if ((flags & elfcpp::SHF_ALLOC) == 0
893       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
894       && is_compressible_debug_section(name))
895     os = new Output_compressed_section(&parameters->options(), name, type,
896                                        flags);
897   else if ((flags & elfcpp::SHF_ALLOC) == 0
898            && parameters->options().strip_debug_non_line()
899            && strcmp(".debug_abbrev", name) == 0)
900     {
901       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
902           name, type, flags);
903       if (this->debug_info_)
904         this->debug_info_->set_abbreviations(this->debug_abbrev_);
905     }
906   else if ((flags & elfcpp::SHF_ALLOC) == 0
907            && parameters->options().strip_debug_non_line()
908            && strcmp(".debug_info", name) == 0)
909     {
910       os = this->debug_info_ = new Output_reduced_debug_info_section(
911           name, type, flags);
912       if (this->debug_abbrev_)
913         this->debug_info_->set_abbreviations(this->debug_abbrev_);
914     }
915  else
916     {
917       // FIXME: const_cast is ugly.
918       Target* target = const_cast<Target*>(&parameters->target());
919       os = target->make_output_section(name, type, flags);
920     }
921
922   if (is_interp)
923     os->set_is_interp();
924   if (is_dynamic_linker_section)
925     os->set_is_dynamic_linker_section();
926   if (is_relro)
927     os->set_is_relro();
928   if (is_last_relro)
929     os->set_is_last_relro();
930   if (is_first_non_relro)
931     os->set_is_first_non_relro();
932
933   parameters->target().new_output_section(os);
934
935   this->section_list_.push_back(os);
936
937   // The GNU linker by default sorts some sections by priority, so we
938   // do the same.  We need to know that this might happen before we
939   // attach any input sections.
940   if (!this->script_options_->saw_sections_clause()
941       && (strcmp(name, ".ctors") == 0
942           || strcmp(name, ".dtors") == 0
943           || strcmp(name, ".init_array") == 0
944           || strcmp(name, ".fini_array") == 0))
945     os->set_may_sort_attached_input_sections();
946
947   // With -z relro, we have to recognize the special sections by name.
948   // There is no other way.
949   if (!this->script_options_->saw_sections_clause()
950       && parameters->options().relro()
951       && type == elfcpp::SHT_PROGBITS
952       && (flags & elfcpp::SHF_ALLOC) != 0
953       && (flags & elfcpp::SHF_WRITE) != 0)
954     {
955       if (strcmp(name, ".data.rel.ro") == 0)
956         os->set_is_relro();
957       else if (strcmp(name, ".data.rel.ro.local") == 0)
958         {
959           os->set_is_relro();
960           os->set_is_relro_local();
961         }
962     }
963
964   // Check for .stab*str sections, as .stab* sections need to link to
965   // them.
966   if (type == elfcpp::SHT_STRTAB
967       && !this->have_stabstr_section_
968       && strncmp(name, ".stab", 5) == 0
969       && strcmp(name + strlen(name) - 3, "str") == 0)
970     this->have_stabstr_section_ = true;
971
972   // If we have already attached the sections to segments, then we
973   // need to attach this one now.  This happens for sections created
974   // directly by the linker.
975   if (this->sections_are_attached_)
976     this->attach_section_to_segment(os);
977
978   return os;
979 }
980
981 // Attach output sections to segments.  This is called after we have
982 // seen all the input sections.
983
984 void
985 Layout::attach_sections_to_segments()
986 {
987   for (Section_list::iterator p = this->section_list_.begin();
988        p != this->section_list_.end();
989        ++p)
990     this->attach_section_to_segment(*p);
991
992   this->sections_are_attached_ = true;
993 }
994
995 // Attach an output section to a segment.
996
997 void
998 Layout::attach_section_to_segment(Output_section* os)
999 {
1000   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1001     this->unattached_section_list_.push_back(os);
1002   else
1003     this->attach_allocated_section_to_segment(os);
1004 }
1005
1006 // Attach an allocated output section to a segment.
1007
1008 void
1009 Layout::attach_allocated_section_to_segment(Output_section* os)
1010 {
1011   elfcpp::Elf_Xword flags = os->flags();
1012   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1013
1014   if (parameters->options().relocatable())
1015     return;
1016
1017   // If we have a SECTIONS clause, we can't handle the attachment to
1018   // segments until after we've seen all the sections.
1019   if (this->script_options_->saw_sections_clause())
1020     return;
1021
1022   gold_assert(!this->script_options_->saw_phdrs_clause());
1023
1024   // This output section goes into a PT_LOAD segment.
1025
1026   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1027
1028   bool sort_sections = !this->script_options_->saw_sections_clause();
1029
1030   // In general the only thing we really care about for PT_LOAD
1031   // segments is whether or not they are writable, so that is how we
1032   // search for them.  Large data sections also go into their own
1033   // PT_LOAD segment.  People who need segments sorted on some other
1034   // basis will have to use a linker script.
1035
1036   Segment_list::const_iterator p;
1037   for (p = this->segment_list_.begin();
1038        p != this->segment_list_.end();
1039        ++p)
1040     {
1041       if ((*p)->type() != elfcpp::PT_LOAD)
1042         continue;
1043       if (!parameters->options().omagic()
1044           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1045         continue;
1046       // If -Tbss was specified, we need to separate the data and BSS
1047       // segments.
1048       if (parameters->options().user_set_Tbss())
1049         {
1050           if ((os->type() == elfcpp::SHT_NOBITS)
1051               == (*p)->has_any_data_sections())
1052             continue;
1053         }
1054       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1055         continue;
1056
1057       (*p)->add_output_section(os, seg_flags, sort_sections);
1058       break;
1059     }
1060
1061   if (p == this->segment_list_.end())
1062     {
1063       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1064                                                        seg_flags);
1065       if (os->is_large_data_section())
1066         oseg->set_is_large_data_segment();
1067       oseg->add_output_section(os, seg_flags, sort_sections);
1068     }
1069
1070   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1071   // segment.
1072   if (os->type() == elfcpp::SHT_NOTE)
1073     {
1074       // See if we already have an equivalent PT_NOTE segment.
1075       for (p = this->segment_list_.begin();
1076            p != segment_list_.end();
1077            ++p)
1078         {
1079           if ((*p)->type() == elfcpp::PT_NOTE
1080               && (((*p)->flags() & elfcpp::PF_W)
1081                   == (seg_flags & elfcpp::PF_W)))
1082             {
1083               (*p)->add_output_section(os, seg_flags, false);
1084               break;
1085             }
1086         }
1087
1088       if (p == this->segment_list_.end())
1089         {
1090           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1091                                                            seg_flags);
1092           oseg->add_output_section(os, seg_flags, false);
1093         }
1094     }
1095
1096   // If we see a loadable SHF_TLS section, we create a PT_TLS
1097   // segment.  There can only be one such segment.
1098   if ((flags & elfcpp::SHF_TLS) != 0)
1099     {
1100       if (this->tls_segment_ == NULL)
1101         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1102       this->tls_segment_->add_output_section(os, seg_flags, false);
1103     }
1104
1105   // If -z relro is in effect, and we see a relro section, we create a
1106   // PT_GNU_RELRO segment.  There can only be one such segment.
1107   if (os->is_relro() && parameters->options().relro())
1108     {
1109       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1110       if (this->relro_segment_ == NULL)
1111         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1112       this->relro_segment_->add_output_section(os, seg_flags, false);
1113     }
1114 }
1115
1116 // Make an output section for a script.
1117
1118 Output_section*
1119 Layout::make_output_section_for_script(const char* name)
1120 {
1121   name = this->namepool_.add(name, false, NULL);
1122   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1123                                                  elfcpp::SHF_ALLOC, false,
1124                                                  false, false, false, false);
1125   os->set_found_in_sections_clause();
1126   return os;
1127 }
1128
1129 // Return the number of segments we expect to see.
1130
1131 size_t
1132 Layout::expected_segment_count() const
1133 {
1134   size_t ret = this->segment_list_.size();
1135
1136   // If we didn't see a SECTIONS clause in a linker script, we should
1137   // already have the complete list of segments.  Otherwise we ask the
1138   // SECTIONS clause how many segments it expects, and add in the ones
1139   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1140
1141   if (!this->script_options_->saw_sections_clause())
1142     return ret;
1143   else
1144     {
1145       const Script_sections* ss = this->script_options_->script_sections();
1146       return ret + ss->expected_segment_count(this);
1147     }
1148 }
1149
1150 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1151 // is whether we saw a .note.GNU-stack section in the object file.
1152 // GNU_STACK_FLAGS is the section flags.  The flags give the
1153 // protection required for stack memory.  We record this in an
1154 // executable as a PT_GNU_STACK segment.  If an object file does not
1155 // have a .note.GNU-stack segment, we must assume that it is an old
1156 // object.  On some targets that will force an executable stack.
1157
1158 void
1159 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1160 {
1161   if (!seen_gnu_stack)
1162     this->input_without_gnu_stack_note_ = true;
1163   else
1164     {
1165       this->input_with_gnu_stack_note_ = true;
1166       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1167         this->input_requires_executable_stack_ = true;
1168     }
1169 }
1170
1171 // Create automatic note sections.
1172
1173 void
1174 Layout::create_notes()
1175 {
1176   this->create_gold_note();
1177   this->create_executable_stack_info();
1178   this->create_build_id();
1179 }
1180
1181 // Create the dynamic sections which are needed before we read the
1182 // relocs.
1183
1184 void
1185 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1186 {
1187   if (parameters->doing_static_link())
1188     return;
1189
1190   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1191                                                        elfcpp::SHT_DYNAMIC,
1192                                                        (elfcpp::SHF_ALLOC
1193                                                         | elfcpp::SHF_WRITE),
1194                                                        false, false, true,
1195                                                        true, false, false);
1196
1197   this->dynamic_symbol_ =
1198     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1199                                   this->dynamic_section_, 0, 0,
1200                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1201                                   elfcpp::STV_HIDDEN, 0, false, false);
1202
1203   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1204
1205   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1206 }
1207
1208 // For each output section whose name can be represented as C symbol,
1209 // define __start and __stop symbols for the section.  This is a GNU
1210 // extension.
1211
1212 void
1213 Layout::define_section_symbols(Symbol_table* symtab)
1214 {
1215   for (Section_list::const_iterator p = this->section_list_.begin();
1216        p != this->section_list_.end();
1217        ++p)
1218     {
1219       const char* const name = (*p)->name();
1220       if (name[strspn(name,
1221                       ("0123456789"
1222                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1223                        "abcdefghijklmnopqrstuvwxyz"
1224                        "_"))]
1225           == '\0')
1226         {
1227           const std::string name_string(name);
1228           const std::string start_name("__start_" + name_string);
1229           const std::string stop_name("__stop_" + name_string);
1230
1231           symtab->define_in_output_data(start_name.c_str(),
1232                                         NULL, // version
1233                                         Symbol_table::PREDEFINED,
1234                                         *p,
1235                                         0, // value
1236                                         0, // symsize
1237                                         elfcpp::STT_NOTYPE,
1238                                         elfcpp::STB_GLOBAL,
1239                                         elfcpp::STV_DEFAULT,
1240                                         0, // nonvis
1241                                         false, // offset_is_from_end
1242                                         true); // only_if_ref
1243
1244           symtab->define_in_output_data(stop_name.c_str(),
1245                                         NULL, // version
1246                                         Symbol_table::PREDEFINED,
1247                                         *p,
1248                                         0, // value
1249                                         0, // symsize
1250                                         elfcpp::STT_NOTYPE,
1251                                         elfcpp::STB_GLOBAL,
1252                                         elfcpp::STV_DEFAULT,
1253                                         0, // nonvis
1254                                         true, // offset_is_from_end
1255                                         true); // only_if_ref
1256         }
1257     }
1258 }
1259
1260 // Define symbols for group signatures.
1261
1262 void
1263 Layout::define_group_signatures(Symbol_table* symtab)
1264 {
1265   for (Group_signatures::iterator p = this->group_signatures_.begin();
1266        p != this->group_signatures_.end();
1267        ++p)
1268     {
1269       Symbol* sym = symtab->lookup(p->signature, NULL);
1270       if (sym != NULL)
1271         p->section->set_info_symndx(sym);
1272       else
1273         {
1274           // Force the name of the group section to the group
1275           // signature, and use the group's section symbol as the
1276           // signature symbol.
1277           if (strcmp(p->section->name(), p->signature) != 0)
1278             {
1279               const char* name = this->namepool_.add(p->signature,
1280                                                      true, NULL);
1281               p->section->set_name(name);
1282             }
1283           p->section->set_needs_symtab_index();
1284           p->section->set_info_section_symndx(p->section);
1285         }
1286     }
1287
1288   this->group_signatures_.clear();
1289 }
1290
1291 // Find the first read-only PT_LOAD segment, creating one if
1292 // necessary.
1293
1294 Output_segment*
1295 Layout::find_first_load_seg()
1296 {
1297   for (Segment_list::const_iterator p = this->segment_list_.begin();
1298        p != this->segment_list_.end();
1299        ++p)
1300     {
1301       if ((*p)->type() == elfcpp::PT_LOAD
1302           && ((*p)->flags() & elfcpp::PF_R) != 0
1303           && (parameters->options().omagic()
1304               || ((*p)->flags() & elfcpp::PF_W) == 0))
1305         return *p;
1306     }
1307
1308   gold_assert(!this->script_options_->saw_phdrs_clause());
1309
1310   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1311                                                        elfcpp::PF_R);
1312   return load_seg;
1313 }
1314
1315 // Save states of all current output segments.  Store saved states
1316 // in SEGMENT_STATES.
1317
1318 void
1319 Layout::save_segments(Segment_states* segment_states)
1320 {
1321   for (Segment_list::const_iterator p = this->segment_list_.begin();
1322        p != this->segment_list_.end();
1323        ++p)
1324     {
1325       Output_segment* segment = *p;
1326       // Shallow copy.
1327       Output_segment* copy = new Output_segment(*segment);
1328       (*segment_states)[segment] = copy;
1329     }
1330 }
1331
1332 // Restore states of output segments and delete any segment not found in
1333 // SEGMENT_STATES.
1334
1335 void
1336 Layout::restore_segments(const Segment_states* segment_states)
1337 {
1338   // Go through the segment list and remove any segment added in the
1339   // relaxation loop.
1340   this->tls_segment_ = NULL;
1341   this->relro_segment_ = NULL;
1342   Segment_list::iterator list_iter = this->segment_list_.begin();
1343   while (list_iter != this->segment_list_.end())
1344     {
1345       Output_segment* segment = *list_iter;
1346       Segment_states::const_iterator states_iter =
1347           segment_states->find(segment);
1348       if (states_iter != segment_states->end())
1349         {
1350           const Output_segment* copy = states_iter->second;
1351           // Shallow copy to restore states.
1352           *segment = *copy;
1353
1354           // Also fix up TLS and RELRO segment pointers as appropriate.
1355           if (segment->type() == elfcpp::PT_TLS)
1356             this->tls_segment_ = segment;
1357           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1358             this->relro_segment_ = segment;
1359
1360           ++list_iter;
1361         } 
1362       else
1363         {
1364           list_iter = this->segment_list_.erase(list_iter); 
1365           // This is a segment created during section layout.  It should be
1366           // safe to remove it since we should have removed all pointers to it.
1367           delete segment;
1368         }
1369     }
1370 }
1371
1372 // Clean up after relaxation so that sections can be laid out again.
1373
1374 void
1375 Layout::clean_up_after_relaxation()
1376 {
1377   // Restore the segments to point state just prior to the relaxation loop.
1378   Script_sections* script_section = this->script_options_->script_sections();
1379   script_section->release_segments();
1380   this->restore_segments(this->segment_states_);
1381
1382   // Reset section addresses and file offsets
1383   for (Section_list::iterator p = this->section_list_.begin();
1384        p != this->section_list_.end();
1385        ++p)
1386     {
1387       (*p)->reset_address_and_file_offset();
1388       (*p)->restore_states();
1389     }
1390   
1391   // Reset special output object address and file offsets.
1392   for (Data_list::iterator p = this->special_output_list_.begin();
1393        p != this->special_output_list_.end();
1394        ++p)
1395     (*p)->reset_address_and_file_offset();
1396
1397   // A linker script may have created some output section data objects.
1398   // They are useless now.
1399   for (Output_section_data_list::const_iterator p =
1400          this->script_output_section_data_list_.begin();
1401        p != this->script_output_section_data_list_.end();
1402        ++p)
1403     delete *p;
1404   this->script_output_section_data_list_.clear(); 
1405 }
1406
1407 // Prepare for relaxation.
1408
1409 void
1410 Layout::prepare_for_relaxation()
1411 {
1412   // Create an relaxation debug check if in debugging mode.
1413   if (is_debugging_enabled(DEBUG_RELAXATION))
1414     this->relaxation_debug_check_ = new Relaxation_debug_check();
1415
1416   // Save segment states.
1417   this->segment_states_ = new Segment_states();
1418   this->save_segments(this->segment_states_);
1419
1420   for(Section_list::const_iterator p = this->section_list_.begin();
1421       p != this->section_list_.end();
1422       ++p)
1423     (*p)->save_states();
1424
1425   if (is_debugging_enabled(DEBUG_RELAXATION))
1426     this->relaxation_debug_check_->check_output_data_for_reset_values(
1427         this->section_list_, this->special_output_list_);
1428
1429   // Also enable recording of output section data from scripts.
1430   this->record_output_section_data_from_script_ = true;
1431 }
1432
1433 // Relaxation loop body:  If target has no relaxation, this runs only once
1434 // Otherwise, the target relaxation hook is called at the end of
1435 // each iteration.  If the hook returns true, it means re-layout of
1436 // section is required.  
1437 //
1438 // The number of segments created by a linking script without a PHDRS
1439 // clause may be affected by section sizes and alignments.  There is
1440 // a remote chance that relaxation causes different number of PT_LOAD
1441 // segments are created and sections are attached to different segments.
1442 // Therefore, we always throw away all segments created during section
1443 // layout.  In order to be able to restart the section layout, we keep
1444 // a copy of the segment list right before the relaxation loop and use
1445 // that to restore the segments.
1446 // 
1447 // PASS is the current relaxation pass number. 
1448 // SYMTAB is a symbol table.
1449 // PLOAD_SEG is the address of a pointer for the load segment.
1450 // PHDR_SEG is a pointer to the PHDR segment.
1451 // SEGMENT_HEADERS points to the output segment header.
1452 // FILE_HEADER points to the output file header.
1453 // PSHNDX is the address to store the output section index.
1454
1455 off_t inline
1456 Layout::relaxation_loop_body(
1457     int pass,
1458     Target* target,
1459     Symbol_table* symtab,
1460     Output_segment** pload_seg,
1461     Output_segment* phdr_seg,
1462     Output_segment_headers* segment_headers,
1463     Output_file_header* file_header,
1464     unsigned int* pshndx)
1465 {
1466   // If this is not the first iteration, we need to clean up after
1467   // relaxation so that we can lay out the sections again.
1468   if (pass != 0)
1469     this->clean_up_after_relaxation();
1470
1471   // If there is a SECTIONS clause, put all the input sections into
1472   // the required order.
1473   Output_segment* load_seg;
1474   if (this->script_options_->saw_sections_clause())
1475     load_seg = this->set_section_addresses_from_script(symtab);
1476   else if (parameters->options().relocatable())
1477     load_seg = NULL;
1478   else
1479     load_seg = this->find_first_load_seg();
1480
1481   if (parameters->options().oformat_enum()
1482       != General_options::OBJECT_FORMAT_ELF)
1483     load_seg = NULL;
1484
1485   gold_assert(phdr_seg == NULL
1486               || load_seg != NULL
1487               || this->script_options_->saw_sections_clause());
1488
1489   // Lay out the segment headers.
1490   if (!parameters->options().relocatable())
1491     {
1492       gold_assert(segment_headers != NULL);
1493       if (load_seg != NULL)
1494         load_seg->add_initial_output_data(segment_headers);
1495       if (phdr_seg != NULL)
1496         phdr_seg->add_initial_output_data(segment_headers);
1497     }
1498
1499   // Lay out the file header.
1500   if (load_seg != NULL)
1501     load_seg->add_initial_output_data(file_header);
1502
1503   if (this->script_options_->saw_phdrs_clause()
1504       && !parameters->options().relocatable())
1505     {
1506       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1507       // clause in a linker script.
1508       Script_sections* ss = this->script_options_->script_sections();
1509       ss->put_headers_in_phdrs(file_header, segment_headers);
1510     }
1511
1512   // We set the output section indexes in set_segment_offsets and
1513   // set_section_indexes.
1514   *pshndx = 1;
1515
1516   // Set the file offsets of all the segments, and all the sections
1517   // they contain.
1518   off_t off;
1519   if (!parameters->options().relocatable())
1520     off = this->set_segment_offsets(target, load_seg, pshndx);
1521   else
1522     off = this->set_relocatable_section_offsets(file_header, pshndx);
1523
1524    // Verify that the dummy relaxation does not change anything.
1525   if (is_debugging_enabled(DEBUG_RELAXATION))
1526     {
1527       if (pass == 0)
1528         this->relaxation_debug_check_->read_sections(this->section_list_);
1529       else
1530         this->relaxation_debug_check_->verify_sections(this->section_list_);
1531     }
1532
1533   *pload_seg = load_seg;
1534   return off;
1535 }
1536
1537 // Finalize the layout.  When this is called, we have created all the
1538 // output sections and all the output segments which are based on
1539 // input sections.  We have several things to do, and we have to do
1540 // them in the right order, so that we get the right results correctly
1541 // and efficiently.
1542
1543 // 1) Finalize the list of output segments and create the segment
1544 // table header.
1545
1546 // 2) Finalize the dynamic symbol table and associated sections.
1547
1548 // 3) Determine the final file offset of all the output segments.
1549
1550 // 4) Determine the final file offset of all the SHF_ALLOC output
1551 // sections.
1552
1553 // 5) Create the symbol table sections and the section name table
1554 // section.
1555
1556 // 6) Finalize the symbol table: set symbol values to their final
1557 // value and make a final determination of which symbols are going
1558 // into the output symbol table.
1559
1560 // 7) Create the section table header.
1561
1562 // 8) Determine the final file offset of all the output sections which
1563 // are not SHF_ALLOC, including the section table header.
1564
1565 // 9) Finalize the ELF file header.
1566
1567 // This function returns the size of the output file.
1568
1569 off_t
1570 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1571                  Target* target, const Task* task)
1572 {
1573   target->finalize_sections(this, input_objects, symtab);
1574
1575   this->count_local_symbols(task, input_objects);
1576
1577   this->link_stabs_sections();
1578
1579   Output_segment* phdr_seg = NULL;
1580   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1581     {
1582       // There was a dynamic object in the link.  We need to create
1583       // some information for the dynamic linker.
1584
1585       // Create the PT_PHDR segment which will hold the program
1586       // headers.
1587       if (!this->script_options_->saw_phdrs_clause())
1588         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1589
1590       // Create the dynamic symbol table, including the hash table.
1591       Output_section* dynstr;
1592       std::vector<Symbol*> dynamic_symbols;
1593       unsigned int local_dynamic_count;
1594       Versions versions(*this->script_options()->version_script_info(),
1595                         &this->dynpool_);
1596       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1597                                   &local_dynamic_count, &dynamic_symbols,
1598                                   &versions);
1599
1600       // Create the .interp section to hold the name of the
1601       // interpreter, and put it in a PT_INTERP segment.
1602       if (!parameters->options().shared())
1603         this->create_interp(target);
1604
1605       // Finish the .dynamic section to hold the dynamic data, and put
1606       // it in a PT_DYNAMIC segment.
1607       this->finish_dynamic_section(input_objects, symtab);
1608
1609       // We should have added everything we need to the dynamic string
1610       // table.
1611       this->dynpool_.set_string_offsets();
1612
1613       // Create the version sections.  We can't do this until the
1614       // dynamic string table is complete.
1615       this->create_version_sections(&versions, symtab, local_dynamic_count,
1616                                     dynamic_symbols, dynstr);
1617
1618       // Set the size of the _DYNAMIC symbol.  We can't do this until
1619       // after we call create_version_sections.
1620       this->set_dynamic_symbol_size(symtab);
1621     }
1622   
1623   if (this->incremental_inputs_)
1624     {
1625       this->incremental_inputs_->finalize();
1626       this->create_incremental_info_sections();
1627     }
1628
1629   // Create segment headers.
1630   Output_segment_headers* segment_headers =
1631     (parameters->options().relocatable()
1632      ? NULL
1633      : new Output_segment_headers(this->segment_list_));
1634
1635   // Lay out the file header.
1636   Output_file_header* file_header
1637     = new Output_file_header(target, symtab, segment_headers,
1638                              parameters->options().entry());
1639
1640   this->special_output_list_.push_back(file_header);
1641   if (segment_headers != NULL)
1642     this->special_output_list_.push_back(segment_headers);
1643
1644   // Find approriate places for orphan output sections if we are using
1645   // a linker script.
1646   if (this->script_options_->saw_sections_clause())
1647     this->place_orphan_sections_in_script();
1648   
1649   Output_segment* load_seg;
1650   off_t off;
1651   unsigned int shndx;
1652   int pass = 0;
1653
1654   // Take a snapshot of the section layout as needed.
1655   if (target->may_relax())
1656     this->prepare_for_relaxation();
1657   
1658   // Run the relaxation loop to lay out sections.
1659   do
1660     {
1661       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1662                                        phdr_seg, segment_headers, file_header,
1663                                        &shndx);
1664       pass++;
1665     }
1666   while (target->may_relax()
1667          && target->relax(pass, input_objects, symtab, this));
1668
1669   // Set the file offsets of all the non-data sections we've seen so
1670   // far which don't have to wait for the input sections.  We need
1671   // this in order to finalize local symbols in non-allocated
1672   // sections.
1673   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1674
1675   // Set the section indexes of all unallocated sections seen so far,
1676   // in case any of them are somehow referenced by a symbol.
1677   shndx = this->set_section_indexes(shndx);
1678
1679   // Create the symbol table sections.
1680   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1681   if (!parameters->doing_static_link())
1682     this->assign_local_dynsym_offsets(input_objects);
1683
1684   // Process any symbol assignments from a linker script.  This must
1685   // be called after the symbol table has been finalized.
1686   this->script_options_->finalize_symbols(symtab, this);
1687
1688   // Create the .shstrtab section.
1689   Output_section* shstrtab_section = this->create_shstrtab();
1690
1691   // Set the file offsets of the rest of the non-data sections which
1692   // don't have to wait for the input sections.
1693   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1694
1695   // Now that all sections have been created, set the section indexes
1696   // for any sections which haven't been done yet.
1697   shndx = this->set_section_indexes(shndx);
1698
1699   // Create the section table header.
1700   this->create_shdrs(shstrtab_section, &off);
1701
1702   // If there are no sections which require postprocessing, we can
1703   // handle the section names now, and avoid a resize later.
1704   if (!this->any_postprocessing_sections_)
1705     off = this->set_section_offsets(off,
1706                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1707
1708   file_header->set_section_info(this->section_headers_, shstrtab_section);
1709
1710   // Now we know exactly where everything goes in the output file
1711   // (except for non-allocated sections which require postprocessing).
1712   Output_data::layout_complete();
1713
1714   this->output_file_size_ = off;
1715
1716   return off;
1717 }
1718
1719 // Create a note header following the format defined in the ELF ABI.
1720 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1721 // of the section to create, DESCSZ is the size of the descriptor.
1722 // ALLOCATE is true if the section should be allocated in memory.
1723 // This returns the new note section.  It sets *TRAILING_PADDING to
1724 // the number of trailing zero bytes required.
1725
1726 Output_section*
1727 Layout::create_note(const char* name, int note_type,
1728                     const char* section_name, size_t descsz,
1729                     bool allocate, size_t* trailing_padding)
1730 {
1731   // Authorities all agree that the values in a .note field should
1732   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1733   // they differ on what the alignment is for 64-bit binaries.
1734   // The GABI says unambiguously they take 8-byte alignment:
1735   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1736   // Other documentation says alignment should always be 4 bytes:
1737   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1738   // GNU ld and GNU readelf both support the latter (at least as of
1739   // version 2.16.91), and glibc always generates the latter for
1740   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1741   // here.
1742 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1743   const int size = parameters->target().get_size();
1744 #else
1745   const int size = 32;
1746 #endif
1747
1748   // The contents of the .note section.
1749   size_t namesz = strlen(name) + 1;
1750   size_t aligned_namesz = align_address(namesz, size / 8);
1751   size_t aligned_descsz = align_address(descsz, size / 8);
1752
1753   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1754
1755   unsigned char* buffer = new unsigned char[notehdrsz];
1756   memset(buffer, 0, notehdrsz);
1757
1758   bool is_big_endian = parameters->target().is_big_endian();
1759
1760   if (size == 32)
1761     {
1762       if (!is_big_endian)
1763         {
1764           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1765           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1766           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1767         }
1768       else
1769         {
1770           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1771           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1772           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1773         }
1774     }
1775   else if (size == 64)
1776     {
1777       if (!is_big_endian)
1778         {
1779           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1780           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1781           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1782         }
1783       else
1784         {
1785           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1786           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1787           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1788         }
1789     }
1790   else
1791     gold_unreachable();
1792
1793   memcpy(buffer + 3 * (size / 8), name, namesz);
1794
1795   elfcpp::Elf_Xword flags = 0;
1796   if (allocate)
1797     flags = elfcpp::SHF_ALLOC;
1798   Output_section* os = this->choose_output_section(NULL, section_name,
1799                                                    elfcpp::SHT_NOTE,
1800                                                    flags, false, false,
1801                                                    false, false, false, false);
1802   if (os == NULL)
1803     return NULL;
1804
1805   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1806                                                            size / 8,
1807                                                            "** note header");
1808   os->add_output_section_data(posd);
1809
1810   *trailing_padding = aligned_descsz - descsz;
1811
1812   return os;
1813 }
1814
1815 // For an executable or shared library, create a note to record the
1816 // version of gold used to create the binary.
1817
1818 void
1819 Layout::create_gold_note()
1820 {
1821   if (parameters->options().relocatable())
1822     return;
1823
1824   std::string desc = std::string("gold ") + gold::get_version_string();
1825
1826   size_t trailing_padding;
1827   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1828                                          ".note.gnu.gold-version", desc.size(),
1829                                          false, &trailing_padding);
1830   if (os == NULL)
1831     return;
1832
1833   Output_section_data* posd = new Output_data_const(desc, 4);
1834   os->add_output_section_data(posd);
1835
1836   if (trailing_padding > 0)
1837     {
1838       posd = new Output_data_zero_fill(trailing_padding, 0);
1839       os->add_output_section_data(posd);
1840     }
1841 }
1842
1843 // Record whether the stack should be executable.  This can be set
1844 // from the command line using the -z execstack or -z noexecstack
1845 // options.  Otherwise, if any input file has a .note.GNU-stack
1846 // section with the SHF_EXECINSTR flag set, the stack should be
1847 // executable.  Otherwise, if at least one input file a
1848 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1849 // section, we use the target default for whether the stack should be
1850 // executable.  Otherwise, we don't generate a stack note.  When
1851 // generating a object file, we create a .note.GNU-stack section with
1852 // the appropriate marking.  When generating an executable or shared
1853 // library, we create a PT_GNU_STACK segment.
1854
1855 void
1856 Layout::create_executable_stack_info()
1857 {
1858   bool is_stack_executable;
1859   if (parameters->options().is_execstack_set())
1860     is_stack_executable = parameters->options().is_stack_executable();
1861   else if (!this->input_with_gnu_stack_note_)
1862     return;
1863   else
1864     {
1865       if (this->input_requires_executable_stack_)
1866         is_stack_executable = true;
1867       else if (this->input_without_gnu_stack_note_)
1868         is_stack_executable =
1869           parameters->target().is_default_stack_executable();
1870       else
1871         is_stack_executable = false;
1872     }
1873
1874   if (parameters->options().relocatable())
1875     {
1876       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1877       elfcpp::Elf_Xword flags = 0;
1878       if (is_stack_executable)
1879         flags |= elfcpp::SHF_EXECINSTR;
1880       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, false,
1881                                 false, false, false, false);
1882     }
1883   else
1884     {
1885       if (this->script_options_->saw_phdrs_clause())
1886         return;
1887       int flags = elfcpp::PF_R | elfcpp::PF_W;
1888       if (is_stack_executable)
1889         flags |= elfcpp::PF_X;
1890       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1891     }
1892 }
1893
1894 // If --build-id was used, set up the build ID note.
1895
1896 void
1897 Layout::create_build_id()
1898 {
1899   if (!parameters->options().user_set_build_id())
1900     return;
1901
1902   const char* style = parameters->options().build_id();
1903   if (strcmp(style, "none") == 0)
1904     return;
1905
1906   // Set DESCSZ to the size of the note descriptor.  When possible,
1907   // set DESC to the note descriptor contents.
1908   size_t descsz;
1909   std::string desc;
1910   if (strcmp(style, "md5") == 0)
1911     descsz = 128 / 8;
1912   else if (strcmp(style, "sha1") == 0)
1913     descsz = 160 / 8;
1914   else if (strcmp(style, "uuid") == 0)
1915     {
1916       const size_t uuidsz = 128 / 8;
1917
1918       char buffer[uuidsz];
1919       memset(buffer, 0, uuidsz);
1920
1921       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1922       if (descriptor < 0)
1923         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1924                    strerror(errno));
1925       else
1926         {
1927           ssize_t got = ::read(descriptor, buffer, uuidsz);
1928           release_descriptor(descriptor, true);
1929           if (got < 0)
1930             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1931           else if (static_cast<size_t>(got) != uuidsz)
1932             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1933                        uuidsz, got);
1934         }
1935
1936       desc.assign(buffer, uuidsz);
1937       descsz = uuidsz;
1938     }
1939   else if (strncmp(style, "0x", 2) == 0)
1940     {
1941       hex_init();
1942       const char* p = style + 2;
1943       while (*p != '\0')
1944         {
1945           if (hex_p(p[0]) && hex_p(p[1]))
1946             {
1947               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1948               desc += c;
1949               p += 2;
1950             }
1951           else if (*p == '-' || *p == ':')
1952             ++p;
1953           else
1954             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1955                        style);
1956         }
1957       descsz = desc.size();
1958     }
1959   else
1960     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1961
1962   // Create the note.
1963   size_t trailing_padding;
1964   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1965                                          ".note.gnu.build-id", descsz, true,
1966                                          &trailing_padding);
1967   if (os == NULL)
1968     return;
1969
1970   if (!desc.empty())
1971     {
1972       // We know the value already, so we fill it in now.
1973       gold_assert(desc.size() == descsz);
1974
1975       Output_section_data* posd = new Output_data_const(desc, 4);
1976       os->add_output_section_data(posd);
1977
1978       if (trailing_padding != 0)
1979         {
1980           posd = new Output_data_zero_fill(trailing_padding, 0);
1981           os->add_output_section_data(posd);
1982         }
1983     }
1984   else
1985     {
1986       // We need to compute a checksum after we have completed the
1987       // link.
1988       gold_assert(trailing_padding == 0);
1989       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1990       os->add_output_section_data(this->build_id_note_);
1991     }
1992 }
1993
1994 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1995 // field of the former should point to the latter.  I'm not sure who
1996 // started this, but the GNU linker does it, and some tools depend
1997 // upon it.
1998
1999 void
2000 Layout::link_stabs_sections()
2001 {
2002   if (!this->have_stabstr_section_)
2003     return;
2004
2005   for (Section_list::iterator p = this->section_list_.begin();
2006        p != this->section_list_.end();
2007        ++p)
2008     {
2009       if ((*p)->type() != elfcpp::SHT_STRTAB)
2010         continue;
2011
2012       const char* name = (*p)->name();
2013       if (strncmp(name, ".stab", 5) != 0)
2014         continue;
2015
2016       size_t len = strlen(name);
2017       if (strcmp(name + len - 3, "str") != 0)
2018         continue;
2019
2020       std::string stab_name(name, len - 3);
2021       Output_section* stab_sec;
2022       stab_sec = this->find_output_section(stab_name.c_str());
2023       if (stab_sec != NULL)
2024         stab_sec->set_link_section(*p);
2025     }
2026 }
2027
2028 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2029 // for the next run of incremental linking to check what has changed.
2030
2031 void
2032 Layout::create_incremental_info_sections()
2033 {
2034   gold_assert(this->incremental_inputs_ != NULL);
2035
2036   // Add the .gnu_incremental_inputs section.
2037   const char *incremental_inputs_name =
2038     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2039   Output_section* inputs_os =
2040     this->make_output_section(incremental_inputs_name,
2041                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2042                               false, false, false, false, false);
2043   Output_section_data* posd =
2044       this->incremental_inputs_->create_incremental_inputs_section_data();
2045   inputs_os->add_output_section_data(posd);
2046   
2047   // Add the .gnu_incremental_strtab section.
2048   const char *incremental_strtab_name =
2049     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2050   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2051                                                         elfcpp::SHT_STRTAB,
2052                                                         0, false, false,
2053                                                         false, false, false);
2054   Output_data_strtab* strtab_data =
2055     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2056   strtab_os->add_output_section_data(strtab_data);
2057   
2058   inputs_os->set_link_section(strtab_data);
2059 }
2060
2061 // Return whether SEG1 should be before SEG2 in the output file.  This
2062 // is based entirely on the segment type and flags.  When this is
2063 // called the segment addresses has normally not yet been set.
2064
2065 bool
2066 Layout::segment_precedes(const Output_segment* seg1,
2067                          const Output_segment* seg2)
2068 {
2069   elfcpp::Elf_Word type1 = seg1->type();
2070   elfcpp::Elf_Word type2 = seg2->type();
2071
2072   // The single PT_PHDR segment is required to precede any loadable
2073   // segment.  We simply make it always first.
2074   if (type1 == elfcpp::PT_PHDR)
2075     {
2076       gold_assert(type2 != elfcpp::PT_PHDR);
2077       return true;
2078     }
2079   if (type2 == elfcpp::PT_PHDR)
2080     return false;
2081
2082   // The single PT_INTERP segment is required to precede any loadable
2083   // segment.  We simply make it always second.
2084   if (type1 == elfcpp::PT_INTERP)
2085     {
2086       gold_assert(type2 != elfcpp::PT_INTERP);
2087       return true;
2088     }
2089   if (type2 == elfcpp::PT_INTERP)
2090     return false;
2091
2092   // We then put PT_LOAD segments before any other segments.
2093   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2094     return true;
2095   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2096     return false;
2097
2098   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2099   // segment, because that is where the dynamic linker expects to find
2100   // it (this is just for efficiency; other positions would also work
2101   // correctly).
2102   if (type1 == elfcpp::PT_TLS
2103       && type2 != elfcpp::PT_TLS
2104       && type2 != elfcpp::PT_GNU_RELRO)
2105     return false;
2106   if (type2 == elfcpp::PT_TLS
2107       && type1 != elfcpp::PT_TLS
2108       && type1 != elfcpp::PT_GNU_RELRO)
2109     return true;
2110
2111   // We put the PT_GNU_RELRO segment last, because that is where the
2112   // dynamic linker expects to find it (as with PT_TLS, this is just
2113   // for efficiency).
2114   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2115     return false;
2116   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2117     return true;
2118
2119   const elfcpp::Elf_Word flags1 = seg1->flags();
2120   const elfcpp::Elf_Word flags2 = seg2->flags();
2121
2122   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2123   // by the numeric segment type and flags values.  There should not
2124   // be more than one segment with the same type and flags.
2125   if (type1 != elfcpp::PT_LOAD)
2126     {
2127       if (type1 != type2)
2128         return type1 < type2;
2129       gold_assert(flags1 != flags2);
2130       return flags1 < flags2;
2131     }
2132
2133   // If the addresses are set already, sort by load address.
2134   if (seg1->are_addresses_set())
2135     {
2136       if (!seg2->are_addresses_set())
2137         return true;
2138
2139       unsigned int section_count1 = seg1->output_section_count();
2140       unsigned int section_count2 = seg2->output_section_count();
2141       if (section_count1 == 0 && section_count2 > 0)
2142         return true;
2143       if (section_count1 > 0 && section_count2 == 0)
2144         return false;
2145
2146       uint64_t paddr1 = seg1->first_section_load_address();
2147       uint64_t paddr2 = seg2->first_section_load_address();
2148       if (paddr1 != paddr2)
2149         return paddr1 < paddr2;
2150     }
2151   else if (seg2->are_addresses_set())
2152     return false;
2153
2154   // A segment which holds large data comes after a segment which does
2155   // not hold large data.
2156   if (seg1->is_large_data_segment())
2157     {
2158       if (!seg2->is_large_data_segment())
2159         return false;
2160     }
2161   else if (seg2->is_large_data_segment())
2162     return true;
2163
2164   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2165   // segments come before writable segments.  Then writable segments
2166   // with data come before writable segments without data.  Then
2167   // executable segments come before non-executable segments.  Then
2168   // the unlikely case of a non-readable segment comes before the
2169   // normal case of a readable segment.  If there are multiple
2170   // segments with the same type and flags, we require that the
2171   // address be set, and we sort by virtual address and then physical
2172   // address.
2173   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2174     return (flags1 & elfcpp::PF_W) == 0;
2175   if ((flags1 & elfcpp::PF_W) != 0
2176       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2177     return seg1->has_any_data_sections();
2178   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2179     return (flags1 & elfcpp::PF_X) != 0;
2180   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2181     return (flags1 & elfcpp::PF_R) == 0;
2182
2183   // We shouldn't get here--we shouldn't create segments which we
2184   // can't distinguish.
2185   gold_unreachable();
2186 }
2187
2188 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2189
2190 static off_t
2191 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2192 {
2193   uint64_t unsigned_off = off;
2194   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2195                           | (addr & (abi_pagesize - 1)));
2196   if (aligned_off < unsigned_off)
2197     aligned_off += abi_pagesize;
2198   return aligned_off;
2199 }
2200
2201 // Set the file offsets of all the segments, and all the sections they
2202 // contain.  They have all been created.  LOAD_SEG must be be laid out
2203 // first.  Return the offset of the data to follow.
2204
2205 off_t
2206 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2207                             unsigned int *pshndx)
2208 {
2209   // Sort them into the final order.
2210   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2211             Layout::Compare_segments());
2212
2213   // Find the PT_LOAD segments, and set their addresses and offsets
2214   // and their section's addresses and offsets.
2215   uint64_t addr;
2216   if (parameters->options().user_set_Ttext())
2217     addr = parameters->options().Ttext();
2218   else if (parameters->options().output_is_position_independent())
2219     addr = 0;
2220   else
2221     addr = target->default_text_segment_address();
2222   off_t off = 0;
2223
2224   // If LOAD_SEG is NULL, then the file header and segment headers
2225   // will not be loadable.  But they still need to be at offset 0 in
2226   // the file.  Set their offsets now.
2227   if (load_seg == NULL)
2228     {
2229       for (Data_list::iterator p = this->special_output_list_.begin();
2230            p != this->special_output_list_.end();
2231            ++p)
2232         {
2233           off = align_address(off, (*p)->addralign());
2234           (*p)->set_address_and_file_offset(0, off);
2235           off += (*p)->data_size();
2236         }
2237     }
2238
2239   unsigned int increase_relro = this->increase_relro_;
2240   if (this->script_options_->saw_sections_clause())
2241     increase_relro = 0;
2242
2243   const bool check_sections = parameters->options().check_sections();
2244   Output_segment* last_load_segment = NULL;
2245
2246   bool was_readonly = false;
2247   for (Segment_list::iterator p = this->segment_list_.begin();
2248        p != this->segment_list_.end();
2249        ++p)
2250     {
2251       if ((*p)->type() == elfcpp::PT_LOAD)
2252         {
2253           if (load_seg != NULL && load_seg != *p)
2254             gold_unreachable();
2255           load_seg = NULL;
2256
2257           bool are_addresses_set = (*p)->are_addresses_set();
2258           if (are_addresses_set)
2259             {
2260               // When it comes to setting file offsets, we care about
2261               // the physical address.
2262               addr = (*p)->paddr();
2263             }
2264           else if (parameters->options().user_set_Tdata()
2265                    && ((*p)->flags() & elfcpp::PF_W) != 0
2266                    && (!parameters->options().user_set_Tbss()
2267                        || (*p)->has_any_data_sections()))
2268             {
2269               addr = parameters->options().Tdata();
2270               are_addresses_set = true;
2271             }
2272           else if (parameters->options().user_set_Tbss()
2273                    && ((*p)->flags() & elfcpp::PF_W) != 0
2274                    && !(*p)->has_any_data_sections())
2275             {
2276               addr = parameters->options().Tbss();
2277               are_addresses_set = true;
2278             }
2279
2280           uint64_t orig_addr = addr;
2281           uint64_t orig_off = off;
2282
2283           uint64_t aligned_addr = 0;
2284           uint64_t abi_pagesize = target->abi_pagesize();
2285           uint64_t common_pagesize = target->common_pagesize();
2286
2287           if (!parameters->options().nmagic()
2288               && !parameters->options().omagic())
2289             (*p)->set_minimum_p_align(common_pagesize);
2290
2291           if (!are_addresses_set)
2292             {
2293               // If the last segment was readonly, and this one is
2294               // not, then skip the address forward one page,
2295               // maintaining the same position within the page.  This
2296               // lets us store both segments overlapping on a single
2297               // page in the file, but the loader will put them on
2298               // different pages in memory.
2299
2300               addr = align_address(addr, (*p)->maximum_alignment());
2301               aligned_addr = addr;
2302
2303               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2304                 {
2305                   if ((addr & (abi_pagesize - 1)) != 0)
2306                     addr = addr + abi_pagesize;
2307                 }
2308
2309               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2310             }
2311
2312           if (!parameters->options().nmagic()
2313               && !parameters->options().omagic())
2314             off = align_file_offset(off, addr, abi_pagesize);
2315           else if (load_seg == NULL)
2316             {
2317               // This is -N or -n with a section script which prevents
2318               // us from using a load segment.  We need to ensure that
2319               // the file offset is aligned to the alignment of the
2320               // segment.  This is because the linker script
2321               // implicitly assumed a zero offset.  If we don't align
2322               // here, then the alignment of the sections in the
2323               // linker script may not match the alignment of the
2324               // sections in the set_section_addresses call below,
2325               // causing an error about dot moving backward.
2326               off = align_address(off, (*p)->maximum_alignment());
2327             }
2328
2329           unsigned int shndx_hold = *pshndx;
2330           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2331                                                           increase_relro,
2332                                                           &off, pshndx);
2333
2334           // Now that we know the size of this segment, we may be able
2335           // to save a page in memory, at the cost of wasting some
2336           // file space, by instead aligning to the start of a new
2337           // page.  Here we use the real machine page size rather than
2338           // the ABI mandated page size.
2339
2340           if (!are_addresses_set && aligned_addr != addr)
2341             {
2342               uint64_t first_off = (common_pagesize
2343                                     - (aligned_addr
2344                                        & (common_pagesize - 1)));
2345               uint64_t last_off = new_addr & (common_pagesize - 1);
2346               if (first_off > 0
2347                   && last_off > 0
2348                   && ((aligned_addr & ~ (common_pagesize - 1))
2349                       != (new_addr & ~ (common_pagesize - 1)))
2350                   && first_off + last_off <= common_pagesize)
2351                 {
2352                   *pshndx = shndx_hold;
2353                   addr = align_address(aligned_addr, common_pagesize);
2354                   addr = align_address(addr, (*p)->maximum_alignment());
2355                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2356                   off = align_file_offset(off, addr, abi_pagesize);
2357                   new_addr = (*p)->set_section_addresses(this, true, addr,
2358                                                          increase_relro,
2359                                                          &off, pshndx);
2360                 }
2361             }
2362
2363           addr = new_addr;
2364
2365           if (((*p)->flags() & elfcpp::PF_W) == 0)
2366             was_readonly = true;
2367
2368           // Implement --check-sections.  We know that the segments
2369           // are sorted by LMA.
2370           if (check_sections && last_load_segment != NULL)
2371             {
2372               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2373               if (last_load_segment->paddr() + last_load_segment->memsz()
2374                   > (*p)->paddr())
2375                 {
2376                   unsigned long long lb1 = last_load_segment->paddr();
2377                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2378                   unsigned long long lb2 = (*p)->paddr();
2379                   unsigned long long le2 = lb2 + (*p)->memsz();
2380                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2381                                "[0x%llx -> 0x%llx]"),
2382                              lb1, le1, lb2, le2);
2383                 }
2384             }
2385           last_load_segment = *p;
2386         }
2387     }
2388
2389   // Handle the non-PT_LOAD segments, setting their offsets from their
2390   // section's offsets.
2391   for (Segment_list::iterator p = this->segment_list_.begin();
2392        p != this->segment_list_.end();
2393        ++p)
2394     {
2395       if ((*p)->type() != elfcpp::PT_LOAD)
2396         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2397                          ? increase_relro
2398                          : 0);
2399     }
2400
2401   // Set the TLS offsets for each section in the PT_TLS segment.
2402   if (this->tls_segment_ != NULL)
2403     this->tls_segment_->set_tls_offsets();
2404
2405   return off;
2406 }
2407
2408 // Set the offsets of all the allocated sections when doing a
2409 // relocatable link.  This does the same jobs as set_segment_offsets,
2410 // only for a relocatable link.
2411
2412 off_t
2413 Layout::set_relocatable_section_offsets(Output_data* file_header,
2414                                         unsigned int *pshndx)
2415 {
2416   off_t off = 0;
2417
2418   file_header->set_address_and_file_offset(0, 0);
2419   off += file_header->data_size();
2420
2421   for (Section_list::iterator p = this->section_list_.begin();
2422        p != this->section_list_.end();
2423        ++p)
2424     {
2425       // We skip unallocated sections here, except that group sections
2426       // have to come first.
2427       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2428           && (*p)->type() != elfcpp::SHT_GROUP)
2429         continue;
2430
2431       off = align_address(off, (*p)->addralign());
2432
2433       // The linker script might have set the address.
2434       if (!(*p)->is_address_valid())
2435         (*p)->set_address(0);
2436       (*p)->set_file_offset(off);
2437       (*p)->finalize_data_size();
2438       off += (*p)->data_size();
2439
2440       (*p)->set_out_shndx(*pshndx);
2441       ++*pshndx;
2442     }
2443
2444   return off;
2445 }
2446
2447 // Set the file offset of all the sections not associated with a
2448 // segment.
2449
2450 off_t
2451 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2452 {
2453   for (Section_list::iterator p = this->unattached_section_list_.begin();
2454        p != this->unattached_section_list_.end();
2455        ++p)
2456     {
2457       // The symtab section is handled in create_symtab_sections.
2458       if (*p == this->symtab_section_)
2459         continue;
2460
2461       // If we've already set the data size, don't set it again.
2462       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2463         continue;
2464
2465       if (pass == BEFORE_INPUT_SECTIONS_PASS
2466           && (*p)->requires_postprocessing())
2467         {
2468           (*p)->create_postprocessing_buffer();
2469           this->any_postprocessing_sections_ = true;
2470         }
2471
2472       if (pass == BEFORE_INPUT_SECTIONS_PASS
2473           && (*p)->after_input_sections())
2474         continue;
2475       else if (pass == POSTPROCESSING_SECTIONS_PASS
2476                && (!(*p)->after_input_sections()
2477                    || (*p)->type() == elfcpp::SHT_STRTAB))
2478         continue;
2479       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2480                && (!(*p)->after_input_sections()
2481                    || (*p)->type() != elfcpp::SHT_STRTAB))
2482         continue;
2483
2484       off = align_address(off, (*p)->addralign());
2485       (*p)->set_file_offset(off);
2486       (*p)->finalize_data_size();
2487       off += (*p)->data_size();
2488
2489       // At this point the name must be set.
2490       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2491         this->namepool_.add((*p)->name(), false, NULL);
2492     }
2493   return off;
2494 }
2495
2496 // Set the section indexes of all the sections not associated with a
2497 // segment.
2498
2499 unsigned int
2500 Layout::set_section_indexes(unsigned int shndx)
2501 {
2502   for (Section_list::iterator p = this->unattached_section_list_.begin();
2503        p != this->unattached_section_list_.end();
2504        ++p)
2505     {
2506       if (!(*p)->has_out_shndx())
2507         {
2508           (*p)->set_out_shndx(shndx);
2509           ++shndx;
2510         }
2511     }
2512   return shndx;
2513 }
2514
2515 // Set the section addresses according to the linker script.  This is
2516 // only called when we see a SECTIONS clause.  This returns the
2517 // program segment which should hold the file header and segment
2518 // headers, if any.  It will return NULL if they should not be in a
2519 // segment.
2520
2521 Output_segment*
2522 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2523 {
2524   Script_sections* ss = this->script_options_->script_sections();
2525   gold_assert(ss->saw_sections_clause());
2526   return this->script_options_->set_section_addresses(symtab, this);
2527 }
2528
2529 // Place the orphan sections in the linker script.
2530
2531 void
2532 Layout::place_orphan_sections_in_script()
2533 {
2534   Script_sections* ss = this->script_options_->script_sections();
2535   gold_assert(ss->saw_sections_clause());
2536
2537   // Place each orphaned output section in the script.
2538   for (Section_list::iterator p = this->section_list_.begin();
2539        p != this->section_list_.end();
2540        ++p)
2541     {
2542       if (!(*p)->found_in_sections_clause())
2543         ss->place_orphan(*p);
2544     }
2545 }
2546
2547 // Count the local symbols in the regular symbol table and the dynamic
2548 // symbol table, and build the respective string pools.
2549
2550 void
2551 Layout::count_local_symbols(const Task* task,
2552                             const Input_objects* input_objects)
2553 {
2554   // First, figure out an upper bound on the number of symbols we'll
2555   // be inserting into each pool.  This helps us create the pools with
2556   // the right size, to avoid unnecessary hashtable resizing.
2557   unsigned int symbol_count = 0;
2558   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2559        p != input_objects->relobj_end();
2560        ++p)
2561     symbol_count += (*p)->local_symbol_count();
2562
2563   // Go from "upper bound" to "estimate."  We overcount for two
2564   // reasons: we double-count symbols that occur in more than one
2565   // object file, and we count symbols that are dropped from the
2566   // output.  Add it all together and assume we overcount by 100%.
2567   symbol_count /= 2;
2568
2569   // We assume all symbols will go into both the sympool and dynpool.
2570   this->sympool_.reserve(symbol_count);
2571   this->dynpool_.reserve(symbol_count);
2572
2573   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2574        p != input_objects->relobj_end();
2575        ++p)
2576     {
2577       Task_lock_obj<Object> tlo(task, *p);
2578       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2579     }
2580 }
2581
2582 // Create the symbol table sections.  Here we also set the final
2583 // values of the symbols.  At this point all the loadable sections are
2584 // fully laid out.  SHNUM is the number of sections so far.
2585
2586 void
2587 Layout::create_symtab_sections(const Input_objects* input_objects,
2588                                Symbol_table* symtab,
2589                                unsigned int shnum,
2590                                off_t* poff)
2591 {
2592   int symsize;
2593   unsigned int align;
2594   if (parameters->target().get_size() == 32)
2595     {
2596       symsize = elfcpp::Elf_sizes<32>::sym_size;
2597       align = 4;
2598     }
2599   else if (parameters->target().get_size() == 64)
2600     {
2601       symsize = elfcpp::Elf_sizes<64>::sym_size;
2602       align = 8;
2603     }
2604   else
2605     gold_unreachable();
2606
2607   off_t off = *poff;
2608   off = align_address(off, align);
2609   off_t startoff = off;
2610
2611   // Save space for the dummy symbol at the start of the section.  We
2612   // never bother to write this out--it will just be left as zero.
2613   off += symsize;
2614   unsigned int local_symbol_index = 1;
2615
2616   // Add STT_SECTION symbols for each Output section which needs one.
2617   for (Section_list::iterator p = this->section_list_.begin();
2618        p != this->section_list_.end();
2619        ++p)
2620     {
2621       if (!(*p)->needs_symtab_index())
2622         (*p)->set_symtab_index(-1U);
2623       else
2624         {
2625           (*p)->set_symtab_index(local_symbol_index);
2626           ++local_symbol_index;
2627           off += symsize;
2628         }
2629     }
2630
2631   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2632        p != input_objects->relobj_end();
2633        ++p)
2634     {
2635       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2636                                                         off, symtab);
2637       off += (index - local_symbol_index) * symsize;
2638       local_symbol_index = index;
2639     }
2640
2641   unsigned int local_symcount = local_symbol_index;
2642   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2643
2644   off_t dynoff;
2645   size_t dyn_global_index;
2646   size_t dyncount;
2647   if (this->dynsym_section_ == NULL)
2648     {
2649       dynoff = 0;
2650       dyn_global_index = 0;
2651       dyncount = 0;
2652     }
2653   else
2654     {
2655       dyn_global_index = this->dynsym_section_->info();
2656       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2657       dynoff = this->dynsym_section_->offset() + locsize;
2658       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2659       gold_assert(static_cast<off_t>(dyncount * symsize)
2660                   == this->dynsym_section_->data_size() - locsize);
2661     }
2662
2663   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2664                          &this->sympool_, &local_symcount);
2665
2666   if (!parameters->options().strip_all())
2667     {
2668       this->sympool_.set_string_offsets();
2669
2670       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2671       Output_section* osymtab = this->make_output_section(symtab_name,
2672                                                           elfcpp::SHT_SYMTAB,
2673                                                           0, false, false,
2674                                                           false, false, false);
2675       this->symtab_section_ = osymtab;
2676
2677       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2678                                                              align,
2679                                                              "** symtab");
2680       osymtab->add_output_section_data(pos);
2681
2682       // We generate a .symtab_shndx section if we have more than
2683       // SHN_LORESERVE sections.  Technically it is possible that we
2684       // don't need one, because it is possible that there are no
2685       // symbols in any of sections with indexes larger than
2686       // SHN_LORESERVE.  That is probably unusual, though, and it is
2687       // easier to always create one than to compute section indexes
2688       // twice (once here, once when writing out the symbols).
2689       if (shnum >= elfcpp::SHN_LORESERVE)
2690         {
2691           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2692                                                                false, NULL);
2693           Output_section* osymtab_xindex =
2694             this->make_output_section(symtab_xindex_name,
2695                                       elfcpp::SHT_SYMTAB_SHNDX, 0, false,
2696                                       false, false, false, false);
2697
2698           size_t symcount = (off - startoff) / symsize;
2699           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2700
2701           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2702
2703           osymtab_xindex->set_link_section(osymtab);
2704           osymtab_xindex->set_addralign(4);
2705           osymtab_xindex->set_entsize(4);
2706
2707           osymtab_xindex->set_after_input_sections();
2708
2709           // This tells the driver code to wait until the symbol table
2710           // has written out before writing out the postprocessing
2711           // sections, including the .symtab_shndx section.
2712           this->any_postprocessing_sections_ = true;
2713         }
2714
2715       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2716       Output_section* ostrtab = this->make_output_section(strtab_name,
2717                                                           elfcpp::SHT_STRTAB,
2718                                                           0, false, false,
2719                                                           false, false, false);
2720
2721       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2722       ostrtab->add_output_section_data(pstr);
2723
2724       osymtab->set_file_offset(startoff);
2725       osymtab->finalize_data_size();
2726       osymtab->set_link_section(ostrtab);
2727       osymtab->set_info(local_symcount);
2728       osymtab->set_entsize(symsize);
2729
2730       *poff = off;
2731     }
2732 }
2733
2734 // Create the .shstrtab section, which holds the names of the
2735 // sections.  At the time this is called, we have created all the
2736 // output sections except .shstrtab itself.
2737
2738 Output_section*
2739 Layout::create_shstrtab()
2740 {
2741   // FIXME: We don't need to create a .shstrtab section if we are
2742   // stripping everything.
2743
2744   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2745
2746   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2747                                                  false, false, false, false,
2748                                                  false);
2749
2750   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
2751     {
2752       // We can't write out this section until we've set all the
2753       // section names, and we don't set the names of compressed
2754       // output sections until relocations are complete.  FIXME: With
2755       // the current names we use, this is unnecessary.
2756       os->set_after_input_sections();
2757     }
2758
2759   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2760   os->add_output_section_data(posd);
2761
2762   return os;
2763 }
2764
2765 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2766 // offset.
2767
2768 void
2769 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2770 {
2771   Output_section_headers* oshdrs;
2772   oshdrs = new Output_section_headers(this,
2773                                       &this->segment_list_,
2774                                       &this->section_list_,
2775                                       &this->unattached_section_list_,
2776                                       &this->namepool_,
2777                                       shstrtab_section);
2778   off_t off = align_address(*poff, oshdrs->addralign());
2779   oshdrs->set_address_and_file_offset(0, off);
2780   off += oshdrs->data_size();
2781   *poff = off;
2782   this->section_headers_ = oshdrs;
2783 }
2784
2785 // Count the allocated sections.
2786
2787 size_t
2788 Layout::allocated_output_section_count() const
2789 {
2790   size_t section_count = 0;
2791   for (Segment_list::const_iterator p = this->segment_list_.begin();
2792        p != this->segment_list_.end();
2793        ++p)
2794     section_count += (*p)->output_section_count();
2795   return section_count;
2796 }
2797
2798 // Create the dynamic symbol table.
2799
2800 void
2801 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2802                               Symbol_table* symtab,
2803                               Output_section **pdynstr,
2804                               unsigned int* plocal_dynamic_count,
2805                               std::vector<Symbol*>* pdynamic_symbols,
2806                               Versions* pversions)
2807 {
2808   // Count all the symbols in the dynamic symbol table, and set the
2809   // dynamic symbol indexes.
2810
2811   // Skip symbol 0, which is always all zeroes.
2812   unsigned int index = 1;
2813
2814   // Add STT_SECTION symbols for each Output section which needs one.
2815   for (Section_list::iterator p = this->section_list_.begin();
2816        p != this->section_list_.end();
2817        ++p)
2818     {
2819       if (!(*p)->needs_dynsym_index())
2820         (*p)->set_dynsym_index(-1U);
2821       else
2822         {
2823           (*p)->set_dynsym_index(index);
2824           ++index;
2825         }
2826     }
2827
2828   // Count the local symbols that need to go in the dynamic symbol table,
2829   // and set the dynamic symbol indexes.
2830   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2831        p != input_objects->relobj_end();
2832        ++p)
2833     {
2834       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2835       index = new_index;
2836     }
2837
2838   unsigned int local_symcount = index;
2839   *plocal_dynamic_count = local_symcount;
2840
2841   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2842                                      &this->dynpool_, pversions);
2843
2844   int symsize;
2845   unsigned int align;
2846   const int size = parameters->target().get_size();
2847   if (size == 32)
2848     {
2849       symsize = elfcpp::Elf_sizes<32>::sym_size;
2850       align = 4;
2851     }
2852   else if (size == 64)
2853     {
2854       symsize = elfcpp::Elf_sizes<64>::sym_size;
2855       align = 8;
2856     }
2857   else
2858     gold_unreachable();
2859
2860   // Create the dynamic symbol table section.
2861
2862   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2863                                                        elfcpp::SHT_DYNSYM,
2864                                                        elfcpp::SHF_ALLOC,
2865                                                        false, false, true,
2866                                                        false, false, false);
2867
2868   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2869                                                            align,
2870                                                            "** dynsym");
2871   dynsym->add_output_section_data(odata);
2872
2873   dynsym->set_info(local_symcount);
2874   dynsym->set_entsize(symsize);
2875   dynsym->set_addralign(align);
2876
2877   this->dynsym_section_ = dynsym;
2878
2879   Output_data_dynamic* const odyn = this->dynamic_data_;
2880   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2881   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2882
2883   // If there are more than SHN_LORESERVE allocated sections, we
2884   // create a .dynsym_shndx section.  It is possible that we don't
2885   // need one, because it is possible that there are no dynamic
2886   // symbols in any of the sections with indexes larger than
2887   // SHN_LORESERVE.  This is probably unusual, though, and at this
2888   // time we don't know the actual section indexes so it is
2889   // inconvenient to check.
2890   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2891     {
2892       Output_section* dynsym_xindex =
2893         this->choose_output_section(NULL, ".dynsym_shndx",
2894                                     elfcpp::SHT_SYMTAB_SHNDX,
2895                                     elfcpp::SHF_ALLOC,
2896                                     false, false, true, false, false, false);
2897
2898       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2899
2900       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2901
2902       dynsym_xindex->set_link_section(dynsym);
2903       dynsym_xindex->set_addralign(4);
2904       dynsym_xindex->set_entsize(4);
2905
2906       dynsym_xindex->set_after_input_sections();
2907
2908       // This tells the driver code to wait until the symbol table has
2909       // written out before writing out the postprocessing sections,
2910       // including the .dynsym_shndx section.
2911       this->any_postprocessing_sections_ = true;
2912     }
2913
2914   // Create the dynamic string table section.
2915
2916   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2917                                                        elfcpp::SHT_STRTAB,
2918                                                        elfcpp::SHF_ALLOC,
2919                                                        false, false, true,
2920                                                        false, false, false);
2921
2922   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2923   dynstr->add_output_section_data(strdata);
2924
2925   dynsym->set_link_section(dynstr);
2926   this->dynamic_section_->set_link_section(dynstr);
2927
2928   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2929   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2930
2931   *pdynstr = dynstr;
2932
2933   // Create the hash tables.
2934
2935   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2936       || strcmp(parameters->options().hash_style(), "both") == 0)
2937     {
2938       unsigned char* phash;
2939       unsigned int hashlen;
2940       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2941                                     &phash, &hashlen);
2942
2943       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2944                                                             elfcpp::SHT_HASH,
2945                                                             elfcpp::SHF_ALLOC,
2946                                                             false, false, true,
2947                                                             false, false,
2948                                                             false);
2949
2950       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2951                                                                    hashlen,
2952                                                                    align,
2953                                                                    "** hash");
2954       hashsec->add_output_section_data(hashdata);
2955
2956       hashsec->set_link_section(dynsym);
2957       hashsec->set_entsize(4);
2958
2959       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2960     }
2961
2962   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2963       || strcmp(parameters->options().hash_style(), "both") == 0)
2964     {
2965       unsigned char* phash;
2966       unsigned int hashlen;
2967       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2968                                     &phash, &hashlen);
2969
2970       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2971                                                             elfcpp::SHT_GNU_HASH,
2972                                                             elfcpp::SHF_ALLOC,
2973                                                             false, false, true,
2974                                                             false, false,
2975                                                             false);
2976
2977       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2978                                                                    hashlen,
2979                                                                    align,
2980                                                                    "** hash");
2981       hashsec->add_output_section_data(hashdata);
2982
2983       hashsec->set_link_section(dynsym);
2984
2985       // For a 64-bit target, the entries in .gnu.hash do not have a
2986       // uniform size, so we only set the entry size for a 32-bit
2987       // target.
2988       if (parameters->target().get_size() == 32)
2989         hashsec->set_entsize(4);
2990
2991       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2992     }
2993 }
2994
2995 // Assign offsets to each local portion of the dynamic symbol table.
2996
2997 void
2998 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2999 {
3000   Output_section* dynsym = this->dynsym_section_;
3001   gold_assert(dynsym != NULL);
3002
3003   off_t off = dynsym->offset();
3004
3005   // Skip the dummy symbol at the start of the section.
3006   off += dynsym->entsize();
3007
3008   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3009        p != input_objects->relobj_end();
3010        ++p)
3011     {
3012       unsigned int count = (*p)->set_local_dynsym_offset(off);
3013       off += count * dynsym->entsize();
3014     }
3015 }
3016
3017 // Create the version sections.
3018
3019 void
3020 Layout::create_version_sections(const Versions* versions,
3021                                 const Symbol_table* symtab,
3022                                 unsigned int local_symcount,
3023                                 const std::vector<Symbol*>& dynamic_symbols,
3024                                 const Output_section* dynstr)
3025 {
3026   if (!versions->any_defs() && !versions->any_needs())
3027     return;
3028
3029   switch (parameters->size_and_endianness())
3030     {
3031 #ifdef HAVE_TARGET_32_LITTLE
3032     case Parameters::TARGET_32_LITTLE:
3033       this->sized_create_version_sections<32, false>(versions, symtab,
3034                                                      local_symcount,
3035                                                      dynamic_symbols, dynstr);
3036       break;
3037 #endif
3038 #ifdef HAVE_TARGET_32_BIG
3039     case Parameters::TARGET_32_BIG:
3040       this->sized_create_version_sections<32, true>(versions, symtab,
3041                                                     local_symcount,
3042                                                     dynamic_symbols, dynstr);
3043       break;
3044 #endif
3045 #ifdef HAVE_TARGET_64_LITTLE
3046     case Parameters::TARGET_64_LITTLE:
3047       this->sized_create_version_sections<64, false>(versions, symtab,
3048                                                      local_symcount,
3049                                                      dynamic_symbols, dynstr);
3050       break;
3051 #endif
3052 #ifdef HAVE_TARGET_64_BIG
3053     case Parameters::TARGET_64_BIG:
3054       this->sized_create_version_sections<64, true>(versions, symtab,
3055                                                     local_symcount,
3056                                                     dynamic_symbols, dynstr);
3057       break;
3058 #endif
3059     default:
3060       gold_unreachable();
3061     }
3062 }
3063
3064 // Create the version sections, sized version.
3065
3066 template<int size, bool big_endian>
3067 void
3068 Layout::sized_create_version_sections(
3069     const Versions* versions,
3070     const Symbol_table* symtab,
3071     unsigned int local_symcount,
3072     const std::vector<Symbol*>& dynamic_symbols,
3073     const Output_section* dynstr)
3074 {
3075   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3076                                                      elfcpp::SHT_GNU_versym,
3077                                                      elfcpp::SHF_ALLOC,
3078                                                      false, false, true,
3079                                                      false, false, false);
3080
3081   unsigned char* vbuf;
3082   unsigned int vsize;
3083   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3084                                                       local_symcount,
3085                                                       dynamic_symbols,
3086                                                       &vbuf, &vsize);
3087
3088   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3089                                                             "** versions");
3090
3091   vsec->add_output_section_data(vdata);
3092   vsec->set_entsize(2);
3093   vsec->set_link_section(this->dynsym_section_);
3094
3095   Output_data_dynamic* const odyn = this->dynamic_data_;
3096   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3097
3098   if (versions->any_defs())
3099     {
3100       Output_section* vdsec;
3101       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3102                                          elfcpp::SHT_GNU_verdef,
3103                                          elfcpp::SHF_ALLOC,
3104                                          false, false, true, false, false,
3105                                          false);
3106
3107       unsigned char* vdbuf;
3108       unsigned int vdsize;
3109       unsigned int vdentries;
3110       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3111                                                        &vdsize, &vdentries);
3112
3113       Output_section_data* vddata =
3114         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3115
3116       vdsec->add_output_section_data(vddata);
3117       vdsec->set_link_section(dynstr);
3118       vdsec->set_info(vdentries);
3119
3120       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3121       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3122     }
3123
3124   if (versions->any_needs())
3125     {
3126       Output_section* vnsec;
3127       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3128                                           elfcpp::SHT_GNU_verneed,
3129                                           elfcpp::SHF_ALLOC,
3130                                           false, false, true, false, false,
3131                                           false);
3132
3133       unsigned char* vnbuf;
3134       unsigned int vnsize;
3135       unsigned int vnentries;
3136       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3137                                                         &vnbuf, &vnsize,
3138                                                         &vnentries);
3139
3140       Output_section_data* vndata =
3141         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3142
3143       vnsec->add_output_section_data(vndata);
3144       vnsec->set_link_section(dynstr);
3145       vnsec->set_info(vnentries);
3146
3147       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3148       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3149     }
3150 }
3151
3152 // Create the .interp section and PT_INTERP segment.
3153
3154 void
3155 Layout::create_interp(const Target* target)
3156 {
3157   const char* interp = parameters->options().dynamic_linker();
3158   if (interp == NULL)
3159     {
3160       interp = target->dynamic_linker();
3161       gold_assert(interp != NULL);
3162     }
3163
3164   size_t len = strlen(interp) + 1;
3165
3166   Output_section_data* odata = new Output_data_const(interp, len, 1);
3167
3168   Output_section* osec = this->choose_output_section(NULL, ".interp",
3169                                                      elfcpp::SHT_PROGBITS,
3170                                                      elfcpp::SHF_ALLOC,
3171                                                      false, true, true,
3172                                                      false, false, false);
3173   osec->add_output_section_data(odata);
3174
3175   if (!this->script_options_->saw_phdrs_clause())
3176     {
3177       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3178                                                        elfcpp::PF_R);
3179       oseg->add_output_section(osec, elfcpp::PF_R, false);
3180     }
3181 }
3182
3183 // Finish the .dynamic section and PT_DYNAMIC segment.
3184
3185 void
3186 Layout::finish_dynamic_section(const Input_objects* input_objects,
3187                                const Symbol_table* symtab)
3188 {
3189   if (!this->script_options_->saw_phdrs_clause())
3190     {
3191       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3192                                                        (elfcpp::PF_R
3193                                                         | elfcpp::PF_W));
3194       oseg->add_output_section(this->dynamic_section_,
3195                                elfcpp::PF_R | elfcpp::PF_W,
3196                                false);
3197     }
3198
3199   Output_data_dynamic* const odyn = this->dynamic_data_;
3200
3201   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3202        p != input_objects->dynobj_end();
3203        ++p)
3204     {
3205       if (!(*p)->is_needed()
3206           && (*p)->input_file()->options().as_needed())
3207         {
3208           // This dynamic object was linked with --as-needed, but it
3209           // is not needed.
3210           continue;
3211         }
3212
3213       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3214     }
3215
3216   if (parameters->options().shared())
3217     {
3218       const char* soname = parameters->options().soname();
3219       if (soname != NULL)
3220         odyn->add_string(elfcpp::DT_SONAME, soname);
3221     }
3222
3223   Symbol* sym = symtab->lookup(parameters->options().init());
3224   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3225     odyn->add_symbol(elfcpp::DT_INIT, sym);
3226
3227   sym = symtab->lookup(parameters->options().fini());
3228   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3229     odyn->add_symbol(elfcpp::DT_FINI, sym);
3230
3231   // Look for .init_array, .preinit_array and .fini_array by checking
3232   // section types.
3233   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3234       p != this->section_list_.end();
3235       ++p)
3236     switch((*p)->type())
3237       {
3238       case elfcpp::SHT_FINI_ARRAY:
3239         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3240         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3241         break;
3242       case elfcpp::SHT_INIT_ARRAY:
3243         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3244         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3245         break;
3246       case elfcpp::SHT_PREINIT_ARRAY:
3247         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3248         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3249         break;
3250       default:
3251         break;
3252       }
3253   
3254   // Add a DT_RPATH entry if needed.
3255   const General_options::Dir_list& rpath(parameters->options().rpath());
3256   if (!rpath.empty())
3257     {
3258       std::string rpath_val;
3259       for (General_options::Dir_list::const_iterator p = rpath.begin();
3260            p != rpath.end();
3261            ++p)
3262         {
3263           if (rpath_val.empty())
3264             rpath_val = p->name();
3265           else
3266             {
3267               // Eliminate duplicates.
3268               General_options::Dir_list::const_iterator q;
3269               for (q = rpath.begin(); q != p; ++q)
3270                 if (q->name() == p->name())
3271                   break;
3272               if (q == p)
3273                 {
3274                   rpath_val += ':';
3275                   rpath_val += p->name();
3276                 }
3277             }
3278         }
3279
3280       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3281       if (parameters->options().enable_new_dtags())
3282         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3283     }
3284
3285   // Look for text segments that have dynamic relocations.
3286   bool have_textrel = false;
3287   if (!this->script_options_->saw_sections_clause())
3288     {
3289       for (Segment_list::const_iterator p = this->segment_list_.begin();
3290            p != this->segment_list_.end();
3291            ++p)
3292         {
3293           if (((*p)->flags() & elfcpp::PF_W) == 0
3294               && (*p)->dynamic_reloc_count() > 0)
3295             {
3296               have_textrel = true;
3297               break;
3298             }
3299         }
3300     }
3301   else
3302     {
3303       // We don't know the section -> segment mapping, so we are
3304       // conservative and just look for readonly sections with
3305       // relocations.  If those sections wind up in writable segments,
3306       // then we have created an unnecessary DT_TEXTREL entry.
3307       for (Section_list::const_iterator p = this->section_list_.begin();
3308            p != this->section_list_.end();
3309            ++p)
3310         {
3311           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3312               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3313               && ((*p)->dynamic_reloc_count() > 0))
3314             {
3315               have_textrel = true;
3316               break;
3317             }
3318         }
3319     }
3320
3321   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3322   // post-link tools can easily modify these flags if desired.
3323   unsigned int flags = 0;
3324   if (have_textrel)
3325     {
3326       // Add a DT_TEXTREL for compatibility with older loaders.
3327       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3328       flags |= elfcpp::DF_TEXTREL;
3329     }
3330   if (parameters->options().shared() && this->has_static_tls())
3331     flags |= elfcpp::DF_STATIC_TLS;
3332   if (parameters->options().origin())
3333     flags |= elfcpp::DF_ORIGIN;
3334   if (parameters->options().Bsymbolic())
3335     {
3336       flags |= elfcpp::DF_SYMBOLIC;
3337       // Add DT_SYMBOLIC for compatibility with older loaders.
3338       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3339     }
3340   if (parameters->options().now())
3341     flags |= elfcpp::DF_BIND_NOW;
3342   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3343
3344   flags = 0;
3345   if (parameters->options().initfirst())
3346     flags |= elfcpp::DF_1_INITFIRST;
3347   if (parameters->options().interpose())
3348     flags |= elfcpp::DF_1_INTERPOSE;
3349   if (parameters->options().loadfltr())
3350     flags |= elfcpp::DF_1_LOADFLTR;
3351   if (parameters->options().nodefaultlib())
3352     flags |= elfcpp::DF_1_NODEFLIB;
3353   if (parameters->options().nodelete())
3354     flags |= elfcpp::DF_1_NODELETE;
3355   if (parameters->options().nodlopen())
3356     flags |= elfcpp::DF_1_NOOPEN;
3357   if (parameters->options().nodump())
3358     flags |= elfcpp::DF_1_NODUMP;
3359   if (!parameters->options().shared())
3360     flags &= ~(elfcpp::DF_1_INITFIRST
3361                | elfcpp::DF_1_NODELETE
3362                | elfcpp::DF_1_NOOPEN);
3363   if (parameters->options().origin())
3364     flags |= elfcpp::DF_1_ORIGIN;
3365   if (parameters->options().now())
3366     flags |= elfcpp::DF_1_NOW;
3367   if (flags)
3368     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3369 }
3370
3371 // Set the size of the _DYNAMIC symbol table to be the size of the
3372 // dynamic data.
3373
3374 void
3375 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3376 {
3377   Output_data_dynamic* const odyn = this->dynamic_data_;
3378   odyn->finalize_data_size();
3379   off_t data_size = odyn->data_size();
3380   const int size = parameters->target().get_size();
3381   if (size == 32)
3382     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3383   else if (size == 64)
3384     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3385   else
3386     gold_unreachable();
3387 }
3388
3389 // The mapping of input section name prefixes to output section names.
3390 // In some cases one prefix is itself a prefix of another prefix; in
3391 // such a case the longer prefix must come first.  These prefixes are
3392 // based on the GNU linker default ELF linker script.
3393
3394 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3395 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3396 {
3397   MAPPING_INIT(".text.", ".text"),
3398   MAPPING_INIT(".ctors.", ".ctors"),
3399   MAPPING_INIT(".dtors.", ".dtors"),
3400   MAPPING_INIT(".rodata.", ".rodata"),
3401   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3402   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3403   MAPPING_INIT(".data.", ".data"),
3404   MAPPING_INIT(".bss.", ".bss"),
3405   MAPPING_INIT(".tdata.", ".tdata"),
3406   MAPPING_INIT(".tbss.", ".tbss"),
3407   MAPPING_INIT(".init_array.", ".init_array"),
3408   MAPPING_INIT(".fini_array.", ".fini_array"),
3409   MAPPING_INIT(".sdata.", ".sdata"),
3410   MAPPING_INIT(".sbss.", ".sbss"),
3411   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3412   // differently depending on whether it is creating a shared library.
3413   MAPPING_INIT(".sdata2.", ".sdata"),
3414   MAPPING_INIT(".sbss2.", ".sbss"),
3415   MAPPING_INIT(".lrodata.", ".lrodata"),
3416   MAPPING_INIT(".ldata.", ".ldata"),
3417   MAPPING_INIT(".lbss.", ".lbss"),
3418   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3419   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3420   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3421   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3422   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3423   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3424   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3425   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3426   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3427   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3428   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3429   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3430   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3431   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3432   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3433   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3434   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3435   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3436   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3437   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3438   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3439 };
3440 #undef MAPPING_INIT
3441
3442 const int Layout::section_name_mapping_count =
3443   (sizeof(Layout::section_name_mapping)
3444    / sizeof(Layout::section_name_mapping[0]));
3445
3446 // Choose the output section name to use given an input section name.
3447 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3448 // length of NAME.
3449
3450 const char*
3451 Layout::output_section_name(const char* name, size_t* plen)
3452 {
3453   // gcc 4.3 generates the following sorts of section names when it
3454   // needs a section name specific to a function:
3455   //   .text.FN
3456   //   .rodata.FN
3457   //   .sdata2.FN
3458   //   .data.FN
3459   //   .data.rel.FN
3460   //   .data.rel.local.FN
3461   //   .data.rel.ro.FN
3462   //   .data.rel.ro.local.FN
3463   //   .sdata.FN
3464   //   .bss.FN
3465   //   .sbss.FN
3466   //   .tdata.FN
3467   //   .tbss.FN
3468
3469   // The GNU linker maps all of those to the part before the .FN,
3470   // except that .data.rel.local.FN is mapped to .data, and
3471   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3472   // beginning with .data.rel.ro.local are grouped together.
3473
3474   // For an anonymous namespace, the string FN can contain a '.'.
3475
3476   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3477   // GNU linker maps to .rodata.
3478
3479   // The .data.rel.ro sections are used with -z relro.  The sections
3480   // are recognized by name.  We use the same names that the GNU
3481   // linker does for these sections.
3482
3483   // It is hard to handle this in a principled way, so we don't even
3484   // try.  We use a table of mappings.  If the input section name is
3485   // not found in the table, we simply use it as the output section
3486   // name.
3487
3488   const Section_name_mapping* psnm = section_name_mapping;
3489   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3490     {
3491       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3492         {
3493           *plen = psnm->tolen;
3494           return psnm->to;
3495         }
3496     }
3497
3498   return name;
3499 }
3500
3501 // Check if a comdat group or .gnu.linkonce section with the given
3502 // NAME is selected for the link.  If there is already a section,
3503 // *KEPT_SECTION is set to point to the existing section and the
3504 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3505 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3506 // *KEPT_SECTION is set to the internal copy and the function returns
3507 // true.
3508
3509 bool
3510 Layout::find_or_add_kept_section(const std::string& name,
3511                                  Relobj* object,
3512                                  unsigned int shndx,
3513                                  bool is_comdat,
3514                                  bool is_group_name,
3515                                  Kept_section** kept_section)
3516 {
3517   // It's normal to see a couple of entries here, for the x86 thunk
3518   // sections.  If we see more than a few, we're linking a C++
3519   // program, and we resize to get more space to minimize rehashing.
3520   if (this->signatures_.size() > 4
3521       && !this->resized_signatures_)
3522     {
3523       reserve_unordered_map(&this->signatures_,
3524                             this->number_of_input_files_ * 64);
3525       this->resized_signatures_ = true;
3526     }
3527
3528   Kept_section candidate;
3529   std::pair<Signatures::iterator, bool> ins =
3530     this->signatures_.insert(std::make_pair(name, candidate));
3531
3532   if (kept_section != NULL)
3533     *kept_section = &ins.first->second;
3534   if (ins.second)
3535     {
3536       // This is the first time we've seen this signature.
3537       ins.first->second.set_object(object);
3538       ins.first->second.set_shndx(shndx);
3539       if (is_comdat)
3540         ins.first->second.set_is_comdat();
3541       if (is_group_name)
3542         ins.first->second.set_is_group_name();
3543       return true;
3544     }
3545
3546   // We have already seen this signature.
3547
3548   if (ins.first->second.is_group_name())
3549     {
3550       // We've already seen a real section group with this signature.
3551       // If the kept group is from a plugin object, and we're in the
3552       // replacement phase, accept the new one as a replacement.
3553       if (ins.first->second.object() == NULL
3554           && parameters->options().plugins()->in_replacement_phase())
3555         {
3556           ins.first->second.set_object(object);
3557           ins.first->second.set_shndx(shndx);
3558           return true;
3559         }
3560       return false;
3561     }
3562   else if (is_group_name)
3563     {
3564       // This is a real section group, and we've already seen a
3565       // linkonce section with this signature.  Record that we've seen
3566       // a section group, and don't include this section group.
3567       ins.first->second.set_is_group_name();
3568       return false;
3569     }
3570   else
3571     {
3572       // We've already seen a linkonce section and this is a linkonce
3573       // section.  These don't block each other--this may be the same
3574       // symbol name with different section types.
3575       return true;
3576     }
3577 }
3578
3579 // Store the allocated sections into the section list.
3580
3581 void
3582 Layout::get_allocated_sections(Section_list* section_list) const
3583 {
3584   for (Section_list::const_iterator p = this->section_list_.begin();
3585        p != this->section_list_.end();
3586        ++p)
3587     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3588       section_list->push_back(*p);
3589 }
3590
3591 // Create an output segment.
3592
3593 Output_segment*
3594 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3595 {
3596   gold_assert(!parameters->options().relocatable());
3597   Output_segment* oseg = new Output_segment(type, flags);
3598   this->segment_list_.push_back(oseg);
3599
3600   if (type == elfcpp::PT_TLS)
3601     this->tls_segment_ = oseg;
3602   else if (type == elfcpp::PT_GNU_RELRO)
3603     this->relro_segment_ = oseg;
3604
3605   return oseg;
3606 }
3607
3608 // Write out the Output_sections.  Most won't have anything to write,
3609 // since most of the data will come from input sections which are
3610 // handled elsewhere.  But some Output_sections do have Output_data.
3611
3612 void
3613 Layout::write_output_sections(Output_file* of) const
3614 {
3615   for (Section_list::const_iterator p = this->section_list_.begin();
3616        p != this->section_list_.end();
3617        ++p)
3618     {
3619       if (!(*p)->after_input_sections())
3620         (*p)->write(of);
3621     }
3622 }
3623
3624 // Write out data not associated with a section or the symbol table.
3625
3626 void
3627 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3628 {
3629   if (!parameters->options().strip_all())
3630     {
3631       const Output_section* symtab_section = this->symtab_section_;
3632       for (Section_list::const_iterator p = this->section_list_.begin();
3633            p != this->section_list_.end();
3634            ++p)
3635         {
3636           if ((*p)->needs_symtab_index())
3637             {
3638               gold_assert(symtab_section != NULL);
3639               unsigned int index = (*p)->symtab_index();
3640               gold_assert(index > 0 && index != -1U);
3641               off_t off = (symtab_section->offset()
3642                            + index * symtab_section->entsize());
3643               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3644             }
3645         }
3646     }
3647
3648   const Output_section* dynsym_section = this->dynsym_section_;
3649   for (Section_list::const_iterator p = this->section_list_.begin();
3650        p != this->section_list_.end();
3651        ++p)
3652     {
3653       if ((*p)->needs_dynsym_index())
3654         {
3655           gold_assert(dynsym_section != NULL);
3656           unsigned int index = (*p)->dynsym_index();
3657           gold_assert(index > 0 && index != -1U);
3658           off_t off = (dynsym_section->offset()
3659                        + index * dynsym_section->entsize());
3660           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3661         }
3662     }
3663
3664   // Write out the Output_data which are not in an Output_section.
3665   for (Data_list::const_iterator p = this->special_output_list_.begin();
3666        p != this->special_output_list_.end();
3667        ++p)
3668     (*p)->write(of);
3669 }
3670
3671 // Write out the Output_sections which can only be written after the
3672 // input sections are complete.
3673
3674 void
3675 Layout::write_sections_after_input_sections(Output_file* of)
3676 {
3677   // Determine the final section offsets, and thus the final output
3678   // file size.  Note we finalize the .shstrab last, to allow the
3679   // after_input_section sections to modify their section-names before
3680   // writing.
3681   if (this->any_postprocessing_sections_)
3682     {
3683       off_t off = this->output_file_size_;
3684       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3685
3686       // Now that we've finalized the names, we can finalize the shstrab.
3687       off =
3688         this->set_section_offsets(off,
3689                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3690
3691       if (off > this->output_file_size_)
3692         {
3693           of->resize(off);
3694           this->output_file_size_ = off;
3695         }
3696     }
3697
3698   for (Section_list::const_iterator p = this->section_list_.begin();
3699        p != this->section_list_.end();
3700        ++p)
3701     {
3702       if ((*p)->after_input_sections())
3703         (*p)->write(of);
3704     }
3705
3706   this->section_headers_->write(of);
3707 }
3708
3709 // If the build ID requires computing a checksum, do so here, and
3710 // write it out.  We compute a checksum over the entire file because
3711 // that is simplest.
3712
3713 void
3714 Layout::write_build_id(Output_file* of) const
3715 {
3716   if (this->build_id_note_ == NULL)
3717     return;
3718
3719   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3720
3721   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3722                                           this->build_id_note_->data_size());
3723
3724   const char* style = parameters->options().build_id();
3725   if (strcmp(style, "sha1") == 0)
3726     {
3727       sha1_ctx ctx;
3728       sha1_init_ctx(&ctx);
3729       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3730       sha1_finish_ctx(&ctx, ov);
3731     }
3732   else if (strcmp(style, "md5") == 0)
3733     {
3734       md5_ctx ctx;
3735       md5_init_ctx(&ctx);
3736       md5_process_bytes(iv, this->output_file_size_, &ctx);
3737       md5_finish_ctx(&ctx, ov);
3738     }
3739   else
3740     gold_unreachable();
3741
3742   of->write_output_view(this->build_id_note_->offset(),
3743                         this->build_id_note_->data_size(),
3744                         ov);
3745
3746   of->free_input_view(0, this->output_file_size_, iv);
3747 }
3748
3749 // Write out a binary file.  This is called after the link is
3750 // complete.  IN is the temporary output file we used to generate the
3751 // ELF code.  We simply walk through the segments, read them from
3752 // their file offset in IN, and write them to their load address in
3753 // the output file.  FIXME: with a bit more work, we could support
3754 // S-records and/or Intel hex format here.
3755
3756 void
3757 Layout::write_binary(Output_file* in) const
3758 {
3759   gold_assert(parameters->options().oformat_enum()
3760               == General_options::OBJECT_FORMAT_BINARY);
3761
3762   // Get the size of the binary file.
3763   uint64_t max_load_address = 0;
3764   for (Segment_list::const_iterator p = this->segment_list_.begin();
3765        p != this->segment_list_.end();
3766        ++p)
3767     {
3768       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3769         {
3770           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3771           if (max_paddr > max_load_address)
3772             max_load_address = max_paddr;
3773         }
3774     }
3775
3776   Output_file out(parameters->options().output_file_name());
3777   out.open(max_load_address);
3778
3779   for (Segment_list::const_iterator p = this->segment_list_.begin();
3780        p != this->segment_list_.end();
3781        ++p)
3782     {
3783       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3784         {
3785           const unsigned char* vin = in->get_input_view((*p)->offset(),
3786                                                         (*p)->filesz());
3787           unsigned char* vout = out.get_output_view((*p)->paddr(),
3788                                                     (*p)->filesz());
3789           memcpy(vout, vin, (*p)->filesz());
3790           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3791           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3792         }
3793     }
3794
3795   out.close();
3796 }
3797
3798 // Print the output sections to the map file.
3799
3800 void
3801 Layout::print_to_mapfile(Mapfile* mapfile) const
3802 {
3803   for (Segment_list::const_iterator p = this->segment_list_.begin();
3804        p != this->segment_list_.end();
3805        ++p)
3806     (*p)->print_sections_to_mapfile(mapfile);
3807 }
3808
3809 // Print statistical information to stderr.  This is used for --stats.
3810
3811 void
3812 Layout::print_stats() const
3813 {
3814   this->namepool_.print_stats("section name pool");
3815   this->sympool_.print_stats("output symbol name pool");
3816   this->dynpool_.print_stats("dynamic name pool");
3817
3818   for (Section_list::const_iterator p = this->section_list_.begin();
3819        p != this->section_list_.end();
3820        ++p)
3821     (*p)->print_merge_stats();
3822 }
3823
3824 // Write_sections_task methods.
3825
3826 // We can always run this task.
3827
3828 Task_token*
3829 Write_sections_task::is_runnable()
3830 {
3831   return NULL;
3832 }
3833
3834 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3835 // when finished.
3836
3837 void
3838 Write_sections_task::locks(Task_locker* tl)
3839 {
3840   tl->add(this, this->output_sections_blocker_);
3841   tl->add(this, this->final_blocker_);
3842 }
3843
3844 // Run the task--write out the data.
3845
3846 void
3847 Write_sections_task::run(Workqueue*)
3848 {
3849   this->layout_->write_output_sections(this->of_);
3850 }
3851
3852 // Write_data_task methods.
3853
3854 // We can always run this task.
3855
3856 Task_token*
3857 Write_data_task::is_runnable()
3858 {
3859   return NULL;
3860 }
3861
3862 // We need to unlock FINAL_BLOCKER when finished.
3863
3864 void
3865 Write_data_task::locks(Task_locker* tl)
3866 {
3867   tl->add(this, this->final_blocker_);
3868 }
3869
3870 // Run the task--write out the data.
3871
3872 void
3873 Write_data_task::run(Workqueue*)
3874 {
3875   this->layout_->write_data(this->symtab_, this->of_);
3876 }
3877
3878 // Write_symbols_task methods.
3879
3880 // We can always run this task.
3881
3882 Task_token*
3883 Write_symbols_task::is_runnable()
3884 {
3885   return NULL;
3886 }
3887
3888 // We need to unlock FINAL_BLOCKER when finished.
3889
3890 void
3891 Write_symbols_task::locks(Task_locker* tl)
3892 {
3893   tl->add(this, this->final_blocker_);
3894 }
3895
3896 // Run the task--write out the symbols.
3897
3898 void
3899 Write_symbols_task::run(Workqueue*)
3900 {
3901   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3902                                this->layout_->symtab_xindex(),
3903                                this->layout_->dynsym_xindex(), this->of_);
3904 }
3905
3906 // Write_after_input_sections_task methods.
3907
3908 // We can only run this task after the input sections have completed.
3909
3910 Task_token*
3911 Write_after_input_sections_task::is_runnable()
3912 {
3913   if (this->input_sections_blocker_->is_blocked())
3914     return this->input_sections_blocker_;
3915   return NULL;
3916 }
3917
3918 // We need to unlock FINAL_BLOCKER when finished.
3919
3920 void
3921 Write_after_input_sections_task::locks(Task_locker* tl)
3922 {
3923   tl->add(this, this->final_blocker_);
3924 }
3925
3926 // Run the task.
3927
3928 void
3929 Write_after_input_sections_task::run(Workqueue*)
3930 {
3931   this->layout_->write_sections_after_input_sections(this->of_);
3932 }
3933
3934 // Close_task_runner methods.
3935
3936 // Run the task--close the file.
3937
3938 void
3939 Close_task_runner::run(Workqueue*, const Task*)
3940 {
3941   // If we need to compute a checksum for the BUILD if, we do so here.
3942   this->layout_->write_build_id(this->of_);
3943
3944   // If we've been asked to create a binary file, we do so here.
3945   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3946     this->layout_->write_binary(this->of_);
3947
3948   this->of_->close();
3949 }
3950
3951 // Instantiate the templates we need.  We could use the configure
3952 // script to restrict this to only the ones for implemented targets.
3953
3954 #ifdef HAVE_TARGET_32_LITTLE
3955 template
3956 Output_section*
3957 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3958                           const char* name,
3959                           const elfcpp::Shdr<32, false>& shdr,
3960                           unsigned int, unsigned int, off_t*);
3961 #endif
3962
3963 #ifdef HAVE_TARGET_32_BIG
3964 template
3965 Output_section*
3966 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3967                          const char* name,
3968                          const elfcpp::Shdr<32, true>& shdr,
3969                          unsigned int, unsigned int, off_t*);
3970 #endif
3971
3972 #ifdef HAVE_TARGET_64_LITTLE
3973 template
3974 Output_section*
3975 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3976                           const char* name,
3977                           const elfcpp::Shdr<64, false>& shdr,
3978                           unsigned int, unsigned int, off_t*);
3979 #endif
3980
3981 #ifdef HAVE_TARGET_64_BIG
3982 template
3983 Output_section*
3984 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3985                          const char* name,
3986                          const elfcpp::Shdr<64, true>& shdr,
3987                          unsigned int, unsigned int, off_t*);
3988 #endif
3989
3990 #ifdef HAVE_TARGET_32_LITTLE
3991 template
3992 Output_section*
3993 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3994                                 unsigned int reloc_shndx,
3995                                 const elfcpp::Shdr<32, false>& shdr,
3996                                 Output_section* data_section,
3997                                 Relocatable_relocs* rr);
3998 #endif
3999
4000 #ifdef HAVE_TARGET_32_BIG
4001 template
4002 Output_section*
4003 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4004                                unsigned int reloc_shndx,
4005                                const elfcpp::Shdr<32, true>& shdr,
4006                                Output_section* data_section,
4007                                Relocatable_relocs* rr);
4008 #endif
4009
4010 #ifdef HAVE_TARGET_64_LITTLE
4011 template
4012 Output_section*
4013 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4014                                 unsigned int reloc_shndx,
4015                                 const elfcpp::Shdr<64, false>& shdr,
4016                                 Output_section* data_section,
4017                                 Relocatable_relocs* rr);
4018 #endif
4019
4020 #ifdef HAVE_TARGET_64_BIG
4021 template
4022 Output_section*
4023 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4024                                unsigned int reloc_shndx,
4025                                const elfcpp::Shdr<64, true>& shdr,
4026                                Output_section* data_section,
4027                                Relocatable_relocs* rr);
4028 #endif
4029
4030 #ifdef HAVE_TARGET_32_LITTLE
4031 template
4032 void
4033 Layout::layout_group<32, false>(Symbol_table* symtab,
4034                                 Sized_relobj<32, false>* object,
4035                                 unsigned int,
4036                                 const char* group_section_name,
4037                                 const char* signature,
4038                                 const elfcpp::Shdr<32, false>& shdr,
4039                                 elfcpp::Elf_Word flags,
4040                                 std::vector<unsigned int>* shndxes);
4041 #endif
4042
4043 #ifdef HAVE_TARGET_32_BIG
4044 template
4045 void
4046 Layout::layout_group<32, true>(Symbol_table* symtab,
4047                                Sized_relobj<32, true>* object,
4048                                unsigned int,
4049                                const char* group_section_name,
4050                                const char* signature,
4051                                const elfcpp::Shdr<32, true>& shdr,
4052                                elfcpp::Elf_Word flags,
4053                                std::vector<unsigned int>* shndxes);
4054 #endif
4055
4056 #ifdef HAVE_TARGET_64_LITTLE
4057 template
4058 void
4059 Layout::layout_group<64, false>(Symbol_table* symtab,
4060                                 Sized_relobj<64, false>* object,
4061                                 unsigned int,
4062                                 const char* group_section_name,
4063                                 const char* signature,
4064                                 const elfcpp::Shdr<64, false>& shdr,
4065                                 elfcpp::Elf_Word flags,
4066                                 std::vector<unsigned int>* shndxes);
4067 #endif
4068
4069 #ifdef HAVE_TARGET_64_BIG
4070 template
4071 void
4072 Layout::layout_group<64, true>(Symbol_table* symtab,
4073                                Sized_relobj<64, true>* object,
4074                                unsigned int,
4075                                const char* group_section_name,
4076                                const char* signature,
4077                                const elfcpp::Shdr<64, true>& shdr,
4078                                elfcpp::Elf_Word flags,
4079                                std::vector<unsigned int>* shndxes);
4080 #endif
4081
4082 #ifdef HAVE_TARGET_32_LITTLE
4083 template
4084 Output_section*
4085 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4086                                    const unsigned char* symbols,
4087                                    off_t symbols_size,
4088                                    const unsigned char* symbol_names,
4089                                    off_t symbol_names_size,
4090                                    unsigned int shndx,
4091                                    const elfcpp::Shdr<32, false>& shdr,
4092                                    unsigned int reloc_shndx,
4093                                    unsigned int reloc_type,
4094                                    off_t* off);
4095 #endif
4096
4097 #ifdef HAVE_TARGET_32_BIG
4098 template
4099 Output_section*
4100 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4101                                    const unsigned char* symbols,
4102                                    off_t symbols_size,
4103                                   const unsigned char* symbol_names,
4104                                   off_t symbol_names_size,
4105                                   unsigned int shndx,
4106                                   const elfcpp::Shdr<32, true>& shdr,
4107                                   unsigned int reloc_shndx,
4108                                   unsigned int reloc_type,
4109                                   off_t* off);
4110 #endif
4111
4112 #ifdef HAVE_TARGET_64_LITTLE
4113 template
4114 Output_section*
4115 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4116                                    const unsigned char* symbols,
4117                                    off_t symbols_size,
4118                                    const unsigned char* symbol_names,
4119                                    off_t symbol_names_size,
4120                                    unsigned int shndx,
4121                                    const elfcpp::Shdr<64, false>& shdr,
4122                                    unsigned int reloc_shndx,
4123                                    unsigned int reloc_type,
4124                                    off_t* off);
4125 #endif
4126
4127 #ifdef HAVE_TARGET_64_BIG
4128 template
4129 Output_section*
4130 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4131                                    const unsigned char* symbols,
4132                                    off_t symbols_size,
4133                                   const unsigned char* symbol_names,
4134                                   off_t symbol_names_size,
4135                                   unsigned int shndx,
4136                                   const elfcpp::Shdr<64, true>& shdr,
4137                                   unsigned int reloc_shndx,
4138                                   unsigned int reloc_type,
4139                                   off_t* off);
4140 #endif
4141
4142 } // End namespace gold.