OSDN Git Service

562a5afa9840ea632f3f7e17030f49e0445e910c
[pf3gnuchains/gcc-fork.git] / gcc / go / gofrontend / gogo-tree.cc
1 // gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "tree.h"
18 #include "gimple.h"
19 #include "tree-iterator.h"
20 #include "cgraph.h"
21 #include "langhooks.h"
22 #include "convert.h"
23 #include "output.h"
24 #include "diagnostic.h"
25
26 #ifndef ENABLE_BUILD_WITH_CXX
27 }
28 #endif
29
30 #include "go-c.h"
31 #include "types.h"
32 #include "expressions.h"
33 #include "statements.h"
34 #include "gogo.h"
35
36 // Whether we have seen any errors.
37
38 bool
39 saw_errors()
40 {
41   return errorcount != 0 || sorrycount != 0;
42 }
43
44 // A helper function.
45
46 static inline tree
47 get_identifier_from_string(const std::string& str)
48 {
49   return get_identifier_with_length(str.data(), str.length());
50 }
51
52 // Builtin functions.
53
54 static std::map<std::string, tree> builtin_functions;
55
56 // Define a builtin function.  BCODE is the builtin function code
57 // defined by builtins.def.  NAME is the name of the builtin function.
58 // LIBNAME is the name of the corresponding library function, and is
59 // NULL if there isn't one.  FNTYPE is the type of the function.
60 // CONST_P is true if the function has the const attribute.
61
62 static void
63 define_builtin(built_in_function bcode, const char* name, const char* libname,
64                tree fntype, bool const_p)
65 {
66   tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
67                                    libname, NULL_TREE);
68   if (const_p)
69     TREE_READONLY(decl) = 1;
70   built_in_decls[bcode] = decl;
71   implicit_built_in_decls[bcode] = decl;
72   builtin_functions[name] = decl;
73   if (libname != NULL)
74     {
75       decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
76                                   NULL, NULL_TREE);
77       if (const_p)
78         TREE_READONLY(decl) = 1;
79       builtin_functions[libname] = decl;
80     }
81 }
82
83 // Create trees for implicit builtin functions.
84
85 void
86 Gogo::define_builtin_function_trees()
87 {
88   /* We need to define the fetch_and_add functions, since we use them
89      for ++ and --.  */
90   tree t = go_type_for_size(BITS_PER_UNIT, 1);
91   tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
92   define_builtin(BUILT_IN_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
93                  build_function_type_list(t, p, t, NULL_TREE), false);
94
95   t = go_type_for_size(BITS_PER_UNIT * 2, 1);
96   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
97   define_builtin (BUILT_IN_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
98                   build_function_type_list(t, p, t, NULL_TREE), false);
99
100   t = go_type_for_size(BITS_PER_UNIT * 4, 1);
101   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
102   define_builtin(BUILT_IN_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
103                  build_function_type_list(t, p, t, NULL_TREE), false);
104
105   t = go_type_for_size(BITS_PER_UNIT * 8, 1);
106   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
107   define_builtin(BUILT_IN_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
108                  build_function_type_list(t, p, t, NULL_TREE), false);
109
110   // We use __builtin_expect for magic import functions.
111   define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
112                  build_function_type_list(long_integer_type_node,
113                                           long_integer_type_node,
114                                           long_integer_type_node,
115                                           NULL_TREE),
116                  true);
117
118   // We use __builtin_memmove for the predeclared copy function.
119   define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
120                  build_function_type_list(ptr_type_node,
121                                           ptr_type_node,
122                                           const_ptr_type_node,
123                                           size_type_node,
124                                           NULL_TREE),
125                  false);
126
127   // We provide sqrt for the math library.
128   define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
129                  build_function_type_list(double_type_node,
130                                           double_type_node,
131                                           NULL_TREE),
132                  true);
133   define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
134                  build_function_type_list(long_double_type_node,
135                                           long_double_type_node,
136                                           NULL_TREE),
137                  true);
138
139   // We use __builtin_return_address in the thunk we build for
140   // functions which call recover.
141   define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
142                  build_function_type_list(ptr_type_node,
143                                           unsigned_type_node,
144                                           NULL_TREE),
145                  false);
146
147   // The compiler uses __builtin_trap for some exception handling
148   // cases.
149   define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
150                  build_function_type(void_type_node, void_list_node),
151                  false);
152 }
153
154 // Get the name to use for the import control function.  If there is a
155 // global function or variable, then we know that that name must be
156 // unique in the link, and we use it as the basis for our name.
157
158 const std::string&
159 Gogo::get_init_fn_name()
160 {
161   if (this->init_fn_name_.empty())
162     {
163       gcc_assert(this->package_ != NULL);
164       if (this->is_main_package())
165         {
166           // Use a name which the runtime knows.
167           this->init_fn_name_ = "__go_init_main";
168         }
169       else
170         {
171           std::string s = this->unique_prefix();
172           s.append(1, '.');
173           s.append(this->package_name());
174           s.append("..import");
175           this->init_fn_name_ = s;
176         }
177     }
178
179   return this->init_fn_name_;
180 }
181
182 // Add statements to INIT_STMT_LIST which run the initialization
183 // functions for imported packages.  This is only used for the "main"
184 // package.
185
186 void
187 Gogo::init_imports(tree* init_stmt_list)
188 {
189   gcc_assert(this->is_main_package());
190
191   if (this->imported_init_fns_.empty())
192     return;
193
194   tree fntype = build_function_type(void_type_node, void_list_node);
195
196   // We must call them in increasing priority order.
197   std::vector<Import_init> v;
198   for (std::set<Import_init>::const_iterator p =
199          this->imported_init_fns_.begin();
200        p != this->imported_init_fns_.end();
201        ++p)
202     v.push_back(*p);
203   std::sort(v.begin(), v.end());
204
205   for (std::vector<Import_init>::const_iterator p = v.begin();
206        p != v.end();
207        ++p)
208     {
209       std::string user_name = p->package_name() + ".init";
210       tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
211                              get_identifier_from_string(user_name),
212                              fntype);
213       const std::string& init_name(p->init_name());
214       SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
215       TREE_PUBLIC(decl) = 1;
216       DECL_EXTERNAL(decl) = 1;
217       append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
218     }
219 }
220
221 // Register global variables with the garbage collector.  We need to
222 // register all variables which can hold a pointer value.  They become
223 // roots during the mark phase.  We build a struct that is easy to
224 // hook into a list of roots.
225
226 // struct __go_gc_root_list
227 // {
228 //   struct __go_gc_root_list* __next;
229 //   struct __go_gc_root
230 //   {
231 //     void* __decl;
232 //     size_t __size;
233 //   } __roots[];
234 // };
235
236 // The last entry in the roots array has a NULL decl field.
237
238 void
239 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
240                        tree* init_stmt_list)
241 {
242   if (var_gc.empty())
243     return;
244
245   size_t count = var_gc.size();
246
247   tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
248                                         "__next",
249                                         ptr_type_node,
250                                         "__size",
251                                         sizetype);
252
253   tree index_type = build_index_type(size_int(count));
254   tree array_type = build_array_type(root_type, index_type);
255
256   tree root_list_type = make_node(RECORD_TYPE);
257   root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
258                                         root_list_type, 2,
259                                         "__next",
260                                         build_pointer_type(root_list_type),
261                                         "__roots",
262                                         array_type);
263
264   // Build an initialier for the __roots array.
265
266   VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
267                                                   count + 1);
268
269   size_t i = 0;
270   for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
271        p != var_gc.end();
272        ++p, ++i)
273     {
274       VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
275
276       constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
277       tree field = TYPE_FIELDS(root_type);
278       elt->index = field;
279       tree decl = (*p)->get_tree(this, NULL);
280       gcc_assert(TREE_CODE(decl) == VAR_DECL);
281       elt->value = build_fold_addr_expr(decl);
282
283       elt = VEC_quick_push(constructor_elt, init, NULL);
284       field = DECL_CHAIN(field);
285       elt->index = field;
286       elt->value = DECL_SIZE_UNIT(decl);
287
288       elt = VEC_quick_push(constructor_elt, roots_init, NULL);
289       elt->index = size_int(i);
290       elt->value = build_constructor(root_type, init);
291     }
292
293   // The list ends with a NULL entry.
294
295   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
296
297   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
298   tree field = TYPE_FIELDS(root_type);
299   elt->index = field;
300   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
301
302   elt = VEC_quick_push(constructor_elt, init, NULL);
303   field = DECL_CHAIN(field);
304   elt->index = field;
305   elt->value = size_zero_node;
306
307   elt = VEC_quick_push(constructor_elt, roots_init, NULL);
308   elt->index = size_int(i);
309   elt->value = build_constructor(root_type, init);
310
311   // Build a constructor for the struct.
312
313   VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
314
315   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
316   field = TYPE_FIELDS(root_list_type);
317   elt->index = field;
318   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
319
320   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
321   field = DECL_CHAIN(field);
322   elt->index = field;
323   elt->value = build_constructor(array_type, roots_init);
324
325   // Build a decl to register.
326
327   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
328                          create_tmp_var_name("gc"), root_list_type);
329   DECL_EXTERNAL(decl) = 0;
330   TREE_PUBLIC(decl) = 0;
331   TREE_STATIC(decl) = 1;
332   DECL_ARTIFICIAL(decl) = 1;
333   DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
334   rest_of_decl_compilation(decl, 1, 0);
335
336   static tree register_gc_fndecl;
337   tree call = Gogo::call_builtin(&register_gc_fndecl, BUILTINS_LOCATION,
338                                  "__go_register_gc_roots",
339                                  1,
340                                  void_type_node,
341                                  build_pointer_type(root_list_type),
342                                  build_fold_addr_expr(decl));
343   if (call != error_mark_node)
344     append_to_statement_list(call, init_stmt_list);
345 }
346
347 // Build the decl for the initialization function.
348
349 tree
350 Gogo::initialization_function_decl()
351 {
352   // The tedious details of building your own function.  There doesn't
353   // seem to be a helper function for this.
354   std::string name = this->package_name() + ".init";
355   tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
356                            get_identifier_from_string(name),
357                            build_function_type(void_type_node,
358                                                void_list_node));
359   const std::string& asm_name(this->get_init_fn_name());
360   SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
361
362   tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
363                             void_type_node);
364   DECL_ARTIFICIAL(resdecl) = 1;
365   DECL_CONTEXT(resdecl) = fndecl;
366   DECL_RESULT(fndecl) = resdecl;
367
368   TREE_STATIC(fndecl) = 1;
369   TREE_USED(fndecl) = 1;
370   DECL_ARTIFICIAL(fndecl) = 1;
371   TREE_PUBLIC(fndecl) = 1;
372
373   DECL_INITIAL(fndecl) = make_node(BLOCK);
374   TREE_USED(DECL_INITIAL(fndecl)) = 1;
375
376   return fndecl;
377 }
378
379 // Create the magic initialization function.  INIT_STMT_LIST is the
380 // code that it needs to run.
381
382 void
383 Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
384 {
385   // Make sure that we thought we needed an initialization function,
386   // as otherwise we will not have reported it in the export data.
387   gcc_assert(this->is_main_package() || this->need_init_fn_);
388
389   if (fndecl == NULL_TREE)
390     fndecl = this->initialization_function_decl();
391
392   DECL_SAVED_TREE(fndecl) = init_stmt_list;
393
394   current_function_decl = fndecl;
395   if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
396     push_struct_function(fndecl);
397   else
398     push_cfun(DECL_STRUCT_FUNCTION(fndecl));
399   cfun->function_end_locus = BUILTINS_LOCATION;
400
401   gimplify_function_tree(fndecl);
402
403   cgraph_add_new_function(fndecl, false);
404   cgraph_mark_needed_node(cgraph_node(fndecl));
405
406   current_function_decl = NULL_TREE;
407   pop_cfun();
408 }
409
410 // Search for references to VAR in any statements or called functions.
411
412 class Find_var : public Traverse
413 {
414  public:
415   // A hash table we use to avoid looping.  The index is the name of a
416   // named object.  We only look through objects defined in this
417   // package.
418   typedef Unordered_set(std::string) Seen_objects;
419
420   Find_var(Named_object* var, Seen_objects* seen_objects)
421     : Traverse(traverse_expressions),
422       var_(var), seen_objects_(seen_objects), found_(false)
423   { }
424
425   // Whether the variable was found.
426   bool
427   found() const
428   { return this->found_; }
429
430   int
431   expression(Expression**);
432
433  private:
434   // The variable we are looking for.
435   Named_object* var_;
436   // Names of objects we have already seen.
437   Seen_objects* seen_objects_;
438   // True if the variable was found.
439   bool found_;
440 };
441
442 // See if EXPR refers to VAR, looking through function calls and
443 // variable initializations.
444
445 int
446 Find_var::expression(Expression** pexpr)
447 {
448   Expression* e = *pexpr;
449
450   Var_expression* ve = e->var_expression();
451   if (ve != NULL)
452     {
453       Named_object* v = ve->named_object();
454       if (v == this->var_)
455         {
456           this->found_ = true;
457           return TRAVERSE_EXIT;
458         }
459
460       if (v->is_variable() && v->package() == NULL)
461         {
462           Expression* init = v->var_value()->init();
463           if (init != NULL)
464             {
465               std::pair<Seen_objects::iterator, bool> ins =
466                 this->seen_objects_->insert(v->name());
467               if (ins.second)
468                 {
469                   // This is the first time we have seen this name.
470                   if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
471                     return TRAVERSE_EXIT;
472                 }
473             }
474         }
475     }
476
477   // We traverse the code of any function we see.  Note that this
478   // means that we will traverse the code of a function whose address
479   // is taken even if it is not called.
480   Func_expression* fe = e->func_expression();
481   if (fe != NULL)
482     {
483       const Named_object* f = fe->named_object();
484       if (f->is_function() && f->package() == NULL)
485         {
486           std::pair<Seen_objects::iterator, bool> ins =
487             this->seen_objects_->insert(f->name());
488           if (ins.second)
489             {
490               // This is the first time we have seen this name.
491               if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
492                 return TRAVERSE_EXIT;
493             }
494         }
495     }
496
497   return TRAVERSE_CONTINUE;
498 }
499
500 // Return true if EXPR refers to VAR.
501
502 static bool
503 expression_requires(Expression* expr, Block* preinit, Named_object* var)
504 {
505   Find_var::Seen_objects seen_objects;
506   Find_var find_var(var, &seen_objects);
507   if (expr != NULL)
508     Expression::traverse(&expr, &find_var);
509   if (preinit != NULL)
510     preinit->traverse(&find_var);
511   
512   return find_var.found();
513 }
514
515 // Sort variable initializations.  If the initialization expression
516 // for variable A refers directly or indirectly to the initialization
517 // expression for variable B, then we must initialize B before A.
518
519 class Var_init
520 {
521  public:
522   Var_init()
523     : var_(NULL), init_(NULL_TREE), waiting_(0)
524   { }
525
526   Var_init(Named_object* var, tree init)
527     : var_(var), init_(init), waiting_(0)
528   { }
529
530   // Return the variable.
531   Named_object*
532   var() const
533   { return this->var_; }
534
535   // Return the initialization expression.
536   tree
537   init() const
538   { return this->init_; }
539
540   // Return the number of variables waiting for this one to be
541   // initialized.
542   size_t
543   waiting() const
544   { return this->waiting_; }
545
546   // Increment the number waiting.
547   void
548   increment_waiting()
549   { ++this->waiting_; }
550
551  private:
552   // The variable being initialized.
553   Named_object* var_;
554   // The initialization expression to run.
555   tree init_;
556   // The number of variables which are waiting for this one.
557   size_t waiting_;
558 };
559
560 typedef std::list<Var_init> Var_inits;
561
562 // Sort the variable initializations.  The rule we follow is that we
563 // emit them in the order they appear in the array, except that if the
564 // initialization expression for a variable V1 depends upon another
565 // variable V2 then we initialize V1 after V2.
566
567 static void
568 sort_var_inits(Var_inits* var_inits)
569 {
570   Var_inits ready;
571   while (!var_inits->empty())
572     {
573       Var_inits::iterator p1 = var_inits->begin();
574       Named_object* var = p1->var();
575       Expression* init = var->var_value()->init();
576       Block* preinit = var->var_value()->preinit();
577
578       // Start walking through the list to see which variables VAR
579       // needs to wait for.  We can skip P1->WAITING variables--that
580       // is the number we've already checked.
581       Var_inits::iterator p2 = p1;
582       ++p2;
583       for (size_t i = p1->waiting(); i > 0; --i)
584         ++p2;
585
586       for (; p2 != var_inits->end(); ++p2)
587         {
588           if (expression_requires(init, preinit, p2->var()))
589             {
590               // Check for cycles.
591               if (expression_requires(p2->var()->var_value()->init(),
592                                       p2->var()->var_value()->preinit(),
593                                       var))
594                 {
595                   error_at(var->location(),
596                            ("initialization expressions for %qs and "
597                             "%qs depend upon each other"),
598                            var->message_name().c_str(),
599                            p2->var()->message_name().c_str());
600                   inform(p2->var()->location(), "%qs defined here",
601                          p2->var()->message_name().c_str());
602                   p2 = var_inits->end();
603                 }
604               else
605                 {
606                   // We can't emit P1 until P2 is emitted.  Move P1.
607                   // Note that the WAITING loop always executes at
608                   // least once, which is what we want.
609                   p2->increment_waiting();
610                   Var_inits::iterator p3 = p2;
611                   for (size_t i = p2->waiting(); i > 0; --i)
612                     ++p3;
613                   var_inits->splice(p3, *var_inits, p1);
614                 }
615               break;
616             }
617         }
618
619       if (p2 == var_inits->end())
620         {
621           // VAR does not depends upon any other initialization expressions.
622
623           // Check for a loop of VAR on itself.  We only do this if
624           // INIT is not NULL; when INIT is NULL, it means that
625           // PREINIT sets VAR, which we will interpret as a loop.
626           if (init != NULL && expression_requires(init, preinit, var))
627             error_at(var->location(),
628                      "initialization expression for %qs depends upon itself",
629                      var->message_name().c_str());
630           ready.splice(ready.end(), *var_inits, p1);
631         }
632     }
633
634   // Now READY is the list in the desired initialization order.
635   var_inits->swap(ready);
636 }
637
638 // Write out the global definitions.
639
640 void
641 Gogo::write_globals()
642 {
643   this->convert_named_types();
644   this->build_interface_method_tables();
645
646   Bindings* bindings = this->current_bindings();
647   size_t count = bindings->size_definitions();
648
649   tree* vec = new tree[count];
650
651   tree init_fndecl = NULL_TREE;
652   tree init_stmt_list = NULL_TREE;
653
654   if (this->is_main_package())
655     this->init_imports(&init_stmt_list);
656
657   // A list of variable initializations.
658   Var_inits var_inits;
659
660   // A list of variables which need to be registered with the garbage
661   // collector.
662   std::vector<Named_object*> var_gc;
663   var_gc.reserve(count);
664
665   tree var_init_stmt_list = NULL_TREE;
666   size_t i = 0;
667   for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
668        p != bindings->end_definitions();
669        ++p, ++i)
670     {
671       Named_object* no = *p;
672
673       gcc_assert(!no->is_type_declaration() && !no->is_function_declaration());
674       // There is nothing to do for a package.
675       if (no->is_package())
676         {
677           --i;
678           --count;
679           continue;
680         }
681
682       // There is nothing to do for an object which was imported from
683       // a different package into the global scope.
684       if (no->package() != NULL)
685         {
686           --i;
687           --count;
688           continue;
689         }
690
691       // There is nothing useful we can output for constants which
692       // have ideal or non-integeral type.
693       if (no->is_const())
694         {
695           Type* type = no->const_value()->type();
696           if (type == NULL)
697             type = no->const_value()->expr()->type();
698           if (type->is_abstract() || type->integer_type() == NULL)
699             {
700               --i;
701               --count;
702               continue;
703             }
704         }
705
706       vec[i] = no->get_tree(this, NULL);
707
708       if (vec[i] == error_mark_node)
709         {
710           gcc_assert(saw_errors());
711           --i;
712           --count;
713           continue;
714         }
715
716       // If a variable is initialized to a non-constant value, do the
717       // initialization in an initialization function.
718       if (TREE_CODE(vec[i]) == VAR_DECL)
719         {
720           gcc_assert(no->is_variable());
721
722           // Check for a sink variable, which may be used to run
723           // an initializer purely for its side effects.
724           bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
725
726           tree var_init_tree = NULL_TREE;
727           if (!no->var_value()->has_pre_init())
728             {
729               tree init = no->var_value()->get_init_tree(this, NULL);
730               if (init == error_mark_node)
731                 gcc_assert(saw_errors());
732               else if (init == NULL_TREE)
733                 ;
734               else if (TREE_CONSTANT(init))
735                 DECL_INITIAL(vec[i]) = init;
736               else if (is_sink)
737                 var_init_tree = init;
738               else
739                 var_init_tree = fold_build2_loc(no->location(), MODIFY_EXPR,
740                                                 void_type_node, vec[i], init);
741             }
742           else
743             {
744               // We are going to create temporary variables which
745               // means that we need an fndecl.
746               if (init_fndecl == NULL_TREE)
747                 init_fndecl = this->initialization_function_decl();
748               current_function_decl = init_fndecl;
749               if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
750                 push_struct_function(init_fndecl);
751               else
752                 push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
753
754               tree var_decl = is_sink ? NULL_TREE : vec[i];
755               var_init_tree = no->var_value()->get_init_block(this, NULL,
756                                                               var_decl);
757
758               current_function_decl = NULL_TREE;
759               pop_cfun();
760             }
761
762           if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
763             {
764               if (no->var_value()->init() == NULL
765                   && !no->var_value()->has_pre_init())
766                 append_to_statement_list(var_init_tree, &var_init_stmt_list);
767               else
768                 var_inits.push_back(Var_init(no, var_init_tree));
769             }
770
771           if (!is_sink && no->var_value()->type()->has_pointer())
772             var_gc.push_back(no);
773         }
774     }
775
776   // Register global variables with the garbage collector.
777   this->register_gc_vars(var_gc, &init_stmt_list);
778
779   // Simple variable initializations, after all variables are
780   // registered.
781   append_to_statement_list(var_init_stmt_list, &init_stmt_list);
782
783   // Complex variable initializations, first sorting them into a
784   // workable order.
785   if (!var_inits.empty())
786     {
787       sort_var_inits(&var_inits);
788       for (Var_inits::const_iterator p = var_inits.begin();
789            p != var_inits.end();
790            ++p)
791         append_to_statement_list(p->init(), &init_stmt_list);
792     }
793
794   // After all the variables are initialized, call the "init"
795   // functions if there are any.
796   for (std::vector<Named_object*>::const_iterator p =
797          this->init_functions_.begin();
798        p != this->init_functions_.end();
799        ++p)
800     {
801       tree decl = (*p)->get_tree(this, NULL);
802       tree call = build_call_expr(decl, 0);
803       append_to_statement_list(call, &init_stmt_list);
804     }
805
806   // Set up a magic function to do all the initialization actions.
807   // This will be called if this package is imported.
808   if (init_stmt_list != NULL_TREE
809       || this->need_init_fn_
810       || this->is_main_package())
811     this->write_initialization_function(init_fndecl, init_stmt_list);
812
813   // Pass everything back to the middle-end.
814
815   wrapup_global_declarations(vec, count);
816
817   cgraph_finalize_compilation_unit();
818
819   check_global_declarations(vec, count);
820   emit_debug_global_declarations(vec, count);
821
822   delete[] vec;
823 }
824
825 // Get a tree for the identifier for a named object.
826
827 tree
828 Named_object::get_id(Gogo* gogo)
829 {
830   std::string decl_name;
831   if (this->is_function_declaration()
832       && !this->func_declaration_value()->asm_name().empty())
833     decl_name = this->func_declaration_value()->asm_name();
834   else if ((this->is_variable() && !this->var_value()->is_global())
835            || (this->is_type()
836                && this->type_value()->location() == BUILTINS_LOCATION))
837     {
838       // We don't need the package name for local variables or builtin
839       // types.
840       decl_name = Gogo::unpack_hidden_name(this->name_);
841     }
842   else
843     {
844       std::string package_name;
845       if (this->package_ == NULL)
846         package_name = gogo->package_name();
847       else
848         package_name = this->package_->name();
849
850       decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
851
852       Function_type* fntype;
853       if (this->is_function())
854         fntype = this->func_value()->type();
855       else if (this->is_function_declaration())
856         fntype = this->func_declaration_value()->type();
857       else
858         fntype = NULL;
859       if (fntype != NULL && fntype->is_method())
860         {
861           decl_name.push_back('.');
862           decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
863         }
864     }
865   if (this->is_type())
866     {
867       const Named_object* in_function = this->type_value()->in_function();
868       if (in_function != NULL)
869         decl_name += '$' + in_function->name();
870     }
871   return get_identifier_from_string(decl_name);
872 }
873
874 // Get a tree for a named object.
875
876 tree
877 Named_object::get_tree(Gogo* gogo, Named_object* function)
878 {
879   if (this->tree_ != NULL_TREE)
880     {
881       // If this is a variable whose address is taken, we must rebuild
882       // the INDIRECT_REF each time to avoid invalid sharing.
883       tree ret = this->tree_;
884       if (((this->classification_ == NAMED_OBJECT_VAR
885             && this->var_value()->is_in_heap())
886            || (this->classification_ == NAMED_OBJECT_RESULT_VAR
887                && this->result_var_value()->is_in_heap()))
888           && ret != error_mark_node)
889         {
890           gcc_assert(TREE_CODE(ret) == INDIRECT_REF);
891           ret = build_fold_indirect_ref(TREE_OPERAND(ret, 0));
892           TREE_THIS_NOTRAP(ret) = 1;
893         }
894       return ret;
895     }
896
897   tree name;
898   if (this->classification_ == NAMED_OBJECT_TYPE)
899     name = NULL_TREE;
900   else
901     name = this->get_id(gogo);
902   tree decl;
903   switch (this->classification_)
904     {
905     case NAMED_OBJECT_CONST:
906       {
907         Named_constant* named_constant = this->u_.const_value;
908         Translate_context subcontext(gogo, function, NULL, NULL_TREE);
909         tree expr_tree = named_constant->expr()->get_tree(&subcontext);
910         if (expr_tree == error_mark_node)
911           decl = error_mark_node;
912         else
913           {
914             Type* type = named_constant->type();
915             if (type != NULL && !type->is_abstract())
916               {
917                 if (!type->is_undefined())
918                   expr_tree = fold_convert(type->get_tree(gogo), expr_tree);
919                 else
920                   {
921                     // Make sure we report the error.
922                     type->base();
923                     expr_tree = error_mark_node;
924                   }
925               }
926             if (expr_tree == error_mark_node)
927               decl = error_mark_node;
928             else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
929               {
930                 decl = build_decl(named_constant->location(), CONST_DECL,
931                                   name, TREE_TYPE(expr_tree));
932                 DECL_INITIAL(decl) = expr_tree;
933                 TREE_CONSTANT(decl) = 1;
934                 TREE_READONLY(decl) = 1;
935               }
936             else
937               {
938                 // A CONST_DECL is only for an enum constant, so we
939                 // shouldn't use for non-integral types.  Instead we
940                 // just return the constant itself, rather than a
941                 // decl.
942                 decl = expr_tree;
943               }
944           }
945       }
946       break;
947
948     case NAMED_OBJECT_TYPE:
949       {
950         Named_type* named_type = this->u_.type_value;
951         tree type_tree = named_type->get_tree(gogo);
952         if (type_tree == error_mark_node)
953           decl = error_mark_node;
954         else
955           {
956             decl = TYPE_NAME(type_tree);
957             gcc_assert(decl != NULL_TREE);
958
959             // We need to produce a type descriptor for every named
960             // type, and for a pointer to every named type, since
961             // other files or packages might refer to them.  We need
962             // to do this even for hidden types, because they might
963             // still be returned by some function.  Simply calling the
964             // type_descriptor method is enough to create the type
965             // descriptor, even though we don't do anything with it.
966             if (this->package_ == NULL)
967               {
968                 named_type->type_descriptor_pointer(gogo);
969                 Type* pn = Type::make_pointer_type(named_type);
970                 pn->type_descriptor_pointer(gogo);
971               }
972           }
973       }
974       break;
975
976     case NAMED_OBJECT_TYPE_DECLARATION:
977       error("reference to undefined type %qs",
978             this->message_name().c_str());
979       return error_mark_node;
980
981     case NAMED_OBJECT_VAR:
982       {
983         Variable* var = this->u_.var_value;
984         Type* type = var->type();
985         if (type->is_error_type()
986             || (type->is_undefined()
987                 && (!var->is_global() || this->package() == NULL)))
988           {
989             // Force the error for an undefined type, just in case.
990             type->base();
991             decl = error_mark_node;
992           }
993         else
994           {
995             tree var_type = type->get_tree(gogo);
996             bool is_parameter = var->is_parameter();
997             if (var->is_receiver() && type->points_to() == NULL)
998               is_parameter = false;
999             if (var->is_in_heap())
1000               {
1001                 is_parameter = false;
1002                 var_type = build_pointer_type(var_type);
1003               }
1004             decl = build_decl(var->location(),
1005                               is_parameter ? PARM_DECL : VAR_DECL,
1006                               name, var_type);
1007             if (!var->is_global())
1008               {
1009                 tree fnid = function->get_id(gogo);
1010                 tree fndecl = function->func_value()->get_or_make_decl(gogo,
1011                                                                        function,
1012                                                                        fnid);
1013                 DECL_CONTEXT(decl) = fndecl;
1014               }
1015             if (is_parameter)
1016               DECL_ARG_TYPE(decl) = TREE_TYPE(decl);
1017
1018             if (var->is_global())
1019               {
1020                 const Package* package = this->package();
1021                 if (package == NULL)
1022                   TREE_STATIC(decl) = 1;
1023                 else
1024                   DECL_EXTERNAL(decl) = 1;
1025                 if (!Gogo::is_hidden_name(this->name_))
1026                   {
1027                     TREE_PUBLIC(decl) = 1;
1028                     std::string asm_name = (package == NULL
1029                                             ? gogo->unique_prefix()
1030                                             : package->unique_prefix());
1031                     asm_name.append(1, '.');
1032                     asm_name.append(IDENTIFIER_POINTER(name),
1033                                     IDENTIFIER_LENGTH(name));
1034                     tree asm_id = get_identifier_from_string(asm_name);
1035                     SET_DECL_ASSEMBLER_NAME(decl, asm_id);
1036                   }
1037               }
1038
1039             // FIXME: We should only set this for variables which are
1040             // actually used somewhere.
1041             TREE_USED(decl) = 1;
1042           }
1043       }
1044       break;
1045
1046     case NAMED_OBJECT_RESULT_VAR:
1047       {
1048         Result_variable* result = this->u_.result_var_value;
1049         Type* type = result->type();
1050         if (type->is_error_type() || type->is_undefined())
1051           {
1052             // Force the error.
1053             type->base();
1054             decl = error_mark_node;
1055           }
1056         else
1057           {
1058             gcc_assert(result->function() == function->func_value());
1059             source_location loc = function->location();
1060             tree result_type = type->get_tree(gogo);
1061             tree init;
1062             if (!result->is_in_heap())
1063               init = type->get_init_tree(gogo, false);
1064             else
1065               {
1066                 tree space = gogo->allocate_memory(type,
1067                                                    TYPE_SIZE_UNIT(result_type),
1068                                                    loc);
1069                 result_type = build_pointer_type(result_type);
1070                 tree subinit = type->get_init_tree(gogo, true);
1071                 if (subinit == NULL_TREE)
1072                   init = fold_convert_loc(loc, result_type, space);
1073                 else
1074                   {
1075                     space = save_expr(space);
1076                     space = fold_convert_loc(loc, result_type, space);
1077                     tree spaceref = build_fold_indirect_ref_loc(loc, space);
1078                     TREE_THIS_NOTRAP(spaceref) = 1;
1079                     tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1080                                                spaceref, subinit);
1081                     init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1082                                            set, space);
1083                   }
1084               }
1085             decl = build_decl(loc, VAR_DECL, name, result_type);
1086             tree fnid = function->get_id(gogo);
1087             tree fndecl = function->func_value()->get_or_make_decl(gogo,
1088                                                                    function,
1089                                                                    fnid);
1090             DECL_CONTEXT(decl) = fndecl;
1091             DECL_INITIAL(decl) = init;
1092             TREE_USED(decl) = 1;
1093           }
1094       }
1095       break;
1096
1097     case NAMED_OBJECT_SINK:
1098       gcc_unreachable();
1099
1100     case NAMED_OBJECT_FUNC:
1101       {
1102         Function* func = this->u_.func_value;
1103         decl = func->get_or_make_decl(gogo, this, name);
1104         if (decl != error_mark_node)
1105           {
1106             if (func->block() != NULL)
1107               {
1108                 if (DECL_STRUCT_FUNCTION(decl) == NULL)
1109                   push_struct_function(decl);
1110                 else
1111                   push_cfun(DECL_STRUCT_FUNCTION(decl));
1112
1113                 cfun->function_end_locus = func->block()->end_location();
1114
1115                 current_function_decl = decl;
1116
1117                 func->build_tree(gogo, this);
1118
1119                 gimplify_function_tree(decl);
1120
1121                 cgraph_finalize_function(decl, true);
1122
1123                 current_function_decl = NULL_TREE;
1124                 pop_cfun();
1125               }
1126           }
1127       }
1128       break;
1129
1130     default:
1131       gcc_unreachable();
1132     }
1133
1134   if (TREE_TYPE(decl) == error_mark_node)
1135     decl = error_mark_node;
1136
1137   tree ret = decl;
1138
1139   // If this is a local variable whose address is taken, then we
1140   // actually store it in the heap.  For uses of the variable we need
1141   // to return a reference to that heap location.
1142   if (((this->classification_ == NAMED_OBJECT_VAR
1143         && this->var_value()->is_in_heap())
1144        || (this->classification_ == NAMED_OBJECT_RESULT_VAR
1145            && this->result_var_value()->is_in_heap()))
1146       && ret != error_mark_node)
1147     {
1148       gcc_assert(POINTER_TYPE_P(TREE_TYPE(ret)));
1149       ret = build_fold_indirect_ref(ret);
1150       TREE_THIS_NOTRAP(ret) = 1;
1151     }
1152
1153   this->tree_ = ret;
1154
1155   if (ret != error_mark_node)
1156     go_preserve_from_gc(ret);
1157
1158   return ret;
1159 }
1160
1161 // Get the initial value of a variable as a tree.  This does not
1162 // consider whether the variable is in the heap--it returns the
1163 // initial value as though it were always stored in the stack.
1164
1165 tree
1166 Variable::get_init_tree(Gogo* gogo, Named_object* function)
1167 {
1168   gcc_assert(this->preinit_ == NULL);
1169   if (this->init_ == NULL)
1170     {
1171       gcc_assert(!this->is_parameter_);
1172       return this->type_->get_init_tree(gogo, this->is_global_);
1173     }
1174   else
1175     {
1176       Translate_context context(gogo, function, NULL, NULL_TREE);
1177       tree rhs_tree = this->init_->get_tree(&context);
1178       return Expression::convert_for_assignment(&context, this->type(),
1179                                                 this->init_->type(),
1180                                                 rhs_tree, this->location());
1181     }
1182 }
1183
1184 // Get the initial value of a variable when a block is required.
1185 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
1186
1187 tree
1188 Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
1189 {
1190   gcc_assert(this->preinit_ != NULL);
1191
1192   // We want to add the variable assignment to the end of the preinit
1193   // block.  The preinit block may have a TRY_FINALLY_EXPR and a
1194   // TRY_CATCH_EXPR; if it does, we want to add to the end of the
1195   // regular statements.
1196
1197   Translate_context context(gogo, function, NULL, NULL_TREE);
1198   tree block_tree = this->preinit_->get_tree(&context);
1199   if (block_tree == error_mark_node)
1200     return error_mark_node;
1201   gcc_assert(TREE_CODE(block_tree) == BIND_EXPR);
1202   tree statements = BIND_EXPR_BODY(block_tree);
1203   while (statements != NULL_TREE
1204          && (TREE_CODE(statements) == TRY_FINALLY_EXPR
1205              || TREE_CODE(statements) == TRY_CATCH_EXPR))
1206     statements = TREE_OPERAND(statements, 0);
1207
1208   // It's possible to have pre-init statements without an initializer
1209   // if the pre-init statements set the variable.
1210   if (this->init_ != NULL)
1211     {
1212       tree rhs_tree = this->init_->get_tree(&context);
1213       if (rhs_tree == error_mark_node)
1214         return error_mark_node;
1215       if (var_decl == NULL_TREE)
1216         append_to_statement_list(rhs_tree, &statements);
1217       else
1218         {
1219           tree val = Expression::convert_for_assignment(&context, this->type(),
1220                                                         this->init_->type(),
1221                                                         rhs_tree,
1222                                                         this->location());
1223           if (val == error_mark_node)
1224             return error_mark_node;
1225           tree set = fold_build2_loc(this->location(), MODIFY_EXPR,
1226                                      void_type_node, var_decl, val);
1227           append_to_statement_list(set, &statements);
1228         }
1229     }
1230
1231   return block_tree;
1232 }
1233
1234 // Get a tree for a function decl.
1235
1236 tree
1237 Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1238 {
1239   if (this->fndecl_ == NULL_TREE)
1240     {
1241       tree functype = this->type_->get_tree(gogo);
1242       if (functype == error_mark_node)
1243         this->fndecl_ = error_mark_node;
1244       else
1245         {
1246           // The type of a function comes back as a pointer, but we
1247           // want the real function type for a function declaration.
1248           gcc_assert(POINTER_TYPE_P(functype));
1249           functype = TREE_TYPE(functype);
1250           tree decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1251
1252           this->fndecl_ = decl;
1253
1254           if (no->package() != NULL)
1255             ;
1256           else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
1257             ;
1258           else if (Gogo::unpack_hidden_name(no->name()) == "init"
1259                    && !this->type_->is_method())
1260             ;
1261           else if (Gogo::unpack_hidden_name(no->name()) == "main"
1262                    && gogo->is_main_package())
1263             TREE_PUBLIC(decl) = 1;
1264           // Methods have to be public even if they are hidden because
1265           // they can be pulled into type descriptors when using
1266           // anonymous fields.
1267           else if (!Gogo::is_hidden_name(no->name())
1268                    || this->type_->is_method())
1269             {
1270               TREE_PUBLIC(decl) = 1;
1271               std::string asm_name = gogo->unique_prefix();
1272               asm_name.append(1, '.');
1273               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1274               SET_DECL_ASSEMBLER_NAME(decl,
1275                                       get_identifier_from_string(asm_name));
1276             }
1277
1278           // Why do we have to do this in the frontend?
1279           tree restype = TREE_TYPE(functype);
1280           tree resdecl = build_decl(this->location(), RESULT_DECL, NULL_TREE,
1281                                     restype);
1282           DECL_ARTIFICIAL(resdecl) = 1;
1283           DECL_IGNORED_P(resdecl) = 1;
1284           DECL_CONTEXT(resdecl) = decl;
1285           DECL_RESULT(decl) = resdecl;
1286
1287           if (this->enclosing_ != NULL)
1288             DECL_STATIC_CHAIN(decl) = 1;
1289
1290           // If a function calls the predeclared recover function, we
1291           // can't inline it, because recover behaves differently in a
1292           // function passed directly to defer.
1293           if (this->calls_recover_ && !this->is_recover_thunk_)
1294             DECL_UNINLINABLE(decl) = 1;
1295
1296           // If this is a thunk created to call a function which calls
1297           // the predeclared recover function, we need to disable
1298           // stack splitting for the thunk.
1299           if (this->is_recover_thunk_)
1300             {
1301               tree attr = get_identifier("__no_split_stack__");
1302               DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
1303             }
1304
1305           go_preserve_from_gc(decl);
1306
1307           if (this->closure_var_ != NULL)
1308             {
1309               push_struct_function(decl);
1310
1311               tree closure_decl = this->closure_var_->get_tree(gogo, no);
1312               if (closure_decl == error_mark_node)
1313                 this->fndecl_ = error_mark_node;
1314               else
1315                 {
1316                   DECL_ARTIFICIAL(closure_decl) = 1;
1317                   DECL_IGNORED_P(closure_decl) = 1;
1318                   TREE_USED(closure_decl) = 1;
1319                   DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
1320                   TREE_READONLY(closure_decl) = 1;
1321
1322                   DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
1323                 }
1324
1325               pop_cfun();
1326             }
1327         }
1328     }
1329   return this->fndecl_;
1330 }
1331
1332 // Get a tree for a function declaration.
1333
1334 tree
1335 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1336 {
1337   if (this->fndecl_ == NULL_TREE)
1338     {
1339       // Let Go code use an asm declaration to pick up a builtin
1340       // function.
1341       if (!this->asm_name_.empty())
1342         {
1343           std::map<std::string, tree>::const_iterator p =
1344             builtin_functions.find(this->asm_name_);
1345           if (p != builtin_functions.end())
1346             {
1347               this->fndecl_ = p->second;
1348               return this->fndecl_;
1349             }
1350         }
1351
1352       tree functype = this->fntype_->get_tree(gogo);
1353       tree decl;
1354       if (functype == error_mark_node)
1355         decl = error_mark_node;
1356       else
1357         {
1358           // The type of a function comes back as a pointer, but we
1359           // want the real function type for a function declaration.
1360           gcc_assert(POINTER_TYPE_P(functype));
1361           functype = TREE_TYPE(functype);
1362           decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1363           TREE_PUBLIC(decl) = 1;
1364           DECL_EXTERNAL(decl) = 1;
1365
1366           if (this->asm_name_.empty())
1367             {
1368               std::string asm_name = (no->package() == NULL
1369                                       ? gogo->unique_prefix()
1370                                       : no->package()->unique_prefix());
1371               asm_name.append(1, '.');
1372               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1373               SET_DECL_ASSEMBLER_NAME(decl,
1374                                       get_identifier_from_string(asm_name));
1375             }
1376         }
1377       this->fndecl_ = decl;
1378       go_preserve_from_gc(decl);
1379     }
1380   return this->fndecl_;
1381 }
1382
1383 // We always pass the receiver to a method as a pointer.  If the
1384 // receiver is actually declared as a non-pointer type, then we copy
1385 // the value into a local variable, so that it has the right type.  In
1386 // this function we create the real PARM_DECL to use, and set
1387 // DEC_INITIAL of the var_decl to be the value passed in.
1388
1389 tree
1390 Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
1391 {
1392   if (var_decl == error_mark_node)
1393     return error_mark_node;
1394   // If the function takes the address of a receiver which is passed
1395   // by value, then we will have an INDIRECT_REF here.  We need to get
1396   // the real variable.
1397   bool is_in_heap = no->var_value()->is_in_heap();
1398   tree val_type;
1399   if (TREE_CODE(var_decl) != INDIRECT_REF)
1400     {
1401       gcc_assert(!is_in_heap);
1402       val_type = TREE_TYPE(var_decl);
1403     }
1404   else
1405     {
1406       gcc_assert(is_in_heap);
1407       var_decl = TREE_OPERAND(var_decl, 0);
1408       if (var_decl == error_mark_node)
1409         return error_mark_node;
1410       gcc_assert(POINTER_TYPE_P(TREE_TYPE(var_decl)));
1411       val_type = TREE_TYPE(TREE_TYPE(var_decl));
1412     }
1413   gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1414   source_location loc = DECL_SOURCE_LOCATION(var_decl);
1415   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1416   name += ".pointer";
1417   tree id = get_identifier_from_string(name);
1418   tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
1419   DECL_CONTEXT(parm_decl) = current_function_decl;
1420   DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
1421
1422   gcc_assert(DECL_INITIAL(var_decl) == NULL_TREE);
1423   // The receiver might be passed as a null pointer.
1424   tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node, parm_decl,
1425                                fold_convert_loc(loc, TREE_TYPE(parm_decl),
1426                                                 null_pointer_node));
1427   tree ind = build_fold_indirect_ref_loc(loc, parm_decl);
1428   TREE_THIS_NOTRAP(ind) = 1;
1429   tree zero_init = no->var_value()->type()->get_init_tree(gogo, false);
1430   tree init = fold_build3_loc(loc, COND_EXPR, TREE_TYPE(ind),
1431                               check, ind, zero_init);
1432
1433   if (is_in_heap)
1434     {
1435       tree size = TYPE_SIZE_UNIT(val_type);
1436       tree space = gogo->allocate_memory(no->var_value()->type(), size,
1437                                          no->location());
1438       space = save_expr(space);
1439       space = fold_convert(build_pointer_type(val_type), space);
1440       tree spaceref = build_fold_indirect_ref_loc(no->location(), space);
1441       TREE_THIS_NOTRAP(spaceref) = 1;
1442       tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node,
1443                                    parm_decl,
1444                                    fold_convert_loc(loc, TREE_TYPE(parm_decl),
1445                                                     null_pointer_node));
1446       tree parmref = build_fold_indirect_ref_loc(no->location(), parm_decl);
1447       TREE_THIS_NOTRAP(parmref) = 1;
1448       tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1449                                  spaceref, parmref);
1450       init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1451                              build3(COND_EXPR, void_type_node,
1452                                     check, set, NULL_TREE),
1453                              space);
1454     }
1455
1456   DECL_INITIAL(var_decl) = init;
1457
1458   return parm_decl;
1459 }
1460
1461 // If we take the address of a parameter, then we need to copy it into
1462 // the heap.  We will access it as a local variable via an
1463 // indirection.
1464
1465 tree
1466 Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree ref)
1467 {
1468   if (ref == error_mark_node)
1469     return error_mark_node;
1470
1471   gcc_assert(TREE_CODE(ref) == INDIRECT_REF);
1472
1473   tree var_decl = TREE_OPERAND(ref, 0);
1474   if (var_decl == error_mark_node)
1475     return error_mark_node;
1476   gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1477   source_location loc = DECL_SOURCE_LOCATION(var_decl);
1478
1479   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1480   name += ".param";
1481   tree id = get_identifier_from_string(name);
1482
1483   tree type = TREE_TYPE(var_decl);
1484   gcc_assert(POINTER_TYPE_P(type));
1485   type = TREE_TYPE(type);
1486
1487   tree parm_decl = build_decl(loc, PARM_DECL, id, type);
1488   DECL_CONTEXT(parm_decl) = current_function_decl;
1489   DECL_ARG_TYPE(parm_decl) = type;
1490
1491   tree size = TYPE_SIZE_UNIT(type);
1492   tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
1493   space = save_expr(space);
1494   space = fold_convert(TREE_TYPE(var_decl), space);
1495   tree spaceref = build_fold_indirect_ref_loc(loc, space);
1496   TREE_THIS_NOTRAP(spaceref) = 1;
1497   tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
1498                      build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
1499                      space);
1500   DECL_INITIAL(var_decl) = init;
1501
1502   return parm_decl;
1503 }
1504
1505 // Get a tree for function code.
1506
1507 void
1508 Function::build_tree(Gogo* gogo, Named_object* named_function)
1509 {
1510   tree fndecl = this->fndecl_;
1511   gcc_assert(fndecl != NULL_TREE);
1512
1513   tree params = NULL_TREE;
1514   tree* pp = &params;
1515
1516   tree declare_vars = NULL_TREE;
1517   for (Bindings::const_definitions_iterator p =
1518          this->block_->bindings()->begin_definitions();
1519        p != this->block_->bindings()->end_definitions();
1520        ++p)
1521     {
1522       if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
1523         {
1524           *pp = (*p)->get_tree(gogo, named_function);
1525
1526           // We always pass the receiver to a method as a pointer.  If
1527           // the receiver is declared as a non-pointer type, then we
1528           // copy the value into a local variable.
1529           if ((*p)->var_value()->is_receiver()
1530               && (*p)->var_value()->type()->points_to() == NULL)
1531             {
1532               tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
1533               tree var = *pp;
1534               if (TREE_CODE(var) == INDIRECT_REF)
1535                 var = TREE_OPERAND(var, 0);
1536               if (var != error_mark_node)
1537                 {
1538                   gcc_assert(TREE_CODE(var) == VAR_DECL);
1539                   DECL_CHAIN(var) = declare_vars;
1540                   declare_vars = var;
1541                 }
1542               *pp = parm_decl;
1543             }
1544           else if ((*p)->var_value()->is_in_heap())
1545             {
1546               // If we take the address of a parameter, then we need
1547               // to copy it into the heap.
1548               tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
1549               if (*pp != error_mark_node)
1550                 {
1551                   gcc_assert(TREE_CODE(*pp) == INDIRECT_REF);
1552                   tree var_decl = TREE_OPERAND(*pp, 0);
1553                   if (var_decl != error_mark_node)
1554                     {
1555                       gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1556                       DECL_CHAIN(var_decl) = declare_vars;
1557                       declare_vars = var_decl;
1558                     }
1559                 }
1560               *pp = parm_decl;
1561             }
1562
1563           if (*pp != error_mark_node)
1564             {
1565               gcc_assert(TREE_CODE(*pp) == PARM_DECL);
1566               pp = &DECL_CHAIN(*pp);
1567             }
1568         }
1569       else if ((*p)->is_result_variable())
1570         {
1571           tree var_decl = (*p)->get_tree(gogo, named_function);
1572           if (var_decl != error_mark_node
1573               && (*p)->result_var_value()->is_in_heap())
1574             {
1575               gcc_assert(TREE_CODE(var_decl) == INDIRECT_REF);
1576               var_decl = TREE_OPERAND(var_decl, 0);
1577             }
1578           if (var_decl != error_mark_node)
1579             {
1580               gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1581               DECL_CHAIN(var_decl) = declare_vars;
1582               declare_vars = var_decl;
1583             }
1584         }
1585     }
1586   *pp = NULL_TREE;
1587
1588   DECL_ARGUMENTS(fndecl) = params;
1589
1590   if (this->block_ != NULL)
1591     {
1592       gcc_assert(DECL_INITIAL(fndecl) == NULL_TREE);
1593
1594       // Declare variables if necessary.
1595       tree bind = NULL_TREE;
1596       if (declare_vars != NULL_TREE)
1597         {
1598           tree block = make_node(BLOCK);
1599           BLOCK_SUPERCONTEXT(block) = fndecl;
1600           DECL_INITIAL(fndecl) = block;
1601           BLOCK_VARS(block) = declare_vars;
1602           TREE_USED(block) = 1;
1603           bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
1604                         NULL_TREE, block);
1605           TREE_SIDE_EFFECTS(bind) = 1;
1606         }
1607
1608       // Build the trees for all the statements in the function.
1609       Translate_context context(gogo, named_function, NULL, NULL_TREE);
1610       tree code = this->block_->get_tree(&context);
1611
1612       tree init = NULL_TREE;
1613       tree except = NULL_TREE;
1614       tree fini = NULL_TREE;
1615
1616       // Initialize variables if necessary.
1617       for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
1618         {
1619           tree dv = build1(DECL_EXPR, void_type_node, v);
1620           SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
1621           append_to_statement_list(dv, &init);
1622         }
1623
1624       // If we have a defer stack, initialize it at the start of a
1625       // function.
1626       if (this->defer_stack_ != NULL_TREE)
1627         {
1628           tree defer_init = build1(DECL_EXPR, void_type_node,
1629                                    this->defer_stack_);
1630           SET_EXPR_LOCATION(defer_init, this->block_->start_location());
1631           append_to_statement_list(defer_init, &init);
1632
1633           // Clean up the defer stack when we leave the function.
1634           this->build_defer_wrapper(gogo, named_function, &except, &fini);
1635         }
1636
1637       if (code != NULL_TREE && code != error_mark_node)
1638         {
1639           if (init != NULL_TREE)
1640             code = build2(COMPOUND_EXPR, void_type_node, init, code);
1641           if (except != NULL_TREE)
1642             code = build2(TRY_CATCH_EXPR, void_type_node, code,
1643                           build2(CATCH_EXPR, void_type_node, NULL, except));
1644           if (fini != NULL_TREE)
1645             code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
1646         }
1647
1648       // Stick the code into the block we built for the receiver, if
1649       // we built on.
1650       if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
1651         {
1652           BIND_EXPR_BODY(bind) = code;
1653           code = bind;
1654         }
1655
1656       DECL_SAVED_TREE(fndecl) = code;
1657     }
1658 }
1659
1660 // Build the wrappers around function code needed if the function has
1661 // any defer statements.  This sets *EXCEPT to an exception handler
1662 // and *FINI to a finally handler.
1663
1664 void
1665 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
1666                               tree *except, tree *fini)
1667 {
1668   source_location end_loc = this->block_->end_location();
1669
1670   // Add an exception handler.  This is used if a panic occurs.  Its
1671   // purpose is to stop the stack unwinding if a deferred function
1672   // calls recover.  There are more details in
1673   // libgo/runtime/go-unwind.c.
1674   tree stmt_list = NULL_TREE;
1675   static tree check_fndecl;
1676   tree call = Gogo::call_builtin(&check_fndecl,
1677                                  end_loc,
1678                                  "__go_check_defer",
1679                                  1,
1680                                  void_type_node,
1681                                  ptr_type_node,
1682                                  this->defer_stack(end_loc));
1683   if (call != error_mark_node)
1684     append_to_statement_list(call, &stmt_list);
1685
1686   tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
1687   tree set;
1688   if (retval == NULL_TREE)
1689     set = NULL_TREE;
1690   else
1691     set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1692                           DECL_RESULT(this->fndecl_), retval);
1693   tree ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1694   append_to_statement_list(ret_stmt, &stmt_list);
1695
1696   gcc_assert(*except == NULL_TREE);
1697   *except = stmt_list;
1698
1699   // Add some finally code to run the defer functions.  This is used
1700   // both in the normal case, when no panic occurs, and also if a
1701   // panic occurs to run any further defer functions.  Of course, it
1702   // is possible for a defer function to call panic which should be
1703   // caught by another defer function.  To handle that we use a loop.
1704   //  finish:
1705   //   try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
1706   //   if (return values are named) return named_vals;
1707
1708   stmt_list = NULL;
1709
1710   tree label = create_artificial_label(end_loc);
1711   tree define_label = fold_build1_loc(end_loc, LABEL_EXPR, void_type_node,
1712                                       label);
1713   append_to_statement_list(define_label, &stmt_list);
1714
1715   static tree undefer_fndecl;
1716   tree undefer = Gogo::call_builtin(&undefer_fndecl,
1717                                     end_loc,
1718                                     "__go_undefer",
1719                                     1,
1720                                     void_type_node,
1721                                     ptr_type_node,
1722                                     this->defer_stack(end_loc));
1723   if (undefer_fndecl != NULL_TREE)
1724     TREE_NOTHROW(undefer_fndecl) = 0;
1725
1726   tree defer = Gogo::call_builtin(&check_fndecl,
1727                                   end_loc,
1728                                   "__go_check_defer",
1729                                   1,
1730                                   void_type_node,
1731                                   ptr_type_node,
1732                                   this->defer_stack(end_loc));
1733   tree jump = fold_build1_loc(end_loc, GOTO_EXPR, void_type_node, label);
1734   tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
1735   catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
1736   tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
1737
1738   append_to_statement_list(try_catch, &stmt_list);
1739
1740   if (this->type_->results() != NULL
1741       && !this->type_->results()->empty()
1742       && !this->type_->results()->front().name().empty())
1743     {
1744       // If the result variables are named, we need to return them
1745       // again, because they might have been changed by a defer
1746       // function.
1747       retval = this->return_value(gogo, named_function, end_loc,
1748                                   &stmt_list);
1749       set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1750                             DECL_RESULT(this->fndecl_), retval);
1751       ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1752       append_to_statement_list(ret_stmt, &stmt_list);
1753     }
1754   
1755   gcc_assert(*fini == NULL_TREE);
1756   *fini = stmt_list;
1757 }
1758
1759 // Return the value to assign to DECL_RESULT(this->fndecl_).  This may
1760 // also add statements to STMT_LIST, which need to be executed before
1761 // the assignment.  This is used for a return statement with no
1762 // explicit values.
1763
1764 tree
1765 Function::return_value(Gogo* gogo, Named_object* named_function,
1766                        source_location location, tree* stmt_list) const
1767 {
1768   const Typed_identifier_list* results = this->type_->results();
1769   if (results == NULL || results->empty())
1770     return NULL_TREE;
1771
1772   // In the case of an exception handler created for functions with
1773   // defer statements, the result variables may be unnamed.
1774   bool is_named = !results->front().name().empty();
1775   if (is_named)
1776     {
1777       gcc_assert(this->named_results_ != NULL);
1778       if (this->named_results_->size() != results->size())
1779         {
1780           gcc_assert(saw_errors());
1781           return error_mark_node;
1782         }
1783     }
1784
1785   tree retval;
1786   if (results->size() == 1)
1787     {
1788       if (is_named)
1789         return this->named_results_->front()->get_tree(gogo, named_function);
1790       else
1791         return results->front().type()->get_init_tree(gogo, false);
1792     }
1793   else
1794     {
1795       tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
1796       retval = create_tmp_var(rettype, "RESULT");
1797       tree field = TYPE_FIELDS(rettype);
1798       int index = 0;
1799       for (Typed_identifier_list::const_iterator pr = results->begin();
1800            pr != results->end();
1801            ++pr, ++index, field = DECL_CHAIN(field))
1802         {
1803           gcc_assert(field != NULL);
1804           tree val;
1805           if (is_named)
1806             val = (*this->named_results_)[index]->get_tree(gogo,
1807                                                            named_function);
1808           else
1809             val = pr->type()->get_init_tree(gogo, false);
1810           tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
1811                                      build3(COMPONENT_REF, TREE_TYPE(field),
1812                                             retval, field, NULL_TREE),
1813                                      val);
1814           append_to_statement_list(set, stmt_list);
1815         }
1816       return retval;
1817     }
1818 }
1819
1820 // Get the tree for the variable holding the defer stack for this
1821 // function.  At least at present, the value of this variable is not
1822 // used.  However, a pointer to this variable is used as a marker for
1823 // the functions on the defer stack associated with this function.
1824 // Doing things this way permits inlining a function which uses defer.
1825
1826 tree
1827 Function::defer_stack(source_location location)
1828 {
1829   if (this->defer_stack_ == NULL_TREE)
1830     {
1831       tree var = create_tmp_var(ptr_type_node, "DEFER");
1832       DECL_INITIAL(var) = null_pointer_node;
1833       DECL_SOURCE_LOCATION(var) = location;
1834       TREE_ADDRESSABLE(var) = 1;
1835       this->defer_stack_ = var;
1836     }
1837   return fold_convert_loc(location, ptr_type_node,
1838                           build_fold_addr_expr_loc(location,
1839                                                    this->defer_stack_));
1840 }
1841
1842 // Get a tree for the statements in a block.
1843
1844 tree
1845 Block::get_tree(Translate_context* context)
1846 {
1847   Gogo* gogo = context->gogo();
1848
1849   tree block = make_node(BLOCK);
1850
1851   // Put the new block into the block tree.
1852
1853   if (context->block() == NULL)
1854     {
1855       tree fndecl;
1856       if (context->function() != NULL)
1857         fndecl = context->function()->func_value()->get_decl();
1858       else
1859         fndecl = current_function_decl;
1860       gcc_assert(fndecl != NULL_TREE);
1861
1862       // We may have already created a block for the receiver.
1863       if (DECL_INITIAL(fndecl) == NULL_TREE)
1864         {
1865           BLOCK_SUPERCONTEXT(block) = fndecl;
1866           DECL_INITIAL(fndecl) = block;
1867         }
1868       else
1869         {
1870           tree superblock_tree = DECL_INITIAL(fndecl);
1871           BLOCK_SUPERCONTEXT(block) = superblock_tree;
1872           gcc_assert(BLOCK_CHAIN(block) == NULL_TREE);
1873           BLOCK_CHAIN(block) = block;
1874         }
1875     }
1876   else
1877     {
1878       tree superblock_tree = context->block_tree();
1879       BLOCK_SUPERCONTEXT(block) = superblock_tree;
1880       tree* pp;
1881       for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
1882            *pp != NULL_TREE;
1883            pp = &BLOCK_CHAIN(*pp))
1884         ;
1885       *pp = block;
1886     }
1887
1888   // Expand local variables in the block.
1889
1890   tree* pp = &BLOCK_VARS(block);
1891   for (Bindings::const_definitions_iterator pv =
1892          this->bindings_->begin_definitions();
1893        pv != this->bindings_->end_definitions();
1894        ++pv)
1895     {
1896       if ((!(*pv)->is_variable() || !(*pv)->var_value()->is_parameter())
1897           && !(*pv)->is_result_variable()
1898           && !(*pv)->is_const())
1899         {
1900           tree var = (*pv)->get_tree(gogo, context->function());
1901           if (var != error_mark_node && TREE_TYPE(var) != error_mark_node)
1902             {
1903               if ((*pv)->is_variable() && (*pv)->var_value()->is_in_heap())
1904                 {
1905                   gcc_assert(TREE_CODE(var) == INDIRECT_REF);
1906                   var = TREE_OPERAND(var, 0);
1907                   gcc_assert(TREE_CODE(var) == VAR_DECL);
1908                 }
1909               *pp = var;
1910               pp = &DECL_CHAIN(*pp);
1911             }
1912         }
1913     }
1914   *pp = NULL_TREE;
1915
1916   Translate_context subcontext(context->gogo(), context->function(),
1917                                this, block);
1918
1919   tree statements = NULL_TREE;
1920
1921   // Expand the statements.
1922
1923   for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
1924        p != this->statements_.end();
1925        ++p)
1926     {
1927       tree statement = (*p)->get_tree(&subcontext);
1928       if (statement != error_mark_node)
1929         append_to_statement_list(statement, &statements);
1930     }
1931
1932   TREE_USED(block) = 1;
1933
1934   tree bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block), statements,
1935                      block);
1936   TREE_SIDE_EFFECTS(bind) = 1;
1937
1938   return bind;
1939 }
1940
1941 // Get the LABEL_DECL for a label.
1942
1943 tree
1944 Label::get_decl()
1945 {
1946   if (this->decl_ == NULL)
1947     {
1948       tree id = get_identifier_from_string(this->name_);
1949       this->decl_ = build_decl(this->location_, LABEL_DECL, id, void_type_node);
1950       DECL_CONTEXT(this->decl_) = current_function_decl;
1951     }
1952   return this->decl_;
1953 }
1954
1955 // Return an expression for the address of this label.
1956
1957 tree
1958 Label::get_addr(source_location location)
1959 {
1960   tree decl = this->get_decl();
1961   TREE_USED(decl) = 1;
1962   TREE_ADDRESSABLE(decl) = 1;
1963   return fold_convert_loc(location, ptr_type_node,
1964                           build_fold_addr_expr_loc(location, decl));
1965 }
1966
1967 // Get the LABEL_DECL for an unnamed label.
1968
1969 tree
1970 Unnamed_label::get_decl()
1971 {
1972   if (this->decl_ == NULL)
1973     this->decl_ = create_artificial_label(this->location_);
1974   return this->decl_;
1975 }
1976
1977 // Get the LABEL_EXPR for an unnamed label.
1978
1979 tree
1980 Unnamed_label::get_definition()
1981 {
1982   tree t = build1(LABEL_EXPR, void_type_node, this->get_decl());
1983   SET_EXPR_LOCATION(t, this->location_);
1984   return t;
1985 }
1986
1987 // Return a goto to this label.
1988
1989 tree
1990 Unnamed_label::get_goto(source_location location)
1991 {
1992   tree t = build1(GOTO_EXPR, void_type_node, this->get_decl());
1993   SET_EXPR_LOCATION(t, location);
1994   return t;
1995 }
1996
1997 // Return the integer type to use for a size.
1998
1999 GO_EXTERN_C
2000 tree
2001 go_type_for_size(unsigned int bits, int unsignedp)
2002 {
2003   const char* name;
2004   switch (bits)
2005     {
2006     case 8:
2007       name = unsignedp ? "uint8" : "int8";
2008       break;
2009     case 16:
2010       name = unsignedp ? "uint16" : "int16";
2011       break;
2012     case 32:
2013       name = unsignedp ? "uint32" : "int32";
2014       break;
2015     case 64:
2016       name = unsignedp ? "uint64" : "int64";
2017       break;
2018     default:
2019       if (bits == POINTER_SIZE && unsignedp)
2020         name = "uintptr";
2021       else
2022         return NULL_TREE;
2023     }
2024   Type* type = Type::lookup_integer_type(name);
2025   return type->get_tree(go_get_gogo());
2026 }
2027
2028 // Return the type to use for a mode.
2029
2030 GO_EXTERN_C
2031 tree
2032 go_type_for_mode(enum machine_mode mode, int unsignedp)
2033 {
2034   // FIXME: This static_cast should be in machmode.h.
2035   enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
2036   if (mc == MODE_INT)
2037     return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
2038   else if (mc == MODE_FLOAT)
2039     {
2040       Type* type;
2041       switch (GET_MODE_BITSIZE (mode))
2042         {
2043         case 32:
2044           type = Type::lookup_float_type("float32");
2045           break;
2046         case 64:
2047           type = Type::lookup_float_type("float64");
2048           break;
2049         default:
2050           // We have to check for long double in order to support
2051           // i386 excess precision.
2052           if (mode == TYPE_MODE(long_double_type_node))
2053             return long_double_type_node;
2054           return NULL_TREE;
2055         }
2056       return type->float_type()->type_tree();
2057     }
2058   else if (mc == MODE_COMPLEX_FLOAT)
2059     {
2060       Type *type;
2061       switch (GET_MODE_BITSIZE (mode))
2062         {
2063         case 64:
2064           type = Type::lookup_complex_type("complex64");
2065           break;
2066         case 128:
2067           type = Type::lookup_complex_type("complex128");
2068           break;
2069         default:
2070           // We have to check for long double in order to support
2071           // i386 excess precision.
2072           if (mode == TYPE_MODE(complex_long_double_type_node))
2073             return complex_long_double_type_node;
2074           return NULL_TREE;
2075         }
2076       return type->complex_type()->type_tree();
2077     }
2078   else
2079     return NULL_TREE;
2080 }
2081
2082 // Return a tree which allocates SIZE bytes which will holds value of
2083 // type TYPE.
2084
2085 tree
2086 Gogo::allocate_memory(Type* type, tree size, source_location location)
2087 {
2088   // If the package imports unsafe, then it may play games with
2089   // pointers that look like integers.
2090   if (this->imported_unsafe_ || type->has_pointer())
2091     {
2092       static tree new_fndecl;
2093       return Gogo::call_builtin(&new_fndecl,
2094                                 location,
2095                                 "__go_new",
2096                                 1,
2097                                 ptr_type_node,
2098                                 sizetype,
2099                                 size);
2100     }
2101   else
2102     {
2103       static tree new_nopointers_fndecl;
2104       return Gogo::call_builtin(&new_nopointers_fndecl,
2105                                 location,
2106                                 "__go_new_nopointers",
2107                                 1,
2108                                 ptr_type_node,
2109                                 sizetype,
2110                                 size);
2111     }
2112 }
2113
2114 // Build a builtin struct with a list of fields.  The name is
2115 // STRUCT_NAME.  STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
2116 // node; this exists so that the struct can have fields which point to
2117 // itself.  If PTYPE is not NULL, store the result in *PTYPE.  There
2118 // are NFIELDS fields.  Each field is a name (a const char*) followed
2119 // by a type (a tree).
2120
2121 tree
2122 Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
2123                      int nfields, ...)
2124 {
2125   if (ptype != NULL && *ptype != NULL_TREE)
2126     return *ptype;
2127
2128   va_list ap;
2129   va_start(ap, nfields);
2130
2131   tree fields = NULL_TREE;
2132   for (int i = 0; i < nfields; ++i)
2133     {
2134       const char* field_name = va_arg(ap, const char*);
2135       tree type = va_arg(ap, tree);
2136       if (type == error_mark_node)
2137         {
2138           if (ptype != NULL)
2139             *ptype = error_mark_node;
2140           return error_mark_node;
2141         }
2142       tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
2143                               get_identifier(field_name), type);
2144       DECL_CHAIN(field) = fields;
2145       fields = field;
2146     }
2147
2148   va_end(ap);
2149
2150   if (struct_type == NULL_TREE)
2151     struct_type = make_node(RECORD_TYPE);
2152   finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
2153
2154   if (ptype != NULL)
2155     {
2156       go_preserve_from_gc(struct_type);
2157       *ptype = struct_type;
2158     }
2159
2160   return struct_type;
2161 }
2162
2163 // Return a type to use for pointer to const char for a string.
2164
2165 tree
2166 Gogo::const_char_pointer_type_tree()
2167 {
2168   static tree type;
2169   if (type == NULL_TREE)
2170     {
2171       tree const_char_type = build_qualified_type(unsigned_char_type_node,
2172                                                   TYPE_QUAL_CONST);
2173       type = build_pointer_type(const_char_type);
2174       go_preserve_from_gc(type);
2175     }
2176   return type;
2177 }
2178
2179 // Return a tree for a string constant.
2180
2181 tree
2182 Gogo::string_constant_tree(const std::string& val)
2183 {
2184   tree index_type = build_index_type(size_int(val.length()));
2185   tree const_char_type = build_qualified_type(unsigned_char_type_node,
2186                                               TYPE_QUAL_CONST);
2187   tree string_type = build_array_type(const_char_type, index_type);
2188   string_type = build_variant_type_copy(string_type);
2189   TYPE_STRING_FLAG(string_type) = 1;
2190   tree string_val = build_string(val.length(), val.data());
2191   TREE_TYPE(string_val) = string_type;
2192   return string_val;
2193 }
2194
2195 // Return a tree for a Go string constant.
2196
2197 tree
2198 Gogo::go_string_constant_tree(const std::string& val)
2199 {
2200   tree string_type = Type::make_string_type()->get_tree(this);
2201
2202   VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2203
2204   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2205   tree field = TYPE_FIELDS(string_type);
2206   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
2207   elt->index = field;
2208   tree str = Gogo::string_constant_tree(val);
2209   elt->value = fold_convert(TREE_TYPE(field),
2210                             build_fold_addr_expr(str));
2211
2212   elt = VEC_quick_push(constructor_elt, init, NULL);
2213   field = DECL_CHAIN(field);
2214   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
2215   elt->index = field;
2216   elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
2217
2218   tree constructor = build_constructor(string_type, init);
2219   TREE_READONLY(constructor) = 1;
2220   TREE_CONSTANT(constructor) = 1;
2221
2222   return constructor;
2223 }
2224
2225 // Return a tree for a pointer to a Go string constant.  This is only
2226 // used for type descriptors, so we return a pointer to a constant
2227 // decl.
2228
2229 tree
2230 Gogo::ptr_go_string_constant_tree(const std::string& val)
2231 {
2232   tree pval = this->go_string_constant_tree(val);
2233
2234   tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
2235                          create_tmp_var_name("SP"), TREE_TYPE(pval));
2236   DECL_EXTERNAL(decl) = 0;
2237   TREE_PUBLIC(decl) = 0;
2238   TREE_USED(decl) = 1;
2239   TREE_READONLY(decl) = 1;
2240   TREE_CONSTANT(decl) = 1;
2241   TREE_STATIC(decl) = 1;
2242   DECL_ARTIFICIAL(decl) = 1;
2243   DECL_INITIAL(decl) = pval;
2244   rest_of_decl_compilation(decl, 1, 0);
2245
2246   return build_fold_addr_expr(decl);
2247 }
2248
2249 // Build the type of the struct that holds a slice for the given
2250 // element type.
2251
2252 tree
2253 Gogo::slice_type_tree(tree element_type_tree)
2254 {
2255   // We use int for the count and capacity fields in a slice header.
2256   // This matches 6g.  The language definition guarantees that we
2257   // can't allocate space of a size which does not fit in int
2258   // anyhow. FIXME: integer_type_node is the the C type "int" but is
2259   // not necessarily the Go type "int".  They will differ when the C
2260   // type "int" has fewer than 32 bits.
2261   return Gogo::builtin_struct(NULL, "__go_slice", NULL_TREE, 3,
2262                               "__values",
2263                               build_pointer_type(element_type_tree),
2264                               "__count",
2265                               integer_type_node,
2266                               "__capacity",
2267                               integer_type_node);
2268 }
2269
2270 // Given the tree for a slice type, return the tree for the type of
2271 // the elements of the slice.
2272
2273 tree
2274 Gogo::slice_element_type_tree(tree slice_type_tree)
2275 {
2276   gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE
2277              && POINTER_TYPE_P(TREE_TYPE(TYPE_FIELDS(slice_type_tree))));
2278   return TREE_TYPE(TREE_TYPE(TYPE_FIELDS(slice_type_tree)));
2279 }
2280
2281 // Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
2282 // the slice.  VALUES is the value pointer and COUNT is the number of
2283 // entries.  If CAPACITY is not NULL, it is the capacity; otherwise
2284 // the capacity and the count are the same.
2285
2286 tree
2287 Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
2288                         tree capacity)
2289 {
2290   gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
2291
2292   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
2293
2294   tree field = TYPE_FIELDS(slice_type_tree);
2295   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
2296   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2297   elt->index = field;
2298   gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
2299              == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
2300   elt->value = values;
2301
2302   count = fold_convert(sizetype, count);
2303   if (capacity == NULL_TREE)
2304     {
2305       count = save_expr(count);
2306       capacity = count;
2307     }
2308
2309   field = DECL_CHAIN(field);
2310   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
2311   elt = VEC_quick_push(constructor_elt, init, NULL);
2312   elt->index = field;
2313   elt->value = fold_convert(TREE_TYPE(field), count);
2314
2315   field = DECL_CHAIN(field);
2316   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
2317   elt = VEC_quick_push(constructor_elt, init, NULL);
2318   elt->index = field;
2319   elt->value = fold_convert(TREE_TYPE(field), capacity);
2320
2321   return build_constructor(slice_type_tree, init);
2322 }
2323
2324 // Build a constructor for an empty slice.
2325
2326 tree
2327 Gogo::empty_slice_constructor(tree slice_type_tree)
2328 {
2329   tree element_field = TYPE_FIELDS(slice_type_tree);
2330   tree ret = Gogo::slice_constructor(slice_type_tree,
2331                                      fold_convert(TREE_TYPE(element_field),
2332                                                   null_pointer_node),
2333                                      size_zero_node,
2334                                      size_zero_node);
2335   TREE_CONSTANT(ret) = 1;
2336   return ret;
2337 }
2338
2339 // Build a map descriptor for a map of type MAPTYPE.
2340
2341 tree
2342 Gogo::map_descriptor(Map_type* maptype)
2343 {
2344   if (this->map_descriptors_ == NULL)
2345     this->map_descriptors_ = new Map_descriptors(10);
2346
2347   std::pair<const Map_type*, tree> val(maptype, NULL);
2348   std::pair<Map_descriptors::iterator, bool> ins =
2349     this->map_descriptors_->insert(val);
2350   Map_descriptors::iterator p = ins.first;
2351   if (!ins.second)
2352     {
2353       if (p->second == error_mark_node)
2354         return error_mark_node;
2355       gcc_assert(p->second != NULL_TREE && DECL_P(p->second));
2356       return build_fold_addr_expr(p->second);
2357     }
2358
2359   Type* keytype = maptype->key_type();
2360   Type* valtype = maptype->val_type();
2361
2362   std::string mangled_name = ("__go_map_" + maptype->mangled_name(this));
2363
2364   tree id = get_identifier_from_string(mangled_name);
2365
2366   // Get the type of the map descriptor.  This is __go_map_descriptor
2367   // in libgo/map.h.
2368
2369   tree struct_type = this->map_descriptor_type();
2370
2371   // The map entry type is a struct with three fields.  This struct is
2372   // specific to MAPTYPE.  Build it.
2373
2374   tree map_entry_type = make_node(RECORD_TYPE);
2375
2376   map_entry_type = Gogo::builtin_struct(NULL, "__map", map_entry_type, 3,
2377                                         "__next",
2378                                         build_pointer_type(map_entry_type),
2379                                         "__key",
2380                                         keytype->get_tree(this),
2381                                         "__val",
2382                                         valtype->get_tree(this));
2383   if (map_entry_type == error_mark_node)
2384     {
2385       p->second = error_mark_node;
2386       return error_mark_node;
2387     }
2388
2389   tree map_entry_key_field = DECL_CHAIN(TYPE_FIELDS(map_entry_type));
2390   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_key_field)),
2391                     "__key") == 0);
2392
2393   tree map_entry_val_field = DECL_CHAIN(map_entry_key_field);
2394   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_val_field)),
2395                     "__val") == 0);
2396
2397   // Initialize the entries.
2398
2399   tree map_descriptor_field = TYPE_FIELDS(struct_type);
2400   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_descriptor_field)),
2401                     "__map_descriptor") == 0);
2402   tree entry_size_field = DECL_CHAIN(map_descriptor_field);
2403   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(entry_size_field)),
2404                     "__entry_size") == 0);
2405   tree key_offset_field = DECL_CHAIN(entry_size_field);
2406   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(key_offset_field)),
2407                     "__key_offset") == 0);
2408   tree val_offset_field = DECL_CHAIN(key_offset_field);
2409   gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(val_offset_field)),
2410                     "__val_offset") == 0);
2411
2412   VEC(constructor_elt, gc)* descriptor = VEC_alloc(constructor_elt, gc, 6);
2413
2414   constructor_elt* elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2415   elt->index = map_descriptor_field;
2416   elt->value = maptype->type_descriptor_pointer(this);
2417
2418   elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2419   elt->index = entry_size_field;
2420   elt->value = TYPE_SIZE_UNIT(map_entry_type);
2421
2422   elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2423   elt->index = key_offset_field;
2424   elt->value = byte_position(map_entry_key_field);
2425
2426   elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2427   elt->index = val_offset_field;
2428   elt->value = byte_position(map_entry_val_field);
2429
2430   tree constructor = build_constructor(struct_type, descriptor);
2431
2432   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, struct_type);
2433   TREE_STATIC(decl) = 1;
2434   TREE_USED(decl) = 1;
2435   TREE_READONLY(decl) = 1;
2436   TREE_CONSTANT(decl) = 1;
2437   DECL_INITIAL(decl) = constructor;
2438   make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2439   resolve_unique_section(decl, 1, 0);
2440
2441   rest_of_decl_compilation(decl, 1, 0);
2442
2443   go_preserve_from_gc(decl);
2444   p->second = decl;
2445
2446   return build_fold_addr_expr(decl);
2447 }
2448
2449 // Return a tree for the type of a map descriptor.  This is struct
2450 // __go_map_descriptor in libgo/runtime/map.h.  This is the same for
2451 // all map types.
2452
2453 tree
2454 Gogo::map_descriptor_type()
2455 {
2456   static tree struct_type;
2457   tree dtype = Type::make_type_descriptor_type()->get_tree(this);
2458   dtype = build_qualified_type(dtype, TYPE_QUAL_CONST);
2459   return Gogo::builtin_struct(&struct_type, "__go_map_descriptor", NULL_TREE,
2460                               4,
2461                               "__map_descriptor",
2462                               build_pointer_type(dtype),
2463                               "__entry_size",
2464                               sizetype,
2465                               "__key_offset",
2466                               sizetype,
2467                               "__val_offset",
2468                               sizetype);
2469 }
2470
2471 // Return the name to use for a type descriptor decl for TYPE.  This
2472 // is used when TYPE does not have a name.
2473
2474 std::string
2475 Gogo::unnamed_type_descriptor_decl_name(const Type* type)
2476 {
2477   return "__go_td_" + type->mangled_name(this);
2478 }
2479
2480 // Return the name to use for a type descriptor decl for a type named
2481 // NAME, defined in the function IN_FUNCTION.  IN_FUNCTION will
2482 // normally be NULL.
2483
2484 std::string
2485 Gogo::type_descriptor_decl_name(const Named_object* no,
2486                                 const Named_object* in_function)
2487 {
2488   std::string ret = "__go_tdn_";
2489   if (no->type_value()->is_builtin())
2490     gcc_assert(in_function == NULL);
2491   else
2492     {
2493       const std::string& unique_prefix(no->package() == NULL
2494                                        ? this->unique_prefix()
2495                                        : no->package()->unique_prefix());
2496       const std::string& package_name(no->package() == NULL
2497                                       ? this->package_name()
2498                                       : no->package()->name());
2499       ret.append(unique_prefix);
2500       ret.append(1, '.');
2501       ret.append(package_name);
2502       ret.append(1, '.');
2503       if (in_function != NULL)
2504         {
2505           ret.append(Gogo::unpack_hidden_name(in_function->name()));
2506           ret.append(1, '.');
2507         }
2508     }
2509   ret.append(no->name());
2510   return ret;
2511 }
2512
2513 // Where a type descriptor decl should be defined.
2514
2515 Gogo::Type_descriptor_location
2516 Gogo::type_descriptor_location(const Type* type)
2517 {
2518   const Named_type* name = type->named_type();
2519   if (name != NULL)
2520     {
2521       if (name->named_object()->package() != NULL)
2522         {
2523           // This is a named type defined in a different package.  The
2524           // descriptor should be defined in that package.
2525           return TYPE_DESCRIPTOR_UNDEFINED;
2526         }
2527       else if (name->is_builtin())
2528         {
2529           // We create the descriptor for a builtin type whenever we
2530           // need it.
2531           return TYPE_DESCRIPTOR_COMMON;
2532         }
2533       else
2534         {
2535           // This is a named type defined in this package.  The
2536           // descriptor should be defined here.
2537           return TYPE_DESCRIPTOR_DEFINED;
2538         }
2539     }
2540   else
2541     {
2542       if (type->points_to() != NULL
2543           && type->points_to()->named_type() != NULL
2544           && type->points_to()->named_type()->named_object()->package() != NULL)
2545         {
2546           // This is an unnamed pointer to a named type defined in a
2547           // different package.  The descriptor should be defined in
2548           // that package.
2549           return TYPE_DESCRIPTOR_UNDEFINED;
2550         }
2551       else
2552         {
2553           // This is an unnamed type.  The descriptor could be defined
2554           // in any package where it is needed, and the linker will
2555           // pick one descriptor to keep.
2556           return TYPE_DESCRIPTOR_COMMON;
2557         }
2558     }
2559 }
2560
2561 // Build a type descriptor decl for TYPE.  INITIALIZER is a struct
2562 // composite literal which initializers the type descriptor.
2563
2564 void
2565 Gogo::build_type_descriptor_decl(const Type* type, Expression* initializer,
2566                                  tree* pdecl)
2567 {
2568   const Named_type* name = type->named_type();
2569
2570   // We can have multiple instances of unnamed types, but we only want
2571   // to emit the type descriptor once.  We use a hash table to handle
2572   // this.  This is not necessary for named types, as they are unique,
2573   // and we store the type descriptor decl in the type itself.
2574   tree* phash = NULL;
2575   if (name == NULL)
2576     {
2577       if (this->type_descriptor_decls_ == NULL)
2578         this->type_descriptor_decls_ = new Type_descriptor_decls(10);
2579
2580       std::pair<Type_descriptor_decls::iterator, bool> ins =
2581         this->type_descriptor_decls_->insert(std::make_pair(type, NULL_TREE));
2582       if (!ins.second)
2583         {
2584           // We've already built a type descriptor for this type.
2585           *pdecl = ins.first->second;
2586           return;
2587         }
2588       phash = &ins.first->second;
2589     }
2590
2591   std::string decl_name;
2592   if (name == NULL)
2593     decl_name = this->unnamed_type_descriptor_decl_name(type);
2594   else
2595     decl_name = this->type_descriptor_decl_name(name->named_object(),
2596                                                 name->in_function());
2597   tree id = get_identifier_from_string(decl_name);
2598   tree descriptor_type_tree = initializer->type()->get_tree(this);
2599   if (descriptor_type_tree == error_mark_node)
2600     {
2601       *pdecl = error_mark_node;
2602       return;
2603     }
2604   tree decl = build_decl(name == NULL ? BUILTINS_LOCATION : name->location(),
2605                          VAR_DECL, id,
2606                          build_qualified_type(descriptor_type_tree,
2607                                               TYPE_QUAL_CONST));
2608   TREE_READONLY(decl) = 1;
2609   TREE_CONSTANT(decl) = 1;
2610   DECL_ARTIFICIAL(decl) = 1;
2611
2612   go_preserve_from_gc(decl);
2613   if (phash != NULL)
2614     *phash = decl;
2615
2616   // We store the new DECL now because we may need to refer to it when
2617   // expanding INITIALIZER.
2618   *pdecl = decl;
2619
2620   // If appropriate, just refer to the exported type identifier.
2621   Gogo::Type_descriptor_location type_descriptor_location =
2622     this->type_descriptor_location(type);
2623   if (type_descriptor_location == TYPE_DESCRIPTOR_UNDEFINED)
2624     {
2625       TREE_PUBLIC(decl) = 1;
2626       DECL_EXTERNAL(decl) = 1;
2627       return;
2628     }
2629
2630   TREE_STATIC(decl) = 1;
2631   TREE_USED(decl) = 1;
2632
2633   Translate_context context(this, NULL, NULL, NULL);
2634   context.set_is_const();
2635   tree constructor = initializer->get_tree(&context);
2636
2637   if (constructor == error_mark_node)
2638     gcc_assert(saw_errors());
2639
2640   DECL_INITIAL(decl) = constructor;
2641
2642   if (type_descriptor_location == TYPE_DESCRIPTOR_DEFINED)
2643     TREE_PUBLIC(decl) = 1;
2644   else
2645     {
2646       gcc_assert(type_descriptor_location == TYPE_DESCRIPTOR_COMMON);
2647       make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2648       resolve_unique_section(decl, 1, 0);
2649     }
2650
2651   rest_of_decl_compilation(decl, 1, 0);
2652 }
2653
2654 // Build an interface method table for a type: a list of function
2655 // pointers, one for each interface method.  This is used for
2656 // interfaces.
2657
2658 tree
2659 Gogo::interface_method_table_for_type(const Interface_type* interface,
2660                                       Named_type* type,
2661                                       bool is_pointer)
2662 {
2663   const Typed_identifier_list* interface_methods = interface->methods();
2664   gcc_assert(!interface_methods->empty());
2665
2666   std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
2667                               + interface->mangled_name(this)
2668                               + "__"
2669                               + type->mangled_name(this));
2670
2671   tree id = get_identifier_from_string(mangled_name);
2672
2673   // See whether this interface has any hidden methods.
2674   bool has_hidden_methods = false;
2675   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2676        p != interface_methods->end();
2677        ++p)
2678     {
2679       if (Gogo::is_hidden_name(p->name()))
2680         {
2681           has_hidden_methods = true;
2682           break;
2683         }
2684     }
2685
2686   // We already know that the named type is convertible to the
2687   // interface.  If the interface has hidden methods, and the named
2688   // type is defined in a different package, then the interface
2689   // conversion table will be defined by that other package.
2690   if (has_hidden_methods && type->named_object()->package() != NULL)
2691     {
2692       tree array_type = build_array_type(const_ptr_type_node, NULL);
2693       tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2694       TREE_READONLY(decl) = 1;
2695       TREE_CONSTANT(decl) = 1;
2696       TREE_PUBLIC(decl) = 1;
2697       DECL_EXTERNAL(decl) = 1;
2698       go_preserve_from_gc(decl);
2699       return decl;
2700     }
2701
2702   size_t count = interface_methods->size();
2703   VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
2704                                                  count + 1);
2705
2706   // The first element is the type descriptor.
2707   constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
2708   elt->index = size_zero_node;
2709   Type* td_type;
2710   if (!is_pointer)
2711     td_type = type;
2712   else
2713     td_type = Type::make_pointer_type(type);
2714   elt->value = fold_convert(const_ptr_type_node,
2715                             td_type->type_descriptor_pointer(this));
2716
2717   size_t i = 1;
2718   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2719        p != interface_methods->end();
2720        ++p, ++i)
2721     {
2722       bool is_ambiguous;
2723       Method* m = type->method_function(p->name(), &is_ambiguous);
2724       gcc_assert(m != NULL);
2725
2726       Named_object* no = m->named_object();
2727
2728       tree fnid = no->get_id(this);
2729
2730       tree fndecl;
2731       if (no->is_function())
2732         fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
2733       else if (no->is_function_declaration())
2734         fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
2735                                                                 fnid);
2736       else
2737         gcc_unreachable();
2738       fndecl = build_fold_addr_expr(fndecl);
2739
2740       elt = VEC_quick_push(constructor_elt, pointers, NULL);
2741       elt->index = size_int(i);
2742       elt->value = fold_convert(const_ptr_type_node, fndecl);
2743     }
2744   gcc_assert(i == count + 1);
2745
2746   tree array_type = build_array_type(const_ptr_type_node,
2747                                      build_index_type(size_int(count)));
2748   tree constructor = build_constructor(array_type, pointers);
2749
2750   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2751   TREE_STATIC(decl) = 1;
2752   TREE_USED(decl) = 1;
2753   TREE_READONLY(decl) = 1;
2754   TREE_CONSTANT(decl) = 1;
2755   DECL_INITIAL(decl) = constructor;
2756
2757   // If the interface type has hidden methods, then this is the only
2758   // definition of the table.  Otherwise it is a comdat table which
2759   // may be defined in multiple packages.
2760   if (has_hidden_methods)
2761     TREE_PUBLIC(decl) = 1;
2762   else
2763     {
2764       make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2765       resolve_unique_section(decl, 1, 0);
2766     }
2767
2768   rest_of_decl_compilation(decl, 1, 0);
2769
2770   go_preserve_from_gc(decl);
2771
2772   return decl;
2773 }
2774
2775 // Mark a function as a builtin library function.
2776
2777 void
2778 Gogo::mark_fndecl_as_builtin_library(tree fndecl)
2779 {
2780   DECL_EXTERNAL(fndecl) = 1;
2781   TREE_PUBLIC(fndecl) = 1;
2782   DECL_ARTIFICIAL(fndecl) = 1;
2783   TREE_NOTHROW(fndecl) = 1;
2784   DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
2785   DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
2786 }
2787
2788 // Build a call to a builtin function.
2789
2790 tree
2791 Gogo::call_builtin(tree* pdecl, source_location location, const char* name,
2792                    int nargs, tree rettype, ...)
2793 {
2794   if (rettype == error_mark_node)
2795     return error_mark_node;
2796
2797   tree* types = new tree[nargs];
2798   tree* args = new tree[nargs];
2799
2800   va_list ap;
2801   va_start(ap, rettype);
2802   for (int i = 0; i < nargs; ++i)
2803     {
2804       types[i] = va_arg(ap, tree);
2805       args[i] = va_arg(ap, tree);
2806       if (types[i] == error_mark_node || args[i] == error_mark_node)
2807         {
2808           delete[] types;
2809           delete[] args;
2810           return error_mark_node;
2811         }
2812     }
2813   va_end(ap);
2814
2815   if (*pdecl == NULL_TREE)
2816     {
2817       tree fnid = get_identifier(name);
2818
2819       tree argtypes = NULL_TREE;
2820       tree* pp = &argtypes;
2821       for (int i = 0; i < nargs; ++i)
2822         {
2823           *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
2824           pp = &TREE_CHAIN(*pp);
2825         }
2826       *pp = void_list_node;
2827
2828       tree fntype = build_function_type(rettype, argtypes);
2829
2830       *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
2831       Gogo::mark_fndecl_as_builtin_library(*pdecl);
2832       go_preserve_from_gc(*pdecl);
2833     }
2834
2835   tree fnptr = build_fold_addr_expr(*pdecl);
2836   if (CAN_HAVE_LOCATION_P(fnptr))
2837     SET_EXPR_LOCATION(fnptr, location);
2838
2839   tree ret = build_call_array(rettype, fnptr, nargs, args);
2840   SET_EXPR_LOCATION(ret, location);
2841
2842   delete[] types;
2843   delete[] args;
2844
2845   return ret;
2846 }
2847
2848 // Build a call to the runtime error function.
2849
2850 tree
2851 Gogo::runtime_error(int code, source_location location)
2852 {
2853   static tree runtime_error_fndecl;
2854   tree ret = Gogo::call_builtin(&runtime_error_fndecl,
2855                                 location,
2856                                 "__go_runtime_error",
2857                                 1,
2858                                 void_type_node,
2859                                 integer_type_node,
2860                                 build_int_cst(integer_type_node, code));
2861   if (ret == error_mark_node)
2862     return error_mark_node;
2863   // The runtime error function panics and does not return.
2864   TREE_NOTHROW(runtime_error_fndecl) = 0;
2865   TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
2866   return ret;
2867 }
2868
2869 // Send VAL on CHANNEL.  If BLOCKING is true, the resulting tree has a
2870 // void type.  If BLOCKING is false, the resulting tree has a boolean
2871 // type, and it will evaluate as true if the value was sent.  If
2872 // FOR_SELECT is true, this is being done because it was chosen in a
2873 // select statement.
2874
2875 tree
2876 Gogo::send_on_channel(tree channel, tree val, bool blocking, bool for_select,
2877                       source_location location)
2878 {
2879   if (channel == error_mark_node || val == error_mark_node)
2880     return error_mark_node;
2881
2882   if (int_size_in_bytes(TREE_TYPE(val)) <= 8
2883       && !AGGREGATE_TYPE_P(TREE_TYPE(val))
2884       && !FLOAT_TYPE_P(TREE_TYPE(val)))
2885     {
2886       val = convert_to_integer(uint64_type_node, val);
2887       if (blocking)
2888         {
2889           static tree send_small_fndecl;
2890           tree ret = Gogo::call_builtin(&send_small_fndecl,
2891                                         location,
2892                                         "__go_send_small",
2893                                         3,
2894                                         void_type_node,
2895                                         ptr_type_node,
2896                                         channel,
2897                                         uint64_type_node,
2898                                         val,
2899                                         boolean_type_node,
2900                                         (for_select
2901                                          ? boolean_true_node
2902                                          : boolean_false_node));
2903           if (ret == error_mark_node)
2904             return error_mark_node;
2905           // This can panic if there are too many operations on a
2906           // closed channel.
2907           TREE_NOTHROW(send_small_fndecl) = 0;
2908           return ret;
2909         }
2910       else
2911         {
2912           gcc_assert(!for_select);
2913           static tree send_nonblocking_small_fndecl;
2914           tree ret = Gogo::call_builtin(&send_nonblocking_small_fndecl,
2915                                         location,
2916                                         "__go_send_nonblocking_small",
2917                                         2,
2918                                         boolean_type_node,
2919                                         ptr_type_node,
2920                                         channel,
2921                                         uint64_type_node,
2922                                         val);
2923           if (ret == error_mark_node)
2924             return error_mark_node;
2925           // This can panic if there are too many operations on a
2926           // closed channel.
2927           TREE_NOTHROW(send_nonblocking_small_fndecl) = 0;
2928           return ret;
2929         }
2930     }
2931   else
2932     {
2933       tree make_tmp;
2934       if (TREE_ADDRESSABLE(TREE_TYPE(val)) || TREE_CODE(val) == VAR_DECL)
2935         {
2936           make_tmp = NULL_TREE;
2937           val = build_fold_addr_expr(val);
2938           if (DECL_P(val))
2939             TREE_ADDRESSABLE(val) = 1;
2940         }
2941       else
2942         {
2943           tree tmp = create_tmp_var(TREE_TYPE(val), get_name(val));
2944           DECL_IGNORED_P(tmp) = 0;
2945           DECL_INITIAL(tmp) = val;
2946           TREE_ADDRESSABLE(tmp) = 1;
2947           make_tmp = build1(DECL_EXPR, void_type_node, tmp);
2948           SET_EXPR_LOCATION(make_tmp, location);
2949           val = build_fold_addr_expr(tmp);
2950         }
2951       val = fold_convert(ptr_type_node, val);
2952
2953       tree call;
2954       if (blocking)
2955         {
2956           static tree send_big_fndecl;
2957           call = Gogo::call_builtin(&send_big_fndecl,
2958                                     location,
2959                                     "__go_send_big",
2960                                     3,
2961                                     void_type_node,
2962                                     ptr_type_node,
2963                                     channel,
2964                                     ptr_type_node,
2965                                     val,
2966                                     boolean_type_node,
2967                                     (for_select
2968                                      ? boolean_true_node
2969                                      : boolean_false_node));
2970           if (call == error_mark_node)
2971             return error_mark_node;
2972           // This can panic if there are too many operations on a
2973           // closed channel.
2974           TREE_NOTHROW(send_big_fndecl) = 0;
2975         }
2976       else
2977         {
2978           gcc_assert(!for_select);
2979           static tree send_nonblocking_big_fndecl;
2980           call = Gogo::call_builtin(&send_nonblocking_big_fndecl,
2981                                     location,
2982                                     "__go_send_nonblocking_big",
2983                                     2,
2984                                     boolean_type_node,
2985                                     ptr_type_node,
2986                                     channel,
2987                                     ptr_type_node,
2988                                     val);
2989           if (call == error_mark_node)
2990             return error_mark_node;
2991           // This can panic if there are too many operations on a
2992           // closed channel.
2993           TREE_NOTHROW(send_nonblocking_big_fndecl) = 0;
2994         }
2995
2996       if (make_tmp == NULL_TREE)
2997         return call;
2998       else
2999         {
3000           tree ret = build2(COMPOUND_EXPR, TREE_TYPE(call), make_tmp, call);
3001           SET_EXPR_LOCATION(ret, location);
3002           return ret;
3003         }
3004     }
3005 }
3006
3007 // Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
3008 // This does a blocking receive and returns the value read from the
3009 // channel.  If FOR_SELECT is true, this is being done because it was
3010 // chosen in a select statement.
3011
3012 tree
3013 Gogo::receive_from_channel(tree type_tree, tree channel, bool for_select,
3014                            source_location location)
3015 {
3016   if (type_tree == error_mark_node || channel == error_mark_node)
3017     return error_mark_node;
3018
3019   if (int_size_in_bytes(type_tree) <= 8
3020       && !AGGREGATE_TYPE_P(type_tree)
3021       && !FLOAT_TYPE_P(type_tree))
3022     {
3023       static tree receive_small_fndecl;
3024       tree call = Gogo::call_builtin(&receive_small_fndecl,
3025                                      location,
3026                                      "__go_receive_small",
3027                                      2,
3028                                      uint64_type_node,
3029                                      ptr_type_node,
3030                                      channel,
3031                                      boolean_type_node,
3032                                      (for_select
3033                                       ? boolean_true_node
3034                                       : boolean_false_node));
3035       if (call == error_mark_node)
3036         return error_mark_node;
3037       // This can panic if there are too many operations on a closed
3038       // channel.
3039       TREE_NOTHROW(receive_small_fndecl) = 0;
3040       int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
3041       tree int_type_tree = go_type_for_size(bitsize, 1);
3042       return fold_convert_loc(location, type_tree,
3043                               fold_convert_loc(location, int_type_tree,
3044                                                call));
3045     }
3046   else
3047     {
3048       tree tmp = create_tmp_var(type_tree, get_name(type_tree));
3049       DECL_IGNORED_P(tmp) = 0;
3050       TREE_ADDRESSABLE(tmp) = 1;
3051       tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
3052       SET_EXPR_LOCATION(make_tmp, location);
3053       tree tmpaddr = build_fold_addr_expr(tmp);
3054       tmpaddr = fold_convert(ptr_type_node, tmpaddr);
3055       static tree receive_big_fndecl;
3056       tree call = Gogo::call_builtin(&receive_big_fndecl,
3057                                      location,
3058                                      "__go_receive_big",
3059                                      3,
3060                                      void_type_node,
3061                                      ptr_type_node,
3062                                      channel,
3063                                      ptr_type_node,
3064                                      tmpaddr,
3065                                      boolean_type_node,
3066                                      (for_select
3067                                       ? boolean_true_node
3068                                       : boolean_false_node));
3069       if (call == error_mark_node)
3070         return error_mark_node;
3071       // This can panic if there are too many operations on a closed
3072       // channel.
3073       TREE_NOTHROW(receive_big_fndecl) = 0;
3074       return build2(COMPOUND_EXPR, type_tree, make_tmp,
3075                     build2(COMPOUND_EXPR, type_tree, call, tmp));
3076     }
3077 }
3078
3079 // Return the type of a function trampoline.  This is like
3080 // get_trampoline_type in tree-nested.c.
3081
3082 tree
3083 Gogo::trampoline_type_tree()
3084 {
3085   static tree type_tree;
3086   if (type_tree == NULL_TREE)
3087     {
3088       unsigned int size;
3089       unsigned int align;
3090       go_trampoline_info(&size, &align);
3091       tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
3092       t = build_array_type(char_type_node, t);
3093
3094       type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
3095                                        "__data", t);
3096       t = TYPE_FIELDS(type_tree);
3097       DECL_ALIGN(t) = align;
3098       DECL_USER_ALIGN(t) = 1;
3099
3100       go_preserve_from_gc(type_tree);
3101     }
3102   return type_tree;
3103 }
3104
3105 // Make a trampoline which calls FNADDR passing CLOSURE.
3106
3107 tree
3108 Gogo::make_trampoline(tree fnaddr, tree closure, source_location location)
3109 {
3110   tree trampoline_type = Gogo::trampoline_type_tree();
3111   tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
3112
3113   closure = save_expr(closure);
3114
3115   // We allocate the trampoline using a special function which will
3116   // mark it as executable.
3117   static tree trampoline_fndecl;
3118   tree x = Gogo::call_builtin(&trampoline_fndecl,
3119                               location,
3120                               "__go_allocate_trampoline",
3121                               2,
3122                               ptr_type_node,
3123                               size_type_node,
3124                               trampoline_size,
3125                               ptr_type_node,
3126                               fold_convert_loc(location, ptr_type_node,
3127                                                closure));
3128   if (x == error_mark_node)
3129     return error_mark_node;
3130
3131   x = save_expr(x);
3132
3133   // Initialize the trampoline.
3134   tree ini = build_call_expr(implicit_built_in_decls[BUILT_IN_INIT_TRAMPOLINE],
3135                              3, x, fnaddr, closure);
3136
3137   // On some targets the trampoline address needs to be adjusted.  For
3138   // example, when compiling in Thumb mode on the ARM, the address
3139   // needs to have the low bit set.
3140   x = build_call_expr(implicit_built_in_decls[BUILT_IN_ADJUST_TRAMPOLINE],
3141                       1, x);
3142   x = fold_convert(TREE_TYPE(fnaddr), x);
3143
3144   return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
3145 }