OSDN Git Service

* install.texi (avr): Replace incomplete list of supported MCU
[pf3gnuchains/gcc-fork.git] / gcc / install.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @c The text of this file appears in the file INSTALL
6 @c in the GCC distribution, as well as in the GCC manual.
7
8 Note most of this information is out of date and superseded by the
9 online GCC install procedures @uref{http://gcc.gnu.org/install/}.  It is
10 provided for historical reference only.
11
12 @ifclear INSTALLONLY
13 @node Installation
14 @chapter Installing GNU CC
15 @end ifclear
16 @cindex installing GNU CC
17
18 @menu
19 * Configuration Files::  Files created by running @code{configure}.
20 * Configurations::    Configurations Supported by GNU CC.
21 * Other Dir::     Compiling in a separate directory (not where the source is).
22 * Cross-Compiler::   Building and installing a cross-compiler.
23 * Sun Install::   See below for installation on the Sun.
24 * VMS Install::   See below for installation on VMS.
25 * Collect2::      How @code{collect2} works; how it finds @code{ld}.
26 * Header Dirs::   Understanding the standard header file directories.
27 @end menu
28
29 Here is the procedure for installing GNU CC on a GNU or Unix system.
30 See @ref{VMS Install}, for VMS systems.  In this section we assume you
31 compile in the same directory that contains the source files; see
32 @ref{Other Dir}, to find out how to compile in a separate directory on
33 Unix systems.
34
35 You cannot install GNU C by itself on MSDOS; it will not compile under
36 any MSDOS compiler except itself.  You need to get the complete
37 compilation package DJGPP, which includes binaries as well as sources,
38 and includes all the necessary compilation tools and libraries.
39
40 @enumerate
41 @item
42 If you have built GNU CC previously in the same directory for a
43 different target machine, do @samp{make distclean} to delete all files
44 that might be invalid.  One of the files this deletes is
45 @file{Makefile}; if @samp{make distclean} complains that @file{Makefile}
46 does not exist, it probably means that the directory is already suitably
47 clean.
48
49 @item
50 On a System V release 4 system, make sure @file{/usr/bin} precedes
51 @file{/usr/ucb} in @code{PATH}.  The @code{cc} command in
52 @file{/usr/ucb} uses libraries which have bugs.
53
54 @cindex Bison parser generator
55 @cindex parser generator, Bison
56 @item
57 Make sure the Bison parser generator is installed.  (This is unnecessary
58 if the Bison output file @file{c-parse.c} is more recent than
59 @file{c-parse.y},and you do not plan to change the @samp{.y} file.)
60
61 Bison versions older than Sept 8, 1988 will produce incorrect output
62 for @file{c-parse.c}.
63
64 @item
65 If you have chosen a configuration for GNU CC which requires other GNU
66 tools (such as GAS or the GNU linker) instead of the standard system
67 tools, install the required tools in the build directory under the names
68 @file{as}, @file{ld} or whatever is appropriate.  This will enable the
69 compiler to find the proper tools for compilation of the program
70 @file{enquire}.
71
72 Alternatively, you can do subsequent compilation using a value of the
73 @code{PATH} environment variable such that the necessary GNU tools come
74 before the standard system tools.
75
76 @item
77 Specify the host, build and target machine configurations.  You do this
78 when you run the @file{configure} script.
79
80 The @dfn{build} machine is the system which you are using, the
81 @dfn{host} machine is the system where you want to run the resulting
82 compiler (normally the build machine), and the @dfn{target} machine is
83 the system for which you want the compiler to generate code.
84
85 If you are building a compiler to produce code for the machine it runs
86 on (a native compiler), you normally do not need to specify any operands
87 to @file{configure}; it will try to guess the type of machine you are on
88 and use that as the build, host and target machines.  So you don't need
89 to specify a configuration when building a native compiler unless
90 @file{configure} cannot figure out what your configuration is or guesses
91 wrong.
92
93 In those cases, specify the build machine's @dfn{configuration name}
94 with the @samp{--host} option; the host and target will default to be
95 the same as the host machine.  (If you are building a cross-compiler,
96 see @ref{Cross-Compiler}.)
97
98 Here is an example:
99
100 @smallexample
101 ./configure --host=sparc-sun-sunos4.1
102 @end smallexample
103
104 A configuration name may be canonical or it may be more or less
105 abbreviated.
106
107 A canonical configuration name has three parts, separated by dashes.
108 It looks like this: @samp{@var{cpu}-@var{company}-@var{system}}.
109 (The three parts may themselves contain dashes; @file{configure}
110 can figure out which dashes serve which purpose.)  For example,
111 @samp{m68k-sun-sunos4.1} specifies a Sun 3.
112
113 You can also replace parts of the configuration by nicknames or aliases.
114 For example, @samp{sun3} stands for @samp{m68k-sun}, so
115 @samp{sun3-sunos4.1} is another way to specify a Sun 3.  You can also
116 use simply @samp{sun3-sunos}, since the version of SunOS is assumed by
117 default to be version 4.
118
119 You can specify a version number after any of the system types, and some
120 of the CPU types.  In most cases, the version is irrelevant, and will be
121 ignored.  So you might as well specify the version if you know it.
122
123 See @ref{Configurations}, for a list of supported configuration names and
124 notes on many of the configurations.  You should check the notes in that
125 section before proceeding any further with the installation of GNU CC.
126
127 @item
128 When running @code{configure}, you may also need to specify certain
129 additional options that describe variant hardware and software
130 configurations.  These are @samp{--with-gnu-as}, @samp{--with-gnu-ld},
131 @samp{--with-stabs} and @samp{--nfp}.
132
133 @table @samp
134 @item --with-gnu-as
135 If you will use GNU CC with the GNU assembler (GAS), you should declare
136 this by using the @samp{--with-gnu-as} option when you run
137 @file{configure}.
138
139 Using this option does not install GAS.  It only modifies the output of
140 GNU CC to work with GAS.  Building and installing GAS is up to you.
141
142 Conversely, if you @emph{do not} wish to use GAS and do not specify
143 @samp{--with-gnu-as} when building GNU CC, it is up to you to make sure
144 that GAS is not installed.  GNU CC searches for a program named
145 @code{as} in various directories; if the program it finds is GAS, then
146 it runs GAS.  If you are not sure where GNU CC finds the assembler it is
147 using, try specifying @samp{-v} when you run it.
148
149 The systems where it makes a difference whether you use GAS are@*
150 @samp{hppa1.0-@var{any}-@var{any}}, @samp{hppa1.1-@var{any}-@var{any}},
151 @samp{i386-@var{any}-sysv}, @samp{i386-@var{any}-isc},@*
152 @samp{i860-@var{any}-bsd}, @samp{m68k-bull-sysv},@*
153 @samp{m68k-hp-hpux}, @samp{m68k-sony-bsd},@*
154 @samp{m68k-altos-sysv}, @samp{m68000-hp-hpux},@*
155 @samp{m68000-att-sysv}, @samp{@var{any}-lynx-lynxos},
156 and @samp{mips-@var{any}}).
157 On any other system, @samp{--with-gnu-as} has no effect.
158
159 On the systems listed above (except for the HP-PA, for ISC on the
160 386, and for @samp{mips-sgi-irix5.*}), if you use GAS, you should also
161 use the GNU linker (and specify @samp{--with-gnu-ld}).
162
163 @item --with-gnu-ld
164 Specify the option @samp{--with-gnu-ld} if you plan to use the GNU
165 linker with GNU CC.
166
167 This option does not cause the GNU linker to be installed; it just
168 modifies the behavior of GNU CC to work with the GNU linker.
169 @c Specifically, it inhibits the installation of @code{collect2}, a program
170 @c which otherwise serves as a front-end for the system's linker on most
171 @c configurations.
172
173 @item --with-stabs
174 On MIPS based systems and on Alphas, you must specify whether you want
175 GNU CC to create the normal ECOFF debugging format, or to use BSD-style
176 stabs passed through the ECOFF symbol table.  The normal ECOFF debug
177 format cannot fully handle languages other than C.  BSD stabs format can
178 handle other languages, but it only works with the GNU debugger GDB.
179
180 Normally, GNU CC uses the ECOFF debugging format by default; if you
181 prefer BSD stabs, specify @samp{--with-stabs} when you configure GNU
182 CC.
183
184 No matter which default you choose when you configure GNU CC, the user
185 can use the @samp{-gcoff} and @samp{-gstabs+} options to specify explicitly
186 the debug format for a particular compilation.
187
188 @samp{--with-stabs} is meaningful on the ISC system on the 386, also, if
189 @samp{--with-gas} is used.  It selects use of stabs debugging
190 information embedded in COFF output.  This kind of debugging information
191 supports C++ well; ordinary COFF debugging information does not.
192
193 @samp{--with-stabs} is also meaningful on 386 systems running SVR4.  It
194 selects use of stabs debugging information embedded in ELF output.  The
195 C++ compiler currently (2.6.0) does not support the DWARF debugging
196 information normally used on 386 SVR4 platforms; stabs provide a
197 workable alternative.  This requires gas and gdb, as the normal SVR4
198 tools can not generate or interpret stabs.
199
200 @item --nfp
201 On certain systems, you must specify whether the machine has a floating
202 point unit.  These systems include @samp{m68k-sun-sunos@var{n}} and
203 @samp{m68k-isi-bsd}.  On any other system, @samp{--nfp} currently has no
204 effect, though perhaps there are other systems where it could usefully
205 make a difference.
206
207 @cindex Haifa scheduler
208 @cindex scheduler, experimental
209 @item --enable-haifa
210 @itemx --disable-haifa
211 Use @samp{--enable-haifa} to enable use of an experimental instruction
212 scheduler (from IBM Haifa).  This may or may not produce better code.
213 Some targets on which it is known to be a win enable it by default; use
214 @samp{--disable-haifa} to disable it in these cases.  @code{configure}
215 will print out whether the Haifa scheduler is enabled when it is run.
216
217 @cindex Objective C threads
218 @cindex threads, Objective C
219 @item --enable-threads=@var{type}
220 Certain systems, notably Linux-based GNU systems, can't be relied on to
221 supply a threads facility for the Objective C runtime and so will
222 default to single-threaded runtime.  They may, however, have a library
223 threads implementation available, in which case threads can be enabled
224 with this option by supplying a suitable @var{type}, probably
225 @samp{posix}.  The possibilities for @var{type} are @samp{single},
226 @samp{posix}, @samp{win32}, @samp{solaris}, @samp{irix} and @samp{mach}.
227
228 @cindex Internal Compiler Checking
229 @item --enable-checking
230 When you specify this option, the compiler is built to perform checking
231 of tree node types when referencing fields of that node.  This does not
232 change the generated code, but adds error checking within the compiler.
233 This will slow down the compiler and may only work properly if you
234 are building the compiler with GNU C.
235
236 The @file{configure} script searches subdirectories of the source
237 directory for other compilers that are to be integrated into GNU CC.
238 The GNU compiler for C++, called G++ is in a subdirectory named
239 @file{cp}.  @file{configure} inserts rules into @file{Makefile} to build
240 all of those compilers.
241
242 Here we spell out what files will be set up by @code{configure}.  Normally
243 you need not be concerned with these files.
244
245 @itemize @bullet
246 @item
247 @ifset INTERNALS
248 A file named @file{config.h} is created that contains a @samp{#include}
249 of the top-level config file for the machine you will run the compiler
250 on (@pxref{Config}).  This file is responsible for defining information
251 about the host machine.  It includes @file{tm.h}.
252 @end ifset
253 @ifclear INTERNALS
254 A file named @file{config.h} is created that contains a @samp{#include}
255 of the top-level config file for the machine you will run the compiler
256 on (@pxref{Config,,The Configuration File, gcc.info, Using and Porting
257 GCC}).  This file is responsible for defining information about the host
258 machine.  It includes @file{tm.h}.
259 @end ifclear
260
261 The top-level config file is located in the subdirectory @file{config}.
262 Its name is always @file{xm-@var{something}.h}; usually
263 @file{xm-@var{machine}.h}, but there are some exceptions.
264
265 If your system does not support symbolic links, you might want to
266 set up @file{config.h} to contain a @samp{#include} command which
267 refers to the appropriate file.
268
269 @item
270 A file named @file{tconfig.h} is created which includes the top-level config
271 file for your target machine.  This is used for compiling certain
272 programs to run on that machine.
273
274 @item
275 A file named @file{tm.h} is created which includes the
276 machine-description macro file for your target machine.  It should be in
277 the subdirectory @file{config} and its name is often
278 @file{@var{machine}.h}.
279 @end itemize
280
281 @cindex Native Language Support
282 @cindex NLS
283 @item --enable-nls
284 @itemx --disable-nls
285 The @samp{--enable-nls} option enables Native Language Support (NLS),
286 which lets GCC output diagnostics in languages other than American
287 English. Native Language Support is enabled by default if not doing a 
288 canadian cross build. The @samp{--disable-nls} option disables NLS.
289
290 @cindex @code{gettext}
291 @item --with-included-gettext
292 If NLS is enbled, the @samp{--with-included-gettext} option causes the build
293 procedure to prefer its copy of GNU @code{gettext}. This is the default. If
294 you want the GCC build procedure to prefer the host's @code{gettext}
295 libraries, use @samp{--without-included-gettext}.
296
297 @cindex @code{catgets}
298 @item --with-catgets
299 If NLS is enabled, and if the host lacks @code{gettext} but has the
300 inferior @code{catgets} interface, the GCC build procedure normally
301 ignores @code{catgets} and instead uses GCC's copy of the GNU
302 @code{gettext} library.  The @samp{--with-catgets} option causes the
303 build procedure to use the host's @code{catgets} in this situation.
304
305 @cindex @code{maintainer-mode}
306 @item --enable-maintainer-mode
307 The build rules that regenerate the GCC master message catalog
308 @code{gcc.pot} are normally disabled. This is because it can only be rebuilt
309 if the complete source tree is present. If you have changed the sources and
310 want to rebuild the catalog, configuring with
311 @samp{--enable-maintainer-mode} will enable this. Note that you need a
312 special version of the @code{gettext} tools to do so.
313
314 @cindex Windows32 Registry support
315 @item --enable-win32-registry
316 @itemx --enable-win32-registry=@var{KEY}
317 @itemx --disable-win32-registry
318 The @samp{--enable-win32-registry} option enables Windows-hosted GCC
319 to look up installations paths in the registry using the following key:
320
321 @smallexample
322 @code{HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\<KEY>}
323 @end smallexample
324
325 <KEY> defaults to GCC version number, and can be overridden by the
326 @code{--enable-win32-registry=KEY} option. Vendors and distributors
327 who use custom installers are encouraged to provide a different key,
328 perhaps one comprised of vendor name and GCC version number, to
329 avoid conflict with existing installations. This feature is enabled
330 by default, and can be disabled by @code{--disable-win32-registry}
331 option.  This option has no effect on the other hosts.
332 @end table
333
334 @item
335 In certain cases, you should specify certain other options when you run
336 @code{configure}.
337
338 @itemize @bullet
339 @item
340 The standard directory for installing GNU CC is @file{/usr/local/lib}.
341 If you want to install its files somewhere else, specify
342 @samp{--prefix=@var{dir}} when you run @file{configure}.  Here @var{dir}
343 is a directory name to use instead of @file{/usr/local} for all purposes
344 with one exception: the directory @file{/usr/local/include} is searched
345 for header files no matter where you install the compiler.  To override
346 this name, use the @code{--with-local-prefix} option below.  The directory
347 you specify need not exist, but its parent directory must exist.
348
349 @item
350 Specify @samp{--with-local-prefix=@var{dir}} if you want the compiler to
351 search directory @file{@var{dir}/include} for locally installed header
352 files @emph{instead} of @file{/usr/local/include}.
353
354 You should specify @samp{--with-local-prefix} @strong{only} if your site has
355 a different convention (not @file{/usr/local}) for where to put
356 site-specific files.
357
358 The default value for @samp{--with-local-prefix} is @file{/usr/local}
359 regardless of the value of @samp{--prefix}.  Specifying @samp{--prefix}
360 has no effect on which directory GNU CC searches for local header files.
361 This may seem counterintuitive, but actually it is logical.
362
363 The purpose of @samp{--prefix} is to specify where to @emph{install GNU
364 CC}.  The local header files in @file{/usr/local/include}---if you put
365 any in that directory---are not part of GNU CC.  They are part of other
366 programs---perhaps many others.  (GNU CC installs its own header files
367 in another directory which is based on the @samp{--prefix} value.)
368
369 @strong{Do not} specify @file{/usr} as the @samp{--with-local-prefix}!  The
370 directory you use for @samp{--with-local-prefix} @strong{must not} contain
371 any of the system's standard header files.  If it did contain them,
372 certain programs would be miscompiled (including GNU Emacs, on certain
373 targets), because this would override and nullify the header file
374 corrections made by the @code{fixincludes} script.
375
376 Indications are that people who use this option use it based on
377 mistaken ideas of what it is for.  People use it as if it specified
378 where to install part of GNU CC.  Perhaps they make this assumption
379 because installing GNU CC creates the directory.
380 @end itemize
381
382 @item
383 Build the compiler.  Just type @samp{make LANGUAGES=c} in the compiler
384 directory.
385
386 @samp{LANGUAGES=c} specifies that only the C compiler should be
387 compiled.  The makefile normally builds compilers for all the supported
388 languages; currently, C, C++, Objective C, Java, FORTRAN, and CHILL.
389 However, C is the only language that is sure to work when you build with
390 other non-GNU C compilers.  In addition, building anything but C at this
391 stage is a waste of time.
392
393 In general, you can specify the languages to build by typing the
394 argument @samp{LANGUAGES="@var{list}"}, where @var{list} is one or more
395 words from the list @samp{c}, @samp{c++}, @samp{objective-c},
396 @samp{java}, @samp{f77}, and @samp{CHILL}.  If you have any additional
397 GNU compilers as subdirectories of the GNU CC source directory, you may
398 also specify their names in this list.
399
400 Ignore any warnings you may see about ``statement not reached'' in
401 @file{insn-emit.c}; they are normal.  Also, warnings about ``unknown
402 escape sequence'' are normal in @file{genopinit.c} and perhaps some
403 other files.  Likewise, you should ignore warnings about ``constant is
404 so large that it is unsigned'' in @file{insn-emit.c} and
405 @file{insn-recog.c}, and a warning about a comparison always being zero
406 in @file{enquire.o}.  Any other compilation errors may represent bugs in
407 the port to your machine or operating system, and
408 @ifclear INSTALLONLY
409 should be investigated and reported (@pxref{Bugs}).
410 @end ifclear
411 @ifset INSTALLONLY
412 should be investigated and reported.
413 @end ifset
414
415 Some compilers fail to compile GNU CC because they have bugs or
416 limitations.  For example, the Microsoft compiler is said to run out of
417 macro space.  Some Ultrix compilers run out of expression space; then
418 you need to break up the statement where the problem happens.
419
420 @item
421 If you are building a cross-compiler, stop here.  @xref{Cross-Compiler}.
422
423 @cindex stage1
424 @item
425 Move the first-stage object files and executables into a subdirectory
426 with this command:
427
428 @smallexample
429 make stage1
430 @end smallexample
431
432 The files are moved into a subdirectory named @file{stage1}.
433 Once installation is complete, you may wish to delete these files
434 with @code{rm -r stage1}.
435
436 @item
437 If you have chosen a configuration for GNU CC which requires other GNU
438 tools (such as GAS or the GNU linker) instead of the standard system
439 tools, install the required tools in the @file{stage1} subdirectory
440 under the names @file{as}, @file{ld} or whatever is appropriate.  This
441 will enable the stage 1 compiler to find the proper tools in the
442 following stage.
443
444 Alternatively, you can do subsequent compilation using a value of the
445 @code{PATH} environment variable such that the necessary GNU tools come
446 before the standard system tools.
447
448 @item
449 Recompile the compiler with itself, with this command:
450
451 @smallexample
452 make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2"
453 @end smallexample
454
455 This is called making the stage 2 compiler.
456
457 The command shown above builds compilers for all the supported
458 languages.  If you don't want them all, you can specify the languages to
459 build by typing the argument @samp{LANGUAGES="@var{list}"}.  @var{list}
460 should contain one or more words from the list @samp{c}, @samp{c++},
461 @samp{objective-c}, and @samp{proto}.  Separate the words with spaces.
462 @samp{proto} stands for the programs @code{protoize} and
463 @code{unprotoize}; they are not a separate language, but you use
464 @code{LANGUAGES} to enable or disable their installation.
465
466 If you are going to build the stage 3 compiler, then you might want to
467 build only the C language in stage 2.
468
469 Once you have built the stage 2 compiler, if you are short of disk
470 space, you can delete the subdirectory @file{stage1}.
471
472 On a 68000 or 68020 system lacking floating point hardware,
473 unless you have selected a @file{tm.h} file that expects by default
474 that there is no such hardware, do this instead:
475
476 @smallexample
477 make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2 -msoft-float"
478 @end smallexample
479
480 @item
481 If you wish to test the compiler by compiling it with itself one more
482 time, install any other necessary GNU tools (such as GAS or the GNU
483 linker) in the @file{stage2} subdirectory as you did in the
484 @file{stage1} subdirectory, then do this:
485
486 @smallexample
487 make stage2
488 make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2"
489 @end smallexample
490
491 @noindent
492 This is called making the stage 3 compiler.  Aside from the @samp{-B}
493 option, the compiler options should be the same as when you made the
494 stage 2 compiler.  But the @code{LANGUAGES} option need not be the
495 same.  The command shown above builds compilers for all the supported
496 languages; if you don't want them all, you can specify the languages to
497 build by typing the argument @samp{LANGUAGES="@var{list}"}, as described
498 above.
499
500 If you do not have to install any additional GNU tools, you may use the
501 command
502
503 @smallexample
504 make bootstrap LANGUAGES=@var{language-list} BOOT_CFLAGS=@var{option-list}
505 @end smallexample
506
507 @noindent
508 instead of making @file{stage1}, @file{stage2}, and performing
509 the two compiler builds.
510
511 @item
512 Compare the latest object files with the stage 2 object files---they
513 ought to be identical, aside from time stamps (if any).
514
515 On some systems, meaningful comparison of object files is impossible;
516 they always appear ``different.''  This is currently true on Solaris and
517 some systems that use ELF object file format.  On some versions of Irix
518 on SGI machines and DEC Unix (OSF/1) on Alpha systems, you will not be
519 able to compare the files without specifying @file{-save-temps}; see the
520 description of individual systems above to see if you get comparison
521 failures.  You may have similar problems on other systems.
522
523 Use this command to compare the files:
524
525 @smallexample
526 make compare
527 @end smallexample
528
529 This will mention any object files that differ between stage 2 and stage
530 3.  Any difference, no matter how innocuous, indicates that the stage 2
531 compiler has compiled GNU CC incorrectly, and is therefore a potentially
532 @ifclear INSTALLONLY
533 serious bug which you should investigate and report (@pxref{Bugs}).
534 @end ifclear
535 @ifset INSTALLONLY
536 serious bug which you should investigate and report.
537 @end ifset
538
539 If your system does not put time stamps in the object files, then this
540 is a faster way to compare them (using the Bourne shell):
541
542 @smallexample
543 for file in *.o; do
544 cmp $file stage2/$file
545 done
546 @end smallexample
547
548 If you have built the compiler with the @samp{-mno-mips-tfile} option on
549 MIPS machines, you will not be able to compare the files.
550
551 @item
552 Install the compiler driver, the compiler's passes and run-time support
553 with @samp{make install}.  Use the same value for @code{CC},
554 @code{CFLAGS} and @code{LANGUAGES} that you used when compiling the
555 files that are being installed.  One reason this is necessary is that
556 some versions of Make have bugs and recompile files gratuitously when
557 you do this step.  If you use the same variable values, those files will
558 be recompiled properly.
559
560 For example, if you have built the stage 2 compiler, you can use the
561 following command:
562
563 @smallexample
564 make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="@var{list}"
565 @end smallexample
566
567 @noindent
568 This copies the files @file{cc1}, @file{cpp} and @file{libgcc.a} to
569 files @file{cc1}, @file{cpp} and @file{libgcc.a} in the directory
570 @file{/usr/local/lib/gcc-lib/@var{target}/@var{version}}, which is where
571 the compiler driver program looks for them.  Here @var{target} is the
572 canonicalized form of target machine type specified when you ran
573 @file{configure}, and @var{version} is the version number of GNU CC.
574 This naming scheme permits various versions and/or cross-compilers to
575 coexist.  It also copies the executables for compilers for other
576 languages (e.g., @file{cc1plus} for C++) to the same directory.
577
578 This also copies the driver program @file{xgcc} into
579 @file{/usr/local/bin/gcc}, so that it appears in typical execution
580 search paths.  It also copies @file{gcc.1} into
581 @file{/usr/local/man/man1} and info pages into @file{/usr/local/info}.
582
583 On some systems, this command causes recompilation of some files.  This
584 is usually due to bugs in @code{make}.  You should either ignore this
585 problem, or use GNU Make.
586
587 @cindex @code{alloca} and SunOS
588 @strong{Warning: there is a bug in @code{alloca} in the Sun library.  To
589 avoid this bug, be sure to install the executables of GNU CC that were
590 compiled by GNU CC.  (That is, the executables from stage 2 or 3, not
591 stage 1.)  They use @code{alloca} as a built-in function and never the
592 one in the library.}
593
594 (It is usually better to install GNU CC executables from stage 2 or 3,
595 since they usually run faster than the ones compiled with some other
596 compiler.)
597
598 @item
599 @cindex C++ runtime library
600 @cindex @code{libstdc++}
601 If you're going to use C++, you need to install the C++ runtime library.
602 This includes all I/O functionality, special class libraries, etc.
603
604 The standard C++ runtime library for GNU CC is called @samp{libstdc++}.
605 An obsolescent library @samp{libg++} may also be available, but it's
606 necessary only for older software that hasn't been converted yet; if
607 you don't know whether you need @samp{libg++} then you probably don't
608 need it.
609
610 Here's one way to build and install @samp{libstdc++} for GNU CC:
611
612 @itemize @bullet
613 @item
614 Build and install GNU CC, so that invoking @samp{gcc} obtains the GNU CC
615 that was just built.
616
617 @item
618 Obtain a copy of a compatible @samp{libstdc++} distribution.  For
619 example, the @samp{libstdc++-2.8.0.tar.gz} distribution should be
620 compatible with GCC 2.8.0.  GCC distributors normally distribute
621 @samp{libstdc++} as well.
622
623 @item
624 Set the @samp{CXX} environment variable to @samp{gcc} while running the
625 @samp{libstdc++} distribution's @file{configure} command.  Use the same
626 @file{configure} options that you used when you invoked GCC's
627 @file{configure} command.
628
629 @item
630 Invoke @samp{make} to build the C++ runtime.
631
632 @item
633 Invoke @samp{make install} to install the C++ runtime.
634
635 @end itemize
636
637 To summarize, after building and installing GNU CC, invoke the following
638 shell commands in the topmost directory of the C++ library distribution.
639 For @var{configure-options}, use the same options that
640 you used to configure GNU CC.
641
642 @example
643 $ CXX=gcc ./configure @var{configure-options}
644 $ make
645 $ make install
646 @end example
647
648 @item
649 GNU CC includes a runtime library for Objective-C because it is an
650 integral part of the language.  You can find the files associated with
651 the library in the subdirectory @file{objc}.  The GNU Objective-C
652 Runtime Library requires header files for the target's C library in
653 order to be compiled,and also requires the header files for the target's
654 thread library if you want thread support.  @xref{Cross Headers,
655 Cross-Compilers and Header Files, Cross-Compilers and Header Files}, for
656 discussion about header files issues for cross-compilation.
657
658 When you run @file{configure}, it picks the appropriate Objective-C
659 thread implementation file for the target platform.  In some situations,
660 you may wish to choose a different back-end as some platforms support
661 multiple thread implementations or you may wish to disable thread
662 support completely.  You do this by specifying a value for the
663 @var{OBJC_THREAD_FILE} makefile variable on the command line when you
664 run make, for example:
665
666 @smallexample
667 make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2" OBJC_THREAD_FILE=thr-single
668 @end smallexample
669
670 @noindent
671 Below is a list of the currently available back-ends.
672
673 @itemize @bullet
674 @item thr-single
675 Disable thread support, should work for all platforms.
676 @item thr-decosf1
677 DEC OSF/1 thread support.
678 @item thr-irix
679 SGI IRIX thread support.
680 @item thr-mach
681 Generic MACH thread support, known to work on NEXTSTEP.
682 @item thr-os2
683 IBM OS/2 thread support.
684 @item thr-posix
685 Generix POSIX thread support.
686 @item thr-pthreads
687 PCThreads on Linux-based GNU systems.
688 @item thr-solaris
689 SUN Solaris thread support.
690 @item thr-win32
691 Microsoft Win32 API thread support.
692 @end itemize
693 @end enumerate
694
695 @node Configuration Files
696 @section Files Created by @code{configure}
697
698 Here we spell out what files will be set up by @code{configure}.  Normally
699 you need not be concerned with these files.
700
701 @itemize @bullet
702 @item
703 @ifset INTERNALS
704 A file named @file{config.h} is created that contains a @samp{#include}
705 of the top-level config file for the machine you will run the compiler
706 on (@pxref{Config}).  This file is responsible for defining information
707 about the host machine.  It includes @file{tm.h}.
708 @end ifset
709 @ifclear INTERNALS
710 A file named @file{config.h} is created that contains a @samp{#include}
711 of the top-level config file for the machine you will run the compiler
712 on (@pxref{Config,,The Configuration File, gcc.info, Using and Porting
713 GCC}).  This file is responsible for defining information about the host
714 machine.  It includes @file{tm.h}.
715 @end ifclear
716
717 The top-level config file is located in the subdirectory @file{config}.
718 Its name is always @file{xm-@var{something}.h}; usually
719 @file{xm-@var{machine}.h}, but there are some exceptions.
720
721 If your system does not support symbolic links, you might want to
722 set up @file{config.h} to contain a @samp{#include} command which
723 refers to the appropriate file.
724
725 @item
726 A file named @file{tconfig.h} is created which includes the top-level config
727 file for your target machine.  This is used for compiling certain
728 programs to run on that machine.
729
730 @item
731 A file named @file{tm.h} is created which includes the
732 machine-description macro file for your target machine.  It should be in
733 the subdirectory @file{config} and its name is often
734 @file{@var{machine}.h}.
735
736 @item
737 The command file @file{configure} also constructs the file
738 @file{Makefile} by adding some text to the template file
739 @file{Makefile.in}.  The additional text comes from files in the
740 @file{config} directory, named @file{t-@var{target}} and
741 @file{x-@var{host}}.  If these files do not exist, it means nothing
742 needs to be added for a given target or host.
743 @end itemize
744
745 @node Configurations
746 @section Configurations Supported by GNU CC
747 @cindex configurations supported by GNU CC
748
749 Here are the possible CPU types:
750
751 @quotation
752 @c gmicro, fx80, spur and tahoe omitted since they don't work.
753 1750a, a29k, alpha, arm, avr, c@var{n}, clipper, dsp16xx, elxsi, fr30, h8300,
754 hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, m32r,
755 m68000, m68k, m6811, m6812, m88k, mcore, mips, mipsel, mips64, mips64el,
756 mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc,
757 sparclite, sparc64, v850, vax, we32k.
758 @end quotation
759
760 Here are the recognized company names.  As you can see, customary
761 abbreviations are used rather than the longer official names.
762
763 @c What should be done about merlin, tek*, dolphin?
764 @quotation
765 acorn, alliant, altos, apollo, apple, att, bull,
766 cbm, convergent, convex, crds, dec, dg, dolphin,
767 elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi,
768 mips, motorola, ncr, next, ns, omron, plexus,
769 sequent, sgi, sony, sun, tti, unicom, wrs.
770 @end quotation
771
772 The company name is meaningful only to disambiguate when the rest of
773 the information supplied is insufficient.  You can omit it, writing
774 just @samp{@var{cpu}-@var{system}}, if it is not needed.  For example,
775 @samp{vax-ultrix4.2} is equivalent to @samp{vax-dec-ultrix4.2}.
776
777 Here is a list of system types:
778
779 @quotation
780 386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux,
781 dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux,
782 linux-gnu, hiux, hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs,
783 netbsd, newsos, nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim,
784 solaris, sunos, sym, sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta,
785 vxworks, winnt, xenix.
786 @end quotation
787
788 @noindent
789 You can omit the system type; then @file{configure} guesses the
790 operating system from the CPU and company.
791
792 You can add a version number to the system type; this may or may not
793 make a difference.  For example, you can write @samp{bsd4.3} or
794 @samp{bsd4.4} to distinguish versions of BSD.  In practice, the version
795 number is most needed for @samp{sysv3} and @samp{sysv4}, which are often
796 treated differently.
797
798 @samp{linux-gnu} is the canonical name for the GNU/Linux target; however
799 GNU CC will also accept @samp{linux}.  The version of the kernel in use is
800 not relevant on these systems.  A suffix such as @samp{libc1} or @samp{aout}
801 distinguishes major versions of the C library; all of the suffixed versions
802 are obsolete.
803
804 If you specify an impossible combination such as @samp{i860-dg-vms},
805 then you may get an error message from @file{configure}, or it may
806 ignore part of the information and do the best it can with the rest.
807 @file{configure} always prints the canonical name for the alternative
808 that it used.  GNU CC does not support all possible alternatives.
809
810 Often a particular model of machine has a name.  Many machine names are
811 recognized as aliases for CPU/company combinations.  Thus, the machine
812 name @samp{sun3}, mentioned above, is an alias for @samp{m68k-sun}.
813 Sometimes we accept a company name as a machine name, when the name is
814 popularly used for a particular machine.  Here is a table of the known
815 machine names:
816
817 @quotation
818 3300, 3b1, 3b@var{n}, 7300, altos3068, altos,
819 apollo68, att-7300, balance,
820 convex-c@var{n}, crds, decstation-3100,
821 decstation, delta, encore,
822 fx2800, gmicro, hp7@var{nn}, hp8@var{nn},
823 hp9k2@var{nn}, hp9k3@var{nn}, hp9k7@var{nn},
824 hp9k8@var{nn}, iris4d, iris, isi68,
825 m3230, magnum, merlin, miniframe,
826 mmax, news-3600, news800, news, next,
827 pbd, pc532, pmax, powerpc, powerpcle, ps2, risc-news,
828 rtpc, sun2, sun386i, sun386, sun3,
829 sun4, symmetry, tower-32, tower.
830 @end quotation
831
832 @noindent
833 Remember that a machine name specifies both the cpu type and the company
834 name.
835 If you want to install your own homemade configuration files, you can
836 use @samp{local} as the company name to access them.  If you use
837 configuration @samp{@var{cpu}-local}, the configuration name
838 without the cpu prefix
839 is used to form the configuration file names.
840
841 Thus, if you specify @samp{m68k-local}, configuration uses
842 files @file{m68k.md}, @file{local.h}, @file{m68k.c},
843 @file{xm-local.h}, @file{t-local}, and @file{x-local}, all in the
844 directory @file{config/m68k}.
845
846 Here is a list of configurations that have special treatment or special
847 things you must know:
848
849 @table @samp
850 @item 1750a-*-*
851 MIL-STD-1750A processors.
852
853 The MIL-STD-1750A cross configuration produces output for
854 @code{as1750}, an assembler/linker available under the GNU Public
855 License for the 1750A. @code{as1750} can be obtained at 
856 @uref{ftp://ftp.fta-berlin.de/pub/crossgcc/1750gals/}.
857 A similarly licensed simulator for
858 the 1750A is available from same address.
859
860 You should ignore a fatal error during the building of libgcc (libgcc is
861 not yet implemented for the 1750A.)
862
863 The @code{as1750} assembler requires the file @file{ms1750.inc}, which is
864 found in the directory @file{config/1750a}.
865
866 GNU CC produced the same sections as the Fairchild F9450 C Compiler,
867 namely:
868
869 @table @code
870 @item Normal
871 The program code section.
872
873 @item Static
874 The read/write (RAM) data section.
875
876 @item Konst
877 The read-only (ROM) constants section.
878
879 @item Init
880 Initialization section (code to copy KREL to SREL).
881 @end table
882
883 The smallest addressable unit is 16 bits (BITS_PER_UNIT is 16).  This
884 means that type `char' is represented with a 16-bit word per character.
885 The 1750A's "Load/Store Upper/Lower Byte" instructions are not used by
886 GNU CC.
887
888 @item alpha-*-osf1
889 Systems using processors that implement the DEC Alpha architecture and
890 are running the DEC Unix (OSF/1) operating system, for example the DEC
891 Alpha AXP systems.CC.)
892
893 GNU CC writes a @samp{.verstamp} directive to the assembler output file
894 unless it is built as a cross-compiler.  It gets the version to use from
895 the system header file @file{/usr/include/stamp.h}.  If you install a
896 new version of DEC Unix, you should rebuild GCC to pick up the new version
897 stamp.
898
899 Note that since the Alpha is a 64-bit architecture, cross-compilers from
900 32-bit machines will not generate code as efficient as that generated
901 when the compiler is running on a 64-bit machine because many
902 optimizations that depend on being able to represent a word on the
903 target in an integral value on the host cannot be performed.  Building
904 cross-compilers on the Alpha for 32-bit machines has only been tested in
905 a few cases and may not work properly.
906
907 @code{make compare} may fail on old versions of DEC Unix unless you add
908 @samp{-save-temps} to @code{CFLAGS}.  On these systems, the name of the
909 assembler input file is stored in the object file, and that makes
910 comparison fail if it differs between the @code{stage1} and
911 @code{stage2} compilations.  The option @samp{-save-temps} forces a
912 fixed name to be used for the assembler input file, instead of a
913 randomly chosen name in @file{/tmp}.  Do not add @samp{-save-temps}
914 unless the comparisons fail without that option.  If you add
915 @samp{-save-temps}, you will have to manually delete the @samp{.i} and
916 @samp{.s} files after each series of compilations.
917
918 GNU CC now supports both the native (ECOFF) debugging format used by DBX
919 and GDB and an encapsulated STABS format for use only with GDB.  See the
920 discussion of the @samp{--with-stabs} option of @file{configure} above
921 for more information on these formats and how to select them.
922
923 There is a bug in DEC's assembler that produces incorrect line numbers
924 for ECOFF format when the @samp{.align} directive is used.  To work
925 around this problem, GNU CC will not emit such alignment directives
926 while writing ECOFF format debugging information even if optimization is
927 being performed.  Unfortunately, this has the very undesirable
928 side-effect that code addresses when @samp{-O} is specified are
929 different depending on whether or not @samp{-g} is also specified.
930
931 To avoid this behavior, specify @samp{-gstabs+} and use GDB instead of
932 DBX.  DEC is now aware of this problem with the assembler and hopes to
933 provide a fix shortly.
934
935 @item arc-*-elf
936 Argonaut ARC processor.
937 This configuration is intended for embedded systems.
938
939 @item arm-*-aout
940 Advanced RISC Machines ARM-family processors.  These are often used in
941 embedded applications.  There are no standard Unix configurations.
942 This configuration corresponds to the basic instruction sequences and will
943 produce @file{a.out} format object modules.
944
945 You may need to make a variant of the file @file{arm.h} for your particular
946 configuration.
947
948 @item arm-*-elf
949 This configuration is intended for embedded systems.
950
951 @item arm-*-linux*aout
952 Any of the ARM-family processors running the Linux-based GNU system with
953 the @file{a.out} binary format.  This is an obsolete configuration.
954
955 @item arm-*-linux
956 @itemx arm-*-linux-gnu
957 @itemx arm-*-linux*oldld
958 Any of the ARM-family processors running the Linux-based GNU system with
959 the @file{ELF} binary format.  You must use version 2.9.1.0.22 or later
960 of the GNU/Linux binutils, which you can download from
961 @uref{ftp://ftp.varesearch.com/pub/support/hjl/binutils/}.
962
963 These two configurations differ only in the required version of GNU
964 binutils.  For binutils 2.9.1.0.x, use @samp{arm-*-linux-gnuoldld}.  For 
965 newer versions of binutils, use @samp{arm-*-linux-gnu}.
966
967 @item arm-*-riscix
968 The ARM2 or ARM3 processor running RISC iX, Acorn's port of BSD Unix.
969 If you are running a version of RISC iX prior to 1.2 then you must
970 specify the version number during configuration.  Note that the
971 assembler shipped with RISC iX does not support stabs debugging
972 information; a new version of the assembler, with stabs support
973 included, is now available from Acorn and via ftp
974 @uref{ftp://ftp.acorn.com/pub/riscix/as+xterm.tar.Z}.  To enable stabs
975 debugging, pass @samp{--with-gnu-as} to configure.
976
977 You will need to install GNU @file{sed} before you can run configure.
978
979 @item a29k
980 AMD Am29k-family processors.  These are normally used in embedded
981 applications.  There are no standard Unix configurations.
982 This configuration
983 corresponds to AMD's standard calling sequence and binary interface
984 and is compatible with other 29k tools.
985
986 You may need to make a variant of the file @file{a29k.h} for your
987 particular configuration.
988
989 @item a29k-*-bsd
990 AMD Am29050 used in a system running a variant of BSD Unix.
991
992 @item avr
993 ATMEL AVR-family micro controllers.  These are used in embedded
994 applications.  There are no standard Unix configurations.
995 See @xref{AVR Options} for the list of supported MCU types.
996
997 @item decstation-*
998 MIPS-based DECstations can support three different personalities:
999 Ultrix, DEC OSF/1, and OSF/rose.  (Alpha-based DECstation products have
1000 a configuration name beginning with @samp{alpha-dec}.)  To configure GCC
1001 for these platforms use the following configurations:
1002
1003 @table @samp
1004 @item decstation-ultrix
1005 Ultrix configuration.
1006
1007 @item decstation-osf1
1008 Dec's version of OSF/1.
1009
1010 @item decstation-osfrose
1011 Open Software Foundation reference port of OSF/1 which uses the
1012 OSF/rose object file format instead of ECOFF.  Normally, you
1013 would not select this configuration.
1014 @end table
1015
1016 The MIPS C compiler needs to be told to increase its table size
1017 for switch statements with the @samp{-Wf,-XNg1500} option in
1018 order to compile @file{cp/parse.c}.  If you use the @samp{-O2}
1019 optimization option, you also need to use @samp{-Olimit 3000}.
1020 Both of these options are automatically generated in the
1021 @file{Makefile} that the shell script @file{configure} builds.
1022 If you override the @code{CC} make variable and use the MIPS
1023 compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
1024
1025 @item elxsi-elxsi-bsd
1026 The Elxsi's C compiler has known limitations that prevent it from
1027 compiling GNU C.  Please contact @email{mrs@@cygnus.com} for more details.
1028
1029 @item dsp16xx
1030 A port to the AT&T DSP1610 family of processors.
1031
1032 @ignore
1033 @item fx80
1034 Alliant FX/8 computer.  Note that the standard installed C compiler in
1035 Concentrix 5.0 has a bug which prevent it from compiling GNU CC
1036 correctly.  You can patch the compiler bug as follows:
1037
1038 @smallexample
1039 cp /bin/pcc ./pcc
1040 adb -w ./pcc - << EOF
1041 15f6?w 6610
1042 EOF
1043 @end smallexample
1044
1045 Then you must use the @samp{-ip12} option when compiling GNU CC
1046 with the patched compiler, as shown here:
1047
1048 @smallexample
1049 make CC="./pcc -ip12" CFLAGS=-w
1050 @end smallexample
1051
1052 Note also that Alliant's version of DBX does not manage to work with the
1053 output from GNU CC.
1054 @end ignore
1055
1056 @item h8300-*-*
1057 Hitachi H8/300 series of processors.
1058
1059 The calling convention and structure layout has changed in release 2.6.
1060 All code must be recompiled.  The calling convention now passes the
1061 first three arguments in function calls in registers.  Structures are no
1062 longer a multiple of 2 bytes.
1063
1064 @item hppa*-*-*
1065 There are several variants of the HP-PA processor which run a variety
1066 of operating systems.  GNU CC must be configured to use the correct
1067 processor type and operating system, or GNU CC will not function correctly.
1068 The easiest way to handle this problem is to @emph{not} specify a target
1069 when configuring GNU CC, the @file{configure} script will try to automatically
1070 determine the right processor type and operating system.
1071
1072 @samp{-g} does not work on HP-UX, since that system uses a peculiar
1073 debugging format which GNU CC does not know about.  However, @samp{-g}
1074 will work if you also use GAS and GDB in conjunction with GCC.  We
1075 highly recommend using GAS for all HP-PA configurations.
1076
1077 You should be using GAS-2.6 (or later) along with GDB-4.16 (or later).  These
1078 can be retrieved from all the traditional GNU ftp archive sites.
1079
1080 On some versions of HP-UX, you will need to install GNU @file{sed}.
1081
1082 You will need to be install GAS into a directory before @code{/bin},
1083 @code{/usr/bin}, and @code{/usr/ccs/bin} in your search path.  You
1084 should install GAS before you build GNU CC.
1085
1086 To enable debugging, you must configure GNU CC with the @samp{--with-gnu-as}
1087 option before building.
1088
1089 @item i370-*-*
1090 This port is very preliminary and has many known bugs.  We hope to
1091 have a higher-quality port for this machine soon.
1092
1093 @item i386-*-linux*oldld
1094 Use this configuration to generate @file{a.out} binaries on Linux-based
1095 GNU systems if you do not have gas/binutils version 2.5.2 or later
1096 installed. This is an obsolete configuration.
1097
1098 @item i386-*-linux*aout
1099 Use this configuration to generate @file{a.out} binaries on Linux-based
1100 GNU systems. This configuration is being superseded. You must use
1101 gas/binutils version 2.5.2 or later.
1102
1103 @item i386-*-linux
1104 @itemx i386-*-linux-gnu
1105 Use this configuration to generate ELF binaries on Linux-based GNU
1106 systems.  You must use gas/binutils version 2.5.2 or later.
1107
1108 @item i386-*-sco
1109 Compilation with RCC is recommended.  Also, it may be a good idea to
1110 link with GNU malloc instead of the malloc that comes with the system.
1111
1112 @item i386-*-sco3.2v4
1113 Use this configuration for SCO release 3.2 version 4.
1114
1115 @item i386-*-sco3.2v5*
1116 Use this for the SCO OpenServer Release family including 5.0.0, 5.0.2, 
1117 5.0.4, 5.0.5, Internet FastStart 1.0, and Internet FastStart 1.1.
1118
1119 GNU CC can generate COFF binaries if you specify @samp{-mcoff} or ELF
1120 binaries, the default.    A full @samp{make bootstrap} is recommended
1121 so that an ELF compiler that builds ELF is generated.                   
1122
1123 You must have TLS597 from @uref{ftp://ftp.sco.com/TLS} installed for ELF
1124 C++ binaries to work correctly on releases before 5.0.4. 
1125
1126 The native SCO assembler that is provided with the OS at no charge
1127 is normally required.  If, however, you must be able to use the GNU
1128 assembler (perhaps you have complex asms) you must configure this
1129 package @samp{--with-gnu-as}.  To do this, install (cp or symlink)
1130 gcc/as to your copy of the GNU assembler.  You must use a recent version
1131 of GNU binutils; version 2.9.1 seems to work well.  If you select this
1132 option, you will be unable to build COFF images.  Trying to do so will
1133 result in non-obvious failures.  In general, the "--with-gnu-as" option
1134 isn't as well tested as the native assembler.
1135
1136 @emph{NOTE:} If you are building C++, you must follow the instructions
1137 about invoking @samp{make bootstrap} because the native OpenServer
1138 compiler may build a @file{cc1plus} that will not correctly parse many
1139 valid C++ programs.  You must do a @samp{make bootstrap} if you are
1140 building with the native compiler.
1141
1142 @item i386-*-isc
1143 It may be a good idea to link with GNU malloc instead of the malloc that
1144 comes with the system.
1145
1146 In ISC version 4.1, @file{sed} core dumps when building
1147 @file{deduced.h}.  Use the version of @file{sed} from version 4.0.
1148
1149 @item i386-*-esix
1150 It may be good idea to link with GNU malloc instead of the malloc that
1151 comes with the system.
1152
1153 @item i386-ibm-aix
1154 You need to use GAS version 2.1 or later, and LD from
1155 GNU binutils version 2.2 or later.
1156
1157 @item i386-sequent-bsd
1158 Go to the Berkeley universe before compiling.
1159
1160 @item i386-sequent-ptx1*
1161 @itemx i386-sequent-ptx2*
1162 You must install GNU @file{sed} before running @file{configure}.
1163
1164 @item i386-sun-sunos4
1165 You may find that you need another version of GNU CC to begin
1166 bootstrapping with, since the current version when built with the
1167 system's own compiler seems to get an infinite loop compiling part of
1168 @file{libgcc2.c}.  GNU CC version 2 compiled with GNU CC (any version)
1169 seems not to have this problem.
1170
1171 See @ref{Sun Install}, for information on installing GNU CC on Sun
1172 systems.
1173
1174 @item i[345]86-*-winnt3.5
1175 This version requires a GAS that has not yet been released.  Until it
1176 is, you can get a prebuilt binary version via anonymous ftp from
1177 @uref{ftp://cs.washington.edu/pub/gnat} or @uref{ftp://cs.nyu.edu/pub/gnat}. You
1178 must also use the Microsoft header files from the Windows NT 3.5 SDK.
1179 Find these on the CDROM in the @file{/mstools/h} directory dated 9/4/94.  You
1180 must use a fixed version of Microsoft linker made especially for NT 3.5,
1181 which is also is available on the NT 3.5 SDK CDROM.  If you do not have
1182 this linker, can you also use the linker from Visual C/C++ 1.0 or 2.0.
1183
1184 Installing GNU CC for NT builds a wrapper linker, called @file{ld.exe},
1185 which mimics the behaviour of Unix @file{ld} in the specification of
1186 libraries (@samp{-L} and @samp{-l}).  @file{ld.exe} looks for both Unix
1187 and Microsoft named libraries.  For example, if you specify
1188 @samp{-lfoo}, @file{ld.exe} will look first for @file{libfoo.a}
1189 and then for @file{foo.lib}.
1190
1191 You may install GNU CC for Windows NT in one of two ways, depending on
1192 whether or not you have a Unix-like shell and various Unix-like
1193 utilities.
1194
1195 @enumerate
1196 @item
1197 If you do not have a Unix-like shell and few Unix-like utilities, you
1198 will use a DOS style batch script called @file{configure.bat}.  Invoke
1199 it as @code{configure winnt} from an MSDOS console window or from the
1200 program manager dialog box.  @file{configure.bat} assumes you have
1201 already installed and have in your path a Unix-like @file{sed} program
1202 which is used to create a working @file{Makefile} from @file{Makefile.in}.
1203
1204 @file{Makefile} uses the Microsoft Nmake program maintenance utility and
1205 the Visual C/C++ V8.00 compiler to build GNU CC.  You need only have the
1206 utilities @file{sed} and @file{touch} to use this installation method,
1207 which only automatically builds the compiler itself.  You must then
1208 examine what @file{fixinc.winnt} does, edit the header files by hand and
1209 build @file{libgcc.a} manually.
1210
1211 @item
1212 The second type of installation assumes you are running a Unix-like
1213 shell, have a complete suite of Unix-like utilities in your path, and
1214 have a previous version of GNU CC already installed, either through
1215 building it via the above installation method or acquiring a pre-built
1216 binary.  In this case, use the @file{configure} script in the normal
1217 fashion.
1218 @end enumerate
1219
1220 @item i860-intel-osf1
1221 This is the Paragon.
1222 @ifset INSTALLONLY
1223 If you have version 1.0 of the operating system, you need to take
1224 special steps to build GNU CC due to peculiarities of the system.  Newer
1225 system versions have no problem.  See the section `Installation Problems'
1226 in the GNU CC Manual.
1227 @end ifset
1228 @ifclear INSTALLONLY
1229 If you have version 1.0 of the operating system,
1230 see @ref{Installation Problems}, for special things you need to do to
1231 compensate for peculiarities in the system.
1232 @end ifclear
1233
1234 @item *-lynx-lynxos
1235 LynxOS 2.2 and earlier comes with GNU CC 1.x already installed as
1236 @file{/bin/gcc}.  You should compile with this instead of @file{/bin/cc}.
1237 You can tell GNU CC to use the GNU assembler and linker, by specifying
1238 @samp{--with-gnu-as --with-gnu-ld} when configuring.  These will produce
1239 COFF format object files and executables;  otherwise GNU CC will use the
1240 installed tools, which produce @file{a.out} format executables.
1241
1242 @item m32r-*-elf
1243 Mitsubishi M32R processor.
1244 This configuration is intended for embedded systems.
1245
1246 @item m68000-hp-bsd
1247 HP 9000 series 200 running BSD.  Note that the C compiler that comes
1248 with this system cannot compile GNU CC; contact @email{law@@cygnus.com}
1249 to get binaries of GNU CC for bootstrapping.
1250
1251 @item m68k-altos
1252 Altos 3068.  You must use the GNU assembler, linker and debugger.
1253 Also, you must fix a kernel bug.  Details in the file @file{README.ALTOS}.
1254
1255 @item m68k-apple-aux
1256 Apple Macintosh running A/UX.
1257 You may configure GCC  to use either the system assembler and
1258 linker or the GNU assembler and linker.  You should use the GNU configuration
1259 if you can, especially if you also want to use GNU C++.  You enabled
1260 that configuration with + the @samp{--with-gnu-as} and @samp{--with-gnu-ld}
1261 options to @code{configure}.
1262
1263 Note the C compiler that comes
1264 with this system cannot compile GNU CC.  You can find binaries of GNU CC
1265 for bootstrapping on @code{jagubox.gsfc.nasa.gov}.
1266 You will also a patched version of @file{/bin/ld} there that
1267 raises some of the arbitrary limits found in the original.
1268
1269 @item m68k-att-sysv
1270 AT&T 3b1, a.k.a. 7300 PC.  This version of GNU CC cannot
1271 be compiled with the system C compiler, which is too buggy.
1272 You will need to get a previous version of GCC and use it to
1273 bootstrap.  Binaries are available from the OSU-CIS archive, at
1274 @uref{ftp://archive.cis.ohio-state.edu/pub/att7300/}.
1275
1276 @item m68k-bull-sysv
1277 Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-2.01. GNU CC works
1278 either with native assembler or GNU assembler. You can use
1279 GNU assembler with native coff generation by providing @samp{--with-gnu-as} to
1280 the configure script or use GNU assembler with dbx-in-coff encapsulation
1281 by providing @samp{--with-gnu-as --stabs}. For any problem with native
1282 assembler or for availability of the DPX/2 port of GAS, contact
1283 @email{F.Pierresteguy@@frcl.bull.fr}.
1284
1285 @item m68k-crds-unox
1286 Use @samp{configure unos} for building on Unos.
1287
1288 The Unos assembler is named @code{casm} instead of @code{as}.  For some
1289 strange reason linking @file{/bin/as} to @file{/bin/casm} changes the
1290 behavior, and does not work.  So, when installing GNU CC, you should
1291 install the following script as @file{as} in the subdirectory where
1292 the passes of GCC are installed:
1293
1294 @example
1295 #!/bin/sh
1296 casm $*
1297 @end example
1298
1299 The default Unos library is named @file{libunos.a} instead of
1300 @file{libc.a}.  To allow GNU CC to function, either change all
1301 references to @samp{-lc} in @file{gcc.c} to @samp{-lunos} or link
1302 @file{/lib/libc.a} to @file{/lib/libunos.a}.
1303
1304 @cindex @code{alloca}, for Unos
1305 When compiling GNU CC with the standard compiler, to overcome bugs in
1306 the support of @code{alloca}, do not use @samp{-O} when making stage 2.
1307 Then use the stage 2 compiler with @samp{-O} to make the stage 3
1308 compiler.  This compiler will have the same characteristics as the usual
1309 stage 2 compiler on other systems.  Use it to make a stage 4 compiler
1310 and compare that with stage 3 to verify proper compilation.
1311
1312 (Perhaps simply defining @code{ALLOCA} in @file{x-crds} as described in
1313 the comments there will make the above paragraph superfluous.  Please
1314 inform us of whether this works.)
1315
1316 Unos uses memory segmentation instead of demand paging, so you will need
1317 a lot of memory.  5 Mb is barely enough if no other tasks are running.
1318 If linking @file{cc1} fails, try putting the object files into a library
1319 and linking from that library.
1320
1321 @item m68k-hp-hpux
1322 HP 9000 series 300 or 400 running HP-UX.  HP-UX version 8.0 has a bug in
1323 the assembler that prevents compilation of GNU CC.  To fix it, get patch
1324 PHCO_4484 from HP.
1325
1326 In addition, if you wish to use gas @samp{--with-gnu-as} you must use
1327 gas version 2.1 or later, and you must use the GNU linker version 2.1 or
1328 later.  Earlier versions of gas relied upon a program which converted the
1329 gas output into the native HP-UX format, but that program has not been
1330 kept up to date.  gdb does not understand that native HP-UX format, so
1331 you must use gas if you wish to use gdb.
1332
1333 @item m68k-sun
1334 Sun 3.  We do not provide a configuration file to use the Sun FPA by
1335 default, because programs that establish signal handlers for floating
1336 point traps inherently cannot work with the FPA.
1337
1338 See @ref{Sun Install}, for information on installing GNU CC on Sun
1339 systems.
1340
1341 @item m6811-elf
1342 Motorola 68HC11 family micro controllers.  These are used in embedded
1343 applications.  There are no standard Unix configurations.
1344
1345 @item m6812-elf
1346 Motorola 68HC12 family micro controllers.  These are used in embedded
1347 applications.  There are no standard Unix configurations.
1348
1349 @item m88k-*-svr3
1350 Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference port.
1351 These systems tend to use the Green Hills C, revision 1.8.5, as the
1352 standard C compiler.  There are apparently bugs in this compiler that
1353 result in object files differences between stage 2 and stage 3.  If this
1354 happens, make the stage 4 compiler and compare it to the stage 3
1355 compiler.  If the stage 3 and stage 4 object files are identical, this
1356 suggests you encountered a problem with the standard C compiler; the
1357 stage 3 and 4 compilers may be usable.
1358
1359 It is best, however, to use an older version of GNU CC for bootstrapping
1360 if you have one.
1361
1362 @item m88k-*-dgux
1363 Motorola m88k running DG/UX.  To build 88open BCS native or cross
1364 compilers on DG/UX, specify the configuration name as
1365 @samp{m88k-*-dguxbcs} and build in the 88open BCS software development
1366 environment.  To build ELF native or cross compilers on DG/UX, specify
1367 @samp{m88k-*-dgux} and build in the DG/UX ELF development environment.
1368 You set the software development environment by issuing
1369 @samp{sde-target} command and specifying either @samp{m88kbcs} or
1370 @samp{m88kdguxelf} as the operand.
1371
1372 If you do not specify a configuration name, @file{configure} guesses the
1373 configuration based on the current software development environment.
1374
1375 @item m88k-tektronix-sysv3
1376 Tektronix XD88 running UTekV 3.2e.  Do not turn on
1377 optimization while building stage1 if you bootstrap with
1378 the buggy Green Hills compiler.  Also, The bundled LAI
1379 System V NFS is buggy so if you build in an NFS mounted
1380 directory, start from a fresh reboot, or avoid NFS all together.
1381 Otherwise you may have trouble getting clean comparisons
1382 between stages.
1383
1384 @item mips-mips-bsd
1385 MIPS machines running the MIPS operating system in BSD mode.  It's
1386 possible that some old versions of the system lack the functions
1387 @code{memcpy}, @code{memcmp}, and @code{memset}.  If your system lacks
1388 these, you must remove or undo the definition of
1389 @code{TARGET_MEM_FUNCTIONS} in @file{mips-bsd.h}.
1390
1391 The MIPS C compiler needs to be told to increase its table size
1392 for switch statements with the @samp{-Wf,-XNg1500} option in
1393 order to compile @file{cp/parse.c}.  If you use the @samp{-O2}
1394 optimization option, you also need to use @samp{-Olimit 3000}.
1395 Both of these options are automatically generated in the
1396 @file{Makefile} that the shell script @file{configure} builds.
1397 If you override the @code{CC} make variable and use the MIPS
1398 compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
1399
1400 @item mips-mips-riscos*
1401 The MIPS C compiler needs to be told to increase its table size
1402 for switch statements with the @samp{-Wf,-XNg1500} option in
1403 order to compile @file{cp/parse.c}.  If you use the @samp{-O2}
1404 optimization option, you also need to use @samp{-Olimit 3000}.
1405 Both of these options are automatically generated in the
1406 @file{Makefile} that the shell script @file{configure} builds.
1407 If you override the @code{CC} make variable and use the MIPS
1408 compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
1409
1410 MIPS computers running RISC-OS can support four different
1411 personalities: default, BSD 4.3, System V.3, and System V.4
1412 (older versions of RISC-OS don't support V.4).  To configure GCC
1413 for these platforms use the following configurations:
1414
1415 @table @samp
1416 @item mips-mips-riscos@code{rev}
1417 Default configuration for RISC-OS, revision @code{rev}.
1418
1419 @item mips-mips-riscos@code{rev}bsd
1420 BSD 4.3 configuration for RISC-OS, revision @code{rev}.
1421
1422 @item mips-mips-riscos@code{rev}sysv4
1423 System V.4 configuration for RISC-OS, revision @code{rev}.
1424
1425 @item mips-mips-riscos@code{rev}sysv
1426 System V.3 configuration for RISC-OS, revision @code{rev}.
1427 @end table
1428
1429 The revision @code{rev} mentioned above is the revision of
1430 RISC-OS to use.  You must reconfigure GCC when going from a
1431 RISC-OS revision 4 to RISC-OS revision 5.  This has the effect of
1432 avoiding a linker
1433 @ifclear INSTALLONLY
1434 bug (see @ref{Installation Problems}, for more details).
1435 @end ifclear
1436 @ifset INSTALLONLY
1437 bug.
1438 @end ifset
1439
1440 @item mips-sgi-*
1441 In order to compile GCC on an SGI running IRIX 4, the "c.hdr.lib"
1442 option must be installed from the CD-ROM supplied from Silicon Graphics.
1443 This is found on the 2nd CD in release 4.0.1.
1444
1445 In order to compile GCC on an SGI running IRIX 5, the "compiler_dev.hdr"
1446 subsystem must be installed from the IDO CD-ROM supplied by Silicon
1447 Graphics.
1448
1449 @code{make compare} may fail on version 5 of IRIX unless you add
1450 @samp{-save-temps} to @code{CFLAGS}.  On these systems, the name of the
1451 assembler input file is stored in the object file, and that makes
1452 comparison fail if it differs between the @code{stage1} and
1453 @code{stage2} compilations.  The option @samp{-save-temps} forces a
1454 fixed name to be used for the assembler input file, instead of a
1455 randomly chosen name in @file{/tmp}.  Do not add @samp{-save-temps}
1456 unless the comparisons fail without that option.  If you do you
1457 @samp{-save-temps}, you will have to manually delete the @samp{.i} and
1458 @samp{.s} files after each series of compilations.
1459
1460 The MIPS C compiler needs to be told to increase its table size
1461 for switch statements with the @samp{-Wf,-XNg1500} option in
1462 order to compile @file{cp/parse.c}.  If you use the @samp{-O2}
1463 optimization option, you also need to use @samp{-Olimit 3000}.
1464 Both of these options are automatically generated in the
1465 @file{Makefile} that the shell script @file{configure} builds.
1466 If you override the @code{CC} make variable and use the MIPS
1467 compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
1468
1469 On Irix version 4.0.5F, and perhaps on some other versions as well,
1470 there is an assembler bug that reorders instructions incorrectly.  To
1471 work around it, specify the target configuration
1472 @samp{mips-sgi-irix4loser}.  This configuration inhibits assembler
1473 optimization.
1474
1475 In a compiler configured with target @samp{mips-sgi-irix4}, you can turn
1476 off assembler optimization by using the @samp{-noasmopt} option.  This
1477 compiler option passes the option @samp{-O0} to the assembler, to
1478 inhibit reordering.
1479
1480 The @samp{-noasmopt} option can be useful for testing whether a problem
1481 is due to erroneous assembler reordering.  Even if a problem does not go
1482 away with @samp{-noasmopt}, it may still be due to assembler
1483 reordering---perhaps GNU CC itself was miscompiled as a result.
1484
1485 To enable debugging under Irix 5, you must use GNU as 2.5 or later,
1486 and use the @samp{--with-gnu-as} configure option when configuring gcc.
1487 GNU as is distributed as part of the binutils package.
1488
1489 @item mips-sony-sysv
1490 Sony MIPS NEWS.  This works in NEWSOS 5.0.1, but not in 5.0.2 (which
1491 uses ELF instead of COFF).  Support for 5.0.2 will probably be provided
1492 soon by volunteers.  In particular, the linker does not like the
1493 code generated by GCC when shared libraries are linked in.
1494
1495 @item ns32k-encore
1496 Encore ns32000 system.  Encore systems are supported only under BSD.
1497
1498 @item ns32k-*-genix
1499 National Semiconductor ns32000 system.  Genix has bugs in @code{alloca}
1500 and @code{malloc}; you must get the compiled versions of these from GNU
1501 Emacs.
1502
1503 @item ns32k-sequent
1504 Go to the Berkeley universe before compiling.
1505
1506 @item ns32k-utek
1507 UTEK ns32000 system (``merlin'').  The C compiler that comes with this
1508 system cannot compile GNU CC; contact @samp{tektronix!reed!mason} to get
1509 binaries of GNU CC for bootstrapping.
1510
1511 @item romp-*-aos
1512 @itemx romp-*-mach
1513 The only operating systems supported for the IBM RT PC are AOS and
1514 MACH.  GNU CC does not support AIX running on the RT.  We recommend you
1515 compile GNU CC with an earlier version of itself; if you compile GNU CC
1516 with @code{hc}, the Metaware compiler, it will work, but you will get
1517 mismatches between the stage 2 and stage 3 compilers in various files.
1518 These errors are minor differences in some floating-point constants and
1519 can be safely ignored; the stage 3 compiler is correct.
1520
1521 @item rs6000-*-aix
1522 @itemx powerpc-*-aix
1523 Various early versions of each release of the IBM XLC compiler will not
1524 bootstrap GNU CC.  Symptoms include differences between the stage2 and
1525 stage3 object files, and errors when compiling @file{libgcc.a} or
1526 @file{enquire}.  Known problematic releases include: xlc-1.2.1.8,
1527 xlc-1.3.0.0 (distributed with AIX 3.2.5), and xlc-1.3.0.19.  Both
1528 xlc-1.2.1.28 and xlc-1.3.0.24 (PTF 432238) are known to produce working
1529 versions of GNU CC, but most other recent releases correctly bootstrap
1530 GNU CC.
1531
1532 Release 4.3.0 of AIX and ones prior to AIX 3.2.4 include a version of
1533 the IBM assembler which does not accept debugging directives: assembler
1534 updates are available as PTFs.  Also, if you are using AIX 3.2.5 or
1535 greater and the GNU assembler, you must have a version modified after
1536 October 16th, 1995 in order for the GNU C compiler to build.  See the
1537 file @file{README.RS6000} for more details on any of these problems.
1538
1539 GNU CC does not yet support the 64-bit PowerPC instructions.
1540
1541 Objective C does not work on this architecture because it makes assumptions
1542 that are incompatible with the calling conventions.
1543
1544 AIX on the RS/6000 provides support (NLS) for environments outside of
1545 the United States.  Compilers and assemblers use NLS to support
1546 locale-specific representations of various objects including
1547 floating-point numbers ("." vs "," for separating decimal fractions).
1548 There have been problems reported where the library linked with GNU CC
1549 does not produce the same floating-point formats that the assembler
1550 accepts.  If you have this problem, set the LANG environment variable to
1551 "C" or "En_US".
1552
1553 Due to changes in the way that GNU CC invokes the binder (linker) for AIX
1554 4.1, you may now receive warnings of duplicate symbols from the link step
1555 that were not reported before.  The assembly files generated by GNU CC for
1556 AIX have always included multiple symbol definitions for certain global
1557 variable and function declarations in the original program.  The warnings
1558 should not prevent the linker from producing a correct library or runnable
1559 executable.
1560
1561 By default, AIX 4.1 produces code that can be used on either Power or
1562 PowerPC processors.
1563
1564 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1565 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1566
1567 @item powerpc-*-elf
1568 @itemx powerpc-*-sysv4
1569 PowerPC system in big endian mode, running System V.4.
1570
1571 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1572 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1573
1574 @item powerpc-*-linux
1575 @itemx powerpc-*-linux-gnu
1576 PowerPC system in big endian mode, running the Linux-based GNU system.
1577
1578 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1579 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1580
1581 @item powerpc-*-eabiaix
1582 Embedded PowerPC system in big endian mode with -mcall-aix selected as
1583 the default.
1584
1585 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1586 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1587
1588 @item powerpc-*-eabisim
1589 Embedded PowerPC system in big endian mode for use in running under the
1590 PSIM simulator.
1591
1592 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1593 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1594
1595 @item powerpc-*-eabi
1596 Embedded PowerPC system in big endian mode.
1597
1598 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1599 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1600
1601 @item powerpcle-*-elf
1602 @itemx powerpcle-*-sysv4
1603 PowerPC system in little endian mode, running System V.4.
1604
1605 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1606 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1607
1608 @item powerpcle-*-solaris2*
1609 PowerPC system in little endian mode, running Solaris 2.5.1 or higher.
1610
1611 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1612 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1613 Beta versions of the Sun 4.0 compiler do not seem to be able to build
1614 GNU CC correctly.  There are also problems with the host assembler and
1615 linker that are fixed by using the GNU versions of these tools.
1616
1617 @item powerpcle-*-eabisim
1618 Embedded PowerPC system in little endian mode for use in running under
1619 the PSIM simulator.
1620
1621 @itemx powerpcle-*-eabi
1622 Embedded PowerPC system in little endian mode.
1623
1624 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1625 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1626
1627 @item powerpcle-*-winnt
1628 @itemx powerpcle-*-pe
1629 PowerPC system in little endian mode running Windows NT.
1630
1631 You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
1632 switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
1633
1634 @item vax-dec-ultrix
1635 Don't try compiling with Vax C (@code{vcc}).  It produces incorrect code
1636 in some cases (for example, when @code{alloca} is used).
1637
1638 Meanwhile, compiling @file{cp/parse.c} with pcc does not work because of
1639 an internal table size limitation in that compiler.  To avoid this
1640 problem, compile just the GNU C compiler first, and use it to recompile
1641 building all the languages that you want to run.
1642
1643 @item sparc-sun-*
1644 See @ref{Sun Install}, for information on installing GNU CC on Sun
1645 systems.
1646
1647 @item vax-dec-vms
1648 See @ref{VMS Install}, for details on how to install GNU CC on VMS.
1649
1650 @item we32k-*-*
1651 These computers are also known as the 3b2, 3b5, 3b20 and other similar
1652 names.  (However, the 3b1 is actually a 68000; see
1653 @ref{Configurations}.)
1654
1655 Don't use @samp{-g} when compiling with the system's compiler.  The
1656 system's linker seems to be unable to handle such a large program with
1657 debugging information.
1658
1659 The system's compiler runs out of capacity when compiling @file{stmt.c}
1660 in GNU CC.  You can work around this by building @file{cpp} in GNU CC
1661 first, then use that instead of the system's preprocessor with the
1662 system's C compiler to compile @file{stmt.c}.  Here is how:
1663
1664 @smallexample
1665 mv /lib/cpp /lib/cpp.att
1666 cp cpp /lib/cpp.gnu
1667 echo '/lib/cpp.gnu -traditional $@{1+"$@@"@}' > /lib/cpp
1668 chmod +x /lib/cpp
1669 @end smallexample
1670
1671 The system's compiler produces bad code for some of the GNU CC
1672 optimization files.  So you must build the stage 2 compiler without
1673 optimization.  Then build a stage 3 compiler with optimization.
1674 That executable should work.  Here are the necessary commands:
1675
1676 @smallexample
1677 make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
1678 make stage2
1679 make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"
1680 @end smallexample
1681
1682 You may need to raise the ULIMIT setting to build a C++ compiler,
1683 as the file @file{cc1plus} is larger than one megabyte.
1684 @end table
1685
1686 @node Other Dir
1687 @section Compilation in a Separate Directory
1688 @cindex other directory, compilation in
1689 @cindex compilation in a separate directory
1690 @cindex separate directory, compilation in
1691
1692 If you wish to build the object files and executables in a directory
1693 other than the one containing the source files, here is what you must
1694 do differently:
1695
1696 @enumerate
1697 @item
1698 Make sure you have a version of Make that supports the @code{VPATH}
1699 feature.  (GNU Make supports it, as do Make versions on most BSD
1700 systems.)
1701
1702 @item
1703 If you have ever run @file{configure} in the source directory, you must undo
1704 the configuration.  Do this by running:
1705
1706 @example
1707 make distclean
1708 @end example
1709
1710 @item
1711 Go to the directory in which you want to build the compiler before
1712 running @file{configure}:
1713
1714 @example
1715 mkdir gcc-sun3
1716 cd gcc-sun3
1717 @end example
1718
1719 On systems that do not support symbolic links, this directory must be
1720 on the same file system as the source code directory.
1721
1722 @item
1723 Specify where to find @file{configure} when you run it:
1724
1725 @example
1726 ../gcc/configure @dots{}
1727 @end example
1728
1729 This also tells @code{configure} where to find the compiler sources;
1730 @code{configure} takes the directory from the file name that was used to
1731 invoke it.  But if you want to be sure, you can specify the source
1732 directory with the @samp{--srcdir} option, like this:
1733
1734 @example
1735 ../gcc/configure --srcdir=../gcc @var{other options}
1736 @end example
1737
1738 The directory you specify with @samp{--srcdir} need not be the same
1739 as the one that @code{configure} is found in.
1740 @end enumerate
1741
1742 Now, you can run @code{make} in that directory.  You need not repeat the
1743 configuration steps shown above, when ordinary source files change.  You
1744 must, however, run @code{configure} again when the configuration files
1745 change, if your system does not support symbolic links.
1746
1747 @node Cross-Compiler
1748 @section Building and Installing a Cross-Compiler
1749 @cindex cross-compiler, installation
1750
1751 GNU CC can function as a cross-compiler for many machines, but not all.
1752
1753 @itemize @bullet
1754 @item
1755 Cross-compilers for the Mips as target using the Mips assembler
1756 currently do not work, because the auxiliary programs
1757 @file{mips-tdump.c} and @file{mips-tfile.c} can't be compiled on
1758 anything but a Mips.  It does work to cross compile for a Mips
1759 if you use the GNU assembler and linker.
1760
1761 @item
1762 Cross-compilers between machines with different floating point formats
1763 have not all been made to work.  GNU CC now has a floating point
1764 emulator with which these can work, but each target machine description
1765 needs to be updated to take advantage of it.
1766
1767 @item
1768 Cross-compilation between machines of different word sizes is
1769 somewhat problematic and sometimes does not work.
1770 @end itemize
1771
1772 Since GNU CC generates assembler code, you probably need a
1773 cross-assembler that GNU CC can run, in order to produce object files.
1774 If you want to link on other than the target machine, you need a
1775 cross-linker as well.  You also need header files and libraries suitable
1776 for the target machine that you can install on the host machine.
1777
1778 @menu
1779 * Steps of Cross::      Using a cross-compiler involves several steps
1780                           that may be carried out on different machines.
1781 * Configure Cross::     Configuring a cross-compiler.
1782 * Tools and Libraries:: Where to put the linker and assembler, and the C library.
1783 * Cross Headers::       Finding and installing header files
1784                           for a cross-compiler.
1785 * Cross Runtime::       Supplying arithmetic runtime routines (@file{libgcc1.a}).
1786 * Build Cross::         Actually compiling the cross-compiler.
1787 @end menu
1788
1789 @node Steps of Cross
1790 @subsection Steps of Cross-Compilation
1791
1792 To compile and run a program using a cross-compiler involves several
1793 steps:
1794
1795 @itemize @bullet
1796 @item
1797 Run the cross-compiler on the host machine to produce assembler files
1798 for the target machine.  This requires header files for the target
1799 machine.
1800
1801 @item
1802 Assemble the files produced by the cross-compiler.  You can do this
1803 either with an assembler on the target machine, or with a
1804 cross-assembler on the host machine.
1805
1806 @item
1807 Link those files to make an executable.  You can do this either with a
1808 linker on the target machine, or with a cross-linker on the host
1809 machine.  Whichever machine you use, you need libraries and certain
1810 startup files (typically @file{crt@dots{}.o}) for the target machine.
1811 @end itemize
1812
1813 It is most convenient to do all of these steps on the same host machine,
1814 since then you can do it all with a single invocation of GNU CC.  This
1815 requires a suitable cross-assembler and cross-linker.  For some targets,
1816 the GNU assembler and linker are available.
1817
1818 @node Configure Cross
1819 @subsection Configuring a Cross-Compiler
1820
1821 To build GNU CC as a cross-compiler, you start out by running
1822 @file{configure}.  Use the @samp{--target=@var{target}} to specify the
1823 target type.  If @file{configure} was unable to correctly identify the
1824 system you are running on, also specify the @samp{--build=@var{build}}
1825 option.  For example, here is how to configure for a cross-compiler that
1826 produces code for an HP 68030 system running BSD on a system that
1827 @file{configure} can correctly identify:
1828
1829 @smallexample
1830 ./configure --target=m68k-hp-bsd4.3
1831 @end smallexample
1832
1833 @node Tools and Libraries
1834 @subsection Tools and Libraries for a Cross-Compiler
1835
1836 If you have a cross-assembler and cross-linker available, you should
1837 install them now.  Put them in the directory
1838 @file{/usr/local/@var{target}/bin}.  Here is a table of the tools
1839 you should put in this directory:
1840
1841 @table @file
1842 @item as
1843 This should be the cross-assembler.
1844
1845 @item ld
1846 This should be the cross-linker.
1847
1848 @item ar
1849 This should be the cross-archiver: a program which can manipulate
1850 archive files (linker libraries) in the target machine's format.
1851
1852 @item ranlib
1853 This should be a program to construct a symbol table in an archive file.
1854 @end table
1855
1856 The installation of GNU CC will find these programs in that directory,
1857 and copy or link them to the proper place to for the cross-compiler to
1858 find them when run later.
1859
1860 The easiest way to provide these files is to build the Binutils package
1861 and GAS.  Configure them with the same @samp{--host} and @samp{--target}
1862 options that you use for configuring GNU CC, then build and install
1863 them.  They install their executables automatically into the proper
1864 directory.  Alas, they do not support all the targets that GNU CC
1865 supports.
1866
1867 If you want to install libraries to use with the cross-compiler, such as
1868 a standard C library, put them in the directory
1869 @file{/usr/local/@var{target}/lib}; installation of GNU CC copies
1870 all the files in that subdirectory into the proper place for GNU CC to
1871 find them and link with them.  Here's an example of copying some
1872 libraries from a target machine:
1873
1874 @example
1875 ftp @var{target-machine}
1876 lcd /usr/local/@var{target}/lib
1877 cd /lib
1878 get libc.a
1879 cd /usr/lib
1880 get libg.a
1881 get libm.a
1882 quit
1883 @end example
1884
1885 @noindent
1886 The precise set of libraries you'll need, and their locations on
1887 the target machine, vary depending on its operating system.
1888
1889 @cindex start files
1890 Many targets require ``start files'' such as @file{crt0.o} and
1891 @file{crtn.o} which are linked into each executable; these too should be
1892 placed in @file{/usr/local/@var{target}/lib}.  There may be several
1893 alternatives for @file{crt0.o}, for use with profiling or other
1894 compilation options.  Check your target's definition of
1895 @code{STARTFILE_SPEC} to find out what start files it uses.
1896 Here's an example of copying these files from a target machine:
1897
1898 @example
1899 ftp @var{target-machine}
1900 lcd /usr/local/@var{target}/lib
1901 prompt
1902 cd /lib
1903 mget *crt*.o
1904 cd /usr/lib
1905 mget *crt*.o
1906 quit
1907 @end example
1908
1909 @node Cross Runtime
1910 @subsection @file{libgcc.a} and Cross-Compilers
1911
1912 Code compiled by GNU CC uses certain runtime support functions
1913 implicitly.  Some of these functions can be compiled successfully with
1914 GNU CC itself, but a few cannot be.  These problem functions are in the
1915 source file @file{libgcc1.c}; the library made from them is called
1916 @file{libgcc1.a}.
1917
1918 When you build a native compiler, these functions are compiled with some
1919 other compiler--the one that you use for bootstrapping GNU CC.
1920 Presumably it knows how to open code these operations, or else knows how
1921 to call the run-time emulation facilities that the machine comes with.
1922 But this approach doesn't work for building a cross-compiler.  The
1923 compiler that you use for building knows about the host system, not the
1924 target system.
1925
1926 So, when you build a cross-compiler you have to supply a suitable
1927 library @file{libgcc1.a} that does the job it is expected to do.
1928
1929 To compile @file{libgcc1.c} with the cross-compiler itself does not
1930 work.  The functions in this file are supposed to implement arithmetic
1931 operations that GNU CC does not know how to open code for your target
1932 machine.  If these functions are compiled with GNU CC itself, they
1933 will compile into infinite recursion.
1934
1935 On any given target, most of these functions are not needed.  If GNU CC
1936 can open code an arithmetic operation, it will not call these functions
1937 to perform the operation.  It is possible that on your target machine,
1938 none of these functions is needed.  If so, you can supply an empty
1939 library as @file{libgcc1.a}.
1940
1941 Many targets need library support only for multiplication and division.
1942 If you are linking with a library that contains functions for
1943 multiplication and division, you can tell GNU CC to call them directly
1944 by defining the macros @code{MULSI3_LIBCALL}, and the like.  These
1945 macros need to be defined in the target description macro file.  For
1946 some targets, they are defined already.  This may be sufficient to
1947 avoid the need for libgcc1.a; if so, you can supply an empty library.
1948
1949 Some targets do not have floating point instructions; they need other
1950 functions in @file{libgcc1.a}, which do floating arithmetic.
1951 Recent versions of GNU CC have a file which emulates floating point.
1952 With a certain amount of work, you should be able to construct a
1953 floating point emulator that can be used as @file{libgcc1.a}.  Perhaps
1954 future versions will contain code to do this automatically and
1955 conveniently.  That depends on whether someone wants to implement it.
1956
1957 Some embedded targets come with all the necessary @file{libgcc1.a}
1958 routines written in C or assembler.  These targets build
1959 @file{libgcc1.a} automatically and you do not need to do anything
1960 special for them.  Other embedded targets do not need any
1961 @file{libgcc1.a} routines since all the necessary operations are
1962 supported by the hardware.
1963
1964 If your target system has another C compiler, you can configure GNU CC
1965 as a native compiler on that machine, build just @file{libgcc1.a} with
1966 @samp{make libgcc1.a} on that machine, and use the resulting file with
1967 the cross-compiler.  To do this, execute the following on the target
1968 machine:
1969
1970 @example
1971 cd @var{target-build-dir}
1972 ./configure --host=sparc --target=sun3
1973 make libgcc1.a
1974 @end example
1975
1976 @noindent
1977 And then this on the host machine:
1978
1979 @example
1980 ftp @var{target-machine}
1981 binary
1982 cd @var{target-build-dir}
1983 get libgcc1.a
1984 quit
1985 @end example
1986
1987 Another way to provide the functions you need in @file{libgcc1.a} is to
1988 define the appropriate @code{perform_@dots{}} macros for those
1989 functions.  If these definitions do not use the C arithmetic operators
1990 that they are meant to implement, you should be able to compile them
1991 with the cross-compiler you are building.  (If these definitions already
1992 exist for your target file, then you are all set.)
1993
1994 To build @file{libgcc1.a} using the perform macros, use
1995 @samp{LIBGCC1=libgcc1.a OLDCC=./xgcc} when building the compiler.
1996 Otherwise, you should place your replacement library under the name
1997 @file{libgcc1.a} in the directory in which you will build the
1998 cross-compiler, before you run @code{make}.
1999
2000 @node Cross Headers
2001 @subsection Cross-Compilers and Header Files
2002
2003 If you are cross-compiling a standalone program or a program for an
2004 embedded system, then you may not need any header files except the few
2005 that are part of GNU CC (and those of your program).  However, if you
2006 intend to link your program with a standard C library such as
2007 @file{libc.a}, then you probably need to compile with the header files
2008 that go with the library you use.
2009
2010 The GNU C compiler does not come with these files, because (1) they are
2011 system-specific, and (2) they belong in a C library, not in a compiler.
2012
2013 If the GNU C library supports your target machine, then you can get the
2014 header files from there (assuming you actually use the GNU library when
2015 you link your program).
2016
2017 If your target machine comes with a C compiler, it probably comes with
2018 suitable header files also.  If you make these files accessible from the host
2019 machine, the cross-compiler can use them also.
2020
2021 Otherwise, you're on your own in finding header files to use when
2022 cross-compiling.
2023
2024 When you have found suitable header files, put them in the directory
2025 @file{/usr/local/@var{target}/include}, before building the cross
2026 compiler.  Then installation will run fixincludes properly and install
2027 the corrected versions of the header files where the compiler will use
2028 them.
2029
2030 Provide the header files before you build the cross-compiler, because
2031 the build stage actually runs the cross-compiler to produce parts of
2032 @file{libgcc.a}.  (These are the parts that @emph{can} be compiled with
2033 GNU CC.)  Some of them need suitable header files.
2034
2035 Here's an example showing how to copy the header files from a target
2036 machine.  On the target machine, do this:
2037
2038 @example
2039 (cd /usr/include; tar cf - .) > tarfile
2040 @end example
2041
2042 Then, on the host machine, do this:
2043
2044 @example
2045 ftp @var{target-machine}
2046 lcd /usr/local/@var{target}/include
2047 get tarfile
2048 quit
2049 tar xf tarfile
2050 @end example
2051
2052 @node Build Cross
2053 @subsection Actually Building the Cross-Compiler
2054
2055 Now you can proceed just as for compiling a single-machine compiler
2056 through the step of building stage 1.  If you have not provided some
2057 sort of @file{libgcc1.a}, then compilation will give up at the point
2058 where it needs that file, printing a suitable error message.  If you
2059 do provide @file{libgcc1.a}, then building the compiler will automatically
2060 compile and link a test program called @file{libgcc1-test}; if you get
2061 errors in the linking, it means that not all of the necessary routines
2062 in @file{libgcc1.a} are available.
2063
2064 You must provide the header file @file{float.h}.  One way to do this is
2065 to compile @file{enquire} and run it on your target machine.  The job of
2066 @file{enquire} is to run on the target machine and figure out by
2067 experiment the nature of its floating point representation.
2068 @file{enquire} records its findings in the header file @file{float.h}.
2069 If you can't produce this file by running @file{enquire} on the target
2070 machine, then you will need to come up with a suitable @file{float.h} in
2071 some other way (or else, avoid using it in your programs).
2072
2073 Do not try to build stage 2 for a cross-compiler.  It doesn't work to
2074 rebuild GNU CC as a cross-compiler using the cross-compiler, because
2075 that would produce a program that runs on the target machine, not on the
2076 host.  For example, if you compile a 386-to-68030 cross-compiler with
2077 itself, the result will not be right either for the 386 (because it was
2078 compiled into 68030 code) or for the 68030 (because it was configured
2079 for a 386 as the host).  If you want to compile GNU CC into 68030 code,
2080 whether you compile it on a 68030 or with a cross-compiler on a 386, you
2081 must specify a 68030 as the host when you configure it.
2082
2083 To install the cross-compiler, use @samp{make install}, as usual.
2084
2085 @node Sun Install
2086 @section Installing GNU CC on the Sun
2087 @cindex Sun installation
2088 @cindex installing GNU CC on the Sun
2089
2090 On Solaris, do not use the linker or other tools in
2091 @file{/usr/ucb} to build GNU CC.  Use @code{/usr/ccs/bin}.
2092
2093 If the assembler reports @samp{Error: misaligned data} when bootstrapping,
2094 you are probably using an obsolete version of the GNU assembler.  Upgrade
2095 to the latest version of GNU @code{binutils}, or use the Solaris assembler.
2096
2097 Make sure the environment variable @code{FLOAT_OPTION} is not set when
2098 you compile @file{libgcc.a}.  If this option were set to @code{f68881}
2099 when @file{libgcc.a} is compiled, the resulting code would demand to be
2100 linked with a special startup file and would not link properly without
2101 special pains.
2102
2103 @cindex @code{alloca}, for SunOS
2104 There is a bug in @code{alloca} in certain versions of the Sun library.
2105 To avoid this bug, install the binaries of GNU CC that were compiled by
2106 GNU CC.  They use @code{alloca} as a built-in function and never the one
2107 in the library.
2108
2109 Some versions of the Sun compiler crash when compiling GNU CC.  The
2110 problem is a segmentation fault in cpp.  This problem seems to be due to
2111 the bulk of data in the environment variables.  You may be able to avoid
2112 it by using the following command to compile GNU CC with Sun CC:
2113
2114 @example
2115 make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"
2116 @end example
2117
2118 SunOS 4.1.3 and 4.1.3_U1 have bugs that can cause intermittent core
2119 dumps when compiling GNU CC.  A common symptom is an
2120 internal compiler error which does not recur if you run it again.
2121 To fix the problem, install Sun recommended patch 100726 (for SunOS 4.1.3)
2122 or 101508 (for SunOS 4.1.3_U1), or upgrade to a later SunOS release.
2123
2124 @node VMS Install
2125 @section Installing GNU CC on VMS
2126 @cindex VMS installation
2127 @cindex installing GNU CC on VMS
2128
2129 The VMS version of GNU CC is distributed in a backup saveset containing
2130 both source code and precompiled binaries.
2131
2132 To install the @file{gcc} command so you can use the compiler easily, in
2133 the same manner as you use the VMS C compiler, you must install the VMS CLD
2134 file for GNU CC as follows:
2135
2136 @enumerate
2137 @item
2138 Define the VMS logical names @samp{GNU_CC} and @samp{GNU_CC_INCLUDE}
2139 to point to the directories where the GNU CC executables
2140 (@file{gcc-cpp.exe}, @file{gcc-cc1.exe}, etc.) and the C include files are
2141 kept respectively.  This should be done with the commands:@refill
2142
2143 @smallexample
2144 $ assign /system /translation=concealed -
2145   disk:[gcc.] gnu_cc
2146 $ assign /system /translation=concealed -
2147   disk:[gcc.include.] gnu_cc_include
2148 @end smallexample
2149
2150 @noindent
2151 with the appropriate disk and directory names.  These commands can be
2152 placed in your system startup file so they will be executed whenever
2153 the machine is rebooted.  You may, if you choose, do this via the
2154 @file{GCC_INSTALL.COM} script in the @file{[GCC]} directory.
2155
2156 @item
2157 Install the @file{GCC} command with the command line:
2158
2159 @smallexample
2160 $ set command /table=sys$common:[syslib]dcltables -
2161   /output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc
2162 $ install replace sys$common:[syslib]dcltables
2163 @end smallexample
2164
2165 @item
2166 To install the help file, do the following:
2167
2168 @smallexample
2169 $ library/help sys$library:helplib.hlb gcc.hlp
2170 @end smallexample
2171
2172 @noindent
2173 Now you can invoke the compiler with a command like @samp{gcc /verbose
2174 file.c}, which is equivalent to the command @samp{gcc -v -c file.c} in
2175 Unix.
2176 @end enumerate
2177
2178 If you wish to use GNU C++ you must first install GNU CC, and then
2179 perform the following steps:
2180
2181 @enumerate
2182 @item
2183 Define the VMS logical name @samp{GNU_GXX_INCLUDE} to point to the
2184 directory where the preprocessor will search for the C++ header files.
2185 This can be done with the command:@refill
2186
2187 @smallexample
2188 $ assign /system /translation=concealed -
2189   disk:[gcc.gxx_include.] gnu_gxx_include
2190 @end smallexample
2191
2192 @noindent
2193 with the appropriate disk and directory name.  If you are going to be
2194 using a C++ runtime library, this is where its install procedure will install
2195 its header files.
2196
2197 @item
2198 Obtain the file @file{gcc-cc1plus.exe}, and place this in the same
2199 directory that @file{gcc-cc1.exe} is kept.
2200
2201 The GNU C++ compiler can be invoked with a command like @samp{gcc /plus
2202 /verbose file.cc}, which is equivalent to the command @samp{g++ -v -c
2203 file.cc} in Unix.
2204 @end enumerate
2205
2206 We try to put corresponding binaries and sources on the VMS distribution
2207 tape.  But sometimes the binaries will be from an older version than the
2208 sources, because we don't always have time to update them.  (Use the
2209 @samp{/version} option to determine the version number of the binaries and
2210 compare it with the source file @file{version.c} to tell whether this is
2211 so.)  In this case, you should use the binaries you get to recompile the
2212 sources.  If you must recompile, here is how:
2213
2214 @enumerate
2215 @item
2216 Execute the command procedure @file{vmsconfig.com} to set up the files
2217 @file{tm.h}, @file{config.h}, @file{aux-output.c}, and @file{md.}, and
2218 to create files @file{tconfig.h} and @file{hconfig.h}.  This procedure
2219 also creates several linker option files used by @file{make-cc1.com} and
2220 a data file used by @file{make-l2.com}.@refill
2221
2222 @smallexample
2223 $ @@vmsconfig.com
2224 @end smallexample
2225
2226 @item
2227 Setup the logical names and command tables as defined above.  In
2228 addition, define the VMS logical name @samp{GNU_BISON} to point at the
2229 to the directories where the Bison executable is kept.  This should be
2230 done with the command:@refill
2231
2232 @smallexample
2233 $ assign /system /translation=concealed -
2234   disk:[bison.] gnu_bison
2235 @end smallexample
2236
2237 You may, if you choose, use the @file{INSTALL_BISON.COM} script in the
2238 @file{[BISON]} directory.
2239
2240 @item
2241 Install the @samp{BISON} command with the command line:@refill
2242
2243 @smallexample
2244 $ set command /table=sys$common:[syslib]dcltables -
2245   /output=sys$common:[syslib]dcltables -
2246   gnu_bison:[000000]bison
2247 $ install replace sys$common:[syslib]dcltables
2248 @end smallexample
2249
2250 @item
2251 Type @samp{@@make-gcc} to recompile everything (alternatively, submit
2252 the file @file{make-gcc.com} to a batch queue).  If you wish to build
2253 the GNU C++ compiler as well as the GNU CC compiler, you must first edit
2254 @file{make-gcc.com} and follow the instructions that appear in the
2255 comments.@refill
2256
2257 @item
2258 In order to use GCC, you need a library of functions which GCC compiled code
2259 will call to perform certain tasks, and these functions are defined in the
2260 file @file{libgcc2.c}.  To compile this you should use the command procedure
2261 @file{make-l2.com}, which will generate the library @file{libgcc2.olb}.
2262 @file{libgcc2.olb} should be built using the compiler built from
2263 the same distribution that @file{libgcc2.c} came from, and
2264 @file{make-gcc.com} will automatically do all of this for you.
2265
2266 To install the library, use the following commands:@refill
2267
2268 @smallexample
2269 $ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
2270 $ library gnu_cc:[000000]gcclib/delete=L_*
2271 $ library libgcc2/extract=*/output=libgcc2.obj
2272 $ library gnu_cc:[000000]gcclib libgcc2.obj
2273 @end smallexample
2274
2275 The first command simply removes old modules that will be replaced with
2276 modules from @file{libgcc2} under different module names.  The modules
2277 @code{new} and @code{eprintf} may not actually be present in your
2278 @file{gcclib.olb}---if the VMS librarian complains about those modules
2279 not being present, simply ignore the message and continue on with the
2280 next command.  The second command removes the modules that came from the
2281 previous version of the library @file{libgcc2.c}.
2282
2283 Whenever you update the compiler on your system, you should also update the
2284 library with the above procedure.
2285
2286 @item
2287 You may wish to build GCC in such a way that no files are written to the
2288 directory where the source files reside.  An example would be the when
2289 the source files are on a read-only disk.  In these cases, execute the
2290 following DCL commands (substituting your actual path names):
2291
2292 @smallexample
2293 $ assign dua0:[gcc.build_dir.]/translation=concealed, -
2294          dua1:[gcc.source_dir.]/translation=concealed  gcc_build
2295 $ set default gcc_build:[000000]
2296 @end smallexample
2297
2298 @noindent
2299 where the directory @file{dua1:[gcc.source_dir]} contains the source
2300 code, and the directory @file{dua0:[gcc.build_dir]} is meant to contain
2301 all of the generated object files and executables.  Once you have done
2302 this, you can proceed building GCC as described above.  (Keep in mind
2303 that @file{gcc_build} is a rooted logical name, and thus the device
2304 names in each element of the search list must be an actual physical
2305 device name rather than another rooted logical name).
2306
2307 @item
2308 @strong{If you are building GNU CC with a previous version of GNU CC,
2309 you also should check to see that you have the newest version of the
2310 assembler}.  In particular, GNU CC version 2 treats global constant
2311 variables slightly differently from GNU CC version 1, and GAS version
2312 1.38.1 does not have the patches required to work with GCC version 2.
2313 If you use GAS 1.38.1, then @code{extern const} variables will not have
2314 the read-only bit set, and the linker will generate warning messages
2315 about mismatched psect attributes for these variables.  These warning
2316 messages are merely a nuisance, and can safely be ignored.
2317
2318 If you are compiling with a version of GNU CC older than 1.33, specify
2319 @samp{/DEFINE=("inline=")} as an option in all the compilations.  This
2320 requires editing all the @code{gcc} commands in @file{make-cc1.com}.
2321 (The older versions had problems supporting @code{inline}.)  Once you
2322 have a working 1.33 or newer GNU CC, you can change this file back.
2323
2324 @item
2325 If you want to build GNU CC with the VAX C compiler, you will need to
2326 make minor changes in @file{make-cccp.com} and @file{make-cc1.com}
2327 to choose alternate definitions of @code{CC}, @code{CFLAGS}, and
2328 @code{LIBS}.  See comments in those files.  However, you must
2329 also have a working version of the GNU assembler (GNU as, aka GAS) as
2330 it is used as the back-end for GNU CC to produce binary object modules
2331 and is not included in the GNU CC sources.  GAS is also needed to
2332 compile @file{libgcc2} in order to build @file{gcclib} (see above);
2333 @file{make-l2.com} expects to be able to find it operational in
2334 @file{gnu_cc:[000000]gnu-as.exe}.
2335
2336 To use GNU CC on VMS, you need the VMS driver programs
2337 @file{gcc.exe}, @file{gcc.com}, and @file{gcc.cld}.  They are
2338 distributed with the VMS binaries (@file{gcc-vms}) rather than the
2339 GNU CC sources.  GAS is also included in @file{gcc-vms}, as is Bison.
2340
2341 Once you have successfully built GNU CC with VAX C, you should use the
2342 resulting compiler to rebuild itself.  Before doing this, be sure to
2343 restore the @code{CC}, @code{CFLAGS}, and @code{LIBS} definitions in
2344 @file{make-cccp.com} and @file{make-cc1.com}.  The second generation
2345 compiler will be able to take advantage of many optimizations that must
2346 be suppressed when building with other compilers.
2347 @end enumerate
2348
2349 Under previous versions of GNU CC, the generated code would occasionally
2350 give strange results when linked with the sharable @file{VAXCRTL} library.
2351 Now this should work.
2352
2353 Even with this version, however, GNU CC itself should not be linked with
2354 the sharable @file{VAXCRTL}.  The version of @code{qsort} in
2355 @file{VAXCRTL} has a bug (known to be present in VMS versions V4.6
2356 through V5.5) which causes the compiler to fail.
2357
2358 The executables are generated by @file{make-cc1.com} and
2359 @file{make-cccp.com} use the object library version of @file{VAXCRTL} in
2360 order to make use of the @code{qsort} routine in @file{gcclib.olb}.  If
2361 you wish to link the compiler executables with the shareable image
2362 version of @file{VAXCRTL}, you should edit the file @file{tm.h} (created
2363 by @file{vmsconfig.com}) to define the macro @code{QSORT_WORKAROUND}.
2364
2365 @code{QSORT_WORKAROUND} is always defined when GNU CC is compiled with
2366 VAX C, to avoid a problem in case @file{gcclib.olb} is not yet
2367 available.
2368
2369 @node Collect2
2370 @section @code{collect2}
2371
2372 GNU CC uses a utility called @code{collect2} on nearly all systems to arrange
2373 to call various initialization functions at start time.
2374
2375 The program @code{collect2} works by linking the program once and
2376 looking through the linker output file for symbols with particular names
2377 indicating they are constructor functions.  If it finds any, it
2378 creates a new temporary @samp{.c} file containing a table of them,
2379 compiles it, and links the program a second time including that file.
2380
2381 @findex __main
2382 @cindex constructors, automatic calls
2383 The actual calls to the constructors are carried out by a subroutine
2384 called @code{__main}, which is called (automatically) at the beginning
2385 of the body of @code{main} (provided @code{main} was compiled with GNU
2386 CC).  Calling @code{__main} is necessary, even when compiling C code, to
2387 allow linking C and C++ object code together.  (If you use
2388 @samp{-nostdlib}, you get an unresolved reference to @code{__main},
2389 since it's defined in the standard GCC library.  Include @samp{-lgcc} at
2390 the end of your compiler command line to resolve this reference.)
2391
2392 The program @code{collect2} is installed as @code{ld} in the directory
2393 where the passes of the compiler are installed.  When @code{collect2}
2394 needs to find the @emph{real} @code{ld}, it tries the following file
2395 names:
2396
2397 @itemize @bullet
2398 @item
2399 @file{real-ld} in the directories listed in the compiler's search
2400 directories.
2401
2402 @item
2403 @file{real-ld} in the directories listed in the environment variable
2404 @code{PATH}.
2405
2406 @item
2407 The file specified in the @code{REAL_LD_FILE_NAME} configuration macro,
2408 if specified.
2409
2410 @item
2411 @file{ld} in the compiler's search directories, except that
2412 @code{collect2} will not execute itself recursively.
2413
2414 @item
2415 @file{ld} in @code{PATH}.
2416 @end itemize
2417
2418 ``The compiler's search directories'' means all the directories where
2419 @code{gcc} searches for passes of the compiler.  This includes
2420 directories that you specify with @samp{-B}.
2421
2422 Cross-compilers search a little differently:
2423
2424 @itemize @bullet
2425 @item
2426 @file{real-ld} in the compiler's search directories.
2427
2428 @item
2429 @file{@var{target}-real-ld} in @code{PATH}.
2430
2431 @item
2432 The file specified in the @code{REAL_LD_FILE_NAME} configuration macro,
2433 if specified.
2434
2435 @item
2436 @file{ld} in the compiler's search directories.
2437
2438 @item
2439 @file{@var{target}-ld} in @code{PATH}.
2440 @end itemize
2441
2442 @code{collect2} explicitly avoids running @code{ld} using the file name
2443 under which @code{collect2} itself was invoked.  In fact, it remembers
2444 up a list of such names---in case one copy of @code{collect2} finds
2445 another copy (or version) of @code{collect2} installed as @code{ld} in a
2446 second place in the search path.
2447
2448 @code{collect2} searches for the utilities @code{nm} and @code{strip}
2449 using the same algorithm as above for @code{ld}.
2450
2451 @node Header Dirs
2452 @section Standard Header File Directories
2453
2454 @code{GCC_INCLUDE_DIR} means the same thing for native and cross.  It is
2455 where GNU CC stores its private include files, and also where GNU CC
2456 stores the fixed include files.  A cross compiled GNU CC runs
2457 @code{fixincludes} on the header files in @file{$(tooldir)/include}.
2458 (If the cross compilation header files need to be fixed, they must be
2459 installed before GNU CC is built.  If the cross compilation header files
2460 are already suitable for ANSI C and GNU CC, nothing special need be
2461 done).
2462
2463 @code{GPLUSPLUS_INCLUDE_DIR} means the same thing for native and cross.  It
2464 is where @code{g++} looks first for header files.  The C++ library
2465 installs only target independent header files in that directory.
2466
2467 @code{LOCAL_INCLUDE_DIR} is used only for a native compiler.  It is
2468 normally @file{/usr/local/include}.  GNU CC searches this directory so
2469 that users can install header files in @file{/usr/local/include}.
2470
2471 @code{CROSS_INCLUDE_DIR} is used only for a cross compiler.  GNU CC
2472 doesn't install anything there.
2473
2474 @code{TOOL_INCLUDE_DIR} is used for both native and cross compilers.  It
2475 is the place for other packages to install header files that GNU CC will
2476 use.  For a cross-compiler, this is the equivalent of
2477 @file{/usr/include}.  When you build a cross-compiler,
2478 @code{fixincludes} processes any header files in this directory.