OSDN Git Service

447e652860e1c8d8d7ee768aa55d4b67c543b4e9
[pf3gnuchains/gcc-fork.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "runtime.h"
37 #include "backend.h"
38 #include "expressions.h"
39 #include "ast-dump.h"
40
41 // Class Expression.
42
43 Expression::Expression(Expression_classification classification,
44                        Location location)
45   : classification_(classification), location_(location)
46 {
47 }
48
49 Expression::~Expression()
50 {
51 }
52
53 // If this expression has a constant integer value, return it.
54
55 bool
56 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
57                                    Type** ptype) const
58 {
59   *ptype = NULL;
60   return this->do_integer_constant_value(iota_is_constant, val, ptype);
61 }
62
63 // If this expression has a constant floating point value, return it.
64
65 bool
66 Expression::float_constant_value(mpfr_t val, Type** ptype) const
67 {
68   *ptype = NULL;
69   if (this->do_float_constant_value(val, ptype))
70     return true;
71   mpz_t ival;
72   mpz_init(ival);
73   Type* t;
74   bool ret;
75   if (!this->do_integer_constant_value(false, ival, &t))
76     ret = false;
77   else
78     {
79       mpfr_set_z(val, ival, GMP_RNDN);
80       ret = true;
81     }
82   mpz_clear(ival);
83   return ret;
84 }
85
86 // If this expression has a constant complex value, return it.
87
88 bool
89 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
90                                    Type** ptype) const
91 {
92   *ptype = NULL;
93   if (this->do_complex_constant_value(real, imag, ptype))
94     return true;
95   Type *t;
96   if (this->float_constant_value(real, &t))
97     {
98       mpfr_set_ui(imag, 0, GMP_RNDN);
99       return true;
100     }
101   return false;
102 }
103
104 // Traverse the expressions.
105
106 int
107 Expression::traverse(Expression** pexpr, Traverse* traverse)
108 {
109   Expression* expr = *pexpr;
110   if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
111     {
112       int t = traverse->expression(pexpr);
113       if (t == TRAVERSE_EXIT)
114         return TRAVERSE_EXIT;
115       else if (t == TRAVERSE_SKIP_COMPONENTS)
116         return TRAVERSE_CONTINUE;
117     }
118   return expr->do_traverse(traverse);
119 }
120
121 // Traverse subexpressions of this expression.
122
123 int
124 Expression::traverse_subexpressions(Traverse* traverse)
125 {
126   return this->do_traverse(traverse);
127 }
128
129 // Default implementation for do_traverse for child classes.
130
131 int
132 Expression::do_traverse(Traverse*)
133 {
134   return TRAVERSE_CONTINUE;
135 }
136
137 // This virtual function is called by the parser if the value of this
138 // expression is being discarded.  By default, we give an error.
139 // Expressions with side effects override.
140
141 void
142 Expression::do_discarding_value()
143 {
144   this->unused_value_error();
145 }
146
147 // This virtual function is called to export expressions.  This will
148 // only be used by expressions which may be constant.
149
150 void
151 Expression::do_export(Export*) const
152 {
153   go_unreachable();
154 }
155
156 // Give an error saying that the value of the expression is not used.
157
158 void
159 Expression::unused_value_error()
160 {
161   error_at(this->location(), "value computed is not used");
162 }
163
164 // Note that this expression is an error.  This is called by children
165 // when they discover an error.
166
167 void
168 Expression::set_is_error()
169 {
170   this->classification_ = EXPRESSION_ERROR;
171 }
172
173 // For children to call to report an error conveniently.
174
175 void
176 Expression::report_error(const char* msg)
177 {
178   error_at(this->location_, "%s", msg);
179   this->set_is_error();
180 }
181
182 // Set types of variables and constants.  This is implemented by the
183 // child class.
184
185 void
186 Expression::determine_type(const Type_context* context)
187 {
188   this->do_determine_type(context);
189 }
190
191 // Set types when there is no context.
192
193 void
194 Expression::determine_type_no_context()
195 {
196   Type_context context;
197   this->do_determine_type(&context);
198 }
199
200 // Return a tree handling any conversions which must be done during
201 // assignment.
202
203 tree
204 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
205                                    Type* rhs_type, tree rhs_tree,
206                                    Location location)
207 {
208   if (lhs_type == rhs_type)
209     return rhs_tree;
210
211   if (lhs_type->is_error() || rhs_type->is_error())
212     return error_mark_node;
213
214   if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
215     return error_mark_node;
216
217   Gogo* gogo = context->gogo();
218
219   tree lhs_type_tree = type_to_tree(lhs_type->get_backend(gogo));
220   if (lhs_type_tree == error_mark_node)
221     return error_mark_node;
222
223   if (lhs_type->interface_type() != NULL)
224     {
225       if (rhs_type->interface_type() == NULL)
226         return Expression::convert_type_to_interface(context, lhs_type,
227                                                      rhs_type, rhs_tree,
228                                                      location);
229       else
230         return Expression::convert_interface_to_interface(context, lhs_type,
231                                                           rhs_type, rhs_tree,
232                                                           false, location);
233     }
234   else if (rhs_type->interface_type() != NULL)
235     return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
236                                                  rhs_tree, location);
237   else if (lhs_type->is_slice_type() && rhs_type->is_nil_type())
238     {
239       // Assigning nil to an open array.
240       go_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
241
242       VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
243
244       constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
245       tree field = TYPE_FIELDS(lhs_type_tree);
246       go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
247                         "__values") == 0);
248       elt->index = field;
249       elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
250
251       elt = VEC_quick_push(constructor_elt, init, NULL);
252       field = DECL_CHAIN(field);
253       go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
254                         "__count") == 0);
255       elt->index = field;
256       elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
257
258       elt = VEC_quick_push(constructor_elt, init, NULL);
259       field = DECL_CHAIN(field);
260       go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
261                         "__capacity") == 0);
262       elt->index = field;
263       elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
264
265       tree val = build_constructor(lhs_type_tree, init);
266       TREE_CONSTANT(val) = 1;
267
268       return val;
269     }
270   else if (rhs_type->is_nil_type())
271     {
272       // The left hand side should be a pointer type at the tree
273       // level.
274       go_assert(POINTER_TYPE_P(lhs_type_tree));
275       return fold_convert(lhs_type_tree, null_pointer_node);
276     }
277   else if (lhs_type_tree == TREE_TYPE(rhs_tree))
278     {
279       // No conversion is needed.
280       return rhs_tree;
281     }
282   else if (POINTER_TYPE_P(lhs_type_tree)
283            || INTEGRAL_TYPE_P(lhs_type_tree)
284            || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
285            || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
286     return fold_convert_loc(location.gcc_location(), lhs_type_tree, rhs_tree);
287   else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
288            && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
289     {
290       // This conversion must be permitted by Go, or we wouldn't have
291       // gotten here.
292       go_assert(int_size_in_bytes(lhs_type_tree)
293                  == int_size_in_bytes(TREE_TYPE(rhs_tree)));
294       return fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR,
295                              lhs_type_tree, rhs_tree);
296     }
297   else
298     {
299       go_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
300       return rhs_tree;
301     }
302 }
303
304 // Return a tree for a conversion from a non-interface type to an
305 // interface type.
306
307 tree
308 Expression::convert_type_to_interface(Translate_context* context,
309                                       Type* lhs_type, Type* rhs_type,
310                                       tree rhs_tree, Location location)
311 {
312   Gogo* gogo = context->gogo();
313   Interface_type* lhs_interface_type = lhs_type->interface_type();
314   bool lhs_is_empty = lhs_interface_type->is_empty();
315
316   // Since RHS_TYPE is a static type, we can create the interface
317   // method table at compile time.
318
319   // When setting an interface to nil, we just set both fields to
320   // NULL.
321   if (rhs_type->is_nil_type())
322     {
323       Btype* lhs_btype = lhs_type->get_backend(gogo);
324       return expr_to_tree(gogo->backend()->zero_expression(lhs_btype));
325     }
326
327   // This should have been checked already.
328   go_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
329
330   tree lhs_type_tree = type_to_tree(lhs_type->get_backend(gogo));
331   if (lhs_type_tree == error_mark_node)
332     return error_mark_node;
333
334   // An interface is a tuple.  If LHS_TYPE is an empty interface type,
335   // then the first field is the type descriptor for RHS_TYPE.
336   // Otherwise it is the interface method table for RHS_TYPE.
337   tree first_field_value;
338   if (lhs_is_empty)
339     first_field_value = rhs_type->type_descriptor_pointer(gogo, location);
340   else
341     {
342       // Build the interface method table for this interface and this
343       // object type: a list of function pointers for each interface
344       // method.
345       Named_type* rhs_named_type = rhs_type->named_type();
346       bool is_pointer = false;
347       if (rhs_named_type == NULL)
348         {
349           rhs_named_type = rhs_type->deref()->named_type();
350           is_pointer = true;
351         }
352       tree method_table;
353       if (rhs_named_type == NULL)
354         method_table = null_pointer_node;
355       else
356         method_table =
357           rhs_named_type->interface_method_table(gogo, lhs_interface_type,
358                                                  is_pointer);
359       first_field_value = fold_convert_loc(location.gcc_location(),
360                                            const_ptr_type_node, method_table);
361     }
362   if (first_field_value == error_mark_node)
363     return error_mark_node;
364
365   // Start building a constructor for the value we will return.
366
367   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
368
369   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
370   tree field = TYPE_FIELDS(lhs_type_tree);
371   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
372                     (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
373   elt->index = field;
374   elt->value = fold_convert_loc(location.gcc_location(), TREE_TYPE(field),
375                                 first_field_value);
376
377   elt = VEC_quick_push(constructor_elt, init, NULL);
378   field = DECL_CHAIN(field);
379   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380   elt->index = field;
381
382   if (rhs_type->points_to() != NULL)
383     {
384       //  We are assigning a pointer to the interface; the interface
385       // holds the pointer itself.
386       elt->value = rhs_tree;
387       return build_constructor(lhs_type_tree, init);
388     }
389
390   // We are assigning a non-pointer value to the interface; the
391   // interface gets a copy of the value in the heap.
392
393   tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395   tree space = gogo->allocate_memory(rhs_type, object_size, location);
396   space = fold_convert_loc(location.gcc_location(),
397                            build_pointer_type(TREE_TYPE(rhs_tree)), space);
398   space = save_expr(space);
399
400   tree ref = build_fold_indirect_ref_loc(location.gcc_location(), space);
401   TREE_THIS_NOTRAP(ref) = 1;
402   tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
403                              void_type_node, ref, rhs_tree);
404
405   elt->value = fold_convert_loc(location.gcc_location(), TREE_TYPE(field),
406                                 space);
407
408   return build2(COMPOUND_EXPR, lhs_type_tree, set,
409                 build_constructor(lhs_type_tree, init));
410 }
411
412 // Return a tree for the type descriptor of RHS_TREE, which has
413 // interface type RHS_TYPE.  If RHS_TREE is nil the result will be
414 // NULL.
415
416 tree
417 Expression::get_interface_type_descriptor(Translate_context*,
418                                           Type* rhs_type, tree rhs_tree,
419                                           Location location)
420 {
421   tree rhs_type_tree = TREE_TYPE(rhs_tree);
422   go_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
423   tree rhs_field = TYPE_FIELDS(rhs_type_tree);
424   tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
425                   NULL_TREE);
426   if (rhs_type->interface_type()->is_empty())
427     {
428       go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
429                         "__type_descriptor") == 0);
430       return v;
431     }
432
433   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
434              == 0);
435   go_assert(POINTER_TYPE_P(TREE_TYPE(v)));
436   v = save_expr(v);
437   tree v1 = build_fold_indirect_ref_loc(location.gcc_location(), v);
438   go_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
439   tree f = TYPE_FIELDS(TREE_TYPE(v1));
440   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
441              == 0);
442   v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
443
444   tree eq = fold_build2_loc(location.gcc_location(), EQ_EXPR, boolean_type_node,
445                             v, fold_convert_loc(location.gcc_location(),
446                                                 TREE_TYPE(v),
447                                                 null_pointer_node));
448   tree n = fold_convert_loc(location.gcc_location(), TREE_TYPE(v1),
449                             null_pointer_node);
450   return fold_build3_loc(location.gcc_location(), COND_EXPR, TREE_TYPE(v1),
451                          eq, n, v1);
452 }
453
454 // Return a tree for the conversion of an interface type to an
455 // interface type.
456
457 tree
458 Expression::convert_interface_to_interface(Translate_context* context,
459                                            Type *lhs_type, Type *rhs_type,
460                                            tree rhs_tree, bool for_type_guard,
461                                            Location location)
462 {
463   Gogo* gogo = context->gogo();
464   Interface_type* lhs_interface_type = lhs_type->interface_type();
465   bool lhs_is_empty = lhs_interface_type->is_empty();
466
467   tree lhs_type_tree = type_to_tree(lhs_type->get_backend(gogo));
468   if (lhs_type_tree == error_mark_node)
469     return error_mark_node;
470
471   // In the general case this requires runtime examination of the type
472   // method table to match it up with the interface methods.
473
474   // FIXME: If all of the methods in the right hand side interface
475   // also appear in the left hand side interface, then we don't need
476   // to do a runtime check, although we still need to build a new
477   // method table.
478
479   // Get the type descriptor for the right hand side.  This will be
480   // NULL for a nil interface.
481
482   if (!DECL_P(rhs_tree))
483     rhs_tree = save_expr(rhs_tree);
484
485   tree rhs_type_descriptor =
486     Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
487                                               location);
488
489   // The result is going to be a two element constructor.
490
491   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
492
493   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
494   tree field = TYPE_FIELDS(lhs_type_tree);
495   elt->index = field;
496
497   if (for_type_guard)
498     {
499       // A type assertion fails when converting a nil interface.
500       tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo,
501                                                                    location);
502       static tree assert_interface_decl;
503       tree call = Gogo::call_builtin(&assert_interface_decl,
504                                      location,
505                                      "__go_assert_interface",
506                                      2,
507                                      ptr_type_node,
508                                      TREE_TYPE(lhs_type_descriptor),
509                                      lhs_type_descriptor,
510                                      TREE_TYPE(rhs_type_descriptor),
511                                      rhs_type_descriptor);
512       if (call == error_mark_node)
513         return error_mark_node;
514       // This will panic if the interface conversion fails.
515       TREE_NOTHROW(assert_interface_decl) = 0;
516       elt->value = fold_convert_loc(location.gcc_location(), TREE_TYPE(field),
517                                     call);
518     }
519   else if (lhs_is_empty)
520     {
521       // A convertion to an empty interface always succeeds, and the
522       // first field is just the type descriptor of the object.
523       go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
524                         "__type_descriptor") == 0);
525       go_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
526       elt->value = rhs_type_descriptor;
527     }
528   else
529     {
530       // A conversion to a non-empty interface may fail, but unlike a
531       // type assertion converting nil will always succeed.
532       go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
533                  == 0);
534       tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo,
535                                                                    location);
536       static tree convert_interface_decl;
537       tree call = Gogo::call_builtin(&convert_interface_decl,
538                                      location,
539                                      "__go_convert_interface",
540                                      2,
541                                      ptr_type_node,
542                                      TREE_TYPE(lhs_type_descriptor),
543                                      lhs_type_descriptor,
544                                      TREE_TYPE(rhs_type_descriptor),
545                                      rhs_type_descriptor);
546       if (call == error_mark_node)
547         return error_mark_node;
548       // This will panic if the interface conversion fails.
549       TREE_NOTHROW(convert_interface_decl) = 0;
550       elt->value = fold_convert_loc(location.gcc_location(), TREE_TYPE(field),
551                                     call);
552     }
553
554   // The second field is simply the object pointer.
555
556   elt = VEC_quick_push(constructor_elt, init, NULL);
557   field = DECL_CHAIN(field);
558   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
559   elt->index = field;
560
561   tree rhs_type_tree = TREE_TYPE(rhs_tree);
562   go_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
563   tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
564   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
565   elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
566                       NULL_TREE);
567
568   return build_constructor(lhs_type_tree, init);
569 }
570
571 // Return a tree for the conversion of an interface type to a
572 // non-interface type.
573
574 tree
575 Expression::convert_interface_to_type(Translate_context* context,
576                                       Type *lhs_type, Type* rhs_type,
577                                       tree rhs_tree, Location location)
578 {
579   Gogo* gogo = context->gogo();
580   tree rhs_type_tree = TREE_TYPE(rhs_tree);
581
582   tree lhs_type_tree = type_to_tree(lhs_type->get_backend(gogo));
583   if (lhs_type_tree == error_mark_node)
584     return error_mark_node;
585
586   // Call a function to check that the type is valid.  The function
587   // will panic with an appropriate runtime type error if the type is
588   // not valid.
589
590   tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo, location);
591
592   if (!DECL_P(rhs_tree))
593     rhs_tree = save_expr(rhs_tree);
594
595   tree rhs_type_descriptor =
596     Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
597                                               location);
598
599   tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo,
600                                                                 location);
601
602   static tree check_interface_type_decl;
603   tree call = Gogo::call_builtin(&check_interface_type_decl,
604                                  location,
605                                  "__go_check_interface_type",
606                                  3,
607                                  void_type_node,
608                                  TREE_TYPE(lhs_type_descriptor),
609                                  lhs_type_descriptor,
610                                  TREE_TYPE(rhs_type_descriptor),
611                                  rhs_type_descriptor,
612                                  TREE_TYPE(rhs_inter_descriptor),
613                                  rhs_inter_descriptor);
614   if (call == error_mark_node)
615     return error_mark_node;
616   // This call will panic if the conversion is invalid.
617   TREE_NOTHROW(check_interface_type_decl) = 0;
618
619   // If the call succeeds, pull out the value.
620   go_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
621   tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
622   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
623   tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
624                     NULL_TREE);
625
626   // If the value is a pointer, then it is the value we want.
627   // Otherwise it points to the value.
628   if (lhs_type->points_to() == NULL)
629     {
630       val = fold_convert_loc(location.gcc_location(),
631                              build_pointer_type(lhs_type_tree), val);
632       val = build_fold_indirect_ref_loc(location.gcc_location(), val);
633     }
634
635   return build2(COMPOUND_EXPR, lhs_type_tree, call,
636                 fold_convert_loc(location.gcc_location(), lhs_type_tree, val));
637 }
638
639 // Convert an expression to a tree.  This is implemented by the child
640 // class.  Not that it is not in general safe to call this multiple
641 // times for a single expression, but that we don't catch such errors.
642
643 tree
644 Expression::get_tree(Translate_context* context)
645 {
646   // The child may have marked this expression as having an error.
647   if (this->classification_ == EXPRESSION_ERROR)
648     return error_mark_node;
649
650   return this->do_get_tree(context);
651 }
652
653 // Return a tree for VAL in TYPE.
654
655 tree
656 Expression::integer_constant_tree(mpz_t val, tree type)
657 {
658   if (type == error_mark_node)
659     return error_mark_node;
660   else if (TREE_CODE(type) == INTEGER_TYPE)
661     return double_int_to_tree(type,
662                               mpz_get_double_int(type, val, true));
663   else if (TREE_CODE(type) == REAL_TYPE)
664     {
665       mpfr_t fval;
666       mpfr_init_set_z(fval, val, GMP_RNDN);
667       tree ret = Expression::float_constant_tree(fval, type);
668       mpfr_clear(fval);
669       return ret;
670     }
671   else if (TREE_CODE(type) == COMPLEX_TYPE)
672     {
673       mpfr_t fval;
674       mpfr_init_set_z(fval, val, GMP_RNDN);
675       tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
676       mpfr_clear(fval);
677       tree imag = build_real_from_int_cst(TREE_TYPE(type),
678                                           integer_zero_node);
679       return build_complex(type, real, imag);
680     }
681   else
682     go_unreachable();
683 }
684
685 // Return a tree for VAL in TYPE.
686
687 tree
688 Expression::float_constant_tree(mpfr_t val, tree type)
689 {
690   if (type == error_mark_node)
691     return error_mark_node;
692   else if (TREE_CODE(type) == INTEGER_TYPE)
693     {
694       mpz_t ival;
695       mpz_init(ival);
696       mpfr_get_z(ival, val, GMP_RNDN);
697       tree ret = Expression::integer_constant_tree(ival, type);
698       mpz_clear(ival);
699       return ret;
700     }
701   else if (TREE_CODE(type) == REAL_TYPE)
702     {
703       REAL_VALUE_TYPE r1;
704       real_from_mpfr(&r1, val, type, GMP_RNDN);
705       REAL_VALUE_TYPE r2;
706       real_convert(&r2, TYPE_MODE(type), &r1);
707       return build_real(type, r2);
708     }
709   else if (TREE_CODE(type) == COMPLEX_TYPE)
710     {
711       REAL_VALUE_TYPE r1;
712       real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
713       REAL_VALUE_TYPE r2;
714       real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
715       tree imag = build_real_from_int_cst(TREE_TYPE(type),
716                                           integer_zero_node);
717       return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
718     }
719   else
720     go_unreachable();
721 }
722
723 // Return a tree for REAL/IMAG in TYPE.
724
725 tree
726 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
727 {
728   if (type == error_mark_node)
729     return error_mark_node;
730   else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE)
731     return Expression::float_constant_tree(real, type);
732   else if (TREE_CODE(type) == COMPLEX_TYPE)
733     {
734       REAL_VALUE_TYPE r1;
735       real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
736       REAL_VALUE_TYPE r2;
737       real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
738
739       REAL_VALUE_TYPE r3;
740       real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
741       REAL_VALUE_TYPE r4;
742       real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
743
744       return build_complex(type, build_real(TREE_TYPE(type), r2),
745                            build_real(TREE_TYPE(type), r4));
746     }
747   else
748     go_unreachable();
749 }
750
751 // Return a tree which evaluates to true if VAL, of arbitrary integer
752 // type, is negative or is more than the maximum value of BOUND_TYPE.
753 // If SOFAR is not NULL, it is or'red into the result.  The return
754 // value may be NULL if SOFAR is NULL.
755
756 tree
757 Expression::check_bounds(tree val, tree bound_type, tree sofar,
758                          Location loc)
759 {
760   tree val_type = TREE_TYPE(val);
761   tree ret = NULL_TREE;
762
763   if (!TYPE_UNSIGNED(val_type))
764     {
765       ret = fold_build2_loc(loc.gcc_location(), LT_EXPR, boolean_type_node, val,
766                             build_int_cst(val_type, 0));
767       if (ret == boolean_false_node)
768         ret = NULL_TREE;
769     }
770
771   HOST_WIDE_INT val_type_size = int_size_in_bytes(val_type);
772   HOST_WIDE_INT bound_type_size = int_size_in_bytes(bound_type);
773   go_assert(val_type_size != -1 && bound_type_size != -1);
774   if (val_type_size > bound_type_size
775       || (val_type_size == bound_type_size
776           && TYPE_UNSIGNED(val_type)
777           && !TYPE_UNSIGNED(bound_type)))
778     {
779       tree max = TYPE_MAX_VALUE(bound_type);
780       tree big = fold_build2_loc(loc.gcc_location(), GT_EXPR, boolean_type_node,
781                                  val, fold_convert_loc(loc.gcc_location(),
782                                                        val_type, max));
783       if (big == boolean_false_node)
784         ;
785       else if (ret == NULL_TREE)
786         ret = big;
787       else
788         ret = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
789                               boolean_type_node, ret, big);
790     }
791
792   if (ret == NULL_TREE)
793     return sofar;
794   else if (sofar == NULL_TREE)
795     return ret;
796   else
797     return fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR, boolean_type_node,
798                            sofar, ret);
799 }
800
801 void
802 Expression::dump_expression(Ast_dump_context* ast_dump_context) const
803 {
804   this->do_dump_expression(ast_dump_context);
805 }
806
807 // Error expressions.  This are used to avoid cascading errors.
808
809 class Error_expression : public Expression
810 {
811  public:
812   Error_expression(Location location)
813     : Expression(EXPRESSION_ERROR, location)
814   { }
815
816  protected:
817   bool
818   do_is_constant() const
819   { return true; }
820
821   bool
822   do_integer_constant_value(bool, mpz_t val, Type**) const
823   {
824     mpz_set_ui(val, 0);
825     return true;
826   }
827
828   bool
829   do_float_constant_value(mpfr_t val, Type**) const
830   {
831     mpfr_set_ui(val, 0, GMP_RNDN);
832     return true;
833   }
834
835   bool
836   do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
837   {
838     mpfr_set_ui(real, 0, GMP_RNDN);
839     mpfr_set_ui(imag, 0, GMP_RNDN);
840     return true;
841   }
842
843   void
844   do_discarding_value()
845   { }
846
847   Type*
848   do_type()
849   { return Type::make_error_type(); }
850
851   void
852   do_determine_type(const Type_context*)
853   { }
854
855   Expression*
856   do_copy()
857   { return this; }
858
859   bool
860   do_is_addressable() const
861   { return true; }
862
863   tree
864   do_get_tree(Translate_context*)
865   { return error_mark_node; }
866
867   void
868   do_dump_expression(Ast_dump_context*) const;
869 };
870
871 // Dump the ast representation for an error expression to a dump context.
872
873 void
874 Error_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
875 {
876   ast_dump_context->ostream() << "_Error_" ;
877 }
878
879 Expression*
880 Expression::make_error(Location location)
881 {
882   return new Error_expression(location);
883 }
884
885 // An expression which is really a type.  This is used during parsing.
886 // It is an error if these survive after lowering.
887
888 class
889 Type_expression : public Expression
890 {
891  public:
892   Type_expression(Type* type, Location location)
893     : Expression(EXPRESSION_TYPE, location),
894       type_(type)
895   { }
896
897  protected:
898   int
899   do_traverse(Traverse* traverse)
900   { return Type::traverse(this->type_, traverse); }
901
902   Type*
903   do_type()
904   { return this->type_; }
905
906   void
907   do_determine_type(const Type_context*)
908   { }
909
910   void
911   do_check_types(Gogo*)
912   { this->report_error(_("invalid use of type")); }
913
914   Expression*
915   do_copy()
916   { return this; }
917
918   tree
919   do_get_tree(Translate_context*)
920   { go_unreachable(); }
921
922   void do_dump_expression(Ast_dump_context*) const;
923  
924  private:
925   // The type which we are representing as an expression.
926   Type* type_;
927 };
928
929 void
930 Type_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
931 {
932   ast_dump_context->dump_type(this->type_);
933 }
934
935 Expression*
936 Expression::make_type(Type* type, Location location)
937 {
938   return new Type_expression(type, location);
939 }
940
941 // Class Parser_expression.
942
943 Type*
944 Parser_expression::do_type()
945 {
946   // We should never really ask for the type of a Parser_expression.
947   // However, it can happen, at least when we have an invalid const
948   // whose initializer refers to the const itself.  In that case we
949   // may ask for the type when lowering the const itself.
950   go_assert(saw_errors());
951   return Type::make_error_type();
952 }
953
954 // Class Var_expression.
955
956 // Lower a variable expression.  Here we just make sure that the
957 // initialization expression of the variable has been lowered.  This
958 // ensures that we will be able to determine the type of the variable
959 // if necessary.
960
961 Expression*
962 Var_expression::do_lower(Gogo* gogo, Named_object* function,
963                          Statement_inserter* inserter, int)
964 {
965   if (this->variable_->is_variable())
966     {
967       Variable* var = this->variable_->var_value();
968       // This is either a local variable or a global variable.  A
969       // reference to a variable which is local to an enclosing
970       // function will be a reference to a field in a closure.
971       if (var->is_global())
972         {
973           function = NULL;
974           inserter = NULL;
975         }
976       var->lower_init_expression(gogo, function, inserter);
977     }
978   return this;
979 }
980
981 // Return the type of a reference to a variable.
982
983 Type*
984 Var_expression::do_type()
985 {
986   if (this->variable_->is_variable())
987     return this->variable_->var_value()->type();
988   else if (this->variable_->is_result_variable())
989     return this->variable_->result_var_value()->type();
990   else
991     go_unreachable();
992 }
993
994 // Determine the type of a reference to a variable.
995
996 void
997 Var_expression::do_determine_type(const Type_context*)
998 {
999   if (this->variable_->is_variable())
1000     this->variable_->var_value()->determine_type();
1001 }
1002
1003 // Something takes the address of this variable.  This means that we
1004 // may want to move the variable onto the heap.
1005
1006 void
1007 Var_expression::do_address_taken(bool escapes)
1008 {
1009   if (!escapes)
1010     {
1011       if (this->variable_->is_variable())
1012         this->variable_->var_value()->set_non_escaping_address_taken();
1013       else if (this->variable_->is_result_variable())
1014         this->variable_->result_var_value()->set_non_escaping_address_taken();
1015       else
1016         go_unreachable();
1017     }
1018   else
1019     {
1020       if (this->variable_->is_variable())
1021         this->variable_->var_value()->set_address_taken();
1022       else if (this->variable_->is_result_variable())
1023         this->variable_->result_var_value()->set_address_taken();
1024       else
1025         go_unreachable();
1026     }
1027 }
1028
1029 // Get the tree for a reference to a variable.
1030
1031 tree
1032 Var_expression::do_get_tree(Translate_context* context)
1033 {
1034   Bvariable* bvar = this->variable_->get_backend_variable(context->gogo(),
1035                                                           context->function());
1036   tree ret = var_to_tree(bvar);
1037   if (ret == error_mark_node)
1038     return error_mark_node;
1039   bool is_in_heap;
1040   if (this->variable_->is_variable())
1041     is_in_heap = this->variable_->var_value()->is_in_heap();
1042   else if (this->variable_->is_result_variable())
1043     is_in_heap = this->variable_->result_var_value()->is_in_heap();
1044   else
1045     go_unreachable();
1046   if (is_in_heap)
1047     {
1048       ret = build_fold_indirect_ref_loc(this->location().gcc_location(), ret);
1049       TREE_THIS_NOTRAP(ret) = 1;
1050     }
1051   return ret;
1052 }
1053
1054 // Ast dump for variable expression.
1055
1056 void
1057 Var_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1058 {
1059   ast_dump_context->ostream() << this->variable_->name() ;
1060 }
1061
1062 // Make a reference to a variable in an expression.
1063
1064 Expression*
1065 Expression::make_var_reference(Named_object* var, Location location)
1066 {
1067   if (var->is_sink())
1068     return Expression::make_sink(location);
1069
1070   // FIXME: Creating a new object for each reference to a variable is
1071   // wasteful.
1072   return new Var_expression(var, location);
1073 }
1074
1075 // Class Temporary_reference_expression.
1076
1077 // The type.
1078
1079 Type*
1080 Temporary_reference_expression::do_type()
1081 {
1082   return this->statement_->type();
1083 }
1084
1085 // Called if something takes the address of this temporary variable.
1086 // We never have to move temporary variables to the heap, but we do
1087 // need to know that they must live in the stack rather than in a
1088 // register.
1089
1090 void
1091 Temporary_reference_expression::do_address_taken(bool)
1092 {
1093   this->statement_->set_is_address_taken();
1094 }
1095
1096 // Get a tree referring to the variable.
1097
1098 tree
1099 Temporary_reference_expression::do_get_tree(Translate_context* context)
1100 {
1101   Bvariable* bvar = this->statement_->get_backend_variable(context);
1102
1103   // The gcc backend can't represent the same set of recursive types
1104   // that the Go frontend can.  In some cases this means that a
1105   // temporary variable won't have the right backend type.  Correct
1106   // that here by adding a type cast.  We need to use base() to push
1107   // the circularity down one level.
1108   tree ret = var_to_tree(bvar);
1109   if (!this->is_lvalue_
1110       && POINTER_TYPE_P(TREE_TYPE(ret))
1111       && VOID_TYPE_P(TREE_TYPE(TREE_TYPE(ret))))
1112     {
1113       Btype* type_btype = this->type()->base()->get_backend(context->gogo());
1114       tree type_tree = type_to_tree(type_btype);
1115       ret = fold_convert_loc(this->location().gcc_location(), type_tree, ret);
1116     }
1117   return ret;
1118 }
1119
1120 // Ast dump for temporary reference.
1121
1122 void
1123 Temporary_reference_expression::do_dump_expression(
1124                                 Ast_dump_context* ast_dump_context) const
1125 {
1126   ast_dump_context->dump_temp_variable_name(this->statement_);
1127 }
1128
1129 // Make a reference to a temporary variable.
1130
1131 Temporary_reference_expression*
1132 Expression::make_temporary_reference(Temporary_statement* statement,
1133                                      Location location)
1134 {
1135   return new Temporary_reference_expression(statement, location);
1136 }
1137
1138 // Class Set_and_use_temporary_expression.
1139
1140 // Return the type.
1141
1142 Type*
1143 Set_and_use_temporary_expression::do_type()
1144 {
1145   return this->statement_->type();
1146 }
1147
1148 // Take the address.
1149
1150 void
1151 Set_and_use_temporary_expression::do_address_taken(bool)
1152 {
1153   this->statement_->set_is_address_taken();
1154 }
1155
1156 // Return the backend representation.
1157
1158 tree
1159 Set_and_use_temporary_expression::do_get_tree(Translate_context* context)
1160 {
1161   Bvariable* bvar = this->statement_->get_backend_variable(context);
1162   tree var_tree = var_to_tree(bvar);
1163   tree expr_tree = this->expr_->get_tree(context);
1164   if (var_tree == error_mark_node || expr_tree == error_mark_node)
1165     return error_mark_node;
1166   Location loc = this->location();
1167   return build2_loc(loc.gcc_location(), COMPOUND_EXPR, TREE_TYPE(var_tree),
1168                     build2_loc(loc.gcc_location(), MODIFY_EXPR, void_type_node,
1169                                var_tree, expr_tree),
1170                     var_tree);
1171 }
1172
1173 // Dump.
1174
1175 void
1176 Set_and_use_temporary_expression::do_dump_expression(
1177     Ast_dump_context* ast_dump_context) const
1178 {
1179   ast_dump_context->ostream() << '(';
1180   ast_dump_context->dump_temp_variable_name(this->statement_);
1181   ast_dump_context->ostream() << " = ";
1182   this->expr_->dump_expression(ast_dump_context);
1183   ast_dump_context->ostream() << ')';
1184 }
1185
1186 // Make a set-and-use temporary.
1187
1188 Set_and_use_temporary_expression*
1189 Expression::make_set_and_use_temporary(Temporary_statement* statement,
1190                                        Expression* expr, Location location)
1191 {
1192   return new Set_and_use_temporary_expression(statement, expr, location);
1193 }
1194
1195 // A sink expression--a use of the blank identifier _.
1196
1197 class Sink_expression : public Expression
1198 {
1199  public:
1200   Sink_expression(Location location)
1201     : Expression(EXPRESSION_SINK, location),
1202       type_(NULL), var_(NULL_TREE)
1203   { }
1204
1205  protected:
1206   void
1207   do_discarding_value()
1208   { }
1209
1210   Type*
1211   do_type();
1212
1213   void
1214   do_determine_type(const Type_context*);
1215
1216   Expression*
1217   do_copy()
1218   { return new Sink_expression(this->location()); }
1219
1220   tree
1221   do_get_tree(Translate_context*);
1222
1223   void
1224   do_dump_expression(Ast_dump_context*) const;
1225
1226  private:
1227   // The type of this sink variable.
1228   Type* type_;
1229   // The temporary variable we generate.
1230   tree var_;
1231 };
1232
1233 // Return the type of a sink expression.
1234
1235 Type*
1236 Sink_expression::do_type()
1237 {
1238   if (this->type_ == NULL)
1239     return Type::make_sink_type();
1240   return this->type_;
1241 }
1242
1243 // Determine the type of a sink expression.
1244
1245 void
1246 Sink_expression::do_determine_type(const Type_context* context)
1247 {
1248   if (context->type != NULL)
1249     this->type_ = context->type;
1250 }
1251
1252 // Return a temporary variable for a sink expression.  This will
1253 // presumably be a write-only variable which the middle-end will drop.
1254
1255 tree
1256 Sink_expression::do_get_tree(Translate_context* context)
1257 {
1258   if (this->var_ == NULL_TREE)
1259     {
1260       go_assert(this->type_ != NULL && !this->type_->is_sink_type());
1261       Btype* bt = this->type_->get_backend(context->gogo());
1262       this->var_ = create_tmp_var(type_to_tree(bt), "blank");
1263     }
1264   return this->var_;
1265 }
1266
1267 // Ast dump for sink expression.
1268
1269 void
1270 Sink_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1271 {
1272   ast_dump_context->ostream() << "_" ;
1273 }
1274
1275 // Make a sink expression.
1276
1277 Expression*
1278 Expression::make_sink(Location location)
1279 {
1280   return new Sink_expression(location);
1281 }
1282
1283 // Class Func_expression.
1284
1285 // FIXME: Can a function expression appear in a constant expression?
1286 // The value is unchanging.  Initializing a constant to the address of
1287 // a function seems like it could work, though there might be little
1288 // point to it.
1289
1290 // Traversal.
1291
1292 int
1293 Func_expression::do_traverse(Traverse* traverse)
1294 {
1295   return (this->closure_ == NULL
1296           ? TRAVERSE_CONTINUE
1297           : Expression::traverse(&this->closure_, traverse));
1298 }
1299
1300 // Return the type of a function expression.
1301
1302 Type*
1303 Func_expression::do_type()
1304 {
1305   if (this->function_->is_function())
1306     return this->function_->func_value()->type();
1307   else if (this->function_->is_function_declaration())
1308     return this->function_->func_declaration_value()->type();
1309   else
1310     go_unreachable();
1311 }
1312
1313 // Get the tree for a function expression without evaluating the
1314 // closure.
1315
1316 tree
1317 Func_expression::get_tree_without_closure(Gogo* gogo)
1318 {
1319   Function_type* fntype;
1320   if (this->function_->is_function())
1321     fntype = this->function_->func_value()->type();
1322   else if (this->function_->is_function_declaration())
1323     fntype = this->function_->func_declaration_value()->type();
1324   else
1325     go_unreachable();
1326
1327   // Builtin functions are handled specially by Call_expression.  We
1328   // can't take their address.
1329   if (fntype->is_builtin())
1330     {
1331       error_at(this->location(),
1332                "invalid use of special builtin function %qs; must be called",
1333                this->function_->name().c_str());
1334       return error_mark_node;
1335     }
1336
1337   Named_object* no = this->function_;
1338
1339   tree id = no->get_id(gogo);
1340   if (id == error_mark_node)
1341     return error_mark_node;
1342
1343   tree fndecl;
1344   if (no->is_function())
1345     fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1346   else if (no->is_function_declaration())
1347     fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1348   else
1349     go_unreachable();
1350
1351   if (fndecl == error_mark_node)
1352     return error_mark_node;
1353
1354   return build_fold_addr_expr_loc(this->location().gcc_location(), fndecl);
1355 }
1356
1357 // Get the tree for a function expression.  This is used when we take
1358 // the address of a function rather than simply calling it.  If the
1359 // function has a closure, we must use a trampoline.
1360
1361 tree
1362 Func_expression::do_get_tree(Translate_context* context)
1363 {
1364   Gogo* gogo = context->gogo();
1365
1366   tree fnaddr = this->get_tree_without_closure(gogo);
1367   if (fnaddr == error_mark_node)
1368     return error_mark_node;
1369
1370   go_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1371              && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1372   TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1373
1374   // For a normal non-nested function call, that is all we have to do.
1375   if (!this->function_->is_function()
1376       || this->function_->func_value()->enclosing() == NULL)
1377     {
1378       go_assert(this->closure_ == NULL);
1379       return fnaddr;
1380     }
1381
1382   // For a nested function call, we have to always allocate a
1383   // trampoline.  If we don't always allocate, then closures will not
1384   // be reliably distinct.
1385   Expression* closure = this->closure_;
1386   tree closure_tree;
1387   if (closure == NULL)
1388     closure_tree = null_pointer_node;
1389   else
1390     {
1391       // Get the value of the closure.  This will be a pointer to
1392       // space allocated on the heap.
1393       closure_tree = closure->get_tree(context);
1394       if (closure_tree == error_mark_node)
1395         return error_mark_node;
1396       go_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1397     }
1398
1399   // Now we need to build some code on the heap.  This code will load
1400   // the static chain pointer with the closure and then jump to the
1401   // body of the function.  The normal gcc approach is to build the
1402   // code on the stack.  Unfortunately we can not do that, as Go
1403   // permits us to return the function pointer.
1404
1405   return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1406 }
1407
1408 // Ast dump for function.
1409
1410 void
1411 Func_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1412 {
1413   ast_dump_context->ostream() << this->function_->name();
1414   if (this->closure_ != NULL)
1415     {
1416       ast_dump_context->ostream() << " {closure =  ";
1417       this->closure_->dump_expression(ast_dump_context);
1418       ast_dump_context->ostream() << "}";
1419     }
1420 }
1421
1422 // Make a reference to a function in an expression.
1423
1424 Expression*
1425 Expression::make_func_reference(Named_object* function, Expression* closure,
1426                                 Location location)
1427 {
1428   return new Func_expression(function, closure, location);
1429 }
1430
1431 // Class Unknown_expression.
1432
1433 // Return the name of an unknown expression.
1434
1435 const std::string&
1436 Unknown_expression::name() const
1437 {
1438   return this->named_object_->name();
1439 }
1440
1441 // Lower a reference to an unknown name.
1442
1443 Expression*
1444 Unknown_expression::do_lower(Gogo*, Named_object*, Statement_inserter*, int)
1445 {
1446   Location location = this->location();
1447   Named_object* no = this->named_object_;
1448   Named_object* real;
1449   if (!no->is_unknown())
1450     real = no;
1451   else
1452     {
1453       real = no->unknown_value()->real_named_object();
1454       if (real == NULL)
1455         {
1456           if (this->is_composite_literal_key_)
1457             return this;
1458           if (!this->no_error_message_)
1459             error_at(location, "reference to undefined name %qs",
1460                      this->named_object_->message_name().c_str());
1461           return Expression::make_error(location);
1462         }
1463     }
1464   switch (real->classification())
1465     {
1466     case Named_object::NAMED_OBJECT_CONST:
1467       return Expression::make_const_reference(real, location);
1468     case Named_object::NAMED_OBJECT_TYPE:
1469       return Expression::make_type(real->type_value(), location);
1470     case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1471       if (this->is_composite_literal_key_)
1472         return this;
1473       if (!this->no_error_message_)
1474         error_at(location, "reference to undefined type %qs",
1475                  real->message_name().c_str());
1476       return Expression::make_error(location);
1477     case Named_object::NAMED_OBJECT_VAR:
1478       real->var_value()->set_is_used();
1479       return Expression::make_var_reference(real, location);
1480     case Named_object::NAMED_OBJECT_FUNC:
1481     case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1482       return Expression::make_func_reference(real, NULL, location);
1483     case Named_object::NAMED_OBJECT_PACKAGE:
1484       if (this->is_composite_literal_key_)
1485         return this;
1486       if (!this->no_error_message_)
1487         error_at(location, "unexpected reference to package");
1488       return Expression::make_error(location);
1489     default:
1490       go_unreachable();
1491     }
1492 }
1493
1494 // Dump the ast representation for an unknown expression to a dump context.
1495
1496 void
1497 Unknown_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1498 {
1499   ast_dump_context->ostream() << "_Unknown_(" << this->named_object_->name()
1500                               << ")";
1501 }
1502
1503 // Make a reference to an unknown name.
1504
1505 Unknown_expression*
1506 Expression::make_unknown_reference(Named_object* no, Location location)
1507 {
1508   return new Unknown_expression(no, location);
1509 }
1510
1511 // A boolean expression.
1512
1513 class Boolean_expression : public Expression
1514 {
1515  public:
1516   Boolean_expression(bool val, Location location)
1517     : Expression(EXPRESSION_BOOLEAN, location),
1518       val_(val), type_(NULL)
1519   { }
1520
1521   static Expression*
1522   do_import(Import*);
1523
1524  protected:
1525   bool
1526   do_is_constant() const
1527   { return true; }
1528
1529   Type*
1530   do_type();
1531
1532   void
1533   do_determine_type(const Type_context*);
1534
1535   Expression*
1536   do_copy()
1537   { return this; }
1538
1539   tree
1540   do_get_tree(Translate_context*)
1541   { return this->val_ ? boolean_true_node : boolean_false_node; }
1542
1543   void
1544   do_export(Export* exp) const
1545   { exp->write_c_string(this->val_ ? "true" : "false"); }
1546
1547   void
1548   do_dump_expression(Ast_dump_context* ast_dump_context) const
1549   { ast_dump_context->ostream() << (this->val_ ? "true" : "false"); }
1550   
1551  private:
1552   // The constant.
1553   bool val_;
1554   // The type as determined by context.
1555   Type* type_;
1556 };
1557
1558 // Get the type.
1559
1560 Type*
1561 Boolean_expression::do_type()
1562 {
1563   if (this->type_ == NULL)
1564     this->type_ = Type::make_boolean_type();
1565   return this->type_;
1566 }
1567
1568 // Set the type from the context.
1569
1570 void
1571 Boolean_expression::do_determine_type(const Type_context* context)
1572 {
1573   if (this->type_ != NULL && !this->type_->is_abstract())
1574     ;
1575   else if (context->type != NULL && context->type->is_boolean_type())
1576     this->type_ = context->type;
1577   else if (!context->may_be_abstract)
1578     this->type_ = Type::lookup_bool_type();
1579 }
1580
1581 // Import a boolean constant.
1582
1583 Expression*
1584 Boolean_expression::do_import(Import* imp)
1585 {
1586   if (imp->peek_char() == 't')
1587     {
1588       imp->require_c_string("true");
1589       return Expression::make_boolean(true, imp->location());
1590     }
1591   else
1592     {
1593       imp->require_c_string("false");
1594       return Expression::make_boolean(false, imp->location());
1595     }
1596 }
1597
1598 // Make a boolean expression.
1599
1600 Expression*
1601 Expression::make_boolean(bool val, Location location)
1602 {
1603   return new Boolean_expression(val, location);
1604 }
1605
1606 // Class String_expression.
1607
1608 // Get the type.
1609
1610 Type*
1611 String_expression::do_type()
1612 {
1613   if (this->type_ == NULL)
1614     this->type_ = Type::make_string_type();
1615   return this->type_;
1616 }
1617
1618 // Set the type from the context.
1619
1620 void
1621 String_expression::do_determine_type(const Type_context* context)
1622 {
1623   if (this->type_ != NULL && !this->type_->is_abstract())
1624     ;
1625   else if (context->type != NULL && context->type->is_string_type())
1626     this->type_ = context->type;
1627   else if (!context->may_be_abstract)
1628     this->type_ = Type::lookup_string_type();
1629 }
1630
1631 // Build a string constant.
1632
1633 tree
1634 String_expression::do_get_tree(Translate_context* context)
1635 {
1636   return context->gogo()->go_string_constant_tree(this->val_);
1637 }
1638
1639  // Write string literal to string dump.
1640
1641 void
1642 String_expression::export_string(String_dump* exp,
1643                                  const String_expression* str)
1644 {
1645   std::string s;
1646   s.reserve(str->val_.length() * 4 + 2);
1647   s += '"';
1648   for (std::string::const_iterator p = str->val_.begin();
1649        p != str->val_.end();
1650        ++p)
1651     {
1652       if (*p == '\\' || *p == '"')
1653         {
1654           s += '\\';
1655           s += *p;
1656         }
1657       else if (*p >= 0x20 && *p < 0x7f)
1658         s += *p;
1659       else if (*p == '\n')
1660         s += "\\n";
1661       else if (*p == '\t')
1662         s += "\\t";
1663       else
1664         {
1665           s += "\\x";
1666           unsigned char c = *p;
1667           unsigned int dig = c >> 4;
1668           s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1669           dig = c & 0xf;
1670           s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1671         }
1672     }
1673   s += '"';
1674   exp->write_string(s);
1675 }
1676
1677 // Export a string expression.
1678
1679 void
1680 String_expression::do_export(Export* exp) const
1681 {
1682   String_expression::export_string(exp, this);
1683 }
1684
1685 // Import a string expression.
1686
1687 Expression*
1688 String_expression::do_import(Import* imp)
1689 {
1690   imp->require_c_string("\"");
1691   std::string val;
1692   while (true)
1693     {
1694       int c = imp->get_char();
1695       if (c == '"' || c == -1)
1696         break;
1697       if (c != '\\')
1698         val += static_cast<char>(c);
1699       else
1700         {
1701           c = imp->get_char();
1702           if (c == '\\' || c == '"')
1703             val += static_cast<char>(c);
1704           else if (c == 'n')
1705             val += '\n';
1706           else if (c == 't')
1707             val += '\t';
1708           else if (c == 'x')
1709             {
1710               c = imp->get_char();
1711               unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1712               c = imp->get_char();
1713               unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1714               char v = (vh << 4) | vl;
1715               val += v;
1716             }
1717           else
1718             {
1719               error_at(imp->location(), "bad string constant");
1720               return Expression::make_error(imp->location());
1721             }
1722         }
1723     }
1724   return Expression::make_string(val, imp->location());
1725 }
1726
1727 // Ast dump for string expression.
1728
1729 void
1730 String_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
1731 {
1732   String_expression::export_string(ast_dump_context, this);
1733 }
1734
1735 // Make a string expression.
1736
1737 Expression*
1738 Expression::make_string(const std::string& val, Location location)
1739 {
1740   return new String_expression(val, location);
1741 }
1742
1743 // Make an integer expression.
1744
1745 class Integer_expression : public Expression
1746 {
1747  public:
1748   Integer_expression(const mpz_t* val, Type* type, bool is_character_constant,
1749                      Location location)
1750     : Expression(EXPRESSION_INTEGER, location),
1751       type_(type), is_character_constant_(is_character_constant)
1752   { mpz_init_set(this->val_, *val); }
1753
1754   static Expression*
1755   do_import(Import*);
1756
1757   // Return whether VAL fits in the type.
1758   static bool
1759   check_constant(mpz_t val, Type*, Location);
1760
1761   // Write VAL to string dump.
1762   static void
1763   export_integer(String_dump* exp, const mpz_t val);
1764
1765   // Write VAL to dump context.
1766   static void
1767   dump_integer(Ast_dump_context* ast_dump_context, const mpz_t val);
1768
1769  protected:
1770   bool
1771   do_is_constant() const
1772   { return true; }
1773
1774   bool
1775   do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1776
1777   Type*
1778   do_type();
1779
1780   void
1781   do_determine_type(const Type_context* context);
1782
1783   void
1784   do_check_types(Gogo*);
1785
1786   tree
1787   do_get_tree(Translate_context*);
1788
1789   Expression*
1790   do_copy()
1791   {
1792     if (this->is_character_constant_)
1793       return Expression::make_character(&this->val_, this->type_,
1794                                         this->location());
1795     else
1796       return Expression::make_integer(&this->val_, this->type_,
1797                                       this->location());
1798   }
1799
1800   void
1801   do_export(Export*) const;
1802
1803   void
1804   do_dump_expression(Ast_dump_context*) const;
1805
1806  private:
1807   // The integer value.
1808   mpz_t val_;
1809   // The type so far.
1810   Type* type_;
1811   // Whether this is a character constant.
1812   bool is_character_constant_;
1813 };
1814
1815 // Return an integer constant value.
1816
1817 bool
1818 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1819                                               Type** ptype) const
1820 {
1821   if (this->type_ != NULL)
1822     *ptype = this->type_;
1823   mpz_set(val, this->val_);
1824   return true;
1825 }
1826
1827 // Return the current type.  If we haven't set the type yet, we return
1828 // an abstract integer type.
1829
1830 Type*
1831 Integer_expression::do_type()
1832 {
1833   if (this->type_ == NULL)
1834     {
1835       if (this->is_character_constant_)
1836         this->type_ = Type::make_abstract_character_type();
1837       else
1838         this->type_ = Type::make_abstract_integer_type();
1839     }
1840   return this->type_;
1841 }
1842
1843 // Set the type of the integer value.  Here we may switch from an
1844 // abstract type to a real type.
1845
1846 void
1847 Integer_expression::do_determine_type(const Type_context* context)
1848 {
1849   if (this->type_ != NULL && !this->type_->is_abstract())
1850     ;
1851   else if (context->type != NULL
1852            && (context->type->integer_type() != NULL
1853                || context->type->float_type() != NULL
1854                || context->type->complex_type() != NULL))
1855     this->type_ = context->type;
1856   else if (!context->may_be_abstract)
1857     {
1858       if (this->is_character_constant_)
1859         this->type_ = Type::lookup_integer_type("int32");
1860       else
1861         this->type_ = Type::lookup_integer_type("int");
1862     }
1863 }
1864
1865 // Return true if the integer VAL fits in the range of the type TYPE.
1866 // Otherwise give an error and return false.  TYPE may be NULL.
1867
1868 bool
1869 Integer_expression::check_constant(mpz_t val, Type* type,
1870                                    Location location)
1871 {
1872   if (type == NULL)
1873     return true;
1874   Integer_type* itype = type->integer_type();
1875   if (itype == NULL || itype->is_abstract())
1876     return true;
1877
1878   int bits = mpz_sizeinbase(val, 2);
1879
1880   if (itype->is_unsigned())
1881     {
1882       // For an unsigned type we can only accept a nonnegative number,
1883       // and we must be able to represent at least BITS.
1884       if (mpz_sgn(val) >= 0
1885           && bits <= itype->bits())
1886         return true;
1887     }
1888   else
1889     {
1890       // For a signed type we need an extra bit to indicate the sign.
1891       // We have to handle the most negative integer specially.
1892       if (bits + 1 <= itype->bits()
1893           || (bits <= itype->bits()
1894               && mpz_sgn(val) < 0
1895               && (mpz_scan1(val, 0)
1896                   == static_cast<unsigned long>(itype->bits() - 1))
1897               && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1898         return true;
1899     }
1900
1901   error_at(location, "integer constant overflow");
1902   return false;
1903 }
1904
1905 // Check the type of an integer constant.
1906
1907 void
1908 Integer_expression::do_check_types(Gogo*)
1909 {
1910   if (this->type_ == NULL)
1911     return;
1912   if (!Integer_expression::check_constant(this->val_, this->type_,
1913                                           this->location()))
1914     this->set_is_error();
1915 }
1916
1917 // Get a tree for an integer constant.
1918
1919 tree
1920 Integer_expression::do_get_tree(Translate_context* context)
1921 {
1922   Gogo* gogo = context->gogo();
1923   tree type;
1924   if (this->type_ != NULL && !this->type_->is_abstract())
1925     type = type_to_tree(this->type_->get_backend(gogo));
1926   else if (this->type_ != NULL && this->type_->float_type() != NULL)
1927     {
1928       // We are converting to an abstract floating point type.
1929       Type* ftype = Type::lookup_float_type("float64");
1930       type = type_to_tree(ftype->get_backend(gogo));
1931     }
1932   else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1933     {
1934       // We are converting to an abstract complex type.
1935       Type* ctype = Type::lookup_complex_type("complex128");
1936       type = type_to_tree(ctype->get_backend(gogo));
1937     }
1938   else
1939     {
1940       // If we still have an abstract type here, then this is being
1941       // used in a constant expression which didn't get reduced for
1942       // some reason.  Use a type which will fit the value.  We use <,
1943       // not <=, because we need an extra bit for the sign bit.
1944       int bits = mpz_sizeinbase(this->val_, 2);
1945       if (bits < INT_TYPE_SIZE)
1946         {
1947           Type* t = Type::lookup_integer_type("int");
1948           type = type_to_tree(t->get_backend(gogo));
1949         }
1950       else if (bits < 64)
1951         {
1952           Type* t = Type::lookup_integer_type("int64");
1953           type = type_to_tree(t->get_backend(gogo));
1954         }
1955       else
1956         type = long_long_integer_type_node;
1957     }
1958   return Expression::integer_constant_tree(this->val_, type);
1959 }
1960
1961 // Write VAL to export data.
1962
1963 void
1964 Integer_expression::export_integer(String_dump* exp, const mpz_t val)
1965 {
1966   char* s = mpz_get_str(NULL, 10, val);
1967   exp->write_c_string(s);
1968   free(s);
1969 }
1970
1971 // Export an integer in a constant expression.
1972
1973 void
1974 Integer_expression::do_export(Export* exp) const
1975 {
1976   Integer_expression::export_integer(exp, this->val_);
1977   if (this->is_character_constant_)
1978     exp->write_c_string("'");
1979   // A trailing space lets us reliably identify the end of the number.
1980   exp->write_c_string(" ");
1981 }
1982
1983 // Import an integer, floating point, or complex value.  This handles
1984 // all these types because they all start with digits.
1985
1986 Expression*
1987 Integer_expression::do_import(Import* imp)
1988 {
1989   std::string num = imp->read_identifier();
1990   imp->require_c_string(" ");
1991   if (!num.empty() && num[num.length() - 1] == 'i')
1992     {
1993       mpfr_t real;
1994       size_t plus_pos = num.find('+', 1);
1995       size_t minus_pos = num.find('-', 1);
1996       size_t pos;
1997       if (plus_pos == std::string::npos)
1998         pos = minus_pos;
1999       else if (minus_pos == std::string::npos)
2000         pos = plus_pos;
2001       else
2002         {
2003           error_at(imp->location(), "bad number in import data: %qs",
2004                    num.c_str());
2005           return Expression::make_error(imp->location());
2006         }
2007       if (pos == std::string::npos)
2008         mpfr_set_ui(real, 0, GMP_RNDN);
2009       else
2010         {
2011           std::string real_str = num.substr(0, pos);
2012           if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
2013             {
2014               error_at(imp->location(), "bad number in import data: %qs",
2015                        real_str.c_str());
2016               return Expression::make_error(imp->location());
2017             }
2018         }
2019
2020       std::string imag_str;
2021       if (pos == std::string::npos)
2022         imag_str = num;
2023       else
2024         imag_str = num.substr(pos);
2025       imag_str = imag_str.substr(0, imag_str.size() - 1);
2026       mpfr_t imag;
2027       if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
2028         {
2029           error_at(imp->location(), "bad number in import data: %qs",
2030                    imag_str.c_str());
2031           return Expression::make_error(imp->location());
2032         }
2033       Expression* ret = Expression::make_complex(&real, &imag, NULL,
2034                                                  imp->location());
2035       mpfr_clear(real);
2036       mpfr_clear(imag);
2037       return ret;
2038     }
2039   else if (num.find('.') == std::string::npos
2040            && num.find('E') == std::string::npos)
2041     {
2042       bool is_character_constant = (!num.empty()
2043                                     && num[num.length() - 1] == '\'');
2044       if (is_character_constant)
2045         num = num.substr(0, num.length() - 1);
2046       mpz_t val;
2047       if (mpz_init_set_str(val, num.c_str(), 10) != 0)
2048         {
2049           error_at(imp->location(), "bad number in import data: %qs",
2050                    num.c_str());
2051           return Expression::make_error(imp->location());
2052         }
2053       Expression* ret;
2054       if (is_character_constant)
2055         ret = Expression::make_character(&val, NULL, imp->location());
2056       else
2057         ret = Expression::make_integer(&val, NULL, imp->location());
2058       mpz_clear(val);
2059       return ret;
2060     }
2061   else
2062     {
2063       mpfr_t val;
2064       if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
2065         {
2066           error_at(imp->location(), "bad number in import data: %qs",
2067                    num.c_str());
2068           return Expression::make_error(imp->location());
2069         }
2070       Expression* ret = Expression::make_float(&val, NULL, imp->location());
2071       mpfr_clear(val);
2072       return ret;
2073     }
2074 }
2075 // Ast dump for integer expression.
2076
2077 void
2078 Integer_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
2079 {
2080   if (this->is_character_constant_)
2081     ast_dump_context->ostream() << '\'';
2082   Integer_expression::export_integer(ast_dump_context, this->val_);
2083   if (this->is_character_constant_)
2084     ast_dump_context->ostream() << '\'';
2085 }
2086
2087 // Build a new integer value.
2088
2089 Expression*
2090 Expression::make_integer(const mpz_t* val, Type* type, Location location)
2091 {
2092   return new Integer_expression(val, type, false, location);
2093 }
2094
2095 // Build a new character constant value.
2096
2097 Expression*
2098 Expression::make_character(const mpz_t* val, Type* type, Location location)
2099 {
2100   return new Integer_expression(val, type, true, location);
2101 }
2102
2103 // Floats.
2104
2105 class Float_expression : public Expression
2106 {
2107  public:
2108   Float_expression(const mpfr_t* val, Type* type, Location location)
2109     : Expression(EXPRESSION_FLOAT, location),
2110       type_(type)
2111   {
2112     mpfr_init_set(this->val_, *val, GMP_RNDN);
2113   }
2114
2115   // Constrain VAL to fit into TYPE.
2116   static void
2117   constrain_float(mpfr_t val, Type* type);
2118
2119   // Return whether VAL fits in the type.
2120   static bool
2121   check_constant(mpfr_t val, Type*, Location);
2122
2123   // Write VAL to export data.
2124   static void
2125   export_float(String_dump* exp, const mpfr_t val);
2126
2127   // Write VAL to dump file.
2128   static void
2129   dump_float(Ast_dump_context* ast_dump_context, const mpfr_t val);
2130
2131  protected:
2132   bool
2133   do_is_constant() const
2134   { return true; }
2135
2136   bool
2137   do_float_constant_value(mpfr_t val, Type**) const;
2138
2139   Type*
2140   do_type();
2141
2142   void
2143   do_determine_type(const Type_context*);
2144
2145   void
2146   do_check_types(Gogo*);
2147
2148   Expression*
2149   do_copy()
2150   { return Expression::make_float(&this->val_, this->type_,
2151                                   this->location()); }
2152
2153   tree
2154   do_get_tree(Translate_context*);
2155
2156   void
2157   do_export(Export*) const;
2158
2159   void
2160   do_dump_expression(Ast_dump_context*) const;
2161
2162  private:
2163   // The floating point value.
2164   mpfr_t val_;
2165   // The type so far.
2166   Type* type_;
2167 };
2168
2169 // Constrain VAL to fit into TYPE.
2170
2171 void
2172 Float_expression::constrain_float(mpfr_t val, Type* type)
2173 {
2174   Float_type* ftype = type->float_type();
2175   if (ftype != NULL && !ftype->is_abstract())
2176     mpfr_prec_round(val, ftype->bits(), GMP_RNDN);
2177 }
2178
2179 // Return a floating point constant value.
2180
2181 bool
2182 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2183 {
2184   if (this->type_ != NULL)
2185     *ptype = this->type_;
2186   mpfr_set(val, this->val_, GMP_RNDN);
2187   return true;
2188 }
2189
2190 // Return the current type.  If we haven't set the type yet, we return
2191 // an abstract float type.
2192
2193 Type*
2194 Float_expression::do_type()
2195 {
2196   if (this->type_ == NULL)
2197     this->type_ = Type::make_abstract_float_type();
2198   return this->type_;
2199 }
2200
2201 // Set the type of the float value.  Here we may switch from an
2202 // abstract type to a real type.
2203
2204 void
2205 Float_expression::do_determine_type(const Type_context* context)
2206 {
2207   if (this->type_ != NULL && !this->type_->is_abstract())
2208     ;
2209   else if (context->type != NULL
2210            && (context->type->integer_type() != NULL
2211                || context->type->float_type() != NULL
2212                || context->type->complex_type() != NULL))
2213     this->type_ = context->type;
2214   else if (!context->may_be_abstract)
2215     this->type_ = Type::lookup_float_type("float64");
2216 }
2217
2218 // Return true if the floating point value VAL fits in the range of
2219 // the type TYPE.  Otherwise give an error and return false.  TYPE may
2220 // be NULL.
2221
2222 bool
2223 Float_expression::check_constant(mpfr_t val, Type* type,
2224                                  Location location)
2225 {
2226   if (type == NULL)
2227     return true;
2228   Float_type* ftype = type->float_type();
2229   if (ftype == NULL || ftype->is_abstract())
2230     return true;
2231
2232   // A NaN or Infinity always fits in the range of the type.
2233   if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
2234     return true;
2235
2236   mp_exp_t exp = mpfr_get_exp(val);
2237   mp_exp_t max_exp;
2238   switch (ftype->bits())
2239     {
2240     case 32:
2241       max_exp = 128;
2242       break;
2243     case 64:
2244       max_exp = 1024;
2245       break;
2246     default:
2247       go_unreachable();
2248     }
2249   if (exp > max_exp)
2250     {
2251       error_at(location, "floating point constant overflow");
2252       return false;
2253     }
2254   return true;
2255 }
2256
2257 // Check the type of a float value.
2258
2259 void
2260 Float_expression::do_check_types(Gogo*)
2261 {
2262   if (this->type_ == NULL)
2263     return;
2264
2265   if (!Float_expression::check_constant(this->val_, this->type_,
2266                                         this->location()))
2267     this->set_is_error();
2268
2269   Integer_type* integer_type = this->type_->integer_type();
2270   if (integer_type != NULL)
2271     {
2272       if (!mpfr_integer_p(this->val_))
2273         this->report_error(_("floating point constant truncated to integer"));
2274       else
2275         {
2276           go_assert(!integer_type->is_abstract());
2277           mpz_t ival;
2278           mpz_init(ival);
2279           mpfr_get_z(ival, this->val_, GMP_RNDN);
2280           Integer_expression::check_constant(ival, integer_type,
2281                                              this->location());
2282           mpz_clear(ival);
2283         }
2284     }
2285 }
2286
2287 // Get a tree for a float constant.
2288
2289 tree
2290 Float_expression::do_get_tree(Translate_context* context)
2291 {
2292   Gogo* gogo = context->gogo();
2293   tree type;
2294   if (this->type_ != NULL && !this->type_->is_abstract())
2295     type = type_to_tree(this->type_->get_backend(gogo));
2296   else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2297     {
2298       // We have an abstract integer type.  We just hope for the best.
2299       type = type_to_tree(Type::lookup_integer_type("int")->get_backend(gogo));
2300     }
2301   else
2302     {
2303       // If we still have an abstract type here, then this is being
2304       // used in a constant expression which didn't get reduced.  We
2305       // just use float64 and hope for the best.
2306       Type* ft = Type::lookup_float_type("float64");
2307       type = type_to_tree(ft->get_backend(gogo));
2308     }
2309   return Expression::float_constant_tree(this->val_, type);
2310 }
2311
2312 // Write a floating point number to a string dump.
2313
2314 void
2315 Float_expression::export_float(String_dump *exp, const mpfr_t val)
2316 {
2317   mp_exp_t exponent;
2318   char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2319   if (*s == '-')
2320     exp->write_c_string("-");
2321   exp->write_c_string("0.");
2322   exp->write_c_string(*s == '-' ? s + 1 : s);
2323   mpfr_free_str(s);
2324   char buf[30];
2325   snprintf(buf, sizeof buf, "E%ld", exponent);
2326   exp->write_c_string(buf);
2327 }
2328
2329 // Export a floating point number in a constant expression.
2330
2331 void
2332 Float_expression::do_export(Export* exp) const
2333 {
2334   Float_expression::export_float(exp, this->val_);
2335   // A trailing space lets us reliably identify the end of the number.
2336   exp->write_c_string(" ");
2337 }
2338
2339 // Dump a floating point number to the dump file.
2340
2341 void
2342 Float_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
2343 {
2344   Float_expression::export_float(ast_dump_context, this->val_);
2345 }
2346
2347 // Make a float expression.
2348
2349 Expression*
2350 Expression::make_float(const mpfr_t* val, Type* type, Location location)
2351 {
2352   return new Float_expression(val, type, location);
2353 }
2354
2355 // Complex numbers.
2356
2357 class Complex_expression : public Expression
2358 {
2359  public:
2360   Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2361                      Location location)
2362     : Expression(EXPRESSION_COMPLEX, location),
2363       type_(type)
2364   {
2365     mpfr_init_set(this->real_, *real, GMP_RNDN);
2366     mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2367   }
2368
2369   // Constrain REAL/IMAG to fit into TYPE.
2370   static void
2371   constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2372
2373   // Return whether REAL/IMAG fits in the type.
2374   static bool
2375   check_constant(mpfr_t real, mpfr_t imag, Type*, Location);
2376
2377   // Write REAL/IMAG to string dump.
2378   static void
2379   export_complex(String_dump* exp, const mpfr_t real, const mpfr_t val);
2380
2381   // Write REAL/IMAG to dump context.
2382   static void
2383   dump_complex(Ast_dump_context* ast_dump_context, 
2384                const mpfr_t real, const mpfr_t val);
2385   
2386  protected:
2387   bool
2388   do_is_constant() const
2389   { return true; }
2390
2391   bool
2392   do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2393
2394   Type*
2395   do_type();
2396
2397   void
2398   do_determine_type(const Type_context*);
2399
2400   void
2401   do_check_types(Gogo*);
2402
2403   Expression*
2404   do_copy()
2405   {
2406     return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2407                                     this->location());
2408   }
2409
2410   tree
2411   do_get_tree(Translate_context*);
2412
2413   void
2414   do_export(Export*) const;
2415
2416   void
2417   do_dump_expression(Ast_dump_context*) const;
2418   
2419  private:
2420   // The real part.
2421   mpfr_t real_;
2422   // The imaginary part;
2423   mpfr_t imag_;
2424   // The type if known.
2425   Type* type_;
2426 };
2427
2428 // Constrain REAL/IMAG to fit into TYPE.
2429
2430 void
2431 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2432 {
2433   Complex_type* ctype = type->complex_type();
2434   if (ctype != NULL && !ctype->is_abstract())
2435     {
2436       mpfr_prec_round(real, ctype->bits() / 2, GMP_RNDN);
2437       mpfr_prec_round(imag, ctype->bits() / 2, GMP_RNDN);
2438     }
2439 }
2440
2441 // Return a complex constant value.
2442
2443 bool
2444 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2445                                               Type** ptype) const
2446 {
2447   if (this->type_ != NULL)
2448     *ptype = this->type_;
2449   mpfr_set(real, this->real_, GMP_RNDN);
2450   mpfr_set(imag, this->imag_, GMP_RNDN);
2451   return true;
2452 }
2453
2454 // Return the current type.  If we haven't set the type yet, we return
2455 // an abstract complex type.
2456
2457 Type*
2458 Complex_expression::do_type()
2459 {
2460   if (this->type_ == NULL)
2461     this->type_ = Type::make_abstract_complex_type();
2462   return this->type_;
2463 }
2464
2465 // Set the type of the complex value.  Here we may switch from an
2466 // abstract type to a real type.
2467
2468 void
2469 Complex_expression::do_determine_type(const Type_context* context)
2470 {
2471   if (this->type_ != NULL && !this->type_->is_abstract())
2472     ;
2473   else if (context->type != NULL
2474            && context->type->complex_type() != NULL)
2475     this->type_ = context->type;
2476   else if (!context->may_be_abstract)
2477     this->type_ = Type::lookup_complex_type("complex128");
2478 }
2479
2480 // Return true if the complex value REAL/IMAG fits in the range of the
2481 // type TYPE.  Otherwise give an error and return false.  TYPE may be
2482 // NULL.
2483
2484 bool
2485 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2486                                    Location location)
2487 {
2488   if (type == NULL)
2489     return true;
2490   Complex_type* ctype = type->complex_type();
2491   if (ctype == NULL || ctype->is_abstract())
2492     return true;
2493
2494   mp_exp_t max_exp;
2495   switch (ctype->bits())
2496     {
2497     case 64:
2498       max_exp = 128;
2499       break;
2500     case 128:
2501       max_exp = 1024;
2502       break;
2503     default:
2504       go_unreachable();
2505     }
2506
2507   // A NaN or Infinity always fits in the range of the type.
2508   if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2509     {
2510       if (mpfr_get_exp(real) > max_exp)
2511         {
2512           error_at(location, "complex real part constant overflow");
2513           return false;
2514         }
2515     }
2516
2517   if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2518     {
2519       if (mpfr_get_exp(imag) > max_exp)
2520         {
2521           error_at(location, "complex imaginary part constant overflow");
2522           return false;
2523         }
2524     }
2525
2526   return true;
2527 }
2528
2529 // Check the type of a complex value.
2530
2531 void
2532 Complex_expression::do_check_types(Gogo*)
2533 {
2534   if (this->type_ == NULL)
2535     return;
2536
2537   if (!Complex_expression::check_constant(this->real_, this->imag_,
2538                                           this->type_, this->location()))
2539     this->set_is_error();
2540 }
2541
2542 // Get a tree for a complex constant.
2543
2544 tree
2545 Complex_expression::do_get_tree(Translate_context* context)
2546 {
2547   Gogo* gogo = context->gogo();
2548   tree type;
2549   if (this->type_ != NULL && !this->type_->is_abstract())
2550     type = type_to_tree(this->type_->get_backend(gogo));
2551   else
2552     {
2553       // If we still have an abstract type here, this this is being
2554       // used in a constant expression which didn't get reduced.  We
2555       // just use complex128 and hope for the best.
2556       Type* ct = Type::lookup_complex_type("complex128");
2557       type = type_to_tree(ct->get_backend(gogo));
2558     }
2559   return Expression::complex_constant_tree(this->real_, this->imag_, type);
2560 }
2561
2562 // Write REAL/IMAG to export data.
2563
2564 void
2565 Complex_expression::export_complex(String_dump* exp, const mpfr_t real,
2566                                    const mpfr_t imag)
2567 {
2568   if (!mpfr_zero_p(real))
2569     {
2570       Float_expression::export_float(exp, real);
2571       if (mpfr_sgn(imag) > 0)
2572         exp->write_c_string("+");
2573     }
2574   Float_expression::export_float(exp, imag);
2575   exp->write_c_string("i");
2576 }
2577
2578 // Export a complex number in a constant expression.
2579
2580 void
2581 Complex_expression::do_export(Export* exp) const
2582 {
2583   Complex_expression::export_complex(exp, this->real_, this->imag_);
2584   // A trailing space lets us reliably identify the end of the number.
2585   exp->write_c_string(" ");
2586 }
2587
2588 // Dump a complex expression to the dump file.
2589
2590 void
2591 Complex_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
2592 {
2593   Complex_expression::export_complex(ast_dump_context,
2594                                       this->real_,
2595                                       this->imag_);
2596 }
2597
2598 // Make a complex expression.
2599
2600 Expression*
2601 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2602                          Location location)
2603 {
2604   return new Complex_expression(real, imag, type, location);
2605 }
2606
2607 // Find a named object in an expression.
2608
2609 class Find_named_object : public Traverse
2610 {
2611  public:
2612   Find_named_object(Named_object* no)
2613     : Traverse(traverse_expressions),
2614       no_(no), found_(false)
2615   { }
2616
2617   // Whether we found the object.
2618   bool
2619   found() const
2620   { return this->found_; }
2621
2622  protected:
2623   int
2624   expression(Expression**);
2625
2626  private:
2627   // The object we are looking for.
2628   Named_object* no_;
2629   // Whether we found it.
2630   bool found_;
2631 };
2632
2633 // A reference to a const in an expression.
2634
2635 class Const_expression : public Expression
2636 {
2637  public:
2638   Const_expression(Named_object* constant, Location location)
2639     : Expression(EXPRESSION_CONST_REFERENCE, location),
2640       constant_(constant), type_(NULL), seen_(false)
2641   { }
2642
2643   Named_object*
2644   named_object()
2645   { return this->constant_; }
2646
2647   // Check that the initializer does not refer to the constant itself.
2648   void
2649   check_for_init_loop();
2650
2651  protected:
2652   int
2653   do_traverse(Traverse*);
2654
2655   Expression*
2656   do_lower(Gogo*, Named_object*, Statement_inserter*, int);
2657
2658   bool
2659   do_is_constant() const
2660   { return true; }
2661
2662   bool
2663   do_integer_constant_value(bool, mpz_t val, Type**) const;
2664
2665   bool
2666   do_float_constant_value(mpfr_t val, Type**) const;
2667
2668   bool
2669   do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2670
2671   bool
2672   do_string_constant_value(std::string* val) const
2673   { return this->constant_->const_value()->expr()->string_constant_value(val); }
2674
2675   Type*
2676   do_type();
2677
2678   // The type of a const is set by the declaration, not the use.
2679   void
2680   do_determine_type(const Type_context*);
2681
2682   void
2683   do_check_types(Gogo*);
2684
2685   Expression*
2686   do_copy()
2687   { return this; }
2688
2689   tree
2690   do_get_tree(Translate_context* context);
2691
2692   // When exporting a reference to a const as part of a const
2693   // expression, we export the value.  We ignore the fact that it has
2694   // a name.
2695   void
2696   do_export(Export* exp) const
2697   { this->constant_->const_value()->expr()->export_expression(exp); }
2698
2699   void
2700   do_dump_expression(Ast_dump_context*) const;
2701
2702  private:
2703   // The constant.
2704   Named_object* constant_;
2705   // The type of this reference.  This is used if the constant has an
2706   // abstract type.
2707   Type* type_;
2708   // Used to prevent infinite recursion when a constant incorrectly
2709   // refers to itself.
2710   mutable bool seen_;
2711 };
2712
2713 // Traversal.
2714
2715 int
2716 Const_expression::do_traverse(Traverse* traverse)
2717 {
2718   if (this->type_ != NULL)
2719     return Type::traverse(this->type_, traverse);
2720   return TRAVERSE_CONTINUE;
2721 }
2722
2723 // Lower a constant expression.  This is where we convert the
2724 // predeclared constant iota into an integer value.
2725
2726 Expression*
2727 Const_expression::do_lower(Gogo* gogo, Named_object*,
2728                            Statement_inserter*, int iota_value)
2729 {
2730   if (this->constant_->const_value()->expr()->classification()
2731       == EXPRESSION_IOTA)
2732     {
2733       if (iota_value == -1)
2734         {
2735           error_at(this->location(),
2736                    "iota is only defined in const declarations");
2737           iota_value = 0;
2738         }
2739       mpz_t val;
2740       mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2741       Expression* ret = Expression::make_integer(&val, NULL,
2742                                                  this->location());
2743       mpz_clear(val);
2744       return ret;
2745     }
2746
2747   // Make sure that the constant itself has been lowered.
2748   gogo->lower_constant(this->constant_);
2749
2750   return this;
2751 }
2752
2753 // Return an integer constant value.
2754
2755 bool
2756 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2757                                             Type** ptype) const
2758 {
2759   if (this->seen_)
2760     return false;
2761
2762   Type* ctype;
2763   if (this->type_ != NULL)
2764     ctype = this->type_;
2765   else
2766     ctype = this->constant_->const_value()->type();
2767   if (ctype != NULL && ctype->integer_type() == NULL)
2768     return false;
2769
2770   Expression* e = this->constant_->const_value()->expr();
2771
2772   this->seen_ = true;
2773
2774   Type* t;
2775   bool r = e->integer_constant_value(iota_is_constant, val, &t);
2776
2777   this->seen_ = false;
2778
2779   if (r
2780       && ctype != NULL
2781       && !Integer_expression::check_constant(val, ctype, this->location()))
2782     return false;
2783
2784   *ptype = ctype != NULL ? ctype : t;
2785   return r;
2786 }
2787
2788 // Return a floating point constant value.
2789
2790 bool
2791 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2792 {
2793   if (this->seen_)
2794     return false;
2795
2796   Type* ctype;
2797   if (this->type_ != NULL)
2798     ctype = this->type_;
2799   else
2800     ctype = this->constant_->const_value()->type();
2801   if (ctype != NULL && ctype->float_type() == NULL)
2802     return false;
2803
2804   this->seen_ = true;
2805
2806   Type* t;
2807   bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2808                                                                         &t);
2809
2810   this->seen_ = false;
2811
2812   if (r && ctype != NULL)
2813     {
2814       if (!Float_expression::check_constant(val, ctype, this->location()))
2815         return false;
2816       Float_expression::constrain_float(val, ctype);
2817     }
2818   *ptype = ctype != NULL ? ctype : t;
2819   return r;
2820 }
2821
2822 // Return a complex constant value.
2823
2824 bool
2825 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2826                                             Type **ptype) const
2827 {
2828   if (this->seen_)
2829     return false;
2830
2831   Type* ctype;
2832   if (this->type_ != NULL)
2833     ctype = this->type_;
2834   else
2835     ctype = this->constant_->const_value()->type();
2836   if (ctype != NULL && ctype->complex_type() == NULL)
2837     return false;
2838
2839   this->seen_ = true;
2840
2841   Type *t;
2842   bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2843                                                                           imag,
2844                                                                           &t);
2845
2846   this->seen_ = false;
2847
2848   if (r && ctype != NULL)
2849     {
2850       if (!Complex_expression::check_constant(real, imag, ctype,
2851                                               this->location()))
2852         return false;
2853       Complex_expression::constrain_complex(real, imag, ctype);
2854     }
2855   *ptype = ctype != NULL ? ctype : t;
2856   return r;
2857 }
2858
2859 // Return the type of the const reference.
2860
2861 Type*
2862 Const_expression::do_type()
2863 {
2864   if (this->type_ != NULL)
2865     return this->type_;
2866
2867   Named_constant* nc = this->constant_->const_value();
2868
2869   if (this->seen_ || nc->lowering())
2870     {
2871       this->report_error(_("constant refers to itself"));
2872       this->type_ = Type::make_error_type();
2873       return this->type_;
2874     }
2875
2876   this->seen_ = true;
2877
2878   Type* ret = nc->type();
2879
2880   if (ret != NULL)
2881     {
2882       this->seen_ = false;
2883       return ret;
2884     }
2885
2886   // During parsing, a named constant may have a NULL type, but we
2887   // must not return a NULL type here.
2888   ret = nc->expr()->type();
2889
2890   this->seen_ = false;
2891
2892   return ret;
2893 }
2894
2895 // Set the type of the const reference.
2896
2897 void
2898 Const_expression::do_determine_type(const Type_context* context)
2899 {
2900   Type* ctype = this->constant_->const_value()->type();
2901   Type* cetype = (ctype != NULL
2902                   ? ctype
2903                   : this->constant_->const_value()->expr()->type());
2904   if (ctype != NULL && !ctype->is_abstract())
2905     ;
2906   else if (context->type != NULL
2907            && (context->type->integer_type() != NULL
2908                || context->type->float_type() != NULL
2909                || context->type->complex_type() != NULL)
2910            && (cetype->integer_type() != NULL
2911                || cetype->float_type() != NULL
2912                || cetype->complex_type() != NULL))
2913     this->type_ = context->type;
2914   else if (context->type != NULL
2915            && context->type->is_string_type()
2916            && cetype->is_string_type())
2917     this->type_ = context->type;
2918   else if (context->type != NULL
2919            && context->type->is_boolean_type()
2920            && cetype->is_boolean_type())
2921     this->type_ = context->type;
2922   else if (!context->may_be_abstract)
2923     {
2924       if (cetype->is_abstract())
2925         cetype = cetype->make_non_abstract_type();
2926       this->type_ = cetype;
2927     }
2928 }
2929
2930 // Check for a loop in which the initializer of a constant refers to
2931 // the constant itself.
2932
2933 void
2934 Const_expression::check_for_init_loop()
2935 {
2936   if (this->type_ != NULL && this->type_->is_error())
2937     return;
2938
2939   if (this->seen_)
2940     {
2941       this->report_error(_("constant refers to itself"));
2942       this->type_ = Type::make_error_type();
2943       return;
2944     }
2945
2946   Expression* init = this->constant_->const_value()->expr();
2947   Find_named_object find_named_object(this->constant_);
2948
2949   this->seen_ = true;
2950   Expression::traverse(&init, &find_named_object);
2951   this->seen_ = false;
2952
2953   if (find_named_object.found())
2954     {
2955       if (this->type_ == NULL || !this->type_->is_error())
2956         {
2957           this->report_error(_("constant refers to itself"));
2958           this->type_ = Type::make_error_type();
2959         }
2960       return;
2961     }
2962 }
2963
2964 // Check types of a const reference.
2965
2966 void
2967 Const_expression::do_check_types(Gogo*)
2968 {
2969   if (this->type_ != NULL && this->type_->is_error())
2970     return;
2971
2972   this->check_for_init_loop();
2973
2974   if (this->type_ == NULL || this->type_->is_abstract())
2975     return;
2976
2977   // Check for integer overflow.
2978   if (this->type_->integer_type() != NULL)
2979     {
2980       mpz_t ival;
2981       mpz_init(ival);
2982       Type* dummy;
2983       if (!this->integer_constant_value(true, ival, &dummy))
2984         {
2985           mpfr_t fval;
2986           mpfr_init(fval);
2987           Expression* cexpr = this->constant_->const_value()->expr();
2988           if (cexpr->float_constant_value(fval, &dummy))
2989             {
2990               if (!mpfr_integer_p(fval))
2991                 this->report_error(_("floating point constant "
2992                                      "truncated to integer"));
2993               else
2994                 {
2995                   mpfr_get_z(ival, fval, GMP_RNDN);
2996                   Integer_expression::check_constant(ival, this->type_,
2997                                                      this->location());
2998                 }
2999             }
3000           mpfr_clear(fval);
3001         }
3002       mpz_clear(ival);
3003     }
3004 }
3005
3006 // Return a tree for the const reference.
3007
3008 tree
3009 Const_expression::do_get_tree(Translate_context* context)
3010 {
3011   Gogo* gogo = context->gogo();
3012   tree type_tree;
3013   if (this->type_ == NULL)
3014     type_tree = NULL_TREE;
3015   else
3016     {
3017       type_tree = type_to_tree(this->type_->get_backend(gogo));
3018       if (type_tree == error_mark_node)
3019         return error_mark_node;
3020     }
3021
3022   // If the type has been set for this expression, but the underlying
3023   // object is an abstract int or float, we try to get the abstract
3024   // value.  Otherwise we may lose something in the conversion.
3025   if (this->type_ != NULL
3026       && (this->constant_->const_value()->type() == NULL
3027           || this->constant_->const_value()->type()->is_abstract()))
3028     {
3029       Expression* expr = this->constant_->const_value()->expr();
3030       mpz_t ival;
3031       mpz_init(ival);
3032       Type* t;
3033       if (expr->integer_constant_value(true, ival, &t))
3034         {
3035           tree ret = Expression::integer_constant_tree(ival, type_tree);
3036           mpz_clear(ival);
3037           return ret;
3038         }
3039       mpz_clear(ival);
3040
3041       mpfr_t fval;
3042       mpfr_init(fval);
3043       if (expr->float_constant_value(fval, &t))
3044         {
3045           tree ret = Expression::float_constant_tree(fval, type_tree);
3046           mpfr_clear(fval);
3047           return ret;
3048         }
3049
3050       mpfr_t imag;
3051       mpfr_init(imag);
3052       if (expr->complex_constant_value(fval, imag, &t))
3053         {
3054           tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
3055           mpfr_clear(fval);
3056           mpfr_clear(imag);
3057           return ret;
3058         }
3059       mpfr_clear(imag);
3060       mpfr_clear(fval);
3061     }
3062
3063   tree const_tree = this->constant_->get_tree(gogo, context->function());
3064   if (this->type_ == NULL
3065       || const_tree == error_mark_node
3066       || TREE_TYPE(const_tree) == error_mark_node)
3067     return const_tree;
3068
3069   tree ret;
3070   if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
3071     ret = fold_convert(type_tree, const_tree);
3072   else if (TREE_CODE(type_tree) == INTEGER_TYPE)
3073     ret = fold(convert_to_integer(type_tree, const_tree));
3074   else if (TREE_CODE(type_tree) == REAL_TYPE)
3075     ret = fold(convert_to_real(type_tree, const_tree));
3076   else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
3077     ret = fold(convert_to_complex(type_tree, const_tree));
3078   else
3079     go_unreachable();
3080   return ret;
3081 }
3082
3083 // Dump ast representation for constant expression.
3084
3085 void
3086 Const_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
3087 {
3088   ast_dump_context->ostream() << this->constant_->name();
3089 }
3090
3091 // Make a reference to a constant in an expression.
3092
3093 Expression*
3094 Expression::make_const_reference(Named_object* constant,
3095                                  Location location)
3096 {
3097   return new Const_expression(constant, location);
3098 }
3099
3100 // Find a named object in an expression.
3101
3102 int
3103 Find_named_object::expression(Expression** pexpr)
3104 {
3105   switch ((*pexpr)->classification())
3106     {
3107     case Expression::EXPRESSION_CONST_REFERENCE:
3108       {
3109         Const_expression* ce = static_cast<Const_expression*>(*pexpr);
3110         if (ce->named_object() == this->no_)
3111           break;
3112
3113         // We need to check a constant initializer explicitly, as
3114         // loops here will not be caught by the loop checking for
3115         // variable initializers.
3116         ce->check_for_init_loop();
3117
3118         return TRAVERSE_CONTINUE;
3119       }
3120
3121     case Expression::EXPRESSION_VAR_REFERENCE:
3122       if ((*pexpr)->var_expression()->named_object() == this->no_)
3123         break;
3124       return TRAVERSE_CONTINUE;
3125     case Expression::EXPRESSION_FUNC_REFERENCE:
3126       if ((*pexpr)->func_expression()->named_object() == this->no_)
3127         break;
3128       return TRAVERSE_CONTINUE;
3129     default:
3130       return TRAVERSE_CONTINUE;
3131     }
3132   this->found_ = true;
3133   return TRAVERSE_EXIT;
3134 }
3135
3136 // The nil value.
3137
3138 class Nil_expression : public Expression
3139 {
3140  public:
3141   Nil_expression(Location location)
3142     : Expression(EXPRESSION_NIL, location)
3143   { }
3144
3145   static Expression*
3146   do_import(Import*);
3147
3148  protected:
3149   bool
3150   do_is_constant() const
3151   { return true; }
3152
3153   Type*
3154   do_type()
3155   { return Type::make_nil_type(); }
3156
3157   void
3158   do_determine_type(const Type_context*)
3159   { }
3160
3161   Expression*
3162   do_copy()
3163   { return this; }
3164
3165   tree
3166   do_get_tree(Translate_context*)
3167   { return null_pointer_node; }
3168
3169   void
3170   do_export(Export* exp) const
3171   { exp->write_c_string("nil"); }
3172
3173   void
3174   do_dump_expression(Ast_dump_context* ast_dump_context) const
3175   { ast_dump_context->ostream() << "nil"; }
3176 };
3177
3178 // Import a nil expression.
3179
3180 Expression*
3181 Nil_expression::do_import(Import* imp)
3182 {
3183   imp->require_c_string("nil");
3184   return Expression::make_nil(imp->location());
3185 }
3186
3187 // Make a nil expression.
3188
3189 Expression*
3190 Expression::make_nil(Location location)
3191 {
3192   return new Nil_expression(location);
3193 }
3194
3195 // The value of the predeclared constant iota.  This is little more
3196 // than a marker.  This will be lowered to an integer in
3197 // Const_expression::do_lower, which is where we know the value that
3198 // it should have.
3199
3200 class Iota_expression : public Parser_expression
3201 {
3202  public:
3203   Iota_expression(Location location)
3204     : Parser_expression(EXPRESSION_IOTA, location)
3205   { }
3206
3207  protected:
3208   Expression*
3209   do_lower(Gogo*, Named_object*, Statement_inserter*, int)
3210   { go_unreachable(); }
3211
3212   // There should only ever be one of these.
3213   Expression*
3214   do_copy()
3215   { go_unreachable(); }
3216   
3217   void
3218   do_dump_expression(Ast_dump_context* ast_dump_context) const
3219   { ast_dump_context->ostream() << "iota"; } 
3220 };
3221
3222 // Make an iota expression.  This is only called for one case: the
3223 // value of the predeclared constant iota.
3224
3225 Expression*
3226 Expression::make_iota()
3227 {
3228   static Iota_expression iota_expression(Linemap::unknown_location());
3229   return &iota_expression;
3230 }
3231
3232 // A type conversion expression.
3233
3234 class Type_conversion_expression : public Expression
3235 {
3236  public:
3237   Type_conversion_expression(Type* type, Expression* expr,
3238                              Location location)
3239     : Expression(EXPRESSION_CONVERSION, location),
3240       type_(type), expr_(expr), may_convert_function_types_(false)
3241   { }
3242
3243   // Return the type to which we are converting.
3244   Type*
3245   type() const
3246   { return this->type_; }
3247
3248   // Return the expression which we are converting.
3249   Expression*
3250   expr() const
3251   { return this->expr_; }
3252
3253   // Permit converting from one function type to another.  This is
3254   // used internally for method expressions.
3255   void
3256   set_may_convert_function_types()
3257   {
3258     this->may_convert_function_types_ = true;
3259   }
3260
3261   // Import a type conversion expression.
3262   static Expression*
3263   do_import(Import*);
3264
3265  protected:
3266   int
3267   do_traverse(Traverse* traverse);
3268
3269   Expression*
3270   do_lower(Gogo*, Named_object*, Statement_inserter*, int);
3271
3272   bool
3273   do_is_constant() const
3274   { return this->expr_->is_constant(); }
3275
3276   bool
3277   do_integer_constant_value(bool, mpz_t, Type**) const;
3278
3279   bool
3280   do_float_constant_value(mpfr_t, Type**) const;
3281
3282   bool
3283   do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3284
3285   bool
3286   do_string_constant_value(std::string*) const;
3287
3288   Type*
3289   do_type()
3290   { return this->type_; }
3291
3292   void
3293   do_determine_type(const Type_context*)
3294   {
3295     Type_context subcontext(this->type_, false);
3296     this->expr_->determine_type(&subcontext);
3297   }
3298
3299   void
3300   do_check_types(Gogo*);
3301
3302   Expression*
3303   do_copy()
3304   {
3305     return new Type_conversion_expression(this->type_, this->expr_->copy(),
3306                                           this->location());
3307   }
3308
3309   tree
3310   do_get_tree(Translate_context* context);
3311
3312   void
3313   do_export(Export*) const;
3314
3315   void
3316   do_dump_expression(Ast_dump_context*) const;
3317
3318  private:
3319   // The type to convert to.
3320   Type* type_;
3321   // The expression to convert.
3322   Expression* expr_;
3323   // True if this is permitted to convert function types.  This is
3324   // used internally for method expressions.
3325   bool may_convert_function_types_;
3326 };
3327
3328 // Traversal.
3329
3330 int
3331 Type_conversion_expression::do_traverse(Traverse* traverse)
3332 {
3333   if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3334       || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3335     return TRAVERSE_EXIT;
3336   return TRAVERSE_CONTINUE;
3337 }
3338
3339 // Convert to a constant at lowering time.
3340
3341 Expression*
3342 Type_conversion_expression::do_lower(Gogo*, Named_object*,
3343                                      Statement_inserter*, int)
3344 {
3345   Type* type = this->type_;
3346   Expression* val = this->expr_;
3347   Location location = this->location();
3348
3349   if (type->integer_type() != NULL)
3350     {
3351       mpz_t ival;
3352       mpz_init(ival);
3353       Type* dummy;
3354       if (val->integer_constant_value(false, ival, &dummy))
3355         {
3356           if (!Integer_expression::check_constant(ival, type, location))
3357             mpz_set_ui(ival, 0);
3358           Expression* ret = Expression::make_integer(&ival, type, location);
3359           mpz_clear(ival);
3360           return ret;
3361         }
3362
3363       mpfr_t fval;
3364       mpfr_init(fval);
3365       if (val->float_constant_value(fval, &dummy))
3366         {
3367           if (!mpfr_integer_p(fval))
3368             {
3369               error_at(location,
3370                        "floating point constant truncated to integer");
3371               return Expression::make_error(location);
3372             }
3373           mpfr_get_z(ival, fval, GMP_RNDN);
3374           if (!Integer_expression::check_constant(ival, type, location))
3375             mpz_set_ui(ival, 0);
3376           Expression* ret = Expression::make_integer(&ival, type, location);
3377           mpfr_clear(fval);
3378           mpz_clear(ival);
3379           return ret;
3380         }
3381       mpfr_clear(fval);
3382       mpz_clear(ival);
3383     }
3384
3385   if (type->float_type() != NULL)
3386     {
3387       mpfr_t fval;
3388       mpfr_init(fval);
3389       Type* dummy;
3390       if (val->float_constant_value(fval, &dummy))
3391         {
3392           if (!Float_expression::check_constant(fval, type, location))
3393             mpfr_set_ui(fval, 0, GMP_RNDN);
3394           Float_expression::constrain_float(fval, type);
3395           Expression *ret = Expression::make_float(&fval, type, location);
3396           mpfr_clear(fval);
3397           return ret;
3398         }
3399       mpfr_clear(fval);
3400     }
3401
3402   if (type->complex_type() != NULL)
3403     {
3404       mpfr_t real;
3405       mpfr_t imag;
3406       mpfr_init(real);
3407       mpfr_init(imag);
3408       Type* dummy;
3409       if (val->complex_constant_value(real, imag, &dummy))
3410         {
3411           if (!Complex_expression::check_constant(real, imag, type, location))
3412             {
3413               mpfr_set_ui(real, 0, GMP_RNDN);
3414               mpfr_set_ui(imag, 0, GMP_RNDN);
3415             }
3416           Complex_expression::constrain_complex(real, imag, type);
3417           Expression* ret = Expression::make_complex(&real, &imag, type,
3418                                                      location);
3419           mpfr_clear(real);
3420           mpfr_clear(imag);
3421           return ret;
3422         }
3423       mpfr_clear(real);
3424       mpfr_clear(imag);
3425     }
3426
3427   if (type->is_slice_type())
3428     {
3429       Type* element_type = type->array_type()->element_type()->forwarded();
3430       bool is_byte = (element_type->integer_type() != NULL
3431                       && element_type->integer_type()->is_byte());
3432       bool is_rune = (element_type->integer_type() != NULL
3433                       && element_type->integer_type()->is_rune());
3434       if (is_byte || is_rune)
3435         {
3436           std::string s;
3437           if (val->string_constant_value(&s))
3438             {
3439               Expression_list* vals = new Expression_list();
3440               if (is_byte)
3441                 {
3442                   for (std::string::const_iterator p = s.begin();
3443                        p != s.end();
3444                        p++)
3445                     {
3446                       mpz_t val;
3447                       mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3448                       Expression* v = Expression::make_integer(&val,
3449                                                                element_type,
3450                                                                location);
3451                       vals->push_back(v);
3452                       mpz_clear(val);
3453                     }
3454                 }
3455               else
3456                 {
3457                   const char *p = s.data();
3458                   const char *pend = s.data() + s.length();
3459                   while (p < pend)
3460                     {
3461                       unsigned int c;
3462                       int adv = Lex::fetch_char(p, &c);
3463                       if (adv == 0)
3464                         {
3465                           warning_at(this->location(), 0,
3466                                      "invalid UTF-8 encoding");
3467                           adv = 1;
3468                         }
3469                       p += adv;
3470                       mpz_t val;
3471                       mpz_init_set_ui(val, c);
3472                       Expression* v = Expression::make_integer(&val,
3473                                                                element_type,
3474                                                                location);
3475                       vals->push_back(v);
3476                       mpz_clear(val);
3477                     }
3478                 }
3479
3480               return Expression::make_slice_composite_literal(type, vals,
3481                                                               location);
3482             }
3483         }
3484     }
3485
3486   return this;
3487 }
3488
3489 // Return the constant integer value if there is one.
3490
3491 bool
3492 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3493                                                       mpz_t val,
3494                                                       Type** ptype) const
3495 {
3496   if (this->type_->integer_type() == NULL)
3497     return false;
3498
3499   mpz_t ival;
3500   mpz_init(ival);
3501   Type* dummy;
3502   if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3503     {
3504       if (!Integer_expression::check_constant(ival, this->type_,
3505                                               this->location()))
3506         {
3507           mpz_clear(ival);
3508           return false;
3509         }
3510       mpz_set(val, ival);
3511       mpz_clear(ival);
3512       *ptype = this->type_;
3513       return true;
3514     }
3515   mpz_clear(ival);
3516
3517   mpfr_t fval;
3518   mpfr_init(fval);
3519   if (this->expr_->float_constant_value(fval, &dummy))
3520     {
3521       mpfr_get_z(val, fval, GMP_RNDN);
3522       mpfr_clear(fval);
3523       if (!Integer_expression::check_constant(val, this->type_,
3524                                               this->location()))
3525         return false;
3526       *ptype = this->type_;
3527       return true;
3528     }
3529   mpfr_clear(fval);
3530
3531   return false;
3532 }
3533
3534 // Return the constant floating point value if there is one.
3535
3536 bool
3537 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3538                                                     Type** ptype) const
3539 {
3540   if (this->type_->float_type() == NULL)
3541     return false;
3542
3543   mpfr_t fval;
3544   mpfr_init(fval);
3545   Type* dummy;
3546   if (this->expr_->float_constant_value(fval, &dummy))
3547     {
3548       if (!Float_expression::check_constant(fval, this->type_,
3549                                             this->location()))
3550         {
3551           mpfr_clear(fval);
3552           return false;
3553         }
3554       mpfr_set(val, fval, GMP_RNDN);
3555       mpfr_clear(fval);
3556       Float_expression::constrain_float(val, this->type_);
3557       *ptype = this->type_;
3558       return true;
3559     }
3560   mpfr_clear(fval);
3561
3562   return false;
3563 }
3564
3565 // Return the constant complex value if there is one.
3566
3567 bool
3568 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3569                                                       mpfr_t imag,
3570                                                       Type **ptype) const
3571 {
3572   if (this->type_->complex_type() == NULL)
3573     return false;
3574
3575   mpfr_t rval;
3576   mpfr_t ival;
3577   mpfr_init(rval);
3578   mpfr_init(ival);
3579   Type* dummy;
3580   if (this->expr_->complex_constant_value(rval, ival, &dummy))
3581     {
3582       if (!Complex_expression::check_constant(rval, ival, this->type_,
3583                                               this->location()))
3584         {
3585           mpfr_clear(rval);
3586           mpfr_clear(ival);
3587           return false;
3588         }
3589       mpfr_set(real, rval, GMP_RNDN);
3590       mpfr_set(imag, ival, GMP_RNDN);
3591       mpfr_clear(rval);
3592       mpfr_clear(ival);
3593       Complex_expression::constrain_complex(real, imag, this->type_);
3594       *ptype = this->type_;
3595       return true;
3596     }
3597   mpfr_clear(rval);
3598   mpfr_clear(ival);
3599
3600   return false;  
3601 }
3602
3603 // Return the constant string value if there is one.
3604
3605 bool
3606 Type_conversion_expression::do_string_constant_value(std::string* val) const
3607 {
3608   if (this->type_->is_string_type()
3609       && this->expr_->type()->integer_type() != NULL)
3610     {
3611       mpz_t ival;
3612       mpz_init(ival);
3613       Type* dummy;
3614       if (this->expr_->integer_constant_value(false, ival, &dummy))
3615         {
3616           unsigned long ulval = mpz_get_ui(ival);
3617           if (mpz_cmp_ui(ival, ulval) == 0)
3618             {
3619               Lex::append_char(ulval, true, val, this->location());
3620               mpz_clear(ival);
3621               return true;
3622             }
3623         }
3624       mpz_clear(ival);
3625     }
3626
3627   // FIXME: Could handle conversion from const []int here.
3628
3629   return false;
3630 }
3631
3632 // Check that types are convertible.
3633
3634 void
3635 Type_conversion_expression::do_check_types(Gogo*)
3636 {
3637   Type* type = this->type_;
3638   Type* expr_type = this->expr_->type();
3639   std::string reason;
3640
3641   if (type->is_error() || expr_type->is_error())
3642     {
3643       this->set_is_error();
3644       return;
3645     }
3646
3647   if (this->may_convert_function_types_
3648       && type->function_type() != NULL
3649       && expr_type->function_type() != NULL)
3650     return;
3651
3652   if (Type::are_convertible(type, expr_type, &reason))
3653     return;
3654
3655   error_at(this->location(), "%s", reason.c_str());
3656   this->set_is_error();
3657 }
3658
3659 // Get a tree for a type conversion.
3660
3661 tree
3662 Type_conversion_expression::do_get_tree(Translate_context* context)
3663 {
3664   Gogo* gogo = context->gogo();
3665   tree type_tree = type_to_tree(this->type_->get_backend(gogo));
3666   tree expr_tree = this->expr_->get_tree(context);
3667
3668   if (type_tree == error_mark_node
3669       || expr_tree == error_mark_node
3670       || TREE_TYPE(expr_tree) == error_mark_node)
3671     return error_mark_node;
3672
3673   if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3674     return fold_convert(type_tree, expr_tree);
3675
3676   Type* type = this->type_;
3677   Type* expr_type = this->expr_->type();
3678   tree ret;
3679   if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3680     ret = Expression::convert_for_assignment(context, type, expr_type,
3681                                              expr_tree, this->location());
3682   else if (type->integer_type() != NULL)
3683     {
3684       if (expr_type->integer_type() != NULL
3685           || expr_type->float_type() != NULL
3686           || expr_type->is_unsafe_pointer_type())
3687         ret = fold(convert_to_integer(type_tree, expr_tree));
3688       else
3689         go_unreachable();
3690     }
3691   else if (type->float_type() != NULL)
3692     {
3693       if (expr_type->integer_type() != NULL
3694           || expr_type->float_type() != NULL)
3695         ret = fold(convert_to_real(type_tree, expr_tree));
3696       else
3697         go_unreachable();
3698     }
3699   else if (type->complex_type() != NULL)
3700     {
3701       if (expr_type->complex_type() != NULL)
3702         ret = fold(convert_to_complex(type_tree, expr_tree));
3703       else
3704         go_unreachable();
3705     }
3706   else if (type->is_string_type()
3707            && expr_type->integer_type() != NULL)
3708     {
3709       expr_tree = fold_convert(integer_type_node, expr_tree);
3710       if (host_integerp(expr_tree, 0))
3711         {
3712           HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3713           std::string s;
3714           Lex::append_char(intval, true, &s, this->location());
3715           Expression* se = Expression::make_string(s, this->location());
3716           return se->get_tree(context);
3717         }
3718
3719       static tree int_to_string_fndecl;
3720       ret = Gogo::call_builtin(&int_to_string_fndecl,
3721                                this->location(),
3722                                "__go_int_to_string",
3723                                1,
3724                                type_tree,
3725                                integer_type_node,
3726                                fold_convert(integer_type_node, expr_tree));
3727     }
3728   else if (type->is_string_type() && expr_type->is_slice_type())
3729     {
3730       if (!DECL_P(expr_tree))
3731         expr_tree = save_expr(expr_tree);
3732       Array_type* a = expr_type->array_type();
3733       Type* e = a->element_type()->forwarded();
3734       go_assert(e->integer_type() != NULL);
3735       tree valptr = fold_convert(const_ptr_type_node,
3736                                  a->value_pointer_tree(gogo, expr_tree));
3737       tree len = a->length_tree(gogo, expr_tree);
3738       len = fold_convert_loc(this->location().gcc_location(), integer_type_node,
3739                              len);
3740       if (e->integer_type()->is_byte())
3741         {
3742           static tree byte_array_to_string_fndecl;
3743           ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3744                                    this->location(),
3745                                    "__go_byte_array_to_string",
3746                                    2,
3747                                    type_tree,
3748                                    const_ptr_type_node,
3749                                    valptr,
3750                                    integer_type_node,
3751                                    len);
3752         }
3753       else
3754         {
3755           go_assert(e->integer_type()->is_rune());
3756           static tree int_array_to_string_fndecl;
3757           ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3758                                    this->location(),
3759                                    "__go_int_array_to_string",
3760                                    2,
3761                                    type_tree,
3762                                    const_ptr_type_node,
3763                                    valptr,
3764                                    integer_type_node,
3765                                    len);
3766         }
3767     }
3768   else if (type->is_slice_type() && expr_type->is_string_type())
3769     {
3770       Type* e = type->array_type()->element_type()->forwarded();
3771       go_assert(e->integer_type() != NULL);
3772       if (e->integer_type()->is_byte())
3773         {
3774           tree string_to_byte_array_fndecl = NULL_TREE;
3775           ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3776                                    this->location(),
3777                                    "__go_string_to_byte_array",
3778                                    1,
3779                                    type_tree,
3780                                    TREE_TYPE(expr_tree),
3781                                    expr_tree);
3782         }
3783       else
3784         {
3785           go_assert(e->integer_type()->is_rune());
3786           tree string_to_int_array_fndecl = NULL_TREE;
3787           ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3788                                    this->location(),
3789                                    "__go_string_to_int_array",
3790                                    1,
3791                                    type_tree,
3792                                    TREE_TYPE(expr_tree),
3793                                    expr_tree);
3794         }
3795     }
3796   else if ((type->is_unsafe_pointer_type()
3797             && expr_type->points_to() != NULL)
3798            || (expr_type->is_unsafe_pointer_type()
3799                && type->points_to() != NULL))
3800     ret = fold_convert(type_tree, expr_tree);
3801   else if (type->is_unsafe_pointer_type()
3802            && expr_type->integer_type() != NULL)
3803     ret = convert_to_pointer(type_tree, expr_tree);
3804   else if (this->may_convert_function_types_
3805            && type->function_type() != NULL
3806            && expr_type->function_type() != NULL)
3807     ret = fold_convert_loc(this->location().gcc_location(), type_tree,
3808                            expr_tree);
3809   else
3810     ret = Expression::convert_for_assignment(context, type, expr_type,
3811                                              expr_tree, this->location());
3812
3813   return ret;
3814 }
3815
3816 // Output a type conversion in a constant expression.
3817
3818 void
3819 Type_conversion_expression::do_export(Export* exp) const
3820 {
3821   exp->write_c_string("convert(");
3822   exp->write_type(this->type_);
3823   exp->write_c_string(", ");
3824   this->expr_->export_expression(exp);
3825   exp->write_c_string(")");
3826 }
3827
3828 // Import a type conversion or a struct construction.
3829
3830 Expression*
3831 Type_conversion_expression::do_import(Import* imp)
3832 {
3833   imp->require_c_string("convert(");
3834   Type* type = imp->read_type();
3835   imp->require_c_string(", ");
3836   Expression* val = Expression::import_expression(imp);
3837   imp->require_c_string(")");
3838   return Expression::make_cast(type, val, imp->location());
3839 }
3840
3841 // Dump ast representation for a type conversion expression.
3842
3843 void
3844 Type_conversion_expression::do_dump_expression(
3845     Ast_dump_context* ast_dump_context) const
3846 {
3847   ast_dump_context->dump_type(this->type_);
3848   ast_dump_context->ostream() << "(";
3849   ast_dump_context->dump_expression(this->expr_);
3850   ast_dump_context->ostream() << ") ";
3851 }
3852
3853 // Make a type cast expression.
3854
3855 Expression*
3856 Expression::make_cast(Type* type, Expression* val, Location location)
3857 {
3858   if (type->is_error_type() || val->is_error_expression())
3859     return Expression::make_error(location);
3860   return new Type_conversion_expression(type, val, location);
3861 }
3862
3863 // An unsafe type conversion, used to pass values to builtin functions.
3864
3865 class Unsafe_type_conversion_expression : public Expression
3866 {
3867  public:
3868   Unsafe_type_conversion_expression(Type* type, Expression* expr,
3869                                     Location location)
3870     : Expression(EXPRESSION_UNSAFE_CONVERSION, location),
3871       type_(type), expr_(expr)
3872   { }
3873
3874  protected:
3875   int
3876   do_traverse(Traverse* traverse);
3877
3878   Type*
3879   do_type()
3880   { return this->type_; }
3881
3882   void
3883   do_determine_type(const Type_context*)
3884   { this->expr_->determine_type_no_context(); }
3885
3886   Expression*
3887   do_copy()
3888   {
3889     return new Unsafe_type_conversion_expression(this->type_,
3890                                                  this->expr_->copy(),
3891                                                  this->location());
3892   }
3893
3894   tree
3895   do_get_tree(Translate_context*);
3896
3897   void
3898   do_dump_expression(Ast_dump_context*) const;
3899
3900  private:
3901   // The type to convert to.
3902   Type* type_;
3903   // The expression to convert.
3904   Expression* expr_;
3905 };
3906
3907 // Traversal.
3908
3909 int
3910 Unsafe_type_conversion_expression::do_traverse(Traverse* traverse)
3911 {
3912   if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3913       || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3914     return TRAVERSE_EXIT;
3915   return TRAVERSE_CONTINUE;
3916 }
3917
3918 // Convert to backend representation.
3919
3920 tree
3921 Unsafe_type_conversion_expression::do_get_tree(Translate_context* context)
3922 {
3923   // We are only called for a limited number of cases.
3924
3925   Type* t = this->type_;
3926   Type* et = this->expr_->type();
3927
3928   tree type_tree = type_to_tree(this->type_->get_backend(context->gogo()));
3929   tree expr_tree = this->expr_->get_tree(context);
3930   if (type_tree == error_mark_node || expr_tree == error_mark_node)
3931     return error_mark_node;
3932
3933   Location loc = this->location();
3934
3935   bool use_view_convert = false;
3936   if (t->is_slice_type())
3937     {
3938       go_assert(et->is_slice_type());
3939       use_view_convert = true;
3940     }
3941   else if (t->map_type() != NULL)
3942     go_assert(et->map_type() != NULL);
3943   else if (t->channel_type() != NULL)
3944     go_assert(et->channel_type() != NULL);
3945   else if (t->points_to() != NULL && t->points_to()->channel_type() != NULL)
3946     go_assert((et->points_to() != NULL
3947                 && et->points_to()->channel_type() != NULL)
3948                || et->is_nil_type());
3949   else if (t->points_to() != NULL)
3950     go_assert(et->points_to() != NULL || et->is_nil_type());
3951   else if (et->is_unsafe_pointer_type())
3952     go_assert(t->points_to() != NULL);
3953   else if (t->interface_type() != NULL && !t->interface_type()->is_empty())
3954     {
3955       go_assert(et->interface_type() != NULL
3956                  && !et->interface_type()->is_empty());
3957       use_view_convert = true;
3958     }
3959   else if (t->interface_type() != NULL && t->interface_type()->is_empty())
3960     {
3961       go_assert(et->interface_type() != NULL
3962                  && et->interface_type()->is_empty());
3963       use_view_convert = true;
3964     }
3965   else if (t->integer_type() != NULL)
3966     {
3967       go_assert(et->is_boolean_type()
3968                  || et->integer_type() != NULL
3969                  || et->function_type() != NULL
3970                  || et->points_to() != NULL
3971                  || et->map_type() != NULL
3972                  || et->channel_type() != NULL);
3973       return convert_to_integer(type_tree, expr_tree);
3974     }
3975   else
3976     go_unreachable();
3977
3978   if (use_view_convert)
3979     return fold_build1_loc(loc.gcc_location(), VIEW_CONVERT_EXPR, type_tree,
3980                            expr_tree);
3981   else
3982     return fold_convert_loc(loc.gcc_location(), type_tree, expr_tree);
3983 }
3984
3985 // Dump ast representation for an unsafe type conversion expression.
3986
3987 void
3988 Unsafe_type_conversion_expression::do_dump_expression(
3989     Ast_dump_context* ast_dump_context) const
3990 {
3991   ast_dump_context->dump_type(this->type_);
3992   ast_dump_context->ostream() << "(";
3993   ast_dump_context->dump_expression(this->expr_);
3994   ast_dump_context->ostream() << ") ";
3995 }
3996
3997 // Make an unsafe type conversion expression.
3998
3999 Expression*
4000 Expression::make_unsafe_cast(Type* type, Expression* expr,
4001                              Location location)
4002 {
4003   return new Unsafe_type_conversion_expression(type, expr, location);
4004 }
4005
4006 // Unary expressions.
4007
4008 class Unary_expression : public Expression
4009 {
4010  public:
4011   Unary_expression(Operator op, Expression* expr, Location location)
4012     : Expression(EXPRESSION_UNARY, location),
4013       op_(op), escapes_(true), create_temp_(false), expr_(expr)
4014   { }
4015
4016   // Return the operator.
4017   Operator
4018   op() const
4019   { return this->op_; }
4020
4021   // Return the operand.
4022   Expression*
4023   operand() const
4024   { return this->expr_; }
4025
4026   // Record that an address expression does not escape.
4027   void
4028   set_does_not_escape()
4029   {
4030     go_assert(this->op_ == OPERATOR_AND);
4031     this->escapes_ = false;
4032   }
4033
4034   // Record that this is an address expression which should create a
4035   // temporary variable if necessary.  This is used for method calls.
4036   void
4037   set_create_temp()
4038   {
4039     go_assert(this->op_ == OPERATOR_AND);
4040     this->create_temp_ = true;
4041   }
4042
4043   // Apply unary opcode OP to UVAL, setting VAL.  Return true if this
4044   // could be done, false if not.
4045   static bool
4046   eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
4047                Location);
4048
4049   // Apply unary opcode OP to UVAL, setting VAL.  Return true if this
4050   // could be done, false if not.
4051   static bool
4052   eval_float(Operator op, mpfr_t uval, mpfr_t val);
4053
4054   // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG.  Return
4055   // true if this could be done, false if not.
4056   static bool
4057   eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
4058                mpfr_t imag);
4059
4060   static Expression*
4061   do_import(Import*);
4062
4063  protected:
4064   int
4065   do_traverse(Traverse* traverse)
4066   { return Expression::traverse(&this->expr_, traverse); }
4067
4068   Expression*
4069   do_lower(Gogo*, Named_object*, Statement_inserter*, int);
4070
4071   bool
4072   do_is_constant() const;
4073
4074   bool
4075   do_integer_constant_value(bool, mpz_t, Type**) const;
4076
4077   bool
4078   do_float_constant_value(mpfr_t, Type**) const;
4079
4080   bool
4081   do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
4082
4083   Type*
4084   do_type();
4085
4086   void
4087   do_determine_type(const Type_context*);
4088
4089   void
4090   do_check_types(Gogo*);
4091
4092   Expression*
4093   do_copy()
4094   {
4095     return Expression::make_unary(this->op_, this->expr_->copy(),
4096                                   this->location());
4097   }
4098
4099   bool
4100   do_must_eval_subexpressions_in_order(int*) const
4101   { return this->op_ == OPERATOR_MULT; }
4102
4103   bool
4104   do_is_addressable() const
4105   { return this->op_ == OPERATOR_MULT; }
4106
4107   tree
4108   do_get_tree(Translate_context*);
4109
4110   void
4111   do_export(Export*) const;
4112
4113   void
4114   do_dump_expression(Ast_dump_context*) const;
4115
4116  private:
4117   // The unary operator to apply.
4118   Operator op_;
4119   // Normally true.  False if this is an address expression which does
4120   // not escape the current function.
4121   bool escapes_;
4122   // True if this is an address expression which should create a
4123   // temporary variable if necessary.
4124   bool create_temp_;
4125   // The operand.
4126   Expression* expr_;
4127 };
4128
4129 // If we are taking the address of a composite literal, and the
4130 // contents are not constant, then we want to make a heap composite
4131 // instead.
4132
4133 Expression*
4134 Unary_expression::do_lower(Gogo*, Named_object*, Statement_inserter*, int)
4135 {
4136   Location loc = this->location();
4137   Operator op = this->op_;
4138   Expression* expr = this->expr_;
4139
4140   if (op == OPERATOR_MULT && expr->is_type_expression())
4141     return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
4142
4143   // *&x simplifies to x.  *(*T)(unsafe.Pointer)(&x) does not require
4144   // moving x to the heap.  FIXME: Is it worth doing a real escape
4145   // analysis here?  This case is found in math/unsafe.go and is
4146   // therefore worth special casing.
4147   if (op == OPERATOR_MULT)
4148     {
4149       Expression* e = expr;
4150       while (e->classification() == EXPRESSION_CONVERSION)
4151         {
4152           Type_conversion_expression* te
4153             = static_cast<Type_conversion_expression*>(e);
4154           e = te->expr();
4155         }
4156
4157       if (e->classification() == EXPRESSION_UNARY)
4158         {
4159           Unary_expression* ue = static_cast<Unary_expression*>(e);
4160           if (ue->op_ == OPERATOR_AND)
4161             {
4162               if (e == expr)
4163                 {
4164                   // *&x == x.
4165                   return ue->expr_;
4166                 }
4167               ue->set_does_not_escape();
4168             }
4169         }
4170     }
4171
4172   // Catching an invalid indirection of unsafe.Pointer here avoid
4173   // having to deal with TYPE_VOID in other places.
4174   if (op == OPERATOR_MULT && expr->type()->is_unsafe_pointer_type())
4175     {
4176       error_at(this->location(), "invalid indirect of %<unsafe.Pointer%>");
4177       return Expression::make_error(this->location());
4178     }
4179
4180   if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
4181       || op == OPERATOR_NOT || op == OPERATOR_XOR)
4182     {
4183       Expression* ret = NULL;
4184
4185       mpz_t eval;
4186       mpz_init(eval);
4187       Type* etype;
4188       if (expr->integer_constant_value(false, eval, &etype))
4189         {
4190           mpz_t val;
4191           mpz_init(val);
4192           if (Unary_expression::eval_integer(op, etype, eval, val, loc))
4193             ret = Expression::make_integer(&val, etype, loc);
4194           mpz_clear(val);
4195         }
4196       mpz_clear(eval);
4197       if (ret != NULL)
4198         return ret;
4199
4200       if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
4201         {
4202           mpfr_t fval;
4203           mpfr_init(fval);
4204           Type* ftype;
4205           if (expr->float_constant_value(fval, &ftype))
4206             {
4207               mpfr_t val;
4208               mpfr_init(val);
4209               if (Unary_expression::eval_float(op, fval, val))
4210                 ret = Expression::make_float(&val, ftype, loc);
4211               mpfr_clear(val);
4212             }
4213           if (ret != NULL)
4214             {
4215               mpfr_clear(fval);
4216               return ret;
4217             }
4218
4219           mpfr_t ival;
4220           mpfr_init(ival);
4221           if (expr->complex_constant_value(fval, ival, &ftype))
4222             {
4223               mpfr_t real;
4224               mpfr_t imag;
4225               mpfr_init(real);
4226               mpfr_init(imag);
4227               if (Unary_expression::eval_complex(op, fval, ival, real, imag))
4228                 ret = Expression::make_complex(&real, &imag, ftype, loc);
4229               mpfr_clear(real);
4230               mpfr_clear(imag);
4231             }
4232           mpfr_clear(ival);
4233           mpfr_clear(fval);
4234           if (ret != NULL)
4235             return ret;
4236         }
4237     }
4238
4239   return this;
4240 }
4241
4242 // Return whether a unary expression is a constant.
4243
4244 bool
4245 Unary_expression::do_is_constant() const
4246 {
4247   if (this->op_ == OPERATOR_MULT)
4248     {
4249       // Indirecting through a pointer is only constant if the object
4250       // to which the expression points is constant, but we currently
4251       // have no way to determine that.
4252       return false;
4253     }
4254   else if (this->op_ == OPERATOR_AND)
4255     {
4256       // Taking the address of a variable is constant if it is a
4257       // global variable, not constant otherwise.  In other cases
4258       // taking the address is probably not a constant.
4259       Var_expression* ve = this->expr_->var_expression();
4260       if (ve != NULL)
4261         {
4262           Named_object* no = ve->named_object();
4263           return no->is_variable() && no->var_value()->is_global();
4264         }
4265       return false;
4266     }
4267   else
4268     return this->expr_->is_constant();
4269 }
4270
4271 // Apply unary opcode OP to UVAL, setting VAL.  UTYPE is the type of
4272 // UVAL, if known; it may be NULL.  Return true if this could be done,
4273 // false if not.
4274
4275 bool
4276 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
4277                                Location location)
4278 {
4279   switch (op)
4280     {
4281     case OPERATOR_PLUS:
4282       mpz_set(val, uval);
4283       return true;
4284     case OPERATOR_MINUS:
4285       mpz_neg(val, uval);
4286       return Integer_expression::check_constant(val, utype, location);
4287     case OPERATOR_NOT:
4288       mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
4289       return true;
4290     case OPERATOR_XOR:
4291       if (utype == NULL
4292           || utype->integer_type() == NULL
4293           || utype->integer_type()->is_abstract())
4294         mpz_com(val, uval);
4295       else
4296         {
4297           // The number of HOST_WIDE_INTs that it takes to represent
4298           // UVAL.
4299           size_t count = ((mpz_sizeinbase(uval, 2)
4300                            + HOST_BITS_PER_WIDE_INT
4301                            - 1)
4302                           / HOST_BITS_PER_WIDE_INT);
4303
4304           unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
4305           memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
4306
4307           size_t ecount;
4308           mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
4309           go_assert(ecount <= count);
4310
4311           // Trim down to the number of words required by the type.
4312           size_t obits = utype->integer_type()->bits();
4313           if (!utype->integer_type()->is_unsigned())
4314             ++obits;
4315           size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
4316                            / HOST_BITS_PER_WIDE_INT);
4317           go_assert(ocount <= count);
4318
4319           for (size_t i = 0; i < ocount; ++i)
4320             phwi[i] = ~phwi[i];
4321
4322           size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
4323           if (clearbits != 0)
4324             phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
4325                                  >> clearbits);
4326
4327           mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
4328
4329           delete[] phwi;
4330         }
4331       return Integer_expression::check_constant(val, utype, location);
4332     case OPERATOR_AND:
4333     case OPERATOR_MULT:
4334       return false;
4335     default:
4336       go_unreachable();
4337     }
4338 }
4339
4340 // Apply unary opcode OP to UVAL, setting VAL.  Return true if this
4341 // could be done, false if not.
4342
4343 bool
4344 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
4345 {
4346   switch (op)
4347     {
4348     case OPERATOR_PLUS:
4349       mpfr_set(val, uval, GMP_RNDN);
4350       return true;
4351     case OPERATOR_MINUS:
4352       mpfr_neg(val, uval, GMP_RNDN);
4353       return true;
4354     case OPERATOR_NOT:
4355     case OPERATOR_XOR:
4356     case OPERATOR_AND:
4357     case OPERATOR_MULT:
4358       return false;
4359     default:
4360       go_unreachable();
4361     }
4362 }
4363
4364 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG.  Return true
4365 // if this could be done, false if not.
4366
4367 bool
4368 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
4369                                mpfr_t real, mpfr_t imag)
4370 {
4371   switch (op)
4372     {
4373     case OPERATOR_PLUS:
4374       mpfr_set(real, rval, GMP_RNDN);
4375       mpfr_set(imag, ival, GMP_RNDN);
4376       return true;
4377     case OPERATOR_MINUS:
4378       mpfr_neg(real, rval, GMP_RNDN);
4379       mpfr_neg(imag, ival, GMP_RNDN);
4380       return true;
4381     case OPERATOR_NOT:
4382     case OPERATOR_XOR:
4383     case OPERATOR_AND:
4384     case OPERATOR_MULT:
4385       return false;
4386     default:
4387       go_unreachable();
4388     }
4389 }
4390
4391 // Return the integral constant value of a unary expression, if it has one.
4392
4393 bool
4394 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
4395                                             Type** ptype) const
4396 {
4397   mpz_t uval;
4398   mpz_init(uval);
4399   bool ret;
4400   if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
4401     ret = false;
4402   else
4403     ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
4404                                          this->location());
4405   mpz_clear(uval);
4406   return ret;
4407 }
4408
4409 // Return the floating point constant value of a unary expression, if
4410 // it has one.
4411
4412 bool
4413 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
4414 {
4415   mpfr_t uval;
4416   mpfr_init(uval);
4417   bool ret;
4418   if (!this->expr_->float_constant_value(uval, ptype))
4419     ret = false;
4420   else
4421     ret = Unary_expression::eval_float(this->op_, uval, val);
4422   mpfr_clear(uval);
4423   return ret;
4424 }
4425
4426 // Return the complex constant value of a unary expression, if it has
4427 // one.
4428
4429 bool
4430 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
4431                                             Type** ptype) const
4432 {
4433   mpfr_t rval;
4434   mpfr_t ival;
4435   mpfr_init(rval);
4436   mpfr_init(ival);
4437   bool ret;
4438   if (!this->expr_->complex_constant_value(rval, ival, ptype))
4439     ret = false;
4440   else
4441     ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
4442   mpfr_clear(rval);
4443   mpfr_clear(ival);
4444   return ret;
4445 }
4446
4447 // Return the type of a unary expression.
4448
4449 Type*
4450 Unary_expression::do_type()
4451 {
4452   switch (this->op_)
4453     {
4454     case OPERATOR_PLUS:
4455     case OPERATOR_MINUS:
4456     case OPERATOR_NOT:
4457     case OPERATOR_XOR:
4458       return this->expr_->type();
4459
4460     case OPERATOR_AND:
4461       return Type::make_pointer_type(this->expr_->type());
4462
4463     case OPERATOR_MULT:
4464       {
4465         Type* subtype = this->expr_->type();
4466         Type* points_to = subtype->points_to();
4467         if (points_to == NULL)
4468           return Type::make_error_type();
4469         return points_to;
4470       }
4471
4472     default:
4473       go_unreachable();
4474     }
4475 }
4476
4477 // Determine abstract types for a unary expression.
4478
4479 void
4480 Unary_expression::do_determine_type(const Type_context* context)
4481 {
4482   switch (this->op_)
4483     {
4484     case OPERATOR_PLUS:
4485     case OPERATOR_MINUS:
4486     case OPERATOR_NOT:
4487     case OPERATOR_XOR:
4488       this->expr_->determine_type(context);
4489       break;
4490
4491     case OPERATOR_AND:
4492       // Taking the address of something.
4493       {
4494         Type* subtype = (context->type == NULL
4495                          ? NULL
4496                          : context->type->points_to());
4497         Type_context subcontext(subtype, false);
4498         this->expr_->determine_type(&subcontext);
4499       }
4500       break;
4501
4502     case OPERATOR_MULT:
4503       // Indirecting through a pointer.
4504       {
4505         Type* subtype = (context->type == NULL
4506                          ? NULL
4507                          : Type::make_pointer_type(context->type));
4508         Type_context subcontext(subtype, false);
4509         this->expr_->determine_type(&subcontext);
4510       }
4511       break;
4512
4513     default:
4514       go_unreachable();
4515     }
4516 }
4517
4518 // Check types for a unary expression.
4519
4520 void
4521 Unary_expression::do_check_types(Gogo*)
4522 {
4523   Type* type = this->expr_->type();
4524   if (type->is_error())
4525     {
4526       this->set_is_error();
4527       return;
4528     }
4529
4530   switch (this->op_)
4531     {
4532     case OPERATOR_PLUS:
4533     case OPERATOR_MINUS:
4534       if (type->integer_type() == NULL
4535           && type->float_type() == NULL
4536           && type->complex_type() == NULL)
4537         this->report_error(_("expected numeric type"));
4538       break;
4539
4540     case OPERATOR_NOT:
4541     case OPERATOR_XOR:
4542       if (type->integer_type() == NULL
4543           && !type->is_boolean_type())
4544         this->report_error(_("expected integer or boolean type"));
4545       break;
4546
4547     case OPERATOR_AND:
4548       if (!this->expr_->is_addressable())
4549         {
4550           if (!this->create_temp_)
4551             this->report_error(_("invalid operand for unary %<&%>"));
4552         }
4553       else
4554         this->expr_->address_taken(this->escapes_);
4555       break;
4556
4557     case OPERATOR_MULT:
4558       // Indirecting through a pointer.
4559       if (type->points_to() == NULL)
4560         this->report_error(_("expected pointer"));
4561       break;
4562
4563     default:
4564       go_unreachable();
4565     }
4566 }
4567
4568 // Get a tree for a unary expression.
4569
4570 tree
4571 Unary_expression::do_get_tree(Translate_context* context)
4572 {
4573   Location loc = this->location();
4574
4575   // Taking the address of a set-and-use-temporary expression requires
4576   // setting the temporary and then taking the address.
4577   if (this->op_ == OPERATOR_AND)
4578     {
4579       Set_and_use_temporary_expression* sut =
4580         this->expr_->set_and_use_temporary_expression();
4581       if (sut != NULL)
4582         {
4583           Temporary_statement* temp = sut->temporary();
4584           Bvariable* bvar = temp->get_backend_variable(context);
4585           tree var_tree = var_to_tree(bvar);
4586           Expression* val = sut->expression();
4587           tree val_tree = val->get_tree(context);
4588           if (var_tree == error_mark_node || val_tree == error_mark_node)
4589             return error_mark_node;
4590           tree addr_tree = build_fold_addr_expr_loc(loc.gcc_location(),
4591                                                     var_tree);
4592           return build2_loc(loc.gcc_location(), COMPOUND_EXPR,
4593                             TREE_TYPE(addr_tree),
4594                             build2_loc(sut->location().gcc_location(),
4595                                        MODIFY_EXPR, void_type_node,
4596                                        var_tree, val_tree),
4597                             addr_tree);
4598         }
4599     }
4600
4601   tree expr = this->expr_->get_tree(context);
4602   if (expr == error_mark_node)
4603     return error_mark_node;
4604
4605   switch (this->op_)
4606     {
4607     case OPERATOR_PLUS:
4608       return expr;
4609
4610     case OPERATOR_MINUS:
4611       {
4612         tree type = TREE_TYPE(expr);
4613         tree compute_type = excess_precision_type(type);
4614         if (compute_type != NULL_TREE)
4615           expr = ::convert(compute_type, expr);
4616         tree ret = fold_build1_loc(loc.gcc_location(), NEGATE_EXPR,
4617                                    (compute_type != NULL_TREE
4618                                     ? compute_type
4619                                     : type),
4620                                    expr);
4621         if (compute_type != NULL_TREE)
4622           ret = ::convert(type, ret);
4623         return ret;
4624       }
4625
4626     case OPERATOR_NOT:
4627       if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4628         return fold_build1_loc(loc.gcc_location(), TRUTH_NOT_EXPR,
4629                                TREE_TYPE(expr), expr);
4630       else
4631         return fold_build2_loc(loc.gcc_location(), NE_EXPR, boolean_type_node,
4632                                expr, build_int_cst(TREE_TYPE(expr), 0));
4633
4634     case OPERATOR_XOR:
4635       return fold_build1_loc(loc.gcc_location(), BIT_NOT_EXPR, TREE_TYPE(expr),
4636                              expr);
4637
4638     case OPERATOR_AND:
4639       if (!this->create_temp_)
4640         {
4641           // We should not see a non-constant constructor here; cases
4642           // where we would see one should have been moved onto the
4643           // heap at parse time.  Taking the address of a nonconstant
4644           // constructor will not do what the programmer expects.
4645           go_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4646           go_assert(TREE_CODE(expr) != ADDR_EXPR);
4647         }
4648
4649       // Build a decl for a constant constructor.
4650       if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4651         {
4652           tree decl = build_decl(this->location().gcc_location(), VAR_DECL,
4653                                  create_tmp_var_name("C"), TREE_TYPE(expr));
4654           DECL_EXTERNAL(decl) = 0;
4655           TREE_PUBLIC(decl) = 0;
4656           TREE_READONLY(decl) = 1;
4657           TREE_CONSTANT(decl) = 1;
4658           TREE_STATIC(decl) = 1;
4659           TREE_ADDRESSABLE(decl) = 1;
4660           DECL_ARTIFICIAL(decl) = 1;
4661           DECL_INITIAL(decl) = expr;
4662           rest_of_decl_compilation(decl, 1, 0);
4663           expr = decl;
4664         }
4665
4666       if (this->create_temp_
4667           && !TREE_ADDRESSABLE(TREE_TYPE(expr))
4668           && !DECL_P(expr)
4669           && TREE_CODE(expr) != INDIRECT_REF
4670           && TREE_CODE(expr) != COMPONENT_REF)
4671         {
4672           tree tmp = create_tmp_var(TREE_TYPE(expr), get_name(expr));
4673           DECL_IGNORED_P(tmp) = 1;
4674           DECL_INITIAL(tmp) = expr;
4675           TREE_ADDRESSABLE(tmp) = 1;
4676           return build2_loc(loc.gcc_location(), COMPOUND_EXPR,
4677                             build_pointer_type(TREE_TYPE(expr)),
4678                             build1_loc(loc.gcc_location(), DECL_EXPR,
4679                                        void_type_node, tmp),
4680                             build_fold_addr_expr_loc(loc.gcc_location(), tmp));
4681         }
4682
4683       return build_fold_addr_expr_loc(loc.gcc_location(), expr);
4684
4685     case OPERATOR_MULT:
4686       {
4687         go_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4688
4689         // If we are dereferencing the pointer to a large struct, we
4690         // need to check for nil.  We don't bother to check for small
4691         // structs because we expect the system to crash on a nil
4692         // pointer dereference.
4693         HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4694         if (s == -1 || s >= 4096)
4695           {
4696             if (!DECL_P(expr))
4697               expr = save_expr(expr);
4698             tree compare = fold_build2_loc(loc.gcc_location(), EQ_EXPR,
4699                                            boolean_type_node,
4700                                            expr,
4701                                            fold_convert(TREE_TYPE(expr),
4702                                                         null_pointer_node));
4703             tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4704                                              loc);
4705             expr = fold_build2_loc(loc.gcc_location(), COMPOUND_EXPR,
4706                                    TREE_TYPE(expr), build3(COND_EXPR,
4707                                                            void_type_node,
4708                                                            compare, crash,
4709                                                            NULL_TREE),
4710                                    expr);
4711           }
4712
4713         // If the type of EXPR is a recursive pointer type, then we
4714         // need to insert a cast before indirecting.
4715         if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4716           {
4717             Type* pt = this->expr_->type()->points_to();
4718             tree ind = type_to_tree(pt->get_backend(context->gogo()));
4719             expr = fold_convert_loc(loc.gcc_location(),
4720                                     build_pointer_type(ind), expr);
4721           }
4722
4723         return build_fold_indirect_ref_loc(loc.gcc_location(), expr);
4724       }
4725
4726     default:
4727       go_unreachable();
4728     }
4729 }
4730
4731 // Export a unary expression.
4732
4733 void
4734 Unary_expression::do_export(Export* exp) const
4735 {
4736   switch (this->op_)
4737     {
4738     case OPERATOR_PLUS:
4739       exp->write_c_string("+ ");
4740       break;
4741     case OPERATOR_MINUS:
4742       exp->write_c_string("- ");
4743       break;
4744     case OPERATOR_NOT:
4745       exp->write_c_string("! ");
4746       break;
4747     case OPERATOR_XOR:
4748       exp->write_c_string("^ ");
4749       break;
4750     case OPERATOR_AND:
4751     case OPERATOR_MULT:
4752     default:
4753       go_unreachable();
4754     }
4755   this->expr_->export_expression(exp);
4756 }
4757
4758 // Import a unary expression.
4759
4760 Expression*
4761 Unary_expression::do_import(Import* imp)
4762 {
4763   Operator op;
4764   switch (imp->get_char())
4765     {
4766     case '+':
4767       op = OPERATOR_PLUS;
4768       break;
4769     case '-':
4770       op = OPERATOR_MINUS;
4771       break;
4772     case '!':
4773       op = OPERATOR_NOT;
4774       break;
4775     case '^':
4776       op = OPERATOR_XOR;
4777       break;
4778     default:
4779       go_unreachable();
4780     }
4781   imp->require_c_string(" ");
4782   Expression* expr = Expression::import_expression(imp);
4783   return Expression::make_unary(op, expr, imp->location());
4784 }
4785
4786 // Dump ast representation of an unary expression.
4787
4788 void
4789 Unary_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
4790 {
4791   ast_dump_context->dump_operator(this->op_);
4792   ast_dump_context->ostream() << "(";
4793   ast_dump_context->dump_expression(this->expr_);
4794   ast_dump_context->ostream() << ") ";
4795 }
4796
4797 // Make a unary expression.
4798
4799 Expression*
4800 Expression::make_unary(Operator op, Expression* expr, Location location)
4801 {
4802   return new Unary_expression(op, expr, location);
4803 }
4804
4805 // If this is an indirection through a pointer, return the expression
4806 // being pointed through.  Otherwise return this.
4807
4808 Expression*
4809 Expression::deref()
4810 {
4811   if (this->classification_ == EXPRESSION_UNARY)
4812     {
4813       Unary_expression* ue = static_cast<Unary_expression*>(this);
4814       if (ue->op() == OPERATOR_MULT)
4815         return ue->operand();
4816     }
4817   return this;
4818 }
4819
4820 // Class Binary_expression.
4821
4822 // Traversal.
4823
4824 int
4825 Binary_expression::do_traverse(Traverse* traverse)
4826 {
4827   int t = Expression::traverse(&this->left_, traverse);
4828   if (t == TRAVERSE_EXIT)
4829     return TRAVERSE_EXIT;
4830   return Expression::traverse(&this->right_, traverse);
4831 }
4832
4833 // Compare integer constants according to OP.
4834
4835 bool
4836 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4837                                    mpz_t right_val)
4838 {
4839   int i = mpz_cmp(left_val, right_val);
4840   switch (op)
4841     {
4842     case OPERATOR_EQEQ:
4843       return i == 0;
4844     case OPERATOR_NOTEQ:
4845       return i != 0;
4846     case OPERATOR_LT:
4847       return i < 0;
4848     case OPERATOR_LE:
4849       return i <= 0;
4850     case OPERATOR_GT:
4851       return i > 0;
4852     case OPERATOR_GE:
4853       return i >= 0;
4854     default:
4855       go_unreachable();
4856     }
4857 }
4858
4859 // Compare floating point constants according to OP.
4860
4861 bool
4862 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4863                                  mpfr_t right_val)
4864 {
4865   int i;
4866   if (type == NULL)
4867     i = mpfr_cmp(left_val, right_val);
4868   else
4869     {
4870       mpfr_t lv;
4871       mpfr_init_set(lv, left_val, GMP_RNDN);
4872       mpfr_t rv;
4873       mpfr_init_set(rv, right_val, GMP_RNDN);
4874       Float_expression::constrain_float(lv, type);
4875       Float_expression::constrain_float(rv, type);
4876       i = mpfr_cmp(lv, rv);
4877       mpfr_clear(lv);
4878       mpfr_clear(rv);
4879     }
4880   switch (op)
4881     {
4882     case OPERATOR_EQEQ:
4883       return i == 0;
4884     case OPERATOR_NOTEQ:
4885       return i != 0;
4886     case OPERATOR_LT:
4887       return i < 0;
4888     case OPERATOR_LE:
4889       return i <= 0;
4890     case OPERATOR_GT:
4891       return i > 0;
4892     case OPERATOR_GE:
4893       return i >= 0;
4894     default:
4895       go_unreachable();
4896     }
4897 }
4898
4899 // Compare complex constants according to OP.  Complex numbers may
4900 // only be compared for equality.
4901
4902 bool
4903 Binary_expression::compare_complex(Operator op, Type* type,
4904                                    mpfr_t left_real, mpfr_t left_imag,
4905                                    mpfr_t right_real, mpfr_t right_imag)
4906 {
4907   bool is_equal;
4908   if (type == NULL)
4909     is_equal = (mpfr_cmp(left_real, right_real) == 0
4910                 && mpfr_cmp(left_imag, right_imag) == 0);
4911   else
4912     {
4913       mpfr_t lr;
4914       mpfr_t li;
4915       mpfr_init_set(lr, left_real, GMP_RNDN);
4916       mpfr_init_set(li, left_imag, GMP_RNDN);
4917       mpfr_t rr;
4918       mpfr_t ri;
4919       mpfr_init_set(rr, right_real, GMP_RNDN);
4920       mpfr_init_set(ri, right_imag, GMP_RNDN);
4921       Complex_expression::constrain_complex(lr, li, type);
4922       Complex_expression::constrain_complex(rr, ri, type);
4923       is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4924       mpfr_clear(lr);
4925       mpfr_clear(li);
4926       mpfr_clear(rr);
4927       mpfr_clear(ri);
4928     }
4929   switch (op)
4930     {
4931     case OPERATOR_EQEQ:
4932       return is_equal;
4933     case OPERATOR_NOTEQ:
4934       return !is_equal;
4935     default:
4936       go_unreachable();
4937     }
4938 }
4939
4940 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4941 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4942 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL.  Return true if
4943 // this could be done, false if not.
4944
4945 bool
4946 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4947                                 Type* right_type, mpz_t right_val,
4948                                 Location location, mpz_t val)
4949 {
4950   bool is_shift_op = false;
4951   switch (op)
4952     {
4953     case OPERATOR_OROR:
4954     case OPERATOR_ANDAND:
4955     case OPERATOR_EQEQ:
4956     case OPERATOR_NOTEQ:
4957     case OPERATOR_LT:
4958     case OPERATOR_LE:
4959     case OPERATOR_GT:
4960     case OPERATOR_GE:
4961       // These return boolean values.  We should probably handle them
4962       // anyhow in case a type conversion is used on the result.
4963       return false;
4964     case OPERATOR_PLUS:
4965       mpz_add(val, left_val, right_val);
4966       break;
4967     case OPERATOR_MINUS:
4968       mpz_sub(val, left_val, right_val);
4969       break;
4970     case OPERATOR_OR:
4971       mpz_ior(val, left_val, right_val);
4972       break;
4973     case OPERATOR_XOR:
4974       mpz_xor(val, left_val, right_val);
4975       break;
4976     case OPERATOR_MULT:
4977       mpz_mul(val, left_val, right_val);
4978       break;
4979     case OPERATOR_DIV:
4980       if (mpz_sgn(right_val) != 0)
4981         mpz_tdiv_q(val, left_val, right_val);
4982       else
4983         {
4984           error_at(location, "division by zero");
4985           mpz_set_ui(val, 0);
4986           return true;
4987         }
4988       break;
4989     case OPERATOR_MOD:
4990       if (mpz_sgn(right_val) != 0)
4991         mpz_tdiv_r(val, left_val, right_val);
4992       else
4993         {
4994           error_at(location, "division by zero");
4995           mpz_set_ui(val, 0);
4996           return true;
4997         }
4998       break;
4999     case OPERATOR_LSHIFT:
5000       {
5001         unsigned long shift = mpz_get_ui(right_val);
5002         if (mpz_cmp_ui(right_val, shift) != 0 || shift > 0x100000)
5003           {
5004             error_at(location, "shift count overflow");
5005             mpz_set_ui(val, 0);
5006             return true;
5007           }
5008         mpz_mul_2exp(val, left_val, shift);
5009         is_shift_op = true;
5010         break;
5011       }
5012       break;
5013     case OPERATOR_RSHIFT:
5014       {
5015         unsigned long shift = mpz_get_ui(right_val);
5016         if (mpz_cmp_ui(right_val, shift) != 0)
5017           {
5018             error_at(location, "shift count overflow");
5019             mpz_set_ui(val, 0);
5020             return true;
5021           }
5022         if (mpz_cmp_ui(left_val, 0) >= 0)
5023           mpz_tdiv_q_2exp(val, left_val, shift);
5024         else
5025           mpz_fdiv_q_2exp(val, left_val, shift);
5026         is_shift_op = true;
5027         break;
5028       }
5029       break;
5030     case OPERATOR_AND:
5031       mpz_and(val, left_val, right_val);
5032       break;
5033     case OPERATOR_BITCLEAR:
5034       {
5035         mpz_t tval;
5036         mpz_init(tval);
5037         mpz_com(tval, right_val);
5038         mpz_and(val, left_val, tval);
5039         mpz_clear(tval);
5040       }
5041       break;
5042     default:
5043       go_unreachable();
5044     }
5045
5046   Type* type = left_type;
5047   if (!is_shift_op)
5048     {
5049       if (type == NULL)
5050         type = right_type;
5051       else if (type != right_type && right_type != NULL)
5052         {
5053           if (type->is_abstract())
5054             type = right_type;
5055           else if (!right_type->is_abstract())
5056             {
5057               // This look like a type error which should be diagnosed
5058               // elsewhere.  Don't do anything here, to avoid an
5059               // unhelpful chain of error messages.
5060               return true;
5061             }
5062         }
5063     }
5064
5065   if (type != NULL && !type->is_abstract())
5066     {
5067       // We have to check the operands too, as we have implicitly
5068       // coerced them to TYPE.
5069       if ((type != left_type
5070            && !Integer_expression::check_constant(left_val, type, location))
5071           || (!is_shift_op
5072               && type != right_type
5073               && !Integer_expression::check_constant(right_val, type,
5074                                                      location))
5075           || !Integer_expression::check_constant(val, type, location))
5076         mpz_set_ui(val, 0);
5077     }
5078
5079   return true;
5080 }
5081
5082 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
5083 // Return true if this could be done, false if not.
5084
5085 bool
5086 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
5087                               Type* right_type, mpfr_t right_val,
5088                               mpfr_t val, Location location)
5089 {
5090   switch (op)
5091     {
5092     case OPERATOR_OROR:
5093     case OPERATOR_ANDAND:
5094     case OPERATOR_EQEQ:
5095     case OPERATOR_NOTEQ:
5096     case OPERATOR_LT:
5097     case OPERATOR_LE:
5098     case OPERATOR_GT:
5099     case OPERATOR_GE:
5100       // These return boolean values.  We should probably handle them
5101       // anyhow in case a type conversion is used on the result.
5102       return false;
5103     case OPERATOR_PLUS:
5104       mpfr_add(val, left_val, right_val, GMP_RNDN);
5105       break;
5106     case OPERATOR_MINUS:
5107       mpfr_sub(val, left_val, right_val, GMP_RNDN);
5108       break;
5109     case OPERATOR_OR:
5110     case OPERATOR_XOR:
5111     case OPERATOR_AND:
5112     case OPERATOR_BITCLEAR:
5113       return false;
5114     case OPERATOR_MULT:
5115       mpfr_mul(val, left_val, right_val, GMP_RNDN);
5116       break;
5117     case OPERATOR_DIV:
5118       if (mpfr_zero_p(right_val))
5119         error_at(location, "division by zero");
5120       mpfr_div(val, left_val, right_val, GMP_RNDN);
5121       break;
5122     case OPERATOR_MOD:
5123       return false;
5124     case OPERATOR_LSHIFT:
5125     case OPERATOR_RSHIFT:
5126       return false;
5127     default:
5128       go_unreachable();
5129     }
5130
5131   Type* type = left_type;
5132   if (type == NULL)
5133     type = right_type;
5134   else if (type != right_type && right_type != NULL)
5135     {
5136       if (type->is_abstract())
5137         type = right_type;
5138       else if (!right_type->is_abstract())
5139         {
5140           // This looks like a type error which should be diagnosed
5141           // elsewhere.  Don't do anything here, to avoid an unhelpful
5142           // chain of error messages.
5143           return true;
5144         }
5145     }
5146
5147   if (type != NULL && !type->is_abstract())
5148     {
5149       if ((type != left_type
5150            && !Float_expression::check_constant(left_val, type, location))
5151           || (type != right_type
5152               && !Float_expression::check_constant(right_val, type,
5153                                                    location))
5154           || !Float_expression::check_constant(val, type, location))
5155         mpfr_set_ui(val, 0, GMP_RNDN);
5156     }
5157
5158   return true;
5159 }
5160
5161 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
5162 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG.  Return true if this
5163 // could be done, false if not.
5164
5165 bool
5166 Binary_expression::eval_complex(Operator op, Type* left_type,
5167                                 mpfr_t left_real, mpfr_t left_imag,
5168                                 Type *right_type,
5169                                 mpfr_t right_real, mpfr_t right_imag,
5170                                 mpfr_t real, mpfr_t imag,
5171                                 Location location)
5172 {
5173   switch (op)
5174     {
5175     case OPERATOR_OROR:
5176     case OPERATOR_ANDAND:
5177     case OPERATOR_EQEQ:
5178     case OPERATOR_NOTEQ:
5179     case OPERATOR_LT:
5180     case OPERATOR_LE:
5181     case OPERATOR_GT:
5182     case OPERATOR_GE:
5183       // These return boolean values and must be handled differently.
5184       return false;
5185     case OPERATOR_PLUS:
5186       mpfr_add(real, left_real, right_real, GMP_RNDN);
5187       mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
5188       break;
5189     case OPERATOR_MINUS:
5190       mpfr_sub(real, left_real, right_real, GMP_RNDN);
5191       mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
5192       break;
5193     case OPERATOR_OR:
5194     case OPERATOR_XOR:
5195     case OPERATOR_AND:
5196     case OPERATOR_BITCLEAR:
5197       return false;
5198     case OPERATOR_MULT:
5199       {
5200         // You might think that multiplying two complex numbers would
5201         // be simple, and you would be right, until you start to think
5202         // about getting the right answer for infinity.  If one
5203         // operand here is infinity and the other is anything other
5204         // than zero or NaN, then we are going to wind up subtracting
5205         // two infinity values.  That will give us a NaN, but the
5206         // correct answer is infinity.
5207
5208         mpfr_t lrrr;
5209         mpfr_init(lrrr);
5210         mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
5211
5212         mpfr_t lrri;
5213         mpfr_init(lrri);
5214         mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
5215
5216         mpfr_t lirr;
5217         mpfr_init(lirr);
5218         mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
5219
5220         mpfr_t liri;
5221         mpfr_init(liri);
5222         mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
5223
5224         mpfr_sub(real, lrrr, liri, GMP_RNDN);
5225         mpfr_add(imag, lrri, lirr, GMP_RNDN);
5226
5227         // If we get NaN on both sides, check whether it should really
5228         // be infinity.  The rule is that if either side of the
5229         // complex number is infinity, then the whole value is
5230         // infinity, even if the other side is NaN.  So the only case
5231         // we have to fix is the one in which both sides are NaN.
5232         if (mpfr_nan_p(real) && mpfr_nan_p(imag)
5233             && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
5234             && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
5235           {
5236             bool is_infinity = false;
5237
5238             mpfr_t lr;
5239             mpfr_t li;
5240             mpfr_init_set(lr, left_real, GMP_RNDN);
5241             mpfr_init_set(li, left_imag, GMP_RNDN);
5242
5243             mpfr_t rr;
5244             mpfr_t ri;
5245             mpfr_init_set(rr, right_real, GMP_RNDN);
5246             mpfr_init_set(ri, right_imag, GMP_RNDN);
5247
5248             // If the left side is infinity, then the result is
5249             // infinity.
5250             if (mpfr_inf_p(lr) || mpfr_inf_p(li))
5251               {
5252                 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
5253                 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
5254                 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
5255                 mpfr_copysign(li, li, left_imag, GMP_RNDN);
5256                 if (mpfr_nan_p(rr))
5257                   {
5258                     mpfr_set_ui(rr, 0, GMP_RNDN);
5259                     mpfr_copysign(rr, rr, right_real, GMP_RNDN);
5260                   }
5261                 if (mpfr_nan_p(ri))
5262                   {
5263                     mpfr_set_ui(ri, 0, GMP_RNDN);
5264                     mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
5265                   }
5266                 is_infinity = true;
5267               }
5268
5269             // If the right side is infinity, then the result is
5270             // infinity.
5271             if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
5272               {
5273                 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
5274                 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
5275                 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
5276                 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
5277                 if (mpfr_nan_p(lr))
5278                   {
5279                     mpfr_set_ui(lr, 0, GMP_RNDN);
5280                     mpfr_copysign(lr, lr, left_real, GMP_RNDN);
5281                   }
5282                 if (mpfr_nan_p(li))
5283                   {
5284                     mpfr_set_ui(li, 0, GMP_RNDN);
5285                     mpfr_copysign(li, li, left_imag, GMP_RNDN);
5286                   }
5287                 is_infinity = true;
5288               }
5289
5290             // If we got an overflow in the intermediate computations,
5291             // then the result is infinity.
5292             if (!is_infinity
5293                 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
5294                     || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
5295               {
5296                 if (mpfr_nan_p(lr))
5297                   {
5298                     mpfr_set_ui(lr, 0, GMP_RNDN);
5299                     mpfr_copysign(lr, lr, left_real, GMP_RNDN);
5300                   }
5301                 if (mpfr_nan_p(li))
5302                   {
5303                     mpfr_set_ui(li, 0, GMP_RNDN);
5304                     mpfr_copysign(li, li, left_imag, GMP_RNDN);
5305                   }
5306                 if (mpfr_nan_p(rr))
5307                   {
5308                     mpfr_set_ui(rr, 0, GMP_RNDN);
5309                     mpfr_copysign(rr, rr, right_real, GMP_RNDN);
5310                   }
5311                 if (mpfr_nan_p(ri))
5312                   {
5313                     mpfr_set_ui(ri, 0, GMP_RNDN);
5314                     mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
5315                   }
5316                 is_infinity = true;
5317               }
5318
5319             if (is_infinity)
5320               {
5321                 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
5322                 mpfr_mul(lrri, lr, ri, GMP_RNDN);
5323                 mpfr_mul(lirr, li, rr, GMP_RNDN);
5324                 mpfr_mul(liri, li, ri, GMP_RNDN);
5325                 mpfr_sub(real, lrrr, liri, GMP_RNDN);
5326                 mpfr_add(imag, lrri, lirr, GMP_RNDN);
5327                 mpfr_set_inf(real, mpfr_sgn(real));
5328                 mpfr_set_inf(imag, mpfr_sgn(imag));
5329               }
5330
5331             mpfr_clear(lr);
5332             mpfr_clear(li);
5333             mpfr_clear(rr);
5334             mpfr_clear(ri);
5335           }
5336
5337         mpfr_clear(lrrr);
5338         mpfr_clear(lrri);
5339         mpfr_clear(lirr);
5340         mpfr_clear(liri);                                 
5341       }
5342       break;
5343     case OPERATOR_DIV:
5344       {
5345         // For complex division we want to avoid having an
5346         // intermediate overflow turn the whole result in a NaN.  We
5347         // scale the values to try to avoid this.
5348
5349         if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
5350           error_at(location, "division by zero");
5351
5352         mpfr_t rra;
5353         mpfr_t ria;
5354         mpfr_init(rra);
5355         mpfr_init(ria);
5356         mpfr_abs(rra, right_real, GMP_RNDN);
5357         mpfr_abs(ria, right_imag, GMP_RNDN);
5358         mpfr_t t;
5359         mpfr_init(t);
5360         mpfr_max(t, rra, ria, GMP_RNDN);
5361
5362         mpfr_t rr;
5363         mpfr_t ri;
5364         mpfr_init_set(rr, right_real, GMP_RNDN);
5365         mpfr_init_set(ri, right_imag, GMP_RNDN);
5366         long ilogbw = 0;
5367         if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
5368           {
5369             ilogbw = mpfr_get_exp(t);
5370             mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
5371             mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
5372           }
5373
5374         mpfr_t denom;
5375         mpfr_init(denom);
5376         mpfr_mul(denom, rr, rr, GMP_RNDN);
5377         mpfr_mul(t, ri, ri, GMP_RNDN);
5378         mpfr_add(denom, denom, t, GMP_RNDN);
5379
5380         mpfr_mul(real, left_real, rr, GMP_RNDN);
5381         mpfr_mul(t, left_imag, ri, GMP_RNDN);
5382         mpfr_add(real, real, t, GMP_RNDN);
5383         mpfr_div(real, real, denom, GMP_RNDN);
5384         mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
5385
5386         mpfr_mul(imag, left_imag, rr, GMP_RNDN);
5387         mpfr_mul(t, left_real, ri, GMP_RNDN);
5388         mpfr_sub(imag, imag, t, GMP_RNDN);
5389         mpfr_div(imag, imag, denom, GMP_RNDN);
5390         mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
5391
5392         // If we wind up with NaN on both sides, check whether we
5393         // should really have infinity.  The rule is that if either
5394         // side of the complex number is infinity, then the whole
5395         // value is infinity, even if the other side is NaN.  So the
5396         // only case we have to fix is the one in which both sides are
5397         // NaN.
5398         if (mpfr_nan_p(real) && mpfr_nan_p(imag)
5399             && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
5400             && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
5401           {
5402             if (mpfr_zero_p(denom))
5403               {
5404                 mpfr_set_inf(real, mpfr_sgn(rr));
5405                 mpfr_mul(real, real, left_real, GMP_RNDN);
5406                 mpfr_set_inf(imag, mpfr_sgn(rr));
5407                 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
5408               }
5409             else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
5410                      && mpfr_number_p(rr) && mpfr_number_p(ri))
5411               {
5412                 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
5413                 mpfr_copysign(t, t, left_real, GMP_RNDN);
5414
5415                 mpfr_t t2;
5416                 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
5417                 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
5418
5419                 mpfr_t t3;
5420                 mpfr_init(t3);
5421                 mpfr_mul(t3, t, rr, GMP_RNDN);
5422
5423                 mpfr_t t4;
5424                 mpfr_init(t4);
5425                 mpfr_mul(t4, t2, ri, GMP_RNDN);
5426
5427                 mpfr_add(t3, t3, t4, GMP_RNDN);
5428                 mpfr_set_inf(real, mpfr_sgn(t3));
5429
5430                 mpfr_mul(t3, t2, rr, GMP_RNDN);
5431                 mpfr_mul(t4, t, ri, GMP_RNDN);
5432                 mpfr_sub(t3, t3, t4, GMP_RNDN);
5433                 mpfr_set_inf(imag, mpfr_sgn(t3));
5434
5435                 mpfr_clear(t2);
5436                 mpfr_clear(t3);
5437                 mpfr_clear(t4);
5438               }
5439             else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
5440                      && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
5441               {
5442                 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
5443                 mpfr_copysign(t, t, rr, GMP_RNDN);
5444
5445                 mpfr_t t2;
5446                 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
5447                 mpfr_copysign(t2, t2, ri, GMP_RNDN);
5448
5449                 mpfr_t t3;
5450                 mpfr_init(t3);
5451                 mpfr_mul(t3, left_real, t, GMP_RNDN);
5452
5453                 mpfr_t t4;
5454                 mpfr_init(t4);
5455                 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
5456
5457                 mpfr_add(t3, t3, t4, GMP_RNDN);
5458                 mpfr_set_ui(real, 0, GMP_RNDN);
5459                 mpfr_mul(real, real, t3, GMP_RNDN);
5460
5461                 mpfr_mul(t3, left_imag, t, GMP_RNDN);
5462                 mpfr_mul(t4, left_real, t2, GMP_RNDN);
5463                 mpfr_sub(t3, t3, t4, GMP_RNDN);
5464                 mpfr_set_ui(imag, 0, GMP_RNDN);
5465                 mpfr_mul(imag, imag, t3, GMP_RNDN);
5466
5467                 mpfr_clear(t2);
5468                 mpfr_clear(t3);
5469                 mpfr_clear(t4);
5470               }
5471           }
5472
5473         mpfr_clear(denom);
5474         mpfr_clear(rr);
5475         mpfr_clear(ri);
5476         mpfr_clear(t);
5477         mpfr_clear(rra);
5478         mpfr_clear(ria);
5479       }
5480       break;
5481     case OPERATOR_MOD:
5482       return false;
5483     case OPERATOR_LSHIFT:
5484     case OPERATOR_RSHIFT:
5485       return false;
5486     default:
5487       go_unreachable();
5488     }
5489
5490   Type* type = left_type;
5491   if (type == NULL)
5492     type = right_type;
5493   else if (type != right_type && right_type != NULL)
5494     {
5495       if (type->is_abstract())
5496         type = right_type;
5497       else if (!right_type->is_abstract())
5498         {
5499           // This looks like a type error which should be diagnosed
5500           // elsewhere.  Don't do anything here, to avoid an unhelpful
5501           // chain of error messages.
5502           return true;
5503         }
5504     }
5505
5506   if (type != NULL && !type->is_abstract())
5507     {
5508       if ((type != left_type
5509            && !Complex_expression::check_constant(left_real, left_imag,
5510                                                   type, location))
5511           || (type != right_type
5512               && !Complex_expression::check_constant(right_real, right_imag,
5513                                                      type, location))
5514           || !Complex_expression::check_constant(real, imag, type,
5515                                                  location))
5516         {
5517           mpfr_set_ui(real, 0, GMP_RNDN);
5518           mpfr_set_ui(imag, 0, GMP_RNDN);
5519         }
5520     }
5521
5522   return true;
5523 }
5524
5525 // Lower a binary expression.  We have to evaluate constant
5526 // expressions now, in order to implement Go's unlimited precision
5527 // constants.
5528
5529 Expression*
5530 Binary_expression::do_lower(Gogo* gogo, Named_object*,
5531                             Statement_inserter* inserter, int)
5532 {
5533   Location location = this->location();
5534   Operator op = this->op_;
5535   Expression* left = this->left_;
5536   Expression* right = this->right_;
5537
5538   const bool is_comparison = (op == OPERATOR_EQEQ
5539                               || op == OPERATOR_NOTEQ
5540                               || op == OPERATOR_LT
5541                               || op == OPERATOR_LE
5542                               || op == OPERATOR_GT
5543                               || op == OPERATOR_GE);
5544
5545   // Integer constant expressions.
5546   {
5547     mpz_t left_val;
5548     mpz_init(left_val);
5549     Type* left_type;
5550     mpz_t right_val;
5551     mpz_init(right_val);
5552     Type* right_type;
5553     if (left->integer_constant_value(false, left_val, &left_type)
5554         && right->integer_constant_value(false, right_val, &right_type))
5555       {
5556         Expression* ret = NULL;
5557         if (left_type != right_type
5558             && left_type != NULL
5559             && right_type != NULL
5560             && left_type->base() != right_type->base()
5561             && op != OPERATOR_LSHIFT
5562             && op != OPERATOR_RSHIFT)
5563           {
5564             // May be a type error--let it be diagnosed later.
5565           }
5566         else if (is_comparison)
5567           {
5568             bool b = Binary_expression::compare_integer(op, left_val,
5569                                                         right_val);
5570             ret = Expression::make_cast(Type::lookup_bool_type(),
5571                                         Expression::make_boolean(b, location),
5572                                         location);
5573           }
5574         else
5575           {
5576             mpz_t val;
5577             mpz_init(val);
5578
5579             if (Binary_expression::eval_integer(op, left_type, left_val,
5580                                                 right_type, right_val,
5581                                                 location, val))
5582               {
5583                 go_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
5584                 Type* type;
5585                 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5586                   type = left_type;
5587                 else if (left_type == NULL)
5588                   type = right_type;
5589                 else if (right_type == NULL)
5590                   type = left_type;
5591                 else if (!left_type->is_abstract()
5592                          && left_type->named_type() != NULL)
5593                   type = left_type;
5594                 else if (!right_type->is_abstract()
5595                          && right_type->named_type() != NULL)
5596                   type = right_type;
5597                 else if (!left_type->is_abstract())
5598                   type = left_type;
5599                 else if (!right_type->is_abstract())
5600                   type = right_type;
5601                 else if (left_type->float_type() != NULL)
5602                   type = left_type;
5603                 else if (right_type->float_type() != NULL)
5604                   type = right_type;
5605                 else if (left_type->complex_type() != NULL)
5606                   type = left_type;
5607                 else if (right_type->complex_type() != NULL)
5608                   type = right_type;
5609                 else
5610                   type = left_type;
5611                 ret = Expression::make_integer(&val, type, location);
5612               }
5613
5614             mpz_clear(val);
5615           }
5616
5617         if (ret != NULL)
5618           {
5619             mpz_clear(right_val);
5620             mpz_clear(left_val);
5621             return ret;
5622           }
5623       }
5624     mpz_clear(right_val);
5625     mpz_clear(left_val);
5626   }
5627
5628   // Floating point constant expressions.
5629   {
5630     mpfr_t left_val;
5631     mpfr_init(left_val);
5632     Type* left_type;
5633     mpfr_t right_val;
5634     mpfr_init(right_val);
5635     Type* right_type;
5636     if (left->float_constant_value(left_val, &left_type)
5637         && right->float_constant_value(right_val, &right_type))
5638       {
5639         Expression* ret = NULL;
5640         if (left_type != right_type
5641             && left_type != NULL
5642             && right_type != NULL
5643             && left_type->base() != right_type->base()
5644             && op != OPERATOR_LSHIFT
5645             && op != OPERATOR_RSHIFT)
5646           {
5647             // May be a type error--let it be diagnosed later.
5648           }
5649         else if (is_comparison)
5650           {
5651             bool b = Binary_expression::compare_float(op,
5652                                                       (left_type != NULL
5653                                                        ? left_type
5654                                                        : right_type),
5655                                                       left_val, right_val);
5656             ret = Expression::make_boolean(b, location);
5657           }
5658         else
5659           {
5660             mpfr_t val;
5661             mpfr_init(val);
5662
5663             if (Binary_expression::eval_float(op, left_type, left_val,
5664                                               right_type, right_val, val,
5665                                               location))
5666               {
5667                 go_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5668                            && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5669                 Type* type;
5670                 if (left_type == NULL)
5671                   type = right_type;
5672                 else if (right_type == NULL)
5673                   type = left_type;
5674                 else if (!left_type->is_abstract()
5675                          && left_type->named_type() != NULL)
5676                   type = left_type;
5677                 else if (!right_type->is_abstract()
5678                          && right_type->named_type() != NULL)
5679                   type = right_type;
5680                 else if (!left_type->is_abstract())
5681                   type = left_type;
5682                 else if (!right_type->is_abstract())
5683                   type = right_type;
5684                 else if (left_type->float_type() != NULL)
5685                   type = left_type;
5686                 else if (right_type->float_type() != NULL)
5687                   type = right_type;
5688                 else
5689                   type = left_type;
5690                 ret = Expression::make_float(&val, type, location);
5691               }
5692
5693             mpfr_clear(val);
5694           }
5695
5696         if (ret != NULL)
5697           {
5698             mpfr_clear(right_val);
5699             mpfr_clear(left_val);
5700             return ret;
5701           }
5702       }
5703     mpfr_clear(right_val);
5704     mpfr_clear(left_val);
5705   }
5706
5707   // Complex constant expressions.
5708   {
5709     mpfr_t left_real;
5710     mpfr_t left_imag;
5711     mpfr_init(left_real);
5712     mpfr_init(left_imag);
5713     Type* left_type;
5714
5715     mpfr_t right_real;
5716     mpfr_t right_imag;
5717     mpfr_init(right_real);
5718     mpfr_init(right_imag);
5719     Type* right_type;
5720
5721     if (left->complex_constant_value(left_real, left_imag, &left_type)
5722         && right->complex_constant_value(right_real, right_imag, &right_type))
5723       {
5724         Expression* ret = NULL;
5725         if (left_type != right_type
5726             && left_type != NULL
5727             && right_type != NULL
5728             && left_type->base() != right_type->base())
5729           {
5730             // May be a type error--let it be diagnosed later.
5731           }
5732         else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
5733           {
5734             bool b = Binary_expression::compare_complex(op,
5735                                                         (left_type != NULL
5736                                                          ? left_type
5737                                                          : right_type),
5738                                                         left_real,
5739                                                         left_imag,
5740                                                         right_real,
5741                                                         right_imag);
5742             ret = Expression::make_boolean(b, location);
5743           }
5744         else
5745           {
5746             mpfr_t real;
5747             mpfr_t imag;
5748             mpfr_init(real);
5749             mpfr_init(imag);
5750
5751             if (Binary_expression::eval_complex(op, left_type,
5752                                                 left_real, left_imag,
5753                                                 right_type,
5754                                                 right_real, right_imag,
5755                                                 real, imag,
5756                                                 location))
5757               {
5758                 go_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5759                            && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5760                 Type* type;
5761                 if (left_type == NULL)
5762                   type = right_type;
5763                 else if (right_type == NULL)
5764                   type = left_type;
5765                 else if (!left_type->is_abstract()
5766                          && left_type->named_type() != NULL)
5767                   type = left_type;
5768                 else if (!right_type->is_abstract()
5769                          && right_type->named_type() != NULL)
5770                   type = right_type;
5771                 else if (!left_type->is_abstract())
5772                   type = left_type;
5773                 else if (!right_type->is_abstract())
5774                   type = right_type;
5775                 else if (left_type->complex_type() != NULL)
5776                   type = left_type;
5777                 else if (right_type->complex_type() != NULL)
5778                   type = right_type;
5779                 else
5780                   type = left_type;
5781                 ret = Expression::make_complex(&real, &imag, type,
5782                                                location);
5783               }
5784             mpfr_clear(real);
5785             mpfr_clear(imag);
5786           }
5787
5788         if (ret != NULL)
5789           {
5790             mpfr_clear(left_real);
5791             mpfr_clear(left_imag);
5792             mpfr_clear(right_real);
5793             mpfr_clear(right_imag);
5794             return ret;
5795           }
5796       }
5797
5798     mpfr_clear(left_real);
5799     mpfr_clear(left_imag);
5800     mpfr_clear(right_real);
5801     mpfr_clear(right_imag);
5802   }
5803
5804   // String constant expressions.
5805   if (op == OPERATOR_PLUS
5806       && left->type()->is_string_type()
5807       && right->type()->is_string_type())
5808     {
5809       std::string left_string;
5810       std::string right_string;
5811       if (left->string_constant_value(&left_string)
5812           && right->string_constant_value(&right_string))
5813         return Expression::make_string(left_string + right_string, location);
5814     }
5815
5816   // Special case for shift of a floating point constant.
5817   if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5818     {
5819       mpfr_t left_val;
5820       mpfr_init(left_val);
5821       Type* left_type;
5822       mpz_t right_val;
5823       mpz_init(right_val);
5824       Type* right_type;
5825       if (left->float_constant_value(left_val, &left_type)
5826           && right->integer_constant_value(false, right_val, &right_type)
5827           && mpfr_integer_p(left_val)
5828           && (left_type == NULL
5829               || left_type->is_abstract()
5830               || left_type->integer_type() != NULL))
5831         {
5832           mpz_t left_int;
5833           mpz_init(left_int);
5834           mpfr_get_z(left_int, left_val, GMP_RNDN);
5835
5836           mpz_t val;
5837           mpz_init(val);
5838
5839           Expression* ret = NULL;
5840           if (Binary_expression::eval_integer(op, left_type, left_int,
5841                                               right_type, right_val,
5842                                               location, val))
5843             ret = Expression::make_integer(&val, left_type, location);
5844
5845           mpz_clear(left_int);
5846           mpz_clear(val);
5847
5848           if (ret != NULL)
5849             {
5850               mpfr_clear(left_val);
5851               mpz_clear(right_val);
5852               return ret;
5853             }
5854         }
5855
5856       mpfr_clear(left_val);
5857       mpz_clear(right_val);
5858     }
5859
5860   // Lower struct and array comparisons.
5861   if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
5862     {
5863       if (left->type()->struct_type() != NULL)
5864         return this->lower_struct_comparison(gogo, inserter);
5865       else if (left->type()->array_type() != NULL
5866                && !left->type()->is_slice_type())
5867         return this->lower_array_comparison(gogo, inserter);
5868     }
5869
5870   return this;
5871 }
5872
5873 // Lower a struct comparison.
5874
5875 Expression*
5876 Binary_expression::lower_struct_comparison(Gogo* gogo,
5877                                            Statement_inserter* inserter)
5878 {
5879   Struct_type* st = this->left_->type()->struct_type();
5880   Struct_type* st2 = this->right_->type()->struct_type();
5881   if (st2 == NULL)
5882     return this;
5883   if (st != st2 && !Type::are_identical(st, st2, false, NULL))
5884     return this;
5885   if (!Type::are_compatible_for_comparison(true, this->left_->type(),
5886                                            this->right_->type(), NULL))
5887     return this;
5888
5889   // See if we can compare using memcmp.  As a heuristic, we use
5890   // memcmp rather than field references and comparisons if there are
5891   // more than two fields.
5892   if (st->compare_is_identity(gogo) && st->total_field_count() > 2)
5893     return this->lower_compare_to_memcmp(gogo, inserter);
5894
5895   Location loc = this->location();
5896
5897   Expression* left = this->left_;
5898   Temporary_statement* left_temp = NULL;
5899   if (left->var_expression() == NULL
5900       && left->temporary_reference_expression() == NULL)
5901     {
5902       left_temp = Statement::make_temporary(left->type(), NULL, loc);
5903       inserter->insert(left_temp);
5904       left = Expression::make_set_and_use_temporary(left_temp, left, loc);
5905     }
5906
5907   Expression* right = this->right_;
5908   Temporary_statement* right_temp = NULL;
5909   if (right->var_expression() == NULL
5910       && right->temporary_reference_expression() == NULL)
5911     {
5912       right_temp = Statement::make_temporary(right->type(), NULL, loc);
5913       inserter->insert(right_temp);
5914       right = Expression::make_set_and_use_temporary(right_temp, right, loc);
5915     }
5916
5917   Expression* ret = Expression::make_boolean(true, loc);
5918   const Struct_field_list* fields = st->fields();
5919   unsigned int field_index = 0;
5920   for (Struct_field_list::const_iterator pf = fields->begin();
5921        pf != fields->end();
5922        ++pf, ++field_index)
5923     {
5924       if (field_index > 0)
5925         {
5926           if (left_temp == NULL)
5927             left = left->copy();
5928           else
5929             left = Expression::make_temporary_reference(left_temp, loc);
5930           if (right_temp == NULL)
5931             right = right->copy();
5932           else
5933             right = Expression::make_temporary_reference(right_temp, loc);
5934         }
5935       Expression* f1 = Expression::make_field_reference(left, field_index,
5936                                                         loc);
5937       Expression* f2 = Expression::make_field_reference(right, field_index,
5938                                                         loc);
5939       Expression* cond = Expression::make_binary(OPERATOR_EQEQ, f1, f2, loc);
5940       ret = Expression::make_binary(OPERATOR_ANDAND, ret, cond, loc);
5941     }
5942
5943   if (this->op_ == OPERATOR_NOTEQ)
5944     ret = Expression::make_unary(OPERATOR_NOT, ret, loc);
5945
5946   return ret;
5947 }
5948
5949 // Lower an array comparison.
5950
5951 Expression*
5952 Binary_expression::lower_array_comparison(Gogo* gogo,
5953                                           Statement_inserter* inserter)
5954 {
5955   Array_type* at = this->left_->type()->array_type();
5956   Array_type* at2 = this->right_->type()->array_type();
5957   if (at2 == NULL)
5958     return this;
5959   if (at != at2 && !Type::are_identical(at, at2, false, NULL))
5960     return this;
5961   if (!Type::are_compatible_for_comparison(true, this->left_->type(),
5962                                            this->right_->type(), NULL))
5963     return this;
5964
5965   // Call memcmp directly if possible.  This may let the middle-end
5966   // optimize the call.
5967   if (at->compare_is_identity(gogo))
5968     return this->lower_compare_to_memcmp(gogo, inserter);
5969
5970   // Call the array comparison function.
5971   Named_object* hash_fn;
5972   Named_object* equal_fn;
5973   at->type_functions(gogo, this->left_->type()->named_type(), NULL, NULL,
5974                      &hash_fn, &equal_fn);
5975
5976   Location loc = this->location();
5977
5978   Expression* func = Expression::make_func_reference(equal_fn, NULL, loc);
5979
5980   Expression_list* args = new Expression_list();
5981   args->push_back(this->operand_address(inserter, this->left_));
5982   args->push_back(this->operand_address(inserter, this->right_));
5983   args->push_back(Expression::make_type_info(at, TYPE_INFO_SIZE));
5984
5985   Expression* ret = Expression::make_call(func, args, false, loc);
5986
5987   if (this->op_ == OPERATOR_NOTEQ)
5988     ret = Expression::make_unary(OPERATOR_NOT, ret, loc);
5989
5990   return ret;
5991 }
5992
5993 // Lower a struct or array comparison to a call to memcmp.
5994
5995 Expression*
5996 Binary_expression::lower_compare_to_memcmp(Gogo*, Statement_inserter* inserter)
5997 {
5998   Location loc = this->location();
5999
6000   Expression* a1 = this->operand_address(inserter, this->left_);
6001   Expression* a2 = this->operand_address(inserter, this->right_);
6002   Expression* len = Expression::make_type_info(this->left_->type(),
6003                                                TYPE_INFO_SIZE);
6004
6005   Expression* call = Runtime::make_call(Runtime::MEMCMP, loc, 3, a1, a2, len);
6006
6007   mpz_t zval;
6008   mpz_init_set_ui(zval, 0);
6009   Expression* zero = Expression::make_integer(&zval, NULL, loc);
6010   mpz_clear(zval);
6011
6012   return Expression::make_binary(this->op_, call, zero, loc);
6013 }
6014
6015 // Return the address of EXPR, cast to unsafe.Pointer.
6016
6017 Expression*
6018 Binary_expression::operand_address(Statement_inserter* inserter,
6019                                    Expression* expr)
6020 {
6021   Location loc = this->location();
6022
6023   if (!expr->is_addressable())
6024     {
6025       Temporary_statement* temp = Statement::make_temporary(expr->type(), NULL,
6026                                                             loc);
6027       inserter->insert(temp);
6028       expr = Expression::make_set_and_use_temporary(temp, expr, loc);
6029     }
6030   expr = Expression::make_unary(OPERATOR_AND, expr, loc);
6031   static_cast<Unary_expression*>(expr)->set_does_not_escape();
6032   Type* void_type = Type::make_void_type();
6033   Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
6034   return Expression::make_cast(unsafe_pointer_type, expr, loc);
6035 }
6036
6037 // Return the integer constant value, if it has one.
6038
6039 bool
6040 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
6041                                              Type** ptype) const
6042 {
6043   mpz_t left_val;
6044   mpz_init(left_val);
6045   Type* left_type;
6046   if (!this->left_->integer_constant_value(iota_is_constant, left_val,
6047                                            &left_type))
6048     {
6049       mpz_clear(left_val);
6050       return false;
6051     }
6052
6053   mpz_t right_val;
6054   mpz_init(right_val);
6055   Type* right_type;
6056   if (!this->right_->integer_constant_value(iota_is_constant, right_val,
6057                                             &right_type))
6058     {
6059       mpz_clear(right_val);
6060       mpz_clear(left_val);
6061       return false;
6062     }
6063
6064   bool ret;
6065   if (left_type != right_type
6066       && left_type != NULL
6067       && right_type != NULL
6068       && left_type->base() != right_type->base()
6069       && this->op_ != OPERATOR_RSHIFT
6070       && this->op_ != OPERATOR_LSHIFT)
6071     ret = false;
6072   else
6073     ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
6074                                           right_type, right_val,
6075                                           this->location(), val);
6076
6077   mpz_clear(right_val);
6078   mpz_clear(left_val);
6079
6080   if (ret)
6081     *ptype = left_type;
6082
6083   return ret;
6084 }
6085
6086 // Return the floating point constant value, if it has one.
6087
6088 bool
6089 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
6090 {
6091   mpfr_t left_val;
6092   mpfr_init(left_val);
6093   Type* left_type;
6094   if (!this->left_->float_constant_value(left_val, &left_type))
6095     {
6096       mpfr_clear(left_val);
6097       return false;
6098     }
6099
6100   mpfr_t right_val;
6101   mpfr_init(right_val);
6102   Type* right_type;
6103   if (!this->right_->float_constant_value(right_val, &right_type))
6104     {
6105       mpfr_clear(right_val);
6106       mpfr_clear(left_val);
6107       return false;
6108     }
6109
6110   bool ret;
6111   if (left_type != right_type
6112       && left_type != NULL
6113       && right_type != NULL
6114       && left_type->base() != right_type->base())
6115     ret = false;
6116   else
6117     ret = Binary_expression::eval_float(this->op_, left_type, left_val,
6118                                         right_type, right_val,
6119                                         val, this->location());
6120
6121   mpfr_clear(left_val);
6122   mpfr_clear(right_val);
6123
6124   if (ret)
6125     *ptype = left_type;
6126
6127   return ret;
6128 }
6129
6130 // Return the complex constant value, if it has one.
6131
6132 bool
6133 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
6134                                              Type** ptype) const
6135 {
6136   mpfr_t left_real;
6137   mpfr_t left_imag;
6138   mpfr_init(left_real);
6139   mpfr_init(left_imag);
6140   Type* left_type;
6141   if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
6142     {
6143       mpfr_clear(left_real);
6144       mpfr_clear(left_imag);
6145       return false;
6146     }
6147
6148   mpfr_t right_real;
6149   mpfr_t right_imag;
6150   mpfr_init(right_real);
6151   mpfr_init(right_imag);
6152   Type* right_type;
6153   if (!this->right_->complex_constant_value(right_real, right_imag,
6154                                             &right_type))
6155     {
6156       mpfr_clear(left_real);
6157       mpfr_clear(left_imag);
6158       mpfr_clear(right_real);
6159       mpfr_clear(right_imag);
6160       return false;
6161     }
6162
6163   bool ret;
6164   if (left_type != right_type
6165       && left_type != NULL
6166       && right_type != NULL
6167       && left_type->base() != right_type->base())
6168     ret = false;
6169   else
6170     ret = Binary_expression::eval_complex(this->op_, left_type,
6171                                           left_real, left_imag,
6172                                           right_type,
6173                                           right_real, right_imag,
6174                                           real, imag,
6175                                           this->location());
6176   mpfr_clear(left_real);
6177   mpfr_clear(left_imag);
6178   mpfr_clear(right_real);
6179   mpfr_clear(right_imag);
6180
6181   if (ret)
6182     *ptype = left_type;
6183
6184   return ret;
6185 }
6186
6187 // Note that the value is being discarded.
6188
6189 void
6190 Binary_expression::do_discarding_value()
6191 {
6192   if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
6193     this->right_->discarding_value();
6194   else
6195     this->unused_value_error();
6196 }
6197
6198 // Get type.
6199
6200 Type*
6201 Binary_expression::do_type()
6202 {
6203   if (this->classification() == EXPRESSION_ERROR)
6204     return Type::make_error_type();
6205
6206   switch (this->op_)
6207     {
6208     case OPERATOR_OROR:
6209     case OPERATOR_ANDAND:
6210     case OPERATOR_EQEQ:
6211     case OPERATOR_NOTEQ:
6212     case OPERATOR_LT:
6213     case OPERATOR_LE:
6214     case OPERATOR_GT:
6215     case OPERATOR_GE:
6216       return Type::lookup_bool_type();
6217
6218     case OPERATOR_PLUS:
6219     case OPERATOR_MINUS:
6220     case OPERATOR_OR:
6221     case OPERATOR_XOR:
6222     case OPERATOR_MULT:
6223     case OPERATOR_DIV:
6224     case OPERATOR_MOD:
6225     case OPERATOR_AND:
6226     case OPERATOR_BITCLEAR:
6227       {
6228         Type* left_type = this->left_->type();
6229         Type* right_type = this->right_->type();
6230         if (left_type->is_error())
6231           return left_type;
6232         else if (right_type->is_error())
6233           return right_type;
6234         else if (!Type::are_compatible_for_binop(left_type, right_type))
6235           {
6236             this->report_error(_("incompatible types in binary expression"));
6237             return Type::make_error_type();
6238           }
6239         else if (!left_type->is_abstract() && left_type->named_type() != NULL)
6240           return left_type;
6241         else if (!right_type->is_abstract() && right_type->named_type() != NULL)
6242           return right_type;
6243         else if (!left_type->is_abstract())
6244           return left_type;
6245         else if (!right_type->is_abstract())
6246           return right_type;
6247         else if (left_type->complex_type() != NULL)
6248           return left_type;
6249         else if (right_type->complex_type() != NULL)
6250           return right_type;
6251         else if (left_type->float_type() != NULL)
6252           return left_type;
6253         else if (right_type->float_type() != NULL)
6254           return right_type;
6255         else
6256           return left_type;
6257       }
6258
6259     case OPERATOR_LSHIFT:
6260     case OPERATOR_RSHIFT:
6261       return this->left_->type();
6262
6263     default:
6264       go_unreachable();
6265     }
6266 }
6267
6268 // Set type for a binary expression.
6269
6270 void
6271 Binary_expression::do_determine_type(const Type_context* context)
6272 {
6273   Type* tleft = this->left_->type();
6274   Type* tright = this->right_->type();
6275
6276   // Both sides should have the same type, except for the shift
6277   // operations.  For a comparison, we should ignore the incoming
6278   // type.
6279
6280   bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
6281                       || this->op_ == OPERATOR_RSHIFT);
6282
6283   bool is_comparison = (this->op_ == OPERATOR_EQEQ
6284                         || this->op_ == OPERATOR_NOTEQ
6285                         || this->op_ == OPERATOR_LT
6286                         || this->op_ == OPERATOR_LE
6287                         || this->op_ == OPERATOR_GT
6288                         || this->op_ == OPERATOR_GE);
6289
6290   Type_context subcontext(*context);
6291
6292   if (is_comparison)
6293     {
6294       // In a comparison, the context does not determine the types of
6295       // the operands.
6296       subcontext.type = NULL;
6297     }
6298
6299   // Set the context for the left hand operand.
6300   if (is_shift_op)
6301     {
6302       // The right hand operand of a shift plays no role in
6303       // determining the type of the left hand operand.
6304     }
6305   else if (!tleft->is_abstract())
6306     subcontext.type = tleft;
6307   else if (!tright->is_abstract())
6308     subcontext.type = tright;
6309   else if (subcontext.type == NULL)
6310     {
6311       if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
6312           || (tleft->float_type() != NULL && tright->float_type() != NULL)
6313           || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
6314         {
6315           // Both sides have an abstract integer, abstract float, or
6316           // abstract complex type.  Just let CONTEXT determine
6317           // whether they may remain abstract or not.
6318         }
6319       else if (tleft->complex_type() != NULL)
6320         subcontext.type = tleft;
6321       else if (tright->complex_type() != NULL)
6322         subcontext.type = tright;
6323       else if (tleft->float_type() != NULL)
6324         subcontext.type = tleft;
6325       else if (tright->float_type() != NULL)
6326         subcontext.type = tright;
6327       else
6328         subcontext.type = tleft;
6329
6330       if (subcontext.type != NULL && !context->may_be_abstract)
6331         subcontext.type = subcontext.type->make_non_abstract_type();
6332     }
6333
6334   this->left_->determine_type(&subcontext);
6335
6336   if (is_shift_op)
6337     {
6338       // We may have inherited an unusable type for the shift operand.
6339       // Give a useful error if that happened.
6340       if (tleft->is_abstract()
6341           && subcontext.type != NULL
6342           && (this->left_->type()->integer_type() == NULL
6343               || (subcontext.type->integer_type() == NULL
6344                   && subcontext.type->float_type() == NULL
6345                   && subcontext.type->complex_type() == NULL)))
6346         this->report_error(("invalid context-determined non-integer type "
6347                             "for shift operand"));
6348
6349       // The context for the right hand operand is the same as for the
6350       // left hand operand, except for a shift operator.
6351       subcontext.type = Type::lookup_integer_type("uint");
6352       subcontext.may_be_abstract = false;
6353     }
6354
6355   this->right_->determine_type(&subcontext);
6356 }
6357
6358 // Report an error if the binary operator OP does not support TYPE.
6359 // OTYPE is the type of the other operand.  Return whether the
6360 // operation is OK.  This should not be used for shift.
6361
6362 bool
6363 Binary_expression::check_operator_type(Operator op, Type* type, Type* otype,
6364                                        Location location)
6365 {
6366   switch (op)
6367     {
6368     case OPERATOR_OROR:
6369     case OPERATOR_ANDAND:
6370       if (!type->is_boolean_type())
6371         {
6372           error_at(location, "expected boolean type");
6373           return false;
6374         }
6375       break;
6376
6377     case OPERATOR_EQEQ:
6378     case OPERATOR_NOTEQ:
6379       {
6380         std::string reason;
6381         if (!Type::are_compatible_for_comparison(true, type, otype, &reason))
6382           {
6383             error_at(location, "%s", reason.c_str());
6384             return false;
6385           }
6386       }
6387       break;
6388
6389     case OPERATOR_LT:
6390     case OPERATOR_LE:
6391     case OPERATOR_GT:
6392     case OPERATOR_GE:
6393       {
6394         std::string reason;
6395         if (!Type::are_compatible_for_comparison(false, type, otype, &reason))
6396           {
6397             error_at(location, "%s", reason.c_str());
6398             return false;
6399           }
6400       }
6401       break;
6402
6403     case OPERATOR_PLUS:
6404     case OPERATOR_PLUSEQ:
6405       if (type->integer_type() == NULL
6406           && type->float_type() == NULL
6407           && type->complex_type() == NULL
6408           && !type->is_string_type())
6409         {
6410           error_at(location,
6411                    "expected integer, floating, complex, or string type");
6412           return false;
6413         }
6414       break;
6415
6416     case OPERATOR_MINUS:
6417     case OPERATOR_MINUSEQ:
6418     case OPERATOR_MULT:
6419     case OPERATOR_MULTEQ:
6420     case OPERATOR_DIV:
6421     case OPERATOR_DIVEQ:
6422       if (type->integer_type() == NULL
6423           && type->float_type() == NULL
6424           && type->complex_type() == NULL)
6425         {
6426           error_at(location, "expected integer, floating, or complex type");
6427           return false;
6428         }
6429       break;
6430
6431     case OPERATOR_MOD:
6432     case OPERATOR_MODEQ:
6433     case OPERATOR_OR:
6434     case OPERATOR_OREQ:
6435     case OPERATOR_AND:
6436     case OPERATOR_ANDEQ:
6437     case OPERATOR_XOR:
6438     case OPERATOR_XOREQ:
6439     case OPERATOR_BITCLEAR:
6440     case OPERATOR_BITCLEAREQ:
6441       if (type->integer_type() == NULL)
6442         {
6443           error_at(location, "expected integer type");
6444           return false;
6445         }
6446       break;
6447
6448     default:
6449       go_unreachable();
6450     }
6451
6452   return true;
6453 }
6454
6455 // Check types.
6456
6457 void
6458 Binary_expression::do_check_types(Gogo*)
6459 {
6460   if (this->classification() == EXPRESSION_ERROR)
6461     return;
6462
6463   Type* left_type = this->left_->type();
6464   Type* right_type = this->right_->type();
6465   if (left_type->is_error() || right_type->is_error())
6466     {
6467       this->set_is_error();
6468       return;
6469     }
6470
6471   if (this->op_ == OPERATOR_EQEQ
6472       || this->op_ == OPERATOR_NOTEQ
6473       || this->op_ == OPERATOR_LT
6474       || this->op_ == OPERATOR_LE
6475       || this->op_ == OPERATOR_GT
6476       || this->op_ == OPERATOR_GE)
6477     {
6478       if (!Type::are_assignable(left_type, right_type, NULL)
6479           && !Type::are_assignable(right_type, left_type, NULL))
6480         {
6481           this->report_error(_("incompatible types in binary expression"));
6482           return;
6483         }
6484       if (!Binary_expression::check_operator_type(this->op_, left_type,
6485                                                   right_type,
6486                                                   this->location())
6487           || !Binary_expression::check_operator_type(this->op_, right_type,
6488                                                      left_type,
6489                                                      this->location()))
6490         {
6491           this->set_is_error();
6492           return;
6493         }
6494     }
6495   else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
6496     {
6497       if (!Type::are_compatible_for_binop(left_type, right_type))
6498         {
6499           this->report_error(_("incompatible types in binary expression"));
6500           return;
6501         }
6502       if (!Binary_expression::check_operator_type(this->op_, left_type,
6503                                                   right_type,
6504                                                   this->location()))
6505         {
6506           this->set_is_error();
6507           return;
6508         }
6509     }
6510   else
6511     {
6512       if (left_type->integer_type() == NULL)
6513         this->report_error(_("shift of non-integer operand"));
6514
6515       if (!right_type->is_abstract()
6516           && (right_type->integer_type() == NULL
6517               || !right_type->integer_type()->is_unsigned()))
6518         this->report_error(_("shift count not unsigned integer"));
6519       else
6520         {
6521           mpz_t val;
6522           mpz_init(val);
6523           Type* type;
6524           if (this->right_->integer_constant_value(true, val, &type))
6525             {
6526               if (mpz_sgn(val) < 0)
6527                 {
6528                   this->report_error(_("negative shift count"));
6529                   mpz_set_ui(val, 0);
6530                   Location rloc = this->right_->location();
6531                   this->right_ = Expression::make_integer(&val, right_type,
6532                                                           rloc);
6533                 }
6534             }
6535           mpz_clear(val);
6536         }
6537     }
6538 }
6539
6540 // Get a tree for a binary expression.
6541
6542 tree
6543 Binary_expression::do_get_tree(Translate_context* context)
6544 {
6545   tree left = this->left_->get_tree(context);
6546   tree right = this->right_->get_tree(context);
6547
6548   if (left == error_mark_node || right == error_mark_node)
6549     return error_mark_node;
6550
6551   enum tree_code code;
6552   bool use_left_type = true;
6553   bool is_shift_op = false;
6554   switch (this->op_)
6555     {
6556     case OPERATOR_EQEQ:
6557     case OPERATOR_NOTEQ:
6558     case OPERATOR_LT:
6559     case OPERATOR_LE:
6560     case OPERATOR_GT:
6561     case OPERATOR_GE:
6562       return Expression::comparison_tree(context, this->op_,
6563                                          this->left_->type(), left,
6564                                          this->right_->type(), right,
6565                                          this->location());
6566
6567     case OPERATOR_OROR:
6568       code = TRUTH_ORIF_EXPR;
6569       use_left_type = false;
6570       break;
6571     case OPERATOR_ANDAND:
6572       code = TRUTH_ANDIF_EXPR;
6573       use_left_type = false;
6574       break;
6575     case OPERATOR_PLUS:
6576       code = PLUS_EXPR;
6577       break;
6578     case OPERATOR_MINUS:
6579       code = MINUS_EXPR;
6580       break;
6581     case OPERATOR_OR:
6582       code = BIT_IOR_EXPR;
6583       break;
6584     case OPERATOR_XOR:
6585       code = BIT_XOR_EXPR;
6586       break;
6587     case OPERATOR_MULT:
6588       code = MULT_EXPR;
6589       break;
6590     case OPERATOR_DIV:
6591       {
6592         Type *t = this->left_->type();
6593         if (t->float_type() != NULL || t->complex_type() != NULL)
6594           code = RDIV_EXPR;
6595         else
6596           code = TRUNC_DIV_EXPR;
6597       }
6598       break;
6599     case OPERATOR_MOD:
6600       code = TRUNC_MOD_EXPR;
6601       break;
6602     case OPERATOR_LSHIFT:
6603       code = LSHIFT_EXPR;
6604       is_shift_op = true;
6605       break;
6606     case OPERATOR_RSHIFT:
6607       code = RSHIFT_EXPR;
6608       is_shift_op = true;
6609       break;
6610     case OPERATOR_AND:
6611       code = BIT_AND_EXPR;
6612       break;
6613     case OPERATOR_BITCLEAR:
6614       right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
6615       code = BIT_AND_EXPR;
6616       break;
6617     default:
6618       go_unreachable();
6619     }
6620
6621   tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
6622
6623   if (this->left_->type()->is_string_type())
6624     {
6625       go_assert(this->op_ == OPERATOR_PLUS);
6626       Type* st = Type::make_string_type();
6627       tree string_type = type_to_tree(st->get_backend(context->gogo()));
6628       static tree string_plus_decl;
6629       return Gogo::call_builtin(&string_plus_decl,
6630                                 this->location(),
6631                                 "__go_string_plus",
6632                                 2,
6633                                 string_type,
6634                                 string_type,
6635                                 left,
6636                                 string_type,
6637                                 right);
6638     }
6639
6640   tree compute_type = excess_precision_type(type);
6641   if (compute_type != NULL_TREE)
6642     {
6643       left = ::convert(compute_type, left);
6644       right = ::convert(compute_type, right);
6645     }
6646
6647   tree eval_saved = NULL_TREE;
6648   if (is_shift_op)
6649     {
6650       // Make sure the values are evaluated.
6651       if (!DECL_P(left) && TREE_SIDE_EFFECTS(left))
6652         {
6653           left = save_expr(left);
6654           eval_saved = left;
6655         }
6656       if (!DECL_P(right) && TREE_SIDE_EFFECTS(right))
6657         {
6658           right = save_expr(right);
6659           if (eval_saved == NULL_TREE)
6660             eval_saved = right;
6661           else
6662             eval_saved = fold_build2_loc(this->location().gcc_location(),
6663                                          COMPOUND_EXPR,
6664                                          void_type_node, eval_saved, right);
6665         }
6666     }
6667
6668   tree ret = fold_build2_loc(this->location().gcc_location(),
6669                              code,
6670                              compute_type != NULL_TREE ? compute_type : type,
6671                              left, right);
6672
6673   if (compute_type != NULL_TREE)
6674     ret = ::convert(type, ret);
6675
6676   // In Go, a shift larger than the size of the type is well-defined.
6677   // This is not true in GENERIC, so we need to insert a conditional.
6678   if (is_shift_op)
6679     {
6680       go_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
6681       go_assert(this->left_->type()->integer_type() != NULL);
6682       int bits = TYPE_PRECISION(TREE_TYPE(left));
6683
6684       tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
6685                                  build_int_cst_type(TREE_TYPE(right), bits));
6686
6687       tree overflow_result = fold_convert_loc(this->location().gcc_location(),
6688                                               TREE_TYPE(left),
6689                                               integer_zero_node);
6690       if (this->op_ == OPERATOR_RSHIFT
6691           && !this->left_->type()->integer_type()->is_unsigned())
6692         {
6693           tree neg =
6694             fold_build2_loc(this->location().gcc_location(), LT_EXPR,
6695                             boolean_type_node, left,
6696                             fold_convert_loc(this->location().gcc_location(),
6697                                              TREE_TYPE(left),
6698                                              integer_zero_node));
6699           tree neg_one =
6700             fold_build2_loc(this->location().gcc_location(),
6701                             MINUS_EXPR, TREE_TYPE(left),
6702                             fold_convert_loc(this->location().gcc_location(),
6703                                              TREE_TYPE(left),
6704                                              integer_zero_node),
6705                             fold_convert_loc(this->location().gcc_location(),
6706                                              TREE_TYPE(left),
6707                                              integer_one_node));
6708           overflow_result =
6709             fold_build3_loc(this->location().gcc_location(), COND_EXPR,
6710                             TREE_TYPE(left), neg, neg_one,
6711                             overflow_result);
6712         }
6713
6714       ret = fold_build3_loc(this->location().gcc_location(), COND_EXPR,
6715                             TREE_TYPE(left), compare, ret, overflow_result);
6716
6717       if (eval_saved != NULL_TREE)
6718         ret = fold_build2_loc(this->location().gcc_location(), COMPOUND_EXPR,
6719                               TREE_TYPE(ret), eval_saved, ret);
6720     }
6721
6722   return ret;
6723 }
6724
6725 // Export a binary expression.
6726
6727 void
6728 Binary_expression::do_export(Export* exp) const
6729 {
6730   exp->write_c_string("(");
6731   this->left_->export_expression(exp);
6732   switch (this->op_)
6733     {
6734     case OPERATOR_OROR:
6735       exp->write_c_string(" || ");
6736       break;
6737     case OPERATOR_ANDAND:
6738       exp->write_c_string(" && ");
6739       break;
6740     case OPERATOR_EQEQ:
6741       exp->write_c_string(" == ");
6742       break;
6743     case OPERATOR_NOTEQ:
6744       exp->write_c_string(" != ");
6745       break;
6746     case OPERATOR_LT:
6747       exp->write_c_string(" < ");
6748       break;
6749     case OPERATOR_LE:
6750       exp->write_c_string(" <= ");
6751       break;
6752     case OPERATOR_GT:
6753       exp->write_c_string(" > ");
6754       break;
6755     case OPERATOR_GE:
6756       exp->write_c_string(" >= ");
6757       break;
6758     case OPERATOR_PLUS:
6759       exp->write_c_string(" + ");
6760       break;
6761     case OPERATOR_MINUS:
6762       exp->write_c_string(" - ");
6763       break;
6764     case OPERATOR_OR:
6765       exp->write_c_string(" | ");
6766       break;
6767     case OPERATOR_XOR:
6768       exp->write_c_string(" ^ ");
6769       break;
6770     case OPERATOR_MULT:
6771       exp->write_c_string(" * ");
6772       break;
6773     case OPERATOR_DIV:
6774       exp->write_c_string(" / ");
6775       break;
6776     case OPERATOR_MOD:
6777       exp->write_c_string(" % ");
6778       break;
6779     case OPERATOR_LSHIFT:
6780       exp->write_c_string(" << ");
6781       break;
6782     case OPERATOR_RSHIFT:
6783       exp->write_c_string(" >> ");
6784       break;
6785     case OPERATOR_AND:
6786       exp->write_c_string(" & ");
6787       break;
6788     case OPERATOR_BITCLEAR:
6789       exp->write_c_string(" &^ ");
6790       break;
6791     default:
6792       go_unreachable();
6793     }
6794   this->right_->export_expression(exp);
6795   exp->write_c_string(")");
6796 }
6797
6798 // Import a binary expression.
6799
6800 Expression*
6801 Binary_expression::do_import(Import* imp)
6802 {
6803   imp->require_c_string("(");
6804
6805   Expression* left = Expression::import_expression(imp);
6806
6807   Operator op;
6808   if (imp->match_c_string(" || "))
6809     {
6810       op = OPERATOR_OROR;
6811       imp->advance(4);
6812     }
6813   else if (imp->match_c_string(" && "))
6814     {
6815       op = OPERATOR_ANDAND;
6816       imp->advance(4);
6817     }
6818   else if (imp->match_c_string(" == "))
6819     {
6820       op = OPERATOR_EQEQ;
6821       imp->advance(4);
6822     }
6823   else if (imp->match_c_string(" != "))
6824     {
6825       op = OPERATOR_NOTEQ;
6826       imp->advance(4);
6827     }
6828   else if (imp->match_c_string(" < "))
6829     {
6830       op = OPERATOR_LT;
6831       imp->advance(3);
6832     }
6833   else if (imp->match_c_string(" <= "))
6834     {
6835       op = OPERATOR_LE;
6836       imp->advance(4);
6837     }
6838   else if (imp->match_c_string(" > "))
6839     {
6840       op = OPERATOR_GT;
6841       imp->advance(3);
6842     }
6843   else if (imp->match_c_string(" >= "))
6844     {
6845       op = OPERATOR_GE;
6846       imp->advance(4);
6847     }
6848   else if (imp->match_c_string(" + "))
6849     {
6850       op = OPERATOR_PLUS;
6851       imp->advance(3);
6852     }
6853   else if (imp->match_c_string(" - "))
6854     {
6855       op = OPERATOR_MINUS;
6856       imp->advance(3);
6857     }
6858   else if (imp->match_c_string(" | "))
6859     {
6860       op = OPERATOR_OR;
6861       imp->advance(3);
6862     }
6863   else if (imp->match_c_string(" ^ "))
6864     {
6865       op = OPERATOR_XOR;
6866       imp->advance(3);
6867     }
6868   else if (imp->match_c_string(" * "))
6869     {
6870       op = OPERATOR_MULT;
6871       imp->advance(3);
6872     }
6873   else if (imp->match_c_string(" / "))
6874     {
6875       op = OPERATOR_DIV;
6876       imp->advance(3);
6877     }
6878   else if (imp->match_c_string(" % "))
6879     {
6880       op = OPERATOR_MOD;
6881       imp->advance(3);
6882     }
6883   else if (imp->match_c_string(" << "))
6884     {
6885       op = OPERATOR_LSHIFT;
6886       imp->advance(4);
6887     }
6888   else if (imp->match_c_string(" >> "))
6889     {
6890       op = OPERATOR_RSHIFT;
6891       imp->advance(4);
6892     }
6893   else if (imp->match_c_string(" & "))
6894     {
6895       op = OPERATOR_AND;
6896       imp->advance(3);
6897     }
6898   else if (imp->match_c_string(" &^ "))
6899     {
6900       op = OPERATOR_BITCLEAR;
6901       imp->advance(4);
6902     }
6903   else
6904     {
6905       error_at(imp->location(), "unrecognized binary operator");
6906       return Expression::make_error(imp->location());
6907     }
6908
6909   Expression* right = Expression::import_expression(imp);
6910
6911   imp->require_c_string(")");
6912
6913   return Expression::make_binary(op, left, right, imp->location());
6914 }
6915
6916 // Dump ast representation of a binary expression.
6917
6918 void
6919 Binary_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
6920 {
6921   ast_dump_context->ostream() << "(";
6922   ast_dump_context->dump_expression(this->left_);
6923   ast_dump_context->ostream() << " ";
6924   ast_dump_context->dump_operator(this->op_);
6925   ast_dump_context->ostream() << " ";
6926   ast_dump_context->dump_expression(this->right_);
6927   ast_dump_context->ostream() << ") ";
6928 }
6929
6930 // Make a binary expression.
6931
6932 Expression*
6933 Expression::make_binary(Operator op, Expression* left, Expression* right,
6934                         Location location)
6935 {
6936   return new Binary_expression(op, left, right, location);
6937 }
6938
6939 // Implement a comparison.
6940
6941 tree
6942 Expression::comparison_tree(Translate_context* context, Operator op,
6943                             Type* left_type, tree left_tree,
6944                             Type* right_type, tree right_tree,
6945                             Location location)
6946 {
6947   enum tree_code code;
6948   switch (op)
6949     {
6950     case OPERATOR_EQEQ:
6951       code = EQ_EXPR;
6952       break;
6953     case OPERATOR_NOTEQ:
6954       code = NE_EXPR;
6955       break;
6956     case OPERATOR_LT:
6957       code = LT_EXPR;
6958       break;
6959     case OPERATOR_LE:
6960       code = LE_EXPR;
6961       break;
6962     case OPERATOR_GT:
6963       code = GT_EXPR;
6964       break;
6965     case OPERATOR_GE:
6966       code = GE_EXPR;
6967       break;
6968     default:
6969       go_unreachable();
6970     }
6971
6972   if (left_type->is_string_type() && right_type->is_string_type())
6973     {
6974       Type* st = Type::make_string_type();
6975       tree string_type = type_to_tree(st->get_backend(context->gogo()));
6976       static tree string_compare_decl;
6977       left_tree = Gogo::call_builtin(&string_compare_decl,
6978                                      location,
6979                                      "__go_strcmp",
6980                                      2,
6981                                      integer_type_node,
6982                                      string_type,
6983                                      left_tree,
6984                                      string_type,
6985                                      right_tree);
6986       right_tree = build_int_cst_type(integer_type_node, 0);
6987     }
6988   else if ((left_type->interface_type() != NULL
6989             && right_type->interface_type() == NULL
6990             && !right_type->is_nil_type())
6991            || (left_type->interface_type() == NULL
6992                && !left_type->is_nil_type()
6993                && right_type->interface_type() != NULL))
6994     {
6995       // Comparing an interface value to a non-interface value.
6996       if (left_type->interface_type() == NULL)
6997         {
6998           std::swap(left_type, right_type);
6999           std::swap(left_tree, right_tree);
7000         }
7001
7002       // The right operand is not an interface.  We need to take its
7003       // address if it is not a pointer.
7004       tree make_tmp;
7005       tree arg;
7006       if (right_type->points_to() != NULL)
7007         {
7008           make_tmp = NULL_TREE;
7009           arg = right_tree;
7010         }
7011       else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
7012         {
7013           make_tmp = NULL_TREE;
7014           arg = build_fold_addr_expr_loc(location.gcc_location(), right_tree);
7015           if (DECL_P(right_tree))
7016             TREE_ADDRESSABLE(right_tree) = 1;
7017         }
7018       else
7019         {
7020           tree tmp = create_tmp_var(TREE_TYPE(right_tree),
7021                                     get_name(right_tree));
7022           DECL_IGNORED_P(tmp) = 0;
7023           DECL_INITIAL(tmp) = right_tree;
7024           TREE_ADDRESSABLE(tmp) = 1;
7025           make_tmp = build1(DECL_EXPR, void_type_node, tmp);
7026           SET_EXPR_LOCATION(make_tmp, location.gcc_location());
7027           arg = build_fold_addr_expr_loc(location.gcc_location(), tmp);
7028         }
7029       arg = fold_convert_loc(location.gcc_location(), ptr_type_node, arg);
7030
7031       tree descriptor = right_type->type_descriptor_pointer(context->gogo(),
7032                                                             location);
7033
7034       if (left_type->interface_type()->is_empty())
7035         {
7036           static tree empty_interface_value_compare_decl;
7037           left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
7038                                          location,
7039                                          "__go_empty_interface_value_compare",
7040                                          3,
7041                                          integer_type_node,
7042                                          TREE_TYPE(left_tree),
7043                                          left_tree,
7044                                          TREE_TYPE(descriptor),
7045                                          descriptor,
7046                                          ptr_type_node,
7047                                          arg);
7048           if (left_tree == error_mark_node)
7049             return error_mark_node;
7050           // This can panic if the type is not comparable.
7051           TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
7052         }
7053       else
7054         {
7055           static tree interface_value_compare_decl;
7056           left_tree = Gogo::call_builtin(&interface_value_compare_decl,
7057                                          location,
7058                                          "__go_interface_value_compare",
7059                                          3,
7060                                          integer_type_node,
7061                                          TREE_TYPE(left_tree),
7062                                          left_tree,
7063                                          TREE_TYPE(descriptor),
7064                                          descriptor,
7065                                          ptr_type_node,
7066                                          arg);
7067           if (left_tree == error_mark_node)
7068             return error_mark_node;
7069           // This can panic if the type is not comparable.
7070           TREE_NOTHROW(interface_value_compare_decl) = 0;
7071         }
7072       right_tree = build_int_cst_type(integer_type_node, 0);
7073
7074       if (make_tmp != NULL_TREE)
7075         left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
7076                            left_tree);
7077     }
7078   else if (left_type->interface_type() != NULL
7079            && right_type->interface_type() != NULL)
7080     {
7081       if (left_type->interface_type()->is_empty()
7082           && right_type->interface_type()->is_empty())
7083         {
7084           static tree empty_interface_compare_decl;
7085           left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
7086                                          location,
7087                                          "__go_empty_interface_compare",
7088                                          2,
7089                                          integer_type_node,
7090                                          TREE_TYPE(left_tree),
7091                                          left_tree,
7092                                          TREE_TYPE(right_tree),
7093                                          right_tree);
7094           if (left_tree == error_mark_node)
7095             return error_mark_node;
7096           // This can panic if the type is uncomparable.
7097           TREE_NOTHROW(empty_interface_compare_decl) = 0;
7098         }
7099       else if (!left_type->interface_type()->is_empty()
7100                && !right_type->interface_type()->is_empty())
7101         {
7102           static tree interface_compare_decl;
7103           left_tree = Gogo::call_builtin(&interface_compare_decl,
7104                                          location,
7105                                          "__go_interface_compare",
7106                                          2,
7107                                          integer_type_node,
7108                                          TREE_TYPE(left_tree),
7109                                          left_tree,
7110                                          TREE_TYPE(right_tree),
7111                                          right_tree);
7112           if (left_tree == error_mark_node)
7113             return error_mark_node;
7114           // This can panic if the type is uncomparable.
7115           TREE_NOTHROW(interface_compare_decl) = 0;
7116         }
7117       else
7118         {
7119           if (left_type->interface_type()->is_empty())
7120             {
7121               go_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
7122               std::swap(left_type, right_type);
7123               std::swap(left_tree, right_tree);
7124             }
7125           go_assert(!left_type->interface_type()->is_empty());
7126           go_assert(right_type->interface_type()->is_empty());
7127           static tree interface_empty_compare_decl;
7128           left_tree = Gogo::call_builtin(&interface_empty_compare_decl,
7129                                          location,
7130                                          "__go_interface_empty_compare",
7131                                          2,
7132                                          integer_type_node,
7133                                          TREE_TYPE(left_tree),
7134                                          left_tree,
7135                                          TREE_TYPE(right_tree),
7136                                          right_tree);
7137           if (left_tree == error_mark_node)
7138             return error_mark_node;
7139           // This can panic if the type is uncomparable.
7140           TREE_NOTHROW(interface_empty_compare_decl) = 0;
7141         }
7142
7143       right_tree = build_int_cst_type(integer_type_node, 0);
7144     }
7145
7146   if (left_type->is_nil_type()
7147       && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
7148     {
7149       std::swap(left_type, right_type);
7150       std::swap(left_tree, right_tree);
7151     }
7152
7153   if (right_type->is_nil_type())
7154     {
7155       if (left_type->array_type() != NULL
7156           && left_type->array_type()->length() == NULL)
7157         {
7158           Array_type* at = left_type->array_type();
7159           left_tree = at->value_pointer_tree(context->gogo(), left_tree);
7160           right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
7161         }
7162       else if (left_type->interface_type() != NULL)
7163         {
7164           // An interface is nil if the first field is nil.
7165           tree left_type_tree = TREE_TYPE(left_tree);
7166           go_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
7167           tree field = TYPE_FIELDS(left_type_tree);
7168           left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
7169                              field, NULL_TREE);
7170           right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
7171         }
7172       else
7173         {
7174           go_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
7175           right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
7176         }
7177     }
7178
7179   if (left_tree == error_mark_node || right_tree == error_mark_node)
7180     return error_mark_node;
7181
7182   tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
7183   if (CAN_HAVE_LOCATION_P(ret))
7184     SET_EXPR_LOCATION(ret, location.gcc_location());
7185   return ret;
7186 }
7187
7188 // Class Bound_method_expression.
7189
7190 // Traversal.
7191
7192 int
7193 Bound_method_expression::do_traverse(Traverse* traverse)
7194 {
7195   return Expression::traverse(&this->expr_, traverse);
7196 }
7197
7198 // Return the type of a bound method expression.  The type of this
7199 // object is really the type of the method with no receiver.  We
7200 // should be able to get away with just returning the type of the
7201 // method.
7202
7203 Type*
7204 Bound_method_expression::do_type()
7205 {
7206   if (this->method_->is_function())
7207     return this->method_->func_value()->type();
7208   else if (this->method_->is_function_declaration())
7209     return this->method_->func_declaration_value()->type();
7210   else
7211     return Type::make_error_type();
7212 }
7213
7214 // Determine the types of a method expression.
7215
7216 void
7217 Bound_method_expression::do_determine_type(const Type_context*)
7218 {
7219   Function_type* fntype = this->type()->function_type();
7220   if (fntype == NULL || !fntype->is_method())
7221     this->expr_->determine_type_no_context();
7222   else
7223     {
7224       Type_context subcontext(fntype->receiver()->type(), false);
7225       this->expr_->determine_type(&subcontext);
7226     }
7227 }
7228
7229 // Check the types of a method expression.
7230
7231 void
7232 Bound_method_expression::do_check_types(Gogo*)
7233 {
7234   if (!this->method_->is_function()
7235       && !this->method_->is_function_declaration())
7236     this->report_error(_("object is not a method"));
7237   else
7238     {
7239       Type* rtype = this->type()->function_type()->receiver()->type()->deref();
7240       Type* etype = (this->expr_type_ != NULL
7241                      ? this->expr_type_
7242                      : this->expr_->type());
7243       etype = etype->deref();
7244       if (!Type::are_identical(rtype, etype, true, NULL))
7245         this->report_error(_("method type does not match object type"));
7246     }
7247 }
7248
7249 // Get the tree for a method expression.  There is no standard tree
7250 // representation for this.  The only places it may currently be used
7251 // are in a Call_expression or a Go_statement, which will take it
7252 // apart directly.  So this has nothing to do at present.
7253
7254 tree
7255 Bound_method_expression::do_get_tree(Translate_context*)
7256 {
7257   error_at(this->location(), "reference to method other than calling it");
7258   return error_mark_node;
7259 }
7260
7261 // Dump ast representation of a bound method expression.
7262
7263 void
7264 Bound_method_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
7265     const
7266 {
7267   if (this->expr_type_ != NULL)
7268     ast_dump_context->ostream() << "(";
7269   ast_dump_context->dump_expression(this->expr_); 
7270   if (this->expr_type_ != NULL) 
7271     {
7272       ast_dump_context->ostream() << ":";
7273       ast_dump_context->dump_type(this->expr_type_);
7274       ast_dump_context->ostream() << ")";
7275     }
7276     
7277   ast_dump_context->ostream() << "." << this->method_->name();
7278 }
7279
7280 // Make a method expression.
7281
7282 Bound_method_expression*
7283 Expression::make_bound_method(Expression* expr, Named_object* method,
7284                               Location location)
7285 {
7286   return new Bound_method_expression(expr, method, location);
7287 }
7288
7289 // Class Builtin_call_expression.  This is used for a call to a
7290 // builtin function.
7291
7292 class Builtin_call_expression : public Call_expression
7293 {
7294  public:
7295   Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
7296                           bool is_varargs, Location location);
7297
7298  protected:
7299   // This overrides Call_expression::do_lower.
7300   Expression*
7301   do_lower(Gogo*, Named_object*, Statement_inserter*, int);
7302
7303   bool
7304   do_is_constant() const;
7305
7306   bool
7307   do_integer_constant_value(bool, mpz_t, Type**) const;
7308
7309   bool
7310   do_float_constant_value(mpfr_t, Type**) const;
7311
7312   bool
7313   do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
7314
7315   void
7316   do_discarding_value();
7317
7318   Type*
7319   do_type();
7320
7321   void
7322   do_determine_type(const Type_context*);
7323
7324   void
7325   do_check_types(Gogo*);
7326
7327   Expression*
7328   do_copy()
7329   {
7330     return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
7331                                        this->args()->copy(),
7332                                        this->is_varargs(),
7333                                        this->location());
7334   }
7335
7336   tree
7337   do_get_tree(Translate_context*);
7338
7339   void
7340   do_export(Export*) const;
7341
7342   virtual bool
7343   do_is_recover_call() const;
7344
7345   virtual void
7346   do_set_recover_arg(Expression*);
7347
7348  private:
7349   // The builtin functions.
7350   enum Builtin_function_code
7351     {
7352       BUILTIN_INVALID,
7353
7354       // Predeclared builtin functions.
7355       BUILTIN_APPEND,
7356       BUILTIN_CAP,
7357       BUILTIN_CLOSE,
7358       BUILTIN_COMPLEX,
7359       BUILTIN_COPY,
7360       BUILTIN_DELETE,
7361       BUILTIN_IMAG,
7362       BUILTIN_LEN,
7363       BUILTIN_MAKE,
7364       BUILTIN_NEW,
7365       BUILTIN_PANIC,
7366       BUILTIN_PRINT,
7367       BUILTIN_PRINTLN,
7368       BUILTIN_REAL,
7369       BUILTIN_RECOVER,
7370
7371       // Builtin functions from the unsafe package.
7372       BUILTIN_ALIGNOF,
7373       BUILTIN_OFFSETOF,
7374       BUILTIN_SIZEOF
7375     };
7376
7377   Expression*
7378   one_arg() const;
7379
7380   bool
7381   check_one_arg();
7382
7383   static Type*
7384   real_imag_type(Type*);
7385
7386   static Type*
7387   complex_type(Type*);
7388
7389   Expression*
7390   lower_make();
7391
7392   bool
7393   check_int_value(Expression*);
7394
7395   // A pointer back to the general IR structure.  This avoids a global
7396   // variable, or passing it around everywhere.
7397   Gogo* gogo_;
7398   // The builtin function being called.
7399   Builtin_function_code code_;
7400   // Used to stop endless loops when the length of an array uses len
7401   // or cap of the array itself.
7402   mutable bool seen_;
7403 };
7404
7405 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
7406                                                  Expression* fn,
7407                                                  Expression_list* args,
7408                                                  bool is_varargs,
7409                                                  Location location)
7410   : Call_expression(fn, args, is_varargs, location),
7411     gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
7412 {
7413   Func_expression* fnexp = this->fn()->func_expression();
7414   go_assert(fnexp != NULL);
7415   const std::string& name(fnexp->named_object()->name());
7416   if (name == "append")
7417     this->code_ = BUILTIN_APPEND;
7418   else if (name == "cap")
7419     this->code_ = BUILTIN_CAP;
7420   else if (name == "close")
7421     this->code_ = BUILTIN_CLOSE;
7422   else if (name == "complex")
7423     this->code_ = BUILTIN_COMPLEX;
7424   else if (name == "copy")
7425     this->code_ = BUILTIN_COPY;
7426   else if (name == "delete")
7427     this->code_ = BUILTIN_DELETE;
7428   else if (name == "imag")
7429     this->code_ = BUILTIN_IMAG;
7430   else if (name == "len")
7431     this->code_ = BUILTIN_LEN;
7432   else if (name == "make")
7433     this->code_ = BUILTIN_MAKE;
7434   else if (name == "new")
7435     this->code_ = BUILTIN_NEW;
7436   else if (name == "panic")
7437     this->code_ = BUILTIN_PANIC;
7438   else if (name == "print")
7439     this->code_ = BUILTIN_PRINT;
7440   else if (name == "println")
7441     this->code_ = BUILTIN_PRINTLN;
7442   else if (name == "real")
7443     this->code_ = BUILTIN_REAL;
7444   else if (name == "recover")
7445     this->code_ = BUILTIN_RECOVER;
7446   else if (name == "Alignof")
7447     this->code_ = BUILTIN_ALIGNOF;
7448   else if (name == "Offsetof")
7449     this->code_ = BUILTIN_OFFSETOF;
7450   else if (name == "Sizeof")
7451     this->code_ = BUILTIN_SIZEOF;
7452   else
7453     go_unreachable();
7454 }
7455
7456 // Return whether this is a call to recover.  This is a virtual
7457 // function called from the parent class.
7458
7459 bool
7460 Builtin_call_expression::do_is_recover_call() const
7461 {
7462   if (this->classification() == EXPRESSION_ERROR)
7463     return false;
7464   return this->code_ == BUILTIN_RECOVER;
7465 }
7466
7467 // Set the argument for a call to recover.
7468
7469 void
7470 Builtin_call_expression::do_set_recover_arg(Expression* arg)
7471 {
7472   const Expression_list* args = this->args();
7473   go_assert(args == NULL || args->empty());
7474   Expression_list* new_args = new Expression_list();
7475   new_args->push_back(arg);
7476   this->set_args(new_args);
7477 }
7478
7479 // A traversal class which looks for a call expression.
7480
7481 class Find_call_expression : public Traverse
7482 {
7483  public:
7484   Find_call_expression()
7485     : Traverse(traverse_expressions),
7486       found_(false)
7487   { }
7488
7489   int
7490   expression(Expression**);
7491
7492   bool
7493   found()
7494   { return this->found_; }
7495
7496  private:
7497   bool found_;
7498 };
7499
7500 int
7501 Find_call_expression::expression(Expression** pexpr)
7502 {
7503   if ((*pexpr)->call_expression() != NULL)
7504     {
7505       this->found_ = true;
7506       return TRAVERSE_EXIT;
7507     }
7508   return TRAVERSE_CONTINUE;
7509 }
7510
7511 // Lower a builtin call expression.  This turns new and make into
7512 // specific expressions.  We also convert to a constant if we can.
7513
7514 Expression*
7515 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function,
7516                                   Statement_inserter* inserter, int)
7517 {
7518   if (this->classification() == EXPRESSION_ERROR)
7519     return this;
7520
7521   Location loc = this->location();
7522
7523   if (this->is_varargs() && this->code_ != BUILTIN_APPEND)
7524     {
7525       this->report_error(_("invalid use of %<...%> with builtin function"));
7526       return Expression::make_error(loc);
7527     }
7528
7529   if (this->is_constant())
7530     {
7531       // We can only lower len and cap if there are no function calls
7532       // in the arguments.  Otherwise we have to make the call.
7533       if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
7534         {
7535           Expression* arg = this->one_arg();
7536           if (!arg->is_constant())
7537             {
7538               Find_call_expression find_call;
7539               Expression::traverse(&arg, &find_call);
7540               if (find_call.found())
7541                 return this;
7542             }
7543         }
7544
7545       mpz_t ival;
7546       mpz_init(ival);
7547       Type* type;
7548       if (this->integer_constant_value(true, ival, &type))
7549         {
7550           Expression* ret = Expression::make_integer(&ival, type, loc);
7551           mpz_clear(ival);
7552           return ret;
7553         }
7554       mpz_clear(ival);
7555
7556       mpfr_t rval;
7557       mpfr_init(rval);
7558       if (this->float_constant_value(rval, &type))
7559         {
7560           Expression* ret = Expression::make_float(&rval, type, loc);
7561           mpfr_clear(rval);
7562           return ret;
7563         }
7564
7565       mpfr_t imag;
7566       mpfr_init(imag);
7567       if (this->complex_constant_value(rval, imag, &type))
7568         {
7569           Expression* ret = Expression::make_complex(&rval, &imag, type, loc);
7570           mpfr_clear(rval);
7571           mpfr_clear(imag);
7572           return ret;
7573         }
7574       mpfr_clear(rval);
7575       mpfr_clear(imag);
7576     }
7577
7578   switch (this->code_)
7579     {
7580     default:
7581       break;
7582
7583     case BUILTIN_NEW:
7584       {
7585         const Expression_list* args = this->args();
7586         if (args == NULL || args->size() < 1)
7587           this->report_error(_("not enough arguments"));
7588         else if (args->size() > 1)
7589           this->report_error(_("too many arguments"));
7590         else
7591           {
7592             Expression* arg = args->front();
7593             if (!arg->is_type_expression())
7594               {
7595                 error_at(arg->location(), "expected type");
7596                 this->set_is_error();
7597               }
7598             else
7599               return Expression::make_allocation(arg->type(), loc);
7600           }
7601       }
7602       break;
7603
7604     case BUILTIN_MAKE:
7605       return this->lower_make();
7606
7607     case BUILTIN_RECOVER:
7608       if (function != NULL)
7609         function->func_value()->set_calls_recover();
7610       else
7611         {
7612           // Calling recover outside of a function always returns the
7613           // nil empty interface.
7614           Type* eface = Type::make_empty_interface_type(loc);
7615           return Expression::make_cast(eface, Expression::make_nil(loc), loc);
7616         }
7617       break;
7618
7619     case BUILTIN_APPEND:
7620       {
7621         // Lower the varargs.
7622         const Expression_list* args = this->args();
7623         if (args == NULL || args->empty())
7624           return this;
7625         Type* slice_type = args->front()->type();
7626         if (!slice_type->is_slice_type())
7627           {
7628             error_at(args->front()->location(), "argument 1 must be a slice");
7629             this->set_is_error();
7630             return this;
7631           }
7632         this->lower_varargs(gogo, function, inserter, slice_type, 2);
7633       }
7634       break;
7635
7636     case BUILTIN_DELETE:
7637       {
7638         // Lower to a runtime function call.
7639         const Expression_list* args = this->args();
7640         if (args == NULL || args->size() < 2)
7641           this->report_error(_("not enough arguments"));
7642         else if (args->size() > 2)
7643           this->report_error(_("too many arguments"));
7644         else if (args->front()->type()->map_type() == NULL)
7645           this->report_error(_("argument 1 must be a map"));
7646         else
7647           {
7648             // Since this function returns no value it must appear in
7649             // a statement by itself, so we don't have to worry about
7650             // order of evaluation of values around it.  Evaluate the
7651             // map first to get order of evaluation right.
7652             Map_type* mt = args->front()->type()->map_type();
7653             Temporary_statement* map_temp =
7654               Statement::make_temporary(mt, args->front(), loc);
7655             inserter->insert(map_temp);
7656
7657             Temporary_statement* key_temp =
7658               Statement::make_temporary(mt->key_type(), args->back(), loc);
7659             inserter->insert(key_temp);
7660
7661             Expression* e1 = Expression::make_temporary_reference(map_temp,
7662                                                                   loc);
7663             Expression* e2 = Expression::make_temporary_reference(key_temp,
7664                                                                   loc);
7665             e2 = Expression::make_unary(OPERATOR_AND, e2, loc);
7666             return Runtime::make_call(Runtime::MAPDELETE, this->location(),
7667                                       2, e1, e2);
7668           }
7669       }
7670       break;
7671     }
7672
7673   return this;
7674 }
7675
7676 // Lower a make expression.
7677
7678 Expression*
7679 Builtin_call_expression::lower_make()
7680 {
7681   Location loc = this->location();
7682
7683   const Expression_list* args = this->args();
7684   if (args == NULL || args->size() < 1)
7685     {
7686       this->report_error(_("not enough arguments"));
7687       return Expression::make_error(this->location());
7688     }
7689
7690   Expression_list::const_iterator parg = args->begin();
7691
7692   Expression* first_arg = *parg;
7693   if (!first_arg->is_type_expression())
7694     {
7695       error_at(first_arg->location(), "expected type");
7696       this->set_is_error();
7697       return Expression::make_error(this->location());
7698     }
7699   Type* type = first_arg->type();
7700
7701   bool is_slice = false;
7702   bool is_map = false;
7703   bool is_chan = false;
7704   if (type->is_slice_type())
7705     is_slice = true;
7706   else if (type->map_type() != NULL)
7707     is_map = true;
7708   else if (type->channel_type() != NULL)
7709     is_chan = true;
7710   else
7711     {
7712       this->report_error(_("invalid type for make function"));
7713       return Expression::make_error(this->location());
7714     }
7715
7716   ++parg;
7717   Expression* len_arg;
7718   if (parg == args->end())
7719     {
7720       if (is_slice)
7721         {
7722           this->report_error(_("length required when allocating a slice"));
7723           return Expression::make_error(this->location());
7724         }
7725
7726       mpz_t zval;
7727       mpz_init_set_ui(zval, 0);
7728       len_arg = Expression::make_integer(&zval, NULL, loc);
7729       mpz_clear(zval);
7730     }
7731   else
7732     {
7733       len_arg = *parg;
7734       if (!this->check_int_value(len_arg))
7735         {
7736           this->report_error(_("bad size for make"));
7737           return Expression::make_error(this->location());
7738         }
7739       ++parg;
7740     }
7741
7742   Expression* cap_arg = NULL;
7743   if (is_slice && parg != args->end())
7744     {
7745       cap_arg = *parg;
7746       if (!this->check_int_value(cap_arg))
7747         {
7748           this->report_error(_("bad capacity when making slice"));
7749           return Expression::make_error(this->location());
7750         }
7751       ++parg;
7752     }
7753
7754   if (parg != args->end())
7755     {
7756       this->report_error(_("too many arguments to make"));
7757       return Expression::make_error(this->location());
7758     }
7759
7760   Location type_loc = first_arg->location();
7761   Expression* type_arg;
7762   if (is_slice || is_chan)
7763     type_arg = Expression::make_type_descriptor(type, type_loc);
7764   else if (is_map)
7765     type_arg = Expression::make_map_descriptor(type->map_type(), type_loc);
7766   else
7767     go_unreachable();
7768
7769   Expression* call;
7770   if (is_slice)
7771     {
7772       if (cap_arg == NULL)
7773         call = Runtime::make_call(Runtime::MAKESLICE1, loc, 2, type_arg,
7774                                   len_arg);
7775       else
7776         call = Runtime::make_call(Runtime::MAKESLICE2, loc, 3, type_arg,
7777                                   len_arg, cap_arg);
7778     }
7779   else if (is_map)
7780     call = Runtime::make_call(Runtime::MAKEMAP, loc, 2, type_arg, len_arg);
7781   else if (is_chan)
7782     call = Runtime::make_call(Runtime::MAKECHAN, loc, 2, type_arg, len_arg);
7783   else
7784     go_unreachable();
7785
7786   return Expression::make_unsafe_cast(type, call, loc);
7787 }
7788
7789 // Return whether an expression has an integer value.  Report an error
7790 // if not.  This is used when handling calls to the predeclared make
7791 // function.
7792
7793 bool
7794 Builtin_call_expression::check_int_value(Expression* e)
7795 {
7796   if (e->type()->integer_type() != NULL)
7797     return true;
7798
7799   // Check for a floating point constant with integer value.
7800   mpfr_t fval;
7801   mpfr_init(fval);
7802
7803   Type* dummy;
7804   if (e->float_constant_value(fval, &dummy) && mpfr_integer_p(fval))
7805     {
7806       mpz_t ival;
7807       mpz_init(ival);
7808
7809       bool ok = false;
7810
7811       mpfr_clear_overflow();
7812       mpfr_clear_erangeflag();
7813       mpfr_get_z(ival, fval, GMP_RNDN);
7814       if (!mpfr_overflow_p()
7815           && !mpfr_erangeflag_p()
7816           && mpz_sgn(ival) >= 0)
7817         {
7818           Named_type* ntype = Type::lookup_integer_type("int");
7819           Integer_type* inttype = ntype->integer_type();
7820           mpz_t max;
7821           mpz_init_set_ui(max, 1);
7822           mpz_mul_2exp(max, max, inttype->bits() - 1);
7823           ok = mpz_cmp(ival, max) < 0;
7824           mpz_clear(max);
7825         }
7826       mpz_clear(ival);
7827
7828       if (ok)
7829         {
7830           mpfr_clear(fval);
7831           return true;
7832         }
7833     }
7834
7835   mpfr_clear(fval);
7836
7837   return false;
7838 }
7839
7840 // Return the type of the real or imag functions, given the type of
7841 // the argument.  We need to map complex to float, complex64 to
7842 // float32, and complex128 to float64, so it has to be done by name.
7843 // This returns NULL if it can't figure out the type.
7844
7845 Type*
7846 Builtin_call_expression::real_imag_type(Type* arg_type)
7847 {
7848   if (arg_type == NULL || arg_type->is_abstract())
7849     return NULL;
7850   Named_type* nt = arg_type->named_type();
7851   if (nt == NULL)
7852     return NULL;
7853   while (nt->real_type()->named_type() != NULL)
7854     nt = nt->real_type()->named_type();
7855   if (nt->name() == "complex64")
7856     return Type::lookup_float_type("float32");
7857   else if (nt->name() == "complex128")
7858     return Type::lookup_float_type("float64");
7859   else
7860     return NULL;
7861 }
7862
7863 // Return the type of the complex function, given the type of one of the
7864 // argments.  Like real_imag_type, we have to map by name.
7865
7866 Type*
7867 Builtin_call_expression::complex_type(Type* arg_type)
7868 {
7869   if (arg_type == NULL || arg_type->is_abstract())
7870     return NULL;
7871   Named_type* nt = arg_type->named_type();
7872   if (nt == NULL)
7873     return NULL;
7874   while (nt->real_type()->named_type() != NULL)
7875     nt = nt->real_type()->named_type();
7876   if (nt->name() == "float32")
7877     return Type::lookup_complex_type("complex64");
7878   else if (nt->name() == "float64")
7879     return Type::lookup_complex_type("complex128");
7880   else
7881     return NULL;
7882 }
7883
7884 // Return a single argument, or NULL if there isn't one.
7885
7886 Expression*
7887 Builtin_call_expression::one_arg() const
7888 {
7889   const Expression_list* args = this->args();
7890   if (args->size() != 1)
7891     return NULL;
7892   return args->front();
7893 }
7894
7895 // Return whether this is constant: len of a string, or len or cap of
7896 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
7897
7898 bool
7899 Builtin_call_expression::do_is_constant() const
7900 {
7901   switch (this->code_)
7902     {
7903     case BUILTIN_LEN:
7904     case BUILTIN_CAP:
7905       {
7906         if (this->seen_)
7907           return false;
7908
7909         Expression* arg = this->one_arg();
7910         if (arg == NULL)
7911           return false;
7912         Type* arg_type = arg->type();
7913
7914         if (arg_type->points_to() != NULL
7915             && arg_type->points_to()->array_type() != NULL
7916             && !arg_type->points_to()->is_slice_type())
7917           arg_type = arg_type->points_to();
7918
7919         if (arg_type->array_type() != NULL
7920             && arg_type->array_type()->length() != NULL)
7921           return true;
7922
7923         if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
7924           {
7925             this->seen_ = true;
7926             bool ret = arg->is_constant();
7927             this->seen_ = false;
7928             return ret;
7929           }
7930       }
7931       break;
7932
7933     case BUILTIN_SIZEOF:
7934     case BUILTIN_ALIGNOF:
7935       return this->one_arg() != NULL;
7936
7937     case BUILTIN_OFFSETOF:
7938       {
7939         Expression* arg = this->one_arg();
7940         if (arg == NULL)
7941           return false;
7942         return arg->field_reference_expression() != NULL;
7943       }
7944
7945     case BUILTIN_COMPLEX:
7946       {
7947         const Expression_list* args = this->args();
7948         if (args != NULL && args->size() == 2)
7949           return args->front()->is_constant() && args->back()->is_constant();
7950       }
7951       break;
7952
7953     case BUILTIN_REAL:
7954     case BUILTIN_IMAG:
7955       {
7956         Expression* arg = this->one_arg();
7957         return arg != NULL && arg->is_constant();
7958       }
7959
7960     default:
7961       break;
7962     }
7963
7964   return false;
7965 }
7966
7967 // Return an integer constant value if possible.
7968
7969 bool
7970 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
7971                                                    mpz_t val,
7972                                                    Type** ptype) const
7973 {
7974   if (this->code_ == BUILTIN_LEN
7975       || this->code_ == BUILTIN_CAP)
7976     {
7977       Expression* arg = this->one_arg();
7978       if (arg == NULL)
7979         return false;
7980       Type* arg_type = arg->type();
7981
7982       if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
7983         {
7984           std::string sval;
7985           if (arg->string_constant_value(&sval))
7986             {
7987               mpz_set_ui(val, sval.length());
7988               *ptype = Type::lookup_integer_type("int");
7989               return true;
7990             }
7991         }
7992
7993       if (arg_type->points_to() != NULL
7994           && arg_type->points_to()->array_type() != NULL
7995           && !arg_type->points_to()->is_slice_type())
7996         arg_type = arg_type->points_to();
7997
7998       if (arg_type->array_type() != NULL
7999           && arg_type->array_type()->length() != NULL)
8000         {
8001           if (this->seen_)
8002             return false;
8003           Expression* e = arg_type->array_type()->length();
8004           this->seen_ = true;
8005           bool r = e->integer_constant_value(iota_is_constant, val, ptype);
8006           this->seen_ = false;
8007           if (r)
8008             {
8009               *ptype = Type::lookup_integer_type("int");
8010               return true;
8011             }
8012         }
8013     }
8014   else if (this->code_ == BUILTIN_SIZEOF
8015            || this->code_ == BUILTIN_ALIGNOF)
8016     {
8017       Expression* arg = this->one_arg();
8018       if (arg == NULL)
8019         return false;
8020       Type* arg_type = arg->type();
8021       if (arg_type->is_error())
8022         return false;
8023       if (arg_type->is_abstract())
8024         return false;
8025       if (arg_type->named_type() != NULL)
8026         arg_type->named_type()->convert(this->gogo_);
8027
8028       unsigned int ret;
8029       if (this->code_ == BUILTIN_SIZEOF)
8030         {
8031           if (!arg_type->backend_type_size(this->gogo_, &ret))
8032             return false;
8033         }
8034       else if (this->code_ == BUILTIN_ALIGNOF)
8035         {
8036           if (arg->field_reference_expression() == NULL)
8037             {
8038               if (!arg_type->backend_type_align(this->gogo_, &ret))
8039                 return false;
8040             }
8041           else
8042             {
8043               // Calling unsafe.Alignof(s.f) returns the alignment of
8044               // the type of f when it is used as a field in a struct.
8045               if (!arg_type->backend_type_field_align(this->gogo_, &ret))
8046                 return false;
8047             }
8048         }
8049       else
8050         go_unreachable();
8051
8052       mpz_set_ui(val, ret);
8053       *ptype = NULL;
8054       return true;
8055     }
8056   else if (this->code_ == BUILTIN_OFFSETOF)
8057     {
8058       Expression* arg = this->one_arg();
8059       if (arg == NULL)
8060         return false;
8061       Field_reference_expression* farg = arg->field_reference_expression();
8062       if (farg == NULL)
8063         return false;
8064       Expression* struct_expr = farg->expr();
8065       Type* st = struct_expr->type();
8066       if (st->struct_type() == NULL)
8067         return false;
8068       if (st->named_type() != NULL)
8069         st->named_type()->convert(this->gogo_);
8070       unsigned int offset;
8071       if (!st->struct_type()->backend_field_offset(this->gogo_,
8072                                                    farg->field_index(),
8073                                                    &offset))
8074         return false;
8075       mpz_set_ui(val, offset);
8076       return true;
8077     }
8078   return false;
8079 }
8080
8081 // Return a floating point constant value if possible.
8082
8083 bool
8084 Builtin_call_expression::do_float_constant_value(mpfr_t val,
8085                                                  Type** ptype) const
8086 {
8087   if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
8088     {
8089       Expression* arg = this->one_arg();
8090       if (arg == NULL)
8091         return false;
8092
8093       mpfr_t real;
8094       mpfr_t imag;
8095       mpfr_init(real);
8096       mpfr_init(imag);
8097
8098       bool ret = false;
8099       Type* type;
8100       if (arg->complex_constant_value(real, imag, &type))
8101         {
8102           if (this->code_ == BUILTIN_REAL)
8103             mpfr_set(val, real, GMP_RNDN);
8104           else
8105             mpfr_set(val, imag, GMP_RNDN);
8106           *ptype = Builtin_call_expression::real_imag_type(type);
8107           ret = true;
8108         }
8109
8110       mpfr_clear(real);
8111       mpfr_clear(imag);
8112       return ret;
8113     }
8114
8115   return false;
8116 }
8117
8118 // Return a complex constant value if possible.
8119
8120 bool
8121 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
8122                                                    Type** ptype) const
8123 {
8124   if (this->code_ == BUILTIN_COMPLEX)
8125     {
8126       const Expression_list* args = this->args();
8127       if (args == NULL || args->size() != 2)
8128         return false;
8129
8130       mpfr_t r;
8131       mpfr_init(r);
8132       Type* rtype;
8133       if (!args->front()->float_constant_value(r, &rtype))
8134         {
8135           mpfr_clear(r);
8136           return false;
8137         }
8138
8139       mpfr_t i;
8140       mpfr_init(i);
8141
8142       bool ret = false;
8143       Type* itype;
8144       if (args->back()->float_constant_value(i, &itype)
8145           && Type::are_identical(rtype, itype, false, NULL))
8146         {
8147           mpfr_set(real, r, GMP_RNDN);
8148           mpfr_set(imag, i, GMP_RNDN);
8149           *ptype = Builtin_call_expression::complex_type(rtype);
8150           ret = true;
8151         }
8152
8153       mpfr_clear(r);
8154       mpfr_clear(i);
8155
8156       return ret;
8157     }
8158
8159   return false;
8160 }
8161
8162 // Give an error if we are discarding the value of an expression which
8163 // should not normally be discarded.  We don't give an error for
8164 // discarding the value of an ordinary function call, but we do for
8165 // builtin functions, purely for consistency with the gc compiler.
8166
8167 void
8168 Builtin_call_expression::do_discarding_value()
8169 {
8170   switch (this->code_)
8171     {
8172     case BUILTIN_INVALID:
8173     default:
8174       go_unreachable();
8175
8176     case BUILTIN_APPEND:
8177     case BUILTIN_CAP:
8178     case BUILTIN_COMPLEX:
8179     case BUILTIN_IMAG:
8180     case BUILTIN_LEN:
8181     case BUILTIN_MAKE:
8182     case BUILTIN_NEW:
8183     case BUILTIN_REAL:
8184     case BUILTIN_ALIGNOF:
8185     case BUILTIN_OFFSETOF:
8186     case BUILTIN_SIZEOF:
8187       this->unused_value_error();
8188       break;
8189
8190     case BUILTIN_CLOSE:
8191     case BUILTIN_COPY:
8192     case BUILTIN_DELETE:
8193     case BUILTIN_PANIC:
8194     case BUILTIN_PRINT:
8195     case BUILTIN_PRINTLN:
8196     case BUILTIN_RECOVER:
8197       break;
8198     }
8199 }
8200
8201 // Return the type.
8202
8203 Type*
8204 Builtin_call_expression::do_type()
8205 {
8206   switch (this->code_)
8207     {
8208     case BUILTIN_INVALID:
8209     default:
8210       go_unreachable();
8211
8212     case BUILTIN_NEW:
8213     case BUILTIN_MAKE:
8214       {
8215         const Expression_list* args = this->args();
8216         if (args == NULL || args->empty())
8217           return Type::make_error_type();
8218         return Type::make_pointer_type(args->front()->type());
8219       }
8220
8221     case BUILTIN_CAP:
8222     case BUILTIN_COPY:
8223     case BUILTIN_LEN:
8224     case BUILTIN_ALIGNOF:
8225     case BUILTIN_OFFSETOF:
8226     case BUILTIN_SIZEOF:
8227       return Type::lookup_integer_type("int");
8228
8229     case BUILTIN_CLOSE:
8230     case BUILTIN_DELETE:
8231     case BUILTIN_PANIC:
8232     case BUILTIN_PRINT:
8233     case BUILTIN_PRINTLN:
8234       return Type::make_void_type();
8235
8236     case BUILTIN_RECOVER:
8237       return Type::make_empty_interface_type(Linemap::predeclared_location());
8238
8239     case BUILTIN_APPEND:
8240       {
8241         const Expression_list* args = this->args();
8242         if (args == NULL || args->empty())
8243           return Type::make_error_type();
8244         return args->front()->type();
8245       }
8246
8247     case BUILTIN_REAL:
8248     case BUILTIN_IMAG:
8249       {
8250         Expression* arg = this->one_arg();
8251         if (arg == NULL)
8252           return Type::make_error_type();
8253         Type* t = arg->type();
8254         if (t->is_abstract())
8255           t = t->make_non_abstract_type();
8256         t = Builtin_call_expression::real_imag_type(t);
8257         if (t == NULL)
8258           t = Type::make_error_type();
8259         return t;
8260       }
8261
8262     case BUILTIN_COMPLEX:
8263       {
8264         const Expression_list* args = this->args();
8265         if (args == NULL || args->size() != 2)
8266           return Type::make_error_type();
8267         Type* t = args->front()->type();
8268         if (t->is_abstract())
8269           {
8270             t = args->back()->type();
8271             if (t->is_abstract())
8272               t = t->make_non_abstract_type();
8273           }
8274         t = Builtin_call_expression::complex_type(t);
8275         if (t == NULL)
8276           t = Type::make_error_type();
8277         return t;
8278       }
8279     }
8280 }
8281
8282 // Determine the type.
8283
8284 void
8285 Builtin_call_expression::do_determine_type(const Type_context* context)
8286 {
8287   if (!this->determining_types())
8288     return;
8289
8290   this->fn()->determine_type_no_context();
8291
8292   const Expression_list* args = this->args();
8293
8294   bool is_print;
8295   Type* arg_type = NULL;
8296   switch (this->code_)
8297     {
8298     case BUILTIN_PRINT:
8299     case BUILTIN_PRINTLN:
8300       // Do not force a large integer constant to "int".
8301       is_print = true;
8302       break;
8303
8304     case BUILTIN_REAL:
8305     case BUILTIN_IMAG:
8306       arg_type = Builtin_call_expression::complex_type(context->type);
8307       is_print = false;
8308       break;
8309
8310     case BUILTIN_COMPLEX:
8311       {
8312         // For the complex function the type of one operand can
8313         // determine the type of the other, as in a binary expression.
8314         arg_type = Builtin_call_expression::real_imag_type(context->type);
8315         if (args != NULL && args->size() == 2)
8316           {
8317             Type* t1 = args->front()->type();
8318             Type* t2 = args->front()->type();
8319             if (!t1->is_abstract())
8320               arg_type = t1;
8321             else if (!t2->is_abstract())
8322               arg_type = t2;
8323           }
8324         is_print = false;
8325       }
8326       break;
8327
8328     default:
8329       is_print = false;
8330       break;
8331     }
8332
8333   if (args != NULL)
8334     {
8335       for (Expression_list::const_iterator pa = args->begin();
8336            pa != args->end();
8337            ++pa)
8338         {
8339           Type_context subcontext;
8340           subcontext.type = arg_type;
8341
8342           if (is_print)
8343             {
8344               // We want to print large constants, we so can't just
8345               // use the appropriate nonabstract type.  Use uint64 for
8346               // an integer if we know it is nonnegative, otherwise
8347               // use int64 for a integer, otherwise use float64 for a
8348               // float or complex128 for a complex.
8349               Type* want_type = NULL;
8350               Type* atype = (*pa)->type();
8351               if (atype->is_abstract())
8352                 {
8353                   if (atype->integer_type() != NULL)
8354                     {
8355                       mpz_t val;
8356                       mpz_init(val);
8357                       Type* dummy;
8358                       if (this->integer_constant_value(true, val, &dummy)
8359                           && mpz_sgn(val) >= 0)
8360                         want_type = Type::lookup_integer_type("uint64");
8361                       else
8362                         want_type = Type::lookup_integer_type("int64");
8363                       mpz_clear(val);
8364                     }
8365                   else if (atype->float_type() != NULL)
8366                     want_type = Type::lookup_float_type("float64");
8367                   else if (atype->complex_type() != NULL)
8368                     want_type = Type::lookup_complex_type("complex128");
8369                   else if (atype->is_abstract_string_type())
8370                     want_type = Type::lookup_string_type();
8371                   else if (atype->is_abstract_boolean_type())
8372                     want_type = Type::lookup_bool_type();
8373                   else
8374                     go_unreachable();
8375                   subcontext.type = want_type;
8376                 }
8377             }
8378
8379           (*pa)->determine_type(&subcontext);
8380         }
8381     }
8382 }
8383
8384 // If there is exactly one argument, return true.  Otherwise give an
8385 // error message and return false.
8386
8387 bool
8388 Builtin_call_expression::check_one_arg()
8389 {
8390   const Expression_list* args = this->args();
8391   if (args == NULL || args->size() < 1)
8392     {
8393       this->report_error(_("not enough arguments"));
8394       return false;
8395     }
8396   else if (args->size() > 1)
8397     {
8398       this->report_error(_("too many arguments"));
8399       return false;
8400     }
8401   if (args->front()->is_error_expression()
8402       || args->front()->type()->is_error())
8403     {
8404       this->set_is_error();
8405       return false;
8406     }
8407   return true;
8408 }
8409
8410 // Check argument types for a builtin function.
8411
8412 void
8413 Builtin_call_expression::do_check_types(Gogo*)
8414 {
8415   switch (this->code_)
8416     {
8417     case BUILTIN_INVALID:
8418     case BUILTIN_NEW:
8419     case BUILTIN_MAKE:
8420       return;
8421
8422     case BUILTIN_LEN:
8423     case BUILTIN_CAP:
8424       {
8425         // The single argument may be either a string or an array or a
8426         // map or a channel, or a pointer to a closed array.
8427         if (this->check_one_arg())
8428           {
8429             Type* arg_type = this->one_arg()->type();
8430             if (arg_type->points_to() != NULL
8431                 && arg_type->points_to()->array_type() != NULL
8432                 && !arg_type->points_to()->is_slice_type())
8433               arg_type = arg_type->points_to();
8434             if (this->code_ == BUILTIN_CAP)
8435               {
8436                 if (!arg_type->is_error()
8437                     && arg_type->array_type() == NULL
8438                     && arg_type->channel_type() == NULL)
8439                   this->report_error(_("argument must be array or slice "
8440                                        "or channel"));
8441               }
8442             else
8443               {
8444                 if (!arg_type->is_error()
8445                     && !arg_type->is_string_type()
8446                     && arg_type->array_type() == NULL
8447                     && arg_type->map_type() == NULL
8448                     && arg_type->channel_type() == NULL)
8449                   this->report_error(_("argument must be string or "
8450                                        "array or slice or map or channel"));
8451               }
8452           }
8453       }
8454       break;
8455
8456     case BUILTIN_PRINT:
8457     case BUILTIN_PRINTLN:
8458       {
8459         const Expression_list* args = this->args();
8460         if (args == NULL)
8461           {
8462             if (this->code_ == BUILTIN_PRINT)
8463               warning_at(this->location(), 0,
8464                          "no arguments for builtin function %<%s%>",
8465                          (this->code_ == BUILTIN_PRINT
8466                           ? "print"
8467                           : "println"));
8468           }
8469         else
8470           {
8471             for (Expression_list::const_iterator p = args->begin();
8472                  p != args->end();
8473                  ++p)
8474               {
8475                 Type* type = (*p)->type();
8476                 if (type->is_error()
8477                     || type->is_string_type()
8478                     || type->integer_type() != NULL
8479                     || type->float_type() != NULL
8480                     || type->complex_type() != NULL
8481                     || type->is_boolean_type()
8482                     || type->points_to() != NULL
8483                     || type->interface_type() != NULL
8484                     || type->channel_type() != NULL
8485                     || type->map_type() != NULL
8486                     || type->function_type() != NULL
8487                     || type->is_slice_type())
8488                   ;
8489                 else if ((*p)->is_type_expression())
8490                   {
8491                     // If this is a type expression it's going to give
8492                     // an error anyhow, so we don't need one here.
8493                   }
8494                 else
8495                   this->report_error(_("unsupported argument type to "
8496                                        "builtin function"));
8497               }
8498           }
8499       }
8500       break;
8501
8502     case BUILTIN_CLOSE:
8503       if (this->check_one_arg())
8504         {
8505           if (this->one_arg()->type()->channel_type() == NULL)
8506             this->report_error(_("argument must be channel"));
8507           else if (!this->one_arg()->type()->channel_type()->may_send())
8508             this->report_error(_("cannot close receive-only channel"));
8509         }
8510       break;
8511
8512     case BUILTIN_PANIC:
8513     case BUILTIN_SIZEOF:
8514     case BUILTIN_ALIGNOF:
8515       this->check_one_arg();
8516       break;
8517
8518     case BUILTIN_RECOVER:
8519       if (this->args() != NULL && !this->args()->empty())
8520         this->report_error(_("too many arguments"));
8521       break;
8522
8523     case BUILTIN_OFFSETOF:
8524       if (this->check_one_arg())
8525         {
8526           Expression* arg = this->one_arg();
8527           if (arg->field_reference_expression() == NULL)
8528             this->report_error(_("argument must be a field reference"));
8529         }
8530       break;
8531
8532     case BUILTIN_COPY:
8533       {
8534         const Expression_list* args = this->args();
8535         if (args == NULL || args->size() < 2)
8536           {
8537             this->report_error(_("not enough arguments"));
8538             break;
8539           }
8540         else if (args->size() > 2)
8541           {
8542             this->report_error(_("too many arguments"));
8543             break;
8544           }
8545         Type* arg1_type = args->front()->type();
8546         Type* arg2_type = args->back()->type();
8547         if (arg1_type->is_error() || arg2_type->is_error())
8548           break;
8549
8550         Type* e1;
8551         if (arg1_type->is_slice_type())
8552           e1 = arg1_type->array_type()->element_type();
8553         else
8554           {
8555             this->report_error(_("left argument must be a slice"));
8556             break;
8557           }
8558
8559         if (arg2_type->is_slice_type())
8560           {
8561             Type* e2 = arg2_type->array_type()->element_type();
8562             if (!Type::are_identical(e1, e2, true, NULL))
8563               this->report_error(_("element types must be the same"));
8564           }
8565         else if (arg2_type->is_string_type())
8566           {
8567             if (e1->integer_type() == NULL || !e1->integer_type()->is_byte())
8568               this->report_error(_("first argument must be []byte"));
8569           }
8570         else
8571             this->report_error(_("second argument must be slice or string"));
8572       }
8573       break;
8574
8575     case BUILTIN_APPEND:
8576       {
8577         const Expression_list* args = this->args();
8578         if (args == NULL || args->size() < 2)
8579           {
8580             this->report_error(_("not enough arguments"));
8581             break;
8582           }
8583         if (args->size() > 2)
8584           {
8585             this->report_error(_("too many arguments"));
8586             break;
8587           }
8588
8589         // The language permits appending a string to a []byte, as a
8590         // special case.
8591         if (args->back()->type()->is_string_type())
8592           {
8593             const Array_type* at = args->front()->type()->array_type();
8594             const Type* e = at->element_type()->forwarded();
8595             if (e->integer_type() != NULL && e->integer_type()->is_byte())
8596               break;
8597           }
8598
8599         std::string reason;
8600         if (!Type::are_assignable(args->front()->type(), args->back()->type(),
8601                                   &reason))
8602           {
8603             if (reason.empty())
8604               this->report_error(_("arguments 1 and 2 have different types"));
8605             else
8606               {
8607                 error_at(this->location(),
8608                          "arguments 1 and 2 have different types (%s)",
8609                          reason.c_str());
8610                 this->set_is_error();
8611               }
8612           }
8613         break;
8614       }
8615
8616     case BUILTIN_REAL:
8617     case BUILTIN_IMAG:
8618       if (this->check_one_arg())
8619         {
8620           if (this->one_arg()->type()->complex_type() == NULL)
8621             this->report_error(_("argument must have complex type"));
8622         }
8623       break;
8624
8625     case BUILTIN_COMPLEX:
8626       {
8627         const Expression_list* args = this->args();
8628         if (args == NULL || args->size() < 2)
8629           this->report_error(_("not enough arguments"));
8630         else if (args->size() > 2)
8631           this->report_error(_("too many arguments"));
8632         else if (args->front()->is_error_expression()
8633                  || args->front()->type()->is_error()
8634                  || args->back()->is_error_expression()
8635                  || args->back()->type()->is_error())
8636           this->set_is_error();
8637         else if (!Type::are_identical(args->front()->type(),
8638                                       args->back()->type(), true, NULL))
8639           this->report_error(_("complex arguments must have identical types"));
8640         else if (args->front()->type()->float_type() == NULL)
8641           this->report_error(_("complex arguments must have "
8642                                "floating-point type"));
8643       }
8644       break;
8645
8646     default:
8647       go_unreachable();
8648     }
8649 }
8650
8651 // Return the tree for a builtin function.
8652
8653 tree
8654 Builtin_call_expression::do_get_tree(Translate_context* context)
8655 {
8656   Gogo* gogo = context->gogo();
8657   Location location = this->location();
8658   switch (this->code_)
8659     {
8660     case BUILTIN_INVALID:
8661     case BUILTIN_NEW:
8662     case BUILTIN_MAKE:
8663       go_unreachable();
8664
8665     case BUILTIN_LEN:
8666     case BUILTIN_CAP:
8667       {
8668         const Expression_list* args = this->args();
8669         go_assert(args != NULL && args->size() == 1);
8670         Expression* arg = *args->begin();
8671         Type* arg_type = arg->type();
8672
8673         if (this->seen_)
8674           {
8675             go_assert(saw_errors());
8676             return error_mark_node;
8677           }
8678         this->seen_ = true;
8679
8680         tree arg_tree = arg->get_tree(context);
8681
8682         this->seen_ = false;
8683
8684         if (arg_tree == error_mark_node)
8685           return error_mark_node;
8686
8687         if (arg_type->points_to() != NULL)
8688           {
8689             arg_type = arg_type->points_to();
8690             go_assert(arg_type->array_type() != NULL
8691                        && !arg_type->is_slice_type());
8692             go_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
8693             arg_tree = build_fold_indirect_ref(arg_tree);
8694           }
8695
8696         tree val_tree;
8697         if (this->code_ == BUILTIN_LEN)
8698           {
8699             if (arg_type->is_string_type())
8700               val_tree = String_type::length_tree(gogo, arg_tree);
8701             else if (arg_type->array_type() != NULL)
8702               {
8703                 if (this->seen_)
8704                   {
8705                     go_assert(saw_errors());
8706                     return error_mark_node;
8707                   }
8708                 this->seen_ = true;
8709                 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
8710                 this->seen_ = false;
8711               }
8712             else if (arg_type->map_type() != NULL)
8713               {
8714                 tree arg_type_tree = type_to_tree(arg_type->get_backend(gogo));
8715                 static tree map_len_fndecl;
8716                 val_tree = Gogo::call_builtin(&map_len_fndecl,
8717                                               location,
8718                                               "__go_map_len",
8719                                               1,
8720                                               integer_type_node,
8721                                               arg_type_tree,
8722                                               arg_tree);
8723               }
8724             else if (arg_type->channel_type() != NULL)
8725               {
8726                 tree arg_type_tree = type_to_tree(arg_type->get_backend(gogo));
8727                 static tree chan_len_fndecl;
8728                 val_tree = Gogo::call_builtin(&chan_len_fndecl,
8729                                               location,
8730                                               "__go_chan_len",
8731                                               1,
8732                                               integer_type_node,
8733                                               arg_type_tree,
8734                                               arg_tree);
8735               }
8736             else
8737               go_unreachable();
8738           }
8739         else
8740           {
8741             if (arg_type->array_type() != NULL)
8742               {
8743                 if (this->seen_)
8744                   {
8745                     go_assert(saw_errors());
8746                     return error_mark_node;
8747                   }
8748                 this->seen_ = true;
8749                 val_tree = arg_type->array_type()->capacity_tree(gogo,
8750                                                                  arg_tree);
8751                 this->seen_ = false;
8752               }
8753             else if (arg_type->channel_type() != NULL)
8754               {
8755                 tree arg_type_tree = type_to_tree(arg_type->get_backend(gogo));
8756                 static tree chan_cap_fndecl;
8757                 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
8758                                               location,
8759                                               "__go_chan_cap",
8760                                               1,
8761                                               integer_type_node,
8762                                               arg_type_tree,
8763                                               arg_tree);
8764               }
8765             else
8766               go_unreachable();
8767           }
8768
8769         if (val_tree == error_mark_node)
8770           return error_mark_node;
8771
8772         Type* int_type = Type::lookup_integer_type("int");
8773         tree type_tree = type_to_tree(int_type->get_backend(gogo));
8774         if (type_tree == TREE_TYPE(val_tree))
8775           return val_tree;
8776         else
8777           return fold(convert_to_integer(type_tree, val_tree));
8778       }
8779
8780     case BUILTIN_PRINT:
8781     case BUILTIN_PRINTLN:
8782       {
8783         const bool is_ln = this->code_ == BUILTIN_PRINTLN;
8784         tree stmt_list = NULL_TREE;
8785
8786         const Expression_list* call_args = this->args();
8787         if (call_args != NULL)
8788           {
8789             for (Expression_list::const_iterator p = call_args->begin();
8790                  p != call_args->end();
8791                  ++p)
8792               {
8793                 if (is_ln && p != call_args->begin())
8794                   {
8795                     static tree print_space_fndecl;
8796                     tree call = Gogo::call_builtin(&print_space_fndecl,
8797                                                    location,
8798                                                    "__go_print_space",
8799                                                    0,
8800                                                    void_type_node);
8801                     if (call == error_mark_node)
8802                       return error_mark_node;
8803                     append_to_statement_list(call, &stmt_list);
8804                   }
8805
8806                 Type* type = (*p)->type();
8807
8808                 tree arg = (*p)->get_tree(context);
8809                 if (arg == error_mark_node)
8810                   return error_mark_node;
8811
8812                 tree* pfndecl;
8813                 const char* fnname;
8814                 if (type->is_string_type())
8815                   {
8816                     static tree print_string_fndecl;
8817                     pfndecl = &print_string_fndecl;
8818                     fnname = "__go_print_string";
8819                   }
8820                 else if (type->integer_type() != NULL
8821                          && type->integer_type()->is_unsigned())
8822                   {
8823                     static tree print_uint64_fndecl;
8824                     pfndecl = &print_uint64_fndecl;
8825                     fnname = "__go_print_uint64";
8826                     Type* itype = Type::lookup_integer_type("uint64");
8827                     Btype* bitype = itype->get_backend(gogo);
8828                     arg = fold_convert_loc(location.gcc_location(),
8829                                            type_to_tree(bitype), arg);
8830                   }
8831                 else if (type->integer_type() != NULL)
8832                   {
8833                     static tree print_int64_fndecl;
8834                     pfndecl = &print_int64_fndecl;
8835                     fnname = "__go_print_int64";
8836                     Type* itype = Type::lookup_integer_type("int64");
8837                     Btype* bitype = itype->get_backend(gogo);
8838                     arg = fold_convert_loc(location.gcc_location(),
8839                                            type_to_tree(bitype), arg);
8840                   }
8841                 else if (type->float_type() != NULL)
8842                   {
8843                     static tree print_double_fndecl;
8844                     pfndecl = &print_double_fndecl;
8845                     fnname = "__go_print_double";
8846                     arg = fold_convert_loc(location.gcc_location(),
8847                                            double_type_node, arg);
8848                   }
8849                 else if (type->complex_type() != NULL)
8850                   {
8851                     static tree print_complex_fndecl;
8852                     pfndecl = &print_complex_fndecl;
8853                     fnname = "__go_print_complex";
8854                     arg = fold_convert_loc(location.gcc_location(),
8855                                            complex_double_type_node, arg);
8856                   }
8857                 else if (type->is_boolean_type())
8858                   {
8859                     static tree print_bool_fndecl;
8860                     pfndecl = &print_bool_fndecl;
8861                     fnname = "__go_print_bool";
8862                   }
8863                 else if (type->points_to() != NULL
8864                          || type->channel_type() != NULL
8865                          || type->map_type() != NULL
8866                          || type->function_type() != NULL)
8867                   {
8868                     static tree print_pointer_fndecl;
8869                     pfndecl = &print_pointer_fndecl;
8870                     fnname = "__go_print_pointer";
8871                     arg = fold_convert_loc(location.gcc_location(),
8872                                            ptr_type_node, arg);
8873                   }
8874                 else if (type->interface_type() != NULL)
8875                   {
8876                     if (type->interface_type()->is_empty())
8877                       {
8878                         static tree print_empty_interface_fndecl;
8879                         pfndecl = &print_empty_interface_fndecl;
8880                         fnname = "__go_print_empty_interface";
8881                       }
8882                     else
8883                       {
8884                         static tree print_interface_fndecl;
8885                         pfndecl = &print_interface_fndecl;
8886                         fnname = "__go_print_interface";
8887                       }
8888                   }
8889                 else if (type->is_slice_type())
8890                   {
8891                     static tree print_slice_fndecl;
8892                     pfndecl = &print_slice_fndecl;
8893                     fnname = "__go_print_slice";
8894                   }
8895                 else
8896                   go_unreachable();
8897
8898                 tree call = Gogo::call_builtin(pfndecl,
8899                                                location,
8900                                                fnname,
8901                                                1,
8902                                                void_type_node,
8903                                                TREE_TYPE(arg),
8904                                                arg);
8905                 if (call == error_mark_node)
8906                   return error_mark_node;
8907                 append_to_statement_list(call, &stmt_list);
8908               }
8909           }
8910
8911         if (is_ln)
8912           {
8913             static tree print_nl_fndecl;
8914             tree call = Gogo::call_builtin(&print_nl_fndecl,
8915                                            location,
8916                                            "__go_print_nl",
8917                                            0,
8918                                            void_type_node);
8919             if (call == error_mark_node)
8920               return error_mark_node;
8921             append_to_statement_list(call, &stmt_list);
8922           }
8923
8924         return stmt_list;
8925       }
8926
8927     case BUILTIN_PANIC:
8928       {
8929         const Expression_list* args = this->args();
8930         go_assert(args != NULL && args->size() == 1);
8931         Expression* arg = args->front();
8932         tree arg_tree = arg->get_tree(context);
8933         if (arg_tree == error_mark_node)
8934           return error_mark_node;
8935         Type *empty =
8936           Type::make_empty_interface_type(Linemap::predeclared_location());
8937         arg_tree = Expression::convert_for_assignment(context, empty,
8938                                                       arg->type(),
8939                                                       arg_tree, location);
8940         static tree panic_fndecl;
8941         tree call = Gogo::call_builtin(&panic_fndecl,
8942                                        location,
8943                                        "__go_panic",
8944                                        1,
8945                                        void_type_node,
8946                                        TREE_TYPE(arg_tree),
8947                                        arg_tree);
8948         if (call == error_mark_node)
8949           return error_mark_node;
8950         // This function will throw an exception.
8951         TREE_NOTHROW(panic_fndecl) = 0;
8952         // This function will not return.
8953         TREE_THIS_VOLATILE(panic_fndecl) = 1;
8954         return call;
8955       }
8956
8957     case BUILTIN_RECOVER:
8958       {
8959         // The argument is set when building recover thunks.  It's a
8960         // boolean value which is true if we can recover a value now.
8961         const Expression_list* args = this->args();
8962         go_assert(args != NULL && args->size() == 1);
8963         Expression* arg = args->front();
8964         tree arg_tree = arg->get_tree(context);
8965         if (arg_tree == error_mark_node)
8966           return error_mark_node;
8967
8968         Type *empty =
8969           Type::make_empty_interface_type(Linemap::predeclared_location());
8970         tree empty_tree = type_to_tree(empty->get_backend(context->gogo()));
8971
8972         Type* nil_type = Type::make_nil_type();
8973         Expression* nil = Expression::make_nil(location);
8974         tree nil_tree = nil->get_tree(context);
8975         tree empty_nil_tree = Expression::convert_for_assignment(context,
8976                                                                  empty,
8977                                                                  nil_type,
8978                                                                  nil_tree,
8979                                                                  location);
8980
8981         // We need to handle a deferred call to recover specially,
8982         // because it changes whether it can recover a panic or not.
8983         // See test7 in test/recover1.go.
8984         tree call;
8985         if (this->is_deferred())
8986           {
8987             static tree deferred_recover_fndecl;
8988             call = Gogo::call_builtin(&deferred_recover_fndecl,
8989                                       location,
8990                                       "__go_deferred_recover",
8991                                       0,
8992                                       empty_tree);
8993           }
8994         else
8995           {
8996             static tree recover_fndecl;
8997             call = Gogo::call_builtin(&recover_fndecl,
8998                                       location,
8999                                       "__go_recover",
9000                                       0,
9001                                       empty_tree);
9002           }
9003         if (call == error_mark_node)
9004           return error_mark_node;
9005         return fold_build3_loc(location.gcc_location(), COND_EXPR, empty_tree,
9006                                arg_tree, call, empty_nil_tree);
9007       }
9008
9009     case BUILTIN_CLOSE:
9010       {
9011         const Expression_list* args = this->args();
9012         go_assert(args != NULL && args->size() == 1);
9013         Expression* arg = args->front();
9014         tree arg_tree = arg->get_tree(context);
9015         if (arg_tree == error_mark_node)
9016           return error_mark_node;
9017         static tree close_fndecl;
9018         return Gogo::call_builtin(&close_fndecl,
9019                                   location,
9020                                   "__go_builtin_close",
9021                                   1,
9022                                   void_type_node,
9023                                   TREE_TYPE(arg_tree),
9024                                   arg_tree);
9025       }
9026
9027     case BUILTIN_SIZEOF:
9028     case BUILTIN_OFFSETOF:
9029     case BUILTIN_ALIGNOF:
9030       {
9031         mpz_t val;
9032         mpz_init(val);
9033         Type* dummy;
9034         bool b = this->integer_constant_value(true, val, &dummy);
9035         if (!b)
9036           {
9037             go_assert(saw_errors());
9038             return error_mark_node;
9039           }
9040         Type* int_type = Type::lookup_integer_type("int");
9041         tree type = type_to_tree(int_type->get_backend(gogo));
9042         tree ret = Expression::integer_constant_tree(val, type);
9043         mpz_clear(val);
9044         return ret;
9045       }
9046
9047     case BUILTIN_COPY:
9048       {
9049         const Expression_list* args = this->args();
9050         go_assert(args != NULL && args->size() == 2);
9051         Expression* arg1 = args->front();
9052         Expression* arg2 = args->back();
9053
9054         tree arg1_tree = arg1->get_tree(context);
9055         tree arg2_tree = arg2->get_tree(context);
9056         if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
9057           return error_mark_node;
9058
9059         Type* arg1_type = arg1->type();
9060         Array_type* at = arg1_type->array_type();
9061         arg1_tree = save_expr(arg1_tree);
9062         tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
9063         tree arg1_len = at->length_tree(gogo, arg1_tree);
9064         if (arg1_val == error_mark_node || arg1_len == error_mark_node)
9065           return error_mark_node;
9066
9067         Type* arg2_type = arg2->type();
9068         tree arg2_val;
9069         tree arg2_len;
9070         if (arg2_type->is_slice_type())
9071           {
9072             at = arg2_type->array_type();
9073             arg2_tree = save_expr(arg2_tree);
9074             arg2_val = at->value_pointer_tree(gogo, arg2_tree);
9075             arg2_len = at->length_tree(gogo, arg2_tree);
9076           }
9077         else
9078           {
9079             arg2_tree = save_expr(arg2_tree);
9080             arg2_val = String_type::bytes_tree(gogo, arg2_tree);
9081             arg2_len = String_type::length_tree(gogo, arg2_tree);
9082           }
9083         if (arg2_val == error_mark_node || arg2_len == error_mark_node)
9084           return error_mark_node;
9085
9086         arg1_len = save_expr(arg1_len);
9087         arg2_len = save_expr(arg2_len);
9088         tree len = fold_build3_loc(location.gcc_location(), COND_EXPR,
9089                                    TREE_TYPE(arg1_len),
9090                                    fold_build2_loc(location.gcc_location(),
9091                                                    LT_EXPR, boolean_type_node,
9092                                                    arg1_len, arg2_len),
9093                                    arg1_len, arg2_len);
9094         len = save_expr(len);
9095
9096         Type* element_type = at->element_type();
9097         Btype* element_btype = element_type->get_backend(gogo);
9098         tree element_type_tree = type_to_tree(element_btype);
9099         if (element_type_tree == error_mark_node)
9100           return error_mark_node;
9101         tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9102         tree bytecount = fold_convert_loc(location.gcc_location(),
9103                                           TREE_TYPE(element_size), len);
9104         bytecount = fold_build2_loc(location.gcc_location(), MULT_EXPR,
9105                                     TREE_TYPE(element_size),
9106                                     bytecount, element_size);
9107         bytecount = fold_convert_loc(location.gcc_location(), size_type_node,
9108                                      bytecount);
9109
9110         arg1_val = fold_convert_loc(location.gcc_location(), ptr_type_node,
9111                                     arg1_val);
9112         arg2_val = fold_convert_loc(location.gcc_location(), ptr_type_node,
9113                                     arg2_val);
9114
9115         static tree copy_fndecl;
9116         tree call = Gogo::call_builtin(&copy_fndecl,
9117                                        location,
9118                                        "__go_copy",
9119                                        3,
9120                                        void_type_node,
9121                                        ptr_type_node,
9122                                        arg1_val,
9123                                        ptr_type_node,
9124                                        arg2_val,
9125                                        size_type_node,
9126                                        bytecount);
9127         if (call == error_mark_node)
9128           return error_mark_node;
9129
9130         return fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
9131                                TREE_TYPE(len), call, len);
9132       }
9133
9134     case BUILTIN_APPEND:
9135       {
9136         const Expression_list* args = this->args();
9137         go_assert(args != NULL && args->size() == 2);
9138         Expression* arg1 = args->front();
9139         Expression* arg2 = args->back();
9140
9141         tree arg1_tree = arg1->get_tree(context);
9142         tree arg2_tree = arg2->get_tree(context);
9143         if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
9144           return error_mark_node;
9145
9146         Array_type* at = arg1->type()->array_type();
9147         Type* element_type = at->element_type()->forwarded();
9148
9149         tree arg2_val;
9150         tree arg2_len;
9151         tree element_size;
9152         if (arg2->type()->is_string_type()
9153             && element_type->integer_type() != NULL
9154             && element_type->integer_type()->is_byte())
9155           {
9156             arg2_tree = save_expr(arg2_tree);
9157             arg2_val = String_type::bytes_tree(gogo, arg2_tree);
9158             arg2_len = String_type::length_tree(gogo, arg2_tree);
9159             element_size = size_int(1);
9160           }
9161         else
9162           {
9163             arg2_tree = Expression::convert_for_assignment(context, at,
9164                                                            arg2->type(),
9165                                                            arg2_tree,
9166                                                            location);
9167             if (arg2_tree == error_mark_node)
9168               return error_mark_node;
9169
9170             arg2_tree = save_expr(arg2_tree);
9171
9172              arg2_val = at->value_pointer_tree(gogo, arg2_tree);
9173              arg2_len = at->length_tree(gogo, arg2_tree);
9174
9175              Btype* element_btype = element_type->get_backend(gogo);
9176              tree element_type_tree = type_to_tree(element_btype);
9177              if (element_type_tree == error_mark_node)
9178                return error_mark_node;
9179              element_size = TYPE_SIZE_UNIT(element_type_tree);
9180           }
9181
9182         arg2_val = fold_convert_loc(location.gcc_location(), ptr_type_node,
9183                                     arg2_val);
9184         arg2_len = fold_convert_loc(location.gcc_location(), size_type_node,
9185                                     arg2_len);
9186         element_size = fold_convert_loc(location.gcc_location(), size_type_node,
9187                                         element_size);
9188
9189         if (arg2_val == error_mark_node
9190             || arg2_len == error_mark_node
9191             || element_size == error_mark_node)
9192           return error_mark_node;
9193
9194         // We rebuild the decl each time since the slice types may
9195         // change.
9196         tree append_fndecl = NULL_TREE;
9197         return Gogo::call_builtin(&append_fndecl,
9198                                   location,
9199                                   "__go_append",
9200                                   4,
9201                                   TREE_TYPE(arg1_tree),
9202                                   TREE_TYPE(arg1_tree),
9203                                   arg1_tree,
9204                                   ptr_type_node,
9205                                   arg2_val,
9206                                   size_type_node,
9207                                   arg2_len,
9208                                   size_type_node,
9209                                   element_size);
9210       }
9211
9212     case BUILTIN_REAL:
9213     case BUILTIN_IMAG:
9214       {
9215         const Expression_list* args = this->args();
9216         go_assert(args != NULL && args->size() == 1);
9217         Expression* arg = args->front();
9218         tree arg_tree = arg->get_tree(context);
9219         if (arg_tree == error_mark_node)
9220           return error_mark_node;
9221         go_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
9222         if (this->code_ == BUILTIN_REAL)
9223           return fold_build1_loc(location.gcc_location(), REALPART_EXPR,
9224                                  TREE_TYPE(TREE_TYPE(arg_tree)),
9225                                  arg_tree);
9226         else
9227           return fold_build1_loc(location.gcc_location(), IMAGPART_EXPR,
9228                                  TREE_TYPE(TREE_TYPE(arg_tree)),
9229                                  arg_tree);
9230       }
9231
9232     case BUILTIN_COMPLEX:
9233       {
9234         const Expression_list* args = this->args();
9235         go_assert(args != NULL && args->size() == 2);
9236         tree r = args->front()->get_tree(context);
9237         tree i = args->back()->get_tree(context);
9238         if (r == error_mark_node || i == error_mark_node)
9239           return error_mark_node;
9240         go_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
9241                    == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
9242         go_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
9243         return fold_build2_loc(location.gcc_location(), COMPLEX_EXPR,
9244                                build_complex_type(TREE_TYPE(r)),
9245                                r, i);
9246       }
9247
9248     default:
9249       go_unreachable();
9250     }
9251 }
9252
9253 // We have to support exporting a builtin call expression, because
9254 // code can set a constant to the result of a builtin expression.
9255
9256 void
9257 Builtin_call_expression::do_export(Export* exp) const
9258 {
9259   bool ok = false;
9260
9261   mpz_t val;
9262   mpz_init(val);
9263   Type* dummy;
9264   if (this->integer_constant_value(true, val, &dummy))
9265     {
9266       Integer_expression::export_integer(exp, val);
9267       ok = true;
9268     }
9269   mpz_clear(val);
9270
9271   if (!ok)
9272     {
9273       mpfr_t fval;
9274       mpfr_init(fval);
9275       if (this->float_constant_value(fval, &dummy))
9276         {
9277           Float_expression::export_float(exp, fval);
9278           ok = true;
9279         }
9280       mpfr_clear(fval);
9281     }
9282
9283   if (!ok)
9284     {
9285       mpfr_t real;
9286       mpfr_t imag;
9287       mpfr_init(real);
9288       mpfr_init(imag);
9289       if (this->complex_constant_value(real, imag, &dummy))
9290         {
9291           Complex_expression::export_complex(exp, real, imag);
9292           ok = true;
9293         }
9294       mpfr_clear(real);
9295       mpfr_clear(imag);
9296     }
9297
9298   if (!ok)
9299     {
9300       error_at(this->location(), "value is not constant");
9301       return;
9302     }
9303
9304   // A trailing space lets us reliably identify the end of the number.
9305   exp->write_c_string(" ");
9306 }
9307
9308 // Class Call_expression.
9309
9310 // Traversal.
9311
9312 int
9313 Call_expression::do_traverse(Traverse* traverse)
9314 {
9315   if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
9316     return TRAVERSE_EXIT;
9317   if (this->args_ != NULL)
9318     {
9319       if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
9320         return TRAVERSE_EXIT;
9321     }
9322   return TRAVERSE_CONTINUE;
9323 }
9324
9325 // Lower a call statement.
9326
9327 Expression*
9328 Call_expression::do_lower(Gogo* gogo, Named_object* function,
9329                           Statement_inserter* inserter, int)
9330 {
9331   Location loc = this->location();
9332
9333   // A type cast can look like a function call.
9334   if (this->fn_->is_type_expression()
9335       && this->args_ != NULL
9336       && this->args_->size() == 1)
9337     return Expression::make_cast(this->fn_->type(), this->args_->front(),
9338                                  loc);
9339
9340   // Recognize a call to a builtin function.
9341   Func_expression* fne = this->fn_->func_expression();
9342   if (fne != NULL
9343       && fne->named_object()->is_function_declaration()
9344       && fne->named_object()->func_declaration_value()->type()->is_builtin())
9345     return new Builtin_call_expression(gogo, this->fn_, this->args_,
9346                                        this->is_varargs_, loc);
9347
9348   // Handle an argument which is a call to a function which returns
9349   // multiple results.
9350   if (this->args_ != NULL
9351       && this->args_->size() == 1
9352       && this->args_->front()->call_expression() != NULL
9353       && this->fn_->type()->function_type() != NULL)
9354     {
9355       Function_type* fntype = this->fn_->type()->function_type();
9356       size_t rc = this->args_->front()->call_expression()->result_count();
9357       if (rc > 1
9358           && fntype->parameters() != NULL
9359           && (fntype->parameters()->size() == rc
9360               || (fntype->is_varargs()
9361                   && fntype->parameters()->size() - 1 <= rc)))
9362         {
9363           Call_expression* call = this->args_->front()->call_expression();
9364           Expression_list* args = new Expression_list;
9365           for (size_t i = 0; i < rc; ++i)
9366             args->push_back(Expression::make_call_result(call, i));
9367           // We can't return a new call expression here, because this
9368           // one may be referenced by Call_result expressions.  We
9369           // also can't delete the old arguments, because we may still
9370           // traverse them somewhere up the call stack.  FIXME.
9371           this->args_ = args;
9372         }
9373     }
9374
9375   // If this call returns multiple results, create a temporary
9376   // variable for each result.
9377   size_t rc = this->result_count();
9378   if (rc > 1 && this->results_ == NULL)
9379     {
9380       std::vector<Temporary_statement*>* temps =
9381         new std::vector<Temporary_statement*>;
9382       temps->reserve(rc);
9383       const Typed_identifier_list* results =
9384         this->fn_->type()->function_type()->results();
9385       for (Typed_identifier_list::const_iterator p = results->begin();
9386            p != results->end();
9387            ++p)
9388         {
9389           Temporary_statement* temp = Statement::make_temporary(p->type(),
9390                                                                 NULL, loc);
9391           inserter->insert(temp);
9392           temps->push_back(temp);
9393         }
9394       this->results_ = temps;
9395     }
9396
9397   // Handle a call to a varargs function by packaging up the extra
9398   // parameters.
9399   if (this->fn_->type()->function_type() != NULL
9400       && this->fn_->type()->function_type()->is_varargs())
9401     {
9402       Function_type* fntype = this->fn_->type()->function_type();
9403       const Typed_identifier_list* parameters = fntype->parameters();
9404       go_assert(parameters != NULL && !parameters->empty());
9405       Type* varargs_type = parameters->back().type();
9406       this->lower_varargs(gogo, function, inserter, varargs_type,
9407                           parameters->size());
9408     }
9409
9410   // If this is call to a method, call the method directly passing the
9411   // object as the first parameter.
9412   Bound_method_expression* bme = this->fn_->bound_method_expression();
9413   if (bme != NULL)
9414     {
9415       Named_object* method = bme->method();
9416       Expression* first_arg = bme->first_argument();
9417
9418       // We always pass a pointer when calling a method.
9419       if (first_arg->type()->points_to() == NULL
9420           && !first_arg->type()->is_error())
9421         {
9422           first_arg = Expression::make_unary(OPERATOR_AND, first_arg, loc);
9423           // We may need to create a temporary variable so that we can
9424           // take the address.  We can't do that here because it will
9425           // mess up the order of evaluation.
9426           Unary_expression* ue = static_cast<Unary_expression*>(first_arg);
9427           ue->set_create_temp();
9428         }
9429
9430       // If we are calling a method which was inherited from an
9431       // embedded struct, and the method did not get a stub, then the
9432       // first type may be wrong.
9433       Type* fatype = bme->first_argument_type();
9434       if (fatype != NULL)
9435         {
9436           if (fatype->points_to() == NULL)
9437             fatype = Type::make_pointer_type(fatype);
9438           first_arg = Expression::make_unsafe_cast(fatype, first_arg, loc);
9439         }
9440
9441       Expression_list* new_args = new Expression_list();
9442       new_args->push_back(first_arg);
9443       if (this->args_ != NULL)
9444         {
9445           for (Expression_list::const_iterator p = this->args_->begin();
9446                p != this->args_->end();
9447                ++p)
9448             new_args->push_back(*p);
9449         }
9450
9451       // We have to change in place because this structure may be
9452       // referenced by Call_result_expressions.  We can't delete the
9453       // old arguments, because we may be traversing them up in some
9454       // caller.  FIXME.
9455       this->args_ = new_args;
9456       this->fn_ = Expression::make_func_reference(method, NULL,
9457                                                   bme->location());
9458     }
9459
9460   return this;
9461 }
9462
9463 // Lower a call to a varargs function.  FUNCTION is the function in
9464 // which the call occurs--it's not the function we are calling.
9465 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
9466 // PARAM_COUNT is the number of parameters of the function we are
9467 // calling; the last of these parameters will be the varargs
9468 // parameter.
9469
9470 void
9471 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
9472                                Statement_inserter* inserter,
9473                                Type* varargs_type, size_t param_count)
9474 {
9475   if (this->varargs_are_lowered_)
9476     return;
9477
9478   Location loc = this->location();
9479
9480   go_assert(param_count > 0);
9481   go_assert(varargs_type->is_slice_type());
9482
9483   size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
9484   if (arg_count < param_count - 1)
9485     {
9486       // Not enough arguments; will be caught in check_types.
9487       return;
9488     }
9489
9490   Expression_list* old_args = this->args_;
9491   Expression_list* new_args = new Expression_list();
9492   bool push_empty_arg = false;
9493   if (old_args == NULL || old_args->empty())
9494     {
9495       go_assert(param_count == 1);
9496       push_empty_arg = true;
9497     }
9498   else
9499     {
9500       Expression_list::const_iterator pa;
9501       int i = 1;
9502       for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
9503         {
9504           if (static_cast<size_t>(i) == param_count)
9505             break;
9506           new_args->push_back(*pa);
9507         }
9508
9509       // We have reached the varargs parameter.
9510
9511       bool issued_error = false;
9512       if (pa == old_args->end())
9513         push_empty_arg = true;
9514       else if (pa + 1 == old_args->end() && this->is_varargs_)
9515         new_args->push_back(*pa);
9516       else if (this->is_varargs_)
9517         {
9518           this->report_error(_("too many arguments"));
9519           return;
9520         }
9521       else
9522         {
9523           Type* element_type = varargs_type->array_type()->element_type();
9524           Expression_list* vals = new Expression_list;
9525           for (; pa != old_args->end(); ++pa, ++i)
9526             {
9527               // Check types here so that we get a better message.
9528               Type* patype = (*pa)->type();
9529               Location paloc = (*pa)->location();
9530               if (!this->check_argument_type(i, element_type, patype,
9531                                              paloc, issued_error))
9532                 continue;
9533               vals->push_back(*pa);
9534             }
9535           Expression* val =
9536             Expression::make_slice_composite_literal(varargs_type, vals, loc);
9537           gogo->lower_expression(function, inserter, &val);
9538           new_args->push_back(val);
9539         }
9540     }
9541
9542   if (push_empty_arg)
9543     new_args->push_back(Expression::make_nil(loc));
9544
9545   // We can't return a new call expression here, because this one may
9546   // be referenced by Call_result expressions.  FIXME.  We can't
9547   // delete OLD_ARGS because we may have both a Call_expression and a
9548   // Builtin_call_expression which refer to them.  FIXME.
9549   this->args_ = new_args;
9550   this->varargs_are_lowered_ = true;
9551 }
9552
9553 // Get the function type.  This can return NULL in error cases.
9554
9555 Function_type*
9556 Call_expression::get_function_type() const
9557 {
9558   return this->fn_->type()->function_type();
9559 }
9560
9561 // Return the number of values which this call will return.
9562
9563 size_t
9564 Call_expression::result_count() const
9565 {
9566   const Function_type* fntype = this->get_function_type();
9567   if (fntype == NULL)
9568     return 0;
9569   if (fntype->results() == NULL)
9570     return 0;
9571   return fntype->results()->size();
9572 }
9573
9574 // Return the temporary which holds a result.
9575
9576 Temporary_statement*
9577 Call_expression::result(size_t i) const
9578 {
9579   go_assert(this->results_ != NULL
9580             && this->results_->size() > i);
9581   return (*this->results_)[i];
9582 }
9583
9584 // Return whether this is a call to the predeclared function recover.
9585
9586 bool
9587 Call_expression::is_recover_call() const
9588 {
9589   return this->do_is_recover_call();
9590 }
9591
9592 // Set the argument to the recover function.
9593
9594 void
9595 Call_expression::set_recover_arg(Expression* arg)
9596 {
9597   this->do_set_recover_arg(arg);
9598 }
9599
9600 // Virtual functions also implemented by Builtin_call_expression.
9601
9602 bool
9603 Call_expression::do_is_recover_call() const
9604 {
9605   return false;
9606 }
9607
9608 void
9609 Call_expression::do_set_recover_arg(Expression*)
9610 {
9611   go_unreachable();
9612 }
9613
9614 // We have found an error with this call expression; return true if
9615 // we should report it.
9616
9617 bool
9618 Call_expression::issue_error()
9619 {
9620   if (this->issued_error_)
9621     return false;
9622   else
9623     {
9624       this->issued_error_ = true;
9625       return true;
9626     }
9627 }
9628
9629 // Get the type.
9630
9631 Type*
9632 Call_expression::do_type()
9633 {
9634   if (this->type_ != NULL)
9635     return this->type_;
9636
9637   Type* ret;
9638   Function_type* fntype = this->get_function_type();
9639   if (fntype == NULL)
9640     return Type::make_error_type();
9641
9642   const Typed_identifier_list* results = fntype->results();
9643   if (results == NULL)
9644     ret = Type::make_void_type();
9645   else if (results->size() == 1)
9646     ret = results->begin()->type();
9647   else
9648     ret = Type::make_call_multiple_result_type(this);
9649
9650   this->type_ = ret;
9651
9652   return this->type_;
9653 }
9654
9655 // Determine types for a call expression.  We can use the function
9656 // parameter types to set the types of the arguments.
9657
9658 void
9659 Call_expression::do_determine_type(const Type_context*)
9660 {
9661   if (!this->determining_types())
9662     return;
9663
9664   this->fn_->determine_type_no_context();
9665   Function_type* fntype = this->get_function_type();
9666   const Typed_identifier_list* parameters = NULL;
9667   if (fntype != NULL)
9668     parameters = fntype->parameters();
9669   if (this->args_ != NULL)
9670     {
9671       Typed_identifier_list::const_iterator pt;
9672       if (parameters != NULL)
9673         pt = parameters->begin();
9674       bool first = true;
9675       for (Expression_list::const_iterator pa = this->args_->begin();
9676            pa != this->args_->end();
9677            ++pa)
9678         {
9679           if (first)
9680             {
9681               first = false;
9682               // If this is a method, the first argument is the
9683               // receiver.
9684               if (fntype != NULL && fntype->is_method())
9685                 {
9686                   Type* rtype = fntype->receiver()->type();
9687                   // The receiver is always passed as a pointer.
9688                   if (rtype->points_to() == NULL)
9689                     rtype = Type::make_pointer_type(rtype);
9690                   Type_context subcontext(rtype, false);
9691                   (*pa)->determine_type(&subcontext);
9692                   continue;
9693                 }
9694             }
9695
9696           if (parameters != NULL && pt != parameters->end())
9697             {
9698               Type_context subcontext(pt->type(), false);
9699               (*pa)->determine_type(&subcontext);
9700               ++pt;
9701             }
9702           else
9703             (*pa)->determine_type_no_context();
9704         }
9705     }
9706 }
9707
9708 // Called when determining types for a Call_expression.  Return true
9709 // if we should go ahead, false if they have already been determined.
9710
9711 bool
9712 Call_expression::determining_types()
9713 {
9714   if (this->types_are_determined_)
9715     return false;
9716   else
9717     {
9718       this->types_are_determined_ = true;
9719       return true;
9720     }
9721 }
9722
9723 // Check types for parameter I.
9724
9725 bool
9726 Call_expression::check_argument_type(int i, const Type* parameter_type,
9727                                      const Type* argument_type,
9728                                      Location argument_location,
9729                                      bool issued_error)
9730 {
9731   std::string reason;
9732   bool ok;
9733   if (this->are_hidden_fields_ok_)
9734     ok = Type::are_assignable_hidden_ok(parameter_type, argument_type,
9735                                         &reason);
9736   else
9737     ok = Type::are_assignable(parameter_type, argument_type, &reason);
9738   if (!ok)
9739     {
9740       if (!issued_error)
9741         {
9742           if (reason.empty())
9743             error_at(argument_location, "argument %d has incompatible type", i);
9744           else
9745             error_at(argument_location,
9746                      "argument %d has incompatible type (%s)",
9747                      i, reason.c_str());
9748         }
9749       this->set_is_error();
9750       return false;
9751     }
9752   return true;
9753 }
9754
9755 // Check types.
9756
9757 void
9758 Call_expression::do_check_types(Gogo*)
9759 {
9760   Function_type* fntype = this->get_function_type();
9761   if (fntype == NULL)
9762     {
9763       if (!this->fn_->type()->is_error())
9764         this->report_error(_("expected function"));
9765       return;
9766     }
9767
9768   bool is_method = fntype->is_method();
9769   if (is_method)
9770     {
9771       go_assert(this->args_ != NULL && !this->args_->empty());
9772       Type* rtype = fntype->receiver()->type();
9773       Expression* first_arg = this->args_->front();
9774       // The language permits copying hidden fields for a method
9775       // receiver.  We dereference the values since receivers are
9776       // always passed as pointers.
9777       std::string reason;
9778       if (!Type::are_assignable_hidden_ok(rtype->deref(),
9779                                           first_arg->type()->deref(),
9780                                           &reason))
9781         {
9782           if (reason.empty())
9783             this->report_error(_("incompatible type for receiver"));
9784           else
9785             {
9786               error_at(this->location(),
9787                        "incompatible type for receiver (%s)",
9788                        reason.c_str());
9789               this->set_is_error();
9790             }
9791         }
9792     }
9793
9794   // Note that varargs was handled by the lower_varargs() method, so
9795   // we don't have to worry about it here.
9796
9797   const Typed_identifier_list* parameters = fntype->parameters();
9798   if (this->args_ == NULL)
9799     {
9800       if (parameters != NULL && !parameters->empty())
9801         this->report_error(_("not enough arguments"));
9802     }
9803   else if (parameters == NULL)
9804     {
9805       if (!is_method || this->args_->size() > 1)
9806         this->report_error(_("too many arguments"));
9807     }
9808   else
9809     {
9810       int i = 0;
9811       Expression_list::const_iterator pa = this->args_->begin();
9812       if (is_method)
9813         ++pa;
9814       for (Typed_identifier_list::const_iterator pt = parameters->begin();
9815            pt != parameters->end();
9816            ++pt, ++pa, ++i)
9817         {
9818           if (pa == this->args_->end())
9819             {
9820               this->report_error(_("not enough arguments"));
9821               return;
9822             }
9823           this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
9824                                     (*pa)->location(), false);
9825         }
9826       if (pa != this->args_->end())
9827         this->report_error(_("too many arguments"));
9828     }
9829 }
9830
9831 // Return whether we have to use a temporary variable to ensure that
9832 // we evaluate this call expression in order.  If the call returns no
9833 // results then it will inevitably be executed last.
9834
9835 bool
9836 Call_expression::do_must_eval_in_order() const
9837 {
9838   return this->result_count() > 0;
9839 }
9840
9841 // Get the function and the first argument to use when calling an
9842 // interface method.
9843
9844 tree
9845 Call_expression::interface_method_function(
9846     Translate_context* context,
9847     Interface_field_reference_expression* interface_method,
9848     tree* first_arg_ptr)
9849 {
9850   tree expr = interface_method->expr()->get_tree(context);
9851   if (expr == error_mark_node)
9852     return error_mark_node;
9853   expr = save_expr(expr);
9854   tree first_arg = interface_method->get_underlying_object_tree(context, expr);
9855   if (first_arg == error_mark_node)
9856     return error_mark_node;
9857   *first_arg_ptr = first_arg;
9858   return interface_method->get_function_tree(context, expr);
9859 }
9860
9861 // Build the call expression.
9862
9863 tree
9864 Call_expression::do_get_tree(Translate_context* context)
9865 {
9866   if (this->tree_ != NULL_TREE)
9867     return this->tree_;
9868
9869   Function_type* fntype = this->get_function_type();
9870   if (fntype == NULL)
9871     return error_mark_node;
9872
9873   if (this->fn_->is_error_expression())
9874     return error_mark_node;
9875
9876   Gogo* gogo = context->gogo();
9877   Location location = this->location();
9878
9879   Func_expression* func = this->fn_->func_expression();
9880   Interface_field_reference_expression* interface_method =
9881     this->fn_->interface_field_reference_expression();
9882   const bool has_closure = func != NULL && func->closure() != NULL;
9883   const bool is_interface_method = interface_method != NULL;
9884
9885   int nargs;
9886   tree* args;
9887   if (this->args_ == NULL || this->args_->empty())
9888     {
9889       nargs = is_interface_method ? 1 : 0;
9890       args = nargs == 0 ? NULL : new tree[nargs];
9891     }
9892   else if (fntype->parameters() == NULL || fntype->parameters()->empty())
9893     {
9894       // Passing a receiver parameter.
9895       go_assert(!is_interface_method
9896                 && fntype->is_method()
9897                 && this->args_->size() == 1);
9898       nargs = 1;
9899       args = new tree[nargs];
9900       args[0] = this->args_->front()->get_tree(context);
9901     }
9902   else
9903     {
9904       const Typed_identifier_list* params = fntype->parameters();
9905
9906       nargs = this->args_->size();
9907       int i = is_interface_method ? 1 : 0;
9908       nargs += i;
9909       args = new tree[nargs];
9910
9911       Typed_identifier_list::const_iterator pp = params->begin();
9912       Expression_list::const_iterator pe = this->args_->begin();
9913       if (!is_interface_method && fntype->is_method())
9914         {
9915           args[i] = (*pe)->get_tree(context);
9916           ++pe;
9917           ++i;
9918         }
9919       for (; pe != this->args_->end(); ++pe, ++pp, ++i)
9920         {
9921           go_assert(pp != params->end());
9922           tree arg_val = (*pe)->get_tree(context);
9923           args[i] = Expression::convert_for_assignment(context,
9924                                                        pp->type(),
9925                                                        (*pe)->type(),
9926                                                        arg_val,
9927                                                        location);
9928           if (args[i] == error_mark_node)
9929             {
9930               delete[] args;
9931               return error_mark_node;
9932             }
9933         }
9934       go_assert(pp == params->end());
9935       go_assert(i == nargs);
9936     }
9937
9938   tree rettype = TREE_TYPE(TREE_TYPE(type_to_tree(fntype->get_backend(gogo))));
9939   if (rettype == error_mark_node)
9940     {
9941       delete[] args;
9942       return error_mark_node;
9943     }
9944
9945   tree fn;
9946   if (has_closure)
9947     fn = func->get_tree_without_closure(gogo);
9948   else if (!is_interface_method)
9949     fn = this->fn_->get_tree(context);
9950   else
9951     fn = this->interface_method_function(context, interface_method, &args[0]);
9952
9953   if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
9954     {
9955       delete[] args;
9956       return error_mark_node;
9957     }
9958
9959   tree fndecl = fn;
9960   if (TREE_CODE(fndecl) == ADDR_EXPR)
9961     fndecl = TREE_OPERAND(fndecl, 0);
9962
9963   // Add a type cast in case the type of the function is a recursive
9964   // type which refers to itself.
9965   if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl))
9966     {
9967       tree fnt = type_to_tree(fntype->get_backend(gogo));
9968       if (fnt == error_mark_node)
9969         return error_mark_node;
9970       fn = fold_convert_loc(location.gcc_location(), fnt, fn);
9971     }
9972
9973   // This is to support builtin math functions when using 80387 math.
9974   tree excess_type = NULL_TREE;
9975   if (TREE_CODE(fndecl) == FUNCTION_DECL
9976       && DECL_IS_BUILTIN(fndecl)
9977       && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
9978       && nargs > 0
9979       && ((SCALAR_FLOAT_TYPE_P(rettype)
9980            && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
9981           || (COMPLEX_FLOAT_TYPE_P(rettype)
9982               && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
9983     {
9984       excess_type = excess_precision_type(TREE_TYPE(args[0]));
9985       if (excess_type != NULL_TREE)
9986         {
9987           tree excess_fndecl = mathfn_built_in(excess_type,
9988                                                DECL_FUNCTION_CODE(fndecl));
9989           if (excess_fndecl == NULL_TREE)
9990             excess_type = NULL_TREE;
9991           else
9992             {
9993               fn = build_fold_addr_expr_loc(location.gcc_location(),
9994                                             excess_fndecl);
9995               for (int i = 0; i < nargs; ++i)
9996                 {
9997                   if (SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[i]))
9998                       || COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[i])))
9999                     args[i] = ::convert(excess_type, args[i]);
10000                 }
10001             }
10002         }
10003     }
10004
10005   tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
10006                               fn, nargs, args);
10007   delete[] args;
10008
10009   SET_EXPR_LOCATION(ret, location.gcc_location());
10010
10011   if (has_closure)
10012     {
10013       tree closure_tree = func->closure()->get_tree(context);
10014       if (closure_tree != error_mark_node)
10015         CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
10016     }
10017
10018   // If this is a recursive function type which returns itself, as in
10019   //   type F func() F
10020   // we have used ptr_type_node for the return type.  Add a cast here
10021   // to the correct type.
10022   if (TREE_TYPE(ret) == ptr_type_node)
10023     {
10024       tree t = type_to_tree(this->type()->base()->get_backend(gogo));
10025       ret = fold_convert_loc(location.gcc_location(), t, ret);
10026     }
10027
10028   if (excess_type != NULL_TREE)
10029     {
10030       // Calling convert here can undo our excess precision change.
10031       // That may or may not be a bug in convert_to_real.
10032       ret = build1(NOP_EXPR, rettype, ret);
10033     }
10034
10035   if (this->results_ != NULL)
10036     ret = this->set_results(context, ret);
10037
10038   this->tree_ = ret;
10039
10040   return ret;
10041 }
10042
10043 // Set the result variables if this call returns multiple results.
10044
10045 tree
10046 Call_expression::set_results(Translate_context* context, tree call_tree)
10047 {
10048   tree stmt_list = NULL_TREE;
10049
10050   call_tree = save_expr(call_tree);
10051
10052   if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
10053     {
10054       go_assert(saw_errors());
10055       return call_tree;
10056     }
10057
10058   Location loc = this->location();
10059   tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
10060   size_t rc = this->result_count();
10061   for (size_t i = 0; i < rc; ++i, field = DECL_CHAIN(field))
10062     {
10063       go_assert(field != NULL_TREE);
10064
10065       Temporary_statement* temp = this->result(i);
10066       Temporary_reference_expression* ref =
10067         Expression::make_temporary_reference(temp, loc);
10068       ref->set_is_lvalue();
10069       tree temp_tree = ref->get_tree(context);
10070       if (temp_tree == error_mark_node)
10071         continue;
10072
10073       tree val_tree = build3_loc(loc.gcc_location(), COMPONENT_REF,
10074                                  TREE_TYPE(field), call_tree, field, NULL_TREE);
10075       tree set_tree = build2_loc(loc.gcc_location(), MODIFY_EXPR,
10076                                  void_type_node, temp_tree, val_tree);
10077
10078       append_to_statement_list(set_tree, &stmt_list);
10079     }
10080   go_assert(field == NULL_TREE);
10081
10082   return save_expr(stmt_list);
10083 }
10084
10085 // Dump ast representation for a call expressin.
10086
10087 void
10088 Call_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
10089 {
10090   this->fn_->dump_expression(ast_dump_context);
10091   ast_dump_context->ostream() << "(";
10092   if (args_ != NULL)
10093     ast_dump_context->dump_expression_list(this->args_);
10094
10095   ast_dump_context->ostream() << ") ";
10096 }
10097
10098 // Make a call expression.
10099
10100 Call_expression*
10101 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
10102                       Location location)
10103 {
10104   return new Call_expression(fn, args, is_varargs, location);
10105 }
10106
10107 // A single result from a call which returns multiple results.
10108
10109 class Call_result_expression : public Expression
10110 {
10111  public:
10112   Call_result_expression(Call_expression* call, unsigned int index)
10113     : Expression(EXPRESSION_CALL_RESULT, call->location()),
10114       call_(call), index_(index)
10115   { }
10116
10117  protected:
10118   int
10119   do_traverse(Traverse*);
10120
10121   Type*
10122   do_type();
10123
10124   void
10125   do_determine_type(const Type_context*);
10126
10127   void
10128   do_check_types(Gogo*);
10129
10130   Expression*
10131   do_copy()
10132   {
10133     return new Call_result_expression(this->call_->call_expression(),
10134                                       this->index_);
10135   }
10136
10137   bool
10138   do_must_eval_in_order() const
10139   { return true; }
10140
10141   tree
10142   do_get_tree(Translate_context*);
10143
10144   void
10145   do_dump_expression(Ast_dump_context*) const;
10146
10147  private:
10148   // The underlying call expression.
10149   Expression* call_;
10150   // Which result we want.
10151   unsigned int index_;
10152 };
10153
10154 // Traverse a call result.
10155
10156 int
10157 Call_result_expression::do_traverse(Traverse* traverse)
10158 {
10159   if (traverse->remember_expression(this->call_))
10160     {
10161       // We have already traversed the call expression.
10162       return TRAVERSE_CONTINUE;
10163     }
10164   return Expression::traverse(&this->call_, traverse);
10165 }
10166
10167 // Get the type.
10168
10169 Type*
10170 Call_result_expression::do_type()
10171 {
10172   if (this->classification() == EXPRESSION_ERROR)
10173     return Type::make_error_type();
10174
10175   // THIS->CALL_ can be replaced with a temporary reference due to
10176   // Call_expression::do_must_eval_in_order when there is an error.
10177   Call_expression* ce = this->call_->call_expression();
10178   if (ce == NULL)
10179     {
10180       this->set_is_error();
10181       return Type::make_error_type();
10182     }
10183   Function_type* fntype = ce->get_function_type();
10184   if (fntype == NULL)
10185     {
10186       if (ce->issue_error())
10187         {
10188           if (!ce->fn()->type()->is_error())
10189             this->report_error(_("expected function"));
10190         }
10191       this->set_is_error();
10192       return Type::make_error_type();
10193     }
10194   const Typed_identifier_list* results = fntype->results();
10195   if (results == NULL || results->size() < 2)
10196     {
10197       if (ce->issue_error())
10198         this->report_error(_("number of results does not match "
10199                              "number of values"));
10200       return Type::make_error_type();
10201     }
10202   Typed_identifier_list::const_iterator pr = results->begin();
10203   for (unsigned int i = 0; i < this->index_; ++i)
10204     {
10205       if (pr == results->end())
10206         break;
10207       ++pr;
10208     }
10209   if (pr == results->end())
10210     {
10211       if (ce->issue_error())
10212         this->report_error(_("number of results does not match "
10213                              "number of values"));
10214       return Type::make_error_type();
10215     }
10216   return pr->type();
10217 }
10218
10219 // Check the type.  Just make sure that we trigger the warning in
10220 // do_type.
10221
10222 void
10223 Call_result_expression::do_check_types(Gogo*)
10224 {
10225   this->type();
10226 }
10227
10228 // Determine the type.  We have nothing to do here, but the 0 result
10229 // needs to pass down to the caller.
10230
10231 void
10232 Call_result_expression::do_determine_type(const Type_context*)
10233 {
10234   this->call_->determine_type_no_context();
10235 }
10236
10237 // Return the tree.  We just refer to the temporary set by the call
10238 // expression.  We don't do this at lowering time because it makes it
10239 // hard to evaluate the call at the right time.
10240
10241 tree
10242 Call_result_expression::do_get_tree(Translate_context* context)
10243 {
10244   Call_expression* ce = this->call_->call_expression();
10245   go_assert(ce != NULL);
10246   Temporary_statement* ts = ce->result(this->index_);
10247   Expression* ref = Expression::make_temporary_reference(ts, this->location());
10248   return ref->get_tree(context);
10249 }
10250
10251 // Dump ast representation for a call result expression.
10252
10253 void
10254 Call_result_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
10255     const
10256 {
10257   // FIXME: Wouldn't it be better if the call is assigned to a temporary 
10258   // (struct) and the fields are referenced instead.
10259   ast_dump_context->ostream() << this->index_ << "@(";
10260   ast_dump_context->dump_expression(this->call_);
10261   ast_dump_context->ostream() << ")";
10262 }
10263
10264 // Make a reference to a single result of a call which returns
10265 // multiple results.
10266
10267 Expression*
10268 Expression::make_call_result(Call_expression* call, unsigned int index)
10269 {
10270   return new Call_result_expression(call, index);
10271 }
10272
10273 // Class Index_expression.
10274
10275 // Traversal.
10276
10277 int
10278 Index_expression::do_traverse(Traverse* traverse)
10279 {
10280   if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
10281       || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
10282       || (this->end_ != NULL
10283           && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
10284     return TRAVERSE_EXIT;
10285   return TRAVERSE_CONTINUE;
10286 }
10287
10288 // Lower an index expression.  This converts the generic index
10289 // expression into an array index, a string index, or a map index.
10290
10291 Expression*
10292 Index_expression::do_lower(Gogo*, Named_object*, Statement_inserter*, int)
10293 {
10294   Location location = this->location();
10295   Expression* left = this->left_;
10296   Expression* start = this->start_;
10297   Expression* end = this->end_;
10298
10299   Type* type = left->type();
10300   if (type->is_error())
10301     return Expression::make_error(location);
10302   else if (left->is_type_expression())
10303     {
10304       error_at(location, "attempt to index type expression");
10305       return Expression::make_error(location);
10306     }
10307   else if (type->array_type() != NULL)
10308     return Expression::make_array_index(left, start, end, location);
10309   else if (type->points_to() != NULL
10310            && type->points_to()->array_type() != NULL
10311            && !type->points_to()->is_slice_type())
10312     {
10313       Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
10314                                                  location);
10315       return Expression::make_array_index(deref, start, end, location);
10316     }
10317   else if (type->is_string_type())
10318     return Expression::make_string_index(left, start, end, location);
10319   else if (type->map_type() != NULL)
10320     {
10321       if (end != NULL)
10322         {
10323           error_at(location, "invalid slice of map");
10324           return Expression::make_error(location);
10325         }
10326       Map_index_expression* ret = Expression::make_map_index(left, start,
10327                                                              location);
10328       if (this->is_lvalue_)
10329         ret->set_is_lvalue();
10330       return ret;
10331     }
10332   else
10333     {
10334       error_at(location,
10335                "attempt to index object which is not array, string, or map");
10336       return Expression::make_error(location);
10337     }
10338 }
10339
10340 // Write an indexed expression (expr[expr:expr] or expr[expr]) to a
10341 // dump context
10342
10343 void
10344 Index_expression::dump_index_expression(Ast_dump_context* ast_dump_context, 
10345                                         const Expression* expr, 
10346                                         const Expression* start,
10347                                         const Expression* end)
10348 {
10349   expr->dump_expression(ast_dump_context);
10350   ast_dump_context->ostream() << "[";
10351   start->dump_expression(ast_dump_context);
10352   if (end != NULL)
10353     {
10354       ast_dump_context->ostream() << ":";
10355       end->dump_expression(ast_dump_context);
10356     }
10357   ast_dump_context->ostream() << "]";
10358 }
10359
10360 // Dump ast representation for an index expression.
10361
10362 void
10363 Index_expression::do_dump_expression(Ast_dump_context* ast_dump_context) 
10364     const
10365 {
10366   Index_expression::dump_index_expression(ast_dump_context, this->left_, 
10367                                           this->start_, this->end_);
10368 }
10369
10370 // Make an index expression.
10371
10372 Expression*
10373 Expression::make_index(Expression* left, Expression* start, Expression* end,
10374                        Location location)
10375 {
10376   return new Index_expression(left, start, end, location);
10377 }
10378
10379 // An array index.  This is used for both indexing and slicing.
10380
10381 class Array_index_expression : public Expression
10382 {
10383  public:
10384   Array_index_expression(Expression* array, Expression* start,
10385                          Expression* end, Location location)
10386     : Expression(EXPRESSION_ARRAY_INDEX, location),
10387       array_(array), start_(start), end_(end), type_(NULL)
10388   { }
10389
10390  protected:
10391   int
10392   do_traverse(Traverse*);
10393
10394   Type*
10395   do_type();
10396
10397   void
10398   do_determine_type(const Type_context*);
10399
10400   void
10401   do_check_types(Gogo*);
10402
10403   Expression*
10404   do_copy()
10405   {
10406     return Expression::make_array_index(this->array_->copy(),
10407                                         this->start_->copy(),
10408                                         (this->end_ == NULL
10409                                          ? NULL
10410                                          : this->end_->copy()),
10411                                         this->location());
10412   }
10413
10414   bool
10415   do_must_eval_subexpressions_in_order(int* skip) const
10416   {
10417     *skip = 1;
10418     return true;
10419   }
10420
10421   bool
10422   do_is_addressable() const;
10423
10424   void
10425   do_address_taken(bool escapes)
10426   { this->array_->address_taken(escapes); }
10427
10428   tree
10429   do_get_tree(Translate_context*);
10430
10431   void
10432   do_dump_expression(Ast_dump_context*) const;
10433   
10434  private:
10435   // The array we are getting a value from.
10436   Expression* array_;
10437   // The start or only index.
10438   Expression* start_;
10439   // The end index of a slice.  This may be NULL for a simple array
10440   // index, or it may be a nil expression for the length of the array.
10441   Expression* end_;
10442   // The type of the expression.
10443   Type* type_;
10444 };
10445
10446 // Array index traversal.
10447
10448 int
10449 Array_index_expression::do_traverse(Traverse* traverse)
10450 {
10451   if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
10452     return TRAVERSE_EXIT;
10453   if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
10454     return TRAVERSE_EXIT;
10455   if (this->end_ != NULL)
10456     {
10457       if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
10458         return TRAVERSE_EXIT;
10459     }
10460   return TRAVERSE_CONTINUE;
10461 }
10462
10463 // Return the type of an array index.
10464
10465 Type*
10466 Array_index_expression::do_type()
10467 {
10468   if (this->type_ == NULL)
10469     {
10470      Array_type* type = this->array_->type()->array_type();
10471       if (type == NULL)
10472         this->type_ = Type::make_error_type();
10473       else if (this->end_ == NULL)
10474         this->type_ = type->element_type();
10475       else if (type->is_slice_type())
10476         {
10477           // A slice of a slice has the same type as the original
10478           // slice.
10479           this->type_ = this->array_->type()->deref();
10480         }
10481       else
10482         {
10483           // A slice of an array is a slice.
10484           this->type_ = Type::make_array_type(type->element_type(), NULL);
10485         }
10486     }
10487   return this->type_;
10488 }
10489
10490 // Set the type of an array index.
10491
10492 void
10493 Array_index_expression::do_determine_type(const Type_context*)
10494 {
10495   this->array_->determine_type_no_context();
10496   this->start_->determine_type_no_context();
10497   if (this->end_ != NULL)
10498     this->end_->determine_type_no_context();
10499 }
10500
10501 // Check types of an array index.
10502
10503 void
10504 Array_index_expression::do_check_types(Gogo*)
10505 {
10506   if (this->start_->type()->integer_type() == NULL)
10507     this->report_error(_("index must be integer"));
10508   if (this->end_ != NULL
10509       && this->end_->type()->integer_type() == NULL
10510       && !this->end_->type()->is_error()
10511       && !this->end_->is_nil_expression()
10512       && !this->end_->is_error_expression())
10513     this->report_error(_("slice end must be integer"));
10514
10515   Array_type* array_type = this->array_->type()->array_type();
10516   if (array_type == NULL)
10517     {
10518       go_assert(this->array_->type()->is_error());
10519       return;
10520     }
10521
10522   unsigned int int_bits =
10523     Type::lookup_integer_type("int")->integer_type()->bits();
10524
10525   Type* dummy;
10526   mpz_t lval;
10527   mpz_init(lval);
10528   bool lval_valid = (array_type->length() != NULL
10529                      && array_type->length()->integer_constant_value(true,
10530                                                                      lval,
10531                                                                      &dummy));
10532   mpz_t ival;
10533   mpz_init(ival);
10534   if (this->start_->integer_constant_value(true, ival, &dummy))
10535     {
10536       if (mpz_sgn(ival) < 0
10537           || mpz_sizeinbase(ival, 2) >= int_bits
10538           || (lval_valid
10539               && (this->end_ == NULL
10540                   ? mpz_cmp(ival, lval) >= 0
10541                   : mpz_cmp(ival, lval) > 0)))
10542         {
10543           error_at(this->start_->location(), "array index out of bounds");
10544           this->set_is_error();
10545         }
10546     }
10547   if (this->end_ != NULL && !this->end_->is_nil_expression())
10548     {
10549       if (this->end_->integer_constant_value(true, ival, &dummy))
10550         {
10551           if (mpz_sgn(ival) < 0
10552               || mpz_sizeinbase(ival, 2) >= int_bits
10553               || (lval_valid && mpz_cmp(ival, lval) > 0))
10554             {
10555               error_at(this->end_->location(), "array index out of bounds");
10556               this->set_is_error();
10557             }
10558         }
10559     }
10560   mpz_clear(ival);
10561   mpz_clear(lval);
10562
10563   // A slice of an array requires an addressable array.  A slice of a
10564   // slice is always possible.
10565   if (this->end_ != NULL && !array_type->is_slice_type())
10566     {
10567       if (!this->array_->is_addressable())
10568         this->report_error(_("array is not addressable"));
10569       else
10570         this->array_->address_taken(true);
10571     }
10572 }
10573
10574 // Return whether this expression is addressable.
10575
10576 bool
10577 Array_index_expression::do_is_addressable() const
10578 {
10579   // A slice expression is not addressable.
10580   if (this->end_ != NULL)
10581     return false;
10582
10583   // An index into a slice is addressable.
10584   if (this->array_->type()->is_slice_type())
10585     return true;
10586
10587   // An index into an array is addressable if the array is
10588   // addressable.
10589   return this->array_->is_addressable();
10590 }
10591
10592 // Get a tree for an array index.
10593
10594 tree
10595 Array_index_expression::do_get_tree(Translate_context* context)
10596 {
10597   Gogo* gogo = context->gogo();
10598   Location loc = this->location();
10599
10600   Array_type* array_type = this->array_->type()->array_type();
10601   if (array_type == NULL)
10602     {
10603       go_assert(this->array_->type()->is_error());
10604       return error_mark_node;
10605     }
10606
10607   tree type_tree = type_to_tree(array_type->get_backend(gogo));
10608   if (type_tree == error_mark_node)
10609     return error_mark_node;
10610
10611   tree array_tree = this->array_->get_tree(context);
10612   if (array_tree == error_mark_node)
10613     return error_mark_node;
10614
10615   if (array_type->length() == NULL && !DECL_P(array_tree))
10616     array_tree = save_expr(array_tree);
10617   tree length_tree = array_type->length_tree(gogo, array_tree);
10618   if (length_tree == error_mark_node)
10619     return error_mark_node;
10620   length_tree = save_expr(length_tree);
10621   tree length_type = TREE_TYPE(length_tree);
10622
10623   tree bad_index = boolean_false_node;
10624
10625   tree start_tree = this->start_->get_tree(context);
10626   if (start_tree == error_mark_node)
10627     return error_mark_node;
10628   if (!DECL_P(start_tree))
10629     start_tree = save_expr(start_tree);
10630   if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
10631     start_tree = convert_to_integer(length_type, start_tree);
10632
10633   bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
10634                                        loc);
10635
10636   start_tree = fold_convert_loc(loc.gcc_location(), length_type, start_tree);
10637   bad_index = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
10638                               boolean_type_node, bad_index,
10639                               fold_build2_loc(loc.gcc_location(),
10640                                               (this->end_ == NULL
10641                                                ? GE_EXPR
10642                                                : GT_EXPR),
10643                                               boolean_type_node, start_tree,
10644                                               length_tree));
10645
10646   int code = (array_type->length() != NULL
10647               ? (this->end_ == NULL
10648                  ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
10649                  : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
10650               : (this->end_ == NULL
10651                  ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
10652                  : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
10653   tree crash = Gogo::runtime_error(code, loc);
10654
10655   if (this->end_ == NULL)
10656     {
10657       // Simple array indexing.  This has to return an l-value, so
10658       // wrap the index check into START_TREE.
10659       start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
10660                           build3(COND_EXPR, void_type_node,
10661                                  bad_index, crash, NULL_TREE),
10662                           start_tree);
10663       start_tree = fold_convert_loc(loc.gcc_location(), sizetype, start_tree);
10664
10665       if (array_type->length() != NULL)
10666         {
10667           // Fixed array.
10668           return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
10669                         start_tree, NULL_TREE, NULL_TREE);
10670         }
10671       else
10672         {
10673           // Open array.
10674           tree values = array_type->value_pointer_tree(gogo, array_tree);
10675           Type* element_type = array_type->element_type();
10676           Btype* belement_type = element_type->get_backend(gogo);
10677           tree element_type_tree = type_to_tree(belement_type);
10678           if (element_type_tree == error_mark_node)
10679             return error_mark_node;
10680           tree element_size = TYPE_SIZE_UNIT(element_type_tree);
10681           tree offset = fold_build2_loc(loc.gcc_location(), MULT_EXPR, sizetype,
10682                                         start_tree, element_size);
10683           tree ptr = fold_build2_loc(loc.gcc_location(), POINTER_PLUS_EXPR,
10684                                      TREE_TYPE(values), values, offset);
10685           return build_fold_indirect_ref(ptr);
10686         }
10687     }
10688
10689   // Array slice.
10690
10691   tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
10692   if (capacity_tree == error_mark_node)
10693     return error_mark_node;
10694   capacity_tree = fold_convert_loc(loc.gcc_location(), length_type,
10695                                    capacity_tree);
10696
10697   tree end_tree;
10698   if (this->end_->is_nil_expression())
10699     end_tree = length_tree;
10700   else
10701     {
10702       end_tree = this->end_->get_tree(context);
10703       if (end_tree == error_mark_node)
10704         return error_mark_node;
10705       if (!DECL_P(end_tree))
10706         end_tree = save_expr(end_tree);
10707       if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
10708         end_tree = convert_to_integer(length_type, end_tree);
10709
10710       bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
10711                                            loc);
10712
10713       end_tree = fold_convert_loc(loc.gcc_location(), length_type, end_tree);
10714
10715       capacity_tree = save_expr(capacity_tree);
10716       tree bad_end = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
10717                                      boolean_type_node,
10718                                      fold_build2_loc(loc.gcc_location(),
10719                                                      LT_EXPR, boolean_type_node,
10720                                                      end_tree, start_tree),
10721                                      fold_build2_loc(loc.gcc_location(),
10722                                                      GT_EXPR, boolean_type_node,
10723                                                      end_tree, capacity_tree));
10724       bad_index = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
10725                                   boolean_type_node, bad_index, bad_end);
10726     }
10727
10728   Type* element_type = array_type->element_type();
10729   tree element_type_tree = type_to_tree(element_type->get_backend(gogo));
10730   if (element_type_tree == error_mark_node)
10731     return error_mark_node;
10732   tree element_size = TYPE_SIZE_UNIT(element_type_tree);
10733
10734   tree offset = fold_build2_loc(loc.gcc_location(), MULT_EXPR, sizetype,
10735                                 fold_convert_loc(loc.gcc_location(), sizetype,
10736                                                  start_tree),
10737                                 element_size);
10738
10739   tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
10740   if (value_pointer == error_mark_node)
10741     return error_mark_node;
10742
10743   value_pointer = fold_build2_loc(loc.gcc_location(), POINTER_PLUS_EXPR,
10744                                   TREE_TYPE(value_pointer),
10745                                   value_pointer, offset);
10746
10747   tree result_length_tree = fold_build2_loc(loc.gcc_location(), MINUS_EXPR,
10748                                             length_type, end_tree, start_tree);
10749
10750   tree result_capacity_tree = fold_build2_loc(loc.gcc_location(), MINUS_EXPR,
10751                                               length_type, capacity_tree,
10752                                               start_tree);
10753
10754   tree struct_tree = type_to_tree(this->type()->get_backend(gogo));
10755   go_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
10756
10757   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
10758
10759   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
10760   tree field = TYPE_FIELDS(struct_tree);
10761   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
10762   elt->index = field;
10763   elt->value = value_pointer;
10764
10765   elt = VEC_quick_push(constructor_elt, init, NULL);
10766   field = DECL_CHAIN(field);
10767   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
10768   elt->index = field;
10769   elt->value = fold_convert_loc(loc.gcc_location(), TREE_TYPE(field),
10770                                 result_length_tree);
10771
10772   elt = VEC_quick_push(constructor_elt, init, NULL);
10773   field = DECL_CHAIN(field);
10774   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
10775   elt->index = field;
10776   elt->value = fold_convert_loc(loc.gcc_location(), TREE_TYPE(field),
10777                                 result_capacity_tree);
10778
10779   tree constructor = build_constructor(struct_tree, init);
10780
10781   if (TREE_CONSTANT(value_pointer)
10782       && TREE_CONSTANT(result_length_tree)
10783       && TREE_CONSTANT(result_capacity_tree))
10784     TREE_CONSTANT(constructor) = 1;
10785
10786   return fold_build2_loc(loc.gcc_location(), COMPOUND_EXPR,
10787                          TREE_TYPE(constructor),
10788                          build3(COND_EXPR, void_type_node,
10789                                 bad_index, crash, NULL_TREE),
10790                          constructor);
10791 }
10792
10793 // Dump ast representation for an array index expression.
10794
10795 void
10796 Array_index_expression::do_dump_expression(Ast_dump_context* ast_dump_context) 
10797     const
10798 {
10799   Index_expression::dump_index_expression(ast_dump_context, this->array_, 
10800                                           this->start_, this->end_);
10801 }
10802
10803 // Make an array index expression.  END may be NULL.
10804
10805 Expression*
10806 Expression::make_array_index(Expression* array, Expression* start,
10807                              Expression* end, Location location)
10808 {
10809   // Taking a slice of a composite literal requires moving the literal
10810   // onto the heap.
10811   if (end != NULL && array->is_composite_literal())
10812     {
10813       array = Expression::make_heap_composite(array, location);
10814       array = Expression::make_unary(OPERATOR_MULT, array, location);
10815     }
10816   return new Array_index_expression(array, start, end, location);
10817 }
10818
10819 // A string index.  This is used for both indexing and slicing.
10820
10821 class String_index_expression : public Expression
10822 {
10823  public:
10824   String_index_expression(Expression* string, Expression* start,
10825                           Expression* end, Location location)
10826     : Expression(EXPRESSION_STRING_INDEX, location),
10827       string_(string), start_(start), end_(end)
10828   { }
10829
10830  protected:
10831   int
10832   do_traverse(Traverse*);
10833
10834   Type*
10835   do_type();
10836
10837   void
10838   do_determine_type(const Type_context*);
10839
10840   void
10841   do_check_types(Gogo*);
10842
10843   Expression*
10844   do_copy()
10845   {
10846     return Expression::make_string_index(this->string_->copy(),
10847                                          this->start_->copy(),
10848                                          (this->end_ == NULL
10849                                           ? NULL
10850                                           : this->end_->copy()),
10851                                          this->location());
10852   }
10853
10854   bool
10855   do_must_eval_subexpressions_in_order(int* skip) const
10856   {
10857     *skip = 1;
10858     return true;
10859   }
10860
10861   tree
10862   do_get_tree(Translate_context*);
10863
10864   void
10865   do_dump_expression(Ast_dump_context*) const;
10866
10867  private:
10868   // The string we are getting a value from.
10869   Expression* string_;
10870   // The start or only index.
10871   Expression* start_;
10872   // The end index of a slice.  This may be NULL for a single index,
10873   // or it may be a nil expression for the length of the string.
10874   Expression* end_;
10875 };
10876
10877 // String index traversal.
10878
10879 int
10880 String_index_expression::do_traverse(Traverse* traverse)
10881 {
10882   if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
10883     return TRAVERSE_EXIT;
10884   if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
10885     return TRAVERSE_EXIT;
10886   if (this->end_ != NULL)
10887     {
10888       if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
10889         return TRAVERSE_EXIT;
10890     }
10891   return TRAVERSE_CONTINUE;
10892 }
10893
10894 // Return the type of a string index.
10895
10896 Type*
10897 String_index_expression::do_type()
10898 {
10899   if (this->end_ == NULL)
10900     return Type::lookup_integer_type("uint8");
10901   else
10902     return this->string_->type();
10903 }
10904
10905 // Determine the type of a string index.
10906
10907 void
10908 String_index_expression::do_determine_type(const Type_context*)
10909 {
10910   this->string_->determine_type_no_context();
10911   this->start_->determine_type_no_context();
10912   if (this->end_ != NULL)
10913     this->end_->determine_type_no_context();
10914 }
10915
10916 // Check types of a string index.
10917
10918 void
10919 String_index_expression::do_check_types(Gogo*)
10920 {
10921   if (this->start_->type()->integer_type() == NULL)
10922     this->report_error(_("index must be integer"));
10923   if (this->end_ != NULL
10924       && this->end_->type()->integer_type() == NULL
10925       && !this->end_->is_nil_expression())
10926     this->report_error(_("slice end must be integer"));
10927
10928   std::string sval;
10929   bool sval_valid = this->string_->string_constant_value(&sval);
10930
10931   mpz_t ival;
10932   mpz_init(ival);
10933   Type* dummy;
10934   if (this->start_->integer_constant_value(true, ival, &dummy))
10935     {
10936       if (mpz_sgn(ival) < 0
10937           || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
10938         {
10939           error_at(this->start_->location(), "string index out of bounds");
10940           this->set_is_error();
10941         }
10942     }
10943   if (this->end_ != NULL && !this->end_->is_nil_expression())
10944     {
10945       if (this->end_->integer_constant_value(true, ival, &dummy))
10946         {
10947           if (mpz_sgn(ival) < 0
10948               || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
10949             {
10950               error_at(this->end_->location(), "string index out of bounds");
10951               this->set_is_error();
10952             }
10953         }
10954     }
10955   mpz_clear(ival);
10956 }
10957
10958 // Get a tree for a string index.
10959
10960 tree
10961 String_index_expression::do_get_tree(Translate_context* context)
10962 {
10963   Location loc = this->location();
10964
10965   tree string_tree = this->string_->get_tree(context);
10966   if (string_tree == error_mark_node)
10967     return error_mark_node;
10968
10969   if (this->string_->type()->points_to() != NULL)
10970     string_tree = build_fold_indirect_ref(string_tree);
10971   if (!DECL_P(string_tree))
10972     string_tree = save_expr(string_tree);
10973   tree string_type = TREE_TYPE(string_tree);
10974
10975   tree length_tree = String_type::length_tree(context->gogo(), string_tree);
10976   length_tree = save_expr(length_tree);
10977   tree length_type = TREE_TYPE(length_tree);
10978
10979   tree bad_index = boolean_false_node;
10980
10981   tree start_tree = this->start_->get_tree(context);
10982   if (start_tree == error_mark_node)
10983     return error_mark_node;
10984   if (!DECL_P(start_tree))
10985     start_tree = save_expr(start_tree);
10986   if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
10987     start_tree = convert_to_integer(length_type, start_tree);
10988
10989   bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
10990                                        loc);
10991
10992   start_tree = fold_convert_loc(loc.gcc_location(), length_type, start_tree);
10993
10994   int code = (this->end_ == NULL
10995               ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
10996               : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
10997   tree crash = Gogo::runtime_error(code, loc);
10998
10999   if (this->end_ == NULL)
11000     {
11001       bad_index = fold_build2_loc(loc.gcc_location(), TRUTH_OR_EXPR,
11002                                   boolean_type_node, bad_index,
11003                                   fold_build2_loc(loc.gcc_location(), GE_EXPR,
11004                                                   boolean_type_node,
11005                                                   start_tree, length_tree));
11006
11007       tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
11008       tree ptr = fold_build2_loc(loc.gcc_location(), POINTER_PLUS_EXPR,
11009                                  TREE_TYPE(bytes_tree),
11010                                  bytes_tree,
11011                                  fold_convert_loc(loc.gcc_location(), sizetype,
11012                                                   start_tree));
11013       tree index = build_fold_indirect_ref_loc(loc.gcc_location(), ptr);
11014
11015       return build2(COMPOUND_EXPR, TREE_TYPE(index),
11016                     build3(COND_EXPR, void_type_node,
11017                            bad_index, crash, NULL_TREE),
11018                     index);
11019     }
11020   else
11021     {
11022       tree end_tree;
11023       if (this->end_->is_nil_expression())
11024         end_tree = build_int_cst(length_type, -1);
11025       else
11026         {
11027           end_tree = this->end_->get_tree(context);
11028           if (end_tree == error_mark_node)
11029             return error_mark_node;
11030           if (!DECL_P(end_tree))
11031             end_tree = save_expr(end_tree);
11032           if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
11033             end_tree = convert_to_integer(length_type, end_tree);
11034
11035           bad_index = Expression::check_bounds(end_tree, length_type,
11036                                                bad_index, loc);
11037
11038           end_tree = fold_convert_loc(loc.gcc_location(), length_type,
11039                                       end_tree);
11040         }
11041
11042       static tree strslice_fndecl;
11043       tree ret = Gogo::call_builtin(&strslice_fndecl,
11044                                     loc,
11045                                     "__go_string_slice",
11046                                     3,
11047                                     string_type,
11048                                     string_type,
11049                                     string_tree,
11050                                     length_type,
11051                                     start_tree,
11052                                     length_type,
11053                                     end_tree);
11054       if (ret == error_mark_node)
11055         return error_mark_node;
11056       // This will panic if the bounds are out of range for the
11057       // string.
11058       TREE_NOTHROW(strslice_fndecl) = 0;
11059
11060       if (bad_index == boolean_false_node)
11061         return ret;
11062       else
11063         return build2(COMPOUND_EXPR, TREE_TYPE(ret),
11064                       build3(COND_EXPR, void_type_node,
11065                              bad_index, crash, NULL_TREE),
11066                       ret);
11067     }
11068 }
11069
11070 // Dump ast representation for a string index expression.
11071
11072 void
11073 String_index_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
11074     const
11075 {
11076   Index_expression::dump_index_expression(ast_dump_context, this->string_, 
11077                                           this->start_, this->end_);
11078 }
11079
11080 // Make a string index expression.  END may be NULL.
11081
11082 Expression*
11083 Expression::make_string_index(Expression* string, Expression* start,
11084                               Expression* end, Location location)
11085 {
11086   return new String_index_expression(string, start, end, location);
11087 }
11088
11089 // Class Map_index.
11090
11091 // Get the type of the map.
11092
11093 Map_type*
11094 Map_index_expression::get_map_type() const
11095 {
11096   Map_type* mt = this->map_->type()->deref()->map_type();
11097   if (mt == NULL)
11098     go_assert(saw_errors());
11099   return mt;
11100 }
11101
11102 // Map index traversal.
11103
11104 int
11105 Map_index_expression::do_traverse(Traverse* traverse)
11106 {
11107   if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
11108     return TRAVERSE_EXIT;
11109   return Expression::traverse(&this->index_, traverse);
11110 }
11111
11112 // Return the type of a map index.
11113
11114 Type*
11115 Map_index_expression::do_type()
11116 {
11117   Map_type* mt = this->get_map_type();
11118   if (mt == NULL)
11119     return Type::make_error_type();
11120   Type* type = mt->val_type();
11121   // If this map index is in a tuple assignment, we actually return a
11122   // pointer to the value type.  Tuple_map_assignment_statement is
11123   // responsible for handling this correctly.  We need to get the type
11124   // right in case this gets assigned to a temporary variable.
11125   if (this->is_in_tuple_assignment_)
11126     type = Type::make_pointer_type(type);
11127   return type;
11128 }
11129
11130 // Fix the type of a map index.
11131
11132 void
11133 Map_index_expression::do_determine_type(const Type_context*)
11134 {
11135   this->map_->determine_type_no_context();
11136   Map_type* mt = this->get_map_type();
11137   Type* key_type = mt == NULL ? NULL : mt->key_type();
11138   Type_context subcontext(key_type, false);
11139   this->index_->determine_type(&subcontext);
11140 }
11141
11142 // Check types of a map index.
11143
11144 void
11145 Map_index_expression::do_check_types(Gogo*)
11146 {
11147   std::string reason;
11148   Map_type* mt = this->get_map_type();
11149   if (mt == NULL)
11150     return;
11151   if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
11152     {
11153       if (reason.empty())
11154         this->report_error(_("incompatible type for map index"));
11155       else
11156         {
11157           error_at(this->location(), "incompatible type for map index (%s)",
11158                    reason.c_str());
11159           this->set_is_error();
11160         }
11161     }
11162 }
11163
11164 // Get a tree for a map index.
11165
11166 tree
11167 Map_index_expression::do_get_tree(Translate_context* context)
11168 {
11169   Map_type* type = this->get_map_type();
11170   if (type == NULL)
11171     return error_mark_node;
11172
11173   tree valptr = this->get_value_pointer(context, this->is_lvalue_);
11174   if (valptr == error_mark_node)
11175     return error_mark_node;
11176   valptr = save_expr(valptr);
11177
11178   tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
11179
11180   if (this->is_lvalue_)
11181     return build_fold_indirect_ref(valptr);
11182   else if (this->is_in_tuple_assignment_)
11183     {
11184       // Tuple_map_assignment_statement is responsible for using this
11185       // appropriately.
11186       return valptr;
11187     }
11188   else
11189     {
11190       Gogo* gogo = context->gogo();
11191       Btype* val_btype = type->val_type()->get_backend(gogo);
11192       Bexpression* val_zero = gogo->backend()->zero_expression(val_btype);
11193       return fold_build3(COND_EXPR, val_type_tree,
11194                          fold_build2(EQ_EXPR, boolean_type_node, valptr,
11195                                      fold_convert(TREE_TYPE(valptr),
11196                                                   null_pointer_node)),
11197                          expr_to_tree(val_zero),
11198                          build_fold_indirect_ref(valptr));
11199     }
11200 }
11201
11202 // Get a tree for the map index.  This returns a tree which evaluates
11203 // to a pointer to a value.  The pointer will be NULL if the key is
11204 // not in the map.
11205
11206 tree
11207 Map_index_expression::get_value_pointer(Translate_context* context,
11208                                         bool insert)
11209 {
11210   Map_type* type = this->get_map_type();
11211   if (type == NULL)
11212     return error_mark_node;
11213
11214   tree map_tree = this->map_->get_tree(context);
11215   tree index_tree = this->index_->get_tree(context);
11216   index_tree = Expression::convert_for_assignment(context, type->key_type(),
11217                                                   this->index_->type(),
11218                                                   index_tree,
11219                                                   this->location());
11220   if (map_tree == error_mark_node || index_tree == error_mark_node)
11221     return error_mark_node;
11222
11223   if (this->map_->type()->points_to() != NULL)
11224     map_tree = build_fold_indirect_ref(map_tree);
11225
11226   // We need to pass in a pointer to the key, so stuff it into a
11227   // variable.
11228   tree tmp;
11229   tree make_tmp;
11230   if (current_function_decl != NULL)
11231     {
11232       tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
11233       DECL_IGNORED_P(tmp) = 0;
11234       DECL_INITIAL(tmp) = index_tree;
11235       make_tmp = build1(DECL_EXPR, void_type_node, tmp);
11236       TREE_ADDRESSABLE(tmp) = 1;
11237     }
11238   else
11239     {
11240       tmp = build_decl(this->location().gcc_location(), VAR_DECL,
11241                        create_tmp_var_name("M"),
11242                        TREE_TYPE(index_tree));
11243       DECL_EXTERNAL(tmp) = 0;
11244       TREE_PUBLIC(tmp) = 0;
11245       TREE_STATIC(tmp) = 1;
11246       DECL_ARTIFICIAL(tmp) = 1;
11247       if (!TREE_CONSTANT(index_tree))
11248         make_tmp = fold_build2_loc(this->location().gcc_location(),
11249                                    INIT_EXPR, void_type_node,
11250                                    tmp, index_tree);
11251       else
11252         {
11253           TREE_READONLY(tmp) = 1;
11254           TREE_CONSTANT(tmp) = 1;
11255           DECL_INITIAL(tmp) = index_tree;
11256           make_tmp = NULL_TREE;
11257         }
11258       rest_of_decl_compilation(tmp, 1, 0);
11259     }
11260   tree tmpref =
11261     fold_convert_loc(this->location().gcc_location(), const_ptr_type_node,
11262                      build_fold_addr_expr_loc(this->location().gcc_location(),
11263                                               tmp));
11264
11265   static tree map_index_fndecl;
11266   tree call = Gogo::call_builtin(&map_index_fndecl,
11267                                  this->location(),
11268                                  "__go_map_index",
11269                                  3,
11270                                  const_ptr_type_node,
11271                                  TREE_TYPE(map_tree),
11272                                  map_tree,
11273                                  const_ptr_type_node,
11274                                  tmpref,
11275                                  boolean_type_node,
11276                                  (insert
11277                                   ? boolean_true_node
11278                                   : boolean_false_node));
11279   if (call == error_mark_node)
11280     return error_mark_node;
11281   // This can panic on a map of interface type if the interface holds
11282   // an uncomparable or unhashable type.
11283   TREE_NOTHROW(map_index_fndecl) = 0;
11284
11285   Type* val_type = type->val_type();
11286   tree val_type_tree = type_to_tree(val_type->get_backend(context->gogo()));
11287   if (val_type_tree == error_mark_node)
11288     return error_mark_node;
11289   tree ptr_val_type_tree = build_pointer_type(val_type_tree);
11290
11291   tree ret = fold_convert_loc(this->location().gcc_location(),
11292                               ptr_val_type_tree, call);
11293   if (make_tmp != NULL_TREE)
11294     ret = build2(COMPOUND_EXPR, ptr_val_type_tree, make_tmp, ret);
11295   return ret;
11296 }
11297
11298 // Dump ast representation for a map index expression
11299
11300 void
11301 Map_index_expression::do_dump_expression(Ast_dump_context* ast_dump_context) 
11302     const
11303 {
11304   Index_expression::dump_index_expression(ast_dump_context, 
11305                                           this->map_, this->index_, NULL);
11306 }
11307
11308 // Make a map index expression.
11309
11310 Map_index_expression*
11311 Expression::make_map_index(Expression* map, Expression* index,
11312                            Location location)
11313 {
11314   return new Map_index_expression(map, index, location);
11315 }
11316
11317 // Class Field_reference_expression.
11318
11319 // Return the type of a field reference.
11320
11321 Type*
11322 Field_reference_expression::do_type()
11323 {
11324   Type* type = this->expr_->type();
11325   if (type->is_error())
11326     return type;
11327   Struct_type* struct_type = type->struct_type();
11328   go_assert(struct_type != NULL);
11329   return struct_type->field(this->field_index_)->type();
11330 }
11331
11332 // Check the types for a field reference.
11333
11334 void
11335 Field_reference_expression::do_check_types(Gogo*)
11336 {
11337   Type* type = this->expr_->type();
11338   if (type->is_error())
11339     return;
11340   Struct_type* struct_type = type->struct_type();
11341   go_assert(struct_type != NULL);
11342   go_assert(struct_type->field(this->field_index_) != NULL);
11343 }
11344
11345 // Get a tree for a field reference.
11346
11347 tree
11348 Field_reference_expression::do_get_tree(Translate_context* context)
11349 {
11350   tree struct_tree = this->expr_->get_tree(context);
11351   if (struct_tree == error_mark_node
11352       || TREE_TYPE(struct_tree) == error_mark_node)
11353     return error_mark_node;
11354   go_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
11355   tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
11356   if (field == NULL_TREE)
11357     {
11358       // This can happen for a type which refers to itself indirectly
11359       // and then turns out to be erroneous.
11360       go_assert(saw_errors());
11361       return error_mark_node;
11362     }
11363   for (unsigned int i = this->field_index_; i > 0; --i)
11364     {
11365       field = DECL_CHAIN(field);
11366       go_assert(field != NULL_TREE);
11367     }
11368   if (TREE_TYPE(field) == error_mark_node)
11369     return error_mark_node;
11370   return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
11371                 NULL_TREE);
11372 }
11373
11374 // Dump ast representation for a field reference expression.
11375
11376 void
11377 Field_reference_expression::do_dump_expression(
11378     Ast_dump_context* ast_dump_context) const
11379 {
11380   this->expr_->dump_expression(ast_dump_context);
11381   ast_dump_context->ostream() << "." <<  this->field_index_;
11382 }
11383
11384 // Make a reference to a qualified identifier in an expression.
11385
11386 Field_reference_expression*
11387 Expression::make_field_reference(Expression* expr, unsigned int field_index,
11388                                  Location location)
11389 {
11390   return new Field_reference_expression(expr, field_index, location);
11391 }
11392
11393 // Class Interface_field_reference_expression.
11394
11395 // Return a tree for the pointer to the function to call.
11396
11397 tree
11398 Interface_field_reference_expression::get_function_tree(Translate_context*,
11399                                                         tree expr)
11400 {
11401   if (this->expr_->type()->points_to() != NULL)
11402     expr = build_fold_indirect_ref(expr);
11403
11404   tree expr_type = TREE_TYPE(expr);
11405   go_assert(TREE_CODE(expr_type) == RECORD_TYPE);
11406
11407   tree field = TYPE_FIELDS(expr_type);
11408   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
11409
11410   tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
11411   go_assert(POINTER_TYPE_P(TREE_TYPE(table)));
11412
11413   table = build_fold_indirect_ref(table);
11414   go_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
11415
11416   std::string name = Gogo::unpack_hidden_name(this->name_);
11417   for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
11418        field != NULL_TREE;
11419        field = DECL_CHAIN(field))
11420     {
11421       if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
11422         break;
11423     }
11424   go_assert(field != NULL_TREE);
11425
11426   return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
11427 }
11428
11429 // Return a tree for the first argument to pass to the interface
11430 // function.
11431
11432 tree
11433 Interface_field_reference_expression::get_underlying_object_tree(
11434     Translate_context*,
11435     tree expr)
11436 {
11437   if (this->expr_->type()->points_to() != NULL)
11438     expr = build_fold_indirect_ref(expr);
11439
11440   tree expr_type = TREE_TYPE(expr);
11441   go_assert(TREE_CODE(expr_type) == RECORD_TYPE);
11442
11443   tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
11444   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
11445
11446   return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
11447 }
11448
11449 // Traversal.
11450
11451 int
11452 Interface_field_reference_expression::do_traverse(Traverse* traverse)
11453 {
11454   return Expression::traverse(&this->expr_, traverse);
11455 }
11456
11457 // Return the type of an interface field reference.
11458
11459 Type*
11460 Interface_field_reference_expression::do_type()
11461 {
11462   Type* expr_type = this->expr_->type();
11463
11464   Type* points_to = expr_type->points_to();
11465   if (points_to != NULL)
11466     expr_type = points_to;
11467
11468   Interface_type* interface_type = expr_type->interface_type();
11469   if (interface_type == NULL)
11470     return Type::make_error_type();
11471
11472   const Typed_identifier* method = interface_type->find_method(this->name_);
11473   if (method == NULL)
11474     return Type::make_error_type();
11475
11476   return method->type();
11477 }
11478
11479 // Determine types.
11480
11481 void
11482 Interface_field_reference_expression::do_determine_type(const Type_context*)
11483 {
11484   this->expr_->determine_type_no_context();
11485 }
11486
11487 // Check the types for an interface field reference.
11488
11489 void
11490 Interface_field_reference_expression::do_check_types(Gogo*)
11491 {
11492   Type* type = this->expr_->type();
11493
11494   Type* points_to = type->points_to();
11495   if (points_to != NULL)
11496     type = points_to;
11497
11498   Interface_type* interface_type = type->interface_type();
11499   if (interface_type == NULL)
11500     {
11501       if (!type->is_error_type())
11502         this->report_error(_("expected interface or pointer to interface"));
11503     }
11504   else
11505     {
11506       const Typed_identifier* method =
11507         interface_type->find_method(this->name_);
11508       if (method == NULL)
11509         {
11510           error_at(this->location(), "method %qs not in interface",
11511                    Gogo::message_name(this->name_).c_str());
11512           this->set_is_error();
11513         }
11514     }
11515 }
11516
11517 // Get a tree for a reference to a field in an interface.  There is no
11518 // standard tree type representation for this: it's a function
11519 // attached to its first argument, like a Bound_method_expression.
11520 // The only places it may currently be used are in a Call_expression
11521 // or a Go_statement, which will take it apart directly.  So this has
11522 // nothing to do at present.
11523
11524 tree
11525 Interface_field_reference_expression::do_get_tree(Translate_context*)
11526 {
11527   go_unreachable();
11528 }
11529
11530 // Dump ast representation for an interface field reference.
11531
11532 void
11533 Interface_field_reference_expression::do_dump_expression(
11534     Ast_dump_context* ast_dump_context) const
11535 {
11536   this->expr_->dump_expression(ast_dump_context);
11537   ast_dump_context->ostream() << "." << this->name_;
11538 }
11539
11540 // Make a reference to a field in an interface.
11541
11542 Expression*
11543 Expression::make_interface_field_reference(Expression* expr,
11544                                            const std::string& field,
11545                                            Location location)
11546 {
11547   return new Interface_field_reference_expression(expr, field, location);
11548 }
11549
11550 // A general selector.  This is a Parser_expression for LEFT.NAME.  It
11551 // is lowered after we know the type of the left hand side.
11552
11553 class Selector_expression : public Parser_expression
11554 {
11555  public:
11556   Selector_expression(Expression* left, const std::string& name,
11557                       Location location)
11558     : Parser_expression(EXPRESSION_SELECTOR, location),
11559       left_(left), name_(name)
11560   { }
11561
11562  protected:
11563   int
11564   do_traverse(Traverse* traverse)
11565   { return Expression::traverse(&this->left_, traverse); }
11566
11567   Expression*
11568   do_lower(Gogo*, Named_object*, Statement_inserter*, int);
11569
11570   Expression*
11571   do_copy()
11572   {
11573     return new Selector_expression(this->left_->copy(), this->name_,
11574                                    this->location());
11575   }
11576
11577   void
11578   do_dump_expression(Ast_dump_context* ast_dump_context) const;
11579
11580  private:
11581   Expression*
11582   lower_method_expression(Gogo*);
11583
11584   // The expression on the left hand side.
11585   Expression* left_;
11586   // The name on the right hand side.
11587   std::string name_;
11588 };
11589
11590 // Lower a selector expression once we know the real type of the left
11591 // hand side.
11592
11593 Expression*
11594 Selector_expression::do_lower(Gogo* gogo, Named_object*, Statement_inserter*,
11595                               int)
11596 {
11597   Expression* left = this->left_;
11598   if (left->is_type_expression())
11599     return this->lower_method_expression(gogo);
11600   return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
11601                                     this->location());
11602 }
11603
11604 // Lower a method expression T.M or (*T).M.  We turn this into a
11605 // function literal.
11606
11607 Expression*
11608 Selector_expression::lower_method_expression(Gogo* gogo)
11609 {
11610   Location location = this->location();
11611   Type* type = this->left_->type();
11612   const std::string& name(this->name_);
11613
11614   bool is_pointer;
11615   if (type->points_to() == NULL)
11616     is_pointer = false;
11617   else
11618     {
11619       is_pointer = true;
11620       type = type->points_to();
11621     }
11622   Named_type* nt = type->named_type();
11623   if (nt == NULL)
11624     {
11625       error_at(location,
11626                ("method expression requires named type or "
11627                 "pointer to named type"));
11628       return Expression::make_error(location);
11629     }
11630
11631   bool is_ambiguous;
11632   Method* method = nt->method_function(name, &is_ambiguous);
11633   const Typed_identifier* imethod = NULL;
11634   if (method == NULL && !is_pointer)
11635     {
11636       Interface_type* it = nt->interface_type();
11637       if (it != NULL)
11638         imethod = it->find_method(name);
11639     }
11640
11641   if (method == NULL && imethod == NULL)
11642     {
11643       if (!is_ambiguous)
11644         error_at(location, "type %<%s%s%> has no method %<%s%>",
11645                  is_pointer ? "*" : "",
11646                  nt->message_name().c_str(),
11647                  Gogo::message_name(name).c_str());
11648       else
11649         error_at(location, "method %<%s%s%> is ambiguous in type %<%s%>",
11650                  Gogo::message_name(name).c_str(),
11651                  is_pointer ? "*" : "",
11652                  nt->message_name().c_str());
11653       return Expression::make_error(location);
11654     }
11655
11656   if (method != NULL && !is_pointer && !method->is_value_method())
11657     {
11658       error_at(location, "method requires pointer (use %<(*%s).%s)%>",
11659                nt->message_name().c_str(),
11660                Gogo::message_name(name).c_str());
11661       return Expression::make_error(location);
11662     }
11663
11664   // Build a new function type in which the receiver becomes the first
11665   // argument.
11666   Function_type* method_type;
11667   if (method != NULL)
11668     {
11669       method_type = method->type();
11670       go_assert(method_type->is_method());
11671     }
11672   else
11673     {
11674       method_type = imethod->type()->function_type();
11675       go_assert(method_type != NULL && !method_type->is_method());
11676     }
11677
11678   const char* const receiver_name = "$this";
11679   Typed_identifier_list* parameters = new Typed_identifier_list();
11680   parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
11681                                          location));
11682
11683   const Typed_identifier_list* method_parameters = method_type->parameters();
11684   if (method_parameters != NULL)
11685     {
11686       for (Typed_identifier_list::const_iterator p = method_parameters->begin();
11687            p != method_parameters->end();
11688            ++p)
11689         parameters->push_back(*p);
11690     }
11691
11692   const Typed_identifier_list* method_results = method_type->results();
11693   Typed_identifier_list* results;
11694   if (method_results == NULL)
11695     results = NULL;
11696   else
11697     {
11698       results = new Typed_identifier_list();
11699       for (Typed_identifier_list::const_iterator p = method_results->begin();
11700            p != method_results->end();
11701            ++p)
11702         results->push_back(*p);
11703     }
11704   
11705   Function_type* fntype = Type::make_function_type(NULL, parameters, results,
11706                                                    location);
11707   if (method_type->is_varargs())
11708     fntype->set_is_varargs();
11709
11710   // We generate methods which always takes a pointer to the receiver
11711   // as their first argument.  If this is for a pointer type, we can
11712   // simply reuse the existing function.  We use an internal hack to
11713   // get the right type.
11714
11715   if (method != NULL && is_pointer)
11716     {
11717       Named_object* mno = (method->needs_stub_method()
11718                            ? method->stub_object()
11719                            : method->named_object());
11720       Expression* f = Expression::make_func_reference(mno, NULL, location);
11721       f = Expression::make_cast(fntype, f, location);
11722       Type_conversion_expression* tce =
11723         static_cast<Type_conversion_expression*>(f);
11724       tce->set_may_convert_function_types();
11725       return f;
11726     }
11727
11728   Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
11729                                           location);
11730
11731   Named_object* vno = gogo->lookup(receiver_name, NULL);
11732   go_assert(vno != NULL);
11733   Expression* ve = Expression::make_var_reference(vno, location);
11734   Expression* bm;
11735   if (method != NULL)
11736     bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
11737   else
11738     bm = Expression::make_interface_field_reference(ve, name, location);
11739
11740   // Even though we found the method above, if it has an error type we
11741   // may see an error here.
11742   if (bm->is_error_expression())
11743     {
11744       gogo->finish_function(location);
11745       return bm;
11746     }
11747
11748   Expression_list* args;
11749   if (method_parameters == NULL)
11750     args = NULL;
11751   else
11752     {
11753       args = new Expression_list();
11754       for (Typed_identifier_list::const_iterator p = method_parameters->begin();
11755            p != method_parameters->end();
11756            ++p)
11757         {
11758           vno = gogo->lookup(p->name(), NULL);
11759           go_assert(vno != NULL);
11760           args->push_back(Expression::make_var_reference(vno, location));
11761         }
11762     }
11763
11764   gogo->start_block(location);
11765
11766   Call_expression* call = Expression::make_call(bm, args,
11767                                                 method_type->is_varargs(),
11768                                                 location);
11769
11770   size_t count = call->result_count();
11771   Statement* s;
11772   if (count == 0)
11773     s = Statement::make_statement(call, true);
11774   else
11775     {
11776       Expression_list* retvals = new Expression_list();
11777       if (count <= 1)
11778         retvals->push_back(call);
11779       else
11780         {
11781           for (size_t i = 0; i < count; ++i)
11782             retvals->push_back(Expression::make_call_result(call, i));
11783         }
11784       s = Statement::make_return_statement(retvals, location);
11785     }
11786   gogo->add_statement(s);
11787
11788   Block* b = gogo->finish_block(location);
11789
11790   gogo->add_block(b, location);
11791
11792   // Lower the call in case there are multiple results.
11793   gogo->lower_block(no, b);
11794
11795   gogo->finish_function(location);
11796
11797   return Expression::make_func_reference(no, NULL, location);
11798 }
11799
11800 // Dump the ast for a selector expression.
11801
11802 void
11803 Selector_expression::do_dump_expression(Ast_dump_context* ast_dump_context) 
11804     const
11805 {
11806   ast_dump_context->dump_expression(this->left_);
11807   ast_dump_context->ostream() << ".";
11808   ast_dump_context->ostream() << this->name_;
11809 }
11810                       
11811 // Make a selector expression.
11812
11813 Expression*
11814 Expression::make_selector(Expression* left, const std::string& name,
11815                           Location location)
11816 {
11817   return new Selector_expression(left, name, location);
11818 }
11819
11820 // Implement the builtin function new.
11821
11822 class Allocation_expression : public Expression
11823 {
11824  public:
11825   Allocation_expression(Type* type, Location location)
11826     : Expression(EXPRESSION_ALLOCATION, location),
11827       type_(type)
11828   { }
11829
11830  protected:
11831   int
11832   do_traverse(Traverse* traverse)
11833   { return Type::traverse(this->type_, traverse); }
11834
11835   Type*
11836   do_type()
11837   { return Type::make_pointer_type(this->type_); }
11838
11839   void
11840   do_determine_type(const Type_context*)
11841   { }
11842
11843   Expression*
11844   do_copy()
11845   { return new Allocation_expression(this->type_, this->location()); }
11846
11847   tree
11848   do_get_tree(Translate_context*);
11849
11850   void
11851   do_dump_expression(Ast_dump_context*) const;
11852   
11853  private:
11854   // The type we are allocating.
11855   Type* type_;
11856 };
11857
11858 // Return a tree for an allocation expression.
11859
11860 tree
11861 Allocation_expression::do_get_tree(Translate_context* context)
11862 {
11863   tree type_tree = type_to_tree(this->type_->get_backend(context->gogo()));
11864   if (type_tree == error_mark_node)
11865     return error_mark_node;
11866   tree size_tree = TYPE_SIZE_UNIT(type_tree);
11867   tree space = context->gogo()->allocate_memory(this->type_, size_tree,
11868                                                 this->location());
11869   if (space == error_mark_node)
11870     return error_mark_node;
11871   return fold_convert(build_pointer_type(type_tree), space);
11872 }
11873
11874 // Dump ast representation for an allocation expression.
11875
11876 void
11877 Allocation_expression::do_dump_expression(Ast_dump_context* ast_dump_context) 
11878     const
11879 {
11880   ast_dump_context->ostream() << "new(";
11881   ast_dump_context->dump_type(this->type_);
11882   ast_dump_context->ostream() << ")";
11883 }
11884
11885 // Make an allocation expression.
11886
11887 Expression*
11888 Expression::make_allocation(Type* type, Location location)
11889 {
11890   return new Allocation_expression(type, location);
11891 }
11892
11893 // Construct a struct.
11894
11895 class Struct_construction_expression : public Expression
11896 {
11897  public:
11898   Struct_construction_expression(Type* type, Expression_list* vals,
11899                                  Location location)
11900     : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
11901       type_(type), vals_(vals)
11902   { }
11903
11904   // Return whether this is a constant initializer.
11905   bool
11906   is_constant_struct() const;
11907
11908  protected:
11909   int
11910   do_traverse(Traverse* traverse);
11911
11912   Type*
11913   do_type()
11914   { return this->type_; }
11915
11916   void
11917   do_determine_type(const Type_context*);
11918
11919   void
11920   do_check_types(Gogo*);
11921
11922   Expression*
11923   do_copy()
11924   {
11925     return new Struct_construction_expression(this->type_, this->vals_->copy(),
11926                                               this->location());
11927   }
11928
11929   bool
11930   do_is_addressable() const
11931   { return true; }
11932
11933   tree
11934   do_get_tree(Translate_context*);
11935
11936   void
11937   do_export(Export*) const;
11938
11939   void
11940   do_dump_expression(Ast_dump_context*) const;
11941
11942  private:
11943   // The type of the struct to construct.
11944   Type* type_;
11945   // The list of values, in order of the fields in the struct.  A NULL
11946   // entry means that the field should be zero-initialized.
11947   Expression_list* vals_;
11948 };
11949
11950 // Traversal.
11951
11952 int
11953 Struct_construction_expression::do_traverse(Traverse* traverse)
11954 {
11955   if (this->vals_ != NULL
11956       && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11957     return TRAVERSE_EXIT;
11958   if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11959     return TRAVERSE_EXIT;
11960   return TRAVERSE_CONTINUE;
11961 }
11962
11963 // Return whether this is a constant initializer.
11964
11965 bool
11966 Struct_construction_expression::is_constant_struct() const
11967 {
11968   if (this->vals_ == NULL)
11969     return true;
11970   for (Expression_list::const_iterator pv = this->vals_->begin();
11971        pv != this->vals_->end();
11972        ++pv)
11973     {
11974       if (*pv != NULL
11975           && !(*pv)->is_constant()
11976           && (!(*pv)->is_composite_literal()
11977               || (*pv)->is_nonconstant_composite_literal()))
11978         return false;
11979     }
11980
11981   const Struct_field_list* fields = this->type_->struct_type()->fields();
11982   for (Struct_field_list::const_iterator pf = fields->begin();
11983        pf != fields->end();
11984        ++pf)
11985     {
11986       // There are no constant constructors for interfaces.
11987       if (pf->type()->interface_type() != NULL)
11988         return false;
11989     }
11990
11991   return true;
11992 }
11993
11994 // Final type determination.
11995
11996 void
11997 Struct_construction_expression::do_determine_type(const Type_context*)
11998 {
11999   if (this->vals_ == NULL)
12000     return;
12001   const Struct_field_list* fields = this->type_->struct_type()->fields();
12002   Expression_list::const_iterator pv = this->vals_->begin();
12003   for (Struct_field_list::const_iterator pf = fields->begin();
12004        pf != fields->end();
12005        ++pf, ++pv)
12006     {
12007       if (pv == this->vals_->end())
12008         return;
12009       if (*pv != NULL)
12010         {
12011           Type_context subcontext(pf->type(), false);
12012           (*pv)->determine_type(&subcontext);
12013         }
12014     }
12015   // Extra values are an error we will report elsewhere; we still want
12016   // to determine the type to avoid knockon errors.
12017   for (; pv != this->vals_->end(); ++pv)
12018     (*pv)->determine_type_no_context();
12019 }
12020
12021 // Check types.
12022
12023 void
12024 Struct_construction_expression::do_check_types(Gogo*)
12025 {
12026   if (this->vals_ == NULL)
12027     return;
12028
12029   Struct_type* st = this->type_->struct_type();
12030   if (this->vals_->size() > st->field_count())
12031     {
12032       this->report_error(_("too many expressions for struct"));
12033       return;
12034     }
12035
12036   const Struct_field_list* fields = st->fields();
12037   Expression_list::const_iterator pv = this->vals_->begin();
12038   int i = 0;
12039   for (Struct_field_list::const_iterator pf = fields->begin();
12040        pf != fields->end();
12041        ++pf, ++pv, ++i)
12042     {
12043       if (pv == this->vals_->end())
12044         {
12045           this->report_error(_("too few expressions for struct"));
12046           break;
12047         }
12048
12049       if (*pv == NULL)
12050         continue;
12051
12052       std::string reason;
12053       if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
12054         {
12055           if (reason.empty())
12056             error_at((*pv)->location(),
12057                      "incompatible type for field %d in struct construction",
12058                      i + 1);
12059           else
12060             error_at((*pv)->location(),
12061                      ("incompatible type for field %d in "
12062                       "struct construction (%s)"),
12063                      i + 1, reason.c_str());
12064           this->set_is_error();
12065         }
12066     }
12067   go_assert(pv == this->vals_->end());
12068 }
12069
12070 // Return a tree for constructing a struct.
12071
12072 tree
12073 Struct_construction_expression::do_get_tree(Translate_context* context)
12074 {
12075   Gogo* gogo = context->gogo();
12076
12077   if (this->vals_ == NULL)
12078     {
12079       Btype* btype = this->type_->get_backend(gogo);
12080       return expr_to_tree(gogo->backend()->zero_expression(btype));
12081     }
12082
12083   tree type_tree = type_to_tree(this->type_->get_backend(gogo));
12084   if (type_tree == error_mark_node)
12085     return error_mark_node;
12086   go_assert(TREE_CODE(type_tree) == RECORD_TYPE);
12087
12088   bool is_constant = true;
12089   const Struct_field_list* fields = this->type_->struct_type()->fields();
12090   VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
12091                                             fields->size());
12092   Struct_field_list::const_iterator pf = fields->begin();
12093   Expression_list::const_iterator pv = this->vals_->begin();
12094   for (tree field = TYPE_FIELDS(type_tree);
12095        field != NULL_TREE;
12096        field = DECL_CHAIN(field), ++pf)
12097     {
12098       go_assert(pf != fields->end());
12099
12100       Btype* fbtype = pf->type()->get_backend(gogo);
12101
12102       tree val;
12103       if (pv == this->vals_->end())
12104         val = expr_to_tree(gogo->backend()->zero_expression(fbtype));
12105       else if (*pv == NULL)
12106         {
12107           val = expr_to_tree(gogo->backend()->zero_expression(fbtype));
12108           ++pv;
12109         }
12110       else
12111         {
12112           val = Expression::convert_for_assignment(context, pf->type(),
12113                                                    (*pv)->type(),
12114                                                    (*pv)->get_tree(context),
12115                                                    this->location());
12116           ++pv;
12117         }
12118
12119       if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
12120         return error_mark_node;
12121
12122       constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
12123       elt->index = field;
12124       elt->value = val;
12125       if (!TREE_CONSTANT(val))
12126         is_constant = false;
12127     }
12128   go_assert(pf == fields->end());
12129
12130   tree ret = build_constructor(type_tree, elts);
12131   if (is_constant)
12132     TREE_CONSTANT(ret) = 1;
12133   return ret;
12134 }
12135
12136 // Export a struct construction.
12137
12138 void
12139 Struct_construction_expression::do_export(Export* exp) const
12140 {
12141   exp->write_c_string("convert(");
12142   exp->write_type(this->type_);
12143   for (Expression_list::const_iterator pv = this->vals_->begin();
12144        pv != this->vals_->end();
12145        ++pv)
12146     {
12147       exp->write_c_string(", ");
12148       if (*pv != NULL)
12149         (*pv)->export_expression(exp);
12150     }
12151   exp->write_c_string(")");
12152 }
12153
12154 // Dump ast representation of a struct construction expression.
12155
12156 void
12157 Struct_construction_expression::do_dump_expression(
12158     Ast_dump_context* ast_dump_context) const
12159 {
12160   ast_dump_context->dump_type(this->type_);
12161   ast_dump_context->ostream() << "{";
12162   ast_dump_context->dump_expression_list(this->vals_);
12163   ast_dump_context->ostream() << "}";
12164 }
12165
12166 // Make a struct composite literal.  This used by the thunk code.
12167
12168 Expression*
12169 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
12170                                           Location location)
12171 {
12172   go_assert(type->struct_type() != NULL);
12173   return new Struct_construction_expression(type, vals, location);
12174 }
12175
12176 // Construct an array.  This class is not used directly; instead we
12177 // use the child classes, Fixed_array_construction_expression and
12178 // Open_array_construction_expression.
12179
12180 class Array_construction_expression : public Expression
12181 {
12182  protected:
12183   Array_construction_expression(Expression_classification classification,
12184                                 Type* type, Expression_list* vals,
12185                                 Location location)
12186     : Expression(classification, location),
12187       type_(type), vals_(vals)
12188   { }
12189
12190  public:
12191   // Return whether this is a constant initializer.
12192   bool
12193   is_constant_array() const;
12194
12195   // Return the number of elements.
12196   size_t
12197   element_count() const
12198   { return this->vals_ == NULL ? 0 : this->vals_->size(); }
12199
12200 protected:
12201   int
12202   do_traverse(Traverse* traverse);
12203
12204   Type*
12205   do_type()
12206   { return this->type_; }
12207
12208   void
12209   do_determine_type(const Type_context*);
12210
12211   void
12212   do_check_types(Gogo*);
12213
12214   bool
12215   do_is_addressable() const
12216   { return true; }
12217
12218   void
12219   do_export(Export*) const;
12220
12221   // The list of values.
12222   Expression_list*
12223   vals()
12224   { return this->vals_; }
12225
12226   // Get a constructor tree for the array values.
12227   tree
12228   get_constructor_tree(Translate_context* context, tree type_tree);
12229
12230   void
12231   do_dump_expression(Ast_dump_context*) const;
12232
12233  private:
12234   // The type of the array to construct.
12235   Type* type_;
12236   // The list of values.
12237   Expression_list* vals_;
12238 };
12239
12240 // Traversal.
12241
12242 int
12243 Array_construction_expression::do_traverse(Traverse* traverse)
12244 {
12245   if (this->vals_ != NULL
12246       && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
12247     return TRAVERSE_EXIT;
12248   if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12249     return TRAVERSE_EXIT;
12250   return TRAVERSE_CONTINUE;
12251 }
12252
12253 // Return whether this is a constant initializer.
12254
12255 bool
12256 Array_construction_expression::is_constant_array() const
12257 {
12258   if (this->vals_ == NULL)
12259     return true;
12260
12261   // There are no constant constructors for interfaces.
12262   if (this->type_->array_type()->element_type()->interface_type() != NULL)
12263     return false;
12264
12265   for (Expression_list::const_iterator pv = this->vals_->begin();
12266        pv != this->vals_->end();
12267        ++pv)
12268     {
12269       if (*pv != NULL
12270           && !(*pv)->is_constant()
12271           && (!(*pv)->is_composite_literal()
12272               || (*pv)->is_nonconstant_composite_literal()))
12273         return false;
12274     }
12275   return true;
12276 }
12277
12278 // Final type determination.
12279
12280 void
12281 Array_construction_expression::do_determine_type(const Type_context*)
12282 {
12283   if (this->vals_ == NULL)
12284     return;
12285   Type_context subcontext(this->type_->array_type()->element_type(), false);
12286   for (Expression_list::const_iterator pv = this->vals_->begin();
12287        pv != this->vals_->end();
12288        ++pv)
12289     {
12290       if (*pv != NULL)
12291         (*pv)->determine_type(&subcontext);
12292     }
12293 }
12294
12295 // Check types.
12296
12297 void
12298 Array_construction_expression::do_check_types(Gogo*)
12299 {
12300   if (this->vals_ == NULL)
12301     return;
12302
12303   Array_type* at = this->type_->array_type();
12304   int i = 0;
12305   Type* element_type = at->element_type();
12306   for (Expression_list::const_iterator pv = this->vals_->begin();
12307        pv != this->vals_->end();
12308        ++pv, ++i)
12309     {
12310       if (*pv != NULL
12311           && !Type::are_assignable(element_type, (*pv)->type(), NULL))
12312         {
12313           error_at((*pv)->location(),
12314                    "incompatible type for element %d in composite literal",
12315                    i + 1);
12316           this->set_is_error();
12317         }
12318     }
12319
12320   Expression* length = at->length();
12321   if (length != NULL && !length->is_error_expression())
12322     {
12323       mpz_t val;
12324       mpz_init(val);
12325       Type* type;
12326       if (at->length()->integer_constant_value(true, val, &type))
12327         {
12328           if (this->vals_->size() > mpz_get_ui(val))
12329             this->report_error(_("too many elements in composite literal"));
12330         }
12331       mpz_clear(val);
12332     }
12333 }
12334
12335 // Get a constructor tree for the array values.
12336
12337 tree
12338 Array_construction_expression::get_constructor_tree(Translate_context* context,
12339                                                     tree type_tree)
12340 {
12341   VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
12342                                               (this->vals_ == NULL
12343                                                ? 0
12344                                                : this->vals_->size()));
12345   Type* element_type = this->type_->array_type()->element_type();
12346   bool is_constant = true;
12347   if (this->vals_ != NULL)
12348     {
12349       size_t i = 0;
12350       for (Expression_list::const_iterator pv = this->vals_->begin();
12351            pv != this->vals_->end();
12352            ++pv, ++i)
12353         {
12354           constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
12355           elt->index = size_int(i);
12356           if (*pv == NULL)
12357             {
12358               Gogo* gogo = context->gogo();
12359               Btype* ebtype = element_type->get_backend(gogo);
12360               Bexpression *zv = gogo->backend()->zero_expression(ebtype);
12361               elt->value = expr_to_tree(zv);
12362             }
12363           else
12364             {
12365               tree value_tree = (*pv)->get_tree(context);
12366               elt->value = Expression::convert_for_assignment(context,
12367                                                               element_type,
12368                                                               (*pv)->type(),
12369                                                               value_tree,
12370                                                               this->location());
12371             }
12372           if (elt->value == error_mark_node)
12373             return error_mark_node;
12374           if (!TREE_CONSTANT(elt->value))
12375             is_constant = false;
12376         }
12377     }
12378
12379   tree ret = build_constructor(type_tree, values);
12380   if (is_constant)
12381     TREE_CONSTANT(ret) = 1;
12382   return ret;
12383 }
12384
12385 // Export an array construction.
12386
12387 void
12388 Array_construction_expression::do_export(Export* exp) const
12389 {
12390   exp->write_c_string("convert(");
12391   exp->write_type(this->type_);
12392   if (this->vals_ != NULL)
12393     {
12394       for (Expression_list::const_iterator pv = this->vals_->begin();
12395            pv != this->vals_->end();
12396            ++pv)
12397         {
12398           exp->write_c_string(", ");
12399           if (*pv != NULL)
12400             (*pv)->export_expression(exp);
12401         }
12402     }
12403   exp->write_c_string(")");
12404 }
12405
12406 // Dump ast representation of an array construction expressin.
12407
12408 void
12409 Array_construction_expression::do_dump_expression(
12410     Ast_dump_context* ast_dump_context) const
12411 {
12412   Expression* length = this->type_->array_type() != NULL ?
12413                          this->type_->array_type()->length() : NULL;
12414
12415   ast_dump_context->ostream() << "[" ;
12416   if (length != NULL)
12417     {
12418       ast_dump_context->dump_expression(length);
12419     }
12420   ast_dump_context->ostream() << "]" ;
12421   ast_dump_context->dump_type(this->type_);
12422   ast_dump_context->ostream() << "{" ;
12423   ast_dump_context->dump_expression_list(this->vals_);
12424   ast_dump_context->ostream() << "}" ;
12425
12426 }
12427
12428 // Construct a fixed array.
12429
12430 class Fixed_array_construction_expression :
12431   public Array_construction_expression
12432 {
12433  public:
12434   Fixed_array_construction_expression(Type* type, Expression_list* vals,
12435                                       Location location)
12436     : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
12437                                     type, vals, location)
12438   {
12439     go_assert(type->array_type() != NULL
12440                && type->array_type()->length() != NULL);
12441   }
12442
12443  protected:
12444   Expression*
12445   do_copy()
12446   {
12447     return new Fixed_array_construction_expression(this->type(),
12448                                                    (this->vals() == NULL
12449                                                     ? NULL
12450                                                     : this->vals()->copy()),
12451                                                    this->location());
12452   }
12453
12454   tree
12455   do_get_tree(Translate_context*);
12456
12457   void
12458   do_dump_expression(Ast_dump_context*);
12459 };
12460
12461 // Return a tree for constructing a fixed array.
12462
12463 tree
12464 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
12465 {
12466   Type* type = this->type();
12467   Btype* btype = type->get_backend(context->gogo());
12468   return this->get_constructor_tree(context, type_to_tree(btype));
12469 }
12470
12471 // Dump ast representation of an array construction expressin.
12472
12473 void
12474 Fixed_array_construction_expression::do_dump_expression(
12475     Ast_dump_context* ast_dump_context)
12476 {
12477
12478   ast_dump_context->ostream() << "[";
12479   ast_dump_context->dump_expression (this->type()->array_type()->length());
12480   ast_dump_context->ostream() << "]";
12481   ast_dump_context->dump_type(this->type());
12482   ast_dump_context->ostream() << "{";
12483   ast_dump_context->dump_expression_list(this->vals());
12484   ast_dump_context->ostream() << "}";
12485
12486 }
12487 // Construct an open array.
12488
12489 class Open_array_construction_expression : public Array_construction_expression
12490 {
12491  public:
12492   Open_array_construction_expression(Type* type, Expression_list* vals,
12493                                      Location location)
12494     : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
12495                                     type, vals, location)
12496   {
12497     go_assert(type->array_type() != NULL
12498                && type->array_type()->length() == NULL);
12499   }
12500
12501  protected:
12502   // Note that taking the address of an open array literal is invalid.
12503
12504   Expression*
12505   do_copy()
12506   {
12507     return new Open_array_construction_expression(this->type(),
12508                                                   (this->vals() == NULL
12509                                                    ? NULL
12510                                                    : this->vals()->copy()),
12511                                                   this->location());
12512   }
12513
12514   tree
12515   do_get_tree(Translate_context*);
12516 };
12517
12518 // Return a tree for constructing an open array.
12519
12520 tree
12521 Open_array_construction_expression::do_get_tree(Translate_context* context)
12522 {
12523   Array_type* array_type = this->type()->array_type();
12524   if (array_type == NULL)
12525     {
12526       go_assert(this->type()->is_error());
12527       return error_mark_node;
12528     }
12529
12530   Type* element_type = array_type->element_type();
12531   Btype* belement_type = element_type->get_backend(context->gogo());
12532   tree element_type_tree = type_to_tree(belement_type);
12533   if (element_type_tree == error_mark_node)
12534     return error_mark_node;
12535
12536   tree values;
12537   tree length_tree;
12538   if (this->vals() == NULL || this->vals()->empty())
12539     {
12540       // We need to create a unique value.
12541       tree max = size_int(0);
12542       tree constructor_type = build_array_type(element_type_tree,
12543                                                build_index_type(max));
12544       if (constructor_type == error_mark_node)
12545         return error_mark_node;
12546       VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
12547       constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
12548       elt->index = size_int(0);
12549       Gogo* gogo = context->gogo();
12550       Btype* btype = element_type->get_backend(gogo);
12551       elt->value = expr_to_tree(gogo->backend()->zero_expression(btype));
12552       values = build_constructor(constructor_type, vec);
12553       if (TREE_CONSTANT(elt->value))
12554         TREE_CONSTANT(values) = 1;
12555       length_tree = size_int(0);
12556     }
12557   else
12558     {
12559       tree max = size_int(this->vals()->size() - 1);
12560       tree constructor_type = build_array_type(element_type_tree,
12561                                                build_index_type(max));
12562       if (constructor_type == error_mark_node)
12563         return error_mark_node;
12564       values = this->get_constructor_tree(context, constructor_type);
12565       length_tree = size_int(this->vals()->size());
12566     }
12567
12568   if (values == error_mark_node)
12569     return error_mark_node;
12570
12571   bool is_constant_initializer = TREE_CONSTANT(values);
12572
12573   // We have to copy the initial values into heap memory if we are in
12574   // a function or if the values are not constants.  We also have to
12575   // copy them if they may contain pointers in a non-constant context,
12576   // as otherwise the garbage collector won't see them.
12577   bool copy_to_heap = (context->function() != NULL
12578                        || !is_constant_initializer
12579                        || (element_type->has_pointer()
12580                            && !context->is_const()));
12581
12582   if (is_constant_initializer)
12583     {
12584       tree tmp = build_decl(this->location().gcc_location(), VAR_DECL,
12585                             create_tmp_var_name("C"), TREE_TYPE(values));
12586       DECL_EXTERNAL(tmp) = 0;
12587       TREE_PUBLIC(tmp) = 0;
12588       TREE_STATIC(tmp) = 1;
12589       DECL_ARTIFICIAL(tmp) = 1;
12590       if (copy_to_heap)
12591         {
12592           // If we are not copying the value to the heap, we will only
12593           // initialize the value once, so we can use this directly
12594           // rather than copying it.  In that case we can't make it
12595           // read-only, because the program is permitted to change it.
12596           TREE_READONLY(tmp) = 1;
12597           TREE_CONSTANT(tmp) = 1;
12598         }
12599       DECL_INITIAL(tmp) = values;
12600       rest_of_decl_compilation(tmp, 1, 0);
12601       values = tmp;
12602     }
12603
12604   tree space;
12605   tree set;
12606   if (!copy_to_heap)
12607     {
12608       // the initializer will only run once.
12609       space = build_fold_addr_expr(values);
12610       set = NULL_TREE;
12611     }
12612   else
12613     {
12614       tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
12615       space = context->gogo()->allocate_memory(element_type, memsize,
12616                                                this->location());
12617       space = save_expr(space);
12618
12619       tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
12620       tree ref = build_fold_indirect_ref_loc(this->location().gcc_location(),
12621                                              s);
12622       TREE_THIS_NOTRAP(ref) = 1;
12623       set = build2(MODIFY_EXPR, void_type_node, ref, values);
12624     }
12625
12626   // Build a constructor for the open array.
12627
12628   tree type_tree = type_to_tree(this->type()->get_backend(context->gogo()));
12629   if (type_tree == error_mark_node)
12630     return error_mark_node;
12631   go_assert(TREE_CODE(type_tree) == RECORD_TYPE);
12632
12633   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
12634
12635   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
12636   tree field = TYPE_FIELDS(type_tree);
12637   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
12638   elt->index = field;
12639   elt->value = fold_convert(TREE_TYPE(field), space);
12640
12641   elt = VEC_quick_push(constructor_elt, init, NULL);
12642   field = DECL_CHAIN(field);
12643   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
12644   elt->index = field;
12645   elt->value = fold_convert(TREE_TYPE(field), length_tree);
12646
12647   elt = VEC_quick_push(constructor_elt, init, NULL);
12648   field = DECL_CHAIN(field);
12649   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
12650   elt->index = field;
12651   elt->value = fold_convert(TREE_TYPE(field), length_tree);
12652
12653   tree constructor = build_constructor(type_tree, init);
12654   if (constructor == error_mark_node)
12655     return error_mark_node;
12656   if (!copy_to_heap)
12657     TREE_CONSTANT(constructor) = 1;
12658
12659   if (set == NULL_TREE)
12660     return constructor;
12661   else
12662     return build2(COMPOUND_EXPR, type_tree, set, constructor);
12663 }
12664
12665 // Make a slice composite literal.  This is used by the type
12666 // descriptor code.
12667
12668 Expression*
12669 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
12670                                          Location location)
12671 {
12672   go_assert(type->is_slice_type());
12673   return new Open_array_construction_expression(type, vals, location);
12674 }
12675
12676 // Construct a map.
12677
12678 class Map_construction_expression : public Expression
12679 {
12680  public:
12681   Map_construction_expression(Type* type, Expression_list* vals,
12682                               Location location)
12683     : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
12684       type_(type), vals_(vals)
12685   { go_assert(vals == NULL || vals->size() % 2 == 0); }
12686
12687  protected:
12688   int
12689   do_traverse(Traverse* traverse);
12690
12691   Type*
12692   do_type()
12693   { return this->type_; }
12694
12695   void
12696   do_determine_type(const Type_context*);
12697
12698   void
12699   do_check_types(Gogo*);
12700
12701   Expression*
12702   do_copy()
12703   {
12704     return new Map_construction_expression(this->type_, this->vals_->copy(),
12705                                            this->location());
12706   }
12707
12708   tree
12709   do_get_tree(Translate_context*);
12710
12711   void
12712   do_export(Export*) const;
12713
12714   void
12715   do_dump_expression(Ast_dump_context*) const;
12716   
12717  private:
12718   // The type of the map to construct.
12719   Type* type_;
12720   // The list of values.
12721   Expression_list* vals_;
12722 };
12723
12724 // Traversal.
12725
12726 int
12727 Map_construction_expression::do_traverse(Traverse* traverse)
12728 {
12729   if (this->vals_ != NULL
12730       && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
12731     return TRAVERSE_EXIT;
12732   if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12733     return TRAVERSE_EXIT;
12734   return TRAVERSE_CONTINUE;
12735 }
12736
12737 // Final type determination.
12738
12739 void
12740 Map_construction_expression::do_determine_type(const Type_context*)
12741 {
12742   if (this->vals_ == NULL)
12743     return;
12744
12745   Map_type* mt = this->type_->map_type();
12746   Type_context key_context(mt->key_type(), false);
12747   Type_context val_context(mt->val_type(), false);
12748   for (Expression_list::const_iterator pv = this->vals_->begin();
12749        pv != this->vals_->end();
12750        ++pv)
12751     {
12752       (*pv)->determine_type(&key_context);
12753       ++pv;
12754       (*pv)->determine_type(&val_context);
12755     }
12756 }
12757
12758 // Check types.
12759
12760 void
12761 Map_construction_expression::do_check_types(Gogo*)
12762 {
12763   if (this->vals_ == NULL)
12764     return;
12765
12766   Map_type* mt = this->type_->map_type();
12767   int i = 0;
12768   Type* key_type = mt->key_type();
12769   Type* val_type = mt->val_type();
12770   for (Expression_list::const_iterator pv = this->vals_->begin();
12771        pv != this->vals_->end();
12772        ++pv, ++i)
12773     {
12774       if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
12775         {
12776           error_at((*pv)->location(),
12777                    "incompatible type for element %d key in map construction",
12778                    i + 1);
12779           this->set_is_error();
12780         }
12781       ++pv;
12782       if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
12783         {
12784           error_at((*pv)->location(),
12785                    ("incompatible type for element %d value "
12786                     "in map construction"),
12787                    i + 1);
12788           this->set_is_error();
12789         }
12790     }
12791 }
12792
12793 // Return a tree for constructing a map.
12794
12795 tree
12796 Map_construction_expression::do_get_tree(Translate_context* context)
12797 {
12798   Gogo* gogo = context->gogo();
12799   Location loc = this->location();
12800
12801   Map_type* mt = this->type_->map_type();
12802
12803   // Build a struct to hold the key and value.
12804   tree struct_type = make_node(RECORD_TYPE);
12805
12806   Type* key_type = mt->key_type();
12807   tree id = get_identifier("__key");
12808   tree key_type_tree = type_to_tree(key_type->get_backend(gogo));
12809   if (key_type_tree == error_mark_node)
12810     return error_mark_node;
12811   tree key_field = build_decl(loc.gcc_location(), FIELD_DECL, id,
12812                               key_type_tree);
12813   DECL_CONTEXT(key_field) = struct_type;
12814   TYPE_FIELDS(struct_type) = key_field;
12815
12816   Type* val_type = mt->val_type();
12817   id = get_identifier("__val");
12818   tree val_type_tree = type_to_tree(val_type->get_backend(gogo));
12819   if (val_type_tree == error_mark_node)
12820     return error_mark_node;
12821   tree val_field = build_decl(loc.gcc_location(), FIELD_DECL, id,
12822                               val_type_tree);
12823   DECL_CONTEXT(val_field) = struct_type;
12824   DECL_CHAIN(key_field) = val_field;
12825
12826   layout_type(struct_type);
12827
12828   bool is_constant = true;
12829   size_t i = 0;
12830   tree valaddr;
12831   tree make_tmp;
12832
12833   if (this->vals_ == NULL || this->vals_->empty())
12834     {
12835       valaddr = null_pointer_node;
12836       make_tmp = NULL_TREE;
12837     }
12838   else
12839     {
12840       VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
12841                                                   this->vals_->size() / 2);
12842
12843       for (Expression_list::const_iterator pv = this->vals_->begin();
12844            pv != this->vals_->end();
12845            ++pv, ++i)
12846         {
12847           bool one_is_constant = true;
12848
12849           VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
12850
12851           constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
12852           elt->index = key_field;
12853           tree val_tree = (*pv)->get_tree(context);
12854           elt->value = Expression::convert_for_assignment(context, key_type,
12855                                                           (*pv)->type(),
12856                                                           val_tree, loc);
12857           if (elt->value == error_mark_node)
12858             return error_mark_node;
12859           if (!TREE_CONSTANT(elt->value))
12860             one_is_constant = false;
12861
12862           ++pv;
12863
12864           elt = VEC_quick_push(constructor_elt, one, NULL);
12865           elt->index = val_field;
12866           val_tree = (*pv)->get_tree(context);
12867           elt->value = Expression::convert_for_assignment(context, val_type,
12868                                                           (*pv)->type(),
12869                                                           val_tree, loc);
12870           if (elt->value == error_mark_node)
12871             return error_mark_node;
12872           if (!TREE_CONSTANT(elt->value))
12873             one_is_constant = false;
12874
12875           elt = VEC_quick_push(constructor_elt, values, NULL);
12876           elt->index = size_int(i);
12877           elt->value = build_constructor(struct_type, one);
12878           if (one_is_constant)
12879             TREE_CONSTANT(elt->value) = 1;
12880           else
12881             is_constant = false;
12882         }
12883
12884       tree index_type = build_index_type(size_int(i - 1));
12885       tree array_type = build_array_type(struct_type, index_type);
12886       tree init = build_constructor(array_type, values);
12887       if (is_constant)
12888         TREE_CONSTANT(init) = 1;
12889       tree tmp;
12890       if (current_function_decl != NULL)
12891         {
12892           tmp = create_tmp_var(array_type, get_name(array_type));
12893           DECL_INITIAL(tmp) = init;
12894           make_tmp = fold_build1_loc(loc.gcc_location(), DECL_EXPR,
12895                                      void_type_node, tmp);
12896           TREE_ADDRESSABLE(tmp) = 1;
12897         }
12898       else
12899         {
12900           tmp = build_decl(loc.gcc_location(), VAR_DECL,
12901                            create_tmp_var_name("M"), array_type);
12902           DECL_EXTERNAL(tmp) = 0;
12903           TREE_PUBLIC(tmp) = 0;
12904           TREE_STATIC(tmp) = 1;
12905           DECL_ARTIFICIAL(tmp) = 1;
12906           if (!TREE_CONSTANT(init))
12907             make_tmp = fold_build2_loc(loc.gcc_location(), INIT_EXPR,
12908                                        void_type_node, tmp, init);
12909           else
12910             {
12911               TREE_READONLY(tmp) = 1;
12912               TREE_CONSTANT(tmp) = 1;
12913               DECL_INITIAL(tmp) = init;
12914               make_tmp = NULL_TREE;
12915             }
12916           rest_of_decl_compilation(tmp, 1, 0);
12917         }
12918
12919       valaddr = build_fold_addr_expr(tmp);
12920     }
12921
12922   tree descriptor = mt->map_descriptor_pointer(gogo, loc);
12923
12924   tree type_tree = type_to_tree(this->type_->get_backend(gogo));
12925   if (type_tree == error_mark_node)
12926     return error_mark_node;
12927
12928   static tree construct_map_fndecl;
12929   tree call = Gogo::call_builtin(&construct_map_fndecl,
12930                                  loc,
12931                                  "__go_construct_map",
12932                                  6,
12933                                  type_tree,
12934                                  TREE_TYPE(descriptor),
12935                                  descriptor,
12936                                  sizetype,
12937                                  size_int(i),
12938                                  sizetype,
12939                                  TYPE_SIZE_UNIT(struct_type),
12940                                  sizetype,
12941                                  byte_position(val_field),
12942                                  sizetype,
12943                                  TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
12944                                  const_ptr_type_node,
12945                                  fold_convert(const_ptr_type_node, valaddr));
12946   if (call == error_mark_node)
12947     return error_mark_node;
12948
12949   tree ret;
12950   if (make_tmp == NULL)
12951     ret = call;
12952   else
12953     ret = fold_build2_loc(loc.gcc_location(), COMPOUND_EXPR, type_tree,
12954                           make_tmp, call);
12955   return ret;
12956 }
12957
12958 // Export an array construction.
12959
12960 void
12961 Map_construction_expression::do_export(Export* exp) const
12962 {
12963   exp->write_c_string("convert(");
12964   exp->write_type(this->type_);
12965   for (Expression_list::const_iterator pv = this->vals_->begin();
12966        pv != this->vals_->end();
12967        ++pv)
12968     {
12969       exp->write_c_string(", ");
12970       (*pv)->export_expression(exp);
12971     }
12972   exp->write_c_string(")");
12973 }
12974
12975 // Dump ast representation for a map construction expression.
12976
12977 void
12978 Map_construction_expression::do_dump_expression(
12979     Ast_dump_context* ast_dump_context) const
12980 {
12981   ast_dump_context->ostream() << "{" ;
12982   ast_dump_context->dump_expression_list(this->vals_, true);
12983   ast_dump_context->ostream() << "}";
12984 }
12985
12986 // A general composite literal.  This is lowered to a type specific
12987 // version.
12988
12989 class Composite_literal_expression : public Parser_expression
12990 {
12991  public:
12992   Composite_literal_expression(Type* type, int depth, bool has_keys,
12993                                Expression_list* vals, Location location)
12994     : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
12995       type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
12996   { }
12997
12998  protected:
12999   int
13000   do_traverse(Traverse* traverse);
13001
13002   Expression*
13003   do_lower(Gogo*, Named_object*, Statement_inserter*, int);
13004
13005   Expression*
13006   do_copy()
13007   {
13008     return new Composite_literal_expression(this->type_, this->depth_,
13009                                             this->has_keys_,
13010                                             (this->vals_ == NULL
13011                                              ? NULL
13012                                              : this->vals_->copy()),
13013                                             this->location());
13014   }
13015
13016   void
13017   do_dump_expression(Ast_dump_context*) const;
13018   
13019  private:
13020   Expression*
13021   lower_struct(Gogo*, Type*);
13022
13023   Expression*
13024   lower_array(Type*);
13025
13026   Expression*
13027   make_array(Type*, Expression_list*);
13028
13029   Expression*
13030   lower_map(Gogo*, Named_object*, Statement_inserter*, Type*);
13031
13032   // The type of the composite literal.
13033   Type* type_;
13034   // The depth within a list of composite literals within a composite
13035   // literal, when the type is omitted.
13036   int depth_;
13037   // The values to put in the composite literal.
13038   Expression_list* vals_;
13039   // If this is true, then VALS_ is a list of pairs: a key and a
13040   // value.  In an array initializer, a missing key will be NULL.
13041   bool has_keys_;
13042 };
13043
13044 // Traversal.
13045
13046 int
13047 Composite_literal_expression::do_traverse(Traverse* traverse)
13048 {
13049   if (this->vals_ != NULL
13050       && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
13051     return TRAVERSE_EXIT;
13052   return Type::traverse(this->type_, traverse);
13053 }
13054
13055 // Lower a generic composite literal into a specific version based on
13056 // the type.
13057
13058 Expression*
13059 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function,
13060                                        Statement_inserter* inserter, int)
13061 {
13062   Type* type = this->type_;
13063
13064   for (int depth = this->depth_; depth > 0; --depth)
13065     {
13066       if (type->array_type() != NULL)
13067         type = type->array_type()->element_type();
13068       else if (type->map_type() != NULL)
13069         type = type->map_type()->val_type();
13070       else
13071         {
13072           if (!type->is_error())
13073             error_at(this->location(),
13074                      ("may only omit types within composite literals "
13075                       "of slice, array, or map type"));
13076           return Expression::make_error(this->location());
13077         }
13078     }
13079
13080   Type *pt = type->points_to();
13081   bool is_pointer = false;
13082   if (pt != NULL)
13083     {
13084       is_pointer = true;
13085       type = pt;
13086     }
13087
13088   Expression* ret;
13089   if (type->is_error())
13090     return Expression::make_error(this->location());
13091   else if (type->struct_type() != NULL)
13092     ret = this->lower_struct(gogo, type);
13093   else if (type->array_type() != NULL)
13094     ret = this->lower_array(type);
13095   else if (type->map_type() != NULL)
13096     ret = this->lower_map(gogo, function, inserter, type);
13097   else
13098     {
13099       error_at(this->location(),
13100                ("expected struct, slice, array, or map type "
13101                 "for composite literal"));
13102       return Expression::make_error(this->location());
13103     }
13104
13105   if (is_pointer)
13106     ret = Expression::make_heap_composite(ret, this->location());
13107
13108   return ret;
13109 }
13110
13111 // Lower a struct composite literal.
13112
13113 Expression*
13114 Composite_literal_expression::lower_struct(Gogo* gogo, Type* type)
13115 {
13116   Location location = this->location();
13117   Struct_type* st = type->struct_type();
13118   if (this->vals_ == NULL || !this->has_keys_)
13119     {
13120       if (this->vals_ != NULL
13121           && !this->vals_->empty()
13122           && type->named_type() != NULL
13123           && type->named_type()->named_object()->package() != NULL)
13124         {
13125           for (Struct_field_list::const_iterator pf = st->fields()->begin();
13126                pf != st->fields()->end();
13127                ++pf)
13128             {
13129               if (Gogo::is_hidden_name(pf->field_name()))
13130                 error_at(this->location(),
13131                          "assignment of unexported field %qs in %qs literal",
13132                          Gogo::message_name(pf->field_name()).c_str(),
13133                          type->named_type()->message_name().c_str());
13134             }
13135         }
13136
13137       return new Struct_construction_expression(type, this->vals_, location);
13138     }
13139
13140   size_t field_count = st->field_count();
13141   std::vector<Expression*> vals(field_count);
13142   Expression_list::const_iterator p = this->vals_->begin();
13143   while (p != this->vals_->end())
13144     {
13145       Expression* name_expr = *p;
13146
13147       ++p;
13148       go_assert(p != this->vals_->end());
13149       Expression* val = *p;
13150
13151       ++p;
13152
13153       if (name_expr == NULL)
13154         {
13155           error_at(val->location(), "mixture of field and value initializers");
13156           return Expression::make_error(location);
13157         }
13158
13159       bool bad_key = false;
13160       std::string name;
13161       const Named_object* no = NULL;
13162       switch (name_expr->classification())
13163         {
13164         case EXPRESSION_UNKNOWN_REFERENCE:
13165           name = name_expr->unknown_expression()->name();
13166           break;
13167
13168         case EXPRESSION_CONST_REFERENCE:
13169           no = static_cast<Const_expression*>(name_expr)->named_object();
13170           break;
13171
13172         case EXPRESSION_TYPE:
13173           {
13174             Type* t = name_expr->type();
13175             Named_type* nt = t->named_type();
13176             if (nt == NULL)
13177               bad_key = true;
13178             else
13179               no = nt->named_object();
13180           }
13181           break;
13182
13183         case EXPRESSION_VAR_REFERENCE:
13184           no = name_expr->var_expression()->named_object();
13185           break;
13186
13187         case EXPRESSION_FUNC_REFERENCE:
13188           no = name_expr->func_expression()->named_object();
13189           break;
13190
13191         case EXPRESSION_UNARY:
13192           // If there is a local variable around with the same name as
13193           // the field, and this occurs in the closure, then the
13194           // parser may turn the field reference into an indirection
13195           // through the closure.  FIXME: This is a mess.
13196           {
13197             bad_key = true;
13198             Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
13199             if (ue->op() == OPERATOR_MULT)
13200               {
13201                 Field_reference_expression* fre =
13202                   ue->operand()->field_reference_expression();
13203                 if (fre != NULL)
13204                   {
13205                     Struct_type* st =
13206                       fre->expr()->type()->deref()->struct_type();
13207                     if (st != NULL)
13208                       {
13209                         const Struct_field* sf = st->field(fre->field_index());
13210                         name = sf->field_name();
13211
13212                         // See below.  FIXME.
13213                         if (!Gogo::is_hidden_name(name)
13214                             && name[0] >= 'a'
13215                             && name[0] <= 'z')
13216                           {
13217                             if (gogo->lookup_global(name.c_str()) != NULL)
13218                               name = gogo->pack_hidden_name(name, false);
13219                           }
13220
13221                         char buf[20];
13222                         snprintf(buf, sizeof buf, "%u", fre->field_index());
13223                         size_t buflen = strlen(buf);
13224                         if (name.compare(name.length() - buflen, buflen, buf)
13225                             == 0)
13226                           {
13227                             name = name.substr(0, name.length() - buflen);
13228                             bad_key = false;
13229                           }
13230                       }
13231                   }
13232               }
13233           }
13234           break;
13235
13236         default:
13237           bad_key = true;
13238           break;
13239         }
13240       if (bad_key)
13241         {
13242           error_at(name_expr->location(), "expected struct field name");
13243           return Expression::make_error(location);
13244         }
13245
13246       if (no != NULL)
13247         {
13248           name = no->name();
13249
13250           // A predefined name won't be packed.  If it starts with a
13251           // lower case letter we need to check for that case, because
13252           // the field name will be packed.  FIXME.
13253           if (!Gogo::is_hidden_name(name)
13254               && name[0] >= 'a'
13255               && name[0] <= 'z')
13256             {
13257               Named_object* gno = gogo->lookup_global(name.c_str());
13258               if (gno == no)
13259                 name = gogo->pack_hidden_name(name, false);
13260             }
13261         }
13262
13263       unsigned int index;
13264       const Struct_field* sf = st->find_local_field(name, &index);
13265       if (sf == NULL)
13266         {
13267           error_at(name_expr->location(), "unknown field %qs in %qs",
13268                    Gogo::message_name(name).c_str(),
13269                    (type->named_type() != NULL
13270                     ? type->named_type()->message_name().c_str()
13271                     : "unnamed struct"));
13272           return Expression::make_error(location);
13273         }
13274       if (vals[index] != NULL)
13275         {
13276           error_at(name_expr->location(),
13277                    "duplicate value for field %qs in %qs",
13278                    Gogo::message_name(name).c_str(),
13279                    (type->named_type() != NULL
13280                     ? type->named_type()->message_name().c_str()
13281                     : "unnamed struct"));
13282           return Expression::make_error(location);
13283         }
13284
13285       if (type->named_type() != NULL
13286           && type->named_type()->named_object()->package() != NULL
13287           && Gogo::is_hidden_name(sf->field_name()))
13288         error_at(name_expr->location(),
13289                  "assignment of unexported field %qs in %qs literal",
13290                  Gogo::message_name(sf->field_name()).c_str(),
13291                  type->named_type()->message_name().c_str());
13292
13293       vals[index] = val;
13294     }
13295
13296   Expression_list* list = new Expression_list;
13297   list->reserve(field_count);
13298   for (size_t i = 0; i < field_count; ++i)
13299     list->push_back(vals[i]);
13300
13301   return new Struct_construction_expression(type, list, location);
13302 }
13303
13304 // Lower an array composite literal.
13305
13306 Expression*
13307 Composite_literal_expression::lower_array(Type* type)
13308 {
13309   Location location = this->location();
13310   if (this->vals_ == NULL || !this->has_keys_)
13311     return this->make_array(type, this->vals_);
13312
13313   std::vector<Expression*> vals;
13314   vals.reserve(this->vals_->size());
13315   unsigned long index = 0;
13316   Expression_list::const_iterator p = this->vals_->begin();
13317   while (p != this->vals_->end())
13318     {
13319       Expression* index_expr = *p;
13320
13321       ++p;
13322       go_assert(p != this->vals_->end());
13323       Expression* val = *p;
13324
13325       ++p;
13326
13327       if (index_expr != NULL)
13328         {
13329           mpz_t ival;
13330           mpz_init(ival);
13331
13332           Type* dummy;
13333           if (!index_expr->integer_constant_value(true, ival, &dummy))
13334             {
13335               mpz_clear(ival);
13336               error_at(index_expr->location(),
13337                        "index expression is not integer constant");
13338               return Expression::make_error(location);
13339             }
13340
13341           if (mpz_sgn(ival) < 0)
13342             {
13343               mpz_clear(ival);
13344               error_at(index_expr->location(), "index expression is negative");
13345               return Expression::make_error(location);
13346             }
13347
13348           index = mpz_get_ui(ival);
13349           if (mpz_cmp_ui(ival, index) != 0)
13350             {
13351               mpz_clear(ival);
13352               error_at(index_expr->location(), "index value overflow");
13353               return Expression::make_error(location);
13354             }
13355
13356           Named_type* ntype = Type::lookup_integer_type("int");
13357           Integer_type* inttype = ntype->integer_type();
13358           mpz_t max;
13359           mpz_init_set_ui(max, 1);
13360           mpz_mul_2exp(max, max, inttype->bits() - 1);
13361           bool ok = mpz_cmp(ival, max) < 0;
13362           mpz_clear(max);
13363           if (!ok)
13364             {
13365               mpz_clear(ival);
13366               error_at(index_expr->location(), "index value overflow");
13367               return Expression::make_error(location);
13368             }
13369
13370           mpz_clear(ival);
13371
13372           // FIXME: Our representation isn't very good; this avoids
13373           // thrashing.
13374           if (index > 0x1000000)
13375             {
13376               error_at(index_expr->location(), "index too large for compiler");
13377               return Expression::make_error(location);
13378             }
13379         }
13380
13381       if (index == vals.size())
13382         vals.push_back(val);
13383       else
13384         {
13385           if (index > vals.size())
13386             {
13387               vals.reserve(index + 32);
13388               vals.resize(index + 1, static_cast<Expression*>(NULL));
13389             }
13390           if (vals[index] != NULL)
13391             {
13392               error_at((index_expr != NULL
13393                         ? index_expr->location()
13394                         : val->location()),
13395                        "duplicate value for index %lu",
13396                        index);
13397               return Expression::make_error(location);
13398             }
13399           vals[index] = val;
13400         }
13401
13402       ++index;
13403     }
13404
13405   size_t size = vals.size();
13406   Expression_list* list = new Expression_list;
13407   list->reserve(size);
13408   for (size_t i = 0; i < size; ++i)
13409     list->push_back(vals[i]);
13410
13411   return this->make_array(type, list);
13412 }
13413
13414 // Actually build the array composite literal. This handles
13415 // [...]{...}.
13416
13417 Expression*
13418 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
13419 {
13420   Location location = this->location();
13421   Array_type* at = type->array_type();
13422   if (at->length() != NULL && at->length()->is_nil_expression())
13423     {
13424       size_t size = vals == NULL ? 0 : vals->size();
13425       mpz_t vlen;
13426       mpz_init_set_ui(vlen, size);
13427       Expression* elen = Expression::make_integer(&vlen, NULL, location);
13428       mpz_clear(vlen);
13429       at = Type::make_array_type(at->element_type(), elen);
13430       type = at;
13431     }
13432   if (at->length() != NULL)
13433     return new Fixed_array_construction_expression(type, vals, location);
13434   else
13435     return new Open_array_construction_expression(type, vals, location);
13436 }
13437
13438 // Lower a map composite literal.
13439
13440 Expression*
13441 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
13442                                         Statement_inserter* inserter,
13443                                         Type* type)
13444 {
13445   Location location = this->location();
13446   if (this->vals_ != NULL)
13447     {
13448       if (!this->has_keys_)
13449         {
13450           error_at(location, "map composite literal must have keys");
13451           return Expression::make_error(location);
13452         }
13453
13454       for (Expression_list::iterator p = this->vals_->begin();
13455            p != this->vals_->end();
13456            p += 2)
13457         {
13458           if (*p == NULL)
13459             {
13460               ++p;
13461               error_at((*p)->location(),
13462                        "map composite literal must have keys for every value");
13463               return Expression::make_error(location);
13464             }
13465           // Make sure we have lowered the key; it may not have been
13466           // lowered in order to handle keys for struct composite
13467           // literals.  Lower it now to get the right error message.
13468           if ((*p)->unknown_expression() != NULL)
13469             {
13470               (*p)->unknown_expression()->clear_is_composite_literal_key();
13471               gogo->lower_expression(function, inserter, &*p);
13472               go_assert((*p)->is_error_expression());
13473               return Expression::make_error(location);
13474             }
13475         }
13476     }
13477
13478   return new Map_construction_expression(type, this->vals_, location);
13479 }
13480
13481 // Dump ast representation for a composite literal expression.
13482
13483 void
13484 Composite_literal_expression::do_dump_expression(
13485                                Ast_dump_context* ast_dump_context) const
13486 {
13487   ast_dump_context->ostream() << "composite(";
13488   ast_dump_context->dump_type(this->type_);
13489   ast_dump_context->ostream() << ", {";
13490   ast_dump_context->dump_expression_list(this->vals_, this->has_keys_);
13491   ast_dump_context->ostream() << "})";
13492 }
13493
13494 // Make a composite literal expression.
13495
13496 Expression*
13497 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
13498                                    Expression_list* vals,
13499                                    Location location)
13500 {
13501   return new Composite_literal_expression(type, depth, has_keys, vals,
13502                                           location);
13503 }
13504
13505 // Return whether this expression is a composite literal.
13506
13507 bool
13508 Expression::is_composite_literal() const
13509 {
13510   switch (this->classification_)
13511     {
13512     case EXPRESSION_COMPOSITE_LITERAL:
13513     case EXPRESSION_STRUCT_CONSTRUCTION:
13514     case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
13515     case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
13516     case EXPRESSION_MAP_CONSTRUCTION:
13517       return true;
13518     default:
13519       return false;
13520     }
13521 }
13522
13523 // Return whether this expression is a composite literal which is not
13524 // constant.
13525
13526 bool
13527 Expression::is_nonconstant_composite_literal() const
13528 {
13529   switch (this->classification_)
13530     {
13531     case EXPRESSION_STRUCT_CONSTRUCTION:
13532       {
13533         const Struct_construction_expression *psce =
13534           static_cast<const Struct_construction_expression*>(this);
13535         return !psce->is_constant_struct();
13536       }
13537     case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
13538       {
13539         const Fixed_array_construction_expression *pace =
13540           static_cast<const Fixed_array_construction_expression*>(this);
13541         return !pace->is_constant_array();
13542       }
13543     case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
13544       {
13545         const Open_array_construction_expression *pace =
13546           static_cast<const Open_array_construction_expression*>(this);
13547         return !pace->is_constant_array();
13548       }
13549     case EXPRESSION_MAP_CONSTRUCTION:
13550       return true;
13551     default:
13552       return false;
13553     }
13554 }
13555
13556 // Return true if this is a reference to a local variable.
13557
13558 bool
13559 Expression::is_local_variable() const
13560 {
13561   const Var_expression* ve = this->var_expression();
13562   if (ve == NULL)
13563     return false;
13564   const Named_object* no = ve->named_object();
13565   return (no->is_result_variable()
13566           || (no->is_variable() && !no->var_value()->is_global()));
13567 }
13568
13569 // Class Type_guard_expression.
13570
13571 // Traversal.
13572
13573 int
13574 Type_guard_expression::do_traverse(Traverse* traverse)
13575 {
13576   if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
13577       || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
13578     return TRAVERSE_EXIT;
13579   return TRAVERSE_CONTINUE;
13580 }
13581
13582 // Check types of a type guard expression.  The expression must have
13583 // an interface type, but the actual type conversion is checked at run
13584 // time.
13585
13586 void
13587 Type_guard_expression::do_check_types(Gogo*)
13588 {
13589   // 6g permits using a type guard with unsafe.pointer; we are
13590   // compatible.
13591   Type* expr_type = this->expr_->type();
13592   if (expr_type->is_unsafe_pointer_type())
13593     {
13594       if (this->type_->points_to() == NULL
13595           && (this->type_->integer_type() == NULL
13596               || (this->type_->forwarded()
13597                   != Type::lookup_integer_type("uintptr"))))
13598         this->report_error(_("invalid unsafe.Pointer conversion"));
13599     }
13600   else if (this->type_->is_unsafe_pointer_type())
13601     {
13602       if (expr_type->points_to() == NULL
13603           && (expr_type->integer_type() == NULL
13604               || (expr_type->forwarded()
13605                   != Type::lookup_integer_type("uintptr"))))
13606         this->report_error(_("invalid unsafe.Pointer conversion"));
13607     }
13608   else if (expr_type->interface_type() == NULL)
13609     {
13610       if (!expr_type->is_error() && !this->type_->is_error())
13611         this->report_error(_("type assertion only valid for interface types"));
13612       this->set_is_error();
13613     }
13614   else if (this->type_->interface_type() == NULL)
13615     {
13616       std::string reason;
13617       if (!expr_type->interface_type()->implements_interface(this->type_,
13618                                                              &reason))
13619         {
13620           if (!this->type_->is_error())
13621             {
13622               if (reason.empty())
13623                 this->report_error(_("impossible type assertion: "
13624                                      "type does not implement interface"));
13625               else
13626                 error_at(this->location(),
13627                          ("impossible type assertion: "
13628                           "type does not implement interface (%s)"),
13629                          reason.c_str());
13630             }
13631           this->set_is_error();
13632         }
13633     }
13634 }
13635
13636 // Return a tree for a type guard expression.
13637
13638 tree
13639 Type_guard_expression::do_get_tree(Translate_context* context)
13640 {
13641   Gogo* gogo = context->gogo();
13642   tree expr_tree = this->expr_->get_tree(context);
13643   if (expr_tree == error_mark_node)
13644     return error_mark_node;
13645   Type* expr_type = this->expr_->type();
13646   if ((this->type_->is_unsafe_pointer_type()
13647        && (expr_type->points_to() != NULL
13648            || expr_type->integer_type() != NULL))
13649       || (expr_type->is_unsafe_pointer_type()
13650           && this->type_->points_to() != NULL))
13651     return convert_to_pointer(type_to_tree(this->type_->get_backend(gogo)),
13652                               expr_tree);
13653   else if (expr_type->is_unsafe_pointer_type()
13654            && this->type_->integer_type() != NULL)
13655     return convert_to_integer(type_to_tree(this->type_->get_backend(gogo)),
13656                               expr_tree);
13657   else if (this->type_->interface_type() != NULL)
13658     return Expression::convert_interface_to_interface(context, this->type_,
13659                                                       this->expr_->type(),
13660                                                       expr_tree, true,
13661                                                       this->location());
13662   else
13663     return Expression::convert_for_assignment(context, this->type_,
13664                                               this->expr_->type(), expr_tree,
13665                                               this->location());
13666 }
13667
13668 // Dump ast representation for a type guard expression.
13669
13670 void
13671 Type_guard_expression::do_dump_expression(Ast_dump_context* ast_dump_context) 
13672     const
13673 {
13674   this->expr_->dump_expression(ast_dump_context);
13675   ast_dump_context->ostream() <<  ".";
13676   ast_dump_context->dump_type(this->type_);
13677 }
13678
13679 // Make a type guard expression.
13680
13681 Expression*
13682 Expression::make_type_guard(Expression* expr, Type* type,
13683                             Location location)
13684 {
13685   return new Type_guard_expression(expr, type, location);
13686 }
13687
13688 // Class Heap_composite_expression.
13689
13690 // When you take the address of a composite literal, it is allocated
13691 // on the heap.  This class implements that.
13692
13693 class Heap_composite_expression : public Expression
13694 {
13695  public:
13696   Heap_composite_expression(Expression* expr, Location location)
13697     : Expression(EXPRESSION_HEAP_COMPOSITE, location),
13698       expr_(expr)
13699   { }
13700
13701  protected:
13702   int
13703   do_traverse(Traverse* traverse)
13704   { return Expression::traverse(&this->expr_, traverse); }
13705
13706   Type*
13707   do_type()
13708   { return Type::make_pointer_type(this->expr_->type()); }
13709
13710   void
13711   do_determine_type(const Type_context*)
13712   { this->expr_->determine_type_no_context(); }
13713
13714   Expression*
13715   do_copy()
13716   {
13717     return Expression::make_heap_composite(this->expr_->copy(),
13718                                            this->location());
13719   }
13720
13721   tree
13722   do_get_tree(Translate_context*);
13723
13724   // We only export global objects, and the parser does not generate
13725   // this in global scope.
13726   void
13727   do_export(Export*) const
13728   { go_unreachable(); }
13729
13730   void
13731   do_dump_expression(Ast_dump_context*) const;
13732
13733  private:
13734   // The composite literal which is being put on the heap.
13735   Expression* expr_;
13736 };
13737
13738 // Return a tree which allocates a composite literal on the heap.
13739
13740 tree
13741 Heap_composite_expression::do_get_tree(Translate_context* context)
13742 {
13743   tree expr_tree = this->expr_->get_tree(context);
13744   if (expr_tree == error_mark_node)
13745     return error_mark_node;
13746   tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
13747   go_assert(TREE_CODE(expr_size) == INTEGER_CST);
13748   tree space = context->gogo()->allocate_memory(this->expr_->type(),
13749                                                 expr_size, this->location());
13750   space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
13751   space = save_expr(space);
13752   tree ref = build_fold_indirect_ref_loc(this->location().gcc_location(),
13753                                          space);
13754   TREE_THIS_NOTRAP(ref) = 1;
13755   tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
13756                     build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
13757                     space);
13758   SET_EXPR_LOCATION(ret, this->location().gcc_location());
13759   return ret;
13760 }
13761
13762 // Dump ast representation for a heap composite expression.
13763
13764 void
13765 Heap_composite_expression::do_dump_expression(
13766     Ast_dump_context* ast_dump_context) const
13767 {
13768   ast_dump_context->ostream() << "&(";
13769   ast_dump_context->dump_expression(this->expr_);
13770   ast_dump_context->ostream() << ")";
13771 }
13772
13773 // Allocate a composite literal on the heap.
13774
13775 Expression*
13776 Expression::make_heap_composite(Expression* expr, Location location)
13777 {
13778   return new Heap_composite_expression(expr, location);
13779 }
13780
13781 // Class Receive_expression.
13782
13783 // Return the type of a receive expression.
13784
13785 Type*
13786 Receive_expression::do_type()
13787 {
13788   Channel_type* channel_type = this->channel_->type()->channel_type();
13789   if (channel_type == NULL)
13790     return Type::make_error_type();
13791   return channel_type->element_type();
13792 }
13793
13794 // Check types for a receive expression.
13795
13796 void
13797 Receive_expression::do_check_types(Gogo*)
13798 {
13799   Type* type = this->channel_->type();
13800   if (type->is_error())
13801     {
13802       this->set_is_error();
13803       return;
13804     }
13805   if (type->channel_type() == NULL)
13806     {
13807       this->report_error(_("expected channel"));
13808       return;
13809     }
13810   if (!type->channel_type()->may_receive())
13811     {
13812       this->report_error(_("invalid receive on send-only channel"));
13813       return;
13814     }
13815 }
13816
13817 // Get a tree for a receive expression.
13818
13819 tree
13820 Receive_expression::do_get_tree(Translate_context* context)
13821 {
13822   Location loc = this->location();
13823
13824   Channel_type* channel_type = this->channel_->type()->channel_type();
13825   if (channel_type == NULL)
13826     {
13827       go_assert(this->channel_->type()->is_error());
13828       return error_mark_node;
13829     }
13830
13831   Expression* td = Expression::make_type_descriptor(channel_type, loc);
13832   tree td_tree = td->get_tree(context);
13833
13834   Type* element_type = channel_type->element_type();
13835   Btype* element_type_btype = element_type->get_backend(context->gogo());
13836   tree element_type_tree = type_to_tree(element_type_btype);
13837
13838   tree channel = this->channel_->get_tree(context);
13839   if (element_type_tree == error_mark_node || channel == error_mark_node)
13840     return error_mark_node;
13841
13842   return Gogo::receive_from_channel(element_type_tree, td_tree, channel, loc);
13843 }
13844
13845 // Dump ast representation for a receive expression.
13846
13847 void
13848 Receive_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
13849 {
13850   ast_dump_context->ostream() << " <- " ;
13851   ast_dump_context->dump_expression(channel_);
13852 }
13853
13854 // Make a receive expression.
13855
13856 Receive_expression*
13857 Expression::make_receive(Expression* channel, Location location)
13858 {
13859   return new Receive_expression(channel, location);
13860 }
13861
13862 // An expression which evaluates to a pointer to the type descriptor
13863 // of a type.
13864
13865 class Type_descriptor_expression : public Expression
13866 {
13867  public:
13868   Type_descriptor_expression(Type* type, Location location)
13869     : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
13870       type_(type)
13871   { }
13872
13873  protected:
13874   Type*
13875   do_type()
13876   { return Type::make_type_descriptor_ptr_type(); }
13877
13878   void
13879   do_determine_type(const Type_context*)
13880   { }
13881
13882   Expression*
13883   do_copy()
13884   { return this; }
13885
13886   tree
13887   do_get_tree(Translate_context* context)
13888   {
13889     return this->type_->type_descriptor_pointer(context->gogo(),
13890                                                 this->location());
13891   }
13892
13893   void
13894   do_dump_expression(Ast_dump_context*) const;
13895
13896  private:
13897   // The type for which this is the descriptor.
13898   Type* type_;
13899 };
13900
13901 // Dump ast representation for a type descriptor expression.
13902
13903 void
13904 Type_descriptor_expression::do_dump_expression(
13905     Ast_dump_context* ast_dump_context) const
13906 {
13907   ast_dump_context->dump_type(this->type_);
13908 }
13909
13910 // Make a type descriptor expression.
13911
13912 Expression*
13913 Expression::make_type_descriptor(Type* type, Location location)
13914 {
13915   return new Type_descriptor_expression(type, location);
13916 }
13917
13918 // An expression which evaluates to some characteristic of a type.
13919 // This is only used to initialize fields of a type descriptor.  Using
13920 // a new expression class is slightly inefficient but gives us a good
13921 // separation between the frontend and the middle-end with regard to
13922 // how types are laid out.
13923
13924 class Type_info_expression : public Expression
13925 {
13926  public:
13927   Type_info_expression(Type* type, Type_info type_info)
13928     : Expression(EXPRESSION_TYPE_INFO, Linemap::predeclared_location()),
13929       type_(type), type_info_(type_info)
13930   { }
13931
13932  protected:
13933   Type*
13934   do_type();
13935
13936   void
13937   do_determine_type(const Type_context*)
13938   { }
13939
13940   Expression*
13941   do_copy()
13942   { return this; }
13943
13944   tree
13945   do_get_tree(Translate_context* context);
13946
13947   void
13948   do_dump_expression(Ast_dump_context*) const;
13949
13950  private:
13951   // The type for which we are getting information.
13952   Type* type_;
13953   // What information we want.
13954   Type_info type_info_;
13955 };
13956
13957 // The type is chosen to match what the type descriptor struct
13958 // expects.
13959
13960 Type*
13961 Type_info_expression::do_type()
13962 {
13963   switch (this->type_info_)
13964     {
13965     case TYPE_INFO_SIZE:
13966       return Type::lookup_integer_type("uintptr");
13967     case TYPE_INFO_ALIGNMENT:
13968     case TYPE_INFO_FIELD_ALIGNMENT:
13969       return Type::lookup_integer_type("uint8");
13970     default:
13971       go_unreachable();
13972     }
13973 }
13974
13975 // Return type information in GENERIC.
13976
13977 tree
13978 Type_info_expression::do_get_tree(Translate_context* context)
13979 {
13980   Btype* btype = this->type_->get_backend(context->gogo());
13981   Gogo* gogo = context->gogo();
13982   size_t val;
13983   switch (this->type_info_)
13984     {
13985     case TYPE_INFO_SIZE:
13986       val = gogo->backend()->type_size(btype);
13987       break;
13988     case TYPE_INFO_ALIGNMENT:
13989       val = gogo->backend()->type_alignment(btype);
13990       break;
13991     case TYPE_INFO_FIELD_ALIGNMENT:
13992       val = gogo->backend()->type_field_alignment(btype);
13993       break;
13994     default:
13995       go_unreachable();
13996     }
13997   tree val_type_tree = type_to_tree(this->type()->get_backend(gogo));
13998   go_assert(val_type_tree != error_mark_node);
13999   return build_int_cstu(val_type_tree, val);
14000 }
14001
14002 // Dump ast representation for a type info expression.
14003
14004 void
14005 Type_info_expression::do_dump_expression(
14006     Ast_dump_context* ast_dump_context) const
14007 {
14008   ast_dump_context->ostream() << "typeinfo(";
14009   ast_dump_context->dump_type(this->type_);
14010   ast_dump_context->ostream() << ",";
14011   ast_dump_context->ostream() << 
14012     (this->type_info_ == TYPE_INFO_ALIGNMENT ? "alignment" 
14013     : this->type_info_ == TYPE_INFO_FIELD_ALIGNMENT ? "field alignment"
14014     : this->type_info_ == TYPE_INFO_SIZE ? "size "
14015     : "unknown");
14016   ast_dump_context->ostream() << ")";
14017 }
14018
14019 // Make a type info expression.
14020
14021 Expression*
14022 Expression::make_type_info(Type* type, Type_info type_info)
14023 {
14024   return new Type_info_expression(type, type_info);
14025 }
14026
14027 // An expression which evaluates to the offset of a field within a
14028 // struct.  This, like Type_info_expression, q.v., is only used to
14029 // initialize fields of a type descriptor.
14030
14031 class Struct_field_offset_expression : public Expression
14032 {
14033  public:
14034   Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
14035     : Expression(EXPRESSION_STRUCT_FIELD_OFFSET,
14036                  Linemap::predeclared_location()),
14037       type_(type), field_(field)
14038   { }
14039
14040  protected:
14041   Type*
14042   do_type()
14043   { return Type::lookup_integer_type("uintptr"); }
14044
14045   void
14046   do_determine_type(const Type_context*)
14047   { }
14048
14049   Expression*
14050   do_copy()
14051   { return this; }
14052
14053   tree
14054   do_get_tree(Translate_context* context);
14055
14056   void
14057   do_dump_expression(Ast_dump_context*) const;
14058   
14059  private:
14060   // The type of the struct.
14061   Struct_type* type_;
14062   // The field.
14063   const Struct_field* field_;
14064 };
14065
14066 // Return a struct field offset in GENERIC.
14067
14068 tree
14069 Struct_field_offset_expression::do_get_tree(Translate_context* context)
14070 {
14071   tree type_tree = type_to_tree(this->type_->get_backend(context->gogo()));
14072   if (type_tree == error_mark_node)
14073     return error_mark_node;
14074
14075   tree val_type_tree = type_to_tree(this->type()->get_backend(context->gogo()));
14076   go_assert(val_type_tree != error_mark_node);
14077
14078   const Struct_field_list* fields = this->type_->fields();
14079   tree struct_field_tree = TYPE_FIELDS(type_tree);
14080   Struct_field_list::const_iterator p;
14081   for (p = fields->begin();
14082        p != fields->end();
14083        ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
14084     {
14085       go_assert(struct_field_tree != NULL_TREE);
14086       if (&*p == this->field_)
14087         break;
14088     }
14089   go_assert(&*p == this->field_);
14090
14091   return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
14092                           byte_position(struct_field_tree));
14093 }
14094
14095 // Dump ast representation for a struct field offset expression.
14096
14097 void
14098 Struct_field_offset_expression::do_dump_expression(
14099     Ast_dump_context* ast_dump_context) const
14100 {
14101   ast_dump_context->ostream() <<  "unsafe.Offsetof(";
14102   ast_dump_context->dump_type(this->type_);
14103   ast_dump_context->ostream() << '.';
14104   ast_dump_context->ostream() <<
14105     Gogo::message_name(this->field_->field_name());
14106   ast_dump_context->ostream() << ")";
14107 }
14108
14109 // Make an expression for a struct field offset.
14110
14111 Expression*
14112 Expression::make_struct_field_offset(Struct_type* type,
14113                                      const Struct_field* field)
14114 {
14115   return new Struct_field_offset_expression(type, field);
14116 }
14117
14118 // An expression which evaluates to a pointer to the map descriptor of
14119 // a map type.
14120
14121 class Map_descriptor_expression : public Expression
14122 {
14123  public:
14124   Map_descriptor_expression(Map_type* type, Location location)
14125     : Expression(EXPRESSION_MAP_DESCRIPTOR, location),
14126       type_(type)
14127   { }
14128
14129  protected:
14130   Type*
14131   do_type()
14132   { return Type::make_pointer_type(Map_type::make_map_descriptor_type()); }
14133
14134   void
14135   do_determine_type(const Type_context*)
14136   { }
14137
14138   Expression*
14139   do_copy()
14140   { return this; }
14141
14142   tree
14143   do_get_tree(Translate_context* context)
14144   {
14145     return this->type_->map_descriptor_pointer(context->gogo(),
14146                                                this->location());
14147   }
14148
14149   void
14150   do_dump_expression(Ast_dump_context*) const;
14151  
14152  private:
14153   // The type for which this is the descriptor.
14154   Map_type* type_;
14155 };
14156
14157 // Dump ast representation for a map descriptor expression.
14158
14159 void
14160 Map_descriptor_expression::do_dump_expression(
14161     Ast_dump_context* ast_dump_context) const
14162 {
14163   ast_dump_context->ostream() << "map_descriptor(";
14164   ast_dump_context->dump_type(this->type_);
14165   ast_dump_context->ostream() << ")";
14166 }
14167
14168 // Make a map descriptor expression.
14169
14170 Expression*
14171 Expression::make_map_descriptor(Map_type* type, Location location)
14172 {
14173   return new Map_descriptor_expression(type, location);
14174 }
14175
14176 // An expression which evaluates to the address of an unnamed label.
14177
14178 class Label_addr_expression : public Expression
14179 {
14180  public:
14181   Label_addr_expression(Label* label, Location location)
14182     : Expression(EXPRESSION_LABEL_ADDR, location),
14183       label_(label)
14184   { }
14185
14186  protected:
14187   Type*
14188   do_type()
14189   { return Type::make_pointer_type(Type::make_void_type()); }
14190
14191   void
14192   do_determine_type(const Type_context*)
14193   { }
14194
14195   Expression*
14196   do_copy()
14197   { return new Label_addr_expression(this->label_, this->location()); }
14198
14199   tree
14200   do_get_tree(Translate_context* context)
14201   {
14202     return expr_to_tree(this->label_->get_addr(context, this->location()));
14203   }
14204
14205   void
14206   do_dump_expression(Ast_dump_context* ast_dump_context) const
14207   { ast_dump_context->ostream() << this->label_->name(); }
14208   
14209  private:
14210   // The label whose address we are taking.
14211   Label* label_;
14212 };
14213
14214 // Make an expression for the address of an unnamed label.
14215
14216 Expression*
14217 Expression::make_label_addr(Label* label, Location location)
14218 {
14219   return new Label_addr_expression(label, location);
14220 }
14221
14222 // Import an expression.  This comes at the end in order to see the
14223 // various class definitions.
14224
14225 Expression*
14226 Expression::import_expression(Import* imp)
14227 {
14228   int c = imp->peek_char();
14229   if (imp->match_c_string("- ")
14230       || imp->match_c_string("! ")
14231       || imp->match_c_string("^ "))
14232     return Unary_expression::do_import(imp);
14233   else if (c == '(')
14234     return Binary_expression::do_import(imp);
14235   else if (imp->match_c_string("true")
14236            || imp->match_c_string("false"))
14237     return Boolean_expression::do_import(imp);
14238   else if (c == '"')
14239     return String_expression::do_import(imp);
14240   else if (c == '-' || (c >= '0' && c <= '9'))
14241     {
14242       // This handles integers, floats and complex constants.
14243       return Integer_expression::do_import(imp);
14244     }
14245   else if (imp->match_c_string("nil"))
14246     return Nil_expression::do_import(imp);
14247   else if (imp->match_c_string("convert"))
14248     return Type_conversion_expression::do_import(imp);
14249   else
14250     {
14251       error_at(imp->location(), "import error: expected expression");
14252       return Expression::make_error(imp->location());
14253     }
14254 }
14255
14256 // Class Expression_list.
14257
14258 // Traverse the list.
14259
14260 int
14261 Expression_list::traverse(Traverse* traverse)
14262 {
14263   for (Expression_list::iterator p = this->begin();
14264        p != this->end();
14265        ++p)
14266     {
14267       if (*p != NULL)
14268         {
14269           if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
14270             return TRAVERSE_EXIT;
14271         }
14272     }
14273   return TRAVERSE_CONTINUE;
14274 }
14275
14276 // Copy the list.
14277
14278 Expression_list*
14279 Expression_list::copy()
14280 {
14281   Expression_list* ret = new Expression_list();
14282   for (Expression_list::iterator p = this->begin();
14283        p != this->end();
14284        ++p)
14285     {
14286       if (*p == NULL)
14287         ret->push_back(NULL);
14288       else
14289         ret->push_back((*p)->copy());
14290     }
14291   return ret;
14292 }
14293
14294 // Return whether an expression list has an error expression.
14295
14296 bool
14297 Expression_list::contains_error() const
14298 {
14299   for (Expression_list::const_iterator p = this->begin();
14300        p != this->end();
14301        ++p)
14302     if (*p != NULL && (*p)->is_error_expression())
14303       return true;
14304   return false;
14305 }