OSDN Git Service

* invoke.texi (-ffloat-store): Clarify that this option
[pf3gnuchains/gcc-fork.git] / gcc / invoke.texi
1 @c Copyright (C) 1988,89,92,93,94,95,96,97,1998 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @node Invoking GCC
6 @chapter GNU CC Command Options
7 @cindex GNU CC command options
8 @cindex command options
9 @cindex options, GNU CC command
10
11 When you invoke GNU CC, it normally does preprocessing, compilation,
12 assembly and linking.  The ``overall options'' allow you to stop this
13 process at an intermediate stage.  For example, the @samp{-c} option
14 says not to run the linker.  Then the output consists of object files
15 output by the assembler.
16
17 Other options are passed on to one stage of processing.  Some options
18 control the preprocessor and others the compiler itself.  Yet other
19 options control the assembler and linker; most of these are not
20 documented here, since you rarely need to use any of them.
21
22 @cindex C compilation options
23 Most of the command line options that you can use with GNU CC are useful
24 for C programs; when an option is only useful with another language
25 (usually C++), the explanation says so explicitly.  If the description
26 for a particular option does not mention a source language, you can use
27 that option with all supported languages.
28
29 @cindex C++ compilation options
30 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
31 options for compiling C++ programs.
32
33 @cindex grouping options
34 @cindex options, grouping
35 The @code{gcc} program accepts options and file names as operands.  Many
36 options have multiletter names; therefore multiple single-letter options
37 may @emph{not} be grouped: @samp{-dr} is very different from @w{@samp{-d
38 -r}}.
39
40 @cindex order of options
41 @cindex options, order
42 You can mix options and other arguments.  For the most part, the order
43 you use doesn't matter.  Order does matter when you use several options
44 of the same kind; for example, if you specify @samp{-L} more than once,
45 the directories are searched in the order specified.
46
47 Many options have long names starting with @samp{-f} or with
48 @samp{-W}---for example, @samp{-fforce-mem},
49 @samp{-fstrength-reduce}, @samp{-Wformat} and so on.  Most of
50 these have both positive and negative forms; the negative form of
51 @samp{-ffoo} would be @samp{-fno-foo}.  This manual documents
52 only one of these two forms, whichever one is not the default.
53
54 @menu
55 * Option Summary::      Brief list of all options, without explanations.
56 * Overall Options::     Controlling the kind of output:
57                         an executable, object files, assembler files,
58                         or preprocessed source.
59 * Invoking G++::        Compiling C++ programs.
60 * C Dialect Options::   Controlling the variant of C language compiled.
61 * C++ Dialect Options:: Variations on C++.
62 * Warning Options::     How picky should the compiler be?
63 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
64 * Optimize Options::    How much optimization?
65 * Preprocessor Options:: Controlling header files and macro definitions.
66                          Also, getting dependency information for Make.
67 * Assembler Options::   Passing options to the assembler.
68 * Link Options::        Specifying libraries and so on.
69 * Directory Options::   Where to find header files and libraries.
70                         Where to find the compiler executable files.
71 * Target Options::      Running a cross-compiler, or an old version of GNU CC.
72 * Submodel Options::    Specifying minor hardware or convention variations,
73                         such as 68010 vs 68020.
74 * Code Gen Options::    Specifying conventions for function calls, data layout
75                         and register usage.
76 * Environment Variables:: Env vars that affect GNU CC.
77 * Running Protoize::    Automatically adding or removing function prototypes.
78 @end menu
79
80 @node Option Summary
81 @section Option Summary
82
83 Here is a summary of all the options, grouped by type.  Explanations are
84 in the following sections.
85
86 @table @emph
87 @item Overall Options
88 @xref{Overall Options,,Options Controlling the Kind of Output}.
89 @smallexample
90 -c  -S  -E  -o @var{file}  -pipe  -v  -x @var{language}
91 @end smallexample
92
93 @item C Language Options
94 @xref{C Dialect Options,,Options Controlling C Dialect}.
95 @smallexample
96 -ansi  -fallow-single-precision  -fcond-mismatch  -fno-asm
97 -fno-builtin  -ffreestanding  -fhosted  -fsigned-bitfields  -fsigned-char
98 -funsigned-bitfields  -funsigned-char  -fwritable-strings
99 -traditional  -traditional-cpp  -trigraphs
100 @end smallexample
101
102 @item C++ Language Options
103 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
104 @smallexample
105 -fno-access-control  -fcheck-new  -fconserve-space  -fdollars-in-identifiers
106 -fno-elide-constructors  -fexternal-templates  -ffor-scope  
107 -fno-for-scope  -fno-gnu-keywords  -fguiding-decls  -fhandle-signatures
108 -fhonor-std -fhuge-objects  -fno-implicit-templates  -finit-priority
109 -fno-implement-inlines -fname-mangling-version-@var{n}  -fno-default-inline  
110 -foperator-names  -fno-optional-diags  -frepo  -fstrict-prototype
111 -fsquangle  -ftemplate-depth-@var{n}  -fthis-is-variable  -fvtable-thunks
112 -nostdinc++
113 @end smallexample
114
115 @item Warning Options
116 @xref{Warning Options,,Options to Request or Suppress Warnings}.
117 @smallexample
118 -fsyntax-only  -pedantic  -pedantic-errors
119 -w  -W  -Wall  -Waggregate-return  -Wbad-function-cast
120 -Wcast-align  -Wcast-qual  -Wchar-subscript  -Wcomment
121 -Wconversion  -Werror  -Wformat
122 -Wid-clash-@var{len}  -Wimplicit -Wimplicit-int 
123 -Wimplicit-function-declaration  -Wimport
124 -Werror-implicit-function-declaration  -Winline
125 -Wlarger-than-@var{len}  -Wlong-long
126 -Wmain  -Wmissing-declarations
127 -Wmissing-prototypes  -Wmultichar  -Wnested-externs  -Wno-import  
128 -Wno-non-template-friend -Wold-style-cast  -Woverloaded-virtual  
129 -Wparentheses -Wpointer-arith  -Wredundant-decls  -Wreorder  
130 -Wreturn-type -Wshadow  -Wsign-compare  -Wstrict-prototypes  
131 -Wswitch -Wsynth  -Wtraditional  
132 -Wtrigraphs -Wundef  -Wuninitialized  -Wunused  -Wwrite-strings
133 -Wunknown-pragmas
134 @end smallexample
135
136 @item Debugging Options
137 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
138 @smallexample
139 -a  -ax  -d@var{letters}  -fpretend-float
140 -fprofile-arcs  -ftest-coverage
141 -g  -g@var{level}  -gcoff  -gdwarf  -gdwarf-1  -gdwarf-1+  -gdwarf-2
142 -ggdb  -gstabs  -gstabs+  -gxcoff  -gxcoff+
143 -p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name
144 -print-prog-name=@var{program}  -print-search-dirs  -save-temps
145 @end smallexample
146
147 @item Optimization Options
148 @xref{Optimize Options,,Options that Control Optimization}.
149 @smallexample
150 -fbranch-probabilities  -foptimize-register-moves
151 -fcaller-saves  -fcse-follow-jumps  -fcse-skip-blocks
152 -fdelayed-branch   -fexpensive-optimizations
153 -ffast-math  -ffloat-store  -fforce-addr  -fforce-mem
154 -ffunction-sections  -fgcse -finline-functions
155 -fkeep-inline-functions  -fno-default-inline
156 -fno-defer-pop  -fno-function-cse
157 -fno-inline  -fno-peephole  -fomit-frame-pointer -fregmove
158 -frerun-cse-after-loop  -frerun-loop-opt -fschedule-insns
159 -fschedule-insns2  -fstrength-reduce  -fthread-jumps
160 -funroll-all-loops  -funroll-loops
161 -fmove-all-movables  -freduce-all-givs -fstrict-aliasing
162 -O  -O0  -O1  -O2  -O3 -Os
163 @end smallexample
164
165 @item Preprocessor Options
166 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
167 @smallexample
168 -A@var{question}(@var{answer})  -C  -dD  -dM  -dN
169 -D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H
170 -idirafter @var{dir}
171 -include @var{file}  -imacros @var{file}
172 -iprefix @var{file}  -iwithprefix @var{dir}
173 -iwithprefixbefore @var{dir}  -isystem @var{dir}
174 -M  -MD  -MM  -MMD  -MG  -nostdinc  -P  -trigraphs
175 -undef  -U@var{macro}  -Wp,@var{option}
176 @end smallexample
177
178 @item Assembler Option
179 @xref{Assembler Options,,Passing Options to the Assembler}.
180 @smallexample
181 -Wa,@var{option}
182 @end smallexample
183
184 @item Linker Options
185 @xref{Link Options,,Options for Linking}.
186 @smallexample
187 @var{object-file-name}  -l@var{library}
188 -nostartfiles  -nodefaultlibs  -nostdlib
189 -s  -static  -shared  -symbolic
190 -Wl,@var{option}  -Xlinker @var{option}
191 -u @var{symbol}
192 @end smallexample
193
194 @item Directory Options
195 @xref{Directory Options,,Options for Directory Search}.
196 @smallexample
197 -B@var{prefix}  -I@var{dir}  -I-  -L@var{dir}  -specs=@var{file}
198 @end smallexample
199
200 @item Target Options
201 @c I wrote this xref this way to avoid overfull hbox. -- rms
202 @xref{Target Options}.
203 @smallexample
204 -b @var{machine}  -V @var{version}
205 @end smallexample
206
207 @item Machine Dependent Options
208 @xref{Submodel Options,,Hardware Models and Configurations}.
209 @smallexample
210 @emph{M680x0 Options}
211 -m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040
212 -m68060  -mcpu32 -m5200  -m68881  -mbitfield  -mc68000  -mc68020  
213 -mfpa -mnobitfield  -mrtd  -mshort  -msoft-float  
214 -malign-int
215
216 @emph{VAX Options}
217 -mg  -mgnu  -munix
218
219 @emph{SPARC Options}
220 -mcpu=@var{cpu type}
221 -mtune=@var{cpu type}
222 -mcmodel=@var{code model}
223 -malign-jumps=@var{num}  -malign-loops=@var{num}
224 -malign-functions=@var{num}
225 -m32  -m64
226 -mapp-regs  -mbroken-saverestore  -mcypress  -mepilogue
227 -mflat  -mfpu  -mhard-float  -mhard-quad-float
228 -mimpure-text  -mlive-g0  -mno-app-regs  -mno-epilogue
229 -mno-flat  -mno-fpu  -mno-impure-text
230 -mno-stack-bias  -mno-unaligned-doubles
231 -msoft-float  -msoft-quad-float  -msparclite  -mstack-bias
232 -msupersparc  -munaligned-doubles  -mv8
233
234 @emph{Convex Options}
235 -mc1  -mc2  -mc32  -mc34  -mc38
236 -margcount  -mnoargcount
237 -mlong32  -mlong64
238 -mvolatile-cache  -mvolatile-nocache
239
240 @emph{AMD29K Options}
241 -m29000  -m29050  -mbw  -mnbw  -mdw  -mndw
242 -mlarge  -mnormal  -msmall
243 -mkernel-registers  -mno-reuse-arg-regs
244 -mno-stack-check  -mno-storem-bug
245 -mreuse-arg-regs  -msoft-float  -mstack-check
246 -mstorem-bug  -muser-registers
247
248 @emph{ARM Options}
249 -mapcs-frame -mno-apcs-frame
250 -mapcs-26 -mapcs-32
251 -mapcs-stack-check -mno-apcs-stack-check
252 -mapcs-float -mno-apcs-float
253 -mapcs-reentrant -mno-apcs-reentrant
254 -msched-prolog -mno-sched-prolog
255 -mlittle-endian -mbig-endian -mwords-little-endian
256 -mshort-load-bytes -mno-short-load-bytes -mshort-load-words -mno-short-load-words
257 -msoft-float -mhard-float -mfpe
258 -mthumb-interwork -mno-thumb-interwork
259 -mcpu= -march= -mfpe= 
260 -mstructure-size-boundary=
261 -mbsd -mxopen -mno-symrename
262
263 @emph{Thumb Options}
264 -mtpcs-frame -mno-tpcs-frame
265 -mtpcs-leaf-frame -mno-tpcs-leaf-frame
266 -mlittle-endian  -mbig-endian
267 -mthumb-interwork -mno-thumb-interwork
268 -mstructure-size-boundary=
269
270 @emph{MN10200 Options}
271 -mrelax
272
273 @emph{MN10300 Options}
274 -mmult-bug
275 -mno-mult-bug
276 -mrelax
277
278 @emph{M32R/D Options}
279 -mcode-model=@var{model type}  -msdata=@var{sdata type}
280 -G @var{num}
281
282 @emph{M88K Options}
283 -m88000  -m88100  -m88110  -mbig-pic
284 -mcheck-zero-division  -mhandle-large-shift
285 -midentify-revision  -mno-check-zero-division
286 -mno-ocs-debug-info  -mno-ocs-frame-position
287 -mno-optimize-arg-area  -mno-serialize-volatile
288 -mno-underscores  -mocs-debug-info
289 -mocs-frame-position  -moptimize-arg-area
290 -mserialize-volatile  -mshort-data-@var{num}  -msvr3
291 -msvr4  -mtrap-large-shift  -muse-div-instruction
292 -mversion-03.00  -mwarn-passed-structs
293
294 @emph{RS/6000 and PowerPC Options}
295 -mcpu=@var{cpu type}
296 -mtune=@var{cpu type}
297 -mpower  -mno-power  -mpower2  -mno-power2
298 -mpowerpc  -mno-powerpc
299 -mpowerpc-gpopt  -mno-powerpc-gpopt
300 -mpowerpc-gfxopt  -mno-powerpc-gfxopt
301 -mnew-mnemonics  -mno-new-mnemonics
302 -mfull-toc   -mminimal-toc  -mno-fop-in-toc  -mno-sum-in-toc
303 -maix64  -maix32  -mxl-call  -mno-xl-call  -mthreads  -mpe
304 -msoft-float  -mhard-float  -mmultiple  -mno-multiple
305 -mstring  -mno-string  -mupdate  -mno-update
306 -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align
307 -mstrict-align  -mno-strict-align  -mrelocatable
308 -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib
309 -mtoc  -mno-toc -mlittle  -mlittle-endian  -mbig  -mbig-endian
310 -mcall-aix  -mcall-sysv  -mprototype  -mno-prototype
311 -msim  -mmvme  -mads  -myellowknife  -memb -msdata
312 -msdata=@var{opt}  -G @var{num}
313
314 @emph{RT Options}
315 -mcall-lib-mul  -mfp-arg-in-fpregs  -mfp-arg-in-gregs
316 -mfull-fp-blocks  -mhc-struct-return  -min-line-mul
317 -mminimum-fp-blocks  -mnohc-struct-return
318
319 @emph{MIPS Options}
320 -mabicalls  -mcpu=@var{cpu type}  -membedded-data
321 -membedded-pic  -mfp32  -mfp64  -mgas  -mgp32  -mgp64
322 -mgpopt  -mhalf-pic  -mhard-float  -mint64  -mips1
323 -mips2  -mips3 -mips4 -mlong64  -mlong-calls  -mmemcpy
324 -mmips-as  -mmips-tfile  -mno-abicalls
325 -mno-embedded-data  -mno-embedded-pic
326 -mno-gpopt  -mno-long-calls
327 -mno-memcpy  -mno-mips-tfile  -mno-rnames  -mno-stats
328 -mrnames  -msoft-float
329 -m4650  -msingle-float  -mmad
330 -mstats  -EL  -EB  -G @var{num}  -nocpp
331 -mabi=32 -mabi=n32 -mabi=64 -mabi=eabi
332
333 @emph{i386 Options}
334 -mcpu=@var{cpu type}
335 -march=@var{cpu type}
336 -mieee-fp  -mno-fancy-math-387
337 -mno-fp-ret-in-387  -msoft-float  -msvr3-shlib
338 -mno-wide-multiply  -mrtd  -malign-double
339 -mreg-alloc=@var{list}  -mregparm=@var{num}
340 -malign-jumps=@var{num}  -malign-loops=@var{num}
341 -malign-functions=@var{num}
342
343 @emph{HPPA Options}
344 -mbig-switch  -mdisable-fpregs  -mdisable-indexing  
345 -mfast-indirect-calls -mgas  -mjump-in-delay  
346 -mlong-load-store  -mno-big-switch  -mno-disable-fpregs
347 -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas
348 -mno-jump-in-delay  -mno-long-load-store  
349 -mno-portable-runtime  -mno-soft-float  -mno-space  
350 -mno-space-regs  -msoft-float  -mpa-risc-1-0  
351 -mpa-risc-1-1  -mportable-runtime
352 -mschedule=@var{list}  -mspace  -mspace-regs
353
354 @emph{Intel 960 Options}
355 -m@var{cpu type}  -masm-compat  -mclean-linkage
356 -mcode-align  -mcomplex-addr  -mleaf-procedures
357 -mic-compat  -mic2.0-compat  -mic3.0-compat
358 -mintel-asm  -mno-clean-linkage  -mno-code-align
359 -mno-complex-addr  -mno-leaf-procedures
360 -mno-old-align  -mno-strict-align  -mno-tail-call
361 -mnumerics  -mold-align  -msoft-float  -mstrict-align
362 -mtail-call
363
364 @emph{DEC Alpha Options}
365 -mfp-regs  -mno-fp-regs -mno-soft-float  -msoft-float
366 -malpha-as -mgas
367 -mieee  -mieee-with-inexact  -mieee-conformant
368 -mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode}
369 -mtrap-precision=@var{mode}  -mbuild-constants
370 -mcpu=@var{cpu type}
371 -mbwx -mno-bwx -mcix -mno-cix -mmax -mno-max
372 -mmemory-latency=@var{time}
373
374 @emph{Clipper Options}
375 -mc300  -mc400
376
377 @emph{H8/300 Options}
378 -mrelax  -mh -ms -mint32  -malign-300
379
380 @emph{SH Options}
381 -m1  -m2  -m3  -m3e  -mb  -ml  -mdalign -mrelax
382
383 @emph{System V Options}
384 -Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}
385
386 @emph{ARC Options}
387 -EB  -EL
388 -mmangle-cpu  -mcpu=@var{cpu}  -mtext=@var{text section}
389 -mdata=@var{data section}  -mrodata=@var{readonly data section}
390
391 @emph{V850 Options}
392 -mlong-calls -mno-long-calls -mep -mno-ep
393 -mprolog-function -mno-prolog-function -mspace
394 -mtda=@var{n} -msda=@var{n} -mzda=@var{n}
395 -mv850 -mbig-switch
396 @end smallexample
397
398 @item Code Generation Options
399 @xref{Code Gen Options,,Options for Code Generation Conventions}.
400 @smallexample
401 -fcall-saved-@var{reg}  -fcall-used-@var{reg}
402 -fexceptions -ffixed-@var{reg}  -finhibit-size-directive
403 -fcheck-memory-usage  -fprefix-function-name
404 -fno-common  -fno-ident  -fno-gnu-linker
405 -fpcc-struct-return  -fpic  -fPIC
406 -freg-struct-return  -fshared-data  -fshort-enums
407 -fshort-double  -fvolatile  -fvolatile-global
408 -fverbose-asm -fpack-struct  -fstack-check
409 -fargument-alias  -fargument-noalias
410 -fargument-noalias-global
411 @end smallexample
412 @end table
413
414 @menu
415 * Overall Options::     Controlling the kind of output:
416                         an executable, object files, assembler files,
417                         or preprocessed source.
418 * C Dialect Options::   Controlling the variant of C language compiled.
419 * C++ Dialect Options:: Variations on C++.
420 * Warning Options::     How picky should the compiler be?
421 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
422 * Optimize Options::    How much optimization?
423 * Preprocessor Options:: Controlling header files and macro definitions.
424                          Also, getting dependency information for Make.
425 * Assembler Options::   Passing options to the assembler.
426 * Link Options::        Specifying libraries and so on.
427 * Directory Options::   Where to find header files and libraries.
428                         Where to find the compiler executable files.
429 * Target Options::      Running a cross-compiler, or an old version of GNU CC.
430 @end menu
431
432 @node Overall Options
433 @section Options Controlling the Kind of Output
434
435 Compilation can involve up to four stages: preprocessing, compilation
436 proper, assembly and linking, always in that order.  The first three
437 stages apply to an individual source file, and end by producing an
438 object file; linking combines all the object files (those newly
439 compiled, and those specified as input) into an executable file.
440
441 @cindex file name suffix
442 For any given input file, the file name suffix determines what kind of
443 compilation is done:
444
445 @table @code
446 @item @var{file}.c
447 C source code which must be preprocessed.
448
449 @item @var{file}.i
450 C source code which should not be preprocessed.
451
452 @item @var{file}.ii
453 C++ source code which should not be preprocessed.
454
455 @item @var{file}.m
456 Objective-C source code.  Note that you must link with the library
457 @file{libobjc.a} to make an Objective-C program work.
458
459 @item @var{file}.h
460 C header file (not to be compiled or linked).
461
462 @item @var{file}.cc
463 @itemx @var{file}.cxx
464 @itemx @var{file}.cpp
465 @itemx @var{file}.C
466 C++ source code which must be preprocessed.  Note that in @samp{.cxx},
467 the last two letters must both be literally @samp{x}.  Likewise,
468 @samp{.C} refers to a literal capital C.
469
470 @item @var{file}.s
471 Assembler code.
472
473 @item @var{file}.S
474 Assembler code which must be preprocessed.
475
476 @item @var{other}
477 An object file to be fed straight into linking.
478 Any file name with no recognized suffix is treated this way.
479 @end table
480
481 You can specify the input language explicitly with the @samp{-x} option:
482
483 @table @code
484 @item -x @var{language}
485 Specify explicitly the @var{language} for the following input files
486 (rather than letting the compiler choose a default based on the file
487 name suffix).  This option applies to all following input files until
488 the next @samp{-x} option.  Possible values for @var{language} are:
489 @example
490 c  objective-c  c++
491 c-header  cpp-output  c++-cpp-output
492 assembler  assembler-with-cpp
493 @end example
494
495 @item -x none
496 Turn off any specification of a language, so that subsequent files are
497 handled according to their file name suffixes (as they are if @samp{-x}
498 has not been used at all).
499 @end table
500
501 If you only want some of the stages of compilation, you can use
502 @samp{-x} (or filename suffixes) to tell @code{gcc} where to start, and
503 one of the options @samp{-c}, @samp{-S}, or @samp{-E} to say where
504 @code{gcc} is to stop.  Note that some combinations (for example,
505 @samp{-x cpp-output -E} instruct @code{gcc} to do nothing at all.
506
507 @table @code
508 @item -c
509 Compile or assemble the source files, but do not link.  The linking
510 stage simply is not done.  The ultimate output is in the form of an
511 object file for each source file.
512
513 By default, the object file name for a source file is made by replacing
514 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
515
516 Unrecognized input files, not requiring compilation or assembly, are
517 ignored.
518
519 @item -S
520 Stop after the stage of compilation proper; do not assemble.  The output
521 is in the form of an assembler code file for each non-assembler input
522 file specified.
523
524 By default, the assembler file name for a source file is made by
525 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
526
527 Input files that don't require compilation are ignored.
528
529 @item -E
530 Stop after the preprocessing stage; do not run the compiler proper.  The
531 output is in the form of preprocessed source code, which is sent to the
532 standard output.
533
534 Input files which don't require preprocessing are ignored.
535
536 @cindex output file option
537 @item -o @var{file}
538 Place output in file @var{file}.  This applies regardless to whatever
539 sort of output is being produced, whether it be an executable file,
540 an object file, an assembler file or preprocessed C code.
541
542 Since only one output file can be specified, it does not make sense to
543 use @samp{-o} when compiling more than one input file, unless you are
544 producing an executable file as output.
545
546 If @samp{-o} is not specified, the default is to put an executable file
547 in @file{a.out}, the object file for @file{@var{source}.@var{suffix}} in
548 @file{@var{source}.o}, its assembler file in @file{@var{source}.s}, and
549 all preprocessed C source on standard output.@refill
550
551 @item -v
552 Print (on standard error output) the commands executed to run the stages
553 of compilation.  Also print the version number of the compiler driver
554 program and of the preprocessor and the compiler proper.
555
556 @item -pipe
557 Use pipes rather than temporary files for communication between the
558 various stages of compilation.  This fails to work on some systems where
559 the assembler is unable to read from a pipe; but the GNU assembler has
560 no trouble.
561 @end table
562
563 @node Invoking G++
564 @section Compiling C++ Programs
565
566 @cindex suffixes for C++ source
567 @cindex C++ source file suffixes
568 C++ source files conventionally use one of the suffixes @samp{.C},
569 @samp{.cc}, @samp{cpp}, or @samp{.cxx}; preprocessed C++ files use the
570 suffix @samp{.ii}.  GNU CC recognizes files with these names and
571 compiles them as C++ programs even if you call the compiler the same way
572 as for compiling C programs (usually with the name @code{gcc}).
573
574 @findex g++
575 @findex c++
576 However, C++ programs often require class libraries as well as a
577 compiler that understands the C++ language---and under some
578 circumstances, you might want to compile programs from standard input,
579 or otherwise without a suffix that flags them as C++ programs.
580 @code{g++} is a program that calls GNU CC with the default language
581 set to C++, and automatically specifies linking against the C++
582 library.
583 @cindex @code{g++ 1.@var{xx}}
584 @cindex @code{g++}, separate compiler
585 @cindex @code{g++} older version
586 @footnote{Prior to release 2 of the compiler,
587 there was a separate @code{g++} compiler.  That version was based on GNU
588 CC, but not integrated with it.  Versions of @code{g++} with a
589 @samp{1.@var{xx}} version number---for example, @code{g++} version 1.37
590 or 1.42---are much less reliable than the versions integrated with GCC
591 2.  Moreover, combining G++ @samp{1.@var{xx}} with a version 2 GCC will
592 simply not work.} On many systems, the script @code{g++} is also
593 installed with the name @code{c++}.
594
595 @cindex invoking @code{g++}
596 When you compile C++ programs, you may specify many of the same
597 command-line options that you use for compiling programs in any
598 language; or command-line options meaningful for C and related
599 languages; or options that are meaningful only for C++ programs.
600 @xref{C Dialect Options,,Options Controlling C Dialect}, for
601 explanations of options for languages related to C.
602 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
603 explanations of options that are meaningful only for C++ programs.
604
605 @node C Dialect Options
606 @section Options Controlling C Dialect
607 @cindex dialect options
608 @cindex language dialect options
609 @cindex options, dialect
610
611 The following options control the dialect of C (or languages derived
612 from C, such as C++ and Objective C) that the compiler accepts:
613
614 @table @code
615 @cindex ANSI support
616 @item -ansi
617 Support all ANSI standard C programs.
618
619 This turns off certain features of GNU C that are incompatible with ANSI
620 C, such as the @code{asm}, @code{inline} and @code{typeof} keywords, and
621 predefined macros such as @code{unix} and @code{vax} that identify the
622 type of system you are using.  It also enables the undesirable and
623 rarely used ANSI trigraph feature, and it disables recognition of C++
624 style @samp{//} comments.
625
626 The alternate keywords @code{__asm__}, @code{__extension__},
627 @code{__inline__} and @code{__typeof__} continue to work despite
628 @samp{-ansi}.  You would not want to use them in an ANSI C program, of
629 course, but it is useful to put them in header files that might be included
630 in compilations done with @samp{-ansi}.  Alternate predefined macros
631 such as @code{__unix__} and @code{__vax__} are also available, with or
632 without @samp{-ansi}.
633
634 The @samp{-ansi} option does not cause non-ANSI programs to be
635 rejected gratuitously.  For that, @samp{-pedantic} is required in
636 addition to @samp{-ansi}.  @xref{Warning Options}.
637
638 The macro @code{__STRICT_ANSI__} is predefined when the @samp{-ansi}
639 option is used.  Some header files may notice this macro and refrain
640 from declaring certain functions or defining certain macros that the
641 ANSI standard doesn't call for; this is to avoid interfering with any
642 programs that might use these names for other things.
643
644 The functions @code{alloca}, @code{abort}, @code{exit}, and
645 @code{_exit} are not builtin functions when @samp{-ansi} is used.
646
647 @item -fno-asm
648 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
649 keyword, so that code can use these words as identifiers.  You can use
650 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
651 instead.  @samp{-ansi} implies @samp{-fno-asm}.
652
653 In C++, this switch only affects the @code{typeof} keyword, since
654 @code{asm} and @code{inline} are standard keywords.  You may want to
655 use the @samp{-fno-gnu-keywords} flag instead, as it also disables the
656 other, C++-specific, extension keywords such as @code{headof}.
657
658 @item -fno-builtin
659 @cindex builtin functions
660 @findex abort
661 @findex abs
662 @findex alloca
663 @findex cos
664 @findex exit
665 @findex fabs
666 @findex ffs
667 @findex labs
668 @findex memcmp
669 @findex memcpy
670 @findex sin
671 @findex sqrt
672 @findex strcmp
673 @findex strcpy
674 @findex strlen
675 Don't recognize builtin functions that do not begin with `__builtin_'
676 as prefix.  Currently, the functions affected include @code{abort},
677 @code{abs}, @code{alloca}, @code{cos}, @code{exit}, @code{fabs},
678 @code{ffs}, @code{labs}, @code{memcmp}, @code{memcpy}, @code{sin},
679 @code{sqrt}, @code{strcmp}, @code{strcpy}, and @code{strlen}.
680
681 GCC normally generates special code to handle certain builtin functions
682 more efficiently; for instance, calls to @code{alloca} may become single
683 instructions that adjust the stack directly, and calls to @code{memcpy}
684 may become inline copy loops.  The resulting code is often both smaller
685 and faster, but since the function calls no longer appear as such, you
686 cannot set a breakpoint on those calls, nor can you change the behavior
687 of the functions by linking with a different library.
688
689 The @samp{-ansi} option prevents @code{alloca} and @code{ffs} from being
690 builtin functions, since these functions do not have an ANSI standard
691 meaning.
692
693 @item -fhosted
694 @cindex hosted environment
695
696 Assert that compilation takes place in a hosted environment.  This implies
697 @samp{-fbuiltin}.  A hosted environment is one in which the
698 entire standard library is available, and in which @code{main} has a return
699 type of @code{int}.  Examples are nearly everything except a kernel.
700 This is equivalent to @samp{-fno-freestanding}.
701
702 @item -ffreestanding
703 @cindex hosted environment
704
705 Assert that compilation takes place in a freestanding environment.  This
706 implies @samp{-fno-builtin}.  A freestanding environment
707 is one in which the standard library may not exist, and program startup may
708 not necessarily be at @code{main}.  The most obvious example is an OS kernel.
709 This is equivalent to @samp{-fno-hosted}.
710
711 @item -trigraphs
712 Support ANSI C trigraphs.  You don't want to know about this
713 brain-damage.  The @samp{-ansi} option implies @samp{-trigraphs}.
714
715 @cindex traditional C language
716 @cindex C language, traditional
717 @item -traditional
718 Attempt to support some aspects of traditional C compilers.
719 Specifically:
720
721 @itemize @bullet
722 @item
723 All @code{extern} declarations take effect globally even if they
724 are written inside of a function definition.  This includes implicit
725 declarations of functions.
726
727 @item
728 The newer keywords @code{typeof}, @code{inline}, @code{signed}, @code{const}
729 and @code{volatile} are not recognized.  (You can still use the
730 alternative keywords such as @code{__typeof__}, @code{__inline__}, and
731 so on.)
732
733 @item
734 Comparisons between pointers and integers are always allowed.
735
736 @item
737 Integer types @code{unsigned short} and @code{unsigned char} promote
738 to @code{unsigned int}.
739
740 @item
741 Out-of-range floating point literals are not an error.
742
743 @item
744 Certain constructs which ANSI regards as a single invalid preprocessing
745 number, such as @samp{0xe-0xd}, are treated as expressions instead.
746
747 @item
748 String ``constants'' are not necessarily constant; they are stored in
749 writable space, and identical looking constants are allocated
750 separately.  (This is the same as the effect of
751 @samp{-fwritable-strings}.)
752
753 @cindex @code{longjmp} and automatic variables
754 @item
755 All automatic variables not declared @code{register} are preserved by
756 @code{longjmp}.  Ordinarily, GNU C follows ANSI C: automatic variables
757 not declared @code{volatile} may be clobbered.
758
759 @item
760 @kindex \x
761 @kindex \a
762 @cindex escape sequences, traditional
763 The character escape sequences @samp{\x} and @samp{\a} evaluate as the
764 literal characters @samp{x} and @samp{a} respectively.  Without
765 @w{@samp{-traditional}}, @samp{\x} is a prefix for the hexadecimal
766 representation of a character, and @samp{\a} produces a bell.
767 @end itemize
768
769 You may wish to use @samp{-fno-builtin} as well as @samp{-traditional}
770 if your program uses names that are normally GNU C builtin functions for
771 other purposes of its own.
772
773 You cannot use @samp{-traditional} if you include any header files that
774 rely on ANSI C features.  Some vendors are starting to ship systems with
775 ANSI C header files and you cannot use @samp{-traditional} on such
776 systems to compile files that include any system headers.
777
778 The @samp{-traditional} option also enables @samp{-traditional-cpp},
779 which is described next.
780
781 @item -traditional-cpp
782 Attempt to support some aspects of traditional C preprocessors.
783 Specifically:
784
785 @itemize @bullet
786 @item
787 Comments convert to nothing at all, rather than to a space.  This allows
788 traditional token concatenation.
789
790 @item
791 In a preprocessing directive, the @samp{#} symbol must appear as the first
792 character of a line.
793
794 @item
795 Macro arguments are recognized within string constants in a macro
796 definition (and their values are stringified, though without additional
797 quote marks, when they appear in such a context).  The preprocessor
798 always considers a string constant to end at a newline.
799
800 @item
801 @cindex detecting @w{@samp{-traditional}}
802 The predefined macro @code{__STDC__} is not defined when you use
803 @samp{-traditional}, but @code{__GNUC__} is (since the GNU extensions
804 which @code{__GNUC__} indicates are not affected by
805 @samp{-traditional}).  If you need to write header files that work
806 differently depending on whether @samp{-traditional} is in use, by
807 testing both of these predefined macros you can distinguish four
808 situations: GNU C, traditional GNU C, other ANSI C compilers, and other
809 old C compilers.  The predefined macro @code{__STDC_VERSION__} is also
810 not defined when you use @samp{-traditional}.  @xref{Standard
811 Predefined,,Standard Predefined Macros,cpp.info,The C Preprocessor},
812 for more discussion of these and other predefined macros.
813
814 @item
815 @cindex string constants vs newline
816 @cindex newline vs string constants
817 The preprocessor considers a string constant to end at a newline (unless
818 the newline is escaped with @samp{\}).  (Without @w{@samp{-traditional}},
819 string constants can contain the newline character as typed.)
820 @end itemize
821
822 @item -fcond-mismatch
823 Allow conditional expressions with mismatched types in the second and
824 third arguments.  The value of such an expression is void.
825
826 @item -funsigned-char
827 Let the type @code{char} be unsigned, like @code{unsigned char}.
828
829 Each kind of machine has a default for what @code{char} should
830 be.  It is either like @code{unsigned char} by default or like
831 @code{signed char} by default.
832
833 Ideally, a portable program should always use @code{signed char} or
834 @code{unsigned char} when it depends on the signedness of an object.
835 But many programs have been written to use plain @code{char} and
836 expect it to be signed, or expect it to be unsigned, depending on the
837 machines they were written for.  This option, and its inverse, let you
838 make such a program work with the opposite default.
839
840 The type @code{char} is always a distinct type from each of
841 @code{signed char} or @code{unsigned char}, even though its behavior
842 is always just like one of those two.
843
844 @item -fsigned-char
845 Let the type @code{char} be signed, like @code{signed char}.
846
847 Note that this is equivalent to @samp{-fno-unsigned-char}, which is
848 the negative form of @samp{-funsigned-char}.  Likewise, the option
849 @samp{-fno-signed-char} is equivalent to @samp{-funsigned-char}.
850
851 You may wish to use @samp{-fno-builtin} as well as @samp{-traditional}
852 if your program uses names that are normally GNU C builtin functions for
853 other purposes of its own.
854
855 You cannot use @samp{-traditional} if you include any header files that
856 rely on ANSI C features.  Some vendors are starting to ship systems with
857 ANSI C header files and you cannot use @samp{-traditional} on such
858 systems to compile files that include any system headers.
859
860 @item -fsigned-bitfields
861 @itemx -funsigned-bitfields
862 @itemx -fno-signed-bitfields
863 @itemx -fno-unsigned-bitfields
864 These options control whether a bitfield is signed or unsigned, when the
865 declaration does not use either @code{signed} or @code{unsigned}.  By
866 default, such a bitfield is signed, because this is consistent: the
867 basic integer types such as @code{int} are signed types.
868
869 However, when @samp{-traditional} is used, bitfields are all unsigned
870 no matter what.
871
872 @item -fwritable-strings
873 Store string constants in the writable data segment and don't uniquize
874 them.  This is for compatibility with old programs which assume they can
875 write into string constants.  The option @samp{-traditional} also has
876 this effect.
877
878 Writing into string constants is a very bad idea; ``constants'' should
879 be constant.
880
881 @item -fallow-single-precision
882 Do not promote single precision math operations to double precision,
883 even when compiling with @samp{-traditional}.
884
885 Traditional K&R C promotes all floating point operations to double
886 precision, regardless of the sizes of the operands.   On the
887 architecture for which you are compiling, single precision may be faster
888 than double precision.   If you must use @samp{-traditional}, but want
889 to use single precision operations when the operands are single
890 precision, use this option.   This option has no effect when compiling
891 with ANSI or GNU C conventions (the default).
892
893 @end table
894
895 @node C++ Dialect Options
896 @section Options Controlling C++ Dialect
897
898 @cindex compiler options, C++
899 @cindex C++ options, command line
900 @cindex options, C++
901 This section describes the command-line options that are only meaningful
902 for C++ programs; but you can also use most of the GNU compiler options
903 regardless of what language your program is in.  For example, you
904 might compile a file @code{firstClass.C} like this:
905
906 @example
907 g++ -g -frepo -O -c firstClass.C
908 @end example
909
910 @noindent
911 In this example, only @samp{-frepo} is an option meant
912 only for C++ programs; you can use the other options with any
913 language supported by GNU CC.
914
915 Here is a list of options that are @emph{only} for compiling C++ programs:
916
917 @table @code
918 @item -fno-access-control
919 Turn off all access checking.  This switch is mainly useful for working
920 around bugs in the access control code.
921
922 @item -fcheck-new
923 Check that the pointer returned by @code{operator new} is non-null
924 before attempting to modify the storage allocated.  The current Working
925 Paper requires that @code{operator new} never return a null pointer, so
926 this check is normally unnecessary.
927
928 An alternative to using this option is to specify that your
929 @code{operator new} does not throw any exceptions; if you declare it
930 @samp{throw()}, g++ will check the return value.  See also @samp{new
931 (nothrow)}.
932
933 @item -fconserve-space
934 Put uninitialized or runtime-initialized global variables into the
935 common segment, as C does.  This saves space in the executable at the
936 cost of not diagnosing duplicate definitions.  If you compile with this
937 flag and your program mysteriously crashes after @code{main()} has
938 completed, you may have an object that is being destroyed twice because
939 two definitions were merged.
940
941 This option is no longer useful on most targets, now that support has
942 been added for putting variables into BSS without making them common.
943
944 @item -fdollars-in-identifiers
945 Accept @samp{$} in identifiers.  You can also explicitly prohibit use of
946 @samp{$} with the option @samp{-fno-dollars-in-identifiers}.  (GNU C allows
947 @samp{$} by default on most target systems, but there are a few exceptions.)
948 Traditional C allowed the character @samp{$} to form part of
949 identifiers.  However, ANSI C and C++ forbid @samp{$} in identifiers.
950
951 @item -fno-elide-constructors
952 The C++ standard allows an implementation to omit creating a temporary
953 which is only used to initialize another object of the same type.
954 Specifying this option disables that optimization, and forces g++ to
955 call the copy constructor in all cases.
956
957 @item -fexternal-templates
958 Cause template instantiations to obey @samp{#pragma interface} and
959 @samp{implementation}; template instances are emitted or not according
960 to the location of the template definition.  @xref{Template
961 Instantiation}, for more information.
962
963 This option is deprecated.
964
965 @item -falt-external-templates
966 Similar to -fexternal-templates, but template instances are emitted or
967 not according to the place where they are first instantiated.
968 @xref{Template Instantiation}, for more information.
969
970 This option is deprecated.
971
972 @item -ffor-scope
973 @itemx -fno-for-scope
974 If -ffor-scope is specified, the scope of variables declared in
975 a @i{for-init-statement} is limited to the @samp{for} loop itself,
976 as specified by the draft C++ standard.
977 If -fno-for-scope is specified, the scope of variables declared in
978 a @i{for-init-statement} extends to the end of the enclosing scope,
979 as was the case in old versions of gcc, and other (traditional)
980 implementations of C++.
981
982 The default if neither flag is given to follow the standard,
983 but to allow and give a warning for old-style code that would
984 otherwise be invalid, or have different behavior.
985
986 @item -fno-gnu-keywords
987 Do not recognize @code{classof}, @code{headof}, @code{signature},
988 @code{sigof} or @code{typeof} as a keyword, so that code can use these
989 words as identifiers.  You can use the keywords @code{__classof__},
990 @code{__headof__}, @code{__signature__}, @code{__sigof__}, and
991 @code{__typeof__} instead.  @samp{-ansi} implies
992 @samp{-fno-gnu-keywords}.
993
994 @item -fguiding-decls
995 Treat a function declaration with the same type as a potential function
996 template instantiation as though it declares that instantiation, not a
997 normal function.  If a definition is given for the function later in the
998 translation unit (or another translation unit if the target supports
999 weak symbols), that definition will be used; otherwise the template will
1000 be instantiated.  This behavior reflects the C++ language prior to
1001 September 1996, when guiding declarations were removed.
1002
1003 This option implies @samp{-fname-mangling-version-0}, and will not work
1004 with other name mangling versions.  Like all options that change the
1005 ABI, all C++ code, @emph{including libgcc.a} must be built with the same
1006 setting of this option.
1007
1008 @item -fhandle-signatures
1009 Recognize the @code{signature} and @code{sigof} keywords for specifying
1010 abstract types.  The default (@samp{-fno-handle-signatures}) is not to
1011 recognize them.  @xref{C++ Signatures, Type Abstraction using
1012 Signatures}.
1013
1014 @item -fhonor-std
1015 Treat the @code{namespace std} as a namespace, instead of ignoring
1016 it. For compatibility with earlier versions of g++, the compiler will,
1017 by default, ignore @code{namespace-declarations},
1018 @code{using-declarations}, @code{using-directives}, and
1019 @code{namespace-names}, if they involve @code{std}.
1020
1021 @item -fhuge-objects
1022 Support virtual function calls for objects that exceed the size
1023 representable by a @samp{short int}.  Users should not use this flag by
1024 default; if you need to use it, the compiler will tell you so.
1025
1026 This flag is not useful when compiling with -fvtable-thunks.
1027
1028 Like all options that change the ABI, all C++ code, @emph{including
1029 libgcc} must be built with the same setting of this option.
1030
1031 @item -fno-implicit-templates
1032 Never emit code for templates which are instantiated implicitly (i.e. by
1033 use); only emit code for explicit instantiations.  @xref{Template
1034 Instantiation}, for more information.
1035
1036 @item -finit-priority
1037 Support @samp{__attribute__ ((init_priority (n)))} for controlling the
1038 order of initialization of file-scope objects.  On ELF targets, this
1039 requires GNU ld 2.10 or later.
1040
1041 @item -fno-implement-inlines
1042 To save space, do not emit out-of-line copies of inline functions
1043 controlled by @samp{#pragma implementation}.  This will cause linker
1044 errors if these functions are not inlined everywhere they are called.
1045
1046 @item -fname-mangling-version-@var{n}
1047 Control the way in which names are mangled.  Version 0 is compatible
1048 with versions of g++ before 2.8.  Version 1 is the default.  Version 1
1049 will allow correct mangling of function templates.  For example, 
1050 version 0 mangling does not mangle foo<int, double> and foo<int, char>
1051 given this declaration:
1052
1053 @example
1054 template <class T, class U> void foo(T t);
1055 @end example
1056
1057 @item -foperator-names
1058 Recognize the operator name keywords @code{and}, @code{bitand},
1059 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
1060 synonyms for the symbols they refer to.  @samp{-ansi} implies
1061 @samp{-foperator-names}.
1062
1063 @item -fno-optional-diags
1064 Disable diagnostics that the standard says a compiler does not need to
1065 issue.  Currently, this means the diagnostic for a name having multiple 
1066 meanings within a class.
1067
1068 @item -frepo
1069 Enable automatic template instantiation.  This option also implies
1070 @samp{-fno-implicit-templates}.  @xref{Template Instantiation}, for more
1071 information.
1072
1073 @item -fstrict-prototype
1074 Within an @samp{extern "C"} linkage specification, treat a function
1075 declaration with no arguments, such as @samp{int foo ();}, as declaring
1076 the function to take no arguments.  Normally, such a declaration means
1077 that the function @code{foo} can take any combination of arguments, as
1078 in C.  @samp{-pedantic} implies @samp{-fstrict-prototype} unless
1079 overridden with @samp{-fno-strict-prototype}.
1080
1081 Specifying this option will also suppress implicit declarations of
1082 functions.
1083
1084 This flag no longer affects declarations with C++ linkage.
1085
1086 @item -fsquangle
1087 @itemx -fno-squangle
1088 @samp{-fsquangle} will enable a compressed form of name mangling for
1089 identifiers. In particular, it helps to shorten very long names by recognizing
1090 types and class names which occur more than once, replacing them with special
1091 short ID codes.  This option also requires any C++ libraries being used to
1092 be compiled with this option as well.  The compiler has this disabled (the
1093 equivalent of @samp{-fno-squangle}) by default.
1094
1095 Like all options that change the ABI, all C++ code, @emph{including
1096 libgcc.a} must be built with the same setting of this option.
1097
1098 @item -ftemplate-depth-@var{n}
1099 Set the maximum instantiation depth for template classes to @var{n}.
1100 A limit on the template instantiation depth is needed to detect
1101 endless recursions during template class instantiation. ANSI/ISO C++
1102 conforming programs must not rely on a maximum depth greater than 17.
1103
1104 @item -fthis-is-variable
1105 Permit assignment to @code{this}.  The incorporation of user-defined
1106 free store management into C++ has made assignment to @samp{this} an
1107 anachronism.  Therefore, by default it is invalid to assign to
1108 @code{this} within a class member function; that is, GNU C++ treats
1109 @samp{this} in a member function of class @code{X} as a non-lvalue of
1110 type @samp{X *}.  However, for backwards compatibility, you can make it
1111 valid with @samp{-fthis-is-variable}.
1112
1113 @item -fvtable-thunks
1114 Use @samp{thunks} to implement the virtual function dispatch table
1115 (@samp{vtable}).  The traditional (cfront-style) approach to
1116 implementing vtables was to store a pointer to the function and two
1117 offsets for adjusting the @samp{this} pointer at the call site.  Newer
1118 implementations store a single pointer to a @samp{thunk} function which
1119 does any necessary adjustment and then calls the target function.
1120
1121 Like all options that change the ABI, all C++ code, @emph{including
1122 libgcc.a} must be built with the same setting of this option.
1123
1124 @item -nostdinc++
1125 Do not search for header files in the standard directories specific to
1126 C++, but do still search the other standard directories.  (This option
1127 is used when building the C++ library.)
1128 @end table
1129
1130 In addition, these optimization, warning, and code generation options
1131 have meanings only for C++ programs:
1132
1133 @table @code
1134 @item -fno-default-inline
1135 Do not assume @samp{inline} for functions defined inside a class scope.
1136 @xref{Optimize Options,,Options That Control Optimization}.  Note that these
1137 functions will have linkage like inline functions; they just won't be
1138 inlined by default.
1139
1140 @item -Wno-non-template-friend
1141 @xref{Warning Options,,Options to Request or Suppress Warnings}.
1142 @item -Wold-style-cast
1143 @itemx -Woverloaded-virtual
1144 Warnings that apply only to C++ programs.  @xref{Warning
1145 Options,,Options to Request or Suppress Warnings}.
1146
1147 @item -Weffc++
1148 Warn about violation of some style rules from Effective C++ by Scott Myers.
1149 @end table
1150
1151 @node Warning Options
1152 @section Options to Request or Suppress Warnings
1153 @cindex options to control warnings
1154 @cindex warning messages
1155 @cindex messages, warning
1156 @cindex suppressing warnings
1157
1158 Warnings are diagnostic messages that report constructions which
1159 are not inherently erroneous but which are risky or suggest there
1160 may have been an error.
1161
1162 You can request many specific warnings with options beginning @samp{-W},
1163 for example @samp{-Wimplicit} to request warnings on implicit
1164 declarations.  Each of these specific warning options also has a
1165 negative form beginning @samp{-Wno-} to turn off warnings;
1166 for example, @samp{-Wno-implicit}.  This manual lists only one of the
1167 two forms, whichever is not the default.
1168
1169 These options control the amount and kinds of warnings produced by GNU
1170 CC:
1171
1172 @table @code
1173 @cindex syntax checking
1174 @item -fsyntax-only
1175 Check the code for syntax errors, but don't do anything beyond that.
1176
1177 @item -pedantic
1178 Issue all the warnings demanded by strict ANSI C and ISO C++;
1179 reject all programs that use forbidden extensions.
1180
1181 Valid ANSI C and ISO C++ programs should compile properly with or without
1182 this option (though a rare few will require @samp{-ansi}).  However,
1183 without this option, certain GNU extensions and traditional C and C++
1184 features are supported as well.  With this option, they are rejected.
1185
1186 @samp{-pedantic} does not cause warning messages for use of the
1187 alternate keywords whose names begin and end with @samp{__}.  Pedantic
1188 warnings are also disabled in the expression that follows
1189 @code{__extension__}.  However, only system header files should use
1190 these escape routes; application programs should avoid them.
1191 @xref{Alternate Keywords}.
1192
1193 This option is not intended to be @i{useful}; it exists only to satisfy
1194 pedants who would otherwise claim that GNU CC fails to support the ANSI
1195 standard.
1196
1197 Some users try to use @samp{-pedantic} to check programs for strict ANSI
1198 C conformance.  They soon find that it does not do quite what they want:
1199 it finds some non-ANSI practices, but not all---only those for which
1200 ANSI C @emph{requires} a diagnostic.
1201
1202 A feature to report any failure to conform to ANSI C might be useful in
1203 some instances, but would require considerable additional work and would
1204 be quite different from @samp{-pedantic}.  We recommend, rather, that
1205 users take advantage of the extensions of GNU C and disregard the
1206 limitations of other compilers.  Aside from certain supercomputers and
1207 obsolete small machines, there is less and less reason ever to use any
1208 other C compiler other than for bootstrapping GNU CC.
1209
1210 @item -pedantic-errors
1211 Like @samp{-pedantic}, except that errors are produced rather than
1212 warnings.
1213
1214 @item -w
1215 Inhibit all warning messages.
1216
1217 @item -Wno-import
1218 Inhibit warning messages about the use of @samp{#import}.
1219
1220 @item -Wchar-subscripts
1221 Warn if an array subscript has type @code{char}.  This is a common cause
1222 of error, as programmers often forget that this type is signed on some
1223 machines.
1224
1225 @item -Wcomment
1226 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
1227 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
1228
1229 @item -Wformat
1230 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
1231 the arguments supplied have types appropriate to the format string
1232 specified.
1233
1234 @item -Wimplicit-int
1235 Warn when a declaration does not specify a type.
1236
1237 @item -Wimplicit-function-declaration
1238 @itemx -Werror-implicit-function-declaration
1239 Give a warning (or error) whenever a function is used before being
1240 declared.
1241
1242 @item -Wimplicit
1243 Same as @samp{-Wimplicit-int} and @samp{-Wimplicit-function-}@*
1244 @samp{declaration}.
1245
1246 @item -Wmain
1247 Warn if the type of @samp{main} is suspicious.  @samp{main} should be a
1248 function with external linkage, returning int, taking either zero
1249 arguments, two, or three arguments of appropriate types.
1250
1251 @item -Wmultichar
1252 Warn if a multicharacter constant (@samp{'FOOF'}) is used.  Usually they
1253 indicate a typo in the user's code, as they have implementation-defined
1254 values, and should not be used in portable code.
1255   
1256 @item -Wparentheses
1257 Warn if parentheses are omitted in certain contexts, such
1258 as when there is an assignment in a context where a truth value
1259 is expected, or when operators are nested whose precedence people
1260 often get confused about.
1261
1262 Also warn about constructions where there may be confusion to which
1263 @code{if} statement an @code{else} branch belongs.  Here is an example of
1264 such a case:
1265
1266 @smallexample
1267 @{
1268   if (a)
1269     if (b)
1270       foo ();
1271   else
1272     bar ();
1273 @}
1274 @end smallexample
1275
1276 In C, every @code{else} branch belongs to the innermost possible @code{if}
1277 statement, which in this example is @code{if (b)}.  This is often not
1278 what the programmer expected, as illustrated in the above example by
1279 indentation the programmer chose.  When there is the potential for this
1280 confusion, GNU C will issue a warning when this flag is specified.
1281 To eliminate the warning, add explicit braces around the innermost
1282 @code{if} statement so there is no way the @code{else} could belong to
1283 the enclosing @code{if}.  The resulting code would look like this:
1284
1285 @smallexample
1286 @{
1287   if (a)
1288     @{
1289       if (b)
1290         foo ();
1291       else
1292         bar ();
1293     @}
1294 @}
1295 @end smallexample
1296
1297 @item -Wreturn-type
1298 Warn whenever a function is defined with a return-type that defaults
1299 to @code{int}.  Also warn about any @code{return} statement with no
1300 return-value in a function whose return-type is not @code{void}.
1301
1302 @item -Wswitch
1303 Warn whenever a @code{switch} statement has an index of enumeral type
1304 and lacks a @code{case} for one or more of the named codes of that
1305 enumeration.  (The presence of a @code{default} label prevents this
1306 warning.)  @code{case} labels outside the enumeration range also
1307 provoke warnings when this option is used.
1308
1309 @item -Wtrigraphs
1310 Warn if any trigraphs are encountered (assuming they are enabled).
1311
1312 @item -Wunused
1313 Warn whenever a variable is unused aside from its declaration,
1314 whenever a function is declared static but never defined, whenever a
1315 label is declared but not used, and whenever a statement computes a
1316 result that is explicitly not used.
1317
1318 In order to get a warning about an unused function parameter, you must
1319 specify both @samp{-W} and @samp{-Wunused}.
1320
1321 To suppress this warning for an expression, simply cast it to void.  For
1322 unused variables and parameters, use the @samp{unused} attribute
1323 (@pxref{Variable Attributes}).
1324
1325 @item -Wuninitialized
1326 An automatic variable is used without first being initialized.
1327
1328 These warnings are possible only in optimizing compilation,
1329 because they require data flow information that is computed only
1330 when optimizing.  If you don't specify @samp{-O}, you simply won't
1331 get these warnings.
1332
1333 These warnings occur only for variables that are candidates for
1334 register allocation.  Therefore, they do not occur for a variable that
1335 is declared @code{volatile}, or whose address is taken, or whose size
1336 is other than 1, 2, 4 or 8 bytes.  Also, they do not occur for
1337 structures, unions or arrays, even when they are in registers.
1338
1339 Note that there may be no warning about a variable that is used only
1340 to compute a value that itself is never used, because such
1341 computations may be deleted by data flow analysis before the warnings
1342 are printed.
1343
1344 These warnings are made optional because GNU CC is not smart
1345 enough to see all the reasons why the code might be correct
1346 despite appearing to have an error.  Here is one example of how
1347 this can happen:
1348
1349 @smallexample
1350 @{
1351   int x;
1352   switch (y)
1353     @{
1354     case 1: x = 1;
1355       break;
1356     case 2: x = 4;
1357       break;
1358     case 3: x = 5;
1359     @}
1360   foo (x);
1361 @}
1362 @end smallexample
1363
1364 @noindent
1365 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
1366 always initialized, but GNU CC doesn't know this.  Here is
1367 another common case:
1368
1369 @smallexample
1370 @{
1371   int save_y;
1372   if (change_y) save_y = y, y = new_y;
1373   @dots{}
1374   if (change_y) y = save_y;
1375 @}
1376 @end smallexample
1377
1378 @noindent
1379 This has no bug because @code{save_y} is used only if it is set.
1380
1381 Some spurious warnings can be avoided if you declare all the functions
1382 you use that never return as @code{noreturn}.  @xref{Function
1383 Attributes}.
1384
1385 @item -Wreorder (C++ only)
1386 @cindex reordering, warning
1387 @cindex warning for reordering of member initializers
1388 Warn when the order of member initializers given in the code does not
1389 match the order in which they must be executed.  For instance:
1390
1391 @smallexample
1392 struct A @{
1393   int i;
1394   int j;
1395   A(): j (0), i (1) @{ @}
1396 @};
1397 @end smallexample
1398
1399 Here the compiler will warn that the member initializers for @samp{i}
1400 and @samp{j} will be rearranged to match the declaration order of the
1401 members.
1402
1403 @item -Wtemplate-debugging
1404 @cindex template debugging
1405 When using templates in a C++ program, warn if debugging is not yet
1406 fully available (C++ only).
1407
1408 @item -Wunknown-pragmas
1409 @cindex warning for unknown pragmas
1410 @cindex unknown pragmas, warning
1411 @cindex pragmas, warning of unknown
1412 Warn when a #pragma directive is encountered which is not understood by
1413 GCC.  If this command line option is used, warnings will even be issued
1414 for unknown pragmas in system header files.  This is not the case if
1415 the warnings were only enabled by the @samp{-Wall} command line option.
1416
1417 @item -Wall
1418 All of the above @samp{-W} options combined.  This enables all the
1419 warnings about constructions that some users consider questionable, and
1420 that are easy to avoid (or modify to prevent the warning), even in
1421 conjunction with macros.
1422 @end table
1423
1424 The following @samp{-W@dots{}} options are not implied by @samp{-Wall}.
1425 Some of them warn about constructions that users generally do not
1426 consider questionable, but which occasionally you might wish to check
1427 for; others warn about constructions that are necessary or hard to avoid
1428 in some cases, and there is no simple way to modify the code to suppress
1429 the warning.
1430
1431 @table @code
1432 @item -W
1433 Print extra warning messages for these events:
1434
1435 @itemize @bullet
1436 @cindex @code{longjmp} warnings
1437 @item
1438 A nonvolatile automatic variable might be changed by a call to
1439 @code{longjmp}.  These warnings as well are possible only in
1440 optimizing compilation.
1441
1442 The compiler sees only the calls to @code{setjmp}.  It cannot know
1443 where @code{longjmp} will be called; in fact, a signal handler could
1444 call it at any point in the code.  As a result, you may get a warning
1445 even when there is in fact no problem because @code{longjmp} cannot
1446 in fact be called at the place which would cause a problem.
1447
1448 @item
1449 A function can return either with or without a value.  (Falling
1450 off the end of the function body is considered returning without
1451 a value.)  For example, this function would evoke such a
1452 warning:
1453
1454 @smallexample
1455 @group
1456 foo (a)
1457 @{
1458   if (a > 0)
1459     return a;
1460 @}
1461 @end group
1462 @end smallexample
1463
1464 @item
1465 An expression-statement or the left-hand side of a comma expression
1466 contains no side effects.
1467 To suppress the warning, cast the unused expression to void.
1468 For example, an expression such as @samp{x[i,j]} will cause a warning,
1469 but @samp{x[(void)i,j]} will not.
1470
1471 @item
1472 An unsigned value is compared against zero with @samp{<} or @samp{<=}.
1473
1474 @item
1475 A comparison like @samp{x<=y<=z} appears; this is equivalent to
1476 @samp{(x<=y ? 1 : 0) <= z}, which is a different interpretation from
1477 that of ordinary mathematical notation.
1478
1479 @item
1480 Storage-class specifiers like @code{static} are not the first things in
1481 a declaration.  According to the C Standard, this usage is obsolescent.
1482
1483 @item
1484 If @samp{-Wall} or @samp{-Wunused} is also specified, warn about unused
1485 arguments.
1486
1487 @item
1488 A comparison between signed and unsigned values could produce an
1489 incorrect result when the signed value is converted to unsigned.
1490 (But don't warn if @samp{-Wno-sign-compare} is also specified.)
1491
1492 @item
1493 An aggregate has a partly bracketed initializer.
1494 For example, the following code would evoke such a warning,
1495 because braces are missing around the initializer for @code{x.h}:
1496
1497 @smallexample
1498 struct s @{ int f, g; @};
1499 struct t @{ struct s h; int i; @};
1500 struct t x = @{ 1, 2, 3 @};
1501 @end smallexample
1502
1503 @item
1504 An aggregate has an initializer which does not initialize all members.
1505 For example, the following code would cause such a warning, because
1506 @code{x.h} would be implicitly initialized to zero:
1507
1508 @smallexample
1509 struct s @{ int f, g, h; @};
1510 struct s x = @{ 3, 4 @};
1511 @end smallexample
1512 @end itemize
1513
1514 @item -Wtraditional
1515 Warn about certain constructs that behave differently in traditional and
1516 ANSI C.
1517
1518 @itemize @bullet
1519 @item
1520 Macro arguments occurring within string constants in the macro body.
1521 These would substitute the argument in traditional C, but are part of
1522 the constant in ANSI C.
1523
1524 @item
1525 A function declared external in one block and then used after the end of
1526 the block.
1527
1528 @item
1529 A @code{switch} statement has an operand of type @code{long}.
1530 @end itemize
1531
1532 @item -Wundef
1533 Warn if an undefined identifier is evaluated in an @samp{#if} directive.
1534
1535 @item -Wshadow
1536 Warn whenever a local variable shadows another local variable.
1537
1538 @item -Wid-clash-@var{len}
1539 Warn whenever two distinct identifiers match in the first @var{len}
1540 characters.  This may help you prepare a program that will compile
1541 with certain obsolete, brain-damaged compilers.
1542
1543 @item -Wlarger-than-@var{len}
1544 Warn whenever an object of larger than @var{len} bytes is defined.
1545
1546 @item -Wpointer-arith
1547 Warn about anything that depends on the ``size of'' a function type or
1548 of @code{void}.  GNU C assigns these types a size of 1, for
1549 convenience in calculations with @code{void *} pointers and pointers
1550 to functions.
1551
1552 @item -Wbad-function-cast
1553 Warn whenever a function call is cast to a non-matching type.
1554 For example, warn if @code{int malloc()} is cast to @code{anything *}.
1555
1556 @item -Wcast-qual
1557 Warn whenever a pointer is cast so as to remove a type qualifier from
1558 the target type.  For example, warn if a @code{const char *} is cast
1559 to an ordinary @code{char *}.
1560
1561 @item -Wcast-align
1562 Warn whenever a pointer is cast such that the required alignment of the
1563 target is increased.  For example, warn if a @code{char *} is cast to
1564 an @code{int *} on machines where integers can only be accessed at
1565 two- or four-byte boundaries.
1566
1567 @item -Wwrite-strings
1568 Give string constants the type @code{const char[@var{length}]} so that
1569 copying the address of one into a non-@code{const} @code{char *}
1570 pointer will get a warning.  These warnings will help you find at
1571 compile time code that can try to write into a string constant, but
1572 only if you have been very careful about using @code{const} in
1573 declarations and prototypes.  Otherwise, it will just be a nuisance;
1574 this is why we did not make @samp{-Wall} request these warnings.
1575
1576 @item -Wconversion
1577 Warn if a prototype causes a type conversion that is different from what
1578 would happen to the same argument in the absence of a prototype.  This
1579 includes conversions of fixed point to floating and vice versa, and
1580 conversions changing the width or signedness of a fixed point argument
1581 except when the same as the default promotion.
1582
1583 Also, warn if a negative integer constant expression is implicitly
1584 converted to an unsigned type.  For example, warn about the assignment
1585 @code{x = -1} if @code{x} is unsigned.  But do not warn about explicit
1586 casts like @code{(unsigned) -1}.
1587
1588 @item -Wsign-compare
1589 @cindex warning for comparison of signed and unsigned values
1590 @cindex comparison of signed and unsigned values, warning
1591 @cindex signed and unsigned values, comparison warning
1592 Warn when a comparison between signed and unsigned values could produce
1593 an incorrect result when the signed value is converted to unsigned.
1594 This warning is also enabled by @samp{-W}; to get the other warnings
1595 of @samp{-W} without this warning, use @samp{-W -Wno-sign-compare}.
1596
1597 @item -Waggregate-return
1598 Warn if any functions that return structures or unions are defined or
1599 called.  (In languages where you can return an array, this also elicits
1600 a warning.)
1601
1602 @item -Wstrict-prototypes
1603 Warn if a function is declared or defined without specifying the
1604 argument types.  (An old-style function definition is permitted without
1605 a warning if preceded by a declaration which specifies the argument
1606 types.)
1607
1608 @item -Wmissing-prototypes
1609 Warn if a global function is defined without a previous prototype
1610 declaration.  This warning is issued even if the definition itself
1611 provides a prototype.  The aim is to detect global functions that fail
1612 to be declared in header files.
1613
1614 @item -Wmissing-declarations
1615 Warn if a global function is defined without a previous declaration.
1616 Do so even if the definition itself provides a prototype.
1617 Use this option to detect global functions that are not declared in
1618 header files.
1619
1620 @item -Wredundant-decls
1621 Warn if anything is declared more than once in the same scope, even in
1622 cases where multiple declaration is valid and changes nothing.
1623
1624 @item -Wnested-externs
1625 Warn if an @code{extern} declaration is encountered within an function.
1626
1627 @item -Wno-non-template-friend
1628 Disable warnings when non-templatized friend functions are declared
1629 within a template. With the advent of explicit template specification
1630 support in g++, if the name of the friend is an unqualified-id (ie,
1631 @samp{friend foo(int)}), the C++ language specification demands that the
1632 friend declare or define an ordinary, nontemplate function. (Section
1633 14.5.3). Before g++ implemented explicit specification, unqualified-ids
1634 could be interpreted as a particular specialization of a templatized
1635 function. Because this non-conforming behavior is no longer the default
1636 behavior for g++, @samp{-Wnon-template-friend} allows the compiler to
1637 check existing code for potential trouble spots, and is on by default.
1638 This new compiler behavior can also be turned off with the flag
1639 @samp{-fguiding-decls}, which activates the older, non-specification
1640 compiler code, or with @samp{-Wno-non-template-friend} which keeps the
1641 conformant compiler code but disables the helpful warning.
1642
1643 @item -Winline
1644 Warn if a function can not be inlined, and either it was declared as inline,
1645 or else the @samp{-finline-functions} option was given.
1646
1647 @item -Wold-style-cast
1648 Warn if an old-style (C-style) cast is used within a program.
1649
1650 @item -Woverloaded-virtual
1651 @cindex overloaded virtual fn, warning
1652 @cindex warning for overloaded virtual fn
1653 Warn when a derived class function declaration may be an error in
1654 defining a virtual function (C++ only).  In a derived class, the
1655 definitions of virtual functions must match the type signature of a
1656 virtual function declared in the base class.  With this option, the
1657 compiler warns when you define a function with the same name as a
1658 virtual function, but with a type signature that does not match any
1659 declarations from the base class.
1660
1661 @item -Wsynth (C++ only)
1662 @cindex warning for synthesized methods
1663 @cindex synthesized methods, warning
1664 Warn when g++'s synthesis behavior does not match that of cfront.  For
1665 instance:
1666
1667 @smallexample
1668 struct A @{
1669   operator int ();
1670   A& operator = (int);
1671 @};
1672
1673 main ()
1674 @{
1675   A a,b;
1676   a = b;
1677 @}
1678 @end smallexample
1679
1680 In this example, g++ will synthesize a default @samp{A& operator =
1681 (const A&);}, while cfront will use the user-defined @samp{operator =}.
1682
1683 @item -Wlong-long
1684 Warn if @samp{long long} type is used.  This is default.  To inhibit
1685 the warning messages, use @samp{-Wno-long-long}.  Flags
1686 @samp{-Wlong-long} and @samp{-Wno-long-long} are taken into account
1687 only when @samp{-pedantic} flag is used.
1688
1689 @item -Werror
1690 Make all warnings into errors.
1691 @end table
1692
1693 @node Debugging Options
1694 @section Options for Debugging Your Program or GNU CC
1695 @cindex options, debugging
1696 @cindex debugging information options
1697
1698 GNU CC has various special options that are used for debugging
1699 either your program or GCC:
1700
1701 @table @code
1702 @item -g
1703 Produce debugging information in the operating system's native format
1704 (stabs, COFF, XCOFF, or DWARF).  GDB can work with this debugging
1705 information.
1706
1707 On most systems that use stabs format, @samp{-g} enables use of extra
1708 debugging information that only GDB can use; this extra information
1709 makes debugging work better in GDB but will probably make other debuggers
1710 crash or
1711 refuse to read the program.  If you want to control for certain whether
1712 to generate the extra information, use @samp{-gstabs+}, @samp{-gstabs},
1713 @samp{-gxcoff+}, @samp{-gxcoff}, @samp{-gdwarf-1+}, or @samp{-gdwarf-1}
1714 (see below).
1715
1716 Unlike most other C compilers, GNU CC allows you to use @samp{-g} with
1717 @samp{-O}.  The shortcuts taken by optimized code may occasionally
1718 produce surprising results: some variables you declared may not exist
1719 at all; flow of control may briefly move where you did not expect it;
1720 some statements may not be executed because they compute constant
1721 results or their values were already at hand; some statements may
1722 execute in different places because they were moved out of loops.
1723
1724 Nevertheless it proves possible to debug optimized output.  This makes
1725 it reasonable to use the optimizer for programs that might have bugs.
1726
1727 The following options are useful when GNU CC is generated with the
1728 capability for more than one debugging format.
1729
1730 @item -ggdb
1731 Produce debugging information for use by GDB.  This means to use the
1732 most expressive format available (DWARF 2, stabs, or the native format
1733 if neither of those are supported), including GDB extensions if at all
1734 possible.
1735
1736 @item -gstabs
1737 Produce debugging information in stabs format (if that is supported),
1738 without GDB extensions.  This is the format used by DBX on most BSD
1739 systems.  On MIPS, Alpha and System V Release 4 systems this option
1740 produces stabs debugging output which is not understood by DBX or SDB.
1741 On System V Release 4 systems this option requires the GNU assembler.
1742
1743 @item -gstabs+
1744 Produce debugging information in stabs format (if that is supported),
1745 using GNU extensions understood only by the GNU debugger (GDB).  The
1746 use of these extensions is likely to make other debuggers crash or
1747 refuse to read the program.
1748
1749 @item -gcoff
1750 Produce debugging information in COFF format (if that is supported).
1751 This is the format used by SDB on most System V systems prior to
1752 System V Release 4.
1753
1754 @item -gxcoff
1755 Produce debugging information in XCOFF format (if that is supported).
1756 This is the format used by the DBX debugger on IBM RS/6000 systems.
1757
1758 @item -gxcoff+
1759 Produce debugging information in XCOFF format (if that is supported),
1760 using GNU extensions understood only by the GNU debugger (GDB).  The
1761 use of these extensions is likely to make other debuggers crash or
1762 refuse to read the program, and may cause assemblers other than the GNU
1763 assembler (GAS) to fail with an error.
1764
1765 @item -gdwarf
1766 Produce debugging information in DWARF version 1 format (if that is
1767 supported).  This is the format used by SDB on most System V Release 4
1768 systems.
1769
1770 @item -gdwarf+
1771 Produce debugging information in DWARF version 1 format (if that is
1772 supported), using GNU extensions understood only by the GNU debugger
1773 (GDB).  The use of these extensions is likely to make other debuggers
1774 crash or refuse to read the program.
1775
1776 @item -gdwarf-2
1777 Produce debugging information in DWARF version 2 format (if that is
1778 supported).  This is the format used by DBX on IRIX 6.
1779
1780 @item -g@var{level}
1781 @itemx -ggdb@var{level}
1782 @itemx -gstabs@var{level}
1783 @itemx -gcoff@var{level}
1784 @itemx -gxcoff@var{level}
1785 @itemx -gdwarf@var{level}
1786 @itemx -gdwarf-2@var{level}
1787 Request debugging information and also use @var{level} to specify how
1788 much information.  The default level is 2.
1789
1790 Level 1 produces minimal information, enough for making backtraces in
1791 parts of the program that you don't plan to debug.  This includes
1792 descriptions of functions and external variables, but no information
1793 about local variables and no line numbers.
1794
1795 Level 3 includes extra information, such as all the macro definitions
1796 present in the program.  Some debuggers support macro expansion when
1797 you use @samp{-g3}.
1798
1799 @cindex @code{prof}
1800 @item -p
1801 Generate extra code to write profile information suitable for the
1802 analysis program @code{prof}.  You must use this option when compiling
1803 the source files you want data about, and you must also use it when
1804 linking.
1805
1806 @cindex @code{gprof}
1807 @item -pg
1808 Generate extra code to write profile information suitable for the
1809 analysis program @code{gprof}.  You must use this option when compiling
1810 the source files you want data about, and you must also use it when
1811 linking.
1812
1813 @cindex @code{tcov}
1814 @item -a
1815 Generate extra code to write profile information for basic blocks, which will
1816 record the number of times each basic block is executed, the basic block start
1817 address, and the function name containing the basic block.  If @samp{-g} is
1818 used, the line number and filename of the start of the basic block will also be
1819 recorded.  If not overridden by the machine description, the default action is
1820 to append to the text file @file{bb.out}.
1821
1822 This data could be analyzed by a program like @code{tcov}.  Note,
1823 however, that the format of the data is not what @code{tcov} expects.
1824 Eventually GNU @code{gprof} should be extended to process this data.
1825
1826 @item -Q
1827 Makes the compiler print out each function name as it is compiled, and
1828 print some statistics about each pass when it finishes.
1829
1830 @item -ax
1831 Generate extra code to profile basic blocks.  Your executable will
1832 produce output that is a superset of that produced when @samp{-a} is
1833 used.  Additional output is the source and target address of the basic
1834 blocks where a jump takes place, the number of times a jump is executed,
1835 and (optionally) the complete sequence of basic blocks being executed.
1836 The output is appended to file @file{bb.out}.
1837
1838 You can examine different profiling aspects without recompilation.  Your
1839 executable will read a list of function names from file @file{bb.in}.
1840 Profiling starts when a function on the list is entered and stops when
1841 that invocation is exited.  To exclude a function from profiling, prefix
1842 its name with `-'.  If a function name is not unique, you can
1843 disambiguate it by writing it in the form
1844 @samp{/path/filename.d:functionname}.  Your executable will write the
1845 available paths and filenames in file @file{bb.out}.
1846
1847 Several function names have a special meaning:
1848 @table @code
1849 @item __bb_jumps__
1850 Write source, target and frequency of jumps to file @file{bb.out}.
1851 @item __bb_hidecall__
1852 Exclude function calls from frequency count.
1853 @item __bb_showret__
1854 Include function returns in frequency count.
1855 @item __bb_trace__
1856 Write the sequence of basic blocks executed to file @file{bbtrace.gz}.
1857 The file will be compressed using the program @samp{gzip}, which must
1858 exist in your @code{PATH}.  On systems without the @samp{popen}
1859 function, the file will be named @file{bbtrace} and will not be
1860 compressed.  @strong{Profiling for even a few seconds on these systems
1861 will produce a very large file.}  Note: @code{__bb_hidecall__} and
1862 @code{__bb_showret__} will not affect the sequence written to
1863 @file{bbtrace.gz}.
1864 @end table
1865
1866 Here's a short example using different profiling parameters
1867 in file @file{bb.in}.  Assume function @code{foo} consists of basic blocks
1868 1 and 2 and is called twice from block 3 of function @code{main}.  After
1869 the calls, block 3 transfers control to block 4 of @code{main}.
1870
1871 With @code{__bb_trace__} and @code{main} contained in file @file{bb.in},
1872 the following sequence of blocks is written to file @file{bbtrace.gz}:
1873 0 3 1 2 1 2 4.  The return from block 2 to block 3 is not shown, because
1874 the return is to a point inside the block and not to the top.  The
1875 block address 0 always indicates, that control is transferred
1876 to the trace from somewhere outside the observed functions.  With
1877 @samp{-foo} added to @file{bb.in}, the blocks of function
1878 @code{foo} are removed from the trace, so only 0 3 4 remains.
1879
1880 With @code{__bb_jumps__} and @code{main} contained in file @file{bb.in},
1881 jump frequencies will be written to file @file{bb.out}.  The
1882 frequencies are obtained by constructing a trace of blocks
1883 and incrementing a counter for every neighbouring pair of blocks
1884 in the trace.  The trace 0 3 1 2 1 2 4 displays the following
1885 frequencies:
1886
1887 @example
1888 Jump from block 0x0 to block 0x3 executed 1 time(s)
1889 Jump from block 0x3 to block 0x1 executed 1 time(s)
1890 Jump from block 0x1 to block 0x2 executed 2 time(s)
1891 Jump from block 0x2 to block 0x1 executed 1 time(s)
1892 Jump from block 0x2 to block 0x4 executed 1 time(s)
1893 @end example
1894
1895 With @code{__bb_hidecall__}, control transfer due to call instructions
1896 is removed from the trace, that is the trace is cut into three parts: 0
1897 3 4, 0 1 2 and 0 1 2.  With @code{__bb_showret__}, control transfer due
1898 to return instructions is added to the trace.  The trace becomes: 0 3 1
1899 2 3 1 2 3 4.  Note, that this trace is not the same, as the sequence
1900 written to @file{bbtrace.gz}.  It is solely used for counting jump
1901 frequencies.
1902
1903 @item -fprofile-arcs
1904 Instrument @dfn{arcs} during compilation.  For each function of your
1905 program, GNU CC creates a program flow graph, then finds a spanning tree
1906 for the graph.  Only arcs that are not on the spanning tree have to be
1907 instrumented: the compiler adds code to count the number of times that these
1908 arcs are executed.  When an arc is the only exit or only entrance to a
1909 block, the instrumentation code can be added to the block; otherwise, a
1910 new basic block must be created to hold the instrumentation code.
1911
1912 Since not every arc in the program must be instrumented, programs
1913 compiled with this option run faster than programs compiled with
1914 @samp{-a}, which adds instrumentation code to every basic block in the
1915 program.  The tradeoff: since @code{gcov} does not have
1916 execution counts for all branches, it must start with the execution
1917 counts for the instrumented branches, and then iterate over the program
1918 flow graph until the entire graph has been solved.  Hence, @code{gcov}
1919 runs a little more slowly than a program which uses information from
1920 @samp{-a}.
1921
1922 @samp{-fprofile-arcs} also makes it possible to estimate branch
1923 probabilities, and to calculate basic block execution counts.  In
1924 general, basic block execution counts do not give enough information to
1925 estimate all branch probabilities.  When the compiled program exits, it
1926 saves the arc execution counts to a file called
1927 @file{@var{sourcename}.da}.  Use the compiler option
1928 @samp{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
1929 Control Optimization}) when recompiling, to optimize using estimated
1930 branch probabilities.
1931
1932 @need 2000
1933 @item -ftest-coverage
1934 Create data files for the @code{gcov} code-coverage utility
1935 (@pxref{Gcov,, @code{gcov}: a GNU CC Test Coverage Program}).
1936 The data file names begin with the name of your source file:
1937
1938 @table @code
1939 @item @var{sourcename}.bb
1940 A mapping from basic blocks to line numbers, which @code{gcov} uses to
1941 associate basic block execution counts with line numbers.
1942
1943 @item @var{sourcename}.bbg
1944 A list of all arcs in the program flow graph.  This allows @code{gcov}
1945 to reconstruct the program flow graph, so that it can compute all basic
1946 block and arc execution counts from the information in the
1947 @code{@var{sourcename}.da} file (this last file is the output from
1948 @samp{-fprofile-arcs}).
1949 @end table
1950
1951 @item -Q
1952 Makes the compiler print out each function name as it is compiled, and
1953 print some statistics about each pass when it finishes.
1954
1955 @item -d@var{letters}
1956 Says to make debugging dumps during compilation at times specified by
1957 @var{letters}.  This is used for debugging the compiler.  The file names
1958 for most of the dumps are made by appending a word to the source file
1959 name (e.g.  @file{foo.c.rtl} or @file{foo.c.jump}).  Here are the
1960 possible letters for use in @var{letters}, and their meanings:
1961
1962 @table @samp
1963 @item b
1964 Dump after computing branch probabilities, to @file{@var{file}.bp}.
1965 @item c
1966 Dump after instruction combination, to the file @file{@var{file}.combine}.
1967 @item d
1968 Dump after delayed branch scheduling, to @file{@var{file}.dbr}.
1969 @item D
1970 Dump all macro definitions, at the end of preprocessing, in addition to
1971 normal output.
1972 @item y
1973 Dump debugging information during parsing, to standard error.
1974 @item r
1975 Dump after RTL generation, to @file{@var{file}.rtl}.
1976 @item x
1977 Just generate RTL for a function instead of compiling it.  Usually used
1978 with @samp{r}.
1979 @item j
1980 Dump after first jump optimization, to @file{@var{file}.jump}.
1981 @item s
1982 Dump after CSE (including the jump optimization that sometimes
1983 follows CSE), to @file{@var{file}.cse}.
1984 @item F
1985 Dump after purging ADDRESSOF, to @file{@var{file}.addressof}.
1986 @item f
1987 Dump after flow analysis, to @file{@var{file}.flow}.
1988 @item g
1989 Dump after global register allocation, to @file{@var{file}.greg}.
1990 @item G      
1991 Dump after GCSE, to @file{@var{file}.gcse}.
1992 @item j
1993 Dump after first jump optimization, to @file{@var{file}.jump}.
1994 @item J
1995 Dump after last jump optimization, to @file{@var{file}.jump2}.
1996 @item k
1997 Dump after conversion from registers to stack, to @file{@var{file}.stack}.
1998 @item l
1999 Dump after local register allocation, to @file{@var{file}.lreg}.
2000 @item L
2001 Dump after loop optimization, to @file{@var{file}.loop}.
2002 @item M
2003 Dump after performing the machine dependent reorganisation pass, to
2004 @file{@var{file}.mach}. 
2005 @item N
2006 Dump after the register move pass, to @file{@var{file}.regmove}.
2007 @item r
2008 Dump after RTL generation, to @file{@var{file}.rtl}.
2009 @item R
2010 Dump after the second instruction scheduling pass, to @file{@var{file}.sched2}.
2011 @item s
2012 Dump after CSE (including the jump optimization that sometimes follows
2013 CSE), to @file{@var{file}.cse}. 
2014 @item S
2015 Dump after the first instruction scheduling pass, to @file{@var{file}.sched}.
2016 @item t
2017 Dump after the second CSE pass (including the jump optimization that
2018 sometimes follows CSE), to @file{@var{file}.cse2}. 
2019 @item x
2020 Just generate RTL for a function instead of compiling it.  Usually used
2021 with @samp{r}.
2022 @item a
2023 Produce all the dumps listed above.
2024 @item m
2025 Print statistics on memory usage, at the end of the run, to
2026 standard error.
2027 @item p
2028 Annotate the assembler output with a comment indicating which
2029 pattern and alternative was used.
2030 @item y
2031 Dump debugging information during parsing, to standard error.
2032 @item A
2033 Annotate the assembler output with miscellaneous debugging information.
2034 @end table
2035
2036 @item -fpretend-float
2037 When running a cross-compiler, pretend that the target machine uses the
2038 same floating point format as the host machine.  This causes incorrect
2039 output of the actual floating constants, but the actual instruction
2040 sequence will probably be the same as GNU CC would make when running on
2041 the target machine.
2042
2043 @item -save-temps
2044 Store the usual ``temporary'' intermediate files permanently; place them
2045 in the current directory and name them based on the source file.  Thus,
2046 compiling @file{foo.c} with @samp{-c -save-temps} would produce files
2047 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}.
2048
2049 @item -print-file-name=@var{library}
2050 Print the full absolute name of the library file @var{library} that
2051 would be used when linking---and don't do anything else.  With this
2052 option, GNU CC does not compile or link anything; it just prints the
2053 file name.
2054
2055 @item -print-prog-name=@var{program}
2056 Like @samp{-print-file-name}, but searches for a program such as @samp{cpp}.
2057
2058 @item -print-libgcc-file-name
2059 Same as @samp{-print-file-name=libgcc.a}.
2060
2061 This is useful when you use @samp{-nostdlib} or @samp{-nodefaultlibs}
2062 but you do want to link with @file{libgcc.a}.  You can do
2063
2064 @example
2065 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
2066 @end example
2067
2068 @item -print-search-dirs
2069 Print the name of the configured installation directory and a list of
2070 program and library directories gcc will search---and don't do anything else.
2071
2072 This is useful when gcc prints the error message
2073 @samp{installation problem, cannot exec cpp: No such file or directory}.
2074 To resolve this you either need to put @file{cpp} and the other compiler
2075 components where gcc expects to find them, or you can set the environment
2076 variable @code{GCC_EXEC_PREFIX} to the directory where you installed them.
2077 Don't forget the trailing '/'.
2078 @xref{Environment Variables}.
2079 @end table
2080
2081 @node Optimize Options
2082 @section Options That Control Optimization
2083 @cindex optimize options
2084 @cindex options, optimization
2085
2086 These options control various sorts of optimizations:
2087
2088 @table @code
2089 @item -O
2090 @itemx -O1
2091 Optimize.  Optimizing compilation takes somewhat more time, and a lot
2092 more memory for a large function.
2093
2094 Without @samp{-O}, the compiler's goal is to reduce the cost of
2095 compilation and to make debugging produce the expected results.
2096 Statements are independent: if you stop the program with a breakpoint
2097 between statements, you can then assign a new value to any variable or
2098 change the program counter to any other statement in the function and
2099 get exactly the results you would expect from the source code.
2100
2101 Without @samp{-O}, the compiler only allocates variables declared
2102 @code{register} in registers.  The resulting compiled code is a little
2103 worse than produced by PCC without @samp{-O}.
2104
2105 With @samp{-O}, the compiler tries to reduce code size and execution
2106 time.
2107
2108 When you specify @samp{-O}, the compiler turns on @samp{-fthread-jumps}
2109 and @samp{-fdefer-pop} on all machines.  The compiler turns on
2110 @samp{-fdelayed-branch} on machines that have delay slots, and
2111 @samp{-fomit-frame-pointer} on machines that can support debugging even
2112 without a frame pointer.  On some machines the compiler also turns
2113 on other flags.@refill
2114
2115 @item -O2
2116 Optimize even more.  GNU CC performs nearly all supported optimizations
2117 that do not involve a space-speed tradeoff.  The compiler does not
2118 perform loop unrolling or function inlining when you specify @samp{-O2}.
2119 As compared to @samp{-O}, this option increases both compilation time
2120 and the performance of the generated code.
2121
2122 @samp{-O2} turns on all optional optimizations except for loop unrolling
2123 and function inlining.  It also turns on the @samp{-fforce-mem} option
2124 on all machines and frame pointer elimination on machines where doing so
2125 does not interfere with debugging.
2126
2127 @item -O3
2128 Optimize yet more.  @samp{-O3} turns on all optimizations specified by
2129 @samp{-O2} and also turns on the @samp{inline-functions} option.
2130
2131 @item -O0
2132 Do not optimize.
2133
2134 @item -Os
2135 Optimize for size.  @samp{-Os} enables all @samp{-O2} optimizations that
2136 do not typically increase code size.  It also performs further
2137 optimizations designed to reduce code size.
2138
2139 If you use multiple @samp{-O} options, with or without level numbers,
2140 the last such option is the one that is effective.
2141 @end table
2142
2143 Options of the form @samp{-f@var{flag}} specify machine-independent
2144 flags.  Most flags have both positive and negative forms; the negative
2145 form of @samp{-ffoo} would be @samp{-fno-foo}.  In the table below,
2146 only one of the forms is listed---the one which is not the default.
2147 You can figure out the other form by either removing @samp{no-} or
2148 adding it.
2149
2150 @table @code
2151 @item -ffloat-store
2152 Do not store floating point variables in registers, and inhibit other
2153 options that might change whether a floating point value is taken from a
2154 register or memory.
2155
2156 @cindex floating point precision
2157 This option prevents undesirable excess precision on machines such as
2158 the 68000 where the floating registers (of the 68881) keep more
2159 precision than a @code{double} is supposed to have.  Similarly for the
2160 x86 architecture.  For most programs, the excess precision does only
2161 good, but a few programs rely on the precise definition of IEEE floating
2162 point.  Use @samp{-ffloat-store} for such programs, after modifying
2163 them to store all pertinent intermediate computations into variables.
2164
2165 @item -fno-default-inline
2166 Do not make member functions inline by default merely because they are
2167 defined inside the class scope (C++ only).  Otherwise, when you specify
2168 @w{@samp{-O}}, member functions defined inside class scope are compiled
2169 inline by default; i.e., you don't need to add @samp{inline} in front of
2170 the member function name.
2171
2172 @item -fno-defer-pop
2173 Always pop the arguments to each function call as soon as that function
2174 returns.  For machines which must pop arguments after a function call,
2175 the compiler normally lets arguments accumulate on the stack for several
2176 function calls and pops them all at once.
2177
2178 @item -fforce-mem
2179 Force memory operands to be copied into registers before doing
2180 arithmetic on them.  This produces better code by making all memory
2181 references potential common subexpressions.  When they are not common
2182 subexpressions, instruction combination should eliminate the separate
2183 register-load.  The @samp{-O2} option turns on this option.
2184
2185 @item -fforce-addr
2186 Force memory address constants to be copied into registers before
2187 doing arithmetic on them.  This may produce better code just as
2188 @samp{-fforce-mem} may.
2189
2190 @item -fomit-frame-pointer
2191 Don't keep the frame pointer in a register for functions that
2192 don't need one.  This avoids the instructions to save, set up and
2193 restore frame pointers; it also makes an extra register available
2194 in many functions.  @strong{It also makes debugging impossible on
2195 some machines.}
2196
2197 @ifset INTERNALS
2198 On some machines, such as the Vax, this flag has no effect, because
2199 the standard calling sequence automatically handles the frame pointer
2200 and nothing is saved by pretending it doesn't exist.  The
2201 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
2202 whether a target machine supports this flag.  @xref{Registers}.@refill
2203 @end ifset
2204 @ifclear INTERNALS
2205 On some machines, such as the Vax, this flag has no effect, because
2206 the standard calling sequence automatically handles the frame pointer
2207 and nothing is saved by pretending it doesn't exist.  The
2208 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
2209 whether a target machine supports this flag.  @xref{Registers,,Register
2210 Usage, gcc.info, Using and Porting GCC}.@refill
2211 @end ifclear
2212
2213 @item -fno-inline
2214 Don't pay attention to the @code{inline} keyword.  Normally this option
2215 is used to keep the compiler from expanding any functions inline.
2216 Note that if you are not optimizing, no functions can be expanded inline.
2217
2218 @item -finline-functions
2219 Integrate all simple functions into their callers.  The compiler
2220 heuristically decides which functions are simple enough to be worth
2221 integrating in this way.
2222
2223 If all calls to a given function are integrated, and the function is
2224 declared @code{static}, then the function is normally not output as
2225 assembler code in its own right.
2226
2227 @item -fkeep-inline-functions
2228 Even if all calls to a given function are integrated, and the function
2229 is declared @code{static}, nevertheless output a separate run-time
2230 callable version of the function.  This switch does not affect
2231 @code{extern inline} functions.
2232
2233 @item -fkeep-static-consts
2234 Emit variables declared @code{static const} when optimization isn't turned
2235 on, even if the variables aren't referenced.
2236
2237 GNU CC enables this option by default.  If you want to force the compiler to
2238 check if the variable was referenced, regardless of whether or not
2239 optimization is turned on, use the @samp{-fno-keep-static-consts} option.
2240
2241 @item -fno-function-cse
2242 Do not put function addresses in registers; make each instruction that
2243 calls a constant function contain the function's address explicitly.
2244
2245 This option results in less efficient code, but some strange hacks
2246 that alter the assembler output may be confused by the optimizations
2247 performed when this option is not used.
2248
2249 @item -ffast-math
2250 This option allows GCC to violate some ANSI or IEEE rules and/or
2251 specifications in the interest of optimizing code for speed.  For
2252 example, it allows the compiler to assume arguments to the @code{sqrt}
2253 function are non-negative numbers and that no floating-point values
2254 are NaNs.
2255
2256 This option should never be turned on by any @samp{-O} option since
2257 it can result in incorrect output for programs which depend on
2258 an exact implementation of IEEE or ANSI rules/specifications for
2259 math functions.
2260 @end table
2261
2262 @c following causes underfulls.. they don't look great, but we deal.
2263 @c --mew 26jan93
2264 The following options control specific optimizations.  The @samp{-O2}
2265 option turns on all of these optimizations except @samp{-funroll-loops}
2266 and @samp{-funroll-all-loops}.  On most machines, the @samp{-O} option
2267 turns on the @samp{-fthread-jumps} and @samp{-fdelayed-branch} options,
2268 but specific machines may handle it differently.
2269
2270 You can use the following flags in the rare cases when ``fine-tuning''
2271 of optimizations to be performed is desired.
2272
2273 @table @code
2274 @item -fstrength-reduce
2275 Perform the optimizations of loop strength reduction and
2276 elimination of iteration variables.
2277
2278 @item -fthread-jumps
2279 Perform optimizations where we check to see if a jump branches to a
2280 location where another comparison subsumed by the first is found.  If
2281 so, the first branch is redirected to either the destination of the
2282 second branch or a point immediately following it, depending on whether
2283 the condition is known to be true or false.
2284
2285 @item -fcse-follow-jumps
2286 In common subexpression elimination, scan through jump instructions
2287 when the target of the jump is not reached by any other path.  For
2288 example, when CSE encounters an @code{if} statement with an
2289 @code{else} clause, CSE will follow the jump when the condition
2290 tested is false.
2291
2292 @item -fcse-skip-blocks
2293 This is similar to @samp{-fcse-follow-jumps}, but causes CSE to
2294 follow jumps which conditionally skip over blocks.  When CSE
2295 encounters a simple @code{if} statement with no else clause,
2296 @samp{-fcse-skip-blocks} causes CSE to follow the jump around the
2297 body of the @code{if}.
2298
2299 @item -frerun-cse-after-loop
2300 Re-run common subexpression elimination after loop optimizations has been
2301 performed.
2302
2303 @item -frerun-loop-opt
2304 Run the loop optimizer twice.
2305
2306 @item -fgcse
2307 Perform a global common subexpression elimination pass.
2308 This pass also performs global constant and copy propagation.
2309
2310 @item -fexpensive-optimizations
2311 Perform a number of minor optimizations that are relatively expensive.
2312
2313 @item -foptimize-register-moves
2314 @item -fregmove
2315 Attempt to reassign register numbers in move instructions and as
2316 operands of other simple instructions in order to maximize the amount of
2317 register tying.  This is especially helpful on machines with two-operand
2318 instructions.  GNU CC enables this optimization by default with @samp{-O2}
2319 or higher.
2320
2321 Note @code{-fregmove} and @code{-foptimize-register-moves} are the same
2322 optimization.
2323
2324 @item -fdelayed-branch
2325 If supported for the target machine, attempt to reorder instructions
2326 to exploit instruction slots available after delayed branch
2327 instructions.
2328
2329 @item -fschedule-insns
2330 If supported for the target machine, attempt to reorder instructions to
2331 eliminate execution stalls due to required data being unavailable.  This
2332 helps machines that have slow floating point or memory load instructions
2333 by allowing other instructions to be issued until the result of the load
2334 or floating point instruction is required.
2335
2336 @item -fschedule-insns2
2337 Similar to @samp{-fschedule-insns}, but requests an additional pass of
2338 instruction scheduling after register allocation has been done.  This is
2339 especially useful on machines with a relatively small number of
2340 registers and where memory load instructions take more than one cycle.
2341
2342 @item -ffunction-sections
2343 Place each function into its own section in the output file if the
2344 target supports arbitrary sections.  The function's name determines
2345 the section's name in the output file.
2346
2347 Use this option on systems where the linker can perform optimizations
2348 to improve locality of reference in the instruction space.  HPPA
2349 processors running HP-UX and Sparc processors running Solaris 2 have
2350 linkers with such optimizations.  Other systems using the ELF object format
2351 as well as AIX may have these optimizations in the future.
2352
2353 Only use this option when there are significant benefits from doing
2354 so.  When you specify this option, the assembler and linker will
2355 create larger object and executable files and will also be slower.
2356 You will not be able to use @code{gprof} on all systems if you
2357 specify this option and you may have problems with debugging if
2358 you specify both this option and @samp{-g}.
2359
2360 @item -fcaller-saves
2361 Enable values to be allocated in registers that will be clobbered by
2362 function calls, by emitting extra instructions to save and restore the
2363 registers around such calls.  Such allocation is done only when it
2364 seems to result in better code than would otherwise be produced.
2365
2366 This option is always enabled by default on certain machines, usually
2367 those which have no call-preserved registers to use instead.
2368
2369 For all machines, optimization level 2 and higher enables this flag by
2370 default.
2371
2372 @item -funroll-loops
2373 Perform the optimization of loop unrolling.  This is only done for loops
2374 whose number of iterations can be determined at compile time or run time.
2375 @samp{-funroll-loop} implies both @samp{-fstrength-reduce} and
2376 @samp{-frerun-cse-after-loop}.
2377
2378 @item -funroll-all-loops
2379 Perform the optimization of loop unrolling.  This is done for all loops
2380 and usually makes programs run more slowly.  @samp{-funroll-all-loops}
2381 implies @samp{-fstrength-reduce} as well as @samp{-frerun-cse-after-loop}.
2382
2383 @item -fmove-all-movables
2384 Forces all invariant computations in loops to be moved
2385 outside the loop.
2386
2387 @item -freduce-all-givs
2388 Forces all general-induction variables in loops to be
2389 strength-reduced.
2390
2391 @emph{Note:} When compiling programs written in Fortran,
2392 @samp{-fmove-all-moveables} and @samp{-freduce-all-givs} are enabled
2393 by default when you use the optimizer.
2394
2395 These options may generate better or worse code; results are highly
2396 dependent on the structure of loops within the source code.
2397
2398 These two options are intended to be removed someday, once
2399 they have helped determine the efficacy of various
2400 approaches to improving loop optimizations.
2401
2402 Please let us (@code{egcs@@cygnus.com} and @code{fortran@@gnu.org})
2403 know how use of these options affects
2404 the performance of your production code.
2405 We're very interested in code that runs @emph{slower}
2406 when these options are @emph{enabled}.
2407
2408 @item -fno-peephole
2409 Disable any machine-specific peephole optimizations.
2410
2411 @item -fbranch-probabilities
2412 After running a program compiled with @samp{-fprofile-arcs}
2413 (@pxref{Debugging Options,, Options for Debugging Your Program or
2414 @code{gcc}}), you can compile it a second time using
2415 @samp{-fbranch-probabilities}, to improve optimizations based on
2416 guessing the path a branch might take.
2417
2418 @ifset INTERNALS
2419 With @samp{-fbranch-probabilities}, GCC puts a @samp{REG_EXEC_COUNT}
2420 note on the first instruction of each basic block, and a
2421 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
2422 These can be used to improve optimization.  Currently, they are only
2423 used in one place: in @file{reorg.c}, instead of guessing which path a
2424 branch is mostly to take, the @samp{REG_BR_PROB} values are used to
2425 exactly determine which path is taken more often.
2426 @end ifset
2427
2428 @item -fstrict-aliasing
2429 Allows the compiler to assume the strictest aliasing rules applicable to
2430 the language being compiled.  For C (and C++), this activates
2431 optimizations based on the type of expressions.  In particular, an
2432 object of one type is assumed never to reside at the same address as an
2433 object of a different type, unless the types are almost the same.  For
2434 example, an @code{unsigned int} can alias an @code{int}, but not a
2435 @code{void*} or a @code{double}.  A character type may alias any other
2436 type.  
2437
2438 Pay special attention to code like this:
2439 @example
2440 union a_union @{ 
2441   int i;
2442   double d;
2443 @};
2444
2445 int f() @{
2446   a_union t;
2447   t.d = 3.0;
2448   return t.i;
2449 @}
2450 @end example
2451 The practice of reading from a different union member than the one most
2452 recently written to (called ``type-punning'') is common.  Even with
2453 @samp{-fstrict-aliasing}, type-punning is allowed, provided the memory
2454 is accessed through the union type.  So, the code above will work as
2455 expected.  However, this code might not:
2456 @example
2457 int f() @{ 
2458   a_union t;
2459   int* ip;
2460   t.d = 3.0;
2461   ip = &t.i;
2462   return *ip;
2463 @}
2464 @end example
2465
2466 @ifset INTERNALS
2467 Every language that wishes to perform language-specific alias analysis
2468 should define a function that computes, given an @code{tree}
2469 node, an alias set for the node.  Nodes in different alias sets are not
2470 allowed to alias.  For an example, see the C front-end function
2471 @code{c_get_alias_set}.
2472 @end ifset
2473
2474 @end table
2475
2476 @node Preprocessor Options
2477 @section Options Controlling the Preprocessor
2478 @cindex preprocessor options
2479 @cindex options, preprocessor
2480
2481 These options control the C preprocessor, which is run on each C source
2482 file before actual compilation.
2483
2484 If you use the @samp{-E} option, nothing is done except preprocessing.
2485 Some of these options make sense only together with @samp{-E} because
2486 they cause the preprocessor output to be unsuitable for actual
2487 compilation.
2488
2489 @table @code
2490 @item -include @var{file}
2491 Process @var{file} as input before processing the regular input file.
2492 In effect, the contents of @var{file} are compiled first.  Any @samp{-D}
2493 and @samp{-U} options on the command line are always processed before
2494 @samp{-include @var{file}}, regardless of the order in which they are
2495 written.  All the @samp{-include} and @samp{-imacros} options are
2496 processed in the order in which they are written.
2497
2498 @item -imacros @var{file}
2499 Process @var{file} as input, discarding the resulting output, before
2500 processing the regular input file.  Because the output generated from
2501 @var{file} is discarded, the only effect of @samp{-imacros @var{file}}
2502 is to make the macros defined in @var{file} available for use in the
2503 main input.
2504
2505 Any @samp{-D} and @samp{-U} options on the command line are always
2506 processed before @samp{-imacros @var{file}}, regardless of the order in
2507 which they are written.  All the @samp{-include} and @samp{-imacros}
2508 options are processed in the order in which they are written.
2509
2510 @item -idirafter @var{dir}
2511 @cindex second include path
2512 Add the directory @var{dir} to the second include path.  The directories
2513 on the second include path are searched when a header file is not found
2514 in any of the directories in the main include path (the one that
2515 @samp{-I} adds to).
2516
2517 @item -iprefix @var{prefix}
2518 Specify @var{prefix} as the prefix for subsequent @samp{-iwithprefix}
2519 options.
2520
2521 @item -iwithprefix @var{dir}
2522 Add a directory to the second include path.  The directory's name is
2523 made by concatenating @var{prefix} and @var{dir}, where @var{prefix} was
2524 specified previously with @samp{-iprefix}.  If you have not specified a
2525 prefix yet, the directory containing the installed passes of the
2526 compiler is used as the default.
2527
2528 @item -iwithprefixbefore @var{dir}
2529 Add a directory to the main include path.  The directory's name is made
2530 by concatenating @var{prefix} and @var{dir}, as in the case of
2531 @samp{-iwithprefix}.
2532
2533 @item -isystem @var{dir}
2534 Add a directory to the beginning of the second include path, marking it
2535 as a system directory, so that it gets the same special treatment as
2536 is applied to the standard system directories.
2537
2538 @item -nostdinc
2539 Do not search the standard system directories for header files.  Only
2540 the directories you have specified with @samp{-I} options (and the
2541 current directory, if appropriate) are searched.  @xref{Directory
2542 Options}, for information on @samp{-I}.
2543
2544 By using both @samp{-nostdinc} and @samp{-I-}, you can limit the include-file
2545 search path to only those directories you specify explicitly.
2546
2547 @item -undef
2548 Do not predefine any nonstandard macros.  (Including architecture flags).
2549
2550 @item -E
2551 Run only the C preprocessor.  Preprocess all the C source files
2552 specified and output the results to standard output or to the
2553 specified output file.
2554
2555 @item -C
2556 Tell the preprocessor not to discard comments.  Used with the
2557 @samp{-E} option.
2558
2559 @item -P
2560 Tell the preprocessor not to generate @samp{#line} directives.
2561 Used with the @samp{-E} option.
2562
2563 @cindex make
2564 @cindex dependencies, make
2565 @item -M
2566 Tell the preprocessor to output a rule suitable for @code{make}
2567 describing the dependencies of each object file.  For each source file,
2568 the preprocessor outputs one @code{make}-rule whose target is the object
2569 file name for that source file and whose dependencies are all the
2570 @code{#include} header files it uses.  This rule may be a single line or
2571 may be continued with @samp{\}-newline if it is long.  The list of rules
2572 is printed on standard output instead of the preprocessed C program.
2573
2574 @samp{-M} implies @samp{-E}.
2575
2576 Another way to specify output of a @code{make} rule is by setting
2577 the environment variable @code{DEPENDENCIES_OUTPUT} (@pxref{Environment
2578 Variables}).
2579
2580 @item -MM
2581 Like @samp{-M} but the output mentions only the user header files
2582 included with @samp{#include "@var{file}"}.  System header files
2583 included with @samp{#include <@var{file}>} are omitted.
2584
2585 @item -MD
2586 Like @samp{-M} but the dependency information is written to a file made by
2587 replacing ".c" with ".d" at the end of the input file names.
2588 This is in addition to compiling the file as specified---@samp{-MD} does
2589 not inhibit ordinary compilation the way @samp{-M} does.
2590
2591 In Mach, you can use the utility @code{md} to merge multiple dependency
2592 files into a single dependency file suitable for using with the @samp{make}
2593 command.
2594
2595 @item -MMD
2596 Like @samp{-MD} except mention only user header files, not system
2597 header files.
2598
2599 @item -MG
2600 Treat missing header files as generated files and assume they live in the
2601 same directory as the source file.  If you specify @samp{-MG}, you
2602 must also specify either @samp{-M} or @samp{-MM}.  @samp{-MG} is not
2603 supported with @samp{-MD} or @samp{-MMD}.
2604
2605 @item -H
2606 Print the name of each header file used, in addition to other normal
2607 activities.
2608
2609 @item -A@var{question}(@var{answer})
2610 Assert the answer @var{answer} for @var{question}, in case it is tested
2611 with a preprocessing conditional such as @samp{#if
2612 #@var{question}(@var{answer})}.  @samp{-A-} disables the standard
2613 assertions that normally describe the target machine.
2614
2615 @item -D@var{macro}
2616 Define macro @var{macro} with the string @samp{1} as its definition.
2617
2618 @item -D@var{macro}=@var{defn}
2619 Define macro @var{macro} as @var{defn}.  All instances of @samp{-D} on
2620 the command line are processed before any @samp{-U} options.
2621
2622 @item -U@var{macro}
2623 Undefine macro @var{macro}.  @samp{-U} options are evaluated after all
2624 @samp{-D} options, but before any @samp{-include} and @samp{-imacros}
2625 options.
2626
2627 @item -dM
2628 Tell the preprocessor to output only a list of the macro definitions
2629 that are in effect at the end of preprocessing.  Used with the @samp{-E}
2630 option.
2631
2632 @item -dD
2633 Tell the preprocessing to pass all macro definitions into the output, in
2634 their proper sequence in the rest of the output.
2635
2636 @item -dN
2637 Like @samp{-dD} except that the macro arguments and contents are omitted.
2638 Only @samp{#define @var{name}} is included in the output.
2639
2640 @item -trigraphs
2641 Support ANSI C trigraphs.  The @samp{-ansi} option also has this effect.
2642
2643 @item -Wp,@var{option}
2644 Pass @var{option} as an option to the preprocessor.  If @var{option}
2645 contains commas, it is split into multiple options at the commas.
2646 @end table
2647
2648 @node Assembler Options
2649 @section Passing Options to the Assembler
2650
2651 @c prevent bad page break with this line
2652 You can pass options to the assembler.
2653
2654 @table @code
2655 @item -Wa,@var{option}
2656 Pass @var{option} as an option to the assembler.  If @var{option}
2657 contains commas, it is split into multiple options at the commas.
2658 @end table
2659
2660 @node Link Options
2661 @section Options for Linking
2662 @cindex link options
2663 @cindex options, linking
2664
2665 These options come into play when the compiler links object files into
2666 an executable output file.  They are meaningless if the compiler is
2667 not doing a link step.
2668
2669 @table @code
2670 @cindex file names
2671 @item @var{object-file-name}
2672 A file name that does not end in a special recognized suffix is
2673 considered to name an object file or library.  (Object files are
2674 distinguished from libraries by the linker according to the file
2675 contents.)  If linking is done, these object files are used as input
2676 to the linker.
2677
2678 @item -c
2679 @itemx -S
2680 @itemx -E
2681 If any of these options is used, then the linker is not run, and
2682 object file names should not be used as arguments.  @xref{Overall
2683 Options}.
2684
2685 @cindex Libraries
2686 @item -l@var{library}
2687 Search the library named @var{library} when linking.
2688
2689 It makes a difference where in the command you write this option; the
2690 linker searches processes libraries and object files in the order they
2691 are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
2692 after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
2693 to functions in @samp{z}, those functions may not be loaded.
2694
2695 The linker searches a standard list of directories for the library,
2696 which is actually a file named @file{lib@var{library}.a}.  The linker
2697 then uses this file as if it had been specified precisely by name.
2698
2699 The directories searched include several standard system directories
2700 plus any that you specify with @samp{-L}.
2701
2702 Normally the files found this way are library files---archive files
2703 whose members are object files.  The linker handles an archive file by
2704 scanning through it for members which define symbols that have so far
2705 been referenced but not defined.  But if the file that is found is an
2706 ordinary object file, it is linked in the usual fashion.  The only
2707 difference between using an @samp{-l} option and specifying a file name
2708 is that @samp{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
2709 and searches several directories.
2710
2711 @item -lobjc
2712 You need this special case of the @samp{-l} option in order to
2713 link an Objective C program.
2714
2715 @item -nostartfiles
2716 Do not use the standard system startup files when linking.
2717 The standard system libraries are used normally, unless @code{-nostdlib}
2718 or @code{-nodefaultlibs} is used.
2719
2720 @item -nodefaultlibs
2721 Do not use the standard system libraries when linking.
2722 Only the libraries you specify will be passed to the linker.
2723 The standard startup files are used normally, unless @code{-nostartfiles}
2724 is used.  The compiler may generate calls to memcmp, memset, and memcpy
2725 for System V (and ANSI C) environments or to bcopy and bzero for
2726 BSD environments.  These entries are usually resolved by entries in
2727 libc.  These entry points should be supplied through some other
2728 mechanism when this option is specified.
2729
2730 @item -nostdlib
2731 Do not use the standard system startup files or libraries when linking.
2732 No startup files and only the libraries you specify will be passed to
2733 the linker. The compiler may generate calls to memcmp, memset, and memcpy
2734 for System V (and ANSI C) environments or to bcopy and bzero for
2735 BSD environments.  These entries are usually resolved by entries in
2736 libc.  These entry points should be supplied through some other
2737 mechanism when this option is specified.
2738
2739 @cindex @code{-lgcc}, use with @code{-nostdlib}
2740 @cindex @code{-nostdlib} and unresolved references
2741 @cindex unresolved references and @code{-nostdlib}
2742 @cindex @code{-lgcc}, use with @code{-nodefaultlibs}
2743 @cindex @code{-nodefaultlibs} and unresolved references
2744 @cindex unresolved references and @code{-nodefaultlibs}
2745 One of the standard libraries bypassed by @samp{-nostdlib} and
2746 @samp{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
2747 that GNU CC uses to overcome shortcomings of particular machines, or special
2748 needs for some languages.
2749 @ifset INTERNALS
2750 (@xref{Interface,,Interfacing to GNU CC Output}, for more discussion of
2751 @file{libgcc.a}.)
2752 @end ifset
2753 @ifclear INTERNALS
2754 (@xref{Interface,,Interfacing to GNU CC Output,gcc.info,Porting GNU CC},
2755 for more discussion of @file{libgcc.a}.)
2756 @end ifclear
2757 In most cases, you need @file{libgcc.a} even when you want to avoid
2758 other standard libraries.  In other words, when you specify @samp{-nostdlib}
2759 or @samp{-nodefaultlibs} you should usually specify @samp{-lgcc} as well.
2760 This ensures that you have no unresolved references to internal GNU CC
2761 library subroutines.  (For example, @samp{__main}, used to ensure C++
2762 constructors will be called; @pxref{Collect2,,@code{collect2}}.)
2763
2764 @item -s
2765 Remove all symbol table and relocation information from the executable.
2766
2767 @item -static
2768 On systems that support dynamic linking, this prevents linking with the shared
2769 libraries.  On other systems, this option has no effect.
2770
2771 @item -shared
2772 Produce a shared object which can then be linked with other objects to
2773 form an executable.  Not all systems support this option.  You must
2774 also specify @samp{-fpic} or @samp{-fPIC} on some systems when
2775 you specify this option.
2776
2777 @item -symbolic
2778 Bind references to global symbols when building a shared object.  Warn
2779 about any unresolved references (unless overridden by the link editor
2780 option @samp{-Xlinker -z -Xlinker defs}).  Only a few systems support
2781 this option.
2782
2783 @item -Xlinker @var{option}
2784 Pass @var{option} as an option to the linker.  You can use this to
2785 supply system-specific linker options which GNU CC does not know how to
2786 recognize.
2787
2788 If you want to pass an option that takes an argument, you must use
2789 @samp{-Xlinker} twice, once for the option and once for the argument.
2790 For example, to pass @samp{-assert definitions}, you must write
2791 @samp{-Xlinker -assert -Xlinker definitions}.  It does not work to write
2792 @samp{-Xlinker "-assert definitions"}, because this passes the entire
2793 string as a single argument, which is not what the linker expects.
2794
2795 @item -Wl,@var{option}
2796 Pass @var{option} as an option to the linker.  If @var{option} contains
2797 commas, it is split into multiple options at the commas.
2798
2799 @item -u @var{symbol}
2800 Pretend the symbol @var{symbol} is undefined, to force linking of
2801 library modules to define it.  You can use @samp{-u} multiple times with
2802 different symbols to force loading of additional library modules.
2803 @end table
2804
2805 @node Directory Options
2806 @section Options for Directory Search
2807 @cindex directory options
2808 @cindex options, directory search
2809 @cindex search path
2810
2811 These options specify directories to search for header files, for
2812 libraries and for parts of the compiler:
2813
2814 @table @code
2815 @item -I@var{dir}
2816 Add the directory @var{dir} to the head of the list of directories to be
2817 searched for header files.  This can be used to override a system header
2818 file, substituting your own version, since these directories are
2819 searched before the system header file directories.  If you use more
2820 than one @samp{-I} option, the directories are scanned in left-to-right
2821 order; the standard system directories come after.
2822
2823 @item -I-
2824 Any directories you specify with @samp{-I} options before the @samp{-I-}
2825 option are searched only for the case of @samp{#include "@var{file}"};
2826 they are not searched for @samp{#include <@var{file}>}.
2827
2828 If additional directories are specified with @samp{-I} options after
2829 the @samp{-I-}, these directories are searched for all @samp{#include}
2830 directives.  (Ordinarily @emph{all} @samp{-I} directories are used
2831 this way.)
2832
2833 In addition, the @samp{-I-} option inhibits the use of the current
2834 directory (where the current input file came from) as the first search
2835 directory for @samp{#include "@var{file}"}.  There is no way to
2836 override this effect of @samp{-I-}.  With @samp{-I.} you can specify
2837 searching the directory which was current when the compiler was
2838 invoked.  That is not exactly the same as what the preprocessor does
2839 by default, but it is often satisfactory.
2840
2841 @samp{-I-} does not inhibit the use of the standard system directories
2842 for header files.  Thus, @samp{-I-} and @samp{-nostdinc} are
2843 independent.
2844
2845 @item -L@var{dir}
2846 Add directory @var{dir} to the list of directories to be searched
2847 for @samp{-l}.
2848
2849 @item -B@var{prefix}
2850 This option specifies where to find the executables, libraries,
2851 include files, and data files of the compiler itself.
2852
2853 The compiler driver program runs one or more of the subprograms
2854 @file{cpp}, @file{cc1}, @file{as} and @file{ld}.  It tries
2855 @var{prefix} as a prefix for each program it tries to run, both with and
2856 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
2857
2858 For each subprogram to be run, the compiler driver first tries the
2859 @samp{-B} prefix, if any.  If that name is not found, or if @samp{-B}
2860 was not specified, the driver tries two standard prefixes, which are
2861 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc-lib/}.  If neither of
2862 those results in a file name that is found, the unmodified program
2863 name is searched for using the directories specified in your
2864 @samp{PATH} environment variable.
2865
2866 @samp{-B} prefixes that effectively specify directory names also apply
2867 to libraries in the linker, because the compiler translates these
2868 options into @samp{-L} options for the linker.  They also apply to
2869 includes files in the preprocessor, because the compiler translates these
2870 options into @samp{-isystem} options for the preprocessor.  In this case,
2871 the compiler appends @samp{include} to the prefix.
2872
2873 The run-time support file @file{libgcc.a} can also be searched for using
2874 the @samp{-B} prefix, if needed.  If it is not found there, the two
2875 standard prefixes above are tried, and that is all.  The file is left
2876 out of the link if it is not found by those means.
2877
2878 Another way to specify a prefix much like the @samp{-B} prefix is to use
2879 the environment variable @code{GCC_EXEC_PREFIX}.  @xref{Environment
2880 Variables}.
2881
2882 @item -specs=@var{file}
2883 Process @var{file} after the compiler reads in the standard @file{specs}
2884 file, in order to override the defaults that the @file{gcc} driver
2885 program uses when determining what switches to pass to @file{cc1},
2886 @file{cc1plus}, @file{as}, @file{ld}, etc.  More than one
2887 @samp{-specs=}@var{file} can be specified on the command line, and they
2888 are processed in order, from left to right.
2889 @end table
2890
2891 @node Target Options
2892 @section Specifying Target Machine and Compiler Version
2893 @cindex target options
2894 @cindex cross compiling
2895 @cindex specifying machine version
2896 @cindex specifying compiler version and target machine
2897 @cindex compiler version, specifying
2898 @cindex target machine, specifying
2899
2900 By default, GNU CC compiles code for the same type of machine that you
2901 are using.  However, it can also be installed as a cross-compiler, to
2902 compile for some other type of machine.  In fact, several different
2903 configurations of GNU CC, for different target machines, can be
2904 installed side by side.  Then you specify which one to use with the
2905 @samp{-b} option.
2906
2907 In addition, older and newer versions of GNU CC can be installed side
2908 by side.  One of them (probably the newest) will be the default, but
2909 you may sometimes wish to use another.
2910
2911 @table @code
2912 @item -b @var{machine}
2913 The argument @var{machine} specifies the target machine for compilation.
2914 This is useful when you have installed GNU CC as a cross-compiler.
2915
2916 The value to use for @var{machine} is the same as was specified as the
2917 machine type when configuring GNU CC as a cross-compiler.  For
2918 example, if a cross-compiler was configured with @samp{configure
2919 i386v}, meaning to compile for an 80386 running System V, then you
2920 would specify @samp{-b i386v} to run that cross compiler.
2921
2922 When you do not specify @samp{-b}, it normally means to compile for
2923 the same type of machine that you are using.
2924
2925 @item -V @var{version}
2926 The argument @var{version} specifies which version of GNU CC to run.
2927 This is useful when multiple versions are installed.  For example,
2928 @var{version} might be @samp{2.0}, meaning to run GNU CC version 2.0.
2929
2930 The default version, when you do not specify @samp{-V}, is the last
2931 version of GNU CC that you installed.
2932 @end table
2933
2934 The @samp{-b} and @samp{-V} options actually work by controlling part of
2935 the file name used for the executable files and libraries used for
2936 compilation.  A given version of GNU CC, for a given target machine, is
2937 normally kept in the directory @file{/usr/local/lib/gcc-lib/@var{machine}/@var{version}}.@refill
2938
2939 Thus, sites can customize the effect of @samp{-b} or @samp{-V} either by
2940 changing the names of these directories or adding alternate names (or
2941 symbolic links).  If in directory @file{/usr/local/lib/gcc-lib/} the
2942 file @file{80386} is a link to the file @file{i386v}, then @samp{-b
2943 80386} becomes an alias for @samp{-b i386v}.
2944
2945 In one respect, the @samp{-b} or @samp{-V} do not completely change
2946 to a different compiler: the top-level driver program @code{gcc}
2947 that you originally invoked continues to run and invoke the other
2948 executables (preprocessor, compiler per se, assembler and linker)
2949 that do the real work.  However, since no real work is done in the
2950 driver program, it usually does not matter that the driver program
2951 in use is not the one for the specified target and version.
2952
2953 The only way that the driver program depends on the target machine is
2954 in the parsing and handling of special machine-specific options.
2955 However, this is controlled by a file which is found, along with the
2956 other executables, in the directory for the specified version and
2957 target machine.  As a result, a single installed driver program adapts
2958 to any specified target machine and compiler version.
2959
2960 The driver program executable does control one significant thing,
2961 however: the default version and target machine.  Therefore, you can
2962 install different instances of the driver program, compiled for
2963 different targets or versions, under different names.
2964
2965 For example, if the driver for version 2.0 is installed as @code{ogcc}
2966 and that for version 2.1 is installed as @code{gcc}, then the command
2967 @code{gcc} will use version 2.1 by default, while @code{ogcc} will use
2968 2.0 by default.  However, you can choose either version with either
2969 command with the @samp{-V} option.
2970
2971 @node Submodel Options
2972 @section Hardware Models and Configurations
2973 @cindex submodel options
2974 @cindex specifying hardware config
2975 @cindex hardware models and configurations, specifying
2976 @cindex machine dependent options
2977
2978 Earlier we discussed the standard option @samp{-b} which chooses among
2979 different installed compilers for completely different target
2980 machines, such as Vax vs. 68000 vs. 80386.
2981
2982 In addition, each of these target machine types can have its own
2983 special options, starting with @samp{-m}, to choose among various
2984 hardware models or configurations---for example, 68010 vs 68020,
2985 floating coprocessor or none.  A single installed version of the
2986 compiler can compile for any model or configuration, according to the
2987 options specified.
2988
2989 Some configurations of the compiler also support additional special
2990 options, usually for compatibility with other compilers on the same
2991 platform.
2992
2993 @ifset INTERNALS
2994 These options are defined by the macro @code{TARGET_SWITCHES} in the
2995 machine description.  The default for the options is also defined by
2996 that macro, which enables you to change the defaults.
2997 @end ifset
2998
2999 @menu
3000 * M680x0 Options::
3001 * VAX Options::
3002 * SPARC Options::
3003 * Convex Options::
3004 * AMD29K Options::
3005 * ARM Options::
3006 * Thumb Options::
3007 * MN10200 Options::
3008 * MN10300 Options::
3009 * M32R/D Options::
3010 * M88K Options::
3011 * RS/6000 and PowerPC Options::
3012 * RT Options::
3013 * MIPS Options::
3014 * i386 Options::
3015 * HPPA Options::
3016 * Intel 960 Options::
3017 * DEC Alpha Options::
3018 * Clipper Options::
3019 * H8/300 Options::
3020 * SH Options::
3021 * System V Options::
3022 * V850 Options::
3023 * ARC Options::
3024 @end menu
3025
3026 @node M680x0 Options
3027 @subsection M680x0 Options
3028 @cindex M680x0 options
3029
3030 These are the @samp{-m} options defined for the 68000 series.  The default
3031 values for these options depends on which style of 68000 was selected when
3032 the compiler was configured; the defaults for the most common choices are
3033 given below.
3034
3035 @table @code
3036 @item -m68000
3037 @itemx -mc68000
3038 Generate output for a 68000.  This is the default
3039 when the compiler is configured for 68000-based systems.
3040
3041 Use this option for microcontrollers with a 68000 or EC000 core,
3042 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
3043
3044 @item -m68020
3045 @itemx -mc68020
3046 Generate output for a 68020.  This is the default
3047 when the compiler is configured for 68020-based systems.
3048
3049 @item -m68881
3050 Generate output containing 68881 instructions for floating point.
3051 This is the default for most 68020 systems unless @samp{-nfp} was
3052 specified when the compiler was configured.
3053
3054 @item -m68030
3055 Generate output for a 68030.  This is the default when the compiler is
3056 configured for 68030-based systems.
3057
3058 @item -m68040
3059 Generate output for a 68040.  This is the default when the compiler is
3060 configured for 68040-based systems.
3061
3062 This option inhibits the use of 68881/68882 instructions that have to be
3063 emulated by software on the 68040.  Use this option if your 68040 does not
3064 have code to emulate those instructions.
3065
3066 @item -m68060
3067 Generate output for a 68060.  This is the default when the compiler is
3068 configured for 68060-based systems.
3069
3070 This option inhibits the use of 68020 and 68881/68882 instructions that
3071 have to be emulated by software on the 68060.  Use this option if your 68060
3072 does not have code to emulate those instructions.
3073
3074 @item -mcpu32
3075 Generate output for a CPU32. This is the default
3076 when the compiler is configured for CPU32-based systems.
3077
3078 Use this option for microcontrollers with a
3079 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
3080 68336, 68340, 68341, 68349 and 68360.
3081
3082 @item -m5200
3083 Generate output for a 520X "coldfire" family cpu.  This is the default
3084 when the compiler is configured for 520X-based systems.
3085
3086 Use this option for microcontroller with a 5200 core, including 
3087 the MCF5202, MCF5203, MCF5204 and MCF5202.
3088
3089
3090 @item -m68020-40
3091 Generate output for a 68040, without using any of the new instructions.
3092 This results in code which can run relatively efficiently on either a
3093 68020/68881 or a 68030 or a 68040.  The generated code does use the
3094 68881 instructions that are emulated on the 68040.
3095
3096 @item -m68020-60
3097 Generate output for a 68060, without using any of the new instructions.
3098 This results in code which can run relatively efficiently on either a
3099 68020/68881 or a 68030 or a 68040.  The generated code does use the
3100 68881 instructions that are emulated on the 68060.
3101
3102 @item -mfpa
3103 Generate output containing Sun FPA instructions for floating point.
3104
3105 @item -msoft-float
3106 Generate output containing library calls for floating point.
3107 @strong{Warning:} the requisite libraries are not available for all m68k
3108 targets.  Normally the facilities of the machine's usual C compiler are
3109 used, but this can't be done directly in cross-compilation.  You must
3110 make your own arrangements to provide suitable library functions for
3111 cross-compilation.  The embedded targets @samp{m68k-*-aout} and
3112 @samp{m68k-*-coff} do provide software floating point support.
3113
3114 @item -mshort
3115 Consider type @code{int} to be 16 bits wide, like @code{short int}.
3116
3117 @item -mnobitfield
3118 Do not use the bit-field instructions.  The @samp{-m68000}, @samp{-mcpu32}
3119 and @samp{-m5200} options imply @w{@samp{-mnobitfield}}.
3120
3121 @item -mbitfield
3122 Do use the bit-field instructions.  The @samp{-m68020} option implies
3123 @samp{-mbitfield}.  This is the default if you use a configuration
3124 designed for a 68020.
3125
3126 @item -mrtd
3127 Use a different function-calling convention, in which functions
3128 that take a fixed number of arguments return with the @code{rtd}
3129 instruction, which pops their arguments while returning.  This
3130 saves one instruction in the caller since there is no need to pop
3131 the arguments there.
3132
3133 This calling convention is incompatible with the one normally
3134 used on Unix, so you cannot use it if you need to call libraries
3135 compiled with the Unix compiler.
3136
3137 Also, you must provide function prototypes for all functions that
3138 take variable numbers of arguments (including @code{printf});
3139 otherwise incorrect code will be generated for calls to those
3140 functions.
3141
3142 In addition, seriously incorrect code will result if you call a
3143 function with too many arguments.  (Normally, extra arguments are
3144 harmlessly ignored.)
3145
3146 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
3147 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
3148
3149 @item -malign-int
3150 @itemx -mno-align-int
3151 Control whether GNU CC aligns @code{int}, @code{long}, @code{long long}, 
3152 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
3153 boundary (@samp{-malign-int}) or a 16-bit boundary (@samp{-mno-align-int}).
3154 Aligning variables on 32-bit boundaries produces code that runs somewhat
3155 faster on processors with 32-bit busses at the expense of more memory.
3156
3157 @strong{Warning:} if you use the @samp{-malign-int} switch, GNU CC will
3158 align structures containing the above types  differently than
3159 most published application binary interface specifications for the m68k.
3160
3161 @end table
3162
3163 @node VAX Options
3164 @subsection VAX Options
3165 @cindex VAX options
3166
3167 These @samp{-m} options are defined for the Vax:
3168
3169 @table @code
3170 @item -munix
3171 Do not output certain jump instructions (@code{aobleq} and so on)
3172 that the Unix assembler for the Vax cannot handle across long
3173 ranges.
3174
3175 @item -mgnu
3176 Do output those jump instructions, on the assumption that you
3177 will assemble with the GNU assembler.
3178
3179 @item -mg
3180 Output code for g-format floating point numbers instead of d-format.
3181 @end table
3182
3183 @node SPARC Options
3184 @subsection SPARC Options
3185 @cindex SPARC options
3186
3187 These @samp{-m} switches are supported on the SPARC:
3188
3189 @table @code
3190 @item -mno-app-regs
3191 @itemx -mapp-regs
3192 Specify @samp{-mapp-regs} to generate output using the global registers
3193 2 through 4, which the SPARC SVR4 ABI reserves for applications.  This
3194 is the default.
3195
3196 To be fully SVR4 ABI compliant at the cost of some performance loss,
3197 specify @samp{-mno-app-regs}.  You should compile libraries and system
3198 software with this option.
3199
3200 @item -mfpu
3201 @itemx -mhard-float
3202 Generate output containing floating point instructions.  This is the
3203 default.
3204
3205 @item -mno-fpu
3206 @itemx -msoft-float
3207 Generate output containing library calls for floating point.
3208 @strong{Warning:} the requisite libraries are not available for all SPARC
3209 targets.  Normally the facilities of the machine's usual C compiler are
3210 used, but this cannot be done directly in cross-compilation.  You must make
3211 your own arrangements to provide suitable library functions for
3212 cross-compilation.  The embedded targets @samp{sparc-*-aout} and
3213 @samp{sparclite-*-*} do provide software floating point support.
3214
3215 @samp{-msoft-float} changes the calling convention in the output file;
3216 therefore, it is only useful if you compile @emph{all} of a program with
3217 this option.  In particular, you need to compile @file{libgcc.a}, the
3218 library that comes with GNU CC, with @samp{-msoft-float} in order for
3219 this to work.
3220
3221 @item -mhard-quad-float
3222 Generate output containing quad-word (long double) floating point
3223 instructions.
3224
3225 @item -msoft-quad-float
3226 Generate output containing library calls for quad-word (long double)
3227 floating point instructions.  The functions called are those specified
3228 in the SPARC ABI.  This is the default.
3229
3230 As of this writing, there are no sparc implementations that have hardware
3231 support for the quad-word floating point instructions.  They all invoke
3232 a trap handler for one of these instructions, and then the trap handler
3233 emulates the effect of the instruction.  Because of the trap handler overhead,
3234 this is much slower than calling the ABI library routines.  Thus the
3235 @samp{-msoft-quad-float} option is the default.
3236
3237 @item -mno-epilogue
3238 @itemx -mepilogue
3239 With @samp{-mepilogue} (the default), the compiler always emits code for
3240 function exit at the end of each function.  Any function exit in
3241 the middle of the function (such as a return statement in C) will
3242 generate a jump to the exit code at the end of the function.
3243
3244 With @samp{-mno-epilogue}, the compiler tries to emit exit code inline
3245 at every function exit.
3246
3247 @item -mno-flat
3248 @itemx -mflat
3249 With @samp{-mflat}, the compiler does not generate save/restore instructions
3250 and will use a "flat" or single register window calling convention.
3251 This model uses %i7 as the frame pointer and is compatible with the normal
3252 register window model.  Code from either may be intermixed.
3253 The local registers and the input registers (0-5) are still treated as
3254 "call saved" registers and will be saved on the stack as necessary.
3255
3256 With @samp{-mno-flat} (the default), the compiler emits save/restore
3257 instructions (except for leaf functions) and is the normal mode of operation.
3258
3259 @item -mno-unaligned-doubles
3260 @itemx -munaligned-doubles
3261 Assume that doubles have 8 byte alignment.  This is the default.
3262
3263 With @samp{-munaligned-doubles}, GNU CC assumes that doubles have 8 byte
3264 alignment only if they are contained in another type, or if they have an
3265 absolute address.  Otherwise, it assumes they have 4 byte alignment.
3266 Specifying this option avoids some rare compatibility problems with code
3267 generated by other compilers.  It is not the default because it results
3268 in a performance loss, especially for floating point code.
3269
3270 @item -mv8
3271 @itemx -msparclite
3272 These two options select variations on the SPARC architecture.
3273
3274 By default (unless specifically configured for the Fujitsu SPARClite),
3275 GCC generates code for the v7 variant of the SPARC architecture.
3276
3277 @samp{-mv8} will give you SPARC v8 code.  The only difference from v7
3278 code is that the compiler emits the integer multiply and integer
3279 divide instructions which exist in SPARC v8 but not in SPARC v7.
3280
3281 @samp{-msparclite} will give you SPARClite code.  This adds the integer
3282 multiply, integer divide step and scan (@code{ffs}) instructions which
3283 exist in SPARClite but not in SPARC v7.
3284
3285 These options are deprecated and will be deleted in GNU CC 2.9.
3286 They have been replaced with @samp{-mcpu=xxx}.
3287
3288 @item -mcypress
3289 @itemx -msupersparc
3290 These two options select the processor for which the code is optimised.
3291
3292 With @samp{-mcypress} (the default), the compiler optimizes code for the
3293 Cypress CY7C602 chip, as used in the SparcStation/SparcServer 3xx series.
3294 This is also appropriate for the older SparcStation 1, 2, IPX etc.
3295
3296 With @samp{-msupersparc} the compiler optimizes code for the SuperSparc cpu, as
3297 used in the SparcStation 10, 1000 and 2000 series. This flag also enables use
3298 of the full SPARC v8 instruction set.
3299
3300 These options are deprecated and will be deleted in GNU CC 2.9.
3301 They have been replaced with @samp{-mcpu=xxx}.
3302
3303 @item -mcpu=@var{cpu_type}
3304 Set the instruction set, register set, and instruction scheduling parameters
3305 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
3306 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{sparclite},
3307 @samp{f930}, @samp{f934}, @samp{sparclet}, @samp{tsc701}, @samp{v9}, and
3308 @samp{ultrasparc}.
3309
3310 Default instruction scheduling parameters are used for values that select
3311 an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
3312 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
3313
3314 Here is a list of each supported architecture and their supported
3315 implementations.
3316
3317 @smallexample
3318     v7:             cypress
3319     v8:             supersparc
3320     sparclite:      f930, f934
3321     sparclet:       tsc701
3322     v9:             ultrasparc
3323 @end smallexample
3324
3325 @item -mtune=@var{cpu_type}
3326 Set the instruction scheduling parameters for machine type
3327 @var{cpu_type}, but do not set the instruction set or register set that the
3328 option @samp{-mcpu=}@var{cpu_type} would.
3329
3330 The same values for @samp{-mcpu=}@var{cpu_type} are used for
3331 @samp{-mtune=}@*@var{cpu_type}, though the only useful values are those that
3332 select a particular cpu implementation: @samp{cypress}, @samp{supersparc},
3333 @samp{f930}, @samp{f934}, @samp{tsc701}, @samp{ultrasparc}.
3334
3335 @item -malign-loops=@var{num}
3336 Align loops to a 2 raised to a @var{num} byte boundary.  If
3337 @samp{-malign-loops} is not specified, the default is 2.
3338
3339 @item -malign-jumps=@var{num}
3340 Align instructions that are only jumped to to a 2 raised to a @var{num}
3341 byte boundary.  If @samp{-malign-jumps} is not specified, the default is 2.
3342
3343 @item -malign-functions=@var{num}
3344 Align the start of functions to a 2 raised to @var{num} byte boundary.
3345 If @samp{-malign-functions} is not specified, the default is 2 if compiling
3346 for 32 bit sparc, and 5 if compiling for 64 bit sparc.
3347
3348 @end table
3349
3350 These @samp{-m} switches are supported in addition to the above
3351 on the SPARCLET processor.
3352
3353 @table @code
3354 @item -mlittle-endian
3355 Generate code for a processor running in little-endian mode.
3356
3357 @item -mlive-g0
3358 Treat register @code{%g0} as a normal register.
3359 GCC will continue to clobber it as necessary but will not assume
3360 it always reads as 0.
3361
3362 @item -mbroken-saverestore
3363 Generate code that does not use non-trivial forms of the @code{save} and
3364 @code{restore} instructions.  Early versions of the SPARCLET processor do
3365 not correctly handle @code{save} and @code{restore} instructions used with
3366 arguments.  They correctly handle them used without arguments.  A @code{save}
3367 instruction used without arguments increments the current window pointer
3368 but does not allocate a new stack frame.  It is assumed that the window
3369 overflow trap handler will properly handle this case as will interrupt
3370 handlers.
3371 @end table
3372
3373 These @samp{-m} switches are supported in addition to the above
3374 on SPARC V9 processors in 64 bit environments.
3375
3376 @table @code
3377 @item -mlittle-endian
3378 Generate code for a processor running in little-endian mode.
3379
3380 @item -m32
3381 @itemx -m64
3382 Generate code for a 32 bit or 64 bit environment.
3383 The 32 bit environment sets int, long and pointer to 32 bits.
3384 The 64 bit environment sets int to 32 bits and long and pointer
3385 to 64 bits.
3386
3387 @item -mcmodel=medlow
3388 Generate code for the Medium/Low code model: the program must be linked
3389 in the low 32 bits of the address space.  Pointers are 64 bits.
3390 Programs can be statically or dynamically linked.
3391
3392 @item -mcmodel=medmid
3393 Generate code for the Medium/Middle code model: the program must be linked
3394 in the low 44 bits of the address space, the text segment must be less than
3395 2G bytes, and data segment must be within 2G of the text segment.
3396 Pointers are 64 bits.
3397
3398 @item -mcmodel=medany
3399 Generate code for the Medium/Anywhere code model: the program may be linked
3400 anywhere in the address space, the text segment must be less than
3401 2G bytes, and data segment must be within 2G of the text segment.
3402 Pointers are 64 bits.
3403
3404 @item -mcmodel=embmedany
3405 Generate code for the Medium/Anywhere code model for embedded systems:
3406 assume a 32 bit text and a 32 bit data segment, both starting anywhere
3407 (determined at link time).  Register %g4 points to the base of the
3408 data segment.  Pointers still 64 bits.
3409 Programs are statically linked, PIC is not supported.
3410
3411 @item -mstack-bias
3412 @itemx -mno-stack-bias
3413 With @samp{-mstack-bias}, GNU CC assumes that the stack pointer, and
3414 frame pointer if present, are offset by -2047 which must be added back
3415 when making stack frame references.
3416 Otherwise, assume no such offset is present.
3417 @end table
3418
3419 @node Convex Options
3420 @subsection Convex Options
3421 @cindex Convex options
3422
3423 These @samp{-m} options are defined for Convex:
3424
3425 @table @code
3426 @item -mc1
3427 Generate output for C1.  The code will run on any Convex machine.
3428 The preprocessor symbol @code{__convex__c1__} is defined.
3429
3430 @item -mc2
3431 Generate output for C2.  Uses instructions not available on C1.
3432 Scheduling and other optimizations are chosen for max performance on C2.
3433 The preprocessor symbol @code{__convex_c2__} is defined.
3434
3435 @item -mc32
3436 Generate output for C32xx.  Uses instructions not available on C1.
3437 Scheduling and other optimizations are chosen for max performance on C32.
3438 The preprocessor symbol @code{__convex_c32__} is defined.
3439
3440 @item -mc34
3441 Generate output for C34xx.  Uses instructions not available on C1.
3442 Scheduling and other optimizations are chosen for max performance on C34.
3443 The preprocessor symbol @code{__convex_c34__} is defined.
3444
3445 @item -mc38
3446 Generate output for C38xx.  Uses instructions not available on C1.
3447 Scheduling and other optimizations are chosen for max performance on C38.
3448 The preprocessor symbol @code{__convex_c38__} is defined.
3449
3450 @item -margcount
3451 Generate code which puts an argument count in the word preceding each
3452 argument list.  This is compatible with regular CC, and a few programs
3453 may need the argument count word.  GDB and other source-level debuggers
3454 do not need it; this info is in the symbol table.
3455
3456 @item -mnoargcount
3457 Omit the argument count word.  This is the default.
3458
3459 @item -mvolatile-cache
3460 Allow volatile references to be cached.  This is the default.
3461
3462 @item -mvolatile-nocache
3463 Volatile references bypass the data cache, going all the way to memory.
3464 This is only needed for multi-processor code that does not use standard
3465 synchronization instructions.  Making non-volatile references to volatile
3466 locations will not necessarily work.
3467
3468 @item -mlong32
3469 Type long is 32 bits, the same as type int.  This is the default.
3470
3471 @item -mlong64
3472 Type long is 64 bits, the same as type long long.  This option is useless,
3473 because no library support exists for it.
3474 @end table
3475
3476 @node AMD29K Options
3477 @subsection AMD29K Options
3478 @cindex AMD29K options
3479
3480 These @samp{-m} options are defined for the AMD Am29000:
3481
3482 @table @code
3483 @item -mdw
3484 @kindex -mdw
3485 @cindex DW bit (29k)
3486 Generate code that assumes the @code{DW} bit is set, i.e., that byte and
3487 halfword operations are directly supported by the hardware.  This is the
3488 default.
3489
3490 @item -mndw
3491 @kindex -mndw
3492 Generate code that assumes the @code{DW} bit is not set.
3493
3494 @item -mbw
3495 @kindex -mbw
3496 @cindex byte writes (29k)
3497 Generate code that assumes the system supports byte and halfword write
3498 operations.  This is the default.
3499
3500 @item -mnbw
3501 @kindex -mnbw
3502 Generate code that assumes the systems does not support byte and
3503 halfword write operations.  @samp{-mnbw} implies @samp{-mndw}.
3504
3505 @item -msmall
3506 @kindex -msmall
3507 @cindex memory model (29k)
3508 Use a small memory model that assumes that all function addresses are
3509 either within a single 256 KB segment or at an absolute address of less
3510 than 256k.  This allows the @code{call} instruction to be used instead
3511 of a @code{const}, @code{consth}, @code{calli} sequence.
3512
3513 @item -mnormal
3514 @kindex -mnormal
3515 Use the normal memory model: Generate @code{call} instructions only when
3516 calling functions in the same file and @code{calli} instructions
3517 otherwise.  This works if each file occupies less than 256 KB but allows
3518 the entire executable to be larger than 256 KB.  This is the default.
3519
3520 @item -mlarge
3521 Always use @code{calli} instructions.  Specify this option if you expect
3522 a single file to compile into more than 256 KB of code.
3523
3524 @item -m29050
3525 @kindex -m29050
3526 @cindex processor selection (29k)
3527 Generate code for the Am29050.
3528
3529 @item -m29000
3530 @kindex -m29000
3531 Generate code for the Am29000.  This is the default.
3532
3533 @item -mkernel-registers
3534 @kindex -mkernel-registers
3535 @cindex kernel and user registers (29k)
3536 Generate references to registers @code{gr64-gr95} instead of to
3537 registers @code{gr96-gr127}.  This option can be used when compiling
3538 kernel code that wants a set of global registers disjoint from that used
3539 by user-mode code.
3540
3541 Note that when this option is used, register names in @samp{-f} flags
3542 must use the normal, user-mode, names.
3543
3544 @item -muser-registers
3545 @kindex -muser-registers
3546 Use the normal set of global registers, @code{gr96-gr127}.  This is the
3547 default.
3548
3549 @item -mstack-check
3550 @itemx -mno-stack-check
3551 @kindex -mstack-check
3552 @cindex stack checks (29k)
3553 Insert (or do not insert) a call to @code{__msp_check} after each stack
3554 adjustment.  This is often used for kernel code.
3555
3556 @item -mstorem-bug
3557 @itemx -mno-storem-bug
3558 @kindex -mstorem-bug
3559 @cindex storem bug (29k)
3560 @samp{-mstorem-bug} handles 29k processors which cannot handle the
3561 separation of a mtsrim insn and a storem instruction (most 29000 chips
3562 to date, but not the 29050).
3563
3564 @item -mno-reuse-arg-regs
3565 @itemx -mreuse-arg-regs
3566 @kindex -mreuse-arg-regs
3567 @samp{-mno-reuse-arg-regs} tells the compiler to only use incoming argument
3568 registers for copying out arguments.  This helps detect calling a function
3569 with fewer arguments than it was declared with.
3570
3571 @item -mno-impure-text
3572 @itemx -mimpure-text
3573 @kindex -mimpure-text
3574 @samp{-mimpure-text}, used in addition to @samp{-shared}, tells the compiler to
3575 not pass @samp{-assert pure-text} to the linker when linking a shared object.
3576
3577 @item -msoft-float
3578 @kindex -msoft-float
3579 Generate output containing library calls for floating point.
3580 @strong{Warning:} the requisite libraries are not part of GNU CC.
3581 Normally the facilities of the machine's usual C compiler are used, but
3582 this can't be done directly in cross-compilation.  You must make your
3583 own arrangements to provide suitable library functions for
3584 cross-compilation.
3585 @end table
3586
3587 @node ARM Options
3588 @subsection ARM Options
3589 @cindex ARM options
3590
3591 These @samp{-m} options are defined for Advanced RISC Machines (ARM)
3592 architectures:
3593
3594 @table @code
3595 @item -mapcs-frame
3596 @kindex -mapcs-frame
3597 Generate a stack frame that is compliant with the ARM Procedure Call
3598 Standard for all functions, even if this is not strictly necessary for
3599 correct execution of the code.  Specifying @samp{-fomit-frame-pointer}
3600 with this option will cause the stack frames not to be generated for
3601 leaf functions.  The default is @samp{-mno-apcs-frame}.
3602
3603 @item -mapcs
3604 @kindex -mapcs
3605 This is a synonym for @samp{-mapcs-frame}.
3606
3607 @item -mapcs-26
3608 @kindex -mapcs-26
3609 Generate code for a processor running with a 26-bit program counter,
3610 and conforming to the function calling standards for the APCS 26-bit
3611 option.  This option replaces the @samp{-m2} and @samp{-m3} options
3612 of previous releases of the compiler.
3613
3614 @item -mapcs-32
3615 @kindex -mapcs-32
3616 Generate code for a processor running with a 32-bit program counter,
3617 and conforming to the function calling standards for the APCS 32-bit
3618 option.  This option replaces the @samp{-m6} option of previous releases
3619 of the compiler.
3620
3621 @item -mapcs-stack-check
3622 @kindex -mapcs-stack-check
3623 @kindex -mno-apcs-stack-check
3624 Generate code to check the amount of stack space available upon entry to
3625 every function (that actually uses some stack space).  If there is
3626 insufficient space available then either the function
3627 @samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} will be
3628 called, depending upon the amount of stack space required.  The run time
3629 system is required to provide these functions.  The default is
3630 @samp{-mno-apcs-stack-check}, since this produces smaller code.
3631
3632 @item -mapcs-float
3633 @kindex -mapcs-float
3634 @kindex -mno-apcs-float
3635 Pass floating point arguments using the float point registers.  This is
3636 one of the variants of the APCS.  This option is reccommended if the
3637 target hardware has a floating point unit or if a lot of floating point
3638 arithmetic is going to be performed by the code.  The default is
3639 @samp{-mno-apcs-float}, since integer only code is slightly increased in
3640 size if @samp{-mapcs-float} is used.
3641
3642 @item -mapcs-reentrant
3643 @kindex -mapcs-reentrant
3644 @kindex -mno-apcs-reentrant
3645 Generate reentrant, position independent code.  This is the equivalent
3646 to specifying the @samp{-fpic} option.  The default is
3647 @samp{-mno-apcs-reentrant}.
3648
3649 @item -mthumb-interwork
3650 @kindex -mthumb-interwork
3651 @kindex -mno-thumb-interwork
3652 Generate code which supports calling between the ARM and THUMB
3653 instruction sets.  Without this option the two instruction sets cannot
3654 be reliably used inside one program.  The default is
3655 @samp{-mno-thumb-interwork}, since slightly larger code is generated
3656 when @samp{-mthumb-interwork} is specified.
3657
3658 @item -mno-sched-prolog
3659 @kindex -mno-sched-prolog
3660 @kindex -msched-prolog
3661 Prevent the reordering of instructions in the function prolog, or the
3662 merging of those instruction with the instructions in the function's
3663 body.  This means that all functions will start with a recognisable set
3664 of instructions (or in fact one of a chioce from a small set of
3665 different function prologues), and this information can be used to
3666 locate the start if functions inside an executable piece of code.  The
3667 default is @samp{-msched-prolog}.
3668
3669 @item -mhard-float
3670 Generate output containing floating point instructions.  This is the
3671 default.
3672
3673 @item -msoft-float
3674 Generate output containing library calls for floating point.
3675 @strong{Warning:} the requisite libraries are not available for all ARM
3676 targets.  Normally the facilities of the machine's usual C compiler are
3677 used, but this cannot be done directly in cross-compilation.  You must make
3678 your own arrangements to provide suitable library functions for
3679 cross-compilation.
3680
3681 @samp{-msoft-float} changes the calling convention in the output file;
3682 therefore, it is only useful if you compile @emph{all} of a program with
3683 this option.  In particular, you need to compile @file{libgcc.a}, the
3684 library that comes with GNU CC, with @samp{-msoft-float} in order for
3685 this to work.
3686
3687 @item -mlittle-endian
3688 Generate code for a processor running in little-endian mode.  This is
3689 the default for all standard configurations.
3690
3691 @item -mbig-endian
3692 Generate code for a processor running in big-endian mode; the default is
3693 to compile code for a little-endian processor.
3694
3695 @item -mwords-little-endian
3696 This option only applies when generating code for big-endian processors.
3697 Generate code for a little-endian word order but a big-endian byte
3698 order.  That is, a byte order of the form @samp{32107654}.  Note: this
3699 option should only be used if you require compatibility with code for
3700 big-endian ARM processors generated by versions of the compiler prior to
3701 2.8.
3702
3703 @item -mshort-load-bytes
3704 @kindex -mshort-load-bytes
3705 Do not try to load half-words (eg @samp{short}s) by loading a word from
3706 an unaligned address.  For some targets the MMU is configured to trap
3707 unaligned loads; use this option to generate code that is safe in these
3708 environments.
3709
3710 @item -mno-short-load-bytes
3711 @kindex -mno-short-load-bytes
3712 Use unaligned word loads to load half-words (eg @samp{short}s).  This
3713 option produces more efficient code, but the MMU is sometimes configured
3714 to trap these instructions.
3715
3716 @item -mshort-load-words
3717 @kindex -mshort-load-words
3718 This is a synonym for the @samp{-mno-short-load-bytes}.
3719
3720 @item -mno-short-load-words
3721 @kindex -mno-short-load-words
3722 This is a synonym for the @samp{-mshort-load-bytes}.
3723
3724 @item -mbsd
3725 @kindex -mbsd
3726 This option only applies to RISC iX.  Emulate the native BSD-mode
3727 compiler.  This is the default if @samp{-ansi} is not specified.
3728
3729 @item -mxopen
3730 @kindex -mxopen
3731 This option only applies to RISC iX.  Emulate the native X/Open-mode
3732 compiler.
3733
3734 @item -mno-symrename
3735 @kindex -mno-symrename
3736 This option only applies to RISC iX.  Do not run the assembler
3737 post-processor, @samp{symrename}, after code has been assembled.
3738 Normally it is necessary to modify some of the standard symbols in
3739 preparation for linking with the RISC iX C library; this option
3740 suppresses this pass.  The post-processor is never run when the
3741 compiler is built for cross-compilation.
3742
3743 @item -mcpu=<name>
3744 @kindex -mcpu=
3745 This specifies the name of the target ARM processor.  GCC uses this name
3746 to determine what kind of instructions it can use when generating
3747 assembly code.  Permissable names are: arm2, arm250, arm3, arm6, arm60,
3748 arm600, arm610, arm620, arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi,
3749 arm70, arm700, arm700i, arm710, arm710c, arm7100, arm7500, arm7500fe,
3750 arm7tdmi, arm8, strongarm, strongarm110
3751
3752 @item -march=<name>
3753 @kindex -march=
3754 This specifies the name of the target ARM architecture.  GCC uses this
3755 name to determine what kind of instructions it can use when generating
3756 assembly code.  This option can be used in conjunction with or instead
3757 of the @samp{-mcpu=} option.  Permissable names are: armv2, armv2a,
3758 armv3, armv3m, armv4, armv4t
3759
3760 @item -mfpe=<number>
3761 @kindex -mfpe=
3762 This specifes the version of the floating point emulation available on
3763 the target.  Permissable values are 2 and 3.
3764
3765 @item -mstructure-size-boundary=<n>
3766 @kindex -mstructure-size-boundary
3767 The size of all structures and unions will be rounded up to a multiple
3768 of the number of bits set by this option.  Permissable values are 8 and
3769 32.  The default value varies for different toolchains.  For the COFF
3770 targeted toolchain the default value is 8.  Specifying the larger number
3771 can produced faster, more efficient code, but can also increase the size
3772 of the program.  The two values are potentially incompatible.  Code
3773 compiled with one value cannot necessarily expect to work with code or
3774 libraries compiled with the other value, if they exchange information
3775 using structures or unions.  Programmers are encouraged to use the 32
3776 value as future versions of the toolchain may default to this value.
3777
3778 @end table
3779
3780 @node Thumb Options
3781 @subsection Thumb Options
3782 @cindex Thumb Options
3783
3784 @table @code
3785
3786 @item -mthumb-interwork
3787 @kindex -mthumb-interwork
3788 @kindex -mno-thumb-interwork
3789 Generate code which supports calling between the THUMB and ARM
3790 instruction sets.  Without this option the two instruction sets cannot
3791 be reliably used inside one program.  The default is
3792 @samp{-mno-thumb-interwork}, since slightly smaller code is generated
3793 with this option.
3794
3795 @item -mtpcs-frame
3796 @kindex -mtpcs-frame
3797 @kindex -mno-tpcs-frame
3798 Generate a stack frame that is compliant with the Thumb Procedure Call
3799 Standard for all non-leaf functions.  (A leaf function is one that does
3800 not call any other functions).  The default is @samp{-mno-apcs-frame}. 
3801
3802 @item -mtpcs-leaf-frame
3803 @kindex -mtpcs-leaf-frame
3804 @kindex -mno-tpcs-leaf-frame
3805 Generate a stack frame that is compliant with the Thumb Procedure Call
3806 Standard for all leaf functions.  (A leaf function is one that does
3807 not call any other functions).  The default is @samp{-mno-apcs-leaf-frame}. 
3808
3809 @item -mlittle-endian
3810 @kindex -mlittle-endian
3811 Generate code for a processor running in little-endian mode.  This is
3812 the default for all standard configurations.
3813
3814 @item -mbig-endian
3815 @kindex -mbig-endian
3816 Generate code for a processor running in big-endian mode.
3817
3818 @item -mstructure-size-boundary=<n>
3819 @kindex -mstructure-size-boundary
3820 The size of all structures and unions will be rounded up to a multiple
3821 of the number of bits set by this option.  Permissable values are 8 and
3822 32.  The default value varies for different toolchains.  For the COFF
3823 targeted toolchain the default value is 8.  Specifying the larger number
3824 can produced faster, more efficient code, but can also increase the size
3825 of the program.  The two values are potentially incompatible.  Code
3826 compiled with one value cannot necessarily expect to work with code or
3827 libraries compiled with the other value, if they exchange information
3828 using structures or unions.  Programmers are encouraged to use the 32
3829 value as future versions of the toolchain may default to this value.
3830
3831 @end table
3832
3833 @node MN10200 Options
3834 @subsection MN10200 Options
3835 @cindex MN10200 options
3836 These @samp{-m} options are defined for Matsushita MN10200 architectures:
3837 @table @code
3838
3839 @item -mrelax
3840 Indicate to the linker that it should perform a relaxation optimization pass
3841 to shorten branches, calls and absolute memory addresses.  This option only
3842 has an effect when used on the command line for the final link step.
3843
3844 This option makes symbolic debugging impossible. 
3845 @end table
3846
3847 @node MN10300 Options
3848 @subsection MN10300 Options
3849 @cindex MN10300 options
3850 These @samp{-m} options are defined for Matsushita MN10300 architectures:
3851
3852 @table @code
3853 @item -mmult-bug
3854 Generate code to avoid bugs in the multiply instructions for the MN10300
3855 processors.  This is the default.
3856
3857 @item -mno-mult-bug
3858 Do not generate code to avoid bugs in the multiply instructions for the
3859 MN10300 processors.
3860
3861 @item -mrelax
3862 Indicate to the linker that it should perform a relaxation optimization pass
3863 to shorten branches, calls and absolute memory addresses.  This option only
3864 has an effect when used on the command line for the final link step.
3865
3866 This option makes symbolic debugging impossible. 
3867 @end table
3868
3869
3870 @node M32R/D Options
3871 @subsection M32R/D Options
3872 @cindex M32R/D options
3873
3874 These @samp{-m} options are defined for Mitsubishi M32R/D architectures:
3875
3876 @table @code
3877 @item -mcode-model=small
3878 Assume all objects live in the lower 16MB of memory (so that their addresses
3879 can be loaded with the @code{ld24} instruction), and assume all subroutines
3880 are reachable with the @code{bl} instruction.
3881 This is the default.
3882
3883 The addressability of a particular object can be set with the
3884 @code{model} attribute.
3885
3886 @item -mcode-model=medium
3887 Assume objects may be anywhere in the 32 bit address space (the compiler
3888 will generate @code{seth/add3} instructions to load their addresses), and
3889 assume all subroutines are reachable with the @code{bl} instruction.
3890
3891 @item -mcode-model=large
3892 Assume objects may be anywhere in the 32 bit address space (the compiler
3893 will generate @code{seth/add3} instructions to load their addresses), and
3894 assume subroutines may not be reachable with the @code{bl} instruction
3895 (the compiler will generate the much slower @code{seth/add3/jl}
3896 instruction sequence).
3897
3898 @item -msdata=none
3899 Disable use of the small data area.  Variables will be put into
3900 one of @samp{.data}, @samp{bss}, or @samp{.rodata} (unless the
3901 @code{section} attribute has been specified).
3902 This is the default.
3903
3904 The small data area consists of sections @samp{.sdata} and @samp{.sbss}.
3905 Objects may be explicitly put in the small data area with the
3906 @code{section} attribute using one of these sections.
3907
3908 @item -msdata=sdata
3909 Put small global and static data in the small data area, but do not
3910 generate special code to reference them.
3911
3912 @item -msdata=use
3913 Put small global and static data in the small data area, and generate
3914 special instructions to reference them.
3915
3916 @item -G @var{num}
3917 @cindex smaller data references
3918 Put global and static objects less than or equal to @var{num} bytes
3919 into the small data or bss sections instead of the normal data or bss
3920 sections.  The default value of @var{num} is 8.
3921 The @samp{-msdata} option must be set to one of @samp{sdata} or @samp{use}
3922 for this option to have any effect.
3923
3924 All modules should be compiled with the same @samp{-G @var{num}} value.
3925 Compiling with different values of @var{num} may or may not work; if it
3926 doesn't the linker will give an error message - incorrect code will not be
3927 generated.
3928
3929 @end table
3930
3931 @node M88K Options
3932 @subsection M88K Options
3933 @cindex M88k options
3934
3935 These @samp{-m} options are defined for Motorola 88k architectures:
3936
3937 @table @code
3938 @item -m88000
3939 @kindex -m88000
3940 Generate code that works well on both the m88100 and the
3941 m88110.
3942
3943 @item -m88100
3944 @kindex -m88100
3945 Generate code that works best for the m88100, but that also
3946 runs on the m88110.
3947
3948 @item -m88110
3949 @kindex -m88110
3950 Generate code that works best for the m88110, and may not run
3951 on the m88100.
3952
3953 @item -mbig-pic
3954 @kindex -mbig-pic
3955 Obsolete option to be removed from the next revision.
3956 Use @samp{-fPIC}.
3957
3958 @item -midentify-revision
3959 @kindex -midentify-revision
3960 @kindex ident
3961 @cindex identifying source, compiler (88k)
3962 Include an @code{ident} directive in the assembler output recording the
3963 source file name, compiler name and version, timestamp, and compilation
3964 flags used.
3965
3966 @item -mno-underscores
3967 @kindex -mno-underscores
3968 @cindex underscores, avoiding (88k)
3969 In assembler output, emit symbol names without adding an underscore
3970 character at the beginning of each name.  The default is to use an
3971 underscore as prefix on each name.
3972
3973 @item -mocs-debug-info
3974 @itemx -mno-ocs-debug-info
3975 @kindex -mocs-debug-info
3976 @kindex -mno-ocs-debug-info
3977 @cindex OCS (88k)
3978 @cindex debugging, 88k OCS
3979 Include (or omit) additional debugging information (about registers used
3980 in each stack frame) as specified in the 88open Object Compatibility
3981 Standard, ``OCS''.  This extra information allows debugging of code that
3982 has had the frame pointer eliminated.  The default for DG/UX, SVr4, and
3983 Delta 88 SVr3.2 is to include this information; other 88k configurations
3984 omit this information by default.
3985
3986 @item -mocs-frame-position
3987 @kindex -mocs-frame-position
3988 @cindex register positions in frame (88k)
3989 When emitting COFF debugging information for automatic variables and
3990 parameters stored on the stack, use the offset from the canonical frame
3991 address, which is the stack pointer (register 31) on entry to the
3992 function.  The DG/UX, SVr4, Delta88 SVr3.2, and BCS configurations use
3993 @samp{-mocs-frame-position}; other 88k configurations have the default
3994 @samp{-mno-ocs-frame-position}.
3995
3996 @item -mno-ocs-frame-position
3997 @kindex -mno-ocs-frame-position
3998 @cindex register positions in frame (88k)
3999 When emitting COFF debugging information for automatic variables and
4000 parameters stored on the stack, use the offset from the frame pointer
4001 register (register 30).  When this option is in effect, the frame
4002 pointer is not eliminated when debugging information is selected by the
4003 -g switch.
4004
4005 @item -moptimize-arg-area
4006 @itemx -mno-optimize-arg-area
4007 @kindex -moptimize-arg-area
4008 @kindex -mno-optimize-arg-area
4009 @cindex arguments in frame (88k)
4010 Control how function arguments are stored in stack frames.
4011 @samp{-moptimize-arg-area} saves space by optimizing them, but this
4012 conflicts with the 88open specifications.  The opposite alternative,
4013 @samp{-mno-optimize-arg-area}, agrees with 88open standards.  By default
4014 GNU CC does not optimize the argument area.
4015
4016 @item -mshort-data-@var{num}
4017 @kindex -mshort-data-@var{num}
4018 @cindex smaller data references (88k)
4019 @cindex r0-relative references (88k)
4020 Generate smaller data references by making them relative to @code{r0},
4021 which allows loading a value using a single instruction (rather than the
4022 usual two).  You control which data references are affected by
4023 specifying @var{num} with this option.  For example, if you specify
4024 @samp{-mshort-data-512}, then the data references affected are those
4025 involving displacements of less than 512 bytes.
4026 @samp{-mshort-data-@var{num}} is not effective for @var{num} greater
4027 than 64k.
4028
4029 @item -mserialize-volatile
4030 @kindex -mserialize-volatile
4031 @itemx -mno-serialize-volatile
4032 @kindex -mno-serialize-volatile
4033 @cindex sequential consistency on 88k
4034 Do, or don't, generate code to guarantee sequential consistency
4035 of volatile memory references.  By default, consistency is
4036 guaranteed.
4037
4038 The order of memory references made by the MC88110 processor does
4039 not always match the order of the instructions requesting those
4040 references.  In particular, a load instruction may execute before
4041 a preceding store instruction.  Such reordering violates
4042 sequential consistency of volatile memory references, when there
4043 are multiple processors.   When consistency must be guaranteed,
4044 GNU C generates special instructions, as needed, to force
4045 execution in the proper order.
4046
4047 The MC88100 processor does not reorder memory references and so
4048 always provides sequential consistency.  However, by default, GNU
4049 C generates the special instructions to guarantee consistency
4050 even when you use @samp{-m88100}, so that the code may be run on an
4051 MC88110 processor.  If you intend to run your code only on the
4052 MC88100 processor, you may use @samp{-mno-serialize-volatile}.
4053
4054 The extra code generated to guarantee consistency may affect the
4055 performance of your application.  If you know that you can safely
4056 forgo this guarantee, you may use @samp{-mno-serialize-volatile}.
4057
4058 @item -msvr4
4059 @itemx -msvr3
4060 @kindex -msvr4
4061 @kindex -msvr3
4062 @cindex assembler syntax, 88k
4063 @cindex SVr4
4064 Turn on (@samp{-msvr4}) or off (@samp{-msvr3}) compiler extensions
4065 related to System V release 4 (SVr4).  This controls the following:
4066
4067 @enumerate
4068 @item
4069 Which variant of the assembler syntax to emit.
4070 @item
4071 @samp{-msvr4} makes the C preprocessor recognize @samp{#pragma weak}
4072 that is used on System V release 4.
4073 @item
4074 @samp{-msvr4} makes GNU CC issue additional declaration directives used in
4075 SVr4.
4076 @end enumerate
4077
4078 @samp{-msvr4} is the default for the m88k-motorola-sysv4 and
4079 m88k-dg-dgux m88k configurations. @samp{-msvr3} is the default for all
4080 other m88k configurations.
4081
4082 @item -mversion-03.00
4083 @kindex -mversion-03.00
4084 This option is obsolete, and is ignored.
4085 @c ??? which asm syntax better for GAS?  option there too?
4086
4087 @item -mno-check-zero-division
4088 @itemx -mcheck-zero-division
4089 @kindex -mno-check-zero-division
4090 @kindex -mcheck-zero-division
4091 @cindex zero division on 88k
4092 Do, or don't, generate code to guarantee that integer division by
4093 zero will be detected.  By default, detection is guaranteed.
4094
4095 Some models of the MC88100 processor fail to trap upon integer
4096 division by zero under certain conditions.  By default, when
4097 compiling code that might be run on such a processor, GNU C
4098 generates code that explicitly checks for zero-valued divisors
4099 and traps with exception number 503 when one is detected.  Use of
4100 mno-check-zero-division suppresses such checking for code
4101 generated to run on an MC88100 processor.
4102
4103 GNU C assumes that the MC88110 processor correctly detects all
4104 instances of integer division by zero.  When @samp{-m88110} is
4105 specified, both @samp{-mcheck-zero-division} and
4106 @samp{-mno-check-zero-division} are ignored, and no explicit checks for
4107 zero-valued divisors are generated.
4108
4109 @item -muse-div-instruction
4110 @kindex -muse-div-instruction
4111 @cindex divide instruction, 88k
4112 Use the div instruction for signed integer division on the
4113 MC88100 processor.  By default, the div instruction is not used.
4114
4115 On the MC88100 processor the signed integer division instruction
4116 div) traps to the operating system on a negative operand.  The
4117 operating system transparently completes the operation, but at a
4118 large cost in execution time.  By default, when compiling code
4119 that might be run on an MC88100 processor, GNU C emulates signed
4120 integer division using the unsigned integer division instruction
4121 divu), thereby avoiding the large penalty of a trap to the
4122 operating system.  Such emulation has its own, smaller, execution
4123 cost in both time and space.  To the extent that your code's
4124 important signed integer division operations are performed on two
4125 nonnegative operands, it may be desirable to use the div
4126 instruction directly.
4127
4128 On the MC88110 processor the div instruction (also known as the
4129 divs instruction) processes negative operands without trapping to
4130 the operating system.  When @samp{-m88110} is specified,
4131 @samp{-muse-div-instruction} is ignored, and the div instruction is used
4132 for signed integer division.
4133
4134 Note that the result of dividing INT_MIN by -1 is undefined.  In
4135 particular, the behavior of such a division with and without
4136 @samp{-muse-div-instruction}  may differ.
4137
4138 @item -mtrap-large-shift
4139 @itemx -mhandle-large-shift
4140 @kindex -mtrap-large-shift
4141 @kindex -mhandle-large-shift
4142 @cindex bit shift overflow (88k)
4143 @cindex large bit shifts (88k)
4144 Include code to detect bit-shifts of more than 31 bits; respectively,
4145 trap such shifts or emit code to handle them properly.  By default GNU CC
4146 makes no special provision for large bit shifts.
4147
4148 @item -mwarn-passed-structs
4149 @kindex -mwarn-passed-structs
4150 @cindex structure passing (88k)
4151 Warn when a function passes a struct as an argument or result.
4152 Structure-passing conventions have changed during the evolution of the C
4153 language, and are often the source of portability problems.  By default,
4154 GNU CC issues no such warning.
4155 @end table
4156
4157 @node RS/6000 and PowerPC Options
4158 @subsection IBM RS/6000 and PowerPC Options
4159 @cindex RS/6000 and PowerPC Options
4160 @cindex IBM RS/6000 and PowerPC Options
4161
4162 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
4163 @table @code
4164 @item -mpower
4165 @itemx -mno-power
4166 @itemx -mpower2
4167 @itemx -mno-power2
4168 @itemx -mpowerpc
4169 @itemx -mno-powerpc
4170 @itemx -mpowerpc-gpopt
4171 @itemx -mno-powerpc-gpopt
4172 @itemx -mpowerpc-gfxopt
4173 @itemx -mno-powerpc-gfxopt
4174 @itemx -mpowerpc64
4175 @itemx -mno-powerpc64
4176 @kindex -mpower
4177 @kindex -mpower2
4178 @kindex -mpowerpc
4179 @kindex -mpowerpc-gpopt
4180 @kindex -mpowerpc-gfxopt
4181 @kindex -mpowerpc64
4182 GNU CC supports two related instruction set architectures for the
4183 RS/6000 and PowerPC.  The @dfn{POWER} instruction set are those
4184 instructions supported by the @samp{rios} chip set used in the original
4185 RS/6000 systems and the @dfn{PowerPC} instruction set is the
4186 architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and
4187 the IBM 4xx microprocessors.
4188
4189 Neither architecture is a subset of the other.  However there is a
4190 large common subset of instructions supported by both.  An MQ
4191 register is included in processors supporting the POWER architecture.
4192
4193 You use these options to specify which instructions are available on the
4194 processor you are using.  The default value of these options is
4195 determined when configuring GNU CC.  Specifying the
4196 @samp{-mcpu=@var{cpu_type}} overrides the specification of these
4197 options.  We recommend you use the @samp{-mcpu=@var{cpu_type}} option
4198 rather than the options listed above.
4199
4200 The @samp{-mpower} option allows GNU CC to generate instructions that
4201 are found only in the POWER architecture and to use the MQ register.
4202 Specifying @samp{-mpower2} implies @samp{-power} and also allows GNU CC
4203 to generate instructions that are present in the POWER2 architecture but
4204 not the original POWER architecture.
4205
4206 The @samp{-mpowerpc} option allows GNU CC to generate instructions that
4207 are found only in the 32-bit subset of the PowerPC architecture.
4208 Specifying @samp{-mpowerpc-gpopt} implies @samp{-mpowerpc} and also allows
4209 GNU CC to use the optional PowerPC architecture instructions in the
4210 General Purpose group, including floating-point square root.  Specifying
4211 @samp{-mpowerpc-gfxopt} implies @samp{-mpowerpc} and also allows GNU CC to
4212 use the optional PowerPC architecture instructions in the Graphics
4213 group, including floating-point select.
4214
4215 The @samp{-mpowerpc64} option allows GNU CC to generate the additional
4216 64-bit instructions that are found in the full PowerPC64 architecture
4217 and to treat GPRs as 64-bit, doubleword quantities.  GNU CC defaults to
4218 @samp{-mno-powerpc64}.
4219
4220 If you specify both @samp{-mno-power} and @samp{-mno-powerpc}, GNU CC
4221 will use only the instructions in the common subset of both
4222 architectures plus some special AIX common-mode calls, and will not use
4223 the MQ register.  Specifying both @samp{-mpower} and @samp{-mpowerpc}
4224 permits GNU CC to use any instruction from either architecture and to
4225 allow use of the MQ register; specify this for the Motorola MPC601.
4226
4227 @item -mnew-mnemonics
4228 @itemx -mold-mnemonics
4229 @kindex -mnew-mnemonics
4230 @kindex -mold-mnemonics
4231 Select which mnemonics to use in the generated assembler code.
4232 @samp{-mnew-mnemonics} requests output that uses the assembler mnemonics
4233 defined for the PowerPC architecture, while @samp{-mold-mnemonics}
4234 requests the assembler mnemonics defined for the POWER architecture.
4235 Instructions defined in only one architecture have only one mnemonic;
4236 GNU CC uses that mnemonic irrespective of which of these options is
4237 specified.
4238
4239 GNU CC defaults to the mnemonics appropriate for the architecture in
4240 use.  Specifying @samp{-mcpu=@var{cpu_type}} sometimes overrides the
4241 value of these option.  Unless you are building a cross-compiler, you
4242 should normally not specify either @samp{-mnew-mnemonics} or
4243 @samp{-mold-mnemonics}, but should instead accept the default.
4244
4245 @item -mcpu=@var{cpu_type}
4246 @kindex -mcpu
4247 Set architecture type, register usage, choice of mnemonics, and
4248 instruction scheduling parameters for machine type @var{cpu_type}.
4249 Supported values for @var{cpu_type} are @samp{rs6000}, @samp{rios1},
4250 @samp{rios2}, @samp{rsc}, @samp{601}, @samp{602}, @samp{603},
4251 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{power},
4252 @samp{power2}, @samp{powerpc}, @samp{403}, @samp{505}, @samp{801},
4253 @samp{821}, @samp{823}, and @samp{860} and @samp{common}.
4254 @samp{-mcpu=power}, @samp{-mcpu=power2}, and @samp{-mcpu=powerpc}
4255 specify generic POWER, POWER2 and pure PowerPC (i.e., not MPC601)
4256 architecture machine types, with an appropriate, generic processor model
4257 assumed for scheduling purposes.@refill
4258
4259 @c overfull hbox here --bob 22 jul96
4260 @c original text between ignore ... end ignore
4261 @ignore
4262 Specifying any of the @samp{-mcpu=rios1}, @samp{-mcpu=rios2},
4263 @samp{-mcpu=rsc}, @samp{-mcpu=power}, or @samp{-mcpu=power2} options
4264 enables the @samp{-mpower} option and disables the @samp{-mpowerpc}
4265 option; @samp{-mcpu=601} enables both the @samp{-mpower} and
4266 @samp{-mpowerpc} options; all of @samp{-mcpu=602}, @samp{-mcpu=603},
4267 @samp{-mcpu=603e}, @samp{-mcpu=604}, @samp{-mcpu=604e},
4268 @samp{-mcpu=620}, @samp{-mcpu=403}, @samp{-mcpu=505}, @samp{-mcpu=801},
4269 @samp{-mcpu=821}, @samp{-mcpu=823}, @samp{-mcpu=860} and
4270 @samp{-mcpu=powerpc} enable the @samp{-mpowerpc} option and disable the
4271 @samp{-mpower} option; @samp{-mcpu=common} disables both the
4272 @samp{-mpower} and @samp{-mpowerpc} options.@refill
4273 @end ignore
4274 @c            changed paragraph
4275 Specifying any of the following options: 
4276 @samp{-mcpu=rios1}, @samp{-mcpu=rios2}, @samp{-mcpu=rsc},
4277 @samp{-mcpu=power}, or @samp{-mcpu=power2}  
4278 enables the @samp{-mpower} option and disables the @samp{-mpowerpc} option; 
4279 @samp{-mcpu=601} enables both the @samp{-mpower} and @samp{-mpowerpc} options.
4280 All of @samp{-mcpu=602}, @samp{-mcpu=603}, @samp{-mcpu=603e},
4281 @samp{-mcpu=604}, @samp{-mcpu=620}, 
4282 enable the @samp{-mpowerpc} option and disable the @samp{-mpower} option.  
4283 Exactly similarly, all of @samp{-mcpu=403},
4284 @samp{-mcpu=505}, @samp{-mcpu=821}, @samp{-mcpu=860} and @samp{-mcpu=powerpc} 
4285 enable the @samp{-mpowerpc} option and disable the @samp{-mpower} option.
4286 @samp{-mcpu=common} disables both the 
4287 @samp{-mpower} and @samp{-mpowerpc} options.@refill
4288 @c             end changes to prevent overfull hboxes
4289
4290 AIX versions 4 or greater selects @samp{-mcpu=common} by default, so
4291 that code will operate on all members of the RS/6000 and PowerPC
4292 families.  In that case, GNU CC will use only the instructions in the
4293 common subset of both architectures plus some special AIX common-mode
4294 calls, and will not use the MQ register.  GNU CC assumes a generic
4295 processor model for scheduling purposes.
4296
4297 Specifying any of the options @samp{-mcpu=rios1}, @samp{-mcpu=rios2},
4298 @samp{-mcpu=rsc}, @samp{-mcpu=power}, or @samp{-mcpu=power2} also
4299 disables the @samp{new-mnemonics} option.  Specifying @samp{-mcpu=601},
4300 @samp{-mcpu=602}, @samp{-mcpu=603}, @samp{-mcpu=603e}, @samp{-mcpu=604},
4301 @samp{620}, @samp{403}, or @samp{-mcpu=powerpc} also enables the
4302 @samp{new-mnemonics} option.@refill
4303
4304 Specifying @samp{-mcpu=403}, @samp{-mcpu=821}, or @samp{-mcpu=860} also
4305 enables the @samp{-msoft-float} option.
4306
4307 @item -mtune=@var{cpu_type}
4308 Set the instruction scheduling parameters for machine type
4309 @var{cpu_type}, but do not set the architecture type, register usage,
4310 choice of mnemonics like @samp{-mcpu=}@var{cpu_type} would.  The same
4311 values for @var{cpu_type} are used for @samp{-mtune=}@var{cpu_type} as
4312 for @samp{-mcpu=}@var{cpu_type}.  The @samp{-mtune=}@var{cpu_type}
4313 option overrides the @samp{-mcpu=}@var{cpu_type} option in terms of
4314 instruction scheduling parameters.
4315
4316 @item -mfull-toc
4317 @itemx -mno-fp-in-toc
4318 @itemx -mno-sum-in-toc
4319 @itemx -mminimal-toc
4320 @kindex -mminimal-toc
4321 Modify generation of the TOC (Table Of Contents), which is created for
4322 every executable file.  The @samp{-mfull-toc} option is selected by
4323 default.  In that case, GNU CC will allocate at least one TOC entry for
4324 each unique non-automatic variable reference in your program.  GNU CC
4325 will also place floating-point constants in the TOC.  However, only
4326 16,384 entries are available in the TOC.
4327
4328 If you receive a linker error message that saying you have overflowed
4329 the available TOC space, you can reduce the amount of TOC space used
4330 with the @samp{-mno-fp-in-toc} and @samp{-mno-sum-in-toc} options.
4331 @samp{-mno-fp-in-toc} prevents GNU CC from putting floating-point
4332 constants in the TOC and @samp{-mno-sum-in-toc} forces GNU CC to
4333 generate code to calculate the sum of an address and a constant at
4334 run-time instead of putting that sum into the TOC.  You may specify one
4335 or both of these options.  Each causes GNU CC to produce very slightly
4336 slower and larger code at the expense of conserving TOC space.
4337
4338 If you still run out of space in the TOC even when you specify both of
4339 these options, specify @samp{-mminimal-toc} instead.  This option causes
4340 GNU CC to make only one TOC entry for every file.  When you specify this
4341 option, GNU CC will produce code that is slower and larger but which
4342 uses extremely little TOC space.  You may wish to use this option
4343 only on files that contain less frequently executed code. @refill
4344
4345 @item -maix64
4346 @itemx -maix32
4347 @kindex -maix64
4348 @kindex -maix32
4349 Enable AIX 64-bit ABI and calling convention: 64-bit pointers, 64-bit
4350 @code{long} type, and the infrastructure needed to support them.
4351 Specifying @samp{-maix64} implies @samp{-mpowerpc64} and
4352 @samp{-mpowerpc}, while @samp{-maix32} disables the 64-bit ABI and
4353 implies @samp{-mno-powerpc64}.  GNU CC defaults to @samp{-maix32}.
4354
4355 @item -mxl-call
4356 @itemx -mno-xl-call
4357 @kindex -mxl-call
4358 On AIX, pass floating-point arguments to prototyped functions beyond the
4359 register save area (RSA) on the stack in addition to argument FPRs.  The
4360 AIX calling convention was extended but not initially documented to
4361 handle an obscure K&R C case of calling a function that takes the
4362 address of its arguments with fewer arguments than declared.  AIX XL
4363 compilers access floating point arguments which do not fit in the
4364 RSA from the stack when a subroutine is compiled without
4365 optimization.  Because always storing floating-point arguments on the
4366 stack is inefficient and rarely needed, this option is not enabled by
4367 default and only is necessary when calling subroutines compiled by AIX
4368 XL compilers without optimization.
4369
4370 @item -mthreads
4371 @kindex -mthreads
4372 Support @dfn{AIX Threads}.  Link an application written to use
4373 @dfn{pthreads} with special libraries and startup code to enable the
4374 application to run.
4375
4376 @item -mpe
4377 @kindex -mpe
4378 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE).  Link an
4379 application written to use message passing with special startup code to
4380 enable the application to run.  The system must have PE installed in the
4381 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
4382 must be overridden with the @samp{-specs=} option to specify the
4383 appropriate directory location.  The Parallel Environment does not
4384 support threads, so the @samp{-mpe} option and the @samp{-mthreads}
4385 option are incompatible.
4386
4387 @item -msoft-float
4388 @itemx -mhard-float
4389 @kindex -msoft-float
4390 Generate code that does not use (uses) the floating-point register set.
4391 Software floating point emulation is provided if you use the
4392 @samp{-msoft-float} option, and pass the option to GNU CC when linking.
4393
4394 @item -mmultiple
4395 @itemx -mno-multiple
4396 Generate code that uses (does not use) the load multiple word
4397 instructions and the store multiple word instructions.  These
4398 instructions are generated by default on POWER systems, and not
4399 generated on PowerPC systems.  Do not use @samp{-mmultiple} on little
4400 endian PowerPC systems, since those instructions do not work when the
4401 processor is in little endian mode.
4402
4403 @item -mstring
4404 @itemx -mno-string
4405 @kindex -mstring
4406 Generate code that uses (does not use) the load string instructions and the
4407 store string word instructions to save multiple registers and do small block
4408 moves.  These instructions are generated by default on POWER systems, and not
4409 generated on PowerPC systems.  Do not use @samp{-mstring} on little endian
4410 PowerPC systems, since those instructions do not work when the processor is in
4411 little endian mode.
4412
4413 @item -mupdate
4414 @itemx -mno-update
4415 @kindex -mupdate
4416 Generate code that uses (does not use) the load or store instructions
4417 that update the base register to the address of the calculated memory
4418 location.  These instructions are generated by default.  If you use
4419 @samp{-mno-update}, there is a small window between the time that the
4420 stack pointer is updated and the address of the previous frame is
4421 stored, which means code that walks the stack frame across interrupts or
4422 signals may get corrupted data.
4423
4424 @item -mfused-madd
4425 @itemx -mno-fused-madd
4426 @kindex -mfused-madd
4427 Generate code that uses (does not use) the floating point multiply and
4428 accumulate instructions.  These instructions are generated by default if
4429 hardware floating is used.
4430
4431 @item -mno-bit-align
4432 @itemx -mbit-align
4433 @kindex -mbit-align
4434 On System V.4 and embedded PowerPC systems do not (do) force structures
4435 and unions that contain bit fields to be aligned to the base type of the
4436 bit field.
4437
4438 For example, by default a structure containing nothing but 8
4439 @code{unsigned} bitfields of length 1 would be aligned to a 4 byte
4440 boundary and have a size of 4 bytes.  By using @samp{-mno-bit-align},
4441 the structure would be aligned to a 1 byte boundary and be one byte in
4442 size.
4443
4444 @item -mno-strict-align
4445 @itemx -mstrict-align
4446 @kindex -mstrict-align
4447 On System V.4 and embedded PowerPC systems do not (do) assume that
4448 unaligned memory references will be handled by the system.
4449
4450 @item -mrelocatable
4451 @itemx -mno-relocatable
4452 @kindex -mrelocatable
4453 On embedded PowerPC systems generate code that allows (does not allow)
4454 the program to be relocated to a different address at runtime.  If you
4455 use @samp{-mrelocatable} on any module, all objects linked together must
4456 be compiled with @samp{-mrelocatable} or @samp{-mrelocatable-lib}.
4457
4458 @item -mrelocatable-lib
4459 @itemx -mno-relocatable-lib
4460 On embedded PowerPC systems generate code that allows (does not allow)
4461 the program to be relocated to a different address at runtime.  Modules
4462 compiled with @samp{-mrelocatable-lib} can be linked with either modules
4463 compiled without @samp{-mrelocatable} and @samp{-mrelocatable-lib} or
4464 with modules compiled with the @samp{-mrelocatable} options.
4465
4466 @item -mno-toc
4467 @itemx -mtoc
4468 On System V.4 and embedded PowerPC systems do not (do) assume that
4469 register 2 contains a pointer to a global area pointing to the addresses
4470 used in the program.
4471
4472 @item -mlittle
4473 @itemx -mlittle-endian
4474 On System V.4 and embedded PowerPC systems compile code for the
4475 processor in little endian mode.  The @samp{-mlittle-endian} option is
4476 the same as @samp{-mlittle}.
4477
4478 @item -mbig
4479 @itemx -mbig-endian
4480 On System V.4 and embedded PowerPC systems compile code for the
4481 processor in big endian mode.  The @samp{-mbig-endian} option is
4482 the same as @samp{-mbig}.
4483
4484 @item -mcall-sysv
4485 On System V.4 and embedded PowerPC systems compile code using calling
4486 conventions that adheres to the March 1995 draft of the System V
4487 Application Binary Interface, PowerPC processor supplement.  This is the
4488 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
4489
4490 @item -mcall-sysv-eabi
4491 Specify both @samp{-mcall-sysv} and @samp{-meabi} options.
4492
4493 @item -mcall-sysv-noeabi
4494 Specify both @samp{-mcall-sysv} and @samp{-mno-eabi} options.
4495
4496 @item -mcall-aix
4497 On System V.4 and embedded PowerPC systems compile code using calling
4498 conventions that are similar to those used on AIX.  This is the
4499 default if you configured GCC using @samp{powerpc-*-eabiaix}.
4500
4501 @item -mcall-solaris
4502 On System V.4 and embedded PowerPC systems compile code for the Solaris
4503 operating system.
4504
4505 @item -mcall-linux
4506 On System V.4 and embedded PowerPC systems compile code for the
4507 Linux-based GNU system.
4508
4509 @item -mprototype
4510 @itemx -mno-prototype
4511 On System V.4 and embedded PowerPC systems assume that all calls to
4512 variable argument functions are properly prototyped.  Otherwise, the
4513 compiler must insert an instruction before every non prototyped call to
4514 set or clear bit 6 of the condition code register (@var{CR}) to
4515 indicate whether floating point values were passed in the floating point
4516 registers in case the function takes a variable arguments.  With
4517 @samp{-mprototype}, only calls to prototyped variable argument functions
4518 will set or clear the bit.
4519
4520 @item -msim
4521 On embedded PowerPC systems, assume that the startup module is called
4522 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
4523 @file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}.
4524 configurations.
4525
4526 @item -mmvme
4527 On embedded PowerPC systems, assume that the startup module is called
4528 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
4529 @file{libc.a}.
4530
4531 @item -mads
4532 On embedded PowerPC systems, assume that the startup module is called
4533 @file{crt0.o} and the standard C libraries are @file{libads.a} and
4534 @file{libc.a}.
4535
4536 @item -myellowknife
4537 On embedded PowerPC systems, assume that the startup module is called
4538 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
4539 @file{libc.a}.
4540
4541 @item -memb
4542 On embedded PowerPC systems, set the @var{PPC_EMB} bit in the ELF flags
4543 header to indicate that @samp{eabi} extended relocations are used.
4544
4545 @item -meabi
4546 @itemx -mno-eabi
4547 On System V.4 and embedded PowerPC systems do (do not) adhere to the
4548 Embedded Applications Binary Interface (eabi) which is a set of
4549 modifications to the System V.4 specifications.  Selecting @code{-meabi}
4550 means that the stack is aligned to an 8 byte boundary, a function
4551 @code{__eabi} is called to from @code{main} to set up the eabi
4552 environment, and the @samp{-msdata} option can use both @code{r2} and
4553 @code{r13} to point to two separate small data areas.  Selecting
4554 @code{-mno-eabi} means that the stack is aligned to a 16 byte boundary,
4555 do not call an initialization function from @code{main}, and the
4556 @samp{-msdata} option will only use @code{r13} to point to a single
4557 small data area.  The @samp{-meabi} option is on by default if you
4558 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
4559
4560 @item -msdata=eabi
4561 On System V.4 and embedded PowerPC systems, put small initialized
4562 @code{const} global and static data in the @samp{.sdata2} section, which
4563 is pointed to by register @code{r2}.  Put small initialized
4564 non-@code{const} global and static data in the @samp{.sdata} section,
4565 which is pointed to by register @code{r13}.  Put small uninitialized
4566 global and static data in the @samp{.sbss} section, which is adjacent to
4567 the @samp{.sdata} section.  The @samp{-msdata=eabi} option is
4568 incompatible with the @samp{-mrelocatable} option.  The
4569 @samp{-msdata=eabi} option also sets the @samp{-memb} option.
4570
4571 @item -msdata=sysv
4572 On System V.4 and embedded PowerPC systems, put small global and static
4573 data in the @samp{.sdata} section, which is pointed to by register
4574 @code{r13}.  Put small uninitialized global and static data in the
4575 @samp{.sbss} section, which is adjacent to the @samp{.sdata} section.
4576 The @samp{-msdata=sysv} option is incompatible with the
4577 @samp{-mrelocatable} option.
4578
4579 @item -msdata=default
4580 @itemx -msdata
4581 On System V.4 and embedded PowerPC systems, if @samp{-meabi} is used,
4582 compile code the same as @samp{-msdata=eabi}, otherwise compile code the
4583 same as @samp{-msdata=sysv}.
4584
4585 @item -msdata-data
4586 On System V.4 and embedded PowerPC systems, put small global and static
4587 data in the @samp{.sdata} section.  Put small uninitialized global and
4588 static data in the @samp{.sbss} section.  Do not use register @code{r13}
4589 to address small data however.  This is the default behavior unless
4590 other @samp{-msdata} options are used.
4591
4592 @item -msdata=none
4593 @itemx -mno-sdata
4594 On embedded PowerPC systems, put all initialized global and static data
4595 in the @samp{.data} section, and all uninitialized data in the
4596 @samp{.bss} section.
4597
4598 @item -G @var{num}
4599 @cindex smaller data references (PowerPC)
4600 @cindex .sdata/.sdata2 references (PowerPC)
4601 On embedded PowerPC systems, put global and static items less than or
4602 equal to @var{num} bytes into the small data or bss sections instead of
4603 the normal data or bss section.  By default, @var{num} is 8.  The
4604 @samp{-G @var{num}} switch is also passed to the linker.
4605 All modules should be compiled with the same @samp{-G @var{num}} value.
4606
4607 @item -mregnames
4608 @itemx -mno-regnames
4609 On System V.4 and embedded PowerPC systems do (do not) emit register
4610 names in the assembly language output using symbolic forms.
4611 @end table
4612 @node RT Options
4613 @subsection IBM RT Options
4614 @cindex RT options
4615 @cindex IBM RT options
4616
4617 These @samp{-m} options are defined for the IBM RT PC:
4618
4619 @table @code
4620 @item -min-line-mul
4621 Use an in-line code sequence for integer multiplies.  This is the
4622 default.
4623
4624 @item -mcall-lib-mul
4625 Call @code{lmul$$} for integer multiples.
4626
4627 @item -mfull-fp-blocks
4628 Generate full-size floating point data blocks, including the minimum
4629 amount of scratch space recommended by IBM.  This is the default.
4630
4631 @item -mminimum-fp-blocks
4632 Do not include extra scratch space in floating point data blocks.  This
4633 results in smaller code, but slower execution, since scratch space must
4634 be allocated dynamically.
4635
4636 @cindex @file{varargs.h} and RT PC
4637 @cindex @file{stdarg.h} and RT PC
4638 @item -mfp-arg-in-fpregs
4639 Use a calling sequence incompatible with the IBM calling convention in
4640 which floating point arguments are passed in floating point registers.
4641 Note that @code{varargs.h} and @code{stdargs.h} will not work with
4642 floating point operands if this option is specified.
4643
4644 @item -mfp-arg-in-gregs
4645 Use the normal calling convention for floating point arguments.  This is
4646 the default.
4647
4648 @item -mhc-struct-return
4649 Return structures of more than one word in memory, rather than in a
4650 register.  This provides compatibility with the MetaWare HighC (hc)
4651 compiler.  Use the option @samp{-fpcc-struct-return} for compatibility
4652 with the Portable C Compiler (pcc).
4653
4654 @item -mnohc-struct-return
4655 Return some structures of more than one word in registers, when
4656 convenient.  This is the default.  For compatibility with the
4657 IBM-supplied compilers, use the option @samp{-fpcc-struct-return} or the
4658 option @samp{-mhc-struct-return}.
4659 @end table
4660
4661 @node MIPS Options
4662 @subsection MIPS Options
4663 @cindex MIPS options
4664
4665 These @samp{-m} options are defined for the MIPS family of computers:
4666
4667 @table @code
4668 @item -mcpu=@var{cpu type}
4669 Assume the defaults for the machine type @var{cpu type} when scheduling
4670 instructions.  The choices for @var{cpu type} are @samp{r2000}, @samp{r3000},
4671 @samp{r4000}, @samp{r4400}, @samp{r4600}, and @samp{r6000}.  While picking a
4672 specific @var{cpu type} will schedule things appropriately for that
4673 particular chip, the compiler will not generate any code that does not
4674 meet level 1 of the MIPS ISA (instruction set architecture) without
4675 the @samp{-mips2} or @samp{-mips3} switches being used.
4676
4677 @item -mips1
4678 Issue instructions from level 1 of the MIPS ISA.  This is the default.
4679 @samp{r3000} is the default @var{cpu type} at this ISA level.
4680
4681 @item -mips2
4682 Issue instructions from level 2 of the MIPS ISA (branch likely, square
4683 root instructions).  @samp{r6000} is the default @var{cpu type} at this
4684 ISA level.
4685
4686 @item -mips3
4687 Issue instructions from level 3 of the MIPS ISA (64 bit instructions).
4688 @samp{r4000} is the default @var{cpu type} at this ISA level.
4689 This option does not change the sizes of any of the C data types.
4690
4691 @item -mips4
4692 Issue instructions from level 4 of the MIPS ISA.  @samp{r8000} is the
4693 default @var{cpu type} at this ISA level.
4694
4695 @item -mfp32
4696 Assume that 32 32-bit floating point registers are available.  This is
4697 the default.
4698
4699 @item -mfp64
4700 Assume that 32 64-bit floating point registers are available.  This is
4701 the default when the @samp{-mips3} option is used.
4702
4703 @item -mgp32
4704 Assume that 32 32-bit general purpose registers are available.  This is
4705 the default.
4706
4707 @item -mgp64
4708 Assume that 32 64-bit general purpose registers are available.  This is
4709 the default when the @samp{-mips3} option is used.
4710
4711 @item -mint64
4712 Types long, int, and pointer are 64 bits.  This works only if @samp{-mips3}
4713 is also specified.
4714
4715 @item -mlong64
4716 Types long and pointer are 64 bits, and type int is 32 bits.
4717 This works only if @samp{-mips3} is also specified.
4718
4719 @itemx -mabi=32
4720 @itemx -mabi=n32
4721 @itemx -mabi=64
4722 @itemx -mabi=eabi
4723 Generate code for the indicated ABI.
4724
4725 @item -mmips-as
4726 Generate code for the MIPS assembler, and invoke @file{mips-tfile} to
4727 add normal debug information.  This is the default for all
4728 platforms except for the OSF/1 reference platform, using the OSF/rose
4729 object format.  If the either of the @samp{-gstabs} or @samp{-gstabs+}
4730 switches are used, the @file{mips-tfile} program will encapsulate the
4731 stabs within MIPS ECOFF.
4732
4733 @item -mgas
4734 Generate code for the GNU assembler.  This is the default on the OSF/1
4735 reference platform, using the OSF/rose object format.  Also, this is
4736 the default if the configure option @samp{--with-gnu-as} is used.
4737
4738 @item -msplit-addresses
4739 @itemx -mno-split-addresses
4740 Generate code to load the high and low parts of address constants separately.
4741 This allows @code{gcc} to optimize away redundant loads of the high order
4742 bits of addresses.  This optimization requires GNU as and GNU ld.
4743 This optimization is enabled by default for some embedded targets where
4744 GNU as and GNU ld are standard.
4745
4746 @item -mrnames
4747 @itemx -mno-rnames
4748 The @samp{-mrnames} switch says to output code using the MIPS software
4749 names for the registers, instead of the hardware names (ie, @var{a0}
4750 instead of @var{$4}).  The only known assembler that supports this option
4751 is the Algorithmics assembler.
4752
4753 @item -mgpopt
4754 @itemx -mno-gpopt
4755 The @samp{-mgpopt} switch says to write all of the data declarations
4756 before the instructions in the text section, this allows the MIPS
4757 assembler to generate one word memory references instead of using two
4758 words for short global or static data items.  This is on by default if
4759 optimization is selected.
4760
4761 @item -mstats
4762 @itemx -mno-stats
4763 For each non-inline function processed, the @samp{-mstats} switch
4764 causes the compiler to emit one line to the standard error file to
4765 print statistics about the program (number of registers saved, stack
4766 size, etc.).
4767
4768 @item -mmemcpy
4769 @itemx -mno-memcpy
4770 The @samp{-mmemcpy} switch makes all block moves call the appropriate
4771 string function (@samp{memcpy} or @samp{bcopy}) instead of possibly
4772 generating inline code.
4773
4774 @item -mmips-tfile
4775 @itemx -mno-mips-tfile
4776 The @samp{-mno-mips-tfile} switch causes the compiler not
4777 postprocess the object file with the @file{mips-tfile} program,
4778 after the MIPS assembler has generated it to add debug support.  If
4779 @file{mips-tfile} is not run, then no local variables will be
4780 available to the debugger.  In addition, @file{stage2} and
4781 @file{stage3} objects will have the temporary file names passed to the
4782 assembler embedded in the object file, which means the objects will
4783 not compare the same.  The @samp{-mno-mips-tfile} switch should only
4784 be used when there are bugs in the @file{mips-tfile} program that
4785 prevents compilation.
4786
4787 @item -msoft-float
4788 Generate output containing library calls for floating point.
4789 @strong{Warning:} the requisite libraries are not part of GNU CC.
4790 Normally the facilities of the machine's usual C compiler are used, but
4791 this can't be done directly in cross-compilation.  You must make your
4792 own arrangements to provide suitable library functions for
4793 cross-compilation.
4794
4795 @item -mhard-float
4796 Generate output containing floating point instructions.  This is the
4797 default if you use the unmodified sources.
4798
4799 @item -mabicalls
4800 @itemx -mno-abicalls
4801 Emit (or do not emit) the pseudo operations @samp{.abicalls},
4802 @samp{.cpload}, and @samp{.cprestore} that some System V.4 ports use for
4803 position independent code.
4804
4805 @item -mlong-calls
4806 @itemx -mno-long-calls
4807 Do all calls with the @samp{JALR} instruction, which requires
4808 loading up a function's address into a register before the call.
4809 You need to use this switch, if you call outside of the current
4810 512 megabyte segment to functions that are not through pointers.
4811
4812 @item -mhalf-pic
4813 @itemx -mno-half-pic
4814 Put pointers to extern references into the data section and load them
4815 up, rather than put the references in the text section.
4816
4817 @item -membedded-pic
4818 @itemx -mno-embedded-pic
4819 Generate PIC code suitable for some embedded systems.  All calls are
4820 made using PC relative address, and all data is addressed using the $gp
4821 register.  No more than 65536 bytes of global data may be used.  This
4822 requires GNU as and GNU ld which do most of the work.  This currently
4823 only works on targets which use ECOFF; it does not work with ELF.
4824
4825 @item -membedded-data
4826 @itemx -mno-embedded-data
4827 Allocate variables to the read-only data section first if possible, then
4828 next in the small data section if possible, otherwise in data.  This gives
4829 slightly slower code than the default, but reduces the amount of RAM required
4830 when executing, and thus may be preferred for some embedded systems.
4831
4832 @item -msingle-float
4833 @itemx -mdouble-float
4834 The @samp{-msingle-float} switch tells gcc to assume that the floating
4835 point coprocessor only supports single precision operations, as on the
4836 @samp{r4650} chip.  The @samp{-mdouble-float} switch permits gcc to use
4837 double precision operations.  This is the default.
4838
4839 @item -mmad
4840 @itemx -mno-mad
4841 Permit use of the @samp{mad}, @samp{madu} and @samp{mul} instructions,
4842 as on the @samp{r4650} chip.
4843
4844 @item -m4650
4845 Turns on @samp{-msingle-float}, @samp{-mmad}, and, at least for now,
4846 @samp{-mcpu=r4650}.
4847
4848 @item -EL
4849 Compile code for the processor in little endian mode.
4850 The requisite libraries are assumed to exist.
4851
4852 @item -EB
4853 Compile code for the processor in big endian mode.
4854 The requisite libraries are assumed to exist.
4855
4856 @item -G @var{num}
4857 @cindex smaller data references (MIPS)
4858 @cindex gp-relative references (MIPS)
4859 Put global and static items less than or equal to @var{num} bytes into
4860 the small data or bss sections instead of the normal data or bss
4861 section.  This allows the assembler to emit one word memory reference
4862 instructions based on the global pointer (@var{gp} or @var{$28}),
4863 instead of the normal two words used.  By default, @var{num} is 8 when
4864 the MIPS assembler is used, and 0 when the GNU assembler is used.  The
4865 @samp{-G @var{num}} switch is also passed to the assembler and linker.
4866 All modules should be compiled with the same @samp{-G @var{num}}
4867 value.
4868
4869 @item -nocpp
4870 Tell the MIPS assembler to not run its preprocessor over user
4871 assembler files (with a @samp{.s} suffix) when assembling them.
4872 @end table
4873
4874 @ifset INTERNALS
4875 These options are defined by the macro
4876 @code{TARGET_SWITCHES} in the machine description.  The default for the
4877 options is also defined by that macro, which enables you to change the
4878 defaults.
4879 @end ifset
4880
4881 @node i386 Options
4882 @subsection Intel 386 Options
4883 @cindex i386 Options
4884 @cindex Intel 386 Options
4885
4886 These @samp{-m} options are defined for the i386 family of computers:
4887
4888 @table @code
4889 @item -mcpu=@var{cpu type}
4890 Assume the defaults for the machine type @var{cpu type} when scheduling
4891 instructions.  The choices for @var{cpu type} are: @samp{i386},
4892 @samp{i486}, @samp{i586} (@samp{pentium}), @samp{pentium}, @samp{i686}
4893 (@samp{pentiumpro}) and @samp{pentiumpro}. While picking a specific
4894 @var{cpu type} will schedule things appropriately for that particular
4895 chip, the compiler will not generate any code that does not run on the
4896 i386 without the @samp{-march=@var{cpu type}} option being used.
4897
4898 @item -march=@var{cpu type}
4899 Generate instructions for the machine type @var{cpu type}.  The choices
4900 for @var{cpu type} are: @samp{i386}, @samp{i486}, @samp{pentium}, and
4901 @samp{pentiumpro}.  Specifying @samp{-march=@var{cpu type}} implies
4902 @samp{-mcpu=@var{cpu type}}.
4903
4904 @item -m386
4905 @itemx -m486
4906 @itemx -mpentium
4907 @itemx -mpentiumpro
4908 Synonyms for -mcpu=i386, -mcpu=i486, -mcpu=pentium, and -mcpu=pentiumpro
4909 respectively.
4910
4911 @item -mieee-fp
4912 @itemx -mno-ieee-fp
4913 Control whether or not the compiler uses IEEE floating point
4914 comparisons.  These handle correctly the case where the result of a
4915 comparison is unordered.
4916
4917 @item -msoft-float
4918 Generate output containing library calls for floating point.
4919 @strong{Warning:} the requisite libraries are not part of GNU CC.
4920 Normally the facilities of the machine's usual C compiler are used, but
4921 this can't be done directly in cross-compilation.  You must make your
4922 own arrangements to provide suitable library functions for
4923 cross-compilation.
4924
4925 On machines where a function returns floating point results in the 80387
4926 register stack, some floating point opcodes may be emitted even if
4927 @samp{-msoft-float} is used.
4928
4929 @item -mno-fp-ret-in-387
4930 Do not use the FPU registers for return values of functions.
4931
4932 The usual calling convention has functions return values of types
4933 @code{float} and @code{double} in an FPU register, even if there
4934 is no FPU.  The idea is that the operating system should emulate
4935 an FPU.
4936
4937 The option @samp{-mno-fp-ret-in-387} causes such values to be returned
4938 in ordinary CPU registers instead.
4939
4940 @item -mno-fancy-math-387
4941 Some 387 emulators do not support the @code{sin}, @code{cos} and
4942 @code{sqrt} instructions for the 387.  Specify this option to avoid
4943 generating those instructions. This option is the default on FreeBSD.
4944 As of revision 2.6.1, these instructions are not generated unless you
4945 also use the @samp{-ffast-math} switch.
4946
4947 @item -malign-double
4948 @itemx -mno-align-double
4949 Control whether GNU CC aligns @code{double}, @code{long double}, and
4950 @code{long long} variables on a two word boundary or a one word
4951 boundary.  Aligning @code{double} variables on a two word boundary will
4952 produce code that runs somewhat faster on a @samp{Pentium} at the
4953 expense of more memory.
4954
4955 @strong{Warning:} if you use the @samp{-malign-double} switch,
4956 structures containing the above types will be aligned differently than
4957 the published application binary interface specifications for the 386.
4958
4959 @item -msvr3-shlib
4960 @itemx -mno-svr3-shlib
4961 Control whether GNU CC places uninitialized locals into @code{bss} or
4962 @code{data}.  @samp{-msvr3-shlib} places these locals into @code{bss}.
4963 These options are meaningful only on System V Release 3.
4964
4965 @item -mno-wide-multiply
4966 @itemx -mwide-multiply
4967 Control whether GNU CC uses the @code{mul} and @code{imul} that produce
4968 64 bit results in @code{eax:edx} from 32 bit operands to do @code{long
4969 long} multiplies and 32-bit division by constants.
4970
4971 @item -mrtd
4972 Use a different function-calling convention, in which functions that
4973 take a fixed number of arguments return with the @code{ret} @var{num}
4974 instruction, which pops their arguments while returning.  This saves one
4975 instruction in the caller since there is no need to pop the arguments
4976 there.
4977
4978 You can specify that an individual function is called with this calling
4979 sequence with the function attribute @samp{stdcall}.  You can also
4980 override the @samp{-mrtd} option by using the function attribute
4981 @samp{cdecl}. @xref{Function Attributes}
4982
4983 @strong{Warning:} this calling convention is incompatible with the one
4984 normally used on Unix, so you cannot use it if you need to call
4985 libraries compiled with the Unix compiler.
4986
4987 Also, you must provide function prototypes for all functions that
4988 take variable numbers of arguments (including @code{printf});
4989 otherwise incorrect code will be generated for calls to those
4990 functions.
4991
4992 In addition, seriously incorrect code will result if you call a
4993 function with too many arguments.  (Normally, extra arguments are
4994 harmlessly ignored.)
4995
4996 @item -mreg-alloc=@var{regs}
4997 Control the default allocation order of integer registers.  The
4998 string @var{regs} is a series of letters specifying a register.  The
4999 supported letters are: @code{a} allocate EAX; @code{b} allocate EBX;
5000 @code{c} allocate ECX; @code{d} allocate EDX; @code{S} allocate ESI;
5001 @code{D} allocate EDI; @code{B} allocate EBP.
5002
5003 @item -mregparm=@var{num}
5004 Control how many registers are used to pass integer arguments.  By
5005 default, no registers are used to pass arguments, and at most 3
5006 registers can be used.  You can control this behavior for a specific
5007 function by using the function attribute @samp{regparm}.   @xref{Function Attributes}
5008
5009 @strong{Warning:} if you use this switch, and
5010 @var{num} is nonzero, then you must build all modules with the same
5011 value, including any libraries.  This includes the system libraries and
5012 startup modules.
5013
5014 @item -malign-loops=@var{num}
5015 Align loops to a 2 raised to a @var{num} byte boundary.  If
5016 @samp{-malign-loops} is not specified, the default is 2 unless
5017 gas 2.8 (or later) is being used in which case the default is
5018 to align the loop on a 16 byte boundary if it is less than 8
5019 bytes away.
5020
5021 @item -malign-jumps=@var{num}
5022 Align instructions that are only jumped to to a 2 raised to a @var{num}
5023 byte boundary.  If @samp{-malign-jumps} is not specified, the default is
5024 2 if optimizing for a 386, and 4 if optimizing for a 486 unless
5025 gas 2.8 (or later) is being used in which case the default is
5026 to align the instruction on a 16 byte boundary if it is less
5027 than 8 bytes away.
5028
5029 @item -malign-functions=@var{num}
5030 Align the start of functions to a 2 raised to @var{num} byte boundary.
5031 If @samp{-malign-functions} is not specified, the default is 2 if optimizing
5032 for a 386, and 4 if optimizing for a 486.
5033 @end table
5034
5035 @node HPPA Options
5036 @subsection HPPA Options
5037 @cindex HPPA Options
5038
5039 These @samp{-m} options are defined for the HPPA family of computers:
5040
5041 @table @code
5042 @item -mpa-risc-1-0
5043 Generate code for a PA 1.0 processor.
5044
5045 @item -mpa-risc-1-1
5046 Generate code for a PA 1.1 processor.
5047
5048 @item -mbig-switch
5049 Generate code suitable for big switch tables.  Use this option only if
5050 the assembler/linker complain about out of range branches within a switch
5051 table.
5052
5053 @item -mjump-in-delay
5054 Fill delay slots of function calls with unconditional jump instructions
5055 by modifying the return pointer for the function call to be the target
5056 of the conditional jump.
5057
5058 @item -mdisable-fpregs
5059 Prevent floating point registers from being used in any manner.  This is
5060 necessary for compiling kernels which perform lazy context switching of
5061 floating point registers.  If you use this option and attempt to perform
5062 floating point operations, the compiler will abort.
5063
5064 @item -mdisable-indexing
5065 Prevent the compiler from using indexing address modes.  This avoids some
5066 rather obscure problems when compiling MIG generated code under MACH.
5067
5068 @item -mno-space-regs
5069 Generate code that assumes the target has no space registers.  This allows
5070 GCC to generate faster indirect calls and use unscaled index address modes.
5071
5072 Such code is suitable for level 0 PA systems and kernels.
5073
5074 @item -mfast-indirect-calls
5075 Generate code that assumes calls never cross space boundaries.  This
5076 allows GCC to emit code which performs faster indirect calls.
5077
5078 This option will not work in the presense of shared libraries or nested
5079 functions.
5080
5081 @item -mspace
5082 Optimize for space rather than execution time.  Currently this only
5083 enables out of line function prologues and epilogues.  This option is
5084 incompatible with PIC code generation and profiling.
5085
5086 @item -mlong-load-store
5087 Generate 3-instruction load and store sequences as sometimes required by
5088 the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
5089 the HP compilers.
5090
5091 @item -mportable-runtime
5092 Use the portable calling conventions proposed by HP for ELF systems.
5093
5094 @item -mgas
5095 Enable the use of assembler directives only GAS understands.
5096
5097 @item -mschedule=@var{cpu type}
5098 Schedule code according to the constraints for the machine type
5099 @var{cpu type}.  The choices for @var{cpu type} are @samp{700} for
5100 7@var{n}0 machines, @samp{7100} for 7@var{n}5 machines, and @samp{7100LC}
5101 for 7@var{n}2 machines.  @samp{7100} is the default for @var{cpu type}.
5102
5103 Note the @samp{7100LC} scheduling information is incomplete and using
5104 @samp{7100LC} often leads to bad schedules.  For now it's probably best
5105 to use @samp{7100} instead of @samp{7100LC} for the 7@var{n}2 machines.
5106
5107 @item -mlinker-opt
5108 Enable the optimization pass in the HPUX linker.  Note this makes symbolic
5109 debugging impossible.  It also triggers a bug in the HPUX 8 and HPUX 9 linkers
5110 in which they give bogus error messages when linking some programs.
5111
5112 @item -msoft-float
5113 Generate output containing library calls for floating point.
5114 @strong{Warning:} the requisite libraries are not available for all HPPA
5115 targets.  Normally the facilities of the machine's usual C compiler are
5116 used, but this cannot be done directly in cross-compilation.  You must make
5117 your own arrangements to provide suitable library functions for
5118 cross-compilation.  The embedded target @samp{hppa1.1-*-pro}
5119 does provide software floating point support.
5120
5121 @samp{-msoft-float} changes the calling convention in the output file;
5122 therefore, it is only useful if you compile @emph{all} of a program with
5123 this option.  In particular, you need to compile @file{libgcc.a}, the
5124 library that comes with GNU CC, with @samp{-msoft-float} in order for
5125 this to work.
5126 @end table
5127
5128 @node Intel 960 Options
5129 @subsection Intel 960 Options
5130
5131 These @samp{-m} options are defined for the Intel 960 implementations:
5132
5133 @table @code
5134 @item -m@var{cpu type}
5135 Assume the defaults for the machine type @var{cpu type} for some of
5136 the other options, including instruction scheduling, floating point
5137 support, and addressing modes.  The choices for @var{cpu type} are
5138 @samp{ka}, @samp{kb}, @samp{mc}, @samp{ca}, @samp{cf},
5139 @samp{sa}, and @samp{sb}.
5140 The default is
5141 @samp{kb}.
5142
5143 @item -mnumerics
5144 @itemx -msoft-float
5145 The @samp{-mnumerics} option indicates that the processor does support
5146 floating-point instructions.  The @samp{-msoft-float} option indicates
5147 that floating-point support should not be assumed.
5148
5149 @item -mleaf-procedures
5150 @itemx -mno-leaf-procedures
5151 Do (or do not) attempt to alter leaf procedures to be callable with the
5152 @code{bal} instruction as well as @code{call}.  This will result in more
5153 efficient code for explicit calls when the @code{bal} instruction can be
5154 substituted by the assembler or linker, but less efficient code in other
5155 cases, such as calls via function pointers, or using a linker that doesn't
5156 support this optimization.
5157
5158 @item -mtail-call
5159 @itemx -mno-tail-call
5160 Do (or do not) make additional attempts (beyond those of the
5161 machine-independent portions of the compiler) to optimize tail-recursive
5162 calls into branches.  You may not want to do this because the detection of
5163 cases where this is not valid is not totally complete.  The default is
5164 @samp{-mno-tail-call}.
5165
5166 @item -mcomplex-addr
5167 @itemx -mno-complex-addr
5168 Assume (or do not assume) that the use of a complex addressing mode is a
5169 win on this implementation of the i960.  Complex addressing modes may not
5170 be worthwhile on the K-series, but they definitely are on the C-series.
5171 The default is currently @samp{-mcomplex-addr} for all processors except
5172 the CB and CC.
5173
5174 @item -mcode-align
5175 @itemx -mno-code-align
5176 Align code to 8-byte boundaries for faster fetching (or don't bother).
5177 Currently turned on by default for C-series implementations only.
5178
5179 @ignore
5180 @item -mclean-linkage
5181 @itemx -mno-clean-linkage
5182 These options are not fully implemented.
5183 @end ignore
5184
5185 @item -mic-compat
5186 @itemx -mic2.0-compat
5187 @itemx -mic3.0-compat
5188 Enable compatibility with iC960 v2.0 or v3.0.
5189
5190 @item -masm-compat
5191 @itemx -mintel-asm
5192 Enable compatibility with the iC960 assembler.
5193
5194 @item -mstrict-align
5195 @itemx -mno-strict-align
5196 Do not permit (do permit) unaligned accesses.
5197
5198 @item -mold-align
5199 Enable structure-alignment compatibility with Intel's gcc release version
5200 1.3 (based on gcc 1.37).  This option implies @samp{-mstrict-align}.
5201 @end table
5202
5203 @node DEC Alpha Options
5204 @subsection DEC Alpha Options
5205
5206 These @samp{-m} options are defined for the DEC Alpha implementations:
5207
5208 @table @code
5209 @item -mno-soft-float
5210 @itemx -msoft-float
5211 Use (do not use) the hardware floating-point instructions for
5212 floating-point operations.  When @code{-msoft-float} is specified,
5213 functions in @file{libgcc1.c} will be used to perform floating-point
5214 operations.  Unless they are replaced by routines that emulate the
5215 floating-point operations, or compiled in such a way as to call such
5216 emulations routines, these routines will issue floating-point
5217 operations.   If you are compiling for an Alpha without floating-point
5218 operations, you must ensure that the library is built so as not to call
5219 them.
5220
5221 Note that Alpha implementations without floating-point operations are
5222 required to have floating-point registers.
5223
5224 @item -mfp-reg
5225 @itemx -mno-fp-regs
5226 Generate code that uses (does not use) the floating-point register set.
5227 @code{-mno-fp-regs} implies @code{-msoft-float}.  If the floating-point
5228 register set is not used, floating point operands are passed in integer
5229 registers as if they were integers and floating-point results are passed
5230 in $0 instead of $f0.  This is a non-standard calling sequence, so any
5231 function with a floating-point argument or return value called by code
5232 compiled with @code{-mno-fp-regs} must also be compiled with that
5233 option.
5234
5235 A typical use of this option is building a kernel that does not use,
5236 and hence need not save and restore, any floating-point registers.
5237
5238 @item -mieee
5239 The Alpha architecture implements floating-point hardware optimized for
5240 maximum performance.  It is mostly compliant with the IEEE floating
5241 point standard.  However, for full compliance, software assistance is
5242 required.  This option generates code fully IEEE compliant code
5243 @emph{except} that the @var{inexact flag} is not maintained (see below).
5244 If this option is turned on, the CPP macro @code{_IEEE_FP} is defined
5245 during compilation.  The option is a shorthand for: @samp{-D_IEEE_FP
5246 -mfp-trap-mode=su -mtrap-precision=i -mieee-conformant}.  The resulting
5247 code is less efficient but is able to correctly support denormalized
5248 numbers and exceptional IEEE values such as not-a-number and plus/minus
5249 infinity.  Other Alpha compilers call this option
5250 @code{-ieee_with_no_inexact}.
5251
5252 @item -mieee-with-inexact
5253 @c overfull hbox here --bob 22 jul96
5254 @c original text between ignore ... end ignore
5255 @ignore
5256 This is like @samp{-mieee} except the generated code also maintains the
5257 IEEE @var{inexact flag}.  Turning on this option causes the generated
5258 code to implement fully-compliant IEEE math.  The option is a shorthand
5259 for @samp{-D_IEEE_FP -D_IEEE_FP_INEXACT} plus @samp{-mieee-conformant},
5260 @samp{-mfp-trap-mode=sui}, and @samp{-mtrap-precision=i}.  On some Alpha
5261 implementations the resulting code may execute significantly slower than
5262 the code generated by default.  Since there is very little code that
5263 depends on the @var{inexact flag}, you should normally not specify this
5264 option.  Other Alpha compilers call this option
5265 @samp{-ieee_with_inexact}.
5266 @end ignore
5267 @c            changed paragraph
5268 This is like @samp{-mieee} except the generated code also maintains the
5269 IEEE @var{inexact flag}.  Turning on this option causes the generated
5270 code to implement fully-compliant IEEE math.  The option is a shorthand
5271 for @samp{-D_IEEE_FP -D_IEEE_FP_INEXACT} plus the three following:
5272 @samp{-mieee-conformant},
5273 @samp{-mfp-trap-mode=sui}, 
5274 and @samp{-mtrap-precision=i}.  
5275 On some Alpha implementations the resulting code may execute
5276 significantly slower than the code generated by default.  Since there
5277 is very little code that depends on the @var{inexact flag}, you should
5278 normally not specify this option.  Other Alpha compilers call this
5279 option @samp{-ieee_with_inexact}.
5280 @c             end changes to prevent overfull hboxes
5281
5282 @item -mfp-trap-mode=@var{trap mode}
5283 This option controls what floating-point related traps are enabled.
5284 Other Alpha compilers call this option @samp{-fptm }@var{trap mode}.
5285 The trap mode can be set to one of four values:
5286
5287 @table @samp
5288 @item n
5289 This is the default (normal) setting.  The only traps that are enabled
5290 are the ones that cannot be disabled in software (e.g., division by zero
5291 trap).
5292
5293 @item u
5294 In addition to the traps enabled by @samp{n}, underflow traps are enabled
5295 as well.
5296
5297 @item su
5298 Like @samp{su}, but the instructions are marked to be safe for software
5299 completion (see Alpha architecture manual for details).
5300
5301 @item sui
5302 Like @samp{su}, but inexact traps are enabled as well.
5303 @end table
5304
5305 @item -mfp-rounding-mode=@var{rounding mode}
5306 Selects the IEEE rounding mode.  Other Alpha compilers call this option
5307 @samp{-fprm }@var{rounding mode}.  The @var{rounding mode} can be one
5308 of:
5309
5310 @table @samp
5311 @item n
5312 Normal IEEE rounding mode.  Floating point numbers are rounded towards
5313 the nearest machine number or towards the even machine number in case
5314 of a tie.
5315
5316 @item m
5317 Round towards minus infinity.
5318
5319 @item c
5320 Chopped rounding mode.  Floating point numbers are rounded towards zero.
5321
5322 @item d
5323 Dynamic rounding mode.  A field in the floating point control register
5324 (@var{fpcr}, see Alpha architecture reference manual) controls the
5325 rounding mode in effect.  The C library initializes this register for
5326 rounding towards plus infinity.  Thus, unless your program modifies the
5327 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.@end table
5328
5329 @item -mtrap-precision=@var{trap precision}
5330 In the Alpha architecture, floating point traps are imprecise.  This
5331 means without software assistance it is impossible to recover from a
5332 floating trap and program execution normally needs to be terminated.
5333 GNU CC can generate code that can assist operating system trap handlers
5334 in determining the exact location that caused a floating point trap.
5335 Depending on the requirements of an application, different levels of
5336 precisions can be selected:
5337
5338 @table @samp
5339 @item p
5340 Program precision.  This option is the default and means a trap handler
5341 can only identify which program caused a floating point exception.
5342
5343 @item f
5344 Function precision.  The trap handler can determine the function that
5345 caused a floating point exception.
5346
5347 @item i
5348 Instruction precision.  The trap handler can determine the exact
5349 instruction that caused a floating point exception.
5350 @end table
5351
5352 Other Alpha compilers provide the equivalent options called
5353 @samp{-scope_safe} and @samp{-resumption_safe}.
5354
5355 @item -mieee-conformant
5356 This option marks the generated code as IEEE conformant.  You must not
5357 use this option unless you also specify @samp{-mtrap-precision=i} and either
5358 @samp{-mfp-trap-mode=su} or @samp{-mfp-trap-mode=sui}.  Its only effect
5359 is to emit the line @samp{.eflag 48} in the function prologue of the
5360 generated assembly file.  Under DEC Unix, this has the effect that
5361 IEEE-conformant math library routines will be linked in.
5362
5363 @item -mbuild-constants
5364 Normally GNU CC examines a 32- or 64-bit integer constant to
5365 see if it can construct it from smaller constants in two or three
5366 instructions.  If it cannot, it will output the constant as a literal and
5367 generate code to load it from the data segment at runtime.
5368
5369 Use this option to require GNU CC to construct @emph{all} integer constants
5370 using code, even if it takes more instructions (the maximum is six).
5371
5372 You would typically use this option to build a shared library dynamic
5373 loader.  Itself a shared library, it must relocate itself in memory
5374 before it can find the variables and constants in its own data segment.
5375
5376 @item -malpha-as
5377 @itemx -mgas
5378 Select whether to generate code to be assembled by the vendor-supplied
5379 assembler (@samp{-malpha-as}) or by the GNU assembler @samp{-mgas}.
5380
5381 @item -mbwx
5382 @itemx -mno-bwx
5383 @itemx -mcix
5384 @itemx -mno-cix
5385 @itemx -mmax
5386 @itemx -mno-max
5387 Indicate whether GNU CC should generate code to use the optional BWX,
5388 CIX, and MAX instruction sets.  The default is to use the instruction sets
5389 supported by the CPU type specified via @samp{-mcpu=} option or that
5390 of the CPU on which GNU CC was built if none was specified.
5391
5392 @item -mcpu=@var{cpu_type}
5393 Set the instruction set, register set, and instruction scheduling
5394 parameters for machine type @var{cpu_type}.  You can specify either the
5395 @samp{EV} style name or the corresponding chip number.  GNU CC
5396 supports scheduling parameters for the EV4 and EV5 family of processors
5397 and will choose the default values for the instruction set from
5398 the processor you specify.  If you do not specify a processor type,
5399 GNU CC will default to the processor on which the compiler was built.
5400
5401 Supported values for @var{cpu_type} are
5402
5403 @table @samp
5404 @item ev4
5405 @itemx 21064
5406 Schedules as an EV4 and has no instruction set extensions.
5407
5408 @item ev5
5409 @itemx 21164
5410 Schedules as an EV5 and has no instruction set extensions.
5411
5412 @item ev56
5413 @itemx 21164a
5414 Schedules as an EV5 and supports the BWX extension.
5415
5416 @item pca56
5417 @itemx 21164pc
5418 @itemx 21164PC
5419 Schedules as an EV5 and supports the BWX and MAX extensions.
5420
5421 @item ev6
5422 @itemx 21264
5423 Schedules as an EV5 (until Digital releases the scheduling parameters
5424 for the EV6) and supports the BWX, CIX, and MAX extensions.
5425 @end table
5426
5427 @item -mmemory-latency=@var{time}
5428 Sets the latency the scheduler should assume for typical memory
5429 references as seen by the application.  This number is highly
5430 dependant on the memory access patterns used by the application
5431 and the size of the external cache on the machine.
5432
5433 Valid options for @var{time} are
5434
5435 @table @samp
5436 @item @var{number}
5437 A decimal number representing clock cycles.
5438
5439 @item L1
5440 @itemx L2
5441 @itemx L3
5442 @itemx main
5443 The compiler contains estimates of the number of clock cycles for
5444 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
5445 (also called Dcache, Scache, and Bcache), as well as to main memory.
5446 Note that L3 is only valid for EV5.
5447
5448 @end table
5449 @end table
5450
5451 @node Clipper Options
5452 @subsection Clipper Options
5453
5454 These @samp{-m} options are defined for the Clipper implementations:
5455
5456 @table @code
5457 @item -mc300
5458 Produce code for a C300 Clipper processor. This is the default.
5459
5460 @itemx -mc400
5461 Produce code for a C400 Clipper processor i.e. use floating point
5462 registers f8..f15.
5463 @end table
5464
5465 @node H8/300 Options
5466 @subsection H8/300 Options
5467
5468 These @samp{-m} options are defined for the H8/300 implementations:
5469
5470 @table @code
5471 @item -mrelax
5472 Shorten some address references at link time, when possible; uses the
5473 linker option @samp{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
5474 ld.info, Using ld}, for a fuller description.
5475
5476 @item -mh
5477 Generate code for the H8/300H.
5478
5479 @item -ms
5480 Generate code for the H8/S.
5481
5482 @item -mint32
5483 Make @code{int} data 32 bits by default.
5484
5485 @item -malign-300
5486 On the h8/300h, use the same alignment rules as for the h8/300.
5487 The default for the h8/300h is to align longs and floats on 4 byte boundaries.
5488 @samp{-malign-300} causes them to be aligned on 2 byte boundaries.
5489 This option has no effect on the h8/300.
5490 @end table
5491
5492 @node SH Options
5493 @subsection SH Options
5494
5495 These @samp{-m} options are defined for the SH implementations:
5496
5497 @table @code
5498 @item -m1
5499 Generate code for the SH1.
5500
5501 @item -m2
5502 Generate code for the SH2.
5503
5504 @item -m3
5505 Generate code for the SH3.
5506
5507 @item -m3e
5508 Generate code for the SH3e.
5509
5510 @item -mb
5511 Compile code for the processor in big endian mode.
5512
5513 @item -ml
5514 Compile code for the processor in little endian mode.
5515
5516 @item -mdalign
5517 Align doubles at 64 bit boundaries.  Note that this changes the calling
5518 conventions, and thus some functions from the standard C library will
5519 not work unless you recompile it first with -mdalign.
5520
5521 @item -mrelax
5522 Shorten some address references at link time, when possible; uses the
5523 linker option @samp{-relax}.
5524 @end table
5525
5526 @node System V Options
5527 @subsection Options for System V
5528
5529 These additional options are available on System V Release 4 for
5530 compatibility with other compilers on those systems:
5531
5532 @table @code
5533 @item -G
5534 Create a shared object.
5535 It is recommended that @samp{-symbolic} or @samp{-shared} be used instead.
5536
5537 @item -Qy
5538 Identify the versions of each tool used by the compiler, in a
5539 @code{.ident} assembler directive in the output.
5540
5541 @item -Qn
5542 Refrain from adding @code{.ident} directives to the output file (this is
5543 the default).
5544
5545 @item -YP,@var{dirs}
5546 Search the directories @var{dirs}, and no others, for libraries
5547 specified with @samp{-l}.
5548
5549 @item -Ym,@var{dir}
5550 Look in the directory @var{dir} to find the M4 preprocessor.
5551 The assembler uses this option.
5552 @c This is supposed to go with a -Yd for predefined M4 macro files, but
5553 @c the generic assembler that comes with Solaris takes just -Ym.
5554 @end table
5555
5556 @node V850 Options
5557 @subsection V850 Options
5558 @cindex V850 Options
5559
5560 These @samp{-m} options are defined for V850 implementations:
5561
5562 @table @code
5563 @item -mlong-calls
5564 @itemx -mno-long-calls
5565 Treat all calls as being far away (near).  If calls are assumed to be
5566 far away, the compiler will always load the functions address up into a
5567 register, and call indirect through the pointer.
5568
5569 @item -mno-ep
5570 @itemx -mep
5571 Do not optimize (do optimize) basic blocks that use the same index
5572 pointer 4 or more times to copy pointer into the @code{ep} register, and
5573 use the shorter @code{sld} and @code{sst} instructions.  The @samp{-mep}
5574 option is on by default if you optimize.
5575
5576 @item -mno-prolog-function
5577 @itemx -mprolog-function
5578 Do not use (do use) external functions to save and restore registers at
5579 the prolog and epilog of a function.  The external functions are slower,
5580 but use less code space if more than one function saves the same number
5581 of registers.  The @samp{-mprolog-function} option is on by default if
5582 you optimize.
5583
5584 @item -mspace
5585 Try to make the code as small as possible.  At present, this just turns
5586 on the @samp{-mep} and @samp{-mprolog-function} options.
5587
5588 @item -mtda=@var{n}
5589 Put static or global variables whose size is @var{n} bytes or less into
5590 the tiny data area that register @code{ep} points to.  The tiny data
5591 area can hold up to 256 bytes in total (128 bytes for byte references).
5592
5593 @item -msda=@var{n}
5594 Put static or global variables whose size is @var{n} bytes or less into
5595 the small data area that register @code{gp} points to.  The small data
5596 area can hold up to 64 kilobytes.
5597
5598 @item -mzda=@var{n}
5599 Put static or global variables whose size is @var{n} bytes or less into
5600 the first 32 kilobytes of memory.
5601  
5602 @item -mv850
5603 Specify that the target processor is the V850.
5604
5605 @item -mbig-switch
5606 Generate code suitable for big switch tables.  Use this option only if
5607 the assembler/linker complain about out of range branches within a switch
5608 table.
5609 @end table
5610
5611 @node ARC Options
5612 @subsection ARC Options
5613 @cindex ARC Options
5614
5615 These options are defined for ARC implementations:
5616
5617 @table @code
5618 @item -EL
5619 Compile code for little endian mode.  This is the default.
5620
5621 @item -EB
5622 Compile code for big endian mode.
5623
5624 @item -mmangle-cpu
5625 Prepend the name of the cpu to all public symbol names.
5626 In multiple-processor systems, there are many ARC variants with different
5627 instruction and register set characteristics.  This flag prevents code
5628 compiled for one cpu to be linked with code compiled for another.
5629 No facility exists for handling variants that are "almost identical".
5630 This is an all or nothing option.
5631
5632 @item -mcpu=@var{cpu}
5633 Compile code for ARC variant @var{cpu}.
5634 Which variants are supported depend on the configuration.
5635 All variants support @samp{-mcpu=base}, this is the default.
5636
5637 @item -mtext=@var{text section}
5638 @item -mdata=@var{data section}
5639 @item -mrodata=@var{readonly data section}
5640 Put functions, data, and readonly data in @var{text section},
5641 @var{data section}, and @var{readonly data section} respectively
5642 by default.  This can be overridden with the @code{section} attribute.
5643 @xref{Variable Attributes}
5644
5645 @end table
5646
5647
5648 @node Code Gen Options
5649 @section Options for Code Generation Conventions
5650 @cindex code generation conventions
5651 @cindex options, code generation
5652 @cindex run-time options
5653
5654 These machine-independent options control the interface conventions
5655 used in code generation.
5656
5657 Most of them have both positive and negative forms; the negative form
5658 of @samp{-ffoo} would be @samp{-fno-foo}.  In the table below, only
5659 one of the forms is listed---the one which is not the default.  You
5660 can figure out the other form by either removing @samp{no-} or adding
5661 it.
5662
5663 @table @code
5664 @item -fexceptions
5665 Enable exception handling, and generate extra code needed to propagate
5666 exceptions.  If you do not specify this option, GNU CC enables it by
5667 default for languages like C++ that normally require exception handling,
5668 and disabled for languages like C that do not normally require it.
5669 However, when compiling C code that needs to interoperate properly with
5670 exception handlers written in C++, you may need to enable this option.
5671 You may also wish to disable this option is you are compiling older C++
5672 programs that don't use exception handling.
5673
5674 @item -fpcc-struct-return
5675 Return ``short'' @code{struct} and @code{union} values in memory like
5676 longer ones, rather than in registers.  This convention is less
5677 efficient, but it has the advantage of allowing intercallability between
5678 GNU CC-compiled files and files compiled with other compilers.
5679
5680 The precise convention for returning structures in memory depends
5681 on the target configuration macros.
5682
5683 Short structures and unions are those whose size and alignment match
5684 that of some integer type.
5685
5686 @item -freg-struct-return
5687 Use the convention that @code{struct} and @code{union} values are
5688 returned in registers when possible.  This is more efficient for small
5689 structures than @samp{-fpcc-struct-return}.
5690
5691 If you specify neither @samp{-fpcc-struct-return} nor its contrary
5692 @samp{-freg-struct-return}, GNU CC defaults to whichever convention is
5693 standard for the target.  If there is no standard convention, GNU CC
5694 defaults to @samp{-fpcc-struct-return}, except on targets where GNU CC
5695 is the principal compiler.  In those cases, we can choose the standard,
5696 and we chose the more efficient register return alternative.
5697
5698 @item -fshort-enums
5699 Allocate to an @code{enum} type only as many bytes as it needs for the
5700 declared range of possible values.  Specifically, the @code{enum} type
5701 will be equivalent to the smallest integer type which has enough room.
5702
5703 @item -fshort-double
5704 Use the same size for @code{double} as for @code{float}.
5705
5706 @item -fshared-data
5707 Requests that the data and non-@code{const} variables of this
5708 compilation be shared data rather than private data.  The distinction
5709 makes sense only on certain operating systems, where shared data is
5710 shared between processes running the same program, while private data
5711 exists in one copy per process.
5712
5713 @item -fno-common
5714 Allocate even uninitialized global variables in the bss section of the
5715 object file, rather than generating them as common blocks.  This has the
5716 effect that if the same variable is declared (without @code{extern}) in
5717 two different compilations, you will get an error when you link them.
5718 The only reason this might be useful is if you wish to verify that the
5719 program will work on other systems which always work this way.
5720
5721 @item -fno-ident
5722 Ignore the @samp{#ident} directive.
5723
5724 @item -fno-gnu-linker
5725 Do not output global initializations (such as C++ constructors and
5726 destructors) in the form used by the GNU linker (on systems where the GNU
5727 linker is the standard method of handling them).  Use this option when
5728 you want to use a non-GNU linker, which also requires using the
5729 @code{collect2} program to make sure the system linker includes
5730 constructors and destructors.  (@code{collect2} is included in the GNU CC
5731 distribution.)  For systems which @emph{must} use @code{collect2}, the
5732 compiler driver @code{gcc} is configured to do this automatically.
5733
5734 @item -finhibit-size-directive
5735 Don't output a @code{.size} assembler directive, or anything else that
5736 would cause trouble if the function is split in the middle, and the
5737 two halves are placed at locations far apart in memory.  This option is
5738 used when compiling @file{crtstuff.c}; you should not need to use it
5739 for anything else.
5740
5741 @item -fverbose-asm
5742 Put extra commentary information in the generated assembly code to
5743 make it more readable.  This option is generally only of use to those
5744 who actually need to read the generated assembly code (perhaps while
5745 debugging the compiler itself).
5746
5747 @samp{-fno-verbose-asm}, the default, causes the
5748 extra information to be omitted and is useful when comparing two assembler
5749 files.
5750
5751 @item -fvolatile
5752 Consider all memory references through pointers to be volatile.
5753
5754 @item -fvolatile-global
5755 Consider all memory references to extern and global data items to
5756 be volatile.
5757
5758 @item -fpic
5759 @cindex global offset table
5760 @cindex PIC
5761 Generate position-independent code (PIC) suitable for use in a shared
5762 library, if supported for the target machine.  Such code accesses all
5763 constant addresses through a global offset table (GOT).  The dynamic
5764 loader resolves the GOT entries when the program starts (the dynamic
5765 loader is not part of GNU CC; it is part of the operating system).  If
5766 the GOT size for the linked executable exceeds a machine-specific
5767 maximum size, you get an error message from the linker indicating that
5768 @samp{-fpic} does not work; in that case, recompile with @samp{-fPIC}
5769 instead.  (These maximums are 16k on the m88k, 8k on the Sparc, and 32k
5770 on the m68k and RS/6000.  The 386 has no such limit.)
5771
5772 Position-independent code requires special support, and therefore works
5773 only on certain machines.  For the 386, GNU CC supports PIC for System V
5774 but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
5775 position-independent.
5776
5777 @item -fPIC
5778 If supported for the target machine, emit position-independent code,
5779 suitable for dynamic linking and avoiding any limit on the size of the
5780 global offset table.  This option makes a difference on the m68k, m88k,
5781 and the Sparc.
5782
5783 Position-independent code requires special support, and therefore works
5784 only on certain machines.
5785
5786 @item -ffixed-@var{reg}
5787 Treat the register named @var{reg} as a fixed register; generated code
5788 should never refer to it (except perhaps as a stack pointer, frame
5789 pointer or in some other fixed role).
5790
5791 @var{reg} must be the name of a register.  The register names accepted
5792 are machine-specific and are defined in the @code{REGISTER_NAMES}
5793 macro in the machine description macro file.
5794
5795 This flag does not have a negative form, because it specifies a
5796 three-way choice.
5797
5798 @item -fcall-used-@var{reg}
5799 Treat the register named @var{reg} as an allocable register that is
5800 clobbered by function calls.  It may be allocated for temporaries or
5801 variables that do not live across a call.  Functions compiled this way
5802 will not save and restore the register @var{reg}.
5803
5804 Use of this flag for a register that has a fixed pervasive role in the
5805 machine's execution model, such as the stack pointer or frame pointer,
5806 will produce disastrous results.
5807
5808 This flag does not have a negative form, because it specifies a
5809 three-way choice.
5810
5811 @item -fcall-saved-@var{reg}
5812 Treat the register named @var{reg} as an allocable register saved by
5813 functions.  It may be allocated even for temporaries or variables that
5814 live across a call.  Functions compiled this way will save and restore
5815 the register @var{reg} if they use it.
5816
5817 Use of this flag for a register that has a fixed pervasive role in the
5818 machine's execution model, such as the stack pointer or frame pointer,
5819 will produce disastrous results.
5820
5821 A different sort of disaster will result from the use of this flag for
5822 a register in which function values may be returned.
5823
5824 This flag does not have a negative form, because it specifies a
5825 three-way choice.
5826
5827 @item -fpack-struct
5828 Pack all structure members together without holes.  Usually you would
5829 not want to use this option, since it makes the code suboptimal, and
5830 the offsets of structure members won't agree with system libraries.
5831
5832 @item -fcheck-memory-usage
5833 Generate extra code to check each memory access.  GNU CC will generate
5834 code that is suitable for a detector of bad memory accesses such as
5835 @file{Checker}.  If you specify this option, you can not use the
5836 @code{asm} or @code{__asm__} keywords.
5837
5838 You must also specify this option when you compile functions you call that
5839 have side effects.  If you do not, you may get erroneous messages from
5840 the detector.  Normally,  you should compile all your code with this option.
5841 If you use functions from a library that have side-effects (such as
5842 @code{read}), you may not be able to recompile the library and
5843 specify this option.  In that case, you can enable the
5844 @samp{-fprefix-function-name} option, which requests GNU CC to encapsulate
5845 your code and make other functions look as if they were compiled with
5846 @samp{-fcheck-memory-usage}.  This is done by calling ``stubs'',
5847 which are provided by the detector.  If you cannot find or build
5848 stubs for every function you call, you may have to specify
5849 @samp{-fcheck-memory-usage} without @samp{-fprefix-function-name}.
5850
5851 @item -fprefix-function-name
5852 Request GNU CC to add a prefix to the symbols generated for function names.
5853 GNU CC adds a prefix to the names of functions defined as well as
5854 functions called.  Code compiled with this option and code compiled
5855 without the option can't be linked together, unless or stubs are used.
5856
5857 If you compile the following code with @samp{-fprefix-function-name}
5858 @example
5859 extern void bar (int);
5860 void
5861 foo (int a)
5862 @{
5863   return bar (a + 5);
5864
5865 @}
5866 @end example
5867
5868 @noindent
5869 GNU CC will compile the code as if it was written:
5870 @example
5871 extern void prefix_bar (int);
5872 void
5873 prefix_foo (int a)
5874 @{
5875   return prefix_bar (a + 5);
5876 @}
5877 @end example
5878 This option is designed to be used with @samp{-fcheck-memory-usage}.
5879
5880 @item -finstrument-functions
5881 Generate instrumentation calls for entry and exit to functions.  Just
5882 after function entry and just before function exit, the following
5883 profiling functions will be called with the address of the current
5884 function and its call site.  (On some platforms,
5885 @code{__builtin_return_address} does not work beyond the current
5886 function, so the call site information may not be available to the
5887 profiling functions otherwise.)
5888
5889 @example
5890 void __cyg_profile_func_enter (void *this_fn, void *call_site);
5891 void __cyg_profile_func_exit  (void *this_fn, void *call_site);
5892 @end example
5893
5894 The first argument is the address of the start of the current function,
5895 which may be looked up exactly in the symbol table.
5896
5897 This instrumentation is also done for functions expanded inline in other
5898 functions.  The profiling calls will indicate where, conceptually, the
5899 inline function is entered and exited.  This means that addressable
5900 versions of such functions must be available.  If all your uses of a
5901 function are expanded inline, this may mean an additional expansion of
5902 code size.  If you use @samp{extern inline} in your C code, an
5903 addressable version of such functions must be provided.  (This is
5904 normally the case anyways, but if you get lucky and the optimizer always
5905 expands the functions inline, you might have gotten away without
5906 providing static copies.)
5907
5908 A function may be given the attribute @code{no_instrument_function}, in
5909 which case this instrumentation will not be done.  This can be used, for
5910 example, for the profiling functions listed above, high-priority
5911 interrupt routines, and any functions from which the profiling functions
5912 cannot safely be called (perhaps signal handlers, if the profiling
5913 routines generate output or allocate memory).
5914
5915 @item -fstack-check
5916 Generate code to verify that you do not go beyond the boundary of the
5917 stack.  You should specify this flag if you are running in an
5918 environment with multiple threads, but only rarely need to specify it in
5919 a single-threaded environment since stack overflow is automatically
5920 detected on nearly all systems if there is only one stack.
5921
5922 @item -fexceptions
5923 Enable exception handling.  For some targets, this implies
5924 generation of frame unwind information for all functions, which can produce
5925 significant data size overhead, though it does not affect execution.
5926
5927 This option is on by default for languages that support exception
5928 handling (such as C++), and off for those that don't (such as C).
5929
5930 @cindex aliasing of parameters
5931 @cindex parameters, aliased
5932 @item -fargument-alias
5933 @itemx -fargument-noalias
5934 @itemx -fargument-noalias-global
5935 Specify the possible relationships among parameters and between
5936 parameters and global data.
5937
5938 @samp{-fargument-alias} specifies that arguments (parameters) may
5939 alias each other and may alias global storage.
5940 @samp{-fargument-noalias} specifies that arguments do not alias
5941 each other, but may alias global storage.
5942 @samp{-fargument-noalias-global} specifies that arguments do not
5943 alias each other and do not alias global storage.
5944
5945 Each language will automatically use whatever option is required by
5946 the language standard.  You should not need to use these options yourself.
5947 @end table
5948
5949 @node Environment Variables
5950 @section Environment Variables Affecting GNU CC
5951 @cindex environment variables
5952
5953 This section describes several environment variables that affect how GNU
5954 CC operates.  Some of them work by specifying directories or prefixes to use
5955 when searching for various kinds of files. Some are used to specify other
5956 aspects of the compilation environment.
5957
5958 @ifclear INTERNALS
5959 Note that you can also specify places to search using options such as
5960 @samp{-B}, @samp{-I} and @samp{-L} (@pxref{Directory Options}).  These
5961 take precedence over places specified using environment variables, which
5962 in turn take precedence over those specified by the configuration of GNU
5963 CC.
5964 @end ifclear
5965 @ifset INTERNALS
5966 Note that you can also specify places to search using options such as
5967 @samp{-B}, @samp{-I} and @samp{-L} (@pxref{Directory Options}).  These
5968 take precedence over places specified using environment variables, which
5969 in turn take precedence over those specified by the configuration of GNU
5970 CC.  @xref{Driver}.
5971 @end ifset
5972
5973 @table @code
5974 @item TMPDIR
5975 @findex TMPDIR
5976 If @code{TMPDIR} is set, it specifies the directory to use for temporary
5977 files.  GNU CC uses temporary files to hold the output of one stage of
5978 compilation which is to be used as input to the next stage: for example,
5979 the output of the preprocessor, which is the input to the compiler
5980 proper.
5981
5982 @item GCC_EXEC_PREFIX
5983 @findex GCC_EXEC_PREFIX
5984 If @code{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
5985 names of the subprograms executed by the compiler.  No slash is added
5986 when this prefix is combined with the name of a subprogram, but you can
5987 specify a prefix that ends with a slash if you wish.
5988
5989 If GNU CC cannot find the subprogram using the specified prefix, it
5990 tries looking in the usual places for the subprogram.
5991
5992 The default value of @code{GCC_EXEC_PREFIX} is
5993 @file{@var{prefix}/lib/gcc-lib/} where @var{prefix} is the value
5994 of @code{prefix} when you ran the @file{configure} script.
5995
5996 Other prefixes specified with @samp{-B} take precedence over this prefix.
5997
5998 This prefix is also used for finding files such as @file{crt0.o} that are
5999 used for linking.
6000
6001 In addition, the prefix is used in an unusual way in finding the
6002 directories to search for header files.  For each of the standard
6003 directories whose name normally begins with @samp{/usr/local/lib/gcc-lib}
6004 (more precisely, with the value of @code{GCC_INCLUDE_DIR}), GNU CC tries
6005 replacing that beginning with the specified prefix to produce an
6006 alternate directory name.  Thus, with @samp{-Bfoo/}, GNU CC will search
6007 @file{foo/bar} where it would normally search @file{/usr/local/lib/bar}.
6008 These alternate directories are searched first; the standard directories
6009 come next.
6010
6011 @item COMPILER_PATH
6012 @findex COMPILER_PATH
6013 The value of @code{COMPILER_PATH} is a colon-separated list of
6014 directories, much like @code{PATH}.  GNU CC tries the directories thus
6015 specified when searching for subprograms, if it can't find the
6016 subprograms using @code{GCC_EXEC_PREFIX}.
6017
6018 @item LIBRARY_PATH
6019 @findex LIBRARY_PATH
6020 The value of @code{LIBRARY_PATH} is a colon-separated list of
6021 directories, much like @code{PATH}.  When configured as a native compiler,
6022 GNU CC tries the directories thus specified when searching for special
6023 linker files, if it can't find them using @code{GCC_EXEC_PREFIX}.  Linking
6024 using GNU CC also uses these directories when searching for ordinary
6025 libraries for the @samp{-l} option (but directories specified with
6026 @samp{-L} come first).
6027
6028 @item C_INCLUDE_PATH
6029 @itemx CPLUS_INCLUDE_PATH
6030 @itemx OBJC_INCLUDE_PATH
6031 @findex C_INCLUDE_PATH
6032 @findex CPLUS_INCLUDE_PATH
6033 @findex OBJC_INCLUDE_PATH
6034 @c @itemx OBJCPLUS_INCLUDE_PATH
6035 These environment variables pertain to particular languages.  Each
6036 variable's value is a colon-separated list of directories, much like
6037 @code{PATH}.  When GNU CC searches for header files, it tries the
6038 directories listed in the variable for the language you are using, after
6039 the directories specified with @samp{-I} but before the standard header
6040 file directories.
6041
6042 @item DEPENDENCIES_OUTPUT
6043 @findex DEPENDENCIES_OUTPUT
6044 @cindex dependencies for make as output
6045 If this variable is set, its value specifies how to output dependencies
6046 for Make based on the header files processed by the compiler.  This
6047 output looks much like the output from the @samp{-M} option
6048 (@pxref{Preprocessor Options}), but it goes to a separate file, and is
6049 in addition to the usual results of compilation.
6050
6051 The value of @code{DEPENDENCIES_OUTPUT} can be just a file name, in
6052 which case the Make rules are written to that file, guessing the target
6053 name from the source file name.  Or the value can have the form
6054 @samp{@var{file} @var{target}}, in which case the rules are written to
6055 file @var{file} using @var{target} as the target name.
6056
6057 @item LANG
6058 @findex LANG
6059 @cindex locale definition
6060 This variable is used to pass locale information to the compiler. One way in
6061 which this information is used is to determine the character set to be used
6062 when character literals, string literals and comments are parsed in C and C++.
6063 When the compiler is configured to allow multibyte characters,
6064 the following values for @code{LANG} are recognized:
6065
6066 @table @code
6067 @item C-JIS
6068 Recognize JIS characters.
6069 @item C-SJIS
6070 Recognize SJIS characters.
6071 @item C-EUCJP
6072 Recognize EUCJP characters.
6073 @end table
6074
6075 If @code{LANG} is not defined, or if it has some other value, then the
6076 compiler will use mblen and mbtowc as defined by the default locale to
6077 recognize and translate multibyte characters.
6078 @end table
6079
6080 @node Running Protoize
6081 @section Running Protoize
6082
6083 The program @code{protoize} is an optional part of GNU C.  You can use
6084 it to add prototypes to a program, thus converting the program to ANSI
6085 C in one respect.  The companion program @code{unprotoize} does the
6086 reverse: it removes argument types from any prototypes that are found.
6087
6088 When you run these programs, you must specify a set of source files as
6089 command line arguments.  The conversion programs start out by compiling
6090 these files to see what functions they define.  The information gathered
6091 about a file @var{foo} is saved in a file named @file{@var{foo}.X}.
6092
6093 After scanning comes actual conversion.  The specified files are all
6094 eligible to be converted; any files they include (whether sources or
6095 just headers) are eligible as well.
6096
6097 But not all the eligible files are converted.  By default,
6098 @code{protoize} and @code{unprotoize} convert only source and header
6099 files in the current directory.  You can specify additional directories
6100 whose files should be converted with the @samp{-d @var{directory}}
6101 option.  You can also specify particular files to exclude with the
6102 @samp{-x @var{file}} option.  A file is converted if it is eligible, its
6103 directory name matches one of the specified directory names, and its
6104 name within the directory has not been excluded.
6105
6106 Basic conversion with @code{protoize} consists of rewriting most
6107 function definitions and function declarations to specify the types of
6108 the arguments.  The only ones not rewritten are those for varargs
6109 functions.
6110
6111 @code{protoize} optionally inserts prototype declarations at the
6112 beginning of the source file, to make them available for any calls that
6113 precede the function's definition.  Or it can insert prototype
6114 declarations with block scope in the blocks where undeclared functions
6115 are called.
6116
6117 Basic conversion with @code{unprotoize} consists of rewriting most
6118 function declarations to remove any argument types, and rewriting
6119 function definitions to the old-style pre-ANSI form.
6120
6121 Both conversion programs print a warning for any function declaration or
6122 definition that they can't convert.  You can suppress these warnings
6123 with @samp{-q}.
6124
6125 The output from @code{protoize} or @code{unprotoize} replaces the
6126 original source file.  The original file is renamed to a name ending
6127 with @samp{.save}.  If the @samp{.save} file already exists, then
6128 the source file is simply discarded.
6129
6130 @code{protoize} and @code{unprotoize} both depend on GNU CC itself to
6131 scan the program and collect information about the functions it uses.
6132 So neither of these programs will work until GNU CC is installed.
6133
6134 Here is a table of the options you can use with @code{protoize} and
6135 @code{unprotoize}.  Each option works with both programs unless
6136 otherwise stated.
6137
6138 @table @code
6139 @item -B @var{directory}
6140 Look for the file @file{SYSCALLS.c.X} in @var{directory}, instead of the
6141 usual directory (normally @file{/usr/local/lib}).  This file contains
6142 prototype information about standard system functions.  This option
6143 applies only to @code{protoize}.
6144
6145 @item -c @var{compilation-options}
6146 Use  @var{compilation-options} as the options when running @code{gcc} to
6147 produce the @samp{.X} files.  The special option @samp{-aux-info} is
6148 always passed in addition, to tell @code{gcc} to write a @samp{.X} file.
6149
6150 Note that the compilation options must be given as a single argument to
6151 @code{protoize} or @code{unprotoize}.  If you want to specify several
6152 @code{gcc} options, you must quote the entire set of compilation options
6153 to make them a single word in the shell.
6154
6155 There are certain @code{gcc} arguments that you cannot use, because they
6156 would produce the wrong kind of output.  These include @samp{-g},
6157 @samp{-O}, @samp{-c}, @samp{-S}, and @samp{-o} If you include these in
6158 the @var{compilation-options}, they are ignored.
6159
6160 @item -C
6161 Rename files to end in @samp{.C} instead of @samp{.c}.
6162 This is convenient if you are converting a C program to C++.
6163 This option applies only to @code{protoize}.
6164
6165 @item -g
6166 Add explicit global declarations.  This means inserting explicit
6167 declarations at the beginning of each source file for each function
6168 that is called in the file and was not declared.  These declarations
6169 precede the first function definition that contains a call to an
6170 undeclared function.  This option applies only to @code{protoize}.
6171
6172 @item -i @var{string}
6173 Indent old-style parameter declarations with the string @var{string}.
6174 This option applies only to @code{protoize}.
6175
6176 @code{unprotoize} converts prototyped function definitions to old-style
6177 function definitions, where the arguments are declared between the
6178 argument list and the initial @samp{@{}.  By default, @code{unprotoize}
6179 uses five spaces as the indentation.  If you want to indent with just
6180 one space instead, use @samp{-i " "}.
6181
6182 @item -k
6183 Keep the @samp{.X} files.  Normally, they are deleted after conversion
6184 is finished.
6185
6186 @item -l
6187 Add explicit local declarations.  @code{protoize} with @samp{-l} inserts
6188 a prototype declaration for each function in each block which calls the
6189 function without any declaration.  This option applies only to
6190 @code{protoize}.
6191
6192 @item -n
6193 Make no real changes.  This mode just prints information about the conversions
6194 that would have been done without @samp{-n}.
6195
6196 @item -N
6197 Make no @samp{.save} files.  The original files are simply deleted.
6198 Use this option with caution.
6199
6200 @item -p @var{program}
6201 Use the program @var{program} as the compiler.  Normally, the name
6202 @file{gcc} is used.
6203
6204 @item -q
6205 Work quietly.  Most warnings are suppressed.
6206
6207 @item -v
6208 Print the version number, just like @samp{-v} for @code{gcc}.
6209 @end table
6210
6211 If you need special compiler options to compile one of your program's
6212 source files, then you should generate that file's @samp{.X} file
6213 specially, by running @code{gcc} on that source file with the
6214 appropriate options and the option @samp{-aux-info}.  Then run
6215 @code{protoize} on the entire set of files.  @code{protoize} will use
6216 the existing @samp{.X} file because it is newer than the source file.
6217 For example:
6218
6219 @example
6220 gcc -Dfoo=bar file1.c -aux-info
6221 protoize *.c
6222 @end example
6223
6224 @noindent
6225 You need to include the special files along with the rest in the
6226 @code{protoize} command, even though their @samp{.X} files already
6227 exist, because otherwise they won't get converted.
6228
6229 @xref{Protoize Caveats}, for more information on how to use
6230 @code{protoize} successfully.
6231