OSDN Git Service

* expr.c (store_expr): If get_signed_or_unsigned_type doesn't yield
[pf3gnuchains/gcc-fork.git] / gcc / rtl.def
1 /* This file contains the definitions and documentation for the
2    Register Transfer Expressions (rtx's) that make up the
3    Register Transfer Language (rtl) used in the Back End of the GNU compiler.
4    Copyright (C) 1987, 1988, 1992, 1994, 1995, 1997, 1998, 1999, 2000, 2004,
5    2005, 2006, 2007
6    Free Software Foundation, Inc.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING.  If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA.  */
24
25
26 /* Expression definitions and descriptions for all targets are in this file.
27    Some will not be used for some targets.
28
29    The fields in the cpp macro call "DEF_RTL_EXPR()"
30    are used to create declarations in the C source of the compiler.
31
32    The fields are:
33
34    1.  The internal name of the rtx used in the C source.
35    It is a tag in the enumeration "enum rtx_code" defined in "rtl.h".
36    By convention these are in UPPER_CASE.
37
38    2.  The name of the rtx in the external ASCII format read by
39    read_rtx(), and printed by print_rtx().
40    These names are stored in rtx_name[].
41    By convention these are the internal (field 1) names in lower_case.
42
43    3.  The print format, and type of each rtx->u.fld[] (field) in this rtx.
44    These formats are stored in rtx_format[].
45    The meaning of the formats is documented in front of this array in rtl.c
46    
47    4.  The class of the rtx.  These are stored in rtx_class and are accessed
48    via the GET_RTX_CLASS macro.  They are defined as follows:
49
50      RTX_CONST_OBJ
51          an rtx code that can be used to represent a constant object
52          (e.g, CONST_INT)
53      RTX_OBJ
54          an rtx code that can be used to represent an object (e.g, REG, MEM)
55      RTX_COMPARE
56          an rtx code for a comparison (e.g, LT, GT)
57      RTX_COMM_COMPARE
58          an rtx code for a commutative comparison (e.g, EQ, NE, ORDERED)
59      RTX_UNARY
60          an rtx code for a unary arithmetic expression (e.g, NEG, NOT)
61      RTX_COMM_ARITH
62          an rtx code for a commutative binary operation (e.g,, PLUS, MULT)
63      RTX_TERNARY
64          an rtx code for a non-bitfield three input operation (IF_THEN_ELSE)
65      RTX_BIN_ARITH
66          an rtx code for a non-commutative binary operation (e.g., MINUS, DIV)
67      RTX_BITFIELD_OPS
68          an rtx code for a bit-field operation (ZERO_EXTRACT, SIGN_EXTRACT)
69      RTX_INSN
70          an rtx code for a machine insn (INSN, JUMP_INSN, CALL_INSN)
71      RTX_MATCH
72          an rtx code for something that matches in insns (e.g, MATCH_DUP)
73      RTX_AUTOINC
74          an rtx code for autoincrement addressing modes (e.g. POST_DEC)
75      RTX_EXTRA
76          everything else
77
78    All of the expressions that appear only in machine descriptions,
79    not in RTL used by the compiler itself, are at the end of the file.  */
80
81 /* Unknown, or no such operation; the enumeration constant should have
82    value zero.  */
83 DEF_RTL_EXPR(UNKNOWN, "UnKnown", "*", RTX_EXTRA)
84
85 /* ---------------------------------------------------------------------
86    Expressions used in constructing lists.
87    --------------------------------------------------------------------- */
88
89 /* a linked list of expressions */
90 DEF_RTL_EXPR(EXPR_LIST, "expr_list", "ee", RTX_EXTRA)
91
92 /* a linked list of instructions.
93    The insns are represented in print by their uids.  */
94 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
95
96 /* SEQUENCE appears in the result of a `gen_...' function
97    for a DEFINE_EXPAND that wants to make several insns.
98    Its elements are the bodies of the insns that should be made.
99    `emit_insn' takes the SEQUENCE apart and makes separate insns.  */
100 DEF_RTL_EXPR(SEQUENCE, "sequence", "E", RTX_EXTRA)
101
102 /* Refers to the address of its argument.  This is only used in alias.c.  */
103 DEF_RTL_EXPR(ADDRESS, "address", "e", RTX_MATCH)
104
105 /* ----------------------------------------------------------------------
106    Expression types used for things in the instruction chain.
107
108    All formats must start with "iuu" to handle the chain.
109    Each insn expression holds an rtl instruction and its semantics
110    during back-end processing.
111    See macros's in "rtl.h" for the meaning of each rtx->u.fld[].
112
113    ---------------------------------------------------------------------- */
114
115 /* An instruction that cannot jump.  */
116 DEF_RTL_EXPR(INSN, "insn", "iuuBieiee", RTX_INSN)
117
118 /* An instruction that can possibly jump.
119    Fields ( rtx->u.fld[] ) have exact same meaning as INSN's.  */
120 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "iuuBieiee0", RTX_INSN)
121
122 /* An instruction that can possibly call a subroutine
123    but which will not change which instruction comes next
124    in the current function.
125    Field ( rtx->u.fld[9] ) is CALL_INSN_FUNCTION_USAGE.
126    All other fields ( rtx->u.fld[] ) have exact same meaning as INSN's.  */
127 DEF_RTL_EXPR(CALL_INSN, "call_insn", "iuuBieieee", RTX_INSN)
128
129 /* A marker that indicates that control will not flow through.  */
130 DEF_RTL_EXPR(BARRIER, "barrier", "iuu000000", RTX_EXTRA)
131
132 /* Holds a label that is followed by instructions.
133    Operand:
134    4: is used in jump.c for the use-count of the label.
135    5: is used in flow.c to point to the chain of label_ref's to this label.
136    6: is a number that is unique in the entire compilation.
137    7: is the user-given name of the label, if any.  */
138 DEF_RTL_EXPR(CODE_LABEL, "code_label", "iuuB00is", RTX_EXTRA)
139
140 #ifdef USE_MAPPED_LOCATION
141 /* Say where in the code a source line starts, for symbol table's sake.
142    Operand:
143    4: unused if line number > 0, note-specific data otherwise.
144    5: line number if > 0, enum note_insn otherwise.
145    6: CODE_LABEL_NUMBER if line number == NOTE_INSN_DELETED_LABEL.  */
146 #else
147 /* Say where in the code a source line starts, for symbol table's sake.
148    Operand:
149    4: filename, if line number > 0, note-specific data otherwise.
150    5: line number if > 0, enum note_insn otherwise.
151    6: unique number if line number == note_insn_deleted_label.  */
152 #endif
153 DEF_RTL_EXPR(NOTE, "note", "iuuB0ni", RTX_EXTRA)
154
155 /* ----------------------------------------------------------------------
156    Top level constituents of INSN, JUMP_INSN and CALL_INSN.
157    ---------------------------------------------------------------------- */
158    
159 /* Conditionally execute code.
160    Operand 0 is the condition that if true, the code is executed.
161    Operand 1 is the code to be executed (typically a SET). 
162
163    Semantics are that there are no side effects if the condition
164    is false.  This pattern is created automatically by the if_convert
165    pass run after reload or by target-specific splitters.  */
166 DEF_RTL_EXPR(COND_EXEC, "cond_exec", "ee", RTX_EXTRA)
167
168 /* Several operations to be done in parallel (perhaps under COND_EXEC).  */
169 DEF_RTL_EXPR(PARALLEL, "parallel", "E", RTX_EXTRA)
170
171 #ifdef USE_MAPPED_LOCATION
172 /* A string that is passed through to the assembler as input.
173      One can obviously pass comments through by using the
174      assembler comment syntax.
175      These occur in an insn all by themselves as the PATTERN.
176      They also appear inside an ASM_OPERANDS
177      as a convenient way to hold a string.  */
178 DEF_RTL_EXPR(ASM_INPUT, "asm_input", "si", RTX_EXTRA)
179
180 /* An assembler instruction with operands.
181    1st operand is the instruction template.
182    2nd operand is the constraint for the output.
183    3rd operand is the number of the output this expression refers to.
184      When an insn stores more than one value, a separate ASM_OPERANDS
185      is made for each output; this integer distinguishes them.
186    4th is a vector of values of input operands.
187    5th is a vector of modes and constraints for the input operands.
188      Each element is an ASM_INPUT containing a constraint string
189      and whose mode indicates the mode of the input operand.
190    6th is the source line number.  */
191 DEF_RTL_EXPR(ASM_OPERANDS, "asm_operands", "ssiEEi", RTX_EXTRA)
192 #else
193 /* A string that is passed through to the assembler as input.
194      One can obviously pass comments through by using the
195      assembler comment syntax.
196      These occur in an insn all by themselves as the PATTERN.
197      They also appear inside an ASM_OPERANDS
198      as a convenient way to hold a string.  */
199 DEF_RTL_EXPR(ASM_INPUT, "asm_input", "ssi", RTX_EXTRA)
200
201 /* An assembler instruction with operands.
202    1st operand is the instruction template.
203    2nd operand is the constraint for the output.
204    3rd operand is the number of the output this expression refers to.
205      When an insn stores more than one value, a separate ASM_OPERANDS
206      is made for each output; this integer distinguishes them.
207    4th is a vector of values of input operands.
208    5th is a vector of modes and constraints for the input operands.
209      Each element is an ASM_INPUT containing a constraint string
210      and whose mode indicates the mode of the input operand.
211    6th is the name of the containing source file.
212    7th is the source line number.  */
213 DEF_RTL_EXPR(ASM_OPERANDS, "asm_operands", "ssiEEsi", RTX_EXTRA)
214 #endif
215
216 /* A machine-specific operation.
217    1st operand is a vector of operands being used by the operation so that
218      any needed reloads can be done.
219    2nd operand is a unique value saying which of a number of machine-specific
220      operations is to be performed.
221    (Note that the vector must be the first operand because of the way that
222    genrecog.c record positions within an insn.)
223    This can occur all by itself in a PATTERN, as a component of a PARALLEL,
224    or inside an expression.  */
225 DEF_RTL_EXPR(UNSPEC, "unspec", "Ei", RTX_EXTRA)
226
227 /* Similar, but a volatile operation and one which may trap.  */
228 DEF_RTL_EXPR(UNSPEC_VOLATILE, "unspec_volatile", "Ei", RTX_EXTRA)
229
230 /* Vector of addresses, stored as full words.  */
231 /* Each element is a LABEL_REF to a CODE_LABEL whose address we want.  */
232 DEF_RTL_EXPR(ADDR_VEC, "addr_vec", "E", RTX_EXTRA)
233
234 /* Vector of address differences X0 - BASE, X1 - BASE, ...
235    First operand is BASE; the vector contains the X's.
236    The machine mode of this rtx says how much space to leave
237    for each difference and is adjusted by branch shortening if
238    CASE_VECTOR_SHORTEN_MODE is defined.
239    The third and fourth operands store the target labels with the
240    minimum and maximum addresses respectively.
241    The fifth operand stores flags for use by branch shortening.
242   Set at the start of shorten_branches:
243    min_align: the minimum alignment for any of the target labels.
244    base_after_vec: true iff BASE is after the ADDR_DIFF_VEC.
245    min_after_vec: true iff minimum addr target label is after the ADDR_DIFF_VEC.
246    max_after_vec: true iff maximum addr target label is after the ADDR_DIFF_VEC.
247    min_after_base: true iff minimum address target label is after BASE.
248    max_after_base: true iff maximum address target label is after BASE.
249   Set by the actual branch shortening process:
250    offset_unsigned: true iff offsets have to be treated as unsigned.
251    scale: scaling that is necessary to make offsets fit into the mode.
252
253    The third, fourth and fifth operands are only valid when
254    CASE_VECTOR_SHORTEN_MODE is defined, and only in an optimizing
255    compilations.  */
256      
257 DEF_RTL_EXPR(ADDR_DIFF_VEC, "addr_diff_vec", "eEee0", RTX_EXTRA)
258
259 /* Memory prefetch, with attributes supported on some targets.
260    Operand 1 is the address of the memory to fetch.
261    Operand 2 is 1 for a write access, 0 otherwise.
262    Operand 3 is the level of temporal locality; 0 means there is no
263    temporal locality and 1, 2, and 3 are for increasing levels of temporal
264    locality.
265
266    The attributes specified by operands 2 and 3 are ignored for targets
267    whose prefetch instructions do not support them.  */
268 DEF_RTL_EXPR(PREFETCH, "prefetch", "eee", RTX_EXTRA)
269
270 /* ----------------------------------------------------------------------
271    At the top level of an instruction (perhaps under PARALLEL).
272    ---------------------------------------------------------------------- */
273
274 /* Assignment.
275    Operand 1 is the location (REG, MEM, PC, CC0 or whatever) assigned to.
276    Operand 2 is the value stored there.
277    ALL assignment must use SET.
278    Instructions that do multiple assignments must use multiple SET,
279    under PARALLEL.  */
280 DEF_RTL_EXPR(SET, "set", "ee", RTX_EXTRA)
281
282 /* Indicate something is used in a way that we don't want to explain.
283    For example, subroutine calls will use the register
284    in which the static chain is passed.  */
285 DEF_RTL_EXPR(USE, "use", "e", RTX_EXTRA)
286
287 /* Indicate something is clobbered in a way that we don't want to explain.
288    For example, subroutine calls will clobber some physical registers
289    (the ones that are by convention not saved).  */
290 DEF_RTL_EXPR(CLOBBER, "clobber", "e", RTX_EXTRA)
291
292 /* Call a subroutine.
293    Operand 1 is the address to call.
294    Operand 2 is the number of arguments.  */
295
296 DEF_RTL_EXPR(CALL, "call", "ee", RTX_EXTRA)
297
298 /* Return from a subroutine.  */
299
300 DEF_RTL_EXPR(RETURN, "return", "", RTX_EXTRA)
301
302 /* Conditional trap.
303    Operand 1 is the condition.
304    Operand 2 is the trap code.
305    For an unconditional trap, make the condition (const_int 1).  */
306 DEF_RTL_EXPR(TRAP_IF, "trap_if", "ee", RTX_EXTRA)
307
308 /* Placeholder for _Unwind_Resume before we know if a function call
309    or a branch is needed.  Operand 1 is the exception region from
310    which control is flowing.  */
311 DEF_RTL_EXPR(RESX, "resx", "i", RTX_EXTRA)
312
313 /* ----------------------------------------------------------------------
314    Primitive values for use in expressions.
315    ---------------------------------------------------------------------- */
316
317 /* numeric integer constant */
318 DEF_RTL_EXPR(CONST_INT, "const_int", "w", RTX_CONST_OBJ)
319
320 /* numeric floating point constant.
321    Operands hold the value.  They are all 'w' and there may be from 2 to 6;
322    see real.h.  */
323 DEF_RTL_EXPR(CONST_DOUBLE, "const_double", CONST_DOUBLE_FORMAT, RTX_CONST_OBJ)
324
325 /* Describes a vector constant.  */
326 DEF_RTL_EXPR(CONST_VECTOR, "const_vector", "E", RTX_CONST_OBJ)
327
328 /* String constant.  Used for attributes in machine descriptions and
329    for special cases in DWARF2 debug output.  NOT used for source-
330    language string constants.  */
331 DEF_RTL_EXPR(CONST_STRING, "const_string", "s", RTX_OBJ)
332
333 /* This is used to encapsulate an expression whose value is constant
334    (such as the sum of a SYMBOL_REF and a CONST_INT) so that it will be
335    recognized as a constant operand rather than by arithmetic instructions.  */
336
337 DEF_RTL_EXPR(CONST, "const", "e", RTX_CONST_OBJ)
338
339 /* program counter.  Ordinary jumps are represented
340    by a SET whose first operand is (PC).  */
341 DEF_RTL_EXPR(PC, "pc", "", RTX_OBJ)
342
343 /* Used in the cselib routines to describe a value.  Objects of this
344    kind are only allocated in cselib.c, in an alloc pool instead of
345    in GC memory.  The only operand of a VALUE is a cselib_val_struct.  */
346 DEF_RTL_EXPR(VALUE, "value", "0", RTX_OBJ)
347
348 /* A register.  The "operand" is the register number, accessed with
349    the REGNO macro.  If this number is less than FIRST_PSEUDO_REGISTER
350    than a hardware register is being referred to.  The second operand
351    holds the original register number - this will be different for a
352    pseudo register that got turned into a hard register.  The third
353    operand points to a reg_attrs structure.
354    This rtx needs to have as many (or more) fields as a MEM, since we
355    can change REG rtx's into MEMs during reload.  */
356 DEF_RTL_EXPR(REG, "reg", "i00", RTX_OBJ)
357
358 /* A scratch register.  This represents a register used only within a
359    single insn.  It will be turned into a REG during register allocation
360    or reload unless the constraint indicates that the register won't be
361    needed, in which case it can remain a SCRATCH.  This code is
362    marked as having one operand so it can be turned into a REG.  */
363 DEF_RTL_EXPR(SCRATCH, "scratch", "0", RTX_OBJ)
364
365 /* One word of a multi-word value.
366    The first operand is the complete value; the second says which word.
367    The WORDS_BIG_ENDIAN flag controls whether word number 0
368    (as numbered in a SUBREG) is the most or least significant word.
369
370    This is also used to refer to a value in a different machine mode.
371    For example, it can be used to refer to a SImode value as if it were
372    Qimode, or vice versa.  Then the word number is always 0.  */
373 DEF_RTL_EXPR(SUBREG, "subreg", "ei", RTX_EXTRA)
374
375 /* This one-argument rtx is used for move instructions
376    that are guaranteed to alter only the low part of a destination.
377    Thus, (SET (SUBREG:HI (REG...)) (MEM:HI ...))
378    has an unspecified effect on the high part of REG,
379    but (SET (STRICT_LOW_PART (SUBREG:HI (REG...))) (MEM:HI ...))
380    is guaranteed to alter only the bits of REG that are in HImode.
381
382    The actual instruction used is probably the same in both cases,
383    but the register constraints may be tighter when STRICT_LOW_PART
384    is in use.  */
385
386 DEF_RTL_EXPR(STRICT_LOW_PART, "strict_low_part", "e", RTX_EXTRA)
387
388 /* (CONCAT a b) represents the virtual concatenation of a and b
389    to make a value that has as many bits as a and b put together.
390    This is used for complex values.  Normally it appears only
391    in DECL_RTLs and during RTL generation, but not in the insn chain.  */
392 DEF_RTL_EXPR(CONCAT, "concat", "ee", RTX_OBJ)
393
394 /* (CONCATN [a1 a2 ... an]) represents the virtual concatenation of
395    all An to make a value.  This is an extension of CONCAT to larger
396    number of components.  Like CONCAT, it should not appear in the
397    insn chain.  Every element of the CONCATN is the same size.  */
398 DEF_RTL_EXPR(CONCATN, "concatn", "E", RTX_OBJ)
399
400 /* A memory location; operand is the address.  The second operand is the
401    alias set to which this MEM belongs.  We use `0' instead of `w' for this
402    field so that the field need not be specified in machine descriptions.  */
403 DEF_RTL_EXPR(MEM, "mem", "e0", RTX_OBJ)
404
405 /* Reference to an assembler label in the code for this function.
406    The operand is a CODE_LABEL found in the insn chain.  */
407 DEF_RTL_EXPR(LABEL_REF, "label_ref", "u", RTX_CONST_OBJ)
408
409 /* Reference to a named label: 
410    Operand 0: label name
411    Operand 1: flags (see SYMBOL_FLAG_* in rtl.h)
412    Operand 2: tree from which this symbol is derived, or null.
413    This is either a DECL node, or some kind of constant.  */
414 DEF_RTL_EXPR(SYMBOL_REF, "symbol_ref", "s00", RTX_CONST_OBJ)
415
416 /* The condition code register is represented, in our imagination,
417    as a register holding a value that can be compared to zero.
418    In fact, the machine has already compared them and recorded the
419    results; but instructions that look at the condition code
420    pretend to be looking at the entire value and comparing it.  */
421 DEF_RTL_EXPR(CC0, "cc0", "", RTX_OBJ)
422
423 /* ----------------------------------------------------------------------
424    Expressions for operators in an rtl pattern
425    ---------------------------------------------------------------------- */
426
427 /* if_then_else.  This is used in representing ordinary
428    conditional jump instructions.
429      Operand:
430      0:  condition
431      1:  then expr
432      2:  else expr */
433 DEF_RTL_EXPR(IF_THEN_ELSE, "if_then_else", "eee", RTX_TERNARY)
434
435 /* Comparison, produces a condition code result.  */
436 DEF_RTL_EXPR(COMPARE, "compare", "ee", RTX_BIN_ARITH)
437
438 /* plus */
439 DEF_RTL_EXPR(PLUS, "plus", "ee", RTX_COMM_ARITH)
440
441 /* Operand 0 minus operand 1.  */
442 DEF_RTL_EXPR(MINUS, "minus", "ee", RTX_BIN_ARITH)
443
444 /* Minus operand 0.  */
445 DEF_RTL_EXPR(NEG, "neg", "e", RTX_UNARY)
446
447 DEF_RTL_EXPR(MULT, "mult", "ee", RTX_COMM_ARITH)
448
449 /* Operand 0 divided by operand 1.  */
450 DEF_RTL_EXPR(DIV, "div", "ee", RTX_BIN_ARITH)
451 /* Remainder of operand 0 divided by operand 1.  */
452 DEF_RTL_EXPR(MOD, "mod", "ee", RTX_BIN_ARITH)
453
454 /* Unsigned divide and remainder.  */
455 DEF_RTL_EXPR(UDIV, "udiv", "ee", RTX_BIN_ARITH)
456 DEF_RTL_EXPR(UMOD, "umod", "ee", RTX_BIN_ARITH)
457
458 /* Bitwise operations.  */
459 DEF_RTL_EXPR(AND, "and", "ee", RTX_COMM_ARITH)
460 DEF_RTL_EXPR(IOR, "ior", "ee", RTX_COMM_ARITH)
461 DEF_RTL_EXPR(XOR, "xor", "ee", RTX_COMM_ARITH)
462 DEF_RTL_EXPR(NOT, "not", "e", RTX_UNARY)
463
464 /* Operand:
465      0:  value to be shifted.
466      1:  number of bits.  */
467 DEF_RTL_EXPR(ASHIFT, "ashift", "ee", RTX_BIN_ARITH) /* shift left */
468 DEF_RTL_EXPR(ROTATE, "rotate", "ee", RTX_BIN_ARITH) /* rotate left */
469 DEF_RTL_EXPR(ASHIFTRT, "ashiftrt", "ee", RTX_BIN_ARITH) /* arithmetic shift right */
470 DEF_RTL_EXPR(LSHIFTRT, "lshiftrt", "ee", RTX_BIN_ARITH) /* logical shift right */
471 DEF_RTL_EXPR(ROTATERT, "rotatert", "ee", RTX_BIN_ARITH) /* rotate right */
472
473 /* Minimum and maximum values of two operands.  We need both signed and
474    unsigned forms.  (We cannot use MIN for SMIN because it conflicts
475    with a macro of the same name.)   The signed variants should be used
476    with floating point.  Further, if both operands are zeros, or if either
477    operand is NaN, then it is unspecified which of the two operands is
478    returned as the result.  */
479
480 DEF_RTL_EXPR(SMIN, "smin", "ee", RTX_COMM_ARITH)
481 DEF_RTL_EXPR(SMAX, "smax", "ee", RTX_COMM_ARITH)
482 DEF_RTL_EXPR(UMIN, "umin", "ee", RTX_COMM_ARITH)
483 DEF_RTL_EXPR(UMAX, "umax", "ee", RTX_COMM_ARITH)
484
485 /* These unary operations are used to represent incrementation
486    and decrementation as they occur in memory addresses.
487    The amount of increment or decrement are not represented
488    because they can be understood from the machine-mode of the
489    containing MEM.  These operations exist in only two cases:
490    1. pushes onto the stack.
491    2. created automatically by the life_analysis pass in flow.c.  */
492 DEF_RTL_EXPR(PRE_DEC, "pre_dec", "e", RTX_AUTOINC)
493 DEF_RTL_EXPR(PRE_INC, "pre_inc", "e", RTX_AUTOINC)
494 DEF_RTL_EXPR(POST_DEC, "post_dec", "e", RTX_AUTOINC)
495 DEF_RTL_EXPR(POST_INC, "post_inc", "e", RTX_AUTOINC)
496
497 /* These binary operations are used to represent generic address
498    side-effects in memory addresses, except for simple incrementation
499    or decrementation which use the above operations.  They are
500    created automatically by the life_analysis pass in flow.c.
501    The first operand is a REG which is used as the address.
502    The second operand is an expression that is assigned to the
503    register, either before (PRE_MODIFY) or after (POST_MODIFY)
504    evaluating the address.
505    Currently, the compiler can only handle second operands of the
506    form (plus (reg) (reg)) and (plus (reg) (const_int)), where
507    the first operand of the PLUS has to be the same register as
508    the first operand of the *_MODIFY.  */
509 DEF_RTL_EXPR(PRE_MODIFY, "pre_modify", "ee", RTX_AUTOINC)
510 DEF_RTL_EXPR(POST_MODIFY, "post_modify", "ee", RTX_AUTOINC)
511
512 /* Comparison operations.  The ordered comparisons exist in two
513    flavors, signed and unsigned.  */
514 DEF_RTL_EXPR(NE, "ne", "ee", RTX_COMM_COMPARE)
515 DEF_RTL_EXPR(EQ, "eq", "ee", RTX_COMM_COMPARE)
516 DEF_RTL_EXPR(GE, "ge", "ee", RTX_COMPARE)
517 DEF_RTL_EXPR(GT, "gt", "ee", RTX_COMPARE)
518 DEF_RTL_EXPR(LE, "le", "ee", RTX_COMPARE)
519 DEF_RTL_EXPR(LT, "lt", "ee", RTX_COMPARE)
520 DEF_RTL_EXPR(GEU, "geu", "ee", RTX_COMPARE)
521 DEF_RTL_EXPR(GTU, "gtu", "ee", RTX_COMPARE)
522 DEF_RTL_EXPR(LEU, "leu", "ee", RTX_COMPARE)
523 DEF_RTL_EXPR(LTU, "ltu", "ee", RTX_COMPARE)
524
525 /* Additional floating point unordered comparison flavors.  */
526 DEF_RTL_EXPR(UNORDERED, "unordered", "ee", RTX_COMM_COMPARE)
527 DEF_RTL_EXPR(ORDERED, "ordered", "ee", RTX_COMM_COMPARE)
528
529 /* These are equivalent to unordered or ...  */
530 DEF_RTL_EXPR(UNEQ, "uneq", "ee", RTX_COMM_COMPARE)
531 DEF_RTL_EXPR(UNGE, "unge", "ee", RTX_COMPARE)
532 DEF_RTL_EXPR(UNGT, "ungt", "ee", RTX_COMPARE)
533 DEF_RTL_EXPR(UNLE, "unle", "ee", RTX_COMPARE)
534 DEF_RTL_EXPR(UNLT, "unlt", "ee", RTX_COMPARE)
535
536 /* This is an ordered NE, ie !UNEQ, ie false for NaN.  */
537 DEF_RTL_EXPR(LTGT, "ltgt", "ee", RTX_COMM_COMPARE)
538
539 /* Represents the result of sign-extending the sole operand.
540    The machine modes of the operand and of the SIGN_EXTEND expression
541    determine how much sign-extension is going on.  */
542 DEF_RTL_EXPR(SIGN_EXTEND, "sign_extend", "e", RTX_UNARY)
543
544 /* Similar for zero-extension (such as unsigned short to int).  */
545 DEF_RTL_EXPR(ZERO_EXTEND, "zero_extend", "e", RTX_UNARY)
546
547 /* Similar but here the operand has a wider mode.  */
548 DEF_RTL_EXPR(TRUNCATE, "truncate", "e", RTX_UNARY)
549
550 /* Similar for extending floating-point values (such as SFmode to DFmode).  */
551 DEF_RTL_EXPR(FLOAT_EXTEND, "float_extend", "e", RTX_UNARY)
552 DEF_RTL_EXPR(FLOAT_TRUNCATE, "float_truncate", "e", RTX_UNARY)
553
554 /* Conversion of fixed point operand to floating point value.  */
555 DEF_RTL_EXPR(FLOAT, "float", "e", RTX_UNARY)
556
557 /* With fixed-point machine mode:
558    Conversion of floating point operand to fixed point value.
559    Value is defined only when the operand's value is an integer.
560    With floating-point machine mode (and operand with same mode):
561    Operand is rounded toward zero to produce an integer value
562    represented in floating point.  */
563 DEF_RTL_EXPR(FIX, "fix", "e", RTX_UNARY)
564
565 /* Conversion of unsigned fixed point operand to floating point value.  */
566 DEF_RTL_EXPR(UNSIGNED_FLOAT, "unsigned_float", "e", RTX_UNARY)
567
568 /* With fixed-point machine mode:
569    Conversion of floating point operand to *unsigned* fixed point value.
570    Value is defined only when the operand's value is an integer.  */
571 DEF_RTL_EXPR(UNSIGNED_FIX, "unsigned_fix", "e", RTX_UNARY)
572
573 /* Absolute value */
574 DEF_RTL_EXPR(ABS, "abs", "e", RTX_UNARY)
575
576 /* Square root */
577 DEF_RTL_EXPR(SQRT, "sqrt", "e", RTX_UNARY)
578
579 /* Swap bytes.  */
580 DEF_RTL_EXPR(BSWAP, "bswap", "e", RTX_UNARY)
581
582 /* Find first bit that is set.
583    Value is 1 + number of trailing zeros in the arg.,
584    or 0 if arg is 0.  */
585 DEF_RTL_EXPR(FFS, "ffs", "e", RTX_UNARY)
586
587 /* Count leading zeros.  */
588 DEF_RTL_EXPR(CLZ, "clz", "e", RTX_UNARY)
589
590 /* Count trailing zeros.  */
591 DEF_RTL_EXPR(CTZ, "ctz", "e", RTX_UNARY)
592
593 /* Population count (number of 1 bits).  */
594 DEF_RTL_EXPR(POPCOUNT, "popcount", "e", RTX_UNARY)
595
596 /* Population parity (number of 1 bits modulo 2).  */
597 DEF_RTL_EXPR(PARITY, "parity", "e", RTX_UNARY)
598
599 /* Reference to a signed bit-field of specified size and position.
600    Operand 0 is the memory unit (usually SImode or QImode) which
601    contains the field's first bit.  Operand 1 is the width, in bits.
602    Operand 2 is the number of bits in the memory unit before the
603    first bit of this field.
604    If BITS_BIG_ENDIAN is defined, the first bit is the msb and
605    operand 2 counts from the msb of the memory unit.
606    Otherwise, the first bit is the lsb and operand 2 counts from
607    the lsb of the memory unit.
608    This kind of expression can not appear as an lvalue in RTL.  */
609 DEF_RTL_EXPR(SIGN_EXTRACT, "sign_extract", "eee", RTX_BITFIELD_OPS)
610
611 /* Similar for unsigned bit-field.
612    But note!  This kind of expression _can_ appear as an lvalue.  */
613 DEF_RTL_EXPR(ZERO_EXTRACT, "zero_extract", "eee", RTX_BITFIELD_OPS)
614
615 /* For RISC machines.  These save memory when splitting insns.  */
616
617 /* HIGH are the high-order bits of a constant expression.  */
618 DEF_RTL_EXPR(HIGH, "high", "e", RTX_CONST_OBJ)
619
620 /* LO_SUM is the sum of a register and the low-order bits
621    of a constant expression.  */
622 DEF_RTL_EXPR(LO_SUM, "lo_sum", "ee", RTX_OBJ)
623
624 /* Describes a merge operation between two vector values.
625    Operands 0 and 1 are the vectors to be merged, operand 2 is a bitmask
626    that specifies where the parts of the result are taken from.  Set bits
627    indicate operand 0, clear bits indicate operand 1.  The parts are defined
628    by the mode of the vectors.  */
629 DEF_RTL_EXPR(VEC_MERGE, "vec_merge", "eee", RTX_TERNARY)
630
631 /* Describes an operation that selects parts of a vector.
632    Operands 0 is the source vector, operand 1 is a PARALLEL that contains
633    a CONST_INT for each of the subparts of the result vector, giving the
634    number of the source subpart that should be stored into it.  */
635 DEF_RTL_EXPR(VEC_SELECT, "vec_select", "ee", RTX_BIN_ARITH)
636
637 /* Describes a vector concat operation.  Operands 0 and 1 are the source
638    vectors, the result is a vector that is as long as operands 0 and 1
639    combined and is the concatenation of the two source vectors.  */
640 DEF_RTL_EXPR(VEC_CONCAT, "vec_concat", "ee", RTX_BIN_ARITH)
641
642 /* Describes an operation that converts a small vector into a larger one by
643    duplicating the input values.  The output vector mode must have the same
644    submodes as the input vector mode, and the number of output parts must be
645    an integer multiple of the number of input parts.  */
646 DEF_RTL_EXPR(VEC_DUPLICATE, "vec_duplicate", "e", RTX_UNARY)
647      
648 /* Addition with signed saturation */
649 DEF_RTL_EXPR(SS_PLUS, "ss_plus", "ee", RTX_COMM_ARITH)
650
651 /* Addition with unsigned saturation */
652 DEF_RTL_EXPR(US_PLUS, "us_plus", "ee", RTX_COMM_ARITH)
653
654 /* Operand 0 minus operand 1, with signed saturation.  */
655 DEF_RTL_EXPR(SS_MINUS, "ss_minus", "ee", RTX_BIN_ARITH)
656
657 /* Negation with signed saturation.  */
658 DEF_RTL_EXPR(SS_NEG, "ss_neg", "e", RTX_UNARY)
659
660 /* Shift left with signed saturation.  */
661 DEF_RTL_EXPR(SS_ASHIFT, "ss_ashift", "ee", RTX_BIN_ARITH)
662
663 /* Operand 0 minus operand 1, with unsigned saturation.  */
664 DEF_RTL_EXPR(US_MINUS, "us_minus", "ee", RTX_BIN_ARITH)
665
666 /* Signed saturating truncate.  */
667 DEF_RTL_EXPR(SS_TRUNCATE, "ss_truncate", "e", RTX_UNARY)
668
669 /* Unsigned saturating truncate.  */
670 DEF_RTL_EXPR(US_TRUNCATE, "us_truncate", "e", RTX_UNARY)
671
672 /* Information about the variable and its location.  */
673 DEF_RTL_EXPR(VAR_LOCATION, "var_location", "te", RTX_EXTRA)
674
675 /* All expressions from this point forward appear only in machine
676    descriptions.  */
677 #ifdef GENERATOR_FILE
678
679 /* Include a secondary machine-description file at this point.  */
680 DEF_RTL_EXPR(INCLUDE, "include", "s", RTX_EXTRA)
681
682 /* Pattern-matching operators:  */
683
684 /* Use the function named by the second arg (the string)
685    as a predicate; if matched, store the structure that was matched
686    in the operand table at index specified by the first arg (the integer).
687    If the second arg is the null string, the structure is just stored.
688
689    A third string argument indicates to the register allocator restrictions
690    on where the operand can be allocated.
691
692    If the target needs no restriction on any instruction this field should
693    be the null string.
694
695    The string is prepended by:
696    '=' to indicate the operand is only written to.
697    '+' to indicate the operand is both read and written to.
698
699    Each character in the string represents an allocable class for an operand.
700    'g' indicates the operand can be any valid class.
701    'i' indicates the operand can be immediate (in the instruction) data.
702    'r' indicates the operand can be in a register.
703    'm' indicates the operand can be in memory.
704    'o' a subset of the 'm' class.  Those memory addressing modes that
705        can be offset at compile time (have a constant added to them).
706
707    Other characters indicate target dependent operand classes and
708    are described in each target's machine description.
709
710    For instructions with more than one operand, sets of classes can be
711    separated by a comma to indicate the appropriate multi-operand constraints.
712    There must be a 1 to 1 correspondence between these sets of classes in
713    all operands for an instruction.
714    */
715 DEF_RTL_EXPR(MATCH_OPERAND, "match_operand", "iss", RTX_MATCH)
716
717 /* Match a SCRATCH or a register.  When used to generate rtl, a
718    SCRATCH is generated.  As for MATCH_OPERAND, the mode specifies
719    the desired mode and the first argument is the operand number.
720    The second argument is the constraint.  */
721 DEF_RTL_EXPR(MATCH_SCRATCH, "match_scratch", "is", RTX_MATCH)
722
723 /* Apply a predicate, AND match recursively the operands of the rtx.
724    Operand 0 is the operand-number, as in match_operand.
725    Operand 1 is a predicate to apply (as a string, a function name).
726    Operand 2 is a vector of expressions, each of which must match
727    one subexpression of the rtx this construct is matching.  */
728 DEF_RTL_EXPR(MATCH_OPERATOR, "match_operator", "isE", RTX_MATCH)
729
730 /* Match a PARALLEL of arbitrary length.  The predicate is applied
731    to the PARALLEL and the initial expressions in the PARALLEL are matched.
732    Operand 0 is the operand-number, as in match_operand.
733    Operand 1 is a predicate to apply to the PARALLEL.
734    Operand 2 is a vector of expressions, each of which must match the 
735    corresponding element in the PARALLEL.  */
736 DEF_RTL_EXPR(MATCH_PARALLEL, "match_parallel", "isE", RTX_MATCH)
737
738 /* Match only something equal to what is stored in the operand table
739    at the index specified by the argument.  Use with MATCH_OPERAND.  */
740 DEF_RTL_EXPR(MATCH_DUP, "match_dup", "i", RTX_MATCH)
741
742 /* Match only something equal to what is stored in the operand table
743    at the index specified by the argument.  Use with MATCH_OPERATOR.  */
744 DEF_RTL_EXPR(MATCH_OP_DUP, "match_op_dup", "iE", RTX_MATCH)
745
746 /* Match only something equal to what is stored in the operand table
747    at the index specified by the argument.  Use with MATCH_PARALLEL.  */
748 DEF_RTL_EXPR(MATCH_PAR_DUP, "match_par_dup", "iE", RTX_MATCH)
749
750 /* Appears only in define_predicate/define_special_predicate
751    expressions.  Evaluates true only if the operand has an RTX code
752    from the set given by the argument (a comma-separated list).  If the
753    second argument is present and nonempty, it is a sequence of digits
754    and/or letters which indicates the subexpression to test, using the
755    same syntax as genextract/genrecog's location strings: 0-9 for
756    XEXP (op, n), a-z for XVECEXP (op, 0, n); each character applies to
757    the result of the one before it.  */
758 DEF_RTL_EXPR(MATCH_CODE, "match_code", "ss", RTX_MATCH)
759
760 /* Appears only in define_predicate/define_special_predicate
761     expressions.  The argument is a C expression to be injected at this
762     point in the predicate formula.  */
763 DEF_RTL_EXPR(MATCH_TEST, "match_test", "s", RTX_MATCH)
764
765 /* Insn (and related) definitions.  */
766
767 /* Definition of the pattern for one kind of instruction.
768    Operand:
769    0: names this instruction.
770       If the name is the null string, the instruction is in the
771       machine description just to be recognized, and will never be emitted by
772       the tree to rtl expander.
773    1: is the pattern.
774    2: is a string which is a C expression
775       giving an additional condition for recognizing this pattern.
776       A null string means no extra condition.
777    3: is the action to execute if this pattern is matched.
778       If this assembler code template starts with a * then it is a fragment of
779       C code to run to decide on a template to use.  Otherwise, it is the
780       template to use.
781    4: optionally, a vector of attributes for this insn.
782      */
783 DEF_RTL_EXPR(DEFINE_INSN, "define_insn", "sEsTV", RTX_EXTRA)
784
785 /* Definition of a peephole optimization.
786    1st operand: vector of insn patterns to match
787    2nd operand: C expression that must be true
788    3rd operand: template or C code to produce assembler output.
789    4: optionally, a vector of attributes for this insn.
790
791    This form is deprecated; use define_peephole2 instead.  */
792 DEF_RTL_EXPR(DEFINE_PEEPHOLE, "define_peephole", "EsTV", RTX_EXTRA)
793
794 /* Definition of a split operation.
795    1st operand: insn pattern to match
796    2nd operand: C expression that must be true
797    3rd operand: vector of insn patterns to place into a SEQUENCE
798    4th operand: optionally, some C code to execute before generating the
799         insns.  This might, for example, create some RTX's and store them in
800         elements of `recog_data.operand' for use by the vector of
801         insn-patterns.
802         (`operands' is an alias here for `recog_data.operand').  */
803 DEF_RTL_EXPR(DEFINE_SPLIT, "define_split", "EsES", RTX_EXTRA)
804
805 /* Definition of an insn and associated split.
806    This is the concatenation, with a few modifications, of a define_insn
807    and a define_split which share the same pattern.
808    Operand:
809    0: names this instruction.
810       If the name is the null string, the instruction is in the
811       machine description just to be recognized, and will never be emitted by
812       the tree to rtl expander.
813    1: is the pattern.
814    2: is a string which is a C expression
815       giving an additional condition for recognizing this pattern.
816       A null string means no extra condition.
817    3: is the action to execute if this pattern is matched.
818       If this assembler code template starts with a * then it is a fragment of
819       C code to run to decide on a template to use.  Otherwise, it is the
820       template to use.
821    4: C expression that must be true for split.  This may start with "&&"
822       in which case the split condition is the logical and of the insn 
823       condition and what follows the "&&" of this operand.
824    5: vector of insn patterns to place into a SEQUENCE
825    6: optionally, some C code to execute before generating the
826         insns.  This might, for example, create some RTX's and store them in
827         elements of `recog_data.operand' for use by the vector of
828         insn-patterns.
829         (`operands' is an alias here for `recog_data.operand').  
830    7: optionally, a vector of attributes for this insn.  */
831 DEF_RTL_EXPR(DEFINE_INSN_AND_SPLIT, "define_insn_and_split", "sEsTsESV", RTX_EXTRA)
832
833 /* Definition of an RTL peephole operation.
834    Follows the same arguments as define_split.  */
835 DEF_RTL_EXPR(DEFINE_PEEPHOLE2, "define_peephole2", "EsES", RTX_EXTRA)
836
837 /* Define how to generate multiple insns for a standard insn name.
838    1st operand: the insn name.
839    2nd operand: vector of insn-patterns.
840         Use match_operand to substitute an element of `recog_data.operand'.
841    3rd operand: C expression that must be true for this to be available.
842         This may not test any operands.
843    4th operand: Extra C code to execute before generating the insns.
844         This might, for example, create some RTX's and store them in
845         elements of `recog_data.operand' for use by the vector of
846         insn-patterns.
847         (`operands' is an alias here for `recog_data.operand').  */
848 DEF_RTL_EXPR(DEFINE_EXPAND, "define_expand", "sEss", RTX_EXTRA)
849    
850 /* Define a requirement for delay slots.
851    1st operand: Condition involving insn attributes that, if true,
852                 indicates that the insn requires the number of delay slots
853                 shown.
854    2nd operand: Vector whose length is the three times the number of delay
855                 slots required.
856                 Each entry gives three conditions, each involving attributes.
857                 The first must be true for an insn to occupy that delay slot
858                 location.  The second is true for all insns that can be
859                 annulled if the branch is true and the third is true for all
860                 insns that can be annulled if the branch is false. 
861
862    Multiple DEFINE_DELAYs may be present.  They indicate differing
863    requirements for delay slots.  */
864 DEF_RTL_EXPR(DEFINE_DELAY, "define_delay", "eE", RTX_EXTRA)
865
866 /* Define attribute computation for `asm' instructions.  */
867 DEF_RTL_EXPR(DEFINE_ASM_ATTRIBUTES, "define_asm_attributes", "V", RTX_EXTRA)
868
869 /* Definition of a conditional execution meta operation.  Automatically
870    generates new instances of DEFINE_INSN, selected by having attribute
871    "predicable" true.  The new pattern will contain a COND_EXEC and the
872    predicate at top-level.
873
874    Operand:
875    0: The predicate pattern.  The top-level form should match a
876       relational operator.  Operands should have only one alternative.
877    1: A C expression giving an additional condition for recognizing
878       the generated pattern.
879    2: A template or C code to produce assembler output.  */
880 DEF_RTL_EXPR(DEFINE_COND_EXEC, "define_cond_exec", "Ess", RTX_EXTRA)
881
882 /* Definition of an operand predicate.  The difference between
883    DEFINE_PREDICATE and DEFINE_SPECIAL_PREDICATE is that genrecog will
884    not warn about a match_operand with no mode if it has a predicate
885    defined with DEFINE_SPECIAL_PREDICATE.
886
887    Operand:
888    0: The name of the predicate.
889    1: A boolean expression which computes whether or not the predicate
890       matches.  This expression can use IOR, AND, NOT, MATCH_OPERAND,
891       MATCH_CODE, and MATCH_TEST.  It must be specific enough that genrecog
892       can calculate the set of RTX codes that can possibly match.
893    2: A C function body which must return true for the predicate to match.
894       Optional.  Use this when the test is too complicated to fit into a
895       match_test expression.  */
896 DEF_RTL_EXPR(DEFINE_PREDICATE, "define_predicate", "ses", RTX_EXTRA)
897 DEF_RTL_EXPR(DEFINE_SPECIAL_PREDICATE, "define_special_predicate", "ses", RTX_EXTRA)
898
899 /* Definition of a register operand constraint.  This simply maps the
900    constraint string to a register class.
901
902    Operand:
903    0: The name of the constraint (often, but not always, a single letter).
904    1: A C expression which evaluates to the appropriate register class for
905       this constraint.  If this is not just a constant, it should look only
906       at -m switches and the like.
907    2: A docstring for this constraint, in Texinfo syntax; not currently
908       used, in future will be incorporated into the manual's list of
909       machine-specific operand constraints.  */
910 DEF_RTL_EXPR(DEFINE_REGISTER_CONSTRAINT, "define_register_constraint", "sss", RTX_EXTRA)
911
912 /* Definition of a non-register operand constraint.  These look at the
913    operand and decide whether it fits the constraint.
914
915    DEFINE_CONSTRAINT gets no special treatment if it fails to match.
916    It is appropriate for constant-only constraints, and most others.
917
918    DEFINE_MEMORY_CONSTRAINT tells reload that this constraint can be made
919    to match, if it doesn't already, by converting the operand to the form
920    (mem (reg X)) where X is a base register.  It is suitable for constraints
921    that describe a subset of all memory references.
922
923    DEFINE_ADDRESS_CONSTRAINT tells reload that this constraint can be made
924    to match, if it doesn't already, by converting the operand to the form
925    (reg X) where X is a base register.  It is suitable for constraints that
926    describe a subset of all address references.
927
928    When in doubt, use plain DEFINE_CONSTRAINT.  
929
930    Operand:
931    0: The name of the constraint (often, but not always, a single letter).
932    1: A docstring for this constraint, in Texinfo syntax; not currently
933       used, in future will be incorporated into the manual's list of
934       machine-specific operand constraints.
935    2: A boolean expression which computes whether or not the constraint
936       matches.  It should follow the same rules as a define_predicate
937       expression, including the bit about specifying the set of RTX codes
938       that could possibly match.  MATCH_TEST subexpressions may make use of
939       these variables:
940         `op'    - the RTL object defining the operand.
941         `mode'  - the mode of `op'.
942         `ival'  - INTVAL(op), if op is a CONST_INT.
943         `hval'  - CONST_DOUBLE_HIGH(op), if op is an integer CONST_DOUBLE.
944         `lval'  - CONST_DOUBLE_LOW(op), if op is an integer CONST_DOUBLE.
945         `rval'  - CONST_DOUBLE_REAL_VALUE(op), if op is a floating-point
946                   CONST_DOUBLE.
947       Do not use ival/hval/lval/rval if op is not the appropriate kind of
948       RTL object.  */
949 DEF_RTL_EXPR(DEFINE_CONSTRAINT, "define_constraint", "sse", RTX_EXTRA)
950 DEF_RTL_EXPR(DEFINE_MEMORY_CONSTRAINT, "define_memory_constraint", "sse", RTX_EXTRA)
951 DEF_RTL_EXPR(DEFINE_ADDRESS_CONSTRAINT, "define_address_constraint", "sse", RTX_EXTRA)
952    
953
954 /* Constructions for CPU pipeline description described by NDFAs.  */
955
956 /* (define_cpu_unit string [string]) describes cpu functional
957    units (separated by comma).
958
959    1st operand: Names of cpu functional units.
960    2nd operand: Name of automaton (see comments for DEFINE_AUTOMATON).
961
962    All define_reservations, define_cpu_units, and
963    define_query_cpu_units should have unique names which may not be
964    "nothing".  */
965 DEF_RTL_EXPR(DEFINE_CPU_UNIT, "define_cpu_unit", "sS", RTX_EXTRA)
966
967 /* (define_query_cpu_unit string [string]) describes cpu functional
968    units analogously to define_cpu_unit.  The reservation of such
969    units can be queried for automaton state.  */
970 DEF_RTL_EXPR(DEFINE_QUERY_CPU_UNIT, "define_query_cpu_unit", "sS", RTX_EXTRA)
971
972 /* (exclusion_set string string) means that each CPU functional unit
973    in the first string can not be reserved simultaneously with any
974    unit whose name is in the second string and vise versa.  CPU units
975    in the string are separated by commas.  For example, it is useful
976    for description CPU with fully pipelined floating point functional
977    unit which can execute simultaneously only single floating point
978    insns or only double floating point insns.  All CPU functional
979    units in a set should belong to the same automaton.  */
980 DEF_RTL_EXPR(EXCLUSION_SET, "exclusion_set", "ss", RTX_EXTRA)
981
982 /* (presence_set string string) means that each CPU functional unit in
983    the first string can not be reserved unless at least one of pattern
984    of units whose names are in the second string is reserved.  This is
985    an asymmetric relation.  CPU units or unit patterns in the strings
986    are separated by commas.  Pattern is one unit name or unit names
987    separated by white-spaces.
988  
989    For example, it is useful for description that slot1 is reserved
990    after slot0 reservation for a VLIW processor.  We could describe it
991    by the following construction
992
993       (presence_set "slot1" "slot0")
994
995    Or slot1 is reserved only after slot0 and unit b0 reservation.  In
996    this case we could write
997
998       (presence_set "slot1" "slot0 b0")
999
1000    All CPU functional units in a set should belong to the same
1001    automaton.  */
1002 DEF_RTL_EXPR(PRESENCE_SET, "presence_set", "ss", RTX_EXTRA)
1003
1004 /* (final_presence_set string string) is analogous to `presence_set'.
1005    The difference between them is when checking is done.  When an
1006    instruction is issued in given automaton state reflecting all
1007    current and planned unit reservations, the automaton state is
1008    changed.  The first state is a source state, the second one is a
1009    result state.  Checking for `presence_set' is done on the source
1010    state reservation, checking for `final_presence_set' is done on the
1011    result reservation.  This construction is useful to describe a
1012    reservation which is actually two subsequent reservations.  For
1013    example, if we use 
1014
1015       (presence_set "slot1" "slot0")
1016
1017    the following insn will be never issued (because slot1 requires
1018    slot0 which is absent in the source state).
1019
1020       (define_reservation "insn_and_nop" "slot0 + slot1")
1021
1022    but it can be issued if we use analogous `final_presence_set'.  */
1023 DEF_RTL_EXPR(FINAL_PRESENCE_SET, "final_presence_set", "ss", RTX_EXTRA)
1024
1025 /* (absence_set string string) means that each CPU functional unit in
1026    the first string can be reserved only if each pattern of units
1027    whose names are in the second string is not reserved.  This is an
1028    asymmetric relation (actually exclusion set is analogous to this
1029    one but it is symmetric).  CPU units or unit patterns in the string
1030    are separated by commas.  Pattern is one unit name or unit names
1031    separated by white-spaces.
1032
1033    For example, it is useful for description that slot0 can not be
1034    reserved after slot1 or slot2 reservation for a VLIW processor.  We
1035    could describe it by the following construction
1036
1037       (absence_set "slot2" "slot0, slot1")
1038
1039    Or slot2 can not be reserved if slot0 and unit b0 are reserved or
1040    slot1 and unit b1 are reserved .  In this case we could write
1041
1042       (absence_set "slot2" "slot0 b0, slot1 b1")
1043
1044    All CPU functional units in a set should to belong the same
1045    automaton.  */
1046 DEF_RTL_EXPR(ABSENCE_SET, "absence_set", "ss", RTX_EXTRA)
1047
1048 /* (final_absence_set string string) is analogous to `absence_set' but
1049    checking is done on the result (state) reservation.  See comments
1050    for `final_presence_set'.  */
1051 DEF_RTL_EXPR(FINAL_ABSENCE_SET, "final_absence_set", "ss", RTX_EXTRA)
1052
1053 /* (define_bypass number out_insn_names in_insn_names) names bypass
1054    with given latency (the first number) from insns given by the first
1055    string (see define_insn_reservation) into insns given by the second
1056    string.  Insn names in the strings are separated by commas.  The
1057    third operand is optional name of function which is additional
1058    guard for the bypass.  The function will get the two insns as
1059    parameters.  If the function returns zero the bypass will be
1060    ignored for this case.  Additional guard is necessary to recognize
1061    complicated bypasses, e.g. when consumer is load address.  */
1062 DEF_RTL_EXPR(DEFINE_BYPASS, "define_bypass", "issS", RTX_EXTRA)
1063
1064 /* (define_automaton string) describes names of automata generated and
1065    used for pipeline hazards recognition.  The names are separated by
1066    comma.  Actually it is possibly to generate the single automaton
1067    but unfortunately it can be very large.  If we use more one
1068    automata, the summary size of the automata usually is less than the
1069    single one.  The automaton name is used in define_cpu_unit and
1070    define_query_cpu_unit.  All automata should have unique names.  */
1071 DEF_RTL_EXPR(DEFINE_AUTOMATON, "define_automaton", "s", RTX_EXTRA)
1072
1073 /* (automata_option string) describes option for generation of
1074    automata.  Currently there are the following options:
1075
1076    o "no-minimization" which makes no minimization of automata.  This
1077      is only worth to do when we are debugging the description and
1078      need to look more accurately at reservations of states.
1079
1080    o "time" which means printing additional time statistics about
1081       generation of automata.
1082   
1083    o "v" which means generation of file describing the result
1084      automata.  The file has suffix `.dfa' and can be used for the
1085      description verification and debugging.
1086
1087    o "w" which means generation of warning instead of error for
1088      non-critical errors.
1089
1090    o "ndfa" which makes nondeterministic finite state automata.
1091
1092    o "progress" which means output of a progress bar showing how many
1093      states were generated so far for automaton being processed.  */
1094 DEF_RTL_EXPR(AUTOMATA_OPTION, "automata_option", "s", RTX_EXTRA)
1095
1096 /* (define_reservation string string) names reservation (the first
1097    string) of cpu functional units (the 2nd string).  Sometimes unit
1098    reservations for different insns contain common parts.  In such
1099    case, you can describe common part and use its name (the 1st
1100    parameter) in regular expression in define_insn_reservation.  All
1101    define_reservations, define_cpu_units, and define_query_cpu_units
1102    should have unique names which may not be "nothing".  */
1103 DEF_RTL_EXPR(DEFINE_RESERVATION, "define_reservation", "ss", RTX_EXTRA)
1104
1105 /* (define_insn_reservation name default_latency condition regexpr)
1106    describes reservation of cpu functional units (the 3nd operand) for
1107    instruction which is selected by the condition (the 2nd parameter).
1108    The first parameter is used for output of debugging information.
1109    The reservations are described by a regular expression according
1110    the following syntax:
1111
1112        regexp = regexp "," oneof
1113               | oneof
1114
1115        oneof = oneof "|" allof
1116              | allof
1117
1118        allof = allof "+" repeat
1119              | repeat
1120  
1121        repeat = element "*" number
1122               | element
1123
1124        element = cpu_function_unit_name
1125                | reservation_name
1126                | result_name
1127                | "nothing"
1128                | "(" regexp ")"
1129
1130        1. "," is used for describing start of the next cycle in
1131        reservation.
1132
1133        2. "|" is used for describing the reservation described by the
1134        first regular expression *or* the reservation described by the
1135        second regular expression *or* etc.
1136
1137        3. "+" is used for describing the reservation described by the
1138        first regular expression *and* the reservation described by the
1139        second regular expression *and* etc.
1140
1141        4. "*" is used for convenience and simply means sequence in
1142        which the regular expression are repeated NUMBER times with
1143        cycle advancing (see ",").
1144
1145        5. cpu functional unit name which means its reservation.
1146
1147        6. reservation name -- see define_reservation.
1148
1149        7. string "nothing" means no units reservation.  */
1150
1151 DEF_RTL_EXPR(DEFINE_INSN_RESERVATION, "define_insn_reservation", "sies", RTX_EXTRA)
1152
1153 /* Expressions used for insn attributes.  */
1154
1155 /* Definition of an insn attribute.
1156    1st operand: name of the attribute
1157    2nd operand: comma-separated list of possible attribute values
1158    3rd operand: expression for the default value of the attribute.  */
1159 DEF_RTL_EXPR(DEFINE_ATTR, "define_attr", "sse", RTX_EXTRA)
1160
1161 /* Marker for the name of an attribute.  */
1162 DEF_RTL_EXPR(ATTR, "attr", "s", RTX_EXTRA)
1163
1164 /* For use in the last (optional) operand of DEFINE_INSN or DEFINE_PEEPHOLE and
1165    in DEFINE_ASM_INSN to specify an attribute to assign to insns matching that
1166    pattern.
1167
1168    (set_attr "name" "value") is equivalent to
1169    (set (attr "name") (const_string "value"))  */
1170 DEF_RTL_EXPR(SET_ATTR, "set_attr", "ss", RTX_EXTRA)
1171
1172 /* In the last operand of DEFINE_INSN and DEFINE_PEEPHOLE, this can be used to
1173    specify that attribute values are to be assigned according to the
1174    alternative matched.
1175
1176    The following three expressions are equivalent:
1177
1178    (set (attr "att") (cond [(eq_attrq "alternative" "1") (const_string "a1")
1179                             (eq_attrq "alternative" "2") (const_string "a2")]
1180                            (const_string "a3")))
1181    (set_attr_alternative "att" [(const_string "a1") (const_string "a2")
1182                                  (const_string "a3")])
1183    (set_attr "att" "a1,a2,a3")
1184  */
1185 DEF_RTL_EXPR(SET_ATTR_ALTERNATIVE, "set_attr_alternative", "sE", RTX_EXTRA)
1186
1187 /* A conditional expression true if the value of the specified attribute of
1188    the current insn equals the specified value.  The first operand is the
1189    attribute name and the second is the comparison value.  */
1190 DEF_RTL_EXPR(EQ_ATTR, "eq_attr", "ss", RTX_EXTRA)
1191
1192 /* A special case of the above representing a set of alternatives.  The first
1193    operand is bitmap of the set, the second one is the default value.  */
1194 DEF_RTL_EXPR(EQ_ATTR_ALT, "eq_attr_alt", "ii", RTX_EXTRA)
1195
1196 /* A conditional expression which is true if the specified flag is
1197    true for the insn being scheduled in reorg.
1198
1199    genattr.c defines the following flags which can be tested by
1200    (attr_flag "foo") expressions in eligible_for_delay.
1201
1202    forward, backward, very_likely, likely, very_unlikely, and unlikely.  */
1203
1204 DEF_RTL_EXPR (ATTR_FLAG, "attr_flag", "s", RTX_EXTRA)
1205
1206 /* General conditional. The first operand is a vector composed of pairs of
1207    expressions.  The first element of each pair is evaluated, in turn.
1208    The value of the conditional is the second expression of the first pair
1209    whose first expression evaluates nonzero.  If none of the expressions is
1210    true, the second operand will be used as the value of the conditional.  */
1211 DEF_RTL_EXPR(COND, "cond", "Ee", RTX_EXTRA)
1212
1213 #endif /* GENERATOR_FILE */
1214
1215 /*
1216 Local variables:
1217 mode:c
1218 End:
1219 */