OSDN Git Service

2009-11-10 Doug Kwan <dougkwan@google.com>
[pf3gnuchains/pf3gnuchains3x.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64     const Layout::Section_list& sections,
65     const Layout::Data_list& special_outputs)
66 {
67   for(Layout::Section_list::const_iterator p = sections.begin();
68       p != sections.end();
69       ++p)
70     gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72   for(Layout::Data_list::const_iterator p = special_outputs.begin();
73       p != special_outputs.end();
74       ++p)
75     gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77   
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82     const Layout::Section_list& sections)
83 {
84   for(Layout::Section_list::const_iterator p = sections.begin();
85       p != sections.end();
86       ++p)
87     {
88       Output_section* os = *p;
89       Section_info info;
90       info.output_section = os;
91       info.address = os->is_address_valid() ? os->address() : 0;
92       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93       info.offset = os->is_offset_valid()? os->offset() : -1 ;
94       this->section_infos_.push_back(info);
95     }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102     const Layout::Section_list& sections)
103 {
104   size_t i = 0;
105   for(Layout::Section_list::const_iterator p = sections.begin();
106       p != sections.end();
107       ++p, ++i)
108     {
109       Output_section* os = *p;
110       uint64_t address = os->is_address_valid() ? os->address() : 0;
111       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114       if (i >= this->section_infos_.size())
115         {
116           gold_fatal("Section_info of %s missing.\n", os->name());
117         }
118       const Section_info& info = this->section_infos_[i];
119       if (os != info.output_section)
120         gold_fatal("Section order changed.  Expecting %s but see %s\n",
121                    info.output_section->name(), os->name());
122       if (address != info.address
123           || data_size != info.data_size
124           || offset != info.offset)
125         gold_fatal("Section %s changed.\n", os->name());
126     }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections.  This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137   off_t file_size = this->layout_->finalize(this->input_objects_,
138                                             this->symtab_,
139                                             this->target_,
140                                             task);
141
142   // Now we know the final size of the output file and we know where
143   // each piece of information goes.
144
145   if (this->mapfile_ != NULL)
146     {
147       this->mapfile_->print_discarded_sections(this->input_objects_);
148       this->layout_->print_to_mapfile(this->mapfile_);
149     }
150
151   Output_file* of = new Output_file(parameters->options().output_file_name());
152   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153     of->set_is_temporary();
154   of->open(file_size);
155
156   // Queue up the final set of tasks.
157   gold::queue_final_tasks(this->options_, this->input_objects_,
158                           this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164   : number_of_input_files_(number_of_input_files),
165     script_options_(script_options),
166     namepool_(),
167     sympool_(),
168     dynpool_(),
169     signatures_(),
170     section_name_map_(),
171     segment_list_(),
172     section_list_(),
173     unattached_section_list_(),
174     special_output_list_(),
175     section_headers_(NULL),
176     tls_segment_(NULL),
177     relro_segment_(NULL),
178     symtab_section_(NULL),
179     symtab_xindex_(NULL),
180     dynsym_section_(NULL),
181     dynsym_xindex_(NULL),
182     dynamic_section_(NULL),
183     dynamic_data_(NULL),
184     eh_frame_section_(NULL),
185     eh_frame_data_(NULL),
186     added_eh_frame_data_(false),
187     eh_frame_hdr_section_(NULL),
188     build_id_note_(NULL),
189     debug_abbrev_(NULL),
190     debug_info_(NULL),
191     group_signatures_(),
192     output_file_size_(-1),
193     sections_are_attached_(false),
194     input_requires_executable_stack_(false),
195     input_with_gnu_stack_note_(false),
196     input_without_gnu_stack_note_(false),
197     has_static_tls_(false),
198     any_postprocessing_sections_(false),
199     resized_signatures_(false),
200     have_stabstr_section_(false),
201     incremental_inputs_(NULL),
202     record_output_section_data_from_script_(false),
203     script_output_section_data_list_(),
204     segment_states_(NULL),
205     relaxation_debug_check_(NULL)
206 {
207   // Make space for more than enough segments for a typical file.
208   // This is just for efficiency--it's OK if we wind up needing more.
209   this->segment_list_.reserve(12);
210
211   // We expect two unattached Output_data objects: the file header and
212   // the segment headers.
213   this->special_output_list_.reserve(2);
214
215   // Initialize structure needed for an incremental build.
216   if (parameters->options().incremental())
217     this->incremental_inputs_ = new Incremental_inputs;
218
219   // The section name pool is worth optimizing in all cases, because
220   // it is small, but there are often overlaps due to .rel sections.
221   this->namepool_.set_optimize();
222 }
223
224 // Hash a key we use to look up an output section mapping.
225
226 size_t
227 Layout::Hash_key::operator()(const Layout::Key& k) const
228 {
229  return k.first + k.second.first + k.second.second;
230 }
231
232 // Returns whether the given section is in the list of
233 // debug-sections-used-by-some-version-of-gdb.  Currently,
234 // we've checked versions of gdb up to and including 6.7.1.
235
236 static const char* gdb_sections[] =
237 { ".debug_abbrev",
238   // ".debug_aranges",   // not used by gdb as of 6.7.1
239   ".debug_frame",
240   ".debug_info",
241   ".debug_line",
242   ".debug_loc",
243   ".debug_macinfo",
244   // ".debug_pubnames",  // not used by gdb as of 6.7.1
245   ".debug_ranges",
246   ".debug_str",
247 };
248
249 static const char* lines_only_debug_sections[] =
250 { ".debug_abbrev",
251   // ".debug_aranges",   // not used by gdb as of 6.7.1
252   // ".debug_frame",
253   ".debug_info",
254   ".debug_line",
255   // ".debug_loc",
256   // ".debug_macinfo",
257   // ".debug_pubnames",  // not used by gdb as of 6.7.1
258   // ".debug_ranges",
259   ".debug_str",
260 };
261
262 static inline bool
263 is_gdb_debug_section(const char* str)
264 {
265   // We can do this faster: binary search or a hashtable.  But why bother?
266   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
267     if (strcmp(str, gdb_sections[i]) == 0)
268       return true;
269   return false;
270 }
271
272 static inline bool
273 is_lines_only_debug_section(const char* str)
274 {
275   // We can do this faster: binary search or a hashtable.  But why bother?
276   for (size_t i = 0;
277        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
278        ++i)
279     if (strcmp(str, lines_only_debug_sections[i]) == 0)
280       return true;
281   return false;
282 }
283
284 // Whether to include this section in the link.
285
286 template<int size, bool big_endian>
287 bool
288 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
289                         const elfcpp::Shdr<size, big_endian>& shdr)
290 {
291   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
292     return false;
293
294   switch (shdr.get_sh_type())
295     {
296     case elfcpp::SHT_NULL:
297     case elfcpp::SHT_SYMTAB:
298     case elfcpp::SHT_DYNSYM:
299     case elfcpp::SHT_HASH:
300     case elfcpp::SHT_DYNAMIC:
301     case elfcpp::SHT_SYMTAB_SHNDX:
302       return false;
303
304     case elfcpp::SHT_STRTAB:
305       // Discard the sections which have special meanings in the ELF
306       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
307       // checking the sh_link fields of the appropriate sections.
308       return (strcmp(name, ".dynstr") != 0
309               && strcmp(name, ".strtab") != 0
310               && strcmp(name, ".shstrtab") != 0);
311
312     case elfcpp::SHT_RELA:
313     case elfcpp::SHT_REL:
314     case elfcpp::SHT_GROUP:
315       // If we are emitting relocations these should be handled
316       // elsewhere.
317       gold_assert(!parameters->options().relocatable()
318                   && !parameters->options().emit_relocs());
319       return false;
320
321     case elfcpp::SHT_PROGBITS:
322       if (parameters->options().strip_debug()
323           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
324         {
325           if (is_debug_info_section(name))
326             return false;
327         }
328       if (parameters->options().strip_debug_non_line()
329           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
330         {
331           // Debugging sections can only be recognized by name.
332           if (is_prefix_of(".debug", name)
333               && !is_lines_only_debug_section(name))
334             return false;
335         }
336       if (parameters->options().strip_debug_gdb()
337           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
338         {
339           // Debugging sections can only be recognized by name.
340           if (is_prefix_of(".debug", name)
341               && !is_gdb_debug_section(name))
342             return false;
343         }
344       if (parameters->options().strip_lto_sections()
345           && !parameters->options().relocatable()
346           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
347         {
348           // Ignore LTO sections containing intermediate code.
349           if (is_prefix_of(".gnu.lto_", name))
350             return false;
351         }
352       return true;
353
354     default:
355       return true;
356     }
357 }
358
359 // Return an output section named NAME, or NULL if there is none.
360
361 Output_section*
362 Layout::find_output_section(const char* name) const
363 {
364   for (Section_list::const_iterator p = this->section_list_.begin();
365        p != this->section_list_.end();
366        ++p)
367     if (strcmp((*p)->name(), name) == 0)
368       return *p;
369   return NULL;
370 }
371
372 // Return an output segment of type TYPE, with segment flags SET set
373 // and segment flags CLEAR clear.  Return NULL if there is none.
374
375 Output_segment*
376 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
377                             elfcpp::Elf_Word clear) const
378 {
379   for (Segment_list::const_iterator p = this->segment_list_.begin();
380        p != this->segment_list_.end();
381        ++p)
382     if (static_cast<elfcpp::PT>((*p)->type()) == type
383         && ((*p)->flags() & set) == set
384         && ((*p)->flags() & clear) == 0)
385       return *p;
386   return NULL;
387 }
388
389 // Return the output section to use for section NAME with type TYPE
390 // and section flags FLAGS.  NAME must be canonicalized in the string
391 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
392 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
393 // is used by the dynamic linker.
394
395 Output_section*
396 Layout::get_output_section(const char* name, Stringpool::Key name_key,
397                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
398                            bool is_interp, bool is_dynamic_linker_section)
399 {
400   elfcpp::Elf_Xword lookup_flags = flags;
401
402   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
403   // read-write with read-only sections.  Some other ELF linkers do
404   // not do this.  FIXME: Perhaps there should be an option
405   // controlling this.
406   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
407
408   const Key key(name_key, std::make_pair(type, lookup_flags));
409   const std::pair<Key, Output_section*> v(key, NULL);
410   std::pair<Section_name_map::iterator, bool> ins(
411     this->section_name_map_.insert(v));
412
413   if (!ins.second)
414     return ins.first->second;
415   else
416     {
417       // This is the first time we've seen this name/type/flags
418       // combination.  For compatibility with the GNU linker, we
419       // combine sections with contents and zero flags with sections
420       // with non-zero flags.  This is a workaround for cases where
421       // assembler code forgets to set section flags.  FIXME: Perhaps
422       // there should be an option to control this.
423       Output_section* os = NULL;
424
425       if (type == elfcpp::SHT_PROGBITS)
426         {
427           if (flags == 0)
428             {
429               Output_section* same_name = this->find_output_section(name);
430               if (same_name != NULL
431                   && same_name->type() == elfcpp::SHT_PROGBITS
432                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
433                 os = same_name;
434             }
435           else if ((flags & elfcpp::SHF_TLS) == 0)
436             {
437               elfcpp::Elf_Xword zero_flags = 0;
438               const Key zero_key(name_key, std::make_pair(type, zero_flags));
439               Section_name_map::iterator p =
440                   this->section_name_map_.find(zero_key);
441               if (p != this->section_name_map_.end())
442                 os = p->second;
443             }
444         }
445
446       if (os == NULL)
447         os = this->make_output_section(name, type, flags, is_interp,
448                                        is_dynamic_linker_section);
449       ins.first->second = os;
450       return os;
451     }
452 }
453
454 // Pick the output section to use for section NAME, in input file
455 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
456 // linker created section.  IS_INPUT_SECTION is true if we are
457 // choosing an output section for an input section found in a input
458 // file.  IS_INTERP is true if this is the .interp section.
459 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
460 // dynamic linker.  This will return NULL if the input section should
461 // be discarded.
462
463 Output_section*
464 Layout::choose_output_section(const Relobj* relobj, const char* name,
465                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
466                               bool is_input_section, bool is_interp,
467                               bool is_dynamic_linker_section)
468 {
469   // We should not see any input sections after we have attached
470   // sections to segments.
471   gold_assert(!is_input_section || !this->sections_are_attached_);
472
473   // Some flags in the input section should not be automatically
474   // copied to the output section.
475   flags &= ~ (elfcpp::SHF_INFO_LINK
476               | elfcpp::SHF_LINK_ORDER
477               | elfcpp::SHF_GROUP
478               | elfcpp::SHF_MERGE
479               | elfcpp::SHF_STRINGS);
480
481   if (this->script_options_->saw_sections_clause())
482     {
483       // We are using a SECTIONS clause, so the output section is
484       // chosen based only on the name.
485
486       Script_sections* ss = this->script_options_->script_sections();
487       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
488       Output_section** output_section_slot;
489       name = ss->output_section_name(file_name, name, &output_section_slot);
490       if (name == NULL)
491         {
492           // The SECTIONS clause says to discard this input section.
493           return NULL;
494         }
495
496       // If this is an orphan section--one not mentioned in the linker
497       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
498       // default processing below.
499
500       if (output_section_slot != NULL)
501         {
502           if (*output_section_slot != NULL)
503             {
504               (*output_section_slot)->update_flags_for_input_section(flags);
505               return *output_section_slot;
506             }
507
508           // We don't put sections found in the linker script into
509           // SECTION_NAME_MAP_.  That keeps us from getting confused
510           // if an orphan section is mapped to a section with the same
511           // name as one in the linker script.
512
513           name = this->namepool_.add(name, false, NULL);
514
515           Output_section* os =
516             this->make_output_section(name, type, flags, is_interp,
517                                       is_dynamic_linker_section);
518           os->set_found_in_sections_clause();
519           *output_section_slot = os;
520           return os;
521         }
522     }
523
524   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
525
526   // Turn NAME from the name of the input section into the name of the
527   // output section.
528
529   size_t len = strlen(name);
530   if (is_input_section
531       && !this->script_options_->saw_sections_clause()
532       && !parameters->options().relocatable())
533     name = Layout::output_section_name(name, &len);
534
535   Stringpool::Key name_key;
536   name = this->namepool_.add_with_length(name, len, true, &name_key);
537
538   // Find or make the output section.  The output section is selected
539   // based on the section name, type, and flags.
540   return this->get_output_section(name, name_key, type, flags, is_interp,
541                                   is_dynamic_linker_section);
542 }
543
544 // Return the output section to use for input section SHNDX, with name
545 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
546 // index of a relocation section which applies to this section, or 0
547 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
548 // relocation section if there is one.  Set *OFF to the offset of this
549 // input section without the output section.  Return NULL if the
550 // section should be discarded.  Set *OFF to -1 if the section
551 // contents should not be written directly to the output file, but
552 // will instead receive special handling.
553
554 template<int size, bool big_endian>
555 Output_section*
556 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
557                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
558                unsigned int reloc_shndx, unsigned int, off_t* off)
559 {
560   *off = 0;
561
562   if (!this->include_section(object, name, shdr))
563     return NULL;
564
565   Output_section* os;
566
567   // In a relocatable link a grouped section must not be combined with
568   // any other sections.
569   if (parameters->options().relocatable()
570       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
571     {
572       name = this->namepool_.add(name, true, NULL);
573       os = this->make_output_section(name, shdr.get_sh_type(),
574                                      shdr.get_sh_flags(), false, false);
575     }
576   else
577     {
578       os = this->choose_output_section(object, name, shdr.get_sh_type(),
579                                        shdr.get_sh_flags(), true, false,
580                                        false);
581       if (os == NULL)
582         return NULL;
583     }
584
585   // By default the GNU linker sorts input sections whose names match
586   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
587   // are sorted by name.  This is used to implement constructor
588   // priority ordering.  We are compatible.
589   if (!this->script_options_->saw_sections_clause()
590       && (is_prefix_of(".ctors.", name)
591           || is_prefix_of(".dtors.", name)
592           || is_prefix_of(".init_array.", name)
593           || is_prefix_of(".fini_array.", name)))
594     os->set_must_sort_attached_input_sections();
595
596   // FIXME: Handle SHF_LINK_ORDER somewhere.
597
598   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
599                                this->script_options_->saw_sections_clause());
600
601   return os;
602 }
603
604 // Handle a relocation section when doing a relocatable link.
605
606 template<int size, bool big_endian>
607 Output_section*
608 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
609                      unsigned int,
610                      const elfcpp::Shdr<size, big_endian>& shdr,
611                      Output_section* data_section,
612                      Relocatable_relocs* rr)
613 {
614   gold_assert(parameters->options().relocatable()
615               || parameters->options().emit_relocs());
616
617   int sh_type = shdr.get_sh_type();
618
619   std::string name;
620   if (sh_type == elfcpp::SHT_REL)
621     name = ".rel";
622   else if (sh_type == elfcpp::SHT_RELA)
623     name = ".rela";
624   else
625     gold_unreachable();
626   name += data_section->name();
627
628   Output_section* os = this->choose_output_section(object, name.c_str(),
629                                                    sh_type,
630                                                    shdr.get_sh_flags(),
631                                                    false, false, false);
632
633   os->set_should_link_to_symtab();
634   os->set_info_section(data_section);
635
636   Output_section_data* posd;
637   if (sh_type == elfcpp::SHT_REL)
638     {
639       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
640       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
641                                            size,
642                                            big_endian>(rr);
643     }
644   else if (sh_type == elfcpp::SHT_RELA)
645     {
646       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
647       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
648                                            size,
649                                            big_endian>(rr);
650     }
651   else
652     gold_unreachable();
653
654   os->add_output_section_data(posd);
655   rr->set_output_data(posd);
656
657   return os;
658 }
659
660 // Handle a group section when doing a relocatable link.
661
662 template<int size, bool big_endian>
663 void
664 Layout::layout_group(Symbol_table* symtab,
665                      Sized_relobj<size, big_endian>* object,
666                      unsigned int,
667                      const char* group_section_name,
668                      const char* signature,
669                      const elfcpp::Shdr<size, big_endian>& shdr,
670                      elfcpp::Elf_Word flags,
671                      std::vector<unsigned int>* shndxes)
672 {
673   gold_assert(parameters->options().relocatable());
674   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
675   group_section_name = this->namepool_.add(group_section_name, true, NULL);
676   Output_section* os = this->make_output_section(group_section_name,
677                                                  elfcpp::SHT_GROUP,
678                                                  shdr.get_sh_flags(),
679                                                  false, false);
680
681   // We need to find a symbol with the signature in the symbol table.
682   // If we don't find one now, we need to look again later.
683   Symbol* sym = symtab->lookup(signature, NULL);
684   if (sym != NULL)
685     os->set_info_symndx(sym);
686   else
687     {
688       // Reserve some space to minimize reallocations.
689       if (this->group_signatures_.empty())
690         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
691
692       // We will wind up using a symbol whose name is the signature.
693       // So just put the signature in the symbol name pool to save it.
694       signature = symtab->canonicalize_name(signature);
695       this->group_signatures_.push_back(Group_signature(os, signature));
696     }
697
698   os->set_should_link_to_symtab();
699   os->set_entsize(4);
700
701   section_size_type entry_count =
702     convert_to_section_size_type(shdr.get_sh_size() / 4);
703   Output_section_data* posd =
704     new Output_data_group<size, big_endian>(object, entry_count, flags,
705                                             shndxes);
706   os->add_output_section_data(posd);
707 }
708
709 // Special GNU handling of sections name .eh_frame.  They will
710 // normally hold exception frame data as defined by the C++ ABI
711 // (http://codesourcery.com/cxx-abi/).
712
713 template<int size, bool big_endian>
714 Output_section*
715 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
716                         const unsigned char* symbols,
717                         off_t symbols_size,
718                         const unsigned char* symbol_names,
719                         off_t symbol_names_size,
720                         unsigned int shndx,
721                         const elfcpp::Shdr<size, big_endian>& shdr,
722                         unsigned int reloc_shndx, unsigned int reloc_type,
723                         off_t* off)
724 {
725   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
726   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
727
728   const char* const name = ".eh_frame";
729   Output_section* os = this->choose_output_section(object,
730                                                    name,
731                                                    elfcpp::SHT_PROGBITS,
732                                                    elfcpp::SHF_ALLOC,
733                                                    false, false, false);
734   if (os == NULL)
735     return NULL;
736
737   if (this->eh_frame_section_ == NULL)
738     {
739       this->eh_frame_section_ = os;
740       this->eh_frame_data_ = new Eh_frame();
741
742       if (parameters->options().eh_frame_hdr())
743         {
744           Output_section* hdr_os =
745             this->choose_output_section(NULL,
746                                         ".eh_frame_hdr",
747                                         elfcpp::SHT_PROGBITS,
748                                         elfcpp::SHF_ALLOC,
749                                         false, false, false);
750
751           if (hdr_os != NULL)
752             {
753               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
754                                                         this->eh_frame_data_);
755               hdr_os->add_output_section_data(hdr_posd);
756
757               hdr_os->set_after_input_sections();
758
759               if (!this->script_options_->saw_phdrs_clause())
760                 {
761                   Output_segment* hdr_oseg;
762                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
763                                                        elfcpp::PF_R);
764                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R, false);
765                 }
766
767               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
768             }
769         }
770     }
771
772   gold_assert(this->eh_frame_section_ == os);
773
774   if (this->eh_frame_data_->add_ehframe_input_section(object,
775                                                       symbols,
776                                                       symbols_size,
777                                                       symbol_names,
778                                                       symbol_names_size,
779                                                       shndx,
780                                                       reloc_shndx,
781                                                       reloc_type))
782     {
783       os->update_flags_for_input_section(shdr.get_sh_flags());
784
785       // We found a .eh_frame section we are going to optimize, so now
786       // we can add the set of optimized sections to the output
787       // section.  We need to postpone adding this until we've found a
788       // section we can optimize so that the .eh_frame section in
789       // crtbegin.o winds up at the start of the output section.
790       if (!this->added_eh_frame_data_)
791         {
792           os->add_output_section_data(this->eh_frame_data_);
793           this->added_eh_frame_data_ = true;
794         }
795       *off = -1;
796     }
797   else
798     {
799       // We couldn't handle this .eh_frame section for some reason.
800       // Add it as a normal section.
801       bool saw_sections_clause = this->script_options_->saw_sections_clause();
802       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
803                                    saw_sections_clause);
804     }
805
806   return os;
807 }
808
809 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
810 // the output section.
811
812 Output_section*
813 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
814                                 elfcpp::Elf_Xword flags,
815                                 Output_section_data* posd,
816                                 bool is_dynamic_linker_section)
817 {
818   Output_section* os = this->choose_output_section(NULL, name, type, flags,
819                                                    false, false,
820                                                    is_dynamic_linker_section);
821   if (os != NULL)
822     os->add_output_section_data(posd);
823   return os;
824 }
825
826 // Map section flags to segment flags.
827
828 elfcpp::Elf_Word
829 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
830 {
831   elfcpp::Elf_Word ret = elfcpp::PF_R;
832   if ((flags & elfcpp::SHF_WRITE) != 0)
833     ret |= elfcpp::PF_W;
834   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
835     ret |= elfcpp::PF_X;
836   return ret;
837 }
838
839 // Sometimes we compress sections.  This is typically done for
840 // sections that are not part of normal program execution (such as
841 // .debug_* sections), and where the readers of these sections know
842 // how to deal with compressed sections.  This routine doesn't say for
843 // certain whether we'll compress -- it depends on commandline options
844 // as well -- just whether this section is a candidate for compression.
845 // (The Output_compressed_section class decides whether to compress
846 // a given section, and picks the name of the compressed section.)
847
848 static bool
849 is_compressible_debug_section(const char* secname)
850 {
851   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
852 }
853
854 // Make a new Output_section, and attach it to segments as
855 // appropriate.  IS_INTERP is true if this is the .interp section.
856 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
857 // dynamic linker.
858
859 Output_section*
860 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
861                             elfcpp::Elf_Xword flags, bool is_interp,
862                             bool is_dynamic_linker_section)
863 {
864   Output_section* os;
865   if ((flags & elfcpp::SHF_ALLOC) == 0
866       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
867       && is_compressible_debug_section(name))
868     os = new Output_compressed_section(&parameters->options(), name, type,
869                                        flags);
870   else if ((flags & elfcpp::SHF_ALLOC) == 0
871            && parameters->options().strip_debug_non_line()
872            && strcmp(".debug_abbrev", name) == 0)
873     {
874       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
875           name, type, flags);
876       if (this->debug_info_)
877         this->debug_info_->set_abbreviations(this->debug_abbrev_);
878     }
879   else if ((flags & elfcpp::SHF_ALLOC) == 0
880            && parameters->options().strip_debug_non_line()
881            && strcmp(".debug_info", name) == 0)
882     {
883       os = this->debug_info_ = new Output_reduced_debug_info_section(
884           name, type, flags);
885       if (this->debug_abbrev_)
886         this->debug_info_->set_abbreviations(this->debug_abbrev_);
887     }
888  else
889     {
890       // FIXME: const_cast is ugly.
891       Target* target = const_cast<Target*>(&parameters->target());
892       os = target->make_output_section(name, type, flags);
893     }
894
895   if (is_interp)
896     os->set_is_interp();
897   if (is_dynamic_linker_section)
898     os->set_is_dynamic_linker_section();
899
900   parameters->target().new_output_section(os);
901
902   this->section_list_.push_back(os);
903
904   // The GNU linker by default sorts some sections by priority, so we
905   // do the same.  We need to know that this might happen before we
906   // attach any input sections.
907   if (!this->script_options_->saw_sections_clause()
908       && (strcmp(name, ".ctors") == 0
909           || strcmp(name, ".dtors") == 0
910           || strcmp(name, ".init_array") == 0
911           || strcmp(name, ".fini_array") == 0))
912     os->set_may_sort_attached_input_sections();
913
914   // With -z relro, we have to recognize the special sections by name.
915   // There is no other way.
916   if (!this->script_options_->saw_sections_clause()
917       && parameters->options().relro()
918       && type == elfcpp::SHT_PROGBITS
919       && (flags & elfcpp::SHF_ALLOC) != 0
920       && (flags & elfcpp::SHF_WRITE) != 0)
921     {
922       if (strcmp(name, ".data.rel.ro") == 0)
923         os->set_is_relro();
924       else if (strcmp(name, ".data.rel.ro.local") == 0)
925         {
926           os->set_is_relro();
927           os->set_is_relro_local();
928         }
929     }
930
931   // Check for .stab*str sections, as .stab* sections need to link to
932   // them.
933   if (type == elfcpp::SHT_STRTAB
934       && !this->have_stabstr_section_
935       && strncmp(name, ".stab", 5) == 0
936       && strcmp(name + strlen(name) - 3, "str") == 0)
937     this->have_stabstr_section_ = true;
938
939   // If we have already attached the sections to segments, then we
940   // need to attach this one now.  This happens for sections created
941   // directly by the linker.
942   if (this->sections_are_attached_)
943     this->attach_section_to_segment(os);
944
945   return os;
946 }
947
948 // Attach output sections to segments.  This is called after we have
949 // seen all the input sections.
950
951 void
952 Layout::attach_sections_to_segments()
953 {
954   for (Section_list::iterator p = this->section_list_.begin();
955        p != this->section_list_.end();
956        ++p)
957     this->attach_section_to_segment(*p);
958
959   this->sections_are_attached_ = true;
960 }
961
962 // Attach an output section to a segment.
963
964 void
965 Layout::attach_section_to_segment(Output_section* os)
966 {
967   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
968     this->unattached_section_list_.push_back(os);
969   else
970     this->attach_allocated_section_to_segment(os);
971 }
972
973 // Attach an allocated output section to a segment.
974
975 void
976 Layout::attach_allocated_section_to_segment(Output_section* os)
977 {
978   elfcpp::Elf_Xword flags = os->flags();
979   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
980
981   if (parameters->options().relocatable())
982     return;
983
984   // If we have a SECTIONS clause, we can't handle the attachment to
985   // segments until after we've seen all the sections.
986   if (this->script_options_->saw_sections_clause())
987     return;
988
989   gold_assert(!this->script_options_->saw_phdrs_clause());
990
991   // This output section goes into a PT_LOAD segment.
992
993   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
994
995   bool sort_sections = !this->script_options_->saw_sections_clause();
996
997   // In general the only thing we really care about for PT_LOAD
998   // segments is whether or not they are writable, so that is how we
999   // search for them.  Large data sections also go into their own
1000   // PT_LOAD segment.  People who need segments sorted on some other
1001   // basis will have to use a linker script.
1002
1003   Segment_list::const_iterator p;
1004   for (p = this->segment_list_.begin();
1005        p != this->segment_list_.end();
1006        ++p)
1007     {
1008       if ((*p)->type() != elfcpp::PT_LOAD)
1009         continue;
1010       if (!parameters->options().omagic()
1011           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1012         continue;
1013       // If -Tbss was specified, we need to separate the data and BSS
1014       // segments.
1015       if (parameters->options().user_set_Tbss())
1016         {
1017           if ((os->type() == elfcpp::SHT_NOBITS)
1018               == (*p)->has_any_data_sections())
1019             continue;
1020         }
1021       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1022         continue;
1023
1024       (*p)->add_output_section(os, seg_flags, sort_sections);
1025       break;
1026     }
1027
1028   if (p == this->segment_list_.end())
1029     {
1030       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1031                                                        seg_flags);
1032       if (os->is_large_data_section())
1033         oseg->set_is_large_data_segment();
1034       oseg->add_output_section(os, seg_flags, sort_sections);
1035     }
1036
1037   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1038   // segment.
1039   if (os->type() == elfcpp::SHT_NOTE)
1040     {
1041       // See if we already have an equivalent PT_NOTE segment.
1042       for (p = this->segment_list_.begin();
1043            p != segment_list_.end();
1044            ++p)
1045         {
1046           if ((*p)->type() == elfcpp::PT_NOTE
1047               && (((*p)->flags() & elfcpp::PF_W)
1048                   == (seg_flags & elfcpp::PF_W)))
1049             {
1050               (*p)->add_output_section(os, seg_flags, false);
1051               break;
1052             }
1053         }
1054
1055       if (p == this->segment_list_.end())
1056         {
1057           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1058                                                            seg_flags);
1059           oseg->add_output_section(os, seg_flags, false);
1060         }
1061     }
1062
1063   // If we see a loadable SHF_TLS section, we create a PT_TLS
1064   // segment.  There can only be one such segment.
1065   if ((flags & elfcpp::SHF_TLS) != 0)
1066     {
1067       if (this->tls_segment_ == NULL)
1068         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1069       this->tls_segment_->add_output_section(os, seg_flags, false);
1070     }
1071
1072   // If -z relro is in effect, and we see a relro section, we create a
1073   // PT_GNU_RELRO segment.  There can only be one such segment.
1074   if (os->is_relro() && parameters->options().relro())
1075     {
1076       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1077       if (this->relro_segment_ == NULL)
1078         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1079       this->relro_segment_->add_output_section(os, seg_flags, false);
1080     }
1081 }
1082
1083 // Make an output section for a script.
1084
1085 Output_section*
1086 Layout::make_output_section_for_script(const char* name)
1087 {
1088   name = this->namepool_.add(name, false, NULL);
1089   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1090                                                  elfcpp::SHF_ALLOC, false,
1091                                                  false);
1092   os->set_found_in_sections_clause();
1093   return os;
1094 }
1095
1096 // Return the number of segments we expect to see.
1097
1098 size_t
1099 Layout::expected_segment_count() const
1100 {
1101   size_t ret = this->segment_list_.size();
1102
1103   // If we didn't see a SECTIONS clause in a linker script, we should
1104   // already have the complete list of segments.  Otherwise we ask the
1105   // SECTIONS clause how many segments it expects, and add in the ones
1106   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1107
1108   if (!this->script_options_->saw_sections_clause())
1109     return ret;
1110   else
1111     {
1112       const Script_sections* ss = this->script_options_->script_sections();
1113       return ret + ss->expected_segment_count(this);
1114     }
1115 }
1116
1117 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1118 // is whether we saw a .note.GNU-stack section in the object file.
1119 // GNU_STACK_FLAGS is the section flags.  The flags give the
1120 // protection required for stack memory.  We record this in an
1121 // executable as a PT_GNU_STACK segment.  If an object file does not
1122 // have a .note.GNU-stack segment, we must assume that it is an old
1123 // object.  On some targets that will force an executable stack.
1124
1125 void
1126 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1127 {
1128   if (!seen_gnu_stack)
1129     this->input_without_gnu_stack_note_ = true;
1130   else
1131     {
1132       this->input_with_gnu_stack_note_ = true;
1133       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1134         this->input_requires_executable_stack_ = true;
1135     }
1136 }
1137
1138 // Create automatic note sections.
1139
1140 void
1141 Layout::create_notes()
1142 {
1143   this->create_gold_note();
1144   this->create_executable_stack_info();
1145   this->create_build_id();
1146 }
1147
1148 // Create the dynamic sections which are needed before we read the
1149 // relocs.
1150
1151 void
1152 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1153 {
1154   if (parameters->doing_static_link())
1155     return;
1156
1157   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1158                                                        elfcpp::SHT_DYNAMIC,
1159                                                        (elfcpp::SHF_ALLOC
1160                                                         | elfcpp::SHF_WRITE),
1161                                                        false, false, true);
1162   this->dynamic_section_->set_is_relro();
1163
1164   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1165                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1166                                 elfcpp::STV_HIDDEN, 0, false, false);
1167
1168   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1169
1170   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1171 }
1172
1173 // For each output section whose name can be represented as C symbol,
1174 // define __start and __stop symbols for the section.  This is a GNU
1175 // extension.
1176
1177 void
1178 Layout::define_section_symbols(Symbol_table* symtab)
1179 {
1180   for (Section_list::const_iterator p = this->section_list_.begin();
1181        p != this->section_list_.end();
1182        ++p)
1183     {
1184       const char* const name = (*p)->name();
1185       if (name[strspn(name,
1186                       ("0123456789"
1187                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1188                        "abcdefghijklmnopqrstuvwxyz"
1189                        "_"))]
1190           == '\0')
1191         {
1192           const std::string name_string(name);
1193           const std::string start_name("__start_" + name_string);
1194           const std::string stop_name("__stop_" + name_string);
1195
1196           symtab->define_in_output_data(start_name.c_str(),
1197                                         NULL, // version
1198                                         *p,
1199                                         0, // value
1200                                         0, // symsize
1201                                         elfcpp::STT_NOTYPE,
1202                                         elfcpp::STB_GLOBAL,
1203                                         elfcpp::STV_DEFAULT,
1204                                         0, // nonvis
1205                                         false, // offset_is_from_end
1206                                         true); // only_if_ref
1207
1208           symtab->define_in_output_data(stop_name.c_str(),
1209                                         NULL, // version
1210                                         *p,
1211                                         0, // value
1212                                         0, // symsize
1213                                         elfcpp::STT_NOTYPE,
1214                                         elfcpp::STB_GLOBAL,
1215                                         elfcpp::STV_DEFAULT,
1216                                         0, // nonvis
1217                                         true, // offset_is_from_end
1218                                         true); // only_if_ref
1219         }
1220     }
1221 }
1222
1223 // Define symbols for group signatures.
1224
1225 void
1226 Layout::define_group_signatures(Symbol_table* symtab)
1227 {
1228   for (Group_signatures::iterator p = this->group_signatures_.begin();
1229        p != this->group_signatures_.end();
1230        ++p)
1231     {
1232       Symbol* sym = symtab->lookup(p->signature, NULL);
1233       if (sym != NULL)
1234         p->section->set_info_symndx(sym);
1235       else
1236         {
1237           // Force the name of the group section to the group
1238           // signature, and use the group's section symbol as the
1239           // signature symbol.
1240           if (strcmp(p->section->name(), p->signature) != 0)
1241             {
1242               const char* name = this->namepool_.add(p->signature,
1243                                                      true, NULL);
1244               p->section->set_name(name);
1245             }
1246           p->section->set_needs_symtab_index();
1247           p->section->set_info_section_symndx(p->section);
1248         }
1249     }
1250
1251   this->group_signatures_.clear();
1252 }
1253
1254 // Find the first read-only PT_LOAD segment, creating one if
1255 // necessary.
1256
1257 Output_segment*
1258 Layout::find_first_load_seg()
1259 {
1260   for (Segment_list::const_iterator p = this->segment_list_.begin();
1261        p != this->segment_list_.end();
1262        ++p)
1263     {
1264       if ((*p)->type() == elfcpp::PT_LOAD
1265           && ((*p)->flags() & elfcpp::PF_R) != 0
1266           && (parameters->options().omagic()
1267               || ((*p)->flags() & elfcpp::PF_W) == 0))
1268         return *p;
1269     }
1270
1271   gold_assert(!this->script_options_->saw_phdrs_clause());
1272
1273   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1274                                                        elfcpp::PF_R);
1275   return load_seg;
1276 }
1277
1278 // Save states of all current output segments.  Store saved states
1279 // in SEGMENT_STATES.
1280
1281 void
1282 Layout::save_segments(Segment_states* segment_states)
1283 {
1284   for (Segment_list::const_iterator p = this->segment_list_.begin();
1285        p != this->segment_list_.end();
1286        ++p)
1287     {
1288       Output_segment* segment = *p;
1289       // Shallow copy.
1290       Output_segment* copy = new Output_segment(*segment);
1291       (*segment_states)[segment] = copy;
1292     }
1293 }
1294
1295 // Restore states of output segments and delete any segment not found in
1296 // SEGMENT_STATES.
1297
1298 void
1299 Layout::restore_segments(const Segment_states* segment_states)
1300 {
1301   // Go through the segment list and remove any segment added in the
1302   // relaxation loop.
1303   this->tls_segment_ = NULL;
1304   this->relro_segment_ = NULL;
1305   Segment_list::iterator list_iter = this->segment_list_.begin();
1306   while (list_iter != this->segment_list_.end())
1307     {
1308       Output_segment* segment = *list_iter;
1309       Segment_states::const_iterator states_iter =
1310           segment_states->find(segment);
1311       if (states_iter != segment_states->end())
1312         {
1313           const Output_segment* copy = states_iter->second;
1314           // Shallow copy to restore states.
1315           *segment = *copy;
1316
1317           // Also fix up TLS and RELRO segment pointers as appropriate.
1318           if (segment->type() == elfcpp::PT_TLS)
1319             this->tls_segment_ = segment;
1320           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1321             this->relro_segment_ = segment;
1322
1323           ++list_iter;
1324         } 
1325       else
1326         {
1327           list_iter = this->segment_list_.erase(list_iter); 
1328           // This is a segment created during section layout.  It should be
1329           // safe to remove it since we should have removed all pointers to it.
1330           delete segment;
1331         }
1332     }
1333 }
1334
1335 // Clean up after relaxation so that sections can be laid out again.
1336
1337 void
1338 Layout::clean_up_after_relaxation()
1339 {
1340   // Restore the segments to point state just prior to the relaxation loop.
1341   Script_sections* script_section = this->script_options_->script_sections();
1342   script_section->release_segments();
1343   this->restore_segments(this->segment_states_);
1344
1345   // Reset section addresses and file offsets
1346   for (Section_list::iterator p = this->section_list_.begin();
1347        p != this->section_list_.end();
1348        ++p)
1349     {
1350       (*p)->reset_address_and_file_offset();
1351       (*p)->restore_states();
1352     }
1353   
1354   // Reset special output object address and file offsets.
1355   for (Data_list::iterator p = this->special_output_list_.begin();
1356        p != this->special_output_list_.end();
1357        ++p)
1358     (*p)->reset_address_and_file_offset();
1359
1360   // A linker script may have created some output section data objects.
1361   // They are useless now.
1362   for (Output_section_data_list::const_iterator p =
1363          this->script_output_section_data_list_.begin();
1364        p != this->script_output_section_data_list_.end();
1365        ++p)
1366     delete *p;
1367   this->script_output_section_data_list_.clear(); 
1368 }
1369
1370 // Prepare for relaxation.
1371
1372 void
1373 Layout::prepare_for_relaxation()
1374 {
1375   // Create an relaxation debug check if in debugging mode.
1376   if (is_debugging_enabled(DEBUG_RELAXATION))
1377     this->relaxation_debug_check_ = new Relaxation_debug_check();
1378
1379   // Save segment states.
1380   this->segment_states_ = new Segment_states();
1381   this->save_segments(this->segment_states_);
1382
1383   for(Section_list::const_iterator p = this->section_list_.begin();
1384       p != this->section_list_.end();
1385       ++p)
1386     (*p)->save_states();
1387
1388   if (is_debugging_enabled(DEBUG_RELAXATION))
1389     this->relaxation_debug_check_->check_output_data_for_reset_values(
1390         this->section_list_, this->special_output_list_);
1391
1392   // Also enable recording of output section data from scripts.
1393   this->record_output_section_data_from_script_ = true;
1394 }
1395
1396 // Relaxation loop body:  If target has no relaxation, this runs only once
1397 // Otherwise, the target relaxation hook is called at the end of
1398 // each iteration.  If the hook returns true, it means re-layout of
1399 // section is required.  
1400 //
1401 // The number of segments created by a linking script without a PHDRS
1402 // clause may be affected by section sizes and alignments.  There is
1403 // a remote chance that relaxation causes different number of PT_LOAD
1404 // segments are created and sections are attached to different segments.
1405 // Therefore, we always throw away all segments created during section
1406 // layout.  In order to be able to restart the section layout, we keep
1407 // a copy of the segment list right before the relaxation loop and use
1408 // that to restore the segments.
1409 // 
1410 // PASS is the current relaxation pass number. 
1411 // SYMTAB is a symbol table.
1412 // PLOAD_SEG is the address of a pointer for the load segment.
1413 // PHDR_SEG is a pointer to the PHDR segment.
1414 // SEGMENT_HEADERS points to the output segment header.
1415 // FILE_HEADER points to the output file header.
1416 // PSHNDX is the address to store the output section index.
1417
1418 off_t inline
1419 Layout::relaxation_loop_body(
1420     int pass,
1421     Target* target,
1422     Symbol_table* symtab,
1423     Output_segment** pload_seg,
1424     Output_segment* phdr_seg,
1425     Output_segment_headers* segment_headers,
1426     Output_file_header* file_header,
1427     unsigned int* pshndx)
1428 {
1429   // If this is not the first iteration, we need to clean up after
1430   // relaxation so that we can lay out the sections again.
1431   if (pass != 0)
1432     this->clean_up_after_relaxation();
1433
1434   // If there is a SECTIONS clause, put all the input sections into
1435   // the required order.
1436   Output_segment* load_seg;
1437   if (this->script_options_->saw_sections_clause())
1438     load_seg = this->set_section_addresses_from_script(symtab);
1439   else if (parameters->options().relocatable())
1440     load_seg = NULL;
1441   else
1442     load_seg = this->find_first_load_seg();
1443
1444   if (parameters->options().oformat_enum()
1445       != General_options::OBJECT_FORMAT_ELF)
1446     load_seg = NULL;
1447
1448   gold_assert(phdr_seg == NULL
1449               || load_seg != NULL
1450               || this->script_options_->saw_sections_clause());
1451
1452   // Lay out the segment headers.
1453   if (!parameters->options().relocatable())
1454     {
1455       gold_assert(segment_headers != NULL);
1456       if (load_seg != NULL)
1457         load_seg->add_initial_output_data(segment_headers);
1458       if (phdr_seg != NULL)
1459         phdr_seg->add_initial_output_data(segment_headers);
1460     }
1461
1462   // Lay out the file header.
1463   if (load_seg != NULL)
1464     load_seg->add_initial_output_data(file_header);
1465
1466   if (this->script_options_->saw_phdrs_clause()
1467       && !parameters->options().relocatable())
1468     {
1469       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1470       // clause in a linker script.
1471       Script_sections* ss = this->script_options_->script_sections();
1472       ss->put_headers_in_phdrs(file_header, segment_headers);
1473     }
1474
1475   // We set the output section indexes in set_segment_offsets and
1476   // set_section_indexes.
1477   *pshndx = 1;
1478
1479   // Set the file offsets of all the segments, and all the sections
1480   // they contain.
1481   off_t off;
1482   if (!parameters->options().relocatable())
1483     off = this->set_segment_offsets(target, load_seg, pshndx);
1484   else
1485     off = this->set_relocatable_section_offsets(file_header, pshndx);
1486
1487    // Verify that the dummy relaxation does not change anything.
1488   if (is_debugging_enabled(DEBUG_RELAXATION))
1489     {
1490       if (pass == 0)
1491         this->relaxation_debug_check_->read_sections(this->section_list_);
1492       else
1493         this->relaxation_debug_check_->verify_sections(this->section_list_);
1494     }
1495
1496   *pload_seg = load_seg;
1497   return off;
1498 }
1499
1500 // Finalize the layout.  When this is called, we have created all the
1501 // output sections and all the output segments which are based on
1502 // input sections.  We have several things to do, and we have to do
1503 // them in the right order, so that we get the right results correctly
1504 // and efficiently.
1505
1506 // 1) Finalize the list of output segments and create the segment
1507 // table header.
1508
1509 // 2) Finalize the dynamic symbol table and associated sections.
1510
1511 // 3) Determine the final file offset of all the output segments.
1512
1513 // 4) Determine the final file offset of all the SHF_ALLOC output
1514 // sections.
1515
1516 // 5) Create the symbol table sections and the section name table
1517 // section.
1518
1519 // 6) Finalize the symbol table: set symbol values to their final
1520 // value and make a final determination of which symbols are going
1521 // into the output symbol table.
1522
1523 // 7) Create the section table header.
1524
1525 // 8) Determine the final file offset of all the output sections which
1526 // are not SHF_ALLOC, including the section table header.
1527
1528 // 9) Finalize the ELF file header.
1529
1530 // This function returns the size of the output file.
1531
1532 off_t
1533 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1534                  Target* target, const Task* task)
1535 {
1536   target->finalize_sections(this, input_objects);
1537
1538   this->count_local_symbols(task, input_objects);
1539
1540   this->link_stabs_sections();
1541
1542   Output_segment* phdr_seg = NULL;
1543   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1544     {
1545       // There was a dynamic object in the link.  We need to create
1546       // some information for the dynamic linker.
1547
1548       // Create the PT_PHDR segment which will hold the program
1549       // headers.
1550       if (!this->script_options_->saw_phdrs_clause())
1551         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1552
1553       // Create the dynamic symbol table, including the hash table.
1554       Output_section* dynstr;
1555       std::vector<Symbol*> dynamic_symbols;
1556       unsigned int local_dynamic_count;
1557       Versions versions(*this->script_options()->version_script_info(),
1558                         &this->dynpool_);
1559       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1560                                   &local_dynamic_count, &dynamic_symbols,
1561                                   &versions);
1562
1563       // Create the .interp section to hold the name of the
1564       // interpreter, and put it in a PT_INTERP segment.
1565       if (!parameters->options().shared())
1566         this->create_interp(target);
1567
1568       // Finish the .dynamic section to hold the dynamic data, and put
1569       // it in a PT_DYNAMIC segment.
1570       this->finish_dynamic_section(input_objects, symtab);
1571
1572       // We should have added everything we need to the dynamic string
1573       // table.
1574       this->dynpool_.set_string_offsets();
1575
1576       // Create the version sections.  We can't do this until the
1577       // dynamic string table is complete.
1578       this->create_version_sections(&versions, symtab, local_dynamic_count,
1579                                     dynamic_symbols, dynstr);
1580     }
1581   
1582   if (this->incremental_inputs_)
1583     {
1584       this->incremental_inputs_->finalize();
1585       this->create_incremental_info_sections();
1586     }
1587
1588   // Create segment headers.
1589   Output_segment_headers* segment_headers =
1590     (parameters->options().relocatable()
1591      ? NULL
1592      : new Output_segment_headers(this->segment_list_));
1593
1594   // Lay out the file header.
1595   Output_file_header* file_header
1596     = new Output_file_header(target, symtab, segment_headers,
1597                              parameters->options().entry());
1598
1599   this->special_output_list_.push_back(file_header);
1600   if (segment_headers != NULL)
1601     this->special_output_list_.push_back(segment_headers);
1602
1603   // Find approriate places for orphan output sections if we are using
1604   // a linker script.
1605   if (this->script_options_->saw_sections_clause())
1606     this->place_orphan_sections_in_script();
1607   
1608   Output_segment* load_seg;
1609   off_t off;
1610   unsigned int shndx;
1611   int pass = 0;
1612
1613   // Take a snapshot of the section layout as needed.
1614   if (target->may_relax())
1615     this->prepare_for_relaxation();
1616   
1617   // Run the relaxation loop to lay out sections.
1618   do
1619     {
1620       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1621                                        phdr_seg, segment_headers, file_header,
1622                                        &shndx);
1623       pass++;
1624     }
1625   while (target->may_relax()
1626          && target->relax(pass, input_objects, symtab, this));
1627
1628   // Set the file offsets of all the non-data sections we've seen so
1629   // far which don't have to wait for the input sections.  We need
1630   // this in order to finalize local symbols in non-allocated
1631   // sections.
1632   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1633
1634   // Set the section indexes of all unallocated sections seen so far,
1635   // in case any of them are somehow referenced by a symbol.
1636   shndx = this->set_section_indexes(shndx);
1637
1638   // Create the symbol table sections.
1639   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1640   if (!parameters->doing_static_link())
1641     this->assign_local_dynsym_offsets(input_objects);
1642
1643   // Process any symbol assignments from a linker script.  This must
1644   // be called after the symbol table has been finalized.
1645   this->script_options_->finalize_symbols(symtab, this);
1646
1647   // Create the .shstrtab section.
1648   Output_section* shstrtab_section = this->create_shstrtab();
1649
1650   // Set the file offsets of the rest of the non-data sections which
1651   // don't have to wait for the input sections.
1652   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1653
1654   // Now that all sections have been created, set the section indexes
1655   // for any sections which haven't been done yet.
1656   shndx = this->set_section_indexes(shndx);
1657
1658   // Create the section table header.
1659   this->create_shdrs(shstrtab_section, &off);
1660
1661   // If there are no sections which require postprocessing, we can
1662   // handle the section names now, and avoid a resize later.
1663   if (!this->any_postprocessing_sections_)
1664     off = this->set_section_offsets(off,
1665                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1666
1667   file_header->set_section_info(this->section_headers_, shstrtab_section);
1668
1669   // Now we know exactly where everything goes in the output file
1670   // (except for non-allocated sections which require postprocessing).
1671   Output_data::layout_complete();
1672
1673   this->output_file_size_ = off;
1674
1675   return off;
1676 }
1677
1678 // Create a note header following the format defined in the ELF ABI.
1679 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1680 // of the section to create, DESCSZ is the size of the descriptor.
1681 // ALLOCATE is true if the section should be allocated in memory.
1682 // This returns the new note section.  It sets *TRAILING_PADDING to
1683 // the number of trailing zero bytes required.
1684
1685 Output_section*
1686 Layout::create_note(const char* name, int note_type,
1687                     const char* section_name, size_t descsz,
1688                     bool allocate, size_t* trailing_padding)
1689 {
1690   // Authorities all agree that the values in a .note field should
1691   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1692   // they differ on what the alignment is for 64-bit binaries.
1693   // The GABI says unambiguously they take 8-byte alignment:
1694   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1695   // Other documentation says alignment should always be 4 bytes:
1696   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1697   // GNU ld and GNU readelf both support the latter (at least as of
1698   // version 2.16.91), and glibc always generates the latter for
1699   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1700   // here.
1701 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1702   const int size = parameters->target().get_size();
1703 #else
1704   const int size = 32;
1705 #endif
1706
1707   // The contents of the .note section.
1708   size_t namesz = strlen(name) + 1;
1709   size_t aligned_namesz = align_address(namesz, size / 8);
1710   size_t aligned_descsz = align_address(descsz, size / 8);
1711
1712   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1713
1714   unsigned char* buffer = new unsigned char[notehdrsz];
1715   memset(buffer, 0, notehdrsz);
1716
1717   bool is_big_endian = parameters->target().is_big_endian();
1718
1719   if (size == 32)
1720     {
1721       if (!is_big_endian)
1722         {
1723           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1724           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1725           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1726         }
1727       else
1728         {
1729           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1730           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1731           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1732         }
1733     }
1734   else if (size == 64)
1735     {
1736       if (!is_big_endian)
1737         {
1738           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1739           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1740           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1741         }
1742       else
1743         {
1744           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1745           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1746           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1747         }
1748     }
1749   else
1750     gold_unreachable();
1751
1752   memcpy(buffer + 3 * (size / 8), name, namesz);
1753
1754   elfcpp::Elf_Xword flags = 0;
1755   if (allocate)
1756     flags = elfcpp::SHF_ALLOC;
1757   Output_section* os = this->choose_output_section(NULL, section_name,
1758                                                    elfcpp::SHT_NOTE,
1759                                                    flags, false, false,
1760                                                    false);
1761   if (os == NULL)
1762     return NULL;
1763
1764   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1765                                                            size / 8,
1766                                                            "** note header");
1767   os->add_output_section_data(posd);
1768
1769   *trailing_padding = aligned_descsz - descsz;
1770
1771   return os;
1772 }
1773
1774 // For an executable or shared library, create a note to record the
1775 // version of gold used to create the binary.
1776
1777 void
1778 Layout::create_gold_note()
1779 {
1780   if (parameters->options().relocatable())
1781     return;
1782
1783   std::string desc = std::string("gold ") + gold::get_version_string();
1784
1785   size_t trailing_padding;
1786   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1787                                          ".note.gnu.gold-version", desc.size(),
1788                                          false, &trailing_padding);
1789   if (os == NULL)
1790     return;
1791
1792   Output_section_data* posd = new Output_data_const(desc, 4);
1793   os->add_output_section_data(posd);
1794
1795   if (trailing_padding > 0)
1796     {
1797       posd = new Output_data_zero_fill(trailing_padding, 0);
1798       os->add_output_section_data(posd);
1799     }
1800 }
1801
1802 // Record whether the stack should be executable.  This can be set
1803 // from the command line using the -z execstack or -z noexecstack
1804 // options.  Otherwise, if any input file has a .note.GNU-stack
1805 // section with the SHF_EXECINSTR flag set, the stack should be
1806 // executable.  Otherwise, if at least one input file a
1807 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1808 // section, we use the target default for whether the stack should be
1809 // executable.  Otherwise, we don't generate a stack note.  When
1810 // generating a object file, we create a .note.GNU-stack section with
1811 // the appropriate marking.  When generating an executable or shared
1812 // library, we create a PT_GNU_STACK segment.
1813
1814 void
1815 Layout::create_executable_stack_info()
1816 {
1817   bool is_stack_executable;
1818   if (parameters->options().is_execstack_set())
1819     is_stack_executable = parameters->options().is_stack_executable();
1820   else if (!this->input_with_gnu_stack_note_)
1821     return;
1822   else
1823     {
1824       if (this->input_requires_executable_stack_)
1825         is_stack_executable = true;
1826       else if (this->input_without_gnu_stack_note_)
1827         is_stack_executable =
1828           parameters->target().is_default_stack_executable();
1829       else
1830         is_stack_executable = false;
1831     }
1832
1833   if (parameters->options().relocatable())
1834     {
1835       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1836       elfcpp::Elf_Xword flags = 0;
1837       if (is_stack_executable)
1838         flags |= elfcpp::SHF_EXECINSTR;
1839       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, false,
1840                                 false);
1841     }
1842   else
1843     {
1844       if (this->script_options_->saw_phdrs_clause())
1845         return;
1846       int flags = elfcpp::PF_R | elfcpp::PF_W;
1847       if (is_stack_executable)
1848         flags |= elfcpp::PF_X;
1849       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1850     }
1851 }
1852
1853 // If --build-id was used, set up the build ID note.
1854
1855 void
1856 Layout::create_build_id()
1857 {
1858   if (!parameters->options().user_set_build_id())
1859     return;
1860
1861   const char* style = parameters->options().build_id();
1862   if (strcmp(style, "none") == 0)
1863     return;
1864
1865   // Set DESCSZ to the size of the note descriptor.  When possible,
1866   // set DESC to the note descriptor contents.
1867   size_t descsz;
1868   std::string desc;
1869   if (strcmp(style, "md5") == 0)
1870     descsz = 128 / 8;
1871   else if (strcmp(style, "sha1") == 0)
1872     descsz = 160 / 8;
1873   else if (strcmp(style, "uuid") == 0)
1874     {
1875       const size_t uuidsz = 128 / 8;
1876
1877       char buffer[uuidsz];
1878       memset(buffer, 0, uuidsz);
1879
1880       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1881       if (descriptor < 0)
1882         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1883                    strerror(errno));
1884       else
1885         {
1886           ssize_t got = ::read(descriptor, buffer, uuidsz);
1887           release_descriptor(descriptor, true);
1888           if (got < 0)
1889             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1890           else if (static_cast<size_t>(got) != uuidsz)
1891             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1892                        uuidsz, got);
1893         }
1894
1895       desc.assign(buffer, uuidsz);
1896       descsz = uuidsz;
1897     }
1898   else if (strncmp(style, "0x", 2) == 0)
1899     {
1900       hex_init();
1901       const char* p = style + 2;
1902       while (*p != '\0')
1903         {
1904           if (hex_p(p[0]) && hex_p(p[1]))
1905             {
1906               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1907               desc += c;
1908               p += 2;
1909             }
1910           else if (*p == '-' || *p == ':')
1911             ++p;
1912           else
1913             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1914                        style);
1915         }
1916       descsz = desc.size();
1917     }
1918   else
1919     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1920
1921   // Create the note.
1922   size_t trailing_padding;
1923   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1924                                          ".note.gnu.build-id", descsz, true,
1925                                          &trailing_padding);
1926   if (os == NULL)
1927     return;
1928
1929   if (!desc.empty())
1930     {
1931       // We know the value already, so we fill it in now.
1932       gold_assert(desc.size() == descsz);
1933
1934       Output_section_data* posd = new Output_data_const(desc, 4);
1935       os->add_output_section_data(posd);
1936
1937       if (trailing_padding != 0)
1938         {
1939           posd = new Output_data_zero_fill(trailing_padding, 0);
1940           os->add_output_section_data(posd);
1941         }
1942     }
1943   else
1944     {
1945       // We need to compute a checksum after we have completed the
1946       // link.
1947       gold_assert(trailing_padding == 0);
1948       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1949       os->add_output_section_data(this->build_id_note_);
1950     }
1951 }
1952
1953 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1954 // field of the former should point to the latter.  I'm not sure who
1955 // started this, but the GNU linker does it, and some tools depend
1956 // upon it.
1957
1958 void
1959 Layout::link_stabs_sections()
1960 {
1961   if (!this->have_stabstr_section_)
1962     return;
1963
1964   for (Section_list::iterator p = this->section_list_.begin();
1965        p != this->section_list_.end();
1966        ++p)
1967     {
1968       if ((*p)->type() != elfcpp::SHT_STRTAB)
1969         continue;
1970
1971       const char* name = (*p)->name();
1972       if (strncmp(name, ".stab", 5) != 0)
1973         continue;
1974
1975       size_t len = strlen(name);
1976       if (strcmp(name + len - 3, "str") != 0)
1977         continue;
1978
1979       std::string stab_name(name, len - 3);
1980       Output_section* stab_sec;
1981       stab_sec = this->find_output_section(stab_name.c_str());
1982       if (stab_sec != NULL)
1983         stab_sec->set_link_section(*p);
1984     }
1985 }
1986
1987 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1988 // for the next run of incremental linking to check what has changed.
1989
1990 void
1991 Layout::create_incremental_info_sections()
1992 {
1993   gold_assert(this->incremental_inputs_ != NULL);
1994
1995   // Add the .gnu_incremental_inputs section.
1996   const char *incremental_inputs_name =
1997     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
1998   Output_section* inputs_os =
1999     this->make_output_section(incremental_inputs_name,
2000                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2001                               false, false);
2002   Output_section_data* posd =
2003       this->incremental_inputs_->create_incremental_inputs_section_data();
2004   inputs_os->add_output_section_data(posd);
2005   
2006   // Add the .gnu_incremental_strtab section.
2007   const char *incremental_strtab_name =
2008     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2009   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2010                                                         elfcpp::SHT_STRTAB,
2011                                                         0, false, false);
2012   Output_data_strtab* strtab_data =
2013     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2014   strtab_os->add_output_section_data(strtab_data);
2015   
2016   inputs_os->set_link_section(strtab_data);
2017 }
2018
2019 // Return whether SEG1 should be before SEG2 in the output file.  This
2020 // is based entirely on the segment type and flags.  When this is
2021 // called the segment addresses has normally not yet been set.
2022
2023 bool
2024 Layout::segment_precedes(const Output_segment* seg1,
2025                          const Output_segment* seg2)
2026 {
2027   elfcpp::Elf_Word type1 = seg1->type();
2028   elfcpp::Elf_Word type2 = seg2->type();
2029
2030   // The single PT_PHDR segment is required to precede any loadable
2031   // segment.  We simply make it always first.
2032   if (type1 == elfcpp::PT_PHDR)
2033     {
2034       gold_assert(type2 != elfcpp::PT_PHDR);
2035       return true;
2036     }
2037   if (type2 == elfcpp::PT_PHDR)
2038     return false;
2039
2040   // The single PT_INTERP segment is required to precede any loadable
2041   // segment.  We simply make it always second.
2042   if (type1 == elfcpp::PT_INTERP)
2043     {
2044       gold_assert(type2 != elfcpp::PT_INTERP);
2045       return true;
2046     }
2047   if (type2 == elfcpp::PT_INTERP)
2048     return false;
2049
2050   // We then put PT_LOAD segments before any other segments.
2051   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2052     return true;
2053   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2054     return false;
2055
2056   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2057   // segment, because that is where the dynamic linker expects to find
2058   // it (this is just for efficiency; other positions would also work
2059   // correctly).
2060   if (type1 == elfcpp::PT_TLS
2061       && type2 != elfcpp::PT_TLS
2062       && type2 != elfcpp::PT_GNU_RELRO)
2063     return false;
2064   if (type2 == elfcpp::PT_TLS
2065       && type1 != elfcpp::PT_TLS
2066       && type1 != elfcpp::PT_GNU_RELRO)
2067     return true;
2068
2069   // We put the PT_GNU_RELRO segment last, because that is where the
2070   // dynamic linker expects to find it (as with PT_TLS, this is just
2071   // for efficiency).
2072   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2073     return false;
2074   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2075     return true;
2076
2077   const elfcpp::Elf_Word flags1 = seg1->flags();
2078   const elfcpp::Elf_Word flags2 = seg2->flags();
2079
2080   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2081   // by the numeric segment type and flags values.  There should not
2082   // be more than one segment with the same type and flags.
2083   if (type1 != elfcpp::PT_LOAD)
2084     {
2085       if (type1 != type2)
2086         return type1 < type2;
2087       gold_assert(flags1 != flags2);
2088       return flags1 < flags2;
2089     }
2090
2091   // If the addresses are set already, sort by load address.
2092   if (seg1->are_addresses_set())
2093     {
2094       if (!seg2->are_addresses_set())
2095         return true;
2096
2097       unsigned int section_count1 = seg1->output_section_count();
2098       unsigned int section_count2 = seg2->output_section_count();
2099       if (section_count1 == 0 && section_count2 > 0)
2100         return true;
2101       if (section_count1 > 0 && section_count2 == 0)
2102         return false;
2103
2104       uint64_t paddr1 = seg1->first_section_load_address();
2105       uint64_t paddr2 = seg2->first_section_load_address();
2106       if (paddr1 != paddr2)
2107         return paddr1 < paddr2;
2108     }
2109   else if (seg2->are_addresses_set())
2110     return false;
2111
2112   // A segment which holds large data comes after a segment which does
2113   // not hold large data.
2114   if (seg1->is_large_data_segment())
2115     {
2116       if (!seg2->is_large_data_segment())
2117         return false;
2118     }
2119   else if (seg2->is_large_data_segment())
2120     return true;
2121
2122   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2123   // segments come before writable segments.  Then writable segments
2124   // with data come before writable segments without data.  Then
2125   // executable segments come before non-executable segments.  Then
2126   // the unlikely case of a non-readable segment comes before the
2127   // normal case of a readable segment.  If there are multiple
2128   // segments with the same type and flags, we require that the
2129   // address be set, and we sort by virtual address and then physical
2130   // address.
2131   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2132     return (flags1 & elfcpp::PF_W) == 0;
2133   if ((flags1 & elfcpp::PF_W) != 0
2134       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2135     return seg1->has_any_data_sections();
2136   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2137     return (flags1 & elfcpp::PF_X) != 0;
2138   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2139     return (flags1 & elfcpp::PF_R) == 0;
2140
2141   // We shouldn't get here--we shouldn't create segments which we
2142   // can't distinguish.
2143   gold_unreachable();
2144 }
2145
2146 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2147
2148 static off_t
2149 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2150 {
2151   uint64_t unsigned_off = off;
2152   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2153                           | (addr & (abi_pagesize - 1)));
2154   if (aligned_off < unsigned_off)
2155     aligned_off += abi_pagesize;
2156   return aligned_off;
2157 }
2158
2159 // Set the file offsets of all the segments, and all the sections they
2160 // contain.  They have all been created.  LOAD_SEG must be be laid out
2161 // first.  Return the offset of the data to follow.
2162
2163 off_t
2164 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2165                             unsigned int *pshndx)
2166 {
2167   // Sort them into the final order.
2168   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2169             Layout::Compare_segments());
2170
2171   // Find the PT_LOAD segments, and set their addresses and offsets
2172   // and their section's addresses and offsets.
2173   uint64_t addr;
2174   if (parameters->options().user_set_Ttext())
2175     addr = parameters->options().Ttext();
2176   else if (parameters->options().output_is_position_independent())
2177     addr = 0;
2178   else
2179     addr = target->default_text_segment_address();
2180   off_t off = 0;
2181
2182   // If LOAD_SEG is NULL, then the file header and segment headers
2183   // will not be loadable.  But they still need to be at offset 0 in
2184   // the file.  Set their offsets now.
2185   if (load_seg == NULL)
2186     {
2187       for (Data_list::iterator p = this->special_output_list_.begin();
2188            p != this->special_output_list_.end();
2189            ++p)
2190         {
2191           off = align_address(off, (*p)->addralign());
2192           (*p)->set_address_and_file_offset(0, off);
2193           off += (*p)->data_size();
2194         }
2195     }
2196
2197   const bool check_sections = parameters->options().check_sections();
2198   Output_segment* last_load_segment = NULL;
2199
2200   bool was_readonly = false;
2201   for (Segment_list::iterator p = this->segment_list_.begin();
2202        p != this->segment_list_.end();
2203        ++p)
2204     {
2205       if ((*p)->type() == elfcpp::PT_LOAD)
2206         {
2207           if (load_seg != NULL && load_seg != *p)
2208             gold_unreachable();
2209           load_seg = NULL;
2210
2211           bool are_addresses_set = (*p)->are_addresses_set();
2212           if (are_addresses_set)
2213             {
2214               // When it comes to setting file offsets, we care about
2215               // the physical address.
2216               addr = (*p)->paddr();
2217             }
2218           else if (parameters->options().user_set_Tdata()
2219                    && ((*p)->flags() & elfcpp::PF_W) != 0
2220                    && (!parameters->options().user_set_Tbss()
2221                        || (*p)->has_any_data_sections()))
2222             {
2223               addr = parameters->options().Tdata();
2224               are_addresses_set = true;
2225             }
2226           else if (parameters->options().user_set_Tbss()
2227                    && ((*p)->flags() & elfcpp::PF_W) != 0
2228                    && !(*p)->has_any_data_sections())
2229             {
2230               addr = parameters->options().Tbss();
2231               are_addresses_set = true;
2232             }
2233
2234           uint64_t orig_addr = addr;
2235           uint64_t orig_off = off;
2236
2237           uint64_t aligned_addr = 0;
2238           uint64_t abi_pagesize = target->abi_pagesize();
2239           uint64_t common_pagesize = target->common_pagesize();
2240
2241           if (!parameters->options().nmagic()
2242               && !parameters->options().omagic())
2243             (*p)->set_minimum_p_align(common_pagesize);
2244
2245           if (!are_addresses_set)
2246             {
2247               // If the last segment was readonly, and this one is
2248               // not, then skip the address forward one page,
2249               // maintaining the same position within the page.  This
2250               // lets us store both segments overlapping on a single
2251               // page in the file, but the loader will put them on
2252               // different pages in memory.
2253
2254               addr = align_address(addr, (*p)->maximum_alignment());
2255               aligned_addr = addr;
2256
2257               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2258                 {
2259                   if ((addr & (abi_pagesize - 1)) != 0)
2260                     addr = addr + abi_pagesize;
2261                 }
2262
2263               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2264             }
2265
2266           if (!parameters->options().nmagic()
2267               && !parameters->options().omagic())
2268             off = align_file_offset(off, addr, abi_pagesize);
2269           else if (load_seg == NULL)
2270             {
2271               // This is -N or -n with a section script which prevents
2272               // us from using a load segment.  We need to ensure that
2273               // the file offset is aligned to the alignment of the
2274               // segment.  This is because the linker script
2275               // implicitly assumed a zero offset.  If we don't align
2276               // here, then the alignment of the sections in the
2277               // linker script may not match the alignment of the
2278               // sections in the set_section_addresses call below,
2279               // causing an error about dot moving backward.
2280               off = align_address(off, (*p)->maximum_alignment());
2281             }
2282
2283           unsigned int shndx_hold = *pshndx;
2284           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2285                                                           &off, pshndx);
2286
2287           // Now that we know the size of this segment, we may be able
2288           // to save a page in memory, at the cost of wasting some
2289           // file space, by instead aligning to the start of a new
2290           // page.  Here we use the real machine page size rather than
2291           // the ABI mandated page size.
2292
2293           if (!are_addresses_set && aligned_addr != addr)
2294             {
2295               uint64_t first_off = (common_pagesize
2296                                     - (aligned_addr
2297                                        & (common_pagesize - 1)));
2298               uint64_t last_off = new_addr & (common_pagesize - 1);
2299               if (first_off > 0
2300                   && last_off > 0
2301                   && ((aligned_addr & ~ (common_pagesize - 1))
2302                       != (new_addr & ~ (common_pagesize - 1)))
2303                   && first_off + last_off <= common_pagesize)
2304                 {
2305                   *pshndx = shndx_hold;
2306                   addr = align_address(aligned_addr, common_pagesize);
2307                   addr = align_address(addr, (*p)->maximum_alignment());
2308                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2309                   off = align_file_offset(off, addr, abi_pagesize);
2310                   new_addr = (*p)->set_section_addresses(this, true, addr,
2311                                                          &off, pshndx);
2312                 }
2313             }
2314
2315           addr = new_addr;
2316
2317           if (((*p)->flags() & elfcpp::PF_W) == 0)
2318             was_readonly = true;
2319
2320           // Implement --check-sections.  We know that the segments
2321           // are sorted by LMA.
2322           if (check_sections && last_load_segment != NULL)
2323             {
2324               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2325               if (last_load_segment->paddr() + last_load_segment->memsz()
2326                   > (*p)->paddr())
2327                 {
2328                   unsigned long long lb1 = last_load_segment->paddr();
2329                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2330                   unsigned long long lb2 = (*p)->paddr();
2331                   unsigned long long le2 = lb2 + (*p)->memsz();
2332                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2333                                "[0x%llx -> 0x%llx]"),
2334                              lb1, le1, lb2, le2);
2335                 }
2336             }
2337           last_load_segment = *p;
2338         }
2339     }
2340
2341   // Handle the non-PT_LOAD segments, setting their offsets from their
2342   // section's offsets.
2343   for (Segment_list::iterator p = this->segment_list_.begin();
2344        p != this->segment_list_.end();
2345        ++p)
2346     {
2347       if ((*p)->type() != elfcpp::PT_LOAD)
2348         (*p)->set_offset();
2349     }
2350
2351   // Set the TLS offsets for each section in the PT_TLS segment.
2352   if (this->tls_segment_ != NULL)
2353     this->tls_segment_->set_tls_offsets();
2354
2355   return off;
2356 }
2357
2358 // Set the offsets of all the allocated sections when doing a
2359 // relocatable link.  This does the same jobs as set_segment_offsets,
2360 // only for a relocatable link.
2361
2362 off_t
2363 Layout::set_relocatable_section_offsets(Output_data* file_header,
2364                                         unsigned int *pshndx)
2365 {
2366   off_t off = 0;
2367
2368   file_header->set_address_and_file_offset(0, 0);
2369   off += file_header->data_size();
2370
2371   for (Section_list::iterator p = this->section_list_.begin();
2372        p != this->section_list_.end();
2373        ++p)
2374     {
2375       // We skip unallocated sections here, except that group sections
2376       // have to come first.
2377       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2378           && (*p)->type() != elfcpp::SHT_GROUP)
2379         continue;
2380
2381       off = align_address(off, (*p)->addralign());
2382
2383       // The linker script might have set the address.
2384       if (!(*p)->is_address_valid())
2385         (*p)->set_address(0);
2386       (*p)->set_file_offset(off);
2387       (*p)->finalize_data_size();
2388       off += (*p)->data_size();
2389
2390       (*p)->set_out_shndx(*pshndx);
2391       ++*pshndx;
2392     }
2393
2394   return off;
2395 }
2396
2397 // Set the file offset of all the sections not associated with a
2398 // segment.
2399
2400 off_t
2401 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2402 {
2403   for (Section_list::iterator p = this->unattached_section_list_.begin();
2404        p != this->unattached_section_list_.end();
2405        ++p)
2406     {
2407       // The symtab section is handled in create_symtab_sections.
2408       if (*p == this->symtab_section_)
2409         continue;
2410
2411       // If we've already set the data size, don't set it again.
2412       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2413         continue;
2414
2415       if (pass == BEFORE_INPUT_SECTIONS_PASS
2416           && (*p)->requires_postprocessing())
2417         {
2418           (*p)->create_postprocessing_buffer();
2419           this->any_postprocessing_sections_ = true;
2420         }
2421
2422       if (pass == BEFORE_INPUT_SECTIONS_PASS
2423           && (*p)->after_input_sections())
2424         continue;
2425       else if (pass == POSTPROCESSING_SECTIONS_PASS
2426                && (!(*p)->after_input_sections()
2427                    || (*p)->type() == elfcpp::SHT_STRTAB))
2428         continue;
2429       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2430                && (!(*p)->after_input_sections()
2431                    || (*p)->type() != elfcpp::SHT_STRTAB))
2432         continue;
2433
2434       off = align_address(off, (*p)->addralign());
2435       (*p)->set_file_offset(off);
2436       (*p)->finalize_data_size();
2437       off += (*p)->data_size();
2438
2439       // At this point the name must be set.
2440       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2441         this->namepool_.add((*p)->name(), false, NULL);
2442     }
2443   return off;
2444 }
2445
2446 // Set the section indexes of all the sections not associated with a
2447 // segment.
2448
2449 unsigned int
2450 Layout::set_section_indexes(unsigned int shndx)
2451 {
2452   for (Section_list::iterator p = this->unattached_section_list_.begin();
2453        p != this->unattached_section_list_.end();
2454        ++p)
2455     {
2456       if (!(*p)->has_out_shndx())
2457         {
2458           (*p)->set_out_shndx(shndx);
2459           ++shndx;
2460         }
2461     }
2462   return shndx;
2463 }
2464
2465 // Set the section addresses according to the linker script.  This is
2466 // only called when we see a SECTIONS clause.  This returns the
2467 // program segment which should hold the file header and segment
2468 // headers, if any.  It will return NULL if they should not be in a
2469 // segment.
2470
2471 Output_segment*
2472 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2473 {
2474   Script_sections* ss = this->script_options_->script_sections();
2475   gold_assert(ss->saw_sections_clause());
2476   return this->script_options_->set_section_addresses(symtab, this);
2477 }
2478
2479 // Place the orphan sections in the linker script.
2480
2481 void
2482 Layout::place_orphan_sections_in_script()
2483 {
2484   Script_sections* ss = this->script_options_->script_sections();
2485   gold_assert(ss->saw_sections_clause());
2486
2487   // Place each orphaned output section in the script.
2488   for (Section_list::iterator p = this->section_list_.begin();
2489        p != this->section_list_.end();
2490        ++p)
2491     {
2492       if (!(*p)->found_in_sections_clause())
2493         ss->place_orphan(*p);
2494     }
2495 }
2496
2497 // Count the local symbols in the regular symbol table and the dynamic
2498 // symbol table, and build the respective string pools.
2499
2500 void
2501 Layout::count_local_symbols(const Task* task,
2502                             const Input_objects* input_objects)
2503 {
2504   // First, figure out an upper bound on the number of symbols we'll
2505   // be inserting into each pool.  This helps us create the pools with
2506   // the right size, to avoid unnecessary hashtable resizing.
2507   unsigned int symbol_count = 0;
2508   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2509        p != input_objects->relobj_end();
2510        ++p)
2511     symbol_count += (*p)->local_symbol_count();
2512
2513   // Go from "upper bound" to "estimate."  We overcount for two
2514   // reasons: we double-count symbols that occur in more than one
2515   // object file, and we count symbols that are dropped from the
2516   // output.  Add it all together and assume we overcount by 100%.
2517   symbol_count /= 2;
2518
2519   // We assume all symbols will go into both the sympool and dynpool.
2520   this->sympool_.reserve(symbol_count);
2521   this->dynpool_.reserve(symbol_count);
2522
2523   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2524        p != input_objects->relobj_end();
2525        ++p)
2526     {
2527       Task_lock_obj<Object> tlo(task, *p);
2528       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2529     }
2530 }
2531
2532 // Create the symbol table sections.  Here we also set the final
2533 // values of the symbols.  At this point all the loadable sections are
2534 // fully laid out.  SHNUM is the number of sections so far.
2535
2536 void
2537 Layout::create_symtab_sections(const Input_objects* input_objects,
2538                                Symbol_table* symtab,
2539                                unsigned int shnum,
2540                                off_t* poff)
2541 {
2542   int symsize;
2543   unsigned int align;
2544   if (parameters->target().get_size() == 32)
2545     {
2546       symsize = elfcpp::Elf_sizes<32>::sym_size;
2547       align = 4;
2548     }
2549   else if (parameters->target().get_size() == 64)
2550     {
2551       symsize = elfcpp::Elf_sizes<64>::sym_size;
2552       align = 8;
2553     }
2554   else
2555     gold_unreachable();
2556
2557   off_t off = *poff;
2558   off = align_address(off, align);
2559   off_t startoff = off;
2560
2561   // Save space for the dummy symbol at the start of the section.  We
2562   // never bother to write this out--it will just be left as zero.
2563   off += symsize;
2564   unsigned int local_symbol_index = 1;
2565
2566   // Add STT_SECTION symbols for each Output section which needs one.
2567   for (Section_list::iterator p = this->section_list_.begin();
2568        p != this->section_list_.end();
2569        ++p)
2570     {
2571       if (!(*p)->needs_symtab_index())
2572         (*p)->set_symtab_index(-1U);
2573       else
2574         {
2575           (*p)->set_symtab_index(local_symbol_index);
2576           ++local_symbol_index;
2577           off += symsize;
2578         }
2579     }
2580
2581   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2582        p != input_objects->relobj_end();
2583        ++p)
2584     {
2585       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2586                                                         off, symtab);
2587       off += (index - local_symbol_index) * symsize;
2588       local_symbol_index = index;
2589     }
2590
2591   unsigned int local_symcount = local_symbol_index;
2592   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2593
2594   off_t dynoff;
2595   size_t dyn_global_index;
2596   size_t dyncount;
2597   if (this->dynsym_section_ == NULL)
2598     {
2599       dynoff = 0;
2600       dyn_global_index = 0;
2601       dyncount = 0;
2602     }
2603   else
2604     {
2605       dyn_global_index = this->dynsym_section_->info();
2606       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2607       dynoff = this->dynsym_section_->offset() + locsize;
2608       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2609       gold_assert(static_cast<off_t>(dyncount * symsize)
2610                   == this->dynsym_section_->data_size() - locsize);
2611     }
2612
2613   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2614                          &this->sympool_, &local_symcount);
2615
2616   if (!parameters->options().strip_all())
2617     {
2618       this->sympool_.set_string_offsets();
2619
2620       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2621       Output_section* osymtab = this->make_output_section(symtab_name,
2622                                                           elfcpp::SHT_SYMTAB,
2623                                                           0, false, false);
2624       this->symtab_section_ = osymtab;
2625
2626       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2627                                                              align,
2628                                                              "** symtab");
2629       osymtab->add_output_section_data(pos);
2630
2631       // We generate a .symtab_shndx section if we have more than
2632       // SHN_LORESERVE sections.  Technically it is possible that we
2633       // don't need one, because it is possible that there are no
2634       // symbols in any of sections with indexes larger than
2635       // SHN_LORESERVE.  That is probably unusual, though, and it is
2636       // easier to always create one than to compute section indexes
2637       // twice (once here, once when writing out the symbols).
2638       if (shnum >= elfcpp::SHN_LORESERVE)
2639         {
2640           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2641                                                                false, NULL);
2642           Output_section* osymtab_xindex =
2643             this->make_output_section(symtab_xindex_name,
2644                                       elfcpp::SHT_SYMTAB_SHNDX, 0, false,
2645                                       false);
2646
2647           size_t symcount = (off - startoff) / symsize;
2648           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2649
2650           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2651
2652           osymtab_xindex->set_link_section(osymtab);
2653           osymtab_xindex->set_addralign(4);
2654           osymtab_xindex->set_entsize(4);
2655
2656           osymtab_xindex->set_after_input_sections();
2657
2658           // This tells the driver code to wait until the symbol table
2659           // has written out before writing out the postprocessing
2660           // sections, including the .symtab_shndx section.
2661           this->any_postprocessing_sections_ = true;
2662         }
2663
2664       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2665       Output_section* ostrtab = this->make_output_section(strtab_name,
2666                                                           elfcpp::SHT_STRTAB,
2667                                                           0, false, false);
2668
2669       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2670       ostrtab->add_output_section_data(pstr);
2671
2672       osymtab->set_file_offset(startoff);
2673       osymtab->finalize_data_size();
2674       osymtab->set_link_section(ostrtab);
2675       osymtab->set_info(local_symcount);
2676       osymtab->set_entsize(symsize);
2677
2678       *poff = off;
2679     }
2680 }
2681
2682 // Create the .shstrtab section, which holds the names of the
2683 // sections.  At the time this is called, we have created all the
2684 // output sections except .shstrtab itself.
2685
2686 Output_section*
2687 Layout::create_shstrtab()
2688 {
2689   // FIXME: We don't need to create a .shstrtab section if we are
2690   // stripping everything.
2691
2692   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2693
2694   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2695                                                  false, false);
2696
2697   // We can't write out this section until we've set all the section
2698   // names, and we don't set the names of compressed output sections
2699   // until relocations are complete.
2700   os->set_after_input_sections();
2701
2702   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2703   os->add_output_section_data(posd);
2704
2705   return os;
2706 }
2707
2708 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2709 // offset.
2710
2711 void
2712 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2713 {
2714   Output_section_headers* oshdrs;
2715   oshdrs = new Output_section_headers(this,
2716                                       &this->segment_list_,
2717                                       &this->section_list_,
2718                                       &this->unattached_section_list_,
2719                                       &this->namepool_,
2720                                       shstrtab_section);
2721   off_t off = align_address(*poff, oshdrs->addralign());
2722   oshdrs->set_address_and_file_offset(0, off);
2723   off += oshdrs->data_size();
2724   *poff = off;
2725   this->section_headers_ = oshdrs;
2726 }
2727
2728 // Count the allocated sections.
2729
2730 size_t
2731 Layout::allocated_output_section_count() const
2732 {
2733   size_t section_count = 0;
2734   for (Segment_list::const_iterator p = this->segment_list_.begin();
2735        p != this->segment_list_.end();
2736        ++p)
2737     section_count += (*p)->output_section_count();
2738   return section_count;
2739 }
2740
2741 // Create the dynamic symbol table.
2742
2743 void
2744 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2745                               Symbol_table* symtab,
2746                               Output_section **pdynstr,
2747                               unsigned int* plocal_dynamic_count,
2748                               std::vector<Symbol*>* pdynamic_symbols,
2749                               Versions* pversions)
2750 {
2751   // Count all the symbols in the dynamic symbol table, and set the
2752   // dynamic symbol indexes.
2753
2754   // Skip symbol 0, which is always all zeroes.
2755   unsigned int index = 1;
2756
2757   // Add STT_SECTION symbols for each Output section which needs one.
2758   for (Section_list::iterator p = this->section_list_.begin();
2759        p != this->section_list_.end();
2760        ++p)
2761     {
2762       if (!(*p)->needs_dynsym_index())
2763         (*p)->set_dynsym_index(-1U);
2764       else
2765         {
2766           (*p)->set_dynsym_index(index);
2767           ++index;
2768         }
2769     }
2770
2771   // Count the local symbols that need to go in the dynamic symbol table,
2772   // and set the dynamic symbol indexes.
2773   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2774        p != input_objects->relobj_end();
2775        ++p)
2776     {
2777       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2778       index = new_index;
2779     }
2780
2781   unsigned int local_symcount = index;
2782   *plocal_dynamic_count = local_symcount;
2783
2784   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2785                                      &this->dynpool_, pversions);
2786
2787   int symsize;
2788   unsigned int align;
2789   const int size = parameters->target().get_size();
2790   if (size == 32)
2791     {
2792       symsize = elfcpp::Elf_sizes<32>::sym_size;
2793       align = 4;
2794     }
2795   else if (size == 64)
2796     {
2797       symsize = elfcpp::Elf_sizes<64>::sym_size;
2798       align = 8;
2799     }
2800   else
2801     gold_unreachable();
2802
2803   // Create the dynamic symbol table section.
2804
2805   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2806                                                        elfcpp::SHT_DYNSYM,
2807                                                        elfcpp::SHF_ALLOC,
2808                                                        false, false, true);
2809
2810   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2811                                                            align,
2812                                                            "** dynsym");
2813   dynsym->add_output_section_data(odata);
2814
2815   dynsym->set_info(local_symcount);
2816   dynsym->set_entsize(symsize);
2817   dynsym->set_addralign(align);
2818
2819   this->dynsym_section_ = dynsym;
2820
2821   Output_data_dynamic* const odyn = this->dynamic_data_;
2822   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2823   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2824
2825   // If there are more than SHN_LORESERVE allocated sections, we
2826   // create a .dynsym_shndx section.  It is possible that we don't
2827   // need one, because it is possible that there are no dynamic
2828   // symbols in any of the sections with indexes larger than
2829   // SHN_LORESERVE.  This is probably unusual, though, and at this
2830   // time we don't know the actual section indexes so it is
2831   // inconvenient to check.
2832   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2833     {
2834       Output_section* dynsym_xindex =
2835         this->choose_output_section(NULL, ".dynsym_shndx",
2836                                     elfcpp::SHT_SYMTAB_SHNDX,
2837                                     elfcpp::SHF_ALLOC,
2838                                     false, false, true);
2839
2840       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2841
2842       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2843
2844       dynsym_xindex->set_link_section(dynsym);
2845       dynsym_xindex->set_addralign(4);
2846       dynsym_xindex->set_entsize(4);
2847
2848       dynsym_xindex->set_after_input_sections();
2849
2850       // This tells the driver code to wait until the symbol table has
2851       // written out before writing out the postprocessing sections,
2852       // including the .dynsym_shndx section.
2853       this->any_postprocessing_sections_ = true;
2854     }
2855
2856   // Create the dynamic string table section.
2857
2858   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2859                                                        elfcpp::SHT_STRTAB,
2860                                                        elfcpp::SHF_ALLOC,
2861                                                        false, false, true);
2862
2863   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2864   dynstr->add_output_section_data(strdata);
2865
2866   dynsym->set_link_section(dynstr);
2867   this->dynamic_section_->set_link_section(dynstr);
2868
2869   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2870   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2871
2872   *pdynstr = dynstr;
2873
2874   // Create the hash tables.
2875
2876   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2877       || strcmp(parameters->options().hash_style(), "both") == 0)
2878     {
2879       unsigned char* phash;
2880       unsigned int hashlen;
2881       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2882                                     &phash, &hashlen);
2883
2884       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2885                                                             elfcpp::SHT_HASH,
2886                                                             elfcpp::SHF_ALLOC,
2887                                                             false, false, true);
2888
2889       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2890                                                                    hashlen,
2891                                                                    align,
2892                                                                    "** hash");
2893       hashsec->add_output_section_data(hashdata);
2894
2895       hashsec->set_link_section(dynsym);
2896       hashsec->set_entsize(4);
2897
2898       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2899     }
2900
2901   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2902       || strcmp(parameters->options().hash_style(), "both") == 0)
2903     {
2904       unsigned char* phash;
2905       unsigned int hashlen;
2906       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2907                                     &phash, &hashlen);
2908
2909       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2910                                                             elfcpp::SHT_GNU_HASH,
2911                                                             elfcpp::SHF_ALLOC,
2912                                                             false, false, true);
2913
2914       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2915                                                                    hashlen,
2916                                                                    align,
2917                                                                    "** hash");
2918       hashsec->add_output_section_data(hashdata);
2919
2920       hashsec->set_link_section(dynsym);
2921       hashsec->set_entsize(4);
2922
2923       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2924     }
2925 }
2926
2927 // Assign offsets to each local portion of the dynamic symbol table.
2928
2929 void
2930 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2931 {
2932   Output_section* dynsym = this->dynsym_section_;
2933   gold_assert(dynsym != NULL);
2934
2935   off_t off = dynsym->offset();
2936
2937   // Skip the dummy symbol at the start of the section.
2938   off += dynsym->entsize();
2939
2940   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2941        p != input_objects->relobj_end();
2942        ++p)
2943     {
2944       unsigned int count = (*p)->set_local_dynsym_offset(off);
2945       off += count * dynsym->entsize();
2946     }
2947 }
2948
2949 // Create the version sections.
2950
2951 void
2952 Layout::create_version_sections(const Versions* versions,
2953                                 const Symbol_table* symtab,
2954                                 unsigned int local_symcount,
2955                                 const std::vector<Symbol*>& dynamic_symbols,
2956                                 const Output_section* dynstr)
2957 {
2958   if (!versions->any_defs() && !versions->any_needs())
2959     return;
2960
2961   switch (parameters->size_and_endianness())
2962     {
2963 #ifdef HAVE_TARGET_32_LITTLE
2964     case Parameters::TARGET_32_LITTLE:
2965       this->sized_create_version_sections<32, false>(versions, symtab,
2966                                                      local_symcount,
2967                                                      dynamic_symbols, dynstr);
2968       break;
2969 #endif
2970 #ifdef HAVE_TARGET_32_BIG
2971     case Parameters::TARGET_32_BIG:
2972       this->sized_create_version_sections<32, true>(versions, symtab,
2973                                                     local_symcount,
2974                                                     dynamic_symbols, dynstr);
2975       break;
2976 #endif
2977 #ifdef HAVE_TARGET_64_LITTLE
2978     case Parameters::TARGET_64_LITTLE:
2979       this->sized_create_version_sections<64, false>(versions, symtab,
2980                                                      local_symcount,
2981                                                      dynamic_symbols, dynstr);
2982       break;
2983 #endif
2984 #ifdef HAVE_TARGET_64_BIG
2985     case Parameters::TARGET_64_BIG:
2986       this->sized_create_version_sections<64, true>(versions, symtab,
2987                                                     local_symcount,
2988                                                     dynamic_symbols, dynstr);
2989       break;
2990 #endif
2991     default:
2992       gold_unreachable();
2993     }
2994 }
2995
2996 // Create the version sections, sized version.
2997
2998 template<int size, bool big_endian>
2999 void
3000 Layout::sized_create_version_sections(
3001     const Versions* versions,
3002     const Symbol_table* symtab,
3003     unsigned int local_symcount,
3004     const std::vector<Symbol*>& dynamic_symbols,
3005     const Output_section* dynstr)
3006 {
3007   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3008                                                      elfcpp::SHT_GNU_versym,
3009                                                      elfcpp::SHF_ALLOC,
3010                                                      false, false, true);
3011
3012   unsigned char* vbuf;
3013   unsigned int vsize;
3014   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3015                                                       local_symcount,
3016                                                       dynamic_symbols,
3017                                                       &vbuf, &vsize);
3018
3019   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3020                                                             "** versions");
3021
3022   vsec->add_output_section_data(vdata);
3023   vsec->set_entsize(2);
3024   vsec->set_link_section(this->dynsym_section_);
3025
3026   Output_data_dynamic* const odyn = this->dynamic_data_;
3027   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3028
3029   if (versions->any_defs())
3030     {
3031       Output_section* vdsec;
3032       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3033                                          elfcpp::SHT_GNU_verdef,
3034                                          elfcpp::SHF_ALLOC,
3035                                          false, false, true);
3036
3037       unsigned char* vdbuf;
3038       unsigned int vdsize;
3039       unsigned int vdentries;
3040       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3041                                                        &vdsize, &vdentries);
3042
3043       Output_section_data* vddata =
3044         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3045
3046       vdsec->add_output_section_data(vddata);
3047       vdsec->set_link_section(dynstr);
3048       vdsec->set_info(vdentries);
3049
3050       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3051       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3052     }
3053
3054   if (versions->any_needs())
3055     {
3056       Output_section* vnsec;
3057       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3058                                           elfcpp::SHT_GNU_verneed,
3059                                           elfcpp::SHF_ALLOC,
3060                                           false, false, true);
3061
3062       unsigned char* vnbuf;
3063       unsigned int vnsize;
3064       unsigned int vnentries;
3065       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3066                                                         &vnbuf, &vnsize,
3067                                                         &vnentries);
3068
3069       Output_section_data* vndata =
3070         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3071
3072       vnsec->add_output_section_data(vndata);
3073       vnsec->set_link_section(dynstr);
3074       vnsec->set_info(vnentries);
3075
3076       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3077       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3078     }
3079 }
3080
3081 // Create the .interp section and PT_INTERP segment.
3082
3083 void
3084 Layout::create_interp(const Target* target)
3085 {
3086   const char* interp = parameters->options().dynamic_linker();
3087   if (interp == NULL)
3088     {
3089       interp = target->dynamic_linker();
3090       gold_assert(interp != NULL);
3091     }
3092
3093   size_t len = strlen(interp) + 1;
3094
3095   Output_section_data* odata = new Output_data_const(interp, len, 1);
3096
3097   Output_section* osec = this->choose_output_section(NULL, ".interp",
3098                                                      elfcpp::SHT_PROGBITS,
3099                                                      elfcpp::SHF_ALLOC,
3100                                                      false, true, true);
3101   osec->add_output_section_data(odata);
3102
3103   if (!this->script_options_->saw_phdrs_clause())
3104     {
3105       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3106                                                        elfcpp::PF_R);
3107       oseg->add_output_section(osec, elfcpp::PF_R, false);
3108     }
3109 }
3110
3111 // Finish the .dynamic section and PT_DYNAMIC segment.
3112
3113 void
3114 Layout::finish_dynamic_section(const Input_objects* input_objects,
3115                                const Symbol_table* symtab)
3116 {
3117   if (!this->script_options_->saw_phdrs_clause())
3118     {
3119       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3120                                                        (elfcpp::PF_R
3121                                                         | elfcpp::PF_W));
3122       oseg->add_output_section(this->dynamic_section_,
3123                                elfcpp::PF_R | elfcpp::PF_W,
3124                                false);
3125     }
3126
3127   Output_data_dynamic* const odyn = this->dynamic_data_;
3128
3129   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3130        p != input_objects->dynobj_end();
3131        ++p)
3132     {
3133       if (!(*p)->is_needed()
3134           && (*p)->input_file()->options().as_needed())
3135         {
3136           // This dynamic object was linked with --as-needed, but it
3137           // is not needed.
3138           continue;
3139         }
3140
3141       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3142     }
3143
3144   if (parameters->options().shared())
3145     {
3146       const char* soname = parameters->options().soname();
3147       if (soname != NULL)
3148         odyn->add_string(elfcpp::DT_SONAME, soname);
3149     }
3150
3151   Symbol* sym = symtab->lookup(parameters->options().init());
3152   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3153     odyn->add_symbol(elfcpp::DT_INIT, sym);
3154
3155   sym = symtab->lookup(parameters->options().fini());
3156   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3157     odyn->add_symbol(elfcpp::DT_FINI, sym);
3158
3159   // Look for .init_array, .preinit_array and .fini_array by checking
3160   // section types.
3161   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3162       p != this->section_list_.end();
3163       ++p)
3164     switch((*p)->type())
3165       {
3166       case elfcpp::SHT_FINI_ARRAY:
3167         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3168         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3169         break;
3170       case elfcpp::SHT_INIT_ARRAY:
3171         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3172         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3173         break;
3174       case elfcpp::SHT_PREINIT_ARRAY:
3175         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3176         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3177         break;
3178       default:
3179         break;
3180       }
3181   
3182   // Add a DT_RPATH entry if needed.
3183   const General_options::Dir_list& rpath(parameters->options().rpath());
3184   if (!rpath.empty())
3185     {
3186       std::string rpath_val;
3187       for (General_options::Dir_list::const_iterator p = rpath.begin();
3188            p != rpath.end();
3189            ++p)
3190         {
3191           if (rpath_val.empty())
3192             rpath_val = p->name();
3193           else
3194             {
3195               // Eliminate duplicates.
3196               General_options::Dir_list::const_iterator q;
3197               for (q = rpath.begin(); q != p; ++q)
3198                 if (q->name() == p->name())
3199                   break;
3200               if (q == p)
3201                 {
3202                   rpath_val += ':';
3203                   rpath_val += p->name();
3204                 }
3205             }
3206         }
3207
3208       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3209       if (parameters->options().enable_new_dtags())
3210         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3211     }
3212
3213   // Look for text segments that have dynamic relocations.
3214   bool have_textrel = false;
3215   if (!this->script_options_->saw_sections_clause())
3216     {
3217       for (Segment_list::const_iterator p = this->segment_list_.begin();
3218            p != this->segment_list_.end();
3219            ++p)
3220         {
3221           if (((*p)->flags() & elfcpp::PF_W) == 0
3222               && (*p)->dynamic_reloc_count() > 0)
3223             {
3224               have_textrel = true;
3225               break;
3226             }
3227         }
3228     }
3229   else
3230     {
3231       // We don't know the section -> segment mapping, so we are
3232       // conservative and just look for readonly sections with
3233       // relocations.  If those sections wind up in writable segments,
3234       // then we have created an unnecessary DT_TEXTREL entry.
3235       for (Section_list::const_iterator p = this->section_list_.begin();
3236            p != this->section_list_.end();
3237            ++p)
3238         {
3239           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3240               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3241               && ((*p)->dynamic_reloc_count() > 0))
3242             {
3243               have_textrel = true;
3244               break;
3245             }
3246         }
3247     }
3248
3249   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3250   // post-link tools can easily modify these flags if desired.
3251   unsigned int flags = 0;
3252   if (have_textrel)
3253     {
3254       // Add a DT_TEXTREL for compatibility with older loaders.
3255       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3256       flags |= elfcpp::DF_TEXTREL;
3257     }
3258   if (parameters->options().shared() && this->has_static_tls())
3259     flags |= elfcpp::DF_STATIC_TLS;
3260   if (parameters->options().origin())
3261     flags |= elfcpp::DF_ORIGIN;
3262   if (parameters->options().Bsymbolic())
3263     {
3264       flags |= elfcpp::DF_SYMBOLIC;
3265       // Add DT_SYMBOLIC for compatibility with older loaders.
3266       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3267     }
3268   if (parameters->options().now())
3269     flags |= elfcpp::DF_BIND_NOW;
3270   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3271
3272   flags = 0;
3273   if (parameters->options().initfirst())
3274     flags |= elfcpp::DF_1_INITFIRST;
3275   if (parameters->options().interpose())
3276     flags |= elfcpp::DF_1_INTERPOSE;
3277   if (parameters->options().loadfltr())
3278     flags |= elfcpp::DF_1_LOADFLTR;
3279   if (parameters->options().nodefaultlib())
3280     flags |= elfcpp::DF_1_NODEFLIB;
3281   if (parameters->options().nodelete())
3282     flags |= elfcpp::DF_1_NODELETE;
3283   if (parameters->options().nodlopen())
3284     flags |= elfcpp::DF_1_NOOPEN;
3285   if (parameters->options().nodump())
3286     flags |= elfcpp::DF_1_NODUMP;
3287   if (!parameters->options().shared())
3288     flags &= ~(elfcpp::DF_1_INITFIRST
3289                | elfcpp::DF_1_NODELETE
3290                | elfcpp::DF_1_NOOPEN);
3291   if (parameters->options().origin())
3292     flags |= elfcpp::DF_1_ORIGIN;
3293   if (parameters->options().now())
3294     flags |= elfcpp::DF_1_NOW;
3295   if (flags)
3296     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3297 }
3298
3299 // The mapping of input section name prefixes to output section names.
3300 // In some cases one prefix is itself a prefix of another prefix; in
3301 // such a case the longer prefix must come first.  These prefixes are
3302 // based on the GNU linker default ELF linker script.
3303
3304 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3305 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3306 {
3307   MAPPING_INIT(".text.", ".text"),
3308   MAPPING_INIT(".ctors.", ".ctors"),
3309   MAPPING_INIT(".dtors.", ".dtors"),
3310   MAPPING_INIT(".rodata.", ".rodata"),
3311   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3312   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3313   MAPPING_INIT(".data.", ".data"),
3314   MAPPING_INIT(".bss.", ".bss"),
3315   MAPPING_INIT(".tdata.", ".tdata"),
3316   MAPPING_INIT(".tbss.", ".tbss"),
3317   MAPPING_INIT(".init_array.", ".init_array"),
3318   MAPPING_INIT(".fini_array.", ".fini_array"),
3319   MAPPING_INIT(".sdata.", ".sdata"),
3320   MAPPING_INIT(".sbss.", ".sbss"),
3321   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3322   // differently depending on whether it is creating a shared library.
3323   MAPPING_INIT(".sdata2.", ".sdata"),
3324   MAPPING_INIT(".sbss2.", ".sbss"),
3325   MAPPING_INIT(".lrodata.", ".lrodata"),
3326   MAPPING_INIT(".ldata.", ".ldata"),
3327   MAPPING_INIT(".lbss.", ".lbss"),
3328   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3329   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3330   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3331   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3332   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3333   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3334   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3335   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3336   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3337   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3338   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3339   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3340   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3341   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3342   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3343   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3344   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3345   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3346   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3347   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3348   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3349 };
3350 #undef MAPPING_INIT
3351
3352 const int Layout::section_name_mapping_count =
3353   (sizeof(Layout::section_name_mapping)
3354    / sizeof(Layout::section_name_mapping[0]));
3355
3356 // Choose the output section name to use given an input section name.
3357 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3358 // length of NAME.
3359
3360 const char*
3361 Layout::output_section_name(const char* name, size_t* plen)
3362 {
3363   // gcc 4.3 generates the following sorts of section names when it
3364   // needs a section name specific to a function:
3365   //   .text.FN
3366   //   .rodata.FN
3367   //   .sdata2.FN
3368   //   .data.FN
3369   //   .data.rel.FN
3370   //   .data.rel.local.FN
3371   //   .data.rel.ro.FN
3372   //   .data.rel.ro.local.FN
3373   //   .sdata.FN
3374   //   .bss.FN
3375   //   .sbss.FN
3376   //   .tdata.FN
3377   //   .tbss.FN
3378
3379   // The GNU linker maps all of those to the part before the .FN,
3380   // except that .data.rel.local.FN is mapped to .data, and
3381   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3382   // beginning with .data.rel.ro.local are grouped together.
3383
3384   // For an anonymous namespace, the string FN can contain a '.'.
3385
3386   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3387   // GNU linker maps to .rodata.
3388
3389   // The .data.rel.ro sections are used with -z relro.  The sections
3390   // are recognized by name.  We use the same names that the GNU
3391   // linker does for these sections.
3392
3393   // It is hard to handle this in a principled way, so we don't even
3394   // try.  We use a table of mappings.  If the input section name is
3395   // not found in the table, we simply use it as the output section
3396   // name.
3397
3398   const Section_name_mapping* psnm = section_name_mapping;
3399   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3400     {
3401       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3402         {
3403           *plen = psnm->tolen;
3404           return psnm->to;
3405         }
3406     }
3407
3408   return name;
3409 }
3410
3411 // Check if a comdat group or .gnu.linkonce section with the given
3412 // NAME is selected for the link.  If there is already a section,
3413 // *KEPT_SECTION is set to point to the existing section and the
3414 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3415 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3416 // *KEPT_SECTION is set to the internal copy and the function returns
3417 // true.
3418
3419 bool
3420 Layout::find_or_add_kept_section(const std::string& name,
3421                                  Relobj* object,
3422                                  unsigned int shndx,
3423                                  bool is_comdat,
3424                                  bool is_group_name,
3425                                  Kept_section** kept_section)
3426 {
3427   // It's normal to see a couple of entries here, for the x86 thunk
3428   // sections.  If we see more than a few, we're linking a C++
3429   // program, and we resize to get more space to minimize rehashing.
3430   if (this->signatures_.size() > 4
3431       && !this->resized_signatures_)
3432     {
3433       reserve_unordered_map(&this->signatures_,
3434                             this->number_of_input_files_ * 64);
3435       this->resized_signatures_ = true;
3436     }
3437
3438   Kept_section candidate;
3439   std::pair<Signatures::iterator, bool> ins =
3440     this->signatures_.insert(std::make_pair(name, candidate));
3441
3442   if (kept_section != NULL)
3443     *kept_section = &ins.first->second;
3444   if (ins.second)
3445     {
3446       // This is the first time we've seen this signature.
3447       ins.first->second.set_object(object);
3448       ins.first->second.set_shndx(shndx);
3449       if (is_comdat)
3450         ins.first->second.set_is_comdat();
3451       if (is_group_name)
3452         ins.first->second.set_is_group_name();
3453       return true;
3454     }
3455
3456   // We have already seen this signature.
3457
3458   if (ins.first->second.is_group_name())
3459     {
3460       // We've already seen a real section group with this signature.
3461       // If the kept group is from a plugin object, and we're in the
3462       // replacement phase, accept the new one as a replacement.
3463       if (ins.first->second.object() == NULL
3464           && parameters->options().plugins()->in_replacement_phase())
3465         {
3466           ins.first->second.set_object(object);
3467           ins.first->second.set_shndx(shndx);
3468           return true;
3469         }
3470       return false;
3471     }
3472   else if (is_group_name)
3473     {
3474       // This is a real section group, and we've already seen a
3475       // linkonce section with this signature.  Record that we've seen
3476       // a section group, and don't include this section group.
3477       ins.first->second.set_is_group_name();
3478       return false;
3479     }
3480   else
3481     {
3482       // We've already seen a linkonce section and this is a linkonce
3483       // section.  These don't block each other--this may be the same
3484       // symbol name with different section types.
3485       return true;
3486     }
3487 }
3488
3489 // Store the allocated sections into the section list.
3490
3491 void
3492 Layout::get_allocated_sections(Section_list* section_list) const
3493 {
3494   for (Section_list::const_iterator p = this->section_list_.begin();
3495        p != this->section_list_.end();
3496        ++p)
3497     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3498       section_list->push_back(*p);
3499 }
3500
3501 // Create an output segment.
3502
3503 Output_segment*
3504 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3505 {
3506   gold_assert(!parameters->options().relocatable());
3507   Output_segment* oseg = new Output_segment(type, flags);
3508   this->segment_list_.push_back(oseg);
3509
3510   if (type == elfcpp::PT_TLS)
3511     this->tls_segment_ = oseg;
3512   else if (type == elfcpp::PT_GNU_RELRO)
3513     this->relro_segment_ = oseg;
3514
3515   return oseg;
3516 }
3517
3518 // Write out the Output_sections.  Most won't have anything to write,
3519 // since most of the data will come from input sections which are
3520 // handled elsewhere.  But some Output_sections do have Output_data.
3521
3522 void
3523 Layout::write_output_sections(Output_file* of) const
3524 {
3525   for (Section_list::const_iterator p = this->section_list_.begin();
3526        p != this->section_list_.end();
3527        ++p)
3528     {
3529       if (!(*p)->after_input_sections())
3530         (*p)->write(of);
3531     }
3532 }
3533
3534 // Write out data not associated with a section or the symbol table.
3535
3536 void
3537 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3538 {
3539   if (!parameters->options().strip_all())
3540     {
3541       const Output_section* symtab_section = this->symtab_section_;
3542       for (Section_list::const_iterator p = this->section_list_.begin();
3543            p != this->section_list_.end();
3544            ++p)
3545         {
3546           if ((*p)->needs_symtab_index())
3547             {
3548               gold_assert(symtab_section != NULL);
3549               unsigned int index = (*p)->symtab_index();
3550               gold_assert(index > 0 && index != -1U);
3551               off_t off = (symtab_section->offset()
3552                            + index * symtab_section->entsize());
3553               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3554             }
3555         }
3556     }
3557
3558   const Output_section* dynsym_section = this->dynsym_section_;
3559   for (Section_list::const_iterator p = this->section_list_.begin();
3560        p != this->section_list_.end();
3561        ++p)
3562     {
3563       if ((*p)->needs_dynsym_index())
3564         {
3565           gold_assert(dynsym_section != NULL);
3566           unsigned int index = (*p)->dynsym_index();
3567           gold_assert(index > 0 && index != -1U);
3568           off_t off = (dynsym_section->offset()
3569                        + index * dynsym_section->entsize());
3570           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3571         }
3572     }
3573
3574   // Write out the Output_data which are not in an Output_section.
3575   for (Data_list::const_iterator p = this->special_output_list_.begin();
3576        p != this->special_output_list_.end();
3577        ++p)
3578     (*p)->write(of);
3579 }
3580
3581 // Write out the Output_sections which can only be written after the
3582 // input sections are complete.
3583
3584 void
3585 Layout::write_sections_after_input_sections(Output_file* of)
3586 {
3587   // Determine the final section offsets, and thus the final output
3588   // file size.  Note we finalize the .shstrab last, to allow the
3589   // after_input_section sections to modify their section-names before
3590   // writing.
3591   if (this->any_postprocessing_sections_)
3592     {
3593       off_t off = this->output_file_size_;
3594       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3595
3596       // Now that we've finalized the names, we can finalize the shstrab.
3597       off =
3598         this->set_section_offsets(off,
3599                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3600
3601       if (off > this->output_file_size_)
3602         {
3603           of->resize(off);
3604           this->output_file_size_ = off;
3605         }
3606     }
3607
3608   for (Section_list::const_iterator p = this->section_list_.begin();
3609        p != this->section_list_.end();
3610        ++p)
3611     {
3612       if ((*p)->after_input_sections())
3613         (*p)->write(of);
3614     }
3615
3616   this->section_headers_->write(of);
3617 }
3618
3619 // If the build ID requires computing a checksum, do so here, and
3620 // write it out.  We compute a checksum over the entire file because
3621 // that is simplest.
3622
3623 void
3624 Layout::write_build_id(Output_file* of) const
3625 {
3626   if (this->build_id_note_ == NULL)
3627     return;
3628
3629   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3630
3631   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3632                                           this->build_id_note_->data_size());
3633
3634   const char* style = parameters->options().build_id();
3635   if (strcmp(style, "sha1") == 0)
3636     {
3637       sha1_ctx ctx;
3638       sha1_init_ctx(&ctx);
3639       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3640       sha1_finish_ctx(&ctx, ov);
3641     }
3642   else if (strcmp(style, "md5") == 0)
3643     {
3644       md5_ctx ctx;
3645       md5_init_ctx(&ctx);
3646       md5_process_bytes(iv, this->output_file_size_, &ctx);
3647       md5_finish_ctx(&ctx, ov);
3648     }
3649   else
3650     gold_unreachable();
3651
3652   of->write_output_view(this->build_id_note_->offset(),
3653                         this->build_id_note_->data_size(),
3654                         ov);
3655
3656   of->free_input_view(0, this->output_file_size_, iv);
3657 }
3658
3659 // Write out a binary file.  This is called after the link is
3660 // complete.  IN is the temporary output file we used to generate the
3661 // ELF code.  We simply walk through the segments, read them from
3662 // their file offset in IN, and write them to their load address in
3663 // the output file.  FIXME: with a bit more work, we could support
3664 // S-records and/or Intel hex format here.
3665
3666 void
3667 Layout::write_binary(Output_file* in) const
3668 {
3669   gold_assert(parameters->options().oformat_enum()
3670               == General_options::OBJECT_FORMAT_BINARY);
3671
3672   // Get the size of the binary file.
3673   uint64_t max_load_address = 0;
3674   for (Segment_list::const_iterator p = this->segment_list_.begin();
3675        p != this->segment_list_.end();
3676        ++p)
3677     {
3678       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3679         {
3680           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3681           if (max_paddr > max_load_address)
3682             max_load_address = max_paddr;
3683         }
3684     }
3685
3686   Output_file out(parameters->options().output_file_name());
3687   out.open(max_load_address);
3688
3689   for (Segment_list::const_iterator p = this->segment_list_.begin();
3690        p != this->segment_list_.end();
3691        ++p)
3692     {
3693       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3694         {
3695           const unsigned char* vin = in->get_input_view((*p)->offset(),
3696                                                         (*p)->filesz());
3697           unsigned char* vout = out.get_output_view((*p)->paddr(),
3698                                                     (*p)->filesz());
3699           memcpy(vout, vin, (*p)->filesz());
3700           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3701           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3702         }
3703     }
3704
3705   out.close();
3706 }
3707
3708 // Print the output sections to the map file.
3709
3710 void
3711 Layout::print_to_mapfile(Mapfile* mapfile) const
3712 {
3713   for (Segment_list::const_iterator p = this->segment_list_.begin();
3714        p != this->segment_list_.end();
3715        ++p)
3716     (*p)->print_sections_to_mapfile(mapfile);
3717 }
3718
3719 // Print statistical information to stderr.  This is used for --stats.
3720
3721 void
3722 Layout::print_stats() const
3723 {
3724   this->namepool_.print_stats("section name pool");
3725   this->sympool_.print_stats("output symbol name pool");
3726   this->dynpool_.print_stats("dynamic name pool");
3727
3728   for (Section_list::const_iterator p = this->section_list_.begin();
3729        p != this->section_list_.end();
3730        ++p)
3731     (*p)->print_merge_stats();
3732 }
3733
3734 // Write_sections_task methods.
3735
3736 // We can always run this task.
3737
3738 Task_token*
3739 Write_sections_task::is_runnable()
3740 {
3741   return NULL;
3742 }
3743
3744 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3745 // when finished.
3746
3747 void
3748 Write_sections_task::locks(Task_locker* tl)
3749 {
3750   tl->add(this, this->output_sections_blocker_);
3751   tl->add(this, this->final_blocker_);
3752 }
3753
3754 // Run the task--write out the data.
3755
3756 void
3757 Write_sections_task::run(Workqueue*)
3758 {
3759   this->layout_->write_output_sections(this->of_);
3760 }
3761
3762 // Write_data_task methods.
3763
3764 // We can always run this task.
3765
3766 Task_token*
3767 Write_data_task::is_runnable()
3768 {
3769   return NULL;
3770 }
3771
3772 // We need to unlock FINAL_BLOCKER when finished.
3773
3774 void
3775 Write_data_task::locks(Task_locker* tl)
3776 {
3777   tl->add(this, this->final_blocker_);
3778 }
3779
3780 // Run the task--write out the data.
3781
3782 void
3783 Write_data_task::run(Workqueue*)
3784 {
3785   this->layout_->write_data(this->symtab_, this->of_);
3786 }
3787
3788 // Write_symbols_task methods.
3789
3790 // We can always run this task.
3791
3792 Task_token*
3793 Write_symbols_task::is_runnable()
3794 {
3795   return NULL;
3796 }
3797
3798 // We need to unlock FINAL_BLOCKER when finished.
3799
3800 void
3801 Write_symbols_task::locks(Task_locker* tl)
3802 {
3803   tl->add(this, this->final_blocker_);
3804 }
3805
3806 // Run the task--write out the symbols.
3807
3808 void
3809 Write_symbols_task::run(Workqueue*)
3810 {
3811   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3812                                this->layout_->symtab_xindex(),
3813                                this->layout_->dynsym_xindex(), this->of_);
3814 }
3815
3816 // Write_after_input_sections_task methods.
3817
3818 // We can only run this task after the input sections have completed.
3819
3820 Task_token*
3821 Write_after_input_sections_task::is_runnable()
3822 {
3823   if (this->input_sections_blocker_->is_blocked())
3824     return this->input_sections_blocker_;
3825   return NULL;
3826 }
3827
3828 // We need to unlock FINAL_BLOCKER when finished.
3829
3830 void
3831 Write_after_input_sections_task::locks(Task_locker* tl)
3832 {
3833   tl->add(this, this->final_blocker_);
3834 }
3835
3836 // Run the task.
3837
3838 void
3839 Write_after_input_sections_task::run(Workqueue*)
3840 {
3841   this->layout_->write_sections_after_input_sections(this->of_);
3842 }
3843
3844 // Close_task_runner methods.
3845
3846 // Run the task--close the file.
3847
3848 void
3849 Close_task_runner::run(Workqueue*, const Task*)
3850 {
3851   // If we need to compute a checksum for the BUILD if, we do so here.
3852   this->layout_->write_build_id(this->of_);
3853
3854   // If we've been asked to create a binary file, we do so here.
3855   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3856     this->layout_->write_binary(this->of_);
3857
3858   this->of_->close();
3859 }
3860
3861 // Instantiate the templates we need.  We could use the configure
3862 // script to restrict this to only the ones for implemented targets.
3863
3864 #ifdef HAVE_TARGET_32_LITTLE
3865 template
3866 Output_section*
3867 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3868                           const char* name,
3869                           const elfcpp::Shdr<32, false>& shdr,
3870                           unsigned int, unsigned int, off_t*);
3871 #endif
3872
3873 #ifdef HAVE_TARGET_32_BIG
3874 template
3875 Output_section*
3876 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3877                          const char* name,
3878                          const elfcpp::Shdr<32, true>& shdr,
3879                          unsigned int, unsigned int, off_t*);
3880 #endif
3881
3882 #ifdef HAVE_TARGET_64_LITTLE
3883 template
3884 Output_section*
3885 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3886                           const char* name,
3887                           const elfcpp::Shdr<64, false>& shdr,
3888                           unsigned int, unsigned int, off_t*);
3889 #endif
3890
3891 #ifdef HAVE_TARGET_64_BIG
3892 template
3893 Output_section*
3894 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3895                          const char* name,
3896                          const elfcpp::Shdr<64, true>& shdr,
3897                          unsigned int, unsigned int, off_t*);
3898 #endif
3899
3900 #ifdef HAVE_TARGET_32_LITTLE
3901 template
3902 Output_section*
3903 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3904                                 unsigned int reloc_shndx,
3905                                 const elfcpp::Shdr<32, false>& shdr,
3906                                 Output_section* data_section,
3907                                 Relocatable_relocs* rr);
3908 #endif
3909
3910 #ifdef HAVE_TARGET_32_BIG
3911 template
3912 Output_section*
3913 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3914                                unsigned int reloc_shndx,
3915                                const elfcpp::Shdr<32, true>& shdr,
3916                                Output_section* data_section,
3917                                Relocatable_relocs* rr);
3918 #endif
3919
3920 #ifdef HAVE_TARGET_64_LITTLE
3921 template
3922 Output_section*
3923 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3924                                 unsigned int reloc_shndx,
3925                                 const elfcpp::Shdr<64, false>& shdr,
3926                                 Output_section* data_section,
3927                                 Relocatable_relocs* rr);
3928 #endif
3929
3930 #ifdef HAVE_TARGET_64_BIG
3931 template
3932 Output_section*
3933 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3934                                unsigned int reloc_shndx,
3935                                const elfcpp::Shdr<64, true>& shdr,
3936                                Output_section* data_section,
3937                                Relocatable_relocs* rr);
3938 #endif
3939
3940 #ifdef HAVE_TARGET_32_LITTLE
3941 template
3942 void
3943 Layout::layout_group<32, false>(Symbol_table* symtab,
3944                                 Sized_relobj<32, false>* object,
3945                                 unsigned int,
3946                                 const char* group_section_name,
3947                                 const char* signature,
3948                                 const elfcpp::Shdr<32, false>& shdr,
3949                                 elfcpp::Elf_Word flags,
3950                                 std::vector<unsigned int>* shndxes);
3951 #endif
3952
3953 #ifdef HAVE_TARGET_32_BIG
3954 template
3955 void
3956 Layout::layout_group<32, true>(Symbol_table* symtab,
3957                                Sized_relobj<32, true>* object,
3958                                unsigned int,
3959                                const char* group_section_name,
3960                                const char* signature,
3961                                const elfcpp::Shdr<32, true>& shdr,
3962                                elfcpp::Elf_Word flags,
3963                                std::vector<unsigned int>* shndxes);
3964 #endif
3965
3966 #ifdef HAVE_TARGET_64_LITTLE
3967 template
3968 void
3969 Layout::layout_group<64, false>(Symbol_table* symtab,
3970                                 Sized_relobj<64, false>* object,
3971                                 unsigned int,
3972                                 const char* group_section_name,
3973                                 const char* signature,
3974                                 const elfcpp::Shdr<64, false>& shdr,
3975                                 elfcpp::Elf_Word flags,
3976                                 std::vector<unsigned int>* shndxes);
3977 #endif
3978
3979 #ifdef HAVE_TARGET_64_BIG
3980 template
3981 void
3982 Layout::layout_group<64, true>(Symbol_table* symtab,
3983                                Sized_relobj<64, true>* object,
3984                                unsigned int,
3985                                const char* group_section_name,
3986                                const char* signature,
3987                                const elfcpp::Shdr<64, true>& shdr,
3988                                elfcpp::Elf_Word flags,
3989                                std::vector<unsigned int>* shndxes);
3990 #endif
3991
3992 #ifdef HAVE_TARGET_32_LITTLE
3993 template
3994 Output_section*
3995 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3996                                    const unsigned char* symbols,
3997                                    off_t symbols_size,
3998                                    const unsigned char* symbol_names,
3999                                    off_t symbol_names_size,
4000                                    unsigned int shndx,
4001                                    const elfcpp::Shdr<32, false>& shdr,
4002                                    unsigned int reloc_shndx,
4003                                    unsigned int reloc_type,
4004                                    off_t* off);
4005 #endif
4006
4007 #ifdef HAVE_TARGET_32_BIG
4008 template
4009 Output_section*
4010 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4011                                    const unsigned char* symbols,
4012                                    off_t symbols_size,
4013                                   const unsigned char* symbol_names,
4014                                   off_t symbol_names_size,
4015                                   unsigned int shndx,
4016                                   const elfcpp::Shdr<32, true>& shdr,
4017                                   unsigned int reloc_shndx,
4018                                   unsigned int reloc_type,
4019                                   off_t* off);
4020 #endif
4021
4022 #ifdef HAVE_TARGET_64_LITTLE
4023 template
4024 Output_section*
4025 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4026                                    const unsigned char* symbols,
4027                                    off_t symbols_size,
4028                                    const unsigned char* symbol_names,
4029                                    off_t symbol_names_size,
4030                                    unsigned int shndx,
4031                                    const elfcpp::Shdr<64, false>& shdr,
4032                                    unsigned int reloc_shndx,
4033                                    unsigned int reloc_type,
4034                                    off_t* off);
4035 #endif
4036
4037 #ifdef HAVE_TARGET_64_BIG
4038 template
4039 Output_section*
4040 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4041                                    const unsigned char* symbols,
4042                                    off_t symbols_size,
4043                                   const unsigned char* symbol_names,
4044                                   off_t symbol_names_size,
4045                                   unsigned int shndx,
4046                                   const elfcpp::Shdr<64, true>& shdr,
4047                                   unsigned int reloc_shndx,
4048                                   unsigned int reloc_type,
4049                                   off_t* off);
4050 #endif
4051
4052 } // End namespace gold.