OSDN Git Service

2008-09-03 Hari Sandanagobalane <hariharan@picochip.com>
[pf3gnuchains/gcc-fork.git] / gcc / doc / md.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @ifset INTERNALS
7 @node Machine Desc
8 @chapter Machine Descriptions
9 @cindex machine descriptions
10
11 A machine description has two parts: a file of instruction patterns
12 (@file{.md} file) and a C header file of macro definitions.
13
14 The @file{.md} file for a target machine contains a pattern for each
15 instruction that the target machine supports (or at least each instruction
16 that is worth telling the compiler about).  It may also contain comments.
17 A semicolon causes the rest of the line to be a comment, unless the semicolon
18 is inside a quoted string.
19
20 See the next chapter for information on the C header file.
21
22 @menu
23 * Overview::            How the machine description is used.
24 * Patterns::            How to write instruction patterns.
25 * Example::             An explained example of a @code{define_insn} pattern.
26 * RTL Template::        The RTL template defines what insns match a pattern.
27 * Output Template::     The output template says how to make assembler code
28                         from such an insn.
29 * Output Statement::    For more generality, write C code to output
30                         the assembler code.
31 * Predicates::          Controlling what kinds of operands can be used
32                         for an insn.
33 * Constraints::         Fine-tuning operand selection.
34 * Standard Names::      Names mark patterns to use for code generation.
35 * Pattern Ordering::    When the order of patterns makes a difference.
36 * Dependent Patterns::  Having one pattern may make you need another.
37 * Jump Patterns::       Special considerations for patterns for jump insns.
38 * Looping Patterns::    How to define patterns for special looping insns.
39 * Insn Canonicalizations::Canonicalization of Instructions
40 * Expander Definitions::Generating a sequence of several RTL insns
41                         for a standard operation.
42 * Insn Splitting::      Splitting Instructions into Multiple Instructions.
43 * Including Patterns::  Including Patterns in Machine Descriptions.
44 * Peephole Definitions::Defining machine-specific peephole optimizations.
45 * Insn Attributes::     Specifying the value of attributes for generated insns.
46 * Conditional Execution::Generating @code{define_insn} patterns for
47                          predication.
48 * Constant Definitions::Defining symbolic constants that can be used in the
49                         md file.
50 * Iterators::           Using iterators to generate patterns from a template.
51 @end menu
52
53 @node Overview
54 @section Overview of How the Machine Description is Used
55
56 There are three main conversions that happen in the compiler:
57
58 @enumerate
59
60 @item
61 The front end reads the source code and builds a parse tree.
62
63 @item
64 The parse tree is used to generate an RTL insn list based on named
65 instruction patterns.
66
67 @item
68 The insn list is matched against the RTL templates to produce assembler
69 code.
70
71 @end enumerate
72
73 For the generate pass, only the names of the insns matter, from either a
74 named @code{define_insn} or a @code{define_expand}.  The compiler will
75 choose the pattern with the right name and apply the operands according
76 to the documentation later in this chapter, without regard for the RTL
77 template or operand constraints.  Note that the names the compiler looks
78 for are hard-coded in the compiler---it will ignore unnamed patterns and
79 patterns with names it doesn't know about, but if you don't provide a
80 named pattern it needs, it will abort.
81
82 If a @code{define_insn} is used, the template given is inserted into the
83 insn list.  If a @code{define_expand} is used, one of three things
84 happens, based on the condition logic.  The condition logic may manually
85 create new insns for the insn list, say via @code{emit_insn()}, and
86 invoke @code{DONE}.  For certain named patterns, it may invoke @code{FAIL} to tell the
87 compiler to use an alternate way of performing that task.  If it invokes
88 neither @code{DONE} nor @code{FAIL}, the template given in the pattern
89 is inserted, as if the @code{define_expand} were a @code{define_insn}.
90
91 Once the insn list is generated, various optimization passes convert,
92 replace, and rearrange the insns in the insn list.  This is where the
93 @code{define_split} and @code{define_peephole} patterns get used, for
94 example.
95
96 Finally, the insn list's RTL is matched up with the RTL templates in the
97 @code{define_insn} patterns, and those patterns are used to emit the
98 final assembly code.  For this purpose, each named @code{define_insn}
99 acts like it's unnamed, since the names are ignored.
100
101 @node Patterns
102 @section Everything about Instruction Patterns
103 @cindex patterns
104 @cindex instruction patterns
105
106 @findex define_insn
107 Each instruction pattern contains an incomplete RTL expression, with pieces
108 to be filled in later, operand constraints that restrict how the pieces can
109 be filled in, and an output pattern or C code to generate the assembler
110 output, all wrapped up in a @code{define_insn} expression.
111
112 A @code{define_insn} is an RTL expression containing four or five operands:
113
114 @enumerate
115 @item
116 An optional name.  The presence of a name indicate that this instruction
117 pattern can perform a certain standard job for the RTL-generation
118 pass of the compiler.  This pass knows certain names and will use
119 the instruction patterns with those names, if the names are defined
120 in the machine description.
121
122 The absence of a name is indicated by writing an empty string
123 where the name should go.  Nameless instruction patterns are never
124 used for generating RTL code, but they may permit several simpler insns
125 to be combined later on.
126
127 Names that are not thus known and used in RTL-generation have no
128 effect; they are equivalent to no name at all.
129
130 For the purpose of debugging the compiler, you may also specify a
131 name beginning with the @samp{*} character.  Such a name is used only
132 for identifying the instruction in RTL dumps; it is entirely equivalent
133 to having a nameless pattern for all other purposes.
134
135 @item
136 The @dfn{RTL template} (@pxref{RTL Template}) is a vector of incomplete
137 RTL expressions which show what the instruction should look like.  It is
138 incomplete because it may contain @code{match_operand},
139 @code{match_operator}, and @code{match_dup} expressions that stand for
140 operands of the instruction.
141
142 If the vector has only one element, that element is the template for the
143 instruction pattern.  If the vector has multiple elements, then the
144 instruction pattern is a @code{parallel} expression containing the
145 elements described.
146
147 @item
148 @cindex pattern conditions
149 @cindex conditions, in patterns
150 A condition.  This is a string which contains a C expression that is
151 the final test to decide whether an insn body matches this pattern.
152
153 @cindex named patterns and conditions
154 For a named pattern, the condition (if present) may not depend on
155 the data in the insn being matched, but only the target-machine-type
156 flags.  The compiler needs to test these conditions during
157 initialization in order to learn exactly which named instructions are
158 available in a particular run.
159
160 @findex operands
161 For nameless patterns, the condition is applied only when matching an
162 individual insn, and only after the insn has matched the pattern's
163 recognition template.  The insn's operands may be found in the vector
164 @code{operands}.  For an insn where the condition has once matched, it
165 can't be used to control register allocation, for example by excluding
166 certain hard registers or hard register combinations.
167
168 @item
169 The @dfn{output template}: a string that says how to output matching
170 insns as assembler code.  @samp{%} in this string specifies where
171 to substitute the value of an operand.  @xref{Output Template}.
172
173 When simple substitution isn't general enough, you can specify a piece
174 of C code to compute the output.  @xref{Output Statement}.
175
176 @item
177 Optionally, a vector containing the values of attributes for insns matching
178 this pattern.  @xref{Insn Attributes}.
179 @end enumerate
180
181 @node Example
182 @section Example of @code{define_insn}
183 @cindex @code{define_insn} example
184
185 Here is an actual example of an instruction pattern, for the 68000/68020.
186
187 @smallexample
188 (define_insn "tstsi"
189   [(set (cc0)
190         (match_operand:SI 0 "general_operand" "rm"))]
191   ""
192   "*
193 @{
194   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
195     return \"tstl %0\";
196   return \"cmpl #0,%0\";
197 @}")
198 @end smallexample
199
200 @noindent
201 This can also be written using braced strings:
202
203 @smallexample
204 (define_insn "tstsi"
205   [(set (cc0)
206         (match_operand:SI 0 "general_operand" "rm"))]
207   ""
208 @{
209   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
210     return "tstl %0";
211   return "cmpl #0,%0";
212 @})
213 @end smallexample
214
215 This is an instruction that sets the condition codes based on the value of
216 a general operand.  It has no condition, so any insn whose RTL description
217 has the form shown may be handled according to this pattern.  The name
218 @samp{tstsi} means ``test a @code{SImode} value'' and tells the RTL generation
219 pass that, when it is necessary to test such a value, an insn to do so
220 can be constructed using this pattern.
221
222 The output control string is a piece of C code which chooses which
223 output template to return based on the kind of operand and the specific
224 type of CPU for which code is being generated.
225
226 @samp{"rm"} is an operand constraint.  Its meaning is explained below.
227
228 @node RTL Template
229 @section RTL Template
230 @cindex RTL insn template
231 @cindex generating insns
232 @cindex insns, generating
233 @cindex recognizing insns
234 @cindex insns, recognizing
235
236 The RTL template is used to define which insns match the particular pattern
237 and how to find their operands.  For named patterns, the RTL template also
238 says how to construct an insn from specified operands.
239
240 Construction involves substituting specified operands into a copy of the
241 template.  Matching involves determining the values that serve as the
242 operands in the insn being matched.  Both of these activities are
243 controlled by special expression types that direct matching and
244 substitution of the operands.
245
246 @table @code
247 @findex match_operand
248 @item (match_operand:@var{m} @var{n} @var{predicate} @var{constraint})
249 This expression is a placeholder for operand number @var{n} of
250 the insn.  When constructing an insn, operand number @var{n}
251 will be substituted at this point.  When matching an insn, whatever
252 appears at this position in the insn will be taken as operand
253 number @var{n}; but it must satisfy @var{predicate} or this instruction
254 pattern will not match at all.
255
256 Operand numbers must be chosen consecutively counting from zero in
257 each instruction pattern.  There may be only one @code{match_operand}
258 expression in the pattern for each operand number.  Usually operands
259 are numbered in the order of appearance in @code{match_operand}
260 expressions.  In the case of a @code{define_expand}, any operand numbers
261 used only in @code{match_dup} expressions have higher values than all
262 other operand numbers.
263
264 @var{predicate} is a string that is the name of a function that
265 accepts two arguments, an expression and a machine mode.
266 @xref{Predicates}.  During matching, the function will be called with
267 the putative operand as the expression and @var{m} as the mode
268 argument (if @var{m} is not specified, @code{VOIDmode} will be used,
269 which normally causes @var{predicate} to accept any mode).  If it
270 returns zero, this instruction pattern fails to match.
271 @var{predicate} may be an empty string; then it means no test is to be
272 done on the operand, so anything which occurs in this position is
273 valid.
274
275 Most of the time, @var{predicate} will reject modes other than @var{m}---but
276 not always.  For example, the predicate @code{address_operand} uses
277 @var{m} as the mode of memory ref that the address should be valid for.
278 Many predicates accept @code{const_int} nodes even though their mode is
279 @code{VOIDmode}.
280
281 @var{constraint} controls reloading and the choice of the best register
282 class to use for a value, as explained later (@pxref{Constraints}).
283 If the constraint would be an empty string, it can be omitted.
284
285 People are often unclear on the difference between the constraint and the
286 predicate.  The predicate helps decide whether a given insn matches the
287 pattern.  The constraint plays no role in this decision; instead, it
288 controls various decisions in the case of an insn which does match.
289
290 @findex match_scratch
291 @item (match_scratch:@var{m} @var{n} @var{constraint})
292 This expression is also a placeholder for operand number @var{n}
293 and indicates that operand must be a @code{scratch} or @code{reg}
294 expression.
295
296 When matching patterns, this is equivalent to
297
298 @smallexample
299 (match_operand:@var{m} @var{n} "scratch_operand" @var{pred})
300 @end smallexample
301
302 but, when generating RTL, it produces a (@code{scratch}:@var{m})
303 expression.
304
305 If the last few expressions in a @code{parallel} are @code{clobber}
306 expressions whose operands are either a hard register or
307 @code{match_scratch}, the combiner can add or delete them when
308 necessary.  @xref{Side Effects}.
309
310 @findex match_dup
311 @item (match_dup @var{n})
312 This expression is also a placeholder for operand number @var{n}.
313 It is used when the operand needs to appear more than once in the
314 insn.
315
316 In construction, @code{match_dup} acts just like @code{match_operand}:
317 the operand is substituted into the insn being constructed.  But in
318 matching, @code{match_dup} behaves differently.  It assumes that operand
319 number @var{n} has already been determined by a @code{match_operand}
320 appearing earlier in the recognition template, and it matches only an
321 identical-looking expression.
322
323 Note that @code{match_dup} should not be used to tell the compiler that
324 a particular register is being used for two operands (example:
325 @code{add} that adds one register to another; the second register is
326 both an input operand and the output operand).  Use a matching
327 constraint (@pxref{Simple Constraints}) for those.  @code{match_dup} is for the cases where one
328 operand is used in two places in the template, such as an instruction
329 that computes both a quotient and a remainder, where the opcode takes
330 two input operands but the RTL template has to refer to each of those
331 twice; once for the quotient pattern and once for the remainder pattern.
332
333 @findex match_operator
334 @item (match_operator:@var{m} @var{n} @var{predicate} [@var{operands}@dots{}])
335 This pattern is a kind of placeholder for a variable RTL expression
336 code.
337
338 When constructing an insn, it stands for an RTL expression whose
339 expression code is taken from that of operand @var{n}, and whose
340 operands are constructed from the patterns @var{operands}.
341
342 When matching an expression, it matches an expression if the function
343 @var{predicate} returns nonzero on that expression @emph{and} the
344 patterns @var{operands} match the operands of the expression.
345
346 Suppose that the function @code{commutative_operator} is defined as
347 follows, to match any expression whose operator is one of the
348 commutative arithmetic operators of RTL and whose mode is @var{mode}:
349
350 @smallexample
351 int
352 commutative_integer_operator (x, mode)
353      rtx x;
354      enum machine_mode mode;
355 @{
356   enum rtx_code code = GET_CODE (x);
357   if (GET_MODE (x) != mode)
358     return 0;
359   return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
360           || code == EQ || code == NE);
361 @}
362 @end smallexample
363
364 Then the following pattern will match any RTL expression consisting
365 of a commutative operator applied to two general operands:
366
367 @smallexample
368 (match_operator:SI 3 "commutative_operator"
369   [(match_operand:SI 1 "general_operand" "g")
370    (match_operand:SI 2 "general_operand" "g")])
371 @end smallexample
372
373 Here the vector @code{[@var{operands}@dots{}]} contains two patterns
374 because the expressions to be matched all contain two operands.
375
376 When this pattern does match, the two operands of the commutative
377 operator are recorded as operands 1 and 2 of the insn.  (This is done
378 by the two instances of @code{match_operand}.)  Operand 3 of the insn
379 will be the entire commutative expression: use @code{GET_CODE
380 (operands[3])} to see which commutative operator was used.
381
382 The machine mode @var{m} of @code{match_operator} works like that of
383 @code{match_operand}: it is passed as the second argument to the
384 predicate function, and that function is solely responsible for
385 deciding whether the expression to be matched ``has'' that mode.
386
387 When constructing an insn, argument 3 of the gen-function will specify
388 the operation (i.e.@: the expression code) for the expression to be
389 made.  It should be an RTL expression, whose expression code is copied
390 into a new expression whose operands are arguments 1 and 2 of the
391 gen-function.  The subexpressions of argument 3 are not used;
392 only its expression code matters.
393
394 When @code{match_operator} is used in a pattern for matching an insn,
395 it usually best if the operand number of the @code{match_operator}
396 is higher than that of the actual operands of the insn.  This improves
397 register allocation because the register allocator often looks at
398 operands 1 and 2 of insns to see if it can do register tying.
399
400 There is no way to specify constraints in @code{match_operator}.  The
401 operand of the insn which corresponds to the @code{match_operator}
402 never has any constraints because it is never reloaded as a whole.
403 However, if parts of its @var{operands} are matched by
404 @code{match_operand} patterns, those parts may have constraints of
405 their own.
406
407 @findex match_op_dup
408 @item (match_op_dup:@var{m} @var{n}[@var{operands}@dots{}])
409 Like @code{match_dup}, except that it applies to operators instead of
410 operands.  When constructing an insn, operand number @var{n} will be
411 substituted at this point.  But in matching, @code{match_op_dup} behaves
412 differently.  It assumes that operand number @var{n} has already been
413 determined by a @code{match_operator} appearing earlier in the
414 recognition template, and it matches only an identical-looking
415 expression.
416
417 @findex match_parallel
418 @item (match_parallel @var{n} @var{predicate} [@var{subpat}@dots{}])
419 This pattern is a placeholder for an insn that consists of a
420 @code{parallel} expression with a variable number of elements.  This
421 expression should only appear at the top level of an insn pattern.
422
423 When constructing an insn, operand number @var{n} will be substituted at
424 this point.  When matching an insn, it matches if the body of the insn
425 is a @code{parallel} expression with at least as many elements as the
426 vector of @var{subpat} expressions in the @code{match_parallel}, if each
427 @var{subpat} matches the corresponding element of the @code{parallel},
428 @emph{and} the function @var{predicate} returns nonzero on the
429 @code{parallel} that is the body of the insn.  It is the responsibility
430 of the predicate to validate elements of the @code{parallel} beyond
431 those listed in the @code{match_parallel}.
432
433 A typical use of @code{match_parallel} is to match load and store
434 multiple expressions, which can contain a variable number of elements
435 in a @code{parallel}.  For example,
436
437 @smallexample
438 (define_insn ""
439   [(match_parallel 0 "load_multiple_operation"
440      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
441            (match_operand:SI 2 "memory_operand" "m"))
442       (use (reg:SI 179))
443       (clobber (reg:SI 179))])]
444   ""
445   "loadm 0,0,%1,%2")
446 @end smallexample
447
448 This example comes from @file{a29k.md}.  The function
449 @code{load_multiple_operation} is defined in @file{a29k.c} and checks
450 that subsequent elements in the @code{parallel} are the same as the
451 @code{set} in the pattern, except that they are referencing subsequent
452 registers and memory locations.
453
454 An insn that matches this pattern might look like:
455
456 @smallexample
457 (parallel
458  [(set (reg:SI 20) (mem:SI (reg:SI 100)))
459   (use (reg:SI 179))
460   (clobber (reg:SI 179))
461   (set (reg:SI 21)
462        (mem:SI (plus:SI (reg:SI 100)
463                         (const_int 4))))
464   (set (reg:SI 22)
465        (mem:SI (plus:SI (reg:SI 100)
466                         (const_int 8))))])
467 @end smallexample
468
469 @findex match_par_dup
470 @item (match_par_dup @var{n} [@var{subpat}@dots{}])
471 Like @code{match_op_dup}, but for @code{match_parallel} instead of
472 @code{match_operator}.
473
474 @end table
475
476 @node Output Template
477 @section Output Templates and Operand Substitution
478 @cindex output templates
479 @cindex operand substitution
480
481 @cindex @samp{%} in template
482 @cindex percent sign
483 The @dfn{output template} is a string which specifies how to output the
484 assembler code for an instruction pattern.  Most of the template is a
485 fixed string which is output literally.  The character @samp{%} is used
486 to specify where to substitute an operand; it can also be used to
487 identify places where different variants of the assembler require
488 different syntax.
489
490 In the simplest case, a @samp{%} followed by a digit @var{n} says to output
491 operand @var{n} at that point in the string.
492
493 @samp{%} followed by a letter and a digit says to output an operand in an
494 alternate fashion.  Four letters have standard, built-in meanings described
495 below.  The machine description macro @code{PRINT_OPERAND} can define
496 additional letters with nonstandard meanings.
497
498 @samp{%c@var{digit}} can be used to substitute an operand that is a
499 constant value without the syntax that normally indicates an immediate
500 operand.
501
502 @samp{%n@var{digit}} is like @samp{%c@var{digit}} except that the value of
503 the constant is negated before printing.
504
505 @samp{%a@var{digit}} can be used to substitute an operand as if it were a
506 memory reference, with the actual operand treated as the address.  This may
507 be useful when outputting a ``load address'' instruction, because often the
508 assembler syntax for such an instruction requires you to write the operand
509 as if it were a memory reference.
510
511 @samp{%l@var{digit}} is used to substitute a @code{label_ref} into a jump
512 instruction.
513
514 @samp{%=} outputs a number which is unique to each instruction in the
515 entire compilation.  This is useful for making local labels to be
516 referred to more than once in a single template that generates multiple
517 assembler instructions.
518
519 @samp{%} followed by a punctuation character specifies a substitution that
520 does not use an operand.  Only one case is standard: @samp{%%} outputs a
521 @samp{%} into the assembler code.  Other nonstandard cases can be
522 defined in the @code{PRINT_OPERAND} macro.  You must also define
523 which punctuation characters are valid with the
524 @code{PRINT_OPERAND_PUNCT_VALID_P} macro.
525
526 @cindex \
527 @cindex backslash
528 The template may generate multiple assembler instructions.  Write the text
529 for the instructions, with @samp{\;} between them.
530
531 @cindex matching operands
532 When the RTL contains two operands which are required by constraint to match
533 each other, the output template must refer only to the lower-numbered operand.
534 Matching operands are not always identical, and the rest of the compiler
535 arranges to put the proper RTL expression for printing into the lower-numbered
536 operand.
537
538 One use of nonstandard letters or punctuation following @samp{%} is to
539 distinguish between different assembler languages for the same machine; for
540 example, Motorola syntax versus MIT syntax for the 68000.  Motorola syntax
541 requires periods in most opcode names, while MIT syntax does not.  For
542 example, the opcode @samp{movel} in MIT syntax is @samp{move.l} in Motorola
543 syntax.  The same file of patterns is used for both kinds of output syntax,
544 but the character sequence @samp{%.} is used in each place where Motorola
545 syntax wants a period.  The @code{PRINT_OPERAND} macro for Motorola syntax
546 defines the sequence to output a period; the macro for MIT syntax defines
547 it to do nothing.
548
549 @cindex @code{#} in template
550 As a special case, a template consisting of the single character @code{#}
551 instructs the compiler to first split the insn, and then output the
552 resulting instructions separately.  This helps eliminate redundancy in the
553 output templates.   If you have a @code{define_insn} that needs to emit
554 multiple assembler instructions, and there is an matching @code{define_split}
555 already defined, then you can simply use @code{#} as the output template
556 instead of writing an output template that emits the multiple assembler
557 instructions.
558
559 If the macro @code{ASSEMBLER_DIALECT} is defined, you can use construct
560 of the form @samp{@{option0|option1|option2@}} in the templates.  These
561 describe multiple variants of assembler language syntax.
562 @xref{Instruction Output}.
563
564 @node Output Statement
565 @section C Statements for Assembler Output
566 @cindex output statements
567 @cindex C statements for assembler output
568 @cindex generating assembler output
569
570 Often a single fixed template string cannot produce correct and efficient
571 assembler code for all the cases that are recognized by a single
572 instruction pattern.  For example, the opcodes may depend on the kinds of
573 operands; or some unfortunate combinations of operands may require extra
574 machine instructions.
575
576 If the output control string starts with a @samp{@@}, then it is actually
577 a series of templates, each on a separate line.  (Blank lines and
578 leading spaces and tabs are ignored.)  The templates correspond to the
579 pattern's constraint alternatives (@pxref{Multi-Alternative}).  For example,
580 if a target machine has a two-address add instruction @samp{addr} to add
581 into a register and another @samp{addm} to add a register to memory, you
582 might write this pattern:
583
584 @smallexample
585 (define_insn "addsi3"
586   [(set (match_operand:SI 0 "general_operand" "=r,m")
587         (plus:SI (match_operand:SI 1 "general_operand" "0,0")
588                  (match_operand:SI 2 "general_operand" "g,r")))]
589   ""
590   "@@
591    addr %2,%0
592    addm %2,%0")
593 @end smallexample
594
595 @cindex @code{*} in template
596 @cindex asterisk in template
597 If the output control string starts with a @samp{*}, then it is not an
598 output template but rather a piece of C program that should compute a
599 template.  It should execute a @code{return} statement to return the
600 template-string you want.  Most such templates use C string literals, which
601 require doublequote characters to delimit them.  To include these
602 doublequote characters in the string, prefix each one with @samp{\}.
603
604 If the output control string is written as a brace block instead of a
605 double-quoted string, it is automatically assumed to be C code.  In that
606 case, it is not necessary to put in a leading asterisk, or to escape the
607 doublequotes surrounding C string literals.
608
609 The operands may be found in the array @code{operands}, whose C data type
610 is @code{rtx []}.
611
612 It is very common to select different ways of generating assembler code
613 based on whether an immediate operand is within a certain range.  Be
614 careful when doing this, because the result of @code{INTVAL} is an
615 integer on the host machine.  If the host machine has more bits in an
616 @code{int} than the target machine has in the mode in which the constant
617 will be used, then some of the bits you get from @code{INTVAL} will be
618 superfluous.  For proper results, you must carefully disregard the
619 values of those bits.
620
621 @findex output_asm_insn
622 It is possible to output an assembler instruction and then go on to output
623 or compute more of them, using the subroutine @code{output_asm_insn}.  This
624 receives two arguments: a template-string and a vector of operands.  The
625 vector may be @code{operands}, or it may be another array of @code{rtx}
626 that you declare locally and initialize yourself.
627
628 @findex which_alternative
629 When an insn pattern has multiple alternatives in its constraints, often
630 the appearance of the assembler code is determined mostly by which alternative
631 was matched.  When this is so, the C code can test the variable
632 @code{which_alternative}, which is the ordinal number of the alternative
633 that was actually satisfied (0 for the first, 1 for the second alternative,
634 etc.).
635
636 For example, suppose there are two opcodes for storing zero, @samp{clrreg}
637 for registers and @samp{clrmem} for memory locations.  Here is how
638 a pattern could use @code{which_alternative} to choose between them:
639
640 @smallexample
641 (define_insn ""
642   [(set (match_operand:SI 0 "general_operand" "=r,m")
643         (const_int 0))]
644   ""
645   @{
646   return (which_alternative == 0
647           ? "clrreg %0" : "clrmem %0");
648   @})
649 @end smallexample
650
651 The example above, where the assembler code to generate was
652 @emph{solely} determined by the alternative, could also have been specified
653 as follows, having the output control string start with a @samp{@@}:
654
655 @smallexample
656 @group
657 (define_insn ""
658   [(set (match_operand:SI 0 "general_operand" "=r,m")
659         (const_int 0))]
660   ""
661   "@@
662    clrreg %0
663    clrmem %0")
664 @end group
665 @end smallexample
666
667 @node Predicates
668 @section Predicates
669 @cindex predicates
670 @cindex operand predicates
671 @cindex operator predicates
672
673 A predicate determines whether a @code{match_operand} or
674 @code{match_operator} expression matches, and therefore whether the
675 surrounding instruction pattern will be used for that combination of
676 operands.  GCC has a number of machine-independent predicates, and you
677 can define machine-specific predicates as needed.  By convention,
678 predicates used with @code{match_operand} have names that end in
679 @samp{_operand}, and those used with @code{match_operator} have names
680 that end in @samp{_operator}.
681
682 All predicates are Boolean functions (in the mathematical sense) of
683 two arguments: the RTL expression that is being considered at that
684 position in the instruction pattern, and the machine mode that the
685 @code{match_operand} or @code{match_operator} specifies.  In this
686 section, the first argument is called @var{op} and the second argument
687 @var{mode}.  Predicates can be called from C as ordinary two-argument
688 functions; this can be useful in output templates or other
689 machine-specific code.
690
691 Operand predicates can allow operands that are not actually acceptable
692 to the hardware, as long as the constraints give reload the ability to
693 fix them up (@pxref{Constraints}).  However, GCC will usually generate
694 better code if the predicates specify the requirements of the machine
695 instructions as closely as possible.  Reload cannot fix up operands
696 that must be constants (``immediate operands''); you must use a
697 predicate that allows only constants, or else enforce the requirement
698 in the extra condition.
699
700 @cindex predicates and machine modes
701 @cindex normal predicates
702 @cindex special predicates
703 Most predicates handle their @var{mode} argument in a uniform manner.
704 If @var{mode} is @code{VOIDmode} (unspecified), then @var{op} can have
705 any mode.  If @var{mode} is anything else, then @var{op} must have the
706 same mode, unless @var{op} is a @code{CONST_INT} or integer
707 @code{CONST_DOUBLE}.  These RTL expressions always have
708 @code{VOIDmode}, so it would be counterproductive to check that their
709 mode matches.  Instead, predicates that accept @code{CONST_INT} and/or
710 integer @code{CONST_DOUBLE} check that the value stored in the
711 constant will fit in the requested mode.
712
713 Predicates with this behavior are called @dfn{normal}.
714 @command{genrecog} can optimize the instruction recognizer based on
715 knowledge of how normal predicates treat modes.  It can also diagnose
716 certain kinds of common errors in the use of normal predicates; for
717 instance, it is almost always an error to use a normal predicate
718 without specifying a mode.
719
720 Predicates that do something different with their @var{mode} argument
721 are called @dfn{special}.  The generic predicates
722 @code{address_operand} and @code{pmode_register_operand} are special
723 predicates.  @command{genrecog} does not do any optimizations or
724 diagnosis when special predicates are used.
725
726 @menu
727 * Machine-Independent Predicates::  Predicates available to all back ends.
728 * Defining Predicates::             How to write machine-specific predicate
729                                     functions.
730 @end menu
731
732 @node Machine-Independent Predicates
733 @subsection Machine-Independent Predicates
734 @cindex machine-independent predicates
735 @cindex generic predicates
736
737 These are the generic predicates available to all back ends.  They are
738 defined in @file{recog.c}.  The first category of predicates allow
739 only constant, or @dfn{immediate}, operands.
740
741 @defun immediate_operand
742 This predicate allows any sort of constant that fits in @var{mode}.
743 It is an appropriate choice for instructions that take operands that
744 must be constant.
745 @end defun
746
747 @defun const_int_operand
748 This predicate allows any @code{CONST_INT} expression that fits in
749 @var{mode}.  It is an appropriate choice for an immediate operand that
750 does not allow a symbol or label.
751 @end defun
752
753 @defun const_double_operand
754 This predicate accepts any @code{CONST_DOUBLE} expression that has
755 exactly @var{mode}.  If @var{mode} is @code{VOIDmode}, it will also
756 accept @code{CONST_INT}.  It is intended for immediate floating point
757 constants.
758 @end defun
759
760 @noindent
761 The second category of predicates allow only some kind of machine
762 register.
763
764 @defun register_operand
765 This predicate allows any @code{REG} or @code{SUBREG} expression that
766 is valid for @var{mode}.  It is often suitable for arithmetic
767 instruction operands on a RISC machine.
768 @end defun
769
770 @defun pmode_register_operand
771 This is a slight variant on @code{register_operand} which works around
772 a limitation in the machine-description reader.
773
774 @smallexample
775 (match_operand @var{n} "pmode_register_operand" @var{constraint})
776 @end smallexample
777
778 @noindent
779 means exactly what
780
781 @smallexample
782 (match_operand:P @var{n} "register_operand" @var{constraint})
783 @end smallexample
784
785 @noindent
786 would mean, if the machine-description reader accepted @samp{:P}
787 mode suffixes.  Unfortunately, it cannot, because @code{Pmode} is an
788 alias for some other mode, and might vary with machine-specific
789 options.  @xref{Misc}.
790 @end defun
791
792 @defun scratch_operand
793 This predicate allows hard registers and @code{SCRATCH} expressions,
794 but not pseudo-registers.  It is used internally by @code{match_scratch};
795 it should not be used directly.
796 @end defun
797
798 @noindent
799 The third category of predicates allow only some kind of memory reference.
800
801 @defun memory_operand
802 This predicate allows any valid reference to a quantity of mode
803 @var{mode} in memory, as determined by the weak form of
804 @code{GO_IF_LEGITIMATE_ADDRESS} (@pxref{Addressing Modes}).
805 @end defun
806
807 @defun address_operand
808 This predicate is a little unusual; it allows any operand that is a
809 valid expression for the @emph{address} of a quantity of mode
810 @var{mode}, again determined by the weak form of
811 @code{GO_IF_LEGITIMATE_ADDRESS}.  To first order, if
812 @samp{@w{(mem:@var{mode} (@var{exp}))}} is acceptable to
813 @code{memory_operand}, then @var{exp} is acceptable to
814 @code{address_operand}.  Note that @var{exp} does not necessarily have
815 the mode @var{mode}.
816 @end defun
817
818 @defun indirect_operand
819 This is a stricter form of @code{memory_operand} which allows only
820 memory references with a @code{general_operand} as the address
821 expression.  New uses of this predicate are discouraged, because
822 @code{general_operand} is very permissive, so it's hard to tell what
823 an @code{indirect_operand} does or does not allow.  If a target has
824 different requirements for memory operands for different instructions,
825 it is better to define target-specific predicates which enforce the
826 hardware's requirements explicitly.
827 @end defun
828
829 @defun push_operand
830 This predicate allows a memory reference suitable for pushing a value
831 onto the stack.  This will be a @code{MEM} which refers to
832 @code{stack_pointer_rtx}, with a side-effect in its address expression
833 (@pxref{Incdec}); which one is determined by the
834 @code{STACK_PUSH_CODE} macro (@pxref{Frame Layout}).
835 @end defun
836
837 @defun pop_operand
838 This predicate allows a memory reference suitable for popping a value
839 off the stack.  Again, this will be a @code{MEM} referring to
840 @code{stack_pointer_rtx}, with a side-effect in its address
841 expression.  However, this time @code{STACK_POP_CODE} is expected.
842 @end defun
843
844 @noindent
845 The fourth category of predicates allow some combination of the above
846 operands.
847
848 @defun nonmemory_operand
849 This predicate allows any immediate or register operand valid for @var{mode}.
850 @end defun
851
852 @defun nonimmediate_operand
853 This predicate allows any register or memory operand valid for @var{mode}.
854 @end defun
855
856 @defun general_operand
857 This predicate allows any immediate, register, or memory operand
858 valid for @var{mode}.
859 @end defun
860
861 @noindent
862 Finally, there is one generic operator predicate.
863
864 @defun comparison_operator
865 This predicate matches any expression which performs an arithmetic
866 comparison in @var{mode}; that is, @code{COMPARISON_P} is true for the
867 expression code.
868 @end defun
869
870 @node Defining Predicates
871 @subsection Defining Machine-Specific Predicates
872 @cindex defining predicates
873 @findex define_predicate
874 @findex define_special_predicate
875
876 Many machines have requirements for their operands that cannot be
877 expressed precisely using the generic predicates.  You can define
878 additional predicates using @code{define_predicate} and
879 @code{define_special_predicate} expressions.  These expressions have
880 three operands:
881
882 @itemize @bullet
883 @item
884 The name of the predicate, as it will be referred to in
885 @code{match_operand} or @code{match_operator} expressions.
886
887 @item
888 An RTL expression which evaluates to true if the predicate allows the
889 operand @var{op}, false if it does not.  This expression can only use
890 the following RTL codes:
891
892 @table @code
893 @item MATCH_OPERAND
894 When written inside a predicate expression, a @code{MATCH_OPERAND}
895 expression evaluates to true if the predicate it names would allow
896 @var{op}.  The operand number and constraint are ignored.  Due to
897 limitations in @command{genrecog}, you can only refer to generic
898 predicates and predicates that have already been defined.
899
900 @item MATCH_CODE
901 This expression evaluates to true if @var{op} or a specified
902 subexpression of @var{op} has one of a given list of RTX codes.
903
904 The first operand of this expression is a string constant containing a
905 comma-separated list of RTX code names (in lower case).  These are the
906 codes for which the @code{MATCH_CODE} will be true.
907
908 The second operand is a string constant which indicates what
909 subexpression of @var{op} to examine.  If it is absent or the empty
910 string, @var{op} itself is examined.  Otherwise, the string constant
911 must be a sequence of digits and/or lowercase letters.  Each character
912 indicates a subexpression to extract from the current expression; for
913 the first character this is @var{op}, for the second and subsequent
914 characters it is the result of the previous character.  A digit
915 @var{n} extracts @samp{@w{XEXP (@var{e}, @var{n})}}; a letter @var{l}
916 extracts @samp{@w{XVECEXP (@var{e}, 0, @var{n})}} where @var{n} is the
917 alphabetic ordinal of @var{l} (0 for `a', 1 for 'b', and so on).  The
918 @code{MATCH_CODE} then examines the RTX code of the subexpression
919 extracted by the complete string.  It is not possible to extract
920 components of an @code{rtvec} that is not at position 0 within its RTX
921 object.
922
923 @item MATCH_TEST
924 This expression has one operand, a string constant containing a C
925 expression.  The predicate's arguments, @var{op} and @var{mode}, are
926 available with those names in the C expression.  The @code{MATCH_TEST}
927 evaluates to true if the C expression evaluates to a nonzero value.
928 @code{MATCH_TEST} expressions must not have side effects.
929
930 @item  AND
931 @itemx IOR
932 @itemx NOT
933 @itemx IF_THEN_ELSE
934 The basic @samp{MATCH_} expressions can be combined using these
935 logical operators, which have the semantics of the C operators
936 @samp{&&}, @samp{||}, @samp{!}, and @samp{@w{? :}} respectively.  As
937 in Common Lisp, you may give an @code{AND} or @code{IOR} expression an
938 arbitrary number of arguments; this has exactly the same effect as
939 writing a chain of two-argument @code{AND} or @code{IOR} expressions.
940 @end table
941
942 @item
943 An optional block of C code, which should execute
944 @samp{@w{return true}} if the predicate is found to match and
945 @samp{@w{return false}} if it does not.  It must not have any side
946 effects.  The predicate arguments, @var{op} and @var{mode}, are
947 available with those names.
948
949 If a code block is present in a predicate definition, then the RTL
950 expression must evaluate to true @emph{and} the code block must
951 execute @samp{@w{return true}} for the predicate to allow the operand.
952 The RTL expression is evaluated first; do not re-check anything in the
953 code block that was checked in the RTL expression.
954 @end itemize
955
956 The program @command{genrecog} scans @code{define_predicate} and
957 @code{define_special_predicate} expressions to determine which RTX
958 codes are possibly allowed.  You should always make this explicit in
959 the RTL predicate expression, using @code{MATCH_OPERAND} and
960 @code{MATCH_CODE}.
961
962 Here is an example of a simple predicate definition, from the IA64
963 machine description:
964
965 @smallexample
966 @group
967 ;; @r{True if @var{op} is a @code{SYMBOL_REF} which refers to the sdata section.}
968 (define_predicate "small_addr_symbolic_operand"
969   (and (match_code "symbol_ref")
970        (match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
971 @end group
972 @end smallexample
973
974 @noindent
975 And here is another, showing the use of the C block.
976
977 @smallexample
978 @group
979 ;; @r{True if @var{op} is a register operand that is (or could be) a GR reg.}
980 (define_predicate "gr_register_operand"
981   (match_operand 0 "register_operand")
982 @{
983   unsigned int regno;
984   if (GET_CODE (op) == SUBREG)
985     op = SUBREG_REG (op);
986
987   regno = REGNO (op);
988   return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
989 @})
990 @end group
991 @end smallexample
992
993 Predicates written with @code{define_predicate} automatically include
994 a test that @var{mode} is @code{VOIDmode}, or @var{op} has the same
995 mode as @var{mode}, or @var{op} is a @code{CONST_INT} or
996 @code{CONST_DOUBLE}.  They do @emph{not} check specifically for
997 integer @code{CONST_DOUBLE}, nor do they test that the value of either
998 kind of constant fits in the requested mode.  This is because
999 target-specific predicates that take constants usually have to do more
1000 stringent value checks anyway.  If you need the exact same treatment
1001 of @code{CONST_INT} or @code{CONST_DOUBLE} that the generic predicates
1002 provide, use a @code{MATCH_OPERAND} subexpression to call
1003 @code{const_int_operand}, @code{const_double_operand}, or
1004 @code{immediate_operand}.
1005
1006 Predicates written with @code{define_special_predicate} do not get any
1007 automatic mode checks, and are treated as having special mode handling
1008 by @command{genrecog}.
1009
1010 The program @command{genpreds} is responsible for generating code to
1011 test predicates.  It also writes a header file containing function
1012 declarations for all machine-specific predicates.  It is not necessary
1013 to declare these predicates in @file{@var{cpu}-protos.h}.
1014 @end ifset
1015
1016 @c Most of this node appears by itself (in a different place) even
1017 @c when the INTERNALS flag is clear.  Passages that require the internals
1018 @c manual's context are conditionalized to appear only in the internals manual.
1019 @ifset INTERNALS
1020 @node Constraints
1021 @section Operand Constraints
1022 @cindex operand constraints
1023 @cindex constraints
1024
1025 Each @code{match_operand} in an instruction pattern can specify
1026 constraints for the operands allowed.  The constraints allow you to
1027 fine-tune matching within the set of operands allowed by the
1028 predicate.
1029
1030 @end ifset
1031 @ifclear INTERNALS
1032 @node Constraints
1033 @section Constraints for @code{asm} Operands
1034 @cindex operand constraints, @code{asm}
1035 @cindex constraints, @code{asm}
1036 @cindex @code{asm} constraints
1037
1038 Here are specific details on what constraint letters you can use with
1039 @code{asm} operands.
1040 @end ifclear
1041 Constraints can say whether
1042 an operand may be in a register, and which kinds of register; whether the
1043 operand can be a memory reference, and which kinds of address; whether the
1044 operand may be an immediate constant, and which possible values it may
1045 have.  Constraints can also require two operands to match.
1046
1047 @ifset INTERNALS
1048 @menu
1049 * Simple Constraints::  Basic use of constraints.
1050 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1051 * Class Preferences::   Constraints guide which hard register to put things in.
1052 * Modifiers::           More precise control over effects of constraints.
1053 * Disable Insn Alternatives:: Disable insn alternatives using the @code{enabled} attribute.
1054 * Machine Constraints:: Existing constraints for some particular machines.
1055 * Define Constraints::  How to define machine-specific constraints.
1056 * C Constraint Interface:: How to test constraints from C code.
1057 @end menu
1058 @end ifset
1059
1060 @ifclear INTERNALS
1061 @menu
1062 * Simple Constraints::  Basic use of constraints.
1063 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1064 * Modifiers::           More precise control over effects of constraints.
1065 * Machine Constraints:: Special constraints for some particular machines.
1066 @end menu
1067 @end ifclear
1068
1069 @node Simple Constraints
1070 @subsection Simple Constraints
1071 @cindex simple constraints
1072
1073 The simplest kind of constraint is a string full of letters, each of
1074 which describes one kind of operand that is permitted.  Here are
1075 the letters that are allowed:
1076
1077 @table @asis
1078 @item whitespace
1079 Whitespace characters are ignored and can be inserted at any position
1080 except the first.  This enables each alternative for different operands to
1081 be visually aligned in the machine description even if they have different
1082 number of constraints and modifiers.
1083
1084 @cindex @samp{m} in constraint
1085 @cindex memory references in constraints
1086 @item @samp{m}
1087 A memory operand is allowed, with any kind of address that the machine
1088 supports in general.
1089 Note that the letter used for the general memory constraint can be
1090 re-defined by a back end using the @code{TARGET_MEM_CONSTRAINT} macro.
1091
1092 @cindex offsettable address
1093 @cindex @samp{o} in constraint
1094 @item @samp{o}
1095 A memory operand is allowed, but only if the address is
1096 @dfn{offsettable}.  This means that adding a small integer (actually,
1097 the width in bytes of the operand, as determined by its machine mode)
1098 may be added to the address and the result is also a valid memory
1099 address.
1100
1101 @cindex autoincrement/decrement addressing
1102 For example, an address which is constant is offsettable; so is an
1103 address that is the sum of a register and a constant (as long as a
1104 slightly larger constant is also within the range of address-offsets
1105 supported by the machine); but an autoincrement or autodecrement
1106 address is not offsettable.  More complicated indirect/indexed
1107 addresses may or may not be offsettable depending on the other
1108 addressing modes that the machine supports.
1109
1110 Note that in an output operand which can be matched by another
1111 operand, the constraint letter @samp{o} is valid only when accompanied
1112 by both @samp{<} (if the target machine has predecrement addressing)
1113 and @samp{>} (if the target machine has preincrement addressing).
1114
1115 @cindex @samp{V} in constraint
1116 @item @samp{V}
1117 A memory operand that is not offsettable.  In other words, anything that
1118 would fit the @samp{m} constraint but not the @samp{o} constraint.
1119
1120 @cindex @samp{<} in constraint
1121 @item @samp{<}
1122 A memory operand with autodecrement addressing (either predecrement or
1123 postdecrement) is allowed.
1124
1125 @cindex @samp{>} in constraint
1126 @item @samp{>}
1127 A memory operand with autoincrement addressing (either preincrement or
1128 postincrement) is allowed.
1129
1130 @cindex @samp{r} in constraint
1131 @cindex registers in constraints
1132 @item @samp{r}
1133 A register operand is allowed provided that it is in a general
1134 register.
1135
1136 @cindex constants in constraints
1137 @cindex @samp{i} in constraint
1138 @item @samp{i}
1139 An immediate integer operand (one with constant value) is allowed.
1140 This includes symbolic constants whose values will be known only at
1141 assembly time or later.
1142
1143 @cindex @samp{n} in constraint
1144 @item @samp{n}
1145 An immediate integer operand with a known numeric value is allowed.
1146 Many systems cannot support assembly-time constants for operands less
1147 than a word wide.  Constraints for these operands should use @samp{n}
1148 rather than @samp{i}.
1149
1150 @cindex @samp{I} in constraint
1151 @item @samp{I}, @samp{J}, @samp{K}, @dots{} @samp{P}
1152 Other letters in the range @samp{I} through @samp{P} may be defined in
1153 a machine-dependent fashion to permit immediate integer operands with
1154 explicit integer values in specified ranges.  For example, on the
1155 68000, @samp{I} is defined to stand for the range of values 1 to 8.
1156 This is the range permitted as a shift count in the shift
1157 instructions.
1158
1159 @cindex @samp{E} in constraint
1160 @item @samp{E}
1161 An immediate floating operand (expression code @code{const_double}) is
1162 allowed, but only if the target floating point format is the same as
1163 that of the host machine (on which the compiler is running).
1164
1165 @cindex @samp{F} in constraint
1166 @item @samp{F}
1167 An immediate floating operand (expression code @code{const_double} or
1168 @code{const_vector}) is allowed.
1169
1170 @cindex @samp{G} in constraint
1171 @cindex @samp{H} in constraint
1172 @item @samp{G}, @samp{H}
1173 @samp{G} and @samp{H} may be defined in a machine-dependent fashion to
1174 permit immediate floating operands in particular ranges of values.
1175
1176 @cindex @samp{s} in constraint
1177 @item @samp{s}
1178 An immediate integer operand whose value is not an explicit integer is
1179 allowed.
1180
1181 This might appear strange; if an insn allows a constant operand with a
1182 value not known at compile time, it certainly must allow any known
1183 value.  So why use @samp{s} instead of @samp{i}?  Sometimes it allows
1184 better code to be generated.
1185
1186 For example, on the 68000 in a fullword instruction it is possible to
1187 use an immediate operand; but if the immediate value is between @minus{}128
1188 and 127, better code results from loading the value into a register and
1189 using the register.  This is because the load into the register can be
1190 done with a @samp{moveq} instruction.  We arrange for this to happen
1191 by defining the letter @samp{K} to mean ``any integer outside the
1192 range @minus{}128 to 127'', and then specifying @samp{Ks} in the operand
1193 constraints.
1194
1195 @cindex @samp{g} in constraint
1196 @item @samp{g}
1197 Any register, memory or immediate integer operand is allowed, except for
1198 registers that are not general registers.
1199
1200 @cindex @samp{X} in constraint
1201 @item @samp{X}
1202 @ifset INTERNALS
1203 Any operand whatsoever is allowed, even if it does not satisfy
1204 @code{general_operand}.  This is normally used in the constraint of
1205 a @code{match_scratch} when certain alternatives will not actually
1206 require a scratch register.
1207 @end ifset
1208 @ifclear INTERNALS
1209 Any operand whatsoever is allowed.
1210 @end ifclear
1211
1212 @cindex @samp{0} in constraint
1213 @cindex digits in constraint
1214 @item @samp{0}, @samp{1}, @samp{2}, @dots{} @samp{9}
1215 An operand that matches the specified operand number is allowed.  If a
1216 digit is used together with letters within the same alternative, the
1217 digit should come last.
1218
1219 This number is allowed to be more than a single digit.  If multiple
1220 digits are encountered consecutively, they are interpreted as a single
1221 decimal integer.  There is scant chance for ambiguity, since to-date
1222 it has never been desirable that @samp{10} be interpreted as matching
1223 either operand 1 @emph{or} operand 0.  Should this be desired, one
1224 can use multiple alternatives instead.
1225
1226 @cindex matching constraint
1227 @cindex constraint, matching
1228 This is called a @dfn{matching constraint} and what it really means is
1229 that the assembler has only a single operand that fills two roles
1230 @ifset INTERNALS
1231 considered separate in the RTL insn.  For example, an add insn has two
1232 input operands and one output operand in the RTL, but on most CISC
1233 @end ifset
1234 @ifclear INTERNALS
1235 which @code{asm} distinguishes.  For example, an add instruction uses
1236 two input operands and an output operand, but on most CISC
1237 @end ifclear
1238 machines an add instruction really has only two operands, one of them an
1239 input-output operand:
1240
1241 @smallexample
1242 addl #35,r12
1243 @end smallexample
1244
1245 Matching constraints are used in these circumstances.
1246 More precisely, the two operands that match must include one input-only
1247 operand and one output-only operand.  Moreover, the digit must be a
1248 smaller number than the number of the operand that uses it in the
1249 constraint.
1250
1251 @ifset INTERNALS
1252 For operands to match in a particular case usually means that they
1253 are identical-looking RTL expressions.  But in a few special cases
1254 specific kinds of dissimilarity are allowed.  For example, @code{*x}
1255 as an input operand will match @code{*x++} as an output operand.
1256 For proper results in such cases, the output template should always
1257 use the output-operand's number when printing the operand.
1258 @end ifset
1259
1260 @cindex load address instruction
1261 @cindex push address instruction
1262 @cindex address constraints
1263 @cindex @samp{p} in constraint
1264 @item @samp{p}
1265 An operand that is a valid memory address is allowed.  This is
1266 for ``load address'' and ``push address'' instructions.
1267
1268 @findex address_operand
1269 @samp{p} in the constraint must be accompanied by @code{address_operand}
1270 as the predicate in the @code{match_operand}.  This predicate interprets
1271 the mode specified in the @code{match_operand} as the mode of the memory
1272 reference for which the address would be valid.
1273
1274 @cindex other register constraints
1275 @cindex extensible constraints
1276 @item @var{other-letters}
1277 Other letters can be defined in machine-dependent fashion to stand for
1278 particular classes of registers or other arbitrary operand types.
1279 @samp{d}, @samp{a} and @samp{f} are defined on the 68000/68020 to stand
1280 for data, address and floating point registers.
1281 @end table
1282
1283 @ifset INTERNALS
1284 In order to have valid assembler code, each operand must satisfy
1285 its constraint.  But a failure to do so does not prevent the pattern
1286 from applying to an insn.  Instead, it directs the compiler to modify
1287 the code so that the constraint will be satisfied.  Usually this is
1288 done by copying an operand into a register.
1289
1290 Contrast, therefore, the two instruction patterns that follow:
1291
1292 @smallexample
1293 (define_insn ""
1294   [(set (match_operand:SI 0 "general_operand" "=r")
1295         (plus:SI (match_dup 0)
1296                  (match_operand:SI 1 "general_operand" "r")))]
1297   ""
1298   "@dots{}")
1299 @end smallexample
1300
1301 @noindent
1302 which has two operands, one of which must appear in two places, and
1303
1304 @smallexample
1305 (define_insn ""
1306   [(set (match_operand:SI 0 "general_operand" "=r")
1307         (plus:SI (match_operand:SI 1 "general_operand" "0")
1308                  (match_operand:SI 2 "general_operand" "r")))]
1309   ""
1310   "@dots{}")
1311 @end smallexample
1312
1313 @noindent
1314 which has three operands, two of which are required by a constraint to be
1315 identical.  If we are considering an insn of the form
1316
1317 @smallexample
1318 (insn @var{n} @var{prev} @var{next}
1319   (set (reg:SI 3)
1320        (plus:SI (reg:SI 6) (reg:SI 109)))
1321   @dots{})
1322 @end smallexample
1323
1324 @noindent
1325 the first pattern would not apply at all, because this insn does not
1326 contain two identical subexpressions in the right place.  The pattern would
1327 say, ``That does not look like an add instruction; try other patterns''.
1328 The second pattern would say, ``Yes, that's an add instruction, but there
1329 is something wrong with it''.  It would direct the reload pass of the
1330 compiler to generate additional insns to make the constraint true.  The
1331 results might look like this:
1332
1333 @smallexample
1334 (insn @var{n2} @var{prev} @var{n}
1335   (set (reg:SI 3) (reg:SI 6))
1336   @dots{})
1337
1338 (insn @var{n} @var{n2} @var{next}
1339   (set (reg:SI 3)
1340        (plus:SI (reg:SI 3) (reg:SI 109)))
1341   @dots{})
1342 @end smallexample
1343
1344 It is up to you to make sure that each operand, in each pattern, has
1345 constraints that can handle any RTL expression that could be present for
1346 that operand.  (When multiple alternatives are in use, each pattern must,
1347 for each possible combination of operand expressions, have at least one
1348 alternative which can handle that combination of operands.)  The
1349 constraints don't need to @emph{allow} any possible operand---when this is
1350 the case, they do not constrain---but they must at least point the way to
1351 reloading any possible operand so that it will fit.
1352
1353 @itemize @bullet
1354 @item
1355 If the constraint accepts whatever operands the predicate permits,
1356 there is no problem: reloading is never necessary for this operand.
1357
1358 For example, an operand whose constraints permit everything except
1359 registers is safe provided its predicate rejects registers.
1360
1361 An operand whose predicate accepts only constant values is safe
1362 provided its constraints include the letter @samp{i}.  If any possible
1363 constant value is accepted, then nothing less than @samp{i} will do;
1364 if the predicate is more selective, then the constraints may also be
1365 more selective.
1366
1367 @item
1368 Any operand expression can be reloaded by copying it into a register.
1369 So if an operand's constraints allow some kind of register, it is
1370 certain to be safe.  It need not permit all classes of registers; the
1371 compiler knows how to copy a register into another register of the
1372 proper class in order to make an instruction valid.
1373
1374 @cindex nonoffsettable memory reference
1375 @cindex memory reference, nonoffsettable
1376 @item
1377 A nonoffsettable memory reference can be reloaded by copying the
1378 address into a register.  So if the constraint uses the letter
1379 @samp{o}, all memory references are taken care of.
1380
1381 @item
1382 A constant operand can be reloaded by allocating space in memory to
1383 hold it as preinitialized data.  Then the memory reference can be used
1384 in place of the constant.  So if the constraint uses the letters
1385 @samp{o} or @samp{m}, constant operands are not a problem.
1386
1387 @item
1388 If the constraint permits a constant and a pseudo register used in an insn
1389 was not allocated to a hard register and is equivalent to a constant,
1390 the register will be replaced with the constant.  If the predicate does
1391 not permit a constant and the insn is re-recognized for some reason, the
1392 compiler will crash.  Thus the predicate must always recognize any
1393 objects allowed by the constraint.
1394 @end itemize
1395
1396 If the operand's predicate can recognize registers, but the constraint does
1397 not permit them, it can make the compiler crash.  When this operand happens
1398 to be a register, the reload pass will be stymied, because it does not know
1399 how to copy a register temporarily into memory.
1400
1401 If the predicate accepts a unary operator, the constraint applies to the
1402 operand.  For example, the MIPS processor at ISA level 3 supports an
1403 instruction which adds two registers in @code{SImode} to produce a
1404 @code{DImode} result, but only if the registers are correctly sign
1405 extended.  This predicate for the input operands accepts a
1406 @code{sign_extend} of an @code{SImode} register.  Write the constraint
1407 to indicate the type of register that is required for the operand of the
1408 @code{sign_extend}.
1409 @end ifset
1410
1411 @node Multi-Alternative
1412 @subsection Multiple Alternative Constraints
1413 @cindex multiple alternative constraints
1414
1415 Sometimes a single instruction has multiple alternative sets of possible
1416 operands.  For example, on the 68000, a logical-or instruction can combine
1417 register or an immediate value into memory, or it can combine any kind of
1418 operand into a register; but it cannot combine one memory location into
1419 another.
1420
1421 These constraints are represented as multiple alternatives.  An alternative
1422 can be described by a series of letters for each operand.  The overall
1423 constraint for an operand is made from the letters for this operand
1424 from the first alternative, a comma, the letters for this operand from
1425 the second alternative, a comma, and so on until the last alternative.
1426 @ifset INTERNALS
1427 Here is how it is done for fullword logical-or on the 68000:
1428
1429 @smallexample
1430 (define_insn "iorsi3"
1431   [(set (match_operand:SI 0 "general_operand" "=m,d")
1432         (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
1433                 (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
1434   @dots{})
1435 @end smallexample
1436
1437 The first alternative has @samp{m} (memory) for operand 0, @samp{0} for
1438 operand 1 (meaning it must match operand 0), and @samp{dKs} for operand
1439 2.  The second alternative has @samp{d} (data register) for operand 0,
1440 @samp{0} for operand 1, and @samp{dmKs} for operand 2.  The @samp{=} and
1441 @samp{%} in the constraints apply to all the alternatives; their
1442 meaning is explained in the next section (@pxref{Class Preferences}).
1443 @end ifset
1444
1445 @c FIXME Is this ? and ! stuff of use in asm()?  If not, hide unless INTERNAL
1446 If all the operands fit any one alternative, the instruction is valid.
1447 Otherwise, for each alternative, the compiler counts how many instructions
1448 must be added to copy the operands so that that alternative applies.
1449 The alternative requiring the least copying is chosen.  If two alternatives
1450 need the same amount of copying, the one that comes first is chosen.
1451 These choices can be altered with the @samp{?} and @samp{!} characters:
1452
1453 @table @code
1454 @cindex @samp{?} in constraint
1455 @cindex question mark
1456 @item ?
1457 Disparage slightly the alternative that the @samp{?} appears in,
1458 as a choice when no alternative applies exactly.  The compiler regards
1459 this alternative as one unit more costly for each @samp{?} that appears
1460 in it.
1461
1462 @cindex @samp{!} in constraint
1463 @cindex exclamation point
1464 @item !
1465 Disparage severely the alternative that the @samp{!} appears in.
1466 This alternative can still be used if it fits without reloading,
1467 but if reloading is needed, some other alternative will be used.
1468 @end table
1469
1470 @ifset INTERNALS
1471 When an insn pattern has multiple alternatives in its constraints, often
1472 the appearance of the assembler code is determined mostly by which
1473 alternative was matched.  When this is so, the C code for writing the
1474 assembler code can use the variable @code{which_alternative}, which is
1475 the ordinal number of the alternative that was actually satisfied (0 for
1476 the first, 1 for the second alternative, etc.).  @xref{Output Statement}.
1477 @end ifset
1478
1479 @ifset INTERNALS
1480 @node Class Preferences
1481 @subsection Register Class Preferences
1482 @cindex class preference constraints
1483 @cindex register class preference constraints
1484
1485 @cindex voting between constraint alternatives
1486 The operand constraints have another function: they enable the compiler
1487 to decide which kind of hardware register a pseudo register is best
1488 allocated to.  The compiler examines the constraints that apply to the
1489 insns that use the pseudo register, looking for the machine-dependent
1490 letters such as @samp{d} and @samp{a} that specify classes of registers.
1491 The pseudo register is put in whichever class gets the most ``votes''.
1492 The constraint letters @samp{g} and @samp{r} also vote: they vote in
1493 favor of a general register.  The machine description says which registers
1494 are considered general.
1495
1496 Of course, on some machines all registers are equivalent, and no register
1497 classes are defined.  Then none of this complexity is relevant.
1498 @end ifset
1499
1500 @node Modifiers
1501 @subsection Constraint Modifier Characters
1502 @cindex modifiers in constraints
1503 @cindex constraint modifier characters
1504
1505 @c prevent bad page break with this line
1506 Here are constraint modifier characters.
1507
1508 @table @samp
1509 @cindex @samp{=} in constraint
1510 @item =
1511 Means that this operand is write-only for this instruction: the previous
1512 value is discarded and replaced by output data.
1513
1514 @cindex @samp{+} in constraint
1515 @item +
1516 Means that this operand is both read and written by the instruction.
1517
1518 When the compiler fixes up the operands to satisfy the constraints,
1519 it needs to know which operands are inputs to the instruction and
1520 which are outputs from it.  @samp{=} identifies an output; @samp{+}
1521 identifies an operand that is both input and output; all other operands
1522 are assumed to be input only.
1523
1524 If you specify @samp{=} or @samp{+} in a constraint, you put it in the
1525 first character of the constraint string.
1526
1527 @cindex @samp{&} in constraint
1528 @cindex earlyclobber operand
1529 @item &
1530 Means (in a particular alternative) that this operand is an
1531 @dfn{earlyclobber} operand, which is modified before the instruction is
1532 finished using the input operands.  Therefore, this operand may not lie
1533 in a register that is used as an input operand or as part of any memory
1534 address.
1535
1536 @samp{&} applies only to the alternative in which it is written.  In
1537 constraints with multiple alternatives, sometimes one alternative
1538 requires @samp{&} while others do not.  See, for example, the
1539 @samp{movdf} insn of the 68000.
1540
1541 An input operand can be tied to an earlyclobber operand if its only
1542 use as an input occurs before the early result is written.  Adding
1543 alternatives of this form often allows GCC to produce better code
1544 when only some of the inputs can be affected by the earlyclobber.
1545 See, for example, the @samp{mulsi3} insn of the ARM@.
1546
1547 @samp{&} does not obviate the need to write @samp{=}.
1548
1549 @cindex @samp{%} in constraint
1550 @item %
1551 Declares the instruction to be commutative for this operand and the
1552 following operand.  This means that the compiler may interchange the
1553 two operands if that is the cheapest way to make all operands fit the
1554 constraints.
1555 @ifset INTERNALS
1556 This is often used in patterns for addition instructions
1557 that really have only two operands: the result must go in one of the
1558 arguments.  Here for example, is how the 68000 halfword-add
1559 instruction is defined:
1560
1561 @smallexample
1562 (define_insn "addhi3"
1563   [(set (match_operand:HI 0 "general_operand" "=m,r")
1564      (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
1565               (match_operand:HI 2 "general_operand" "di,g")))]
1566   @dots{})
1567 @end smallexample
1568 @end ifset
1569 GCC can only handle one commutative pair in an asm; if you use more,
1570 the compiler may fail.  Note that you need not use the modifier if
1571 the two alternatives are strictly identical; this would only waste
1572 time in the reload pass.  The modifier is not operational after
1573 register allocation, so the result of @code{define_peephole2}
1574 and @code{define_split}s performed after reload cannot rely on
1575 @samp{%} to make the intended insn match.
1576
1577 @cindex @samp{#} in constraint
1578 @item #
1579 Says that all following characters, up to the next comma, are to be
1580 ignored as a constraint.  They are significant only for choosing
1581 register preferences.
1582
1583 @cindex @samp{*} in constraint
1584 @item *
1585 Says that the following character should be ignored when choosing
1586 register preferences.  @samp{*} has no effect on the meaning of the
1587 constraint as a constraint, and no effect on reloading.
1588
1589 @ifset INTERNALS
1590 Here is an example: the 68000 has an instruction to sign-extend a
1591 halfword in a data register, and can also sign-extend a value by
1592 copying it into an address register.  While either kind of register is
1593 acceptable, the constraints on an address-register destination are
1594 less strict, so it is best if register allocation makes an address
1595 register its goal.  Therefore, @samp{*} is used so that the @samp{d}
1596 constraint letter (for data register) is ignored when computing
1597 register preferences.
1598
1599 @smallexample
1600 (define_insn "extendhisi2"
1601   [(set (match_operand:SI 0 "general_operand" "=*d,a")
1602         (sign_extend:SI
1603          (match_operand:HI 1 "general_operand" "0,g")))]
1604   @dots{})
1605 @end smallexample
1606 @end ifset
1607 @end table
1608
1609 @node Machine Constraints
1610 @subsection Constraints for Particular Machines
1611 @cindex machine specific constraints
1612 @cindex constraints, machine specific
1613
1614 Whenever possible, you should use the general-purpose constraint letters
1615 in @code{asm} arguments, since they will convey meaning more readily to
1616 people reading your code.  Failing that, use the constraint letters
1617 that usually have very similar meanings across architectures.  The most
1618 commonly used constraints are @samp{m} and @samp{r} (for memory and
1619 general-purpose registers respectively; @pxref{Simple Constraints}), and
1620 @samp{I}, usually the letter indicating the most common
1621 immediate-constant format.
1622
1623 Each architecture defines additional constraints.  These constraints
1624 are used by the compiler itself for instruction generation, as well as
1625 for @code{asm} statements; therefore, some of the constraints are not
1626 particularly useful for @code{asm}.  Here is a summary of some of the
1627 machine-dependent constraints available on some particular machines;
1628 it includes both constraints that are useful for @code{asm} and
1629 constraints that aren't.  The compiler source file mentioned in the
1630 table heading for each architecture is the definitive reference for
1631 the meanings of that architecture's constraints.
1632
1633 @table @emph
1634 @item ARM family---@file{config/arm/arm.h}
1635 @table @code
1636 @item f
1637 Floating-point register
1638
1639 @item w
1640 VFP floating-point register
1641
1642 @item F
1643 One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
1644 or 10.0
1645
1646 @item G
1647 Floating-point constant that would satisfy the constraint @samp{F} if it
1648 were negated
1649
1650 @item I
1651 Integer that is valid as an immediate operand in a data processing
1652 instruction.  That is, an integer in the range 0 to 255 rotated by a
1653 multiple of 2
1654
1655 @item J
1656 Integer in the range @minus{}4095 to 4095
1657
1658 @item K
1659 Integer that satisfies constraint @samp{I} when inverted (ones complement)
1660
1661 @item L
1662 Integer that satisfies constraint @samp{I} when negated (twos complement)
1663
1664 @item M
1665 Integer in the range 0 to 32
1666
1667 @item Q
1668 A memory reference where the exact address is in a single register
1669 (`@samp{m}' is preferable for @code{asm} statements)
1670
1671 @item R
1672 An item in the constant pool
1673
1674 @item S
1675 A symbol in the text segment of the current file
1676
1677 @item Uv
1678 A memory reference suitable for VFP load/store insns (reg+constant offset)
1679
1680 @item Uy
1681 A memory reference suitable for iWMMXt load/store instructions.
1682
1683 @item Uq
1684 A memory reference suitable for the ARMv4 ldrsb instruction.
1685 @end table
1686
1687 @item AVR family---@file{config/avr/constraints.md}
1688 @table @code
1689 @item l
1690 Registers from r0 to r15
1691
1692 @item a
1693 Registers from r16 to r23
1694
1695 @item d
1696 Registers from r16 to r31
1697
1698 @item w
1699 Registers from r24 to r31.  These registers can be used in @samp{adiw} command
1700
1701 @item e
1702 Pointer register (r26--r31)
1703
1704 @item b
1705 Base pointer register (r28--r31)
1706
1707 @item q
1708 Stack pointer register (SPH:SPL)
1709
1710 @item t
1711 Temporary register r0
1712
1713 @item x
1714 Register pair X (r27:r26)
1715
1716 @item y
1717 Register pair Y (r29:r28)
1718
1719 @item z
1720 Register pair Z (r31:r30)
1721
1722 @item I
1723 Constant greater than @minus{}1, less than 64
1724
1725 @item J
1726 Constant greater than @minus{}64, less than 1
1727
1728 @item K
1729 Constant integer 2
1730
1731 @item L
1732 Constant integer 0
1733
1734 @item M
1735 Constant that fits in 8 bits
1736
1737 @item N
1738 Constant integer @minus{}1
1739
1740 @item O
1741 Constant integer 8, 16, or 24
1742
1743 @item P
1744 Constant integer 1
1745
1746 @item G
1747 A floating point constant 0.0
1748
1749 @item R
1750 Integer constant in the range -6 @dots{} 5.
1751
1752 @item Q
1753 A memory address based on Y or Z pointer with displacement.
1754 @end table
1755
1756 @item CRX Architecture---@file{config/crx/crx.h}
1757 @table @code
1758
1759 @item b
1760 Registers from r0 to r14 (registers without stack pointer)
1761
1762 @item l
1763 Register r16 (64-bit accumulator lo register)
1764
1765 @item h
1766 Register r17 (64-bit accumulator hi register)
1767
1768 @item k
1769 Register pair r16-r17. (64-bit accumulator lo-hi pair)
1770
1771 @item I
1772 Constant that fits in 3 bits
1773
1774 @item J
1775 Constant that fits in 4 bits
1776
1777 @item K
1778 Constant that fits in 5 bits
1779
1780 @item L
1781 Constant that is one of -1, 4, -4, 7, 8, 12, 16, 20, 32, 48
1782
1783 @item G
1784 Floating point constant that is legal for store immediate
1785 @end table
1786
1787 @item Hewlett-Packard PA-RISC---@file{config/pa/pa.h}
1788 @table @code
1789 @item a
1790 General register 1
1791
1792 @item f
1793 Floating point register
1794
1795 @item q
1796 Shift amount register
1797
1798 @item x
1799 Floating point register (deprecated)
1800
1801 @item y
1802 Upper floating point register (32-bit), floating point register (64-bit)
1803
1804 @item Z
1805 Any register
1806
1807 @item I
1808 Signed 11-bit integer constant
1809
1810 @item J
1811 Signed 14-bit integer constant
1812
1813 @item K
1814 Integer constant that can be deposited with a @code{zdepi} instruction
1815
1816 @item L
1817 Signed 5-bit integer constant
1818
1819 @item M
1820 Integer constant 0
1821
1822 @item N
1823 Integer constant that can be loaded with a @code{ldil} instruction
1824
1825 @item O
1826 Integer constant whose value plus one is a power of 2
1827
1828 @item P
1829 Integer constant that can be used for @code{and} operations in @code{depi}
1830 and @code{extru} instructions
1831
1832 @item S
1833 Integer constant 31
1834
1835 @item U
1836 Integer constant 63
1837
1838 @item G
1839 Floating-point constant 0.0
1840
1841 @item A
1842 A @code{lo_sum} data-linkage-table memory operand
1843
1844 @item Q
1845 A memory operand that can be used as the destination operand of an
1846 integer store instruction
1847
1848 @item R
1849 A scaled or unscaled indexed memory operand
1850
1851 @item T
1852 A memory operand for floating-point loads and stores
1853
1854 @item W
1855 A register indirect memory operand
1856 @end table
1857
1858 @item picoChip family---@file{picochip.h}
1859 @table @code
1860 @item k
1861 Stack register.
1862
1863 @item f
1864 Pointer register.  A register which can be used to access memory without
1865 supplying an offset.  Any other register can be used to access memory,
1866 but will need a constant offset.  In the case of the offset being zero,
1867 it is more efficient to use a pointer register, since this reduces code
1868 size.
1869
1870 @item t
1871 A twin register.  A register which may be paired with an adjacent
1872 register to create a 32-bit register.
1873
1874 @item a
1875 Any absolute memory address (e.g., symbolic constant, symbolic
1876 constant + offset).
1877
1878 @item I
1879 4-bit signed integer.
1880
1881 @item J
1882 4-bit unsigned integer.
1883
1884 @item K
1885 8-bit signed integer.
1886
1887 @item M
1888 Any constant whose absolute value is no greater than 4-bits.
1889
1890 @item N
1891 10-bit signed integer
1892
1893 @item O
1894 16-bit signed integer.
1895
1896 @end table
1897
1898 @item PowerPC and IBM RS6000---@file{config/rs6000/rs6000.h}
1899 @table @code
1900 @item b
1901 Address base register
1902
1903 @item f
1904 Floating point register
1905
1906 @item v
1907 Vector register
1908
1909 @item h
1910 @samp{MQ}, @samp{CTR}, or @samp{LINK} register
1911
1912 @item q
1913 @samp{MQ} register
1914
1915 @item c
1916 @samp{CTR} register
1917
1918 @item l
1919 @samp{LINK} register
1920
1921 @item x
1922 @samp{CR} register (condition register) number 0
1923
1924 @item y
1925 @samp{CR} register (condition register)
1926
1927 @item z
1928 @samp{FPMEM} stack memory for FPR-GPR transfers
1929
1930 @item I
1931 Signed 16-bit constant
1932
1933 @item J
1934 Unsigned 16-bit constant shifted left 16 bits (use @samp{L} instead for
1935 @code{SImode} constants)
1936
1937 @item K
1938 Unsigned 16-bit constant
1939
1940 @item L
1941 Signed 16-bit constant shifted left 16 bits
1942
1943 @item M
1944 Constant larger than 31
1945
1946 @item N
1947 Exact power of 2
1948
1949 @item O
1950 Zero
1951
1952 @item P
1953 Constant whose negation is a signed 16-bit constant
1954
1955 @item G
1956 Floating point constant that can be loaded into a register with one
1957 instruction per word
1958
1959 @item H
1960 Integer/Floating point constant that can be loaded into a register using
1961 three instructions
1962
1963 @item Q
1964 Memory operand that is an offset from a register (@samp{m} is preferable
1965 for @code{asm} statements)
1966
1967 @item Z
1968 Memory operand that is an indexed or indirect from a register (@samp{m} is
1969 preferable for @code{asm} statements)
1970
1971 @item R
1972 AIX TOC entry
1973
1974 @item a
1975 Address operand that is an indexed or indirect from a register (@samp{p} is
1976 preferable for @code{asm} statements)
1977
1978 @item S
1979 Constant suitable as a 64-bit mask operand
1980
1981 @item T
1982 Constant suitable as a 32-bit mask operand
1983
1984 @item U
1985 System V Release 4 small data area reference
1986
1987 @item t
1988 AND masks that can be performed by two rldic@{l, r@} instructions
1989
1990 @item W
1991 Vector constant that does not require memory
1992
1993 @end table
1994
1995 @item Intel 386---@file{config/i386/constraints.md}
1996 @table @code
1997 @item R
1998 Legacy register---the eight integer registers available on all
1999 i386 processors (@code{a}, @code{b}, @code{c}, @code{d},
2000 @code{si}, @code{di}, @code{bp}, @code{sp}).
2001
2002 @item q
2003 Any register accessible as @code{@var{r}l}.  In 32-bit mode, @code{a},
2004 @code{b}, @code{c}, and @code{d}; in 64-bit mode, any integer register.
2005
2006 @item Q
2007 Any register accessible as @code{@var{r}h}: @code{a}, @code{b},
2008 @code{c}, and @code{d}.
2009
2010 @ifset INTERNALS
2011 @item l
2012 Any register that can be used as the index in a base+index memory
2013 access: that is, any general register except the stack pointer.
2014 @end ifset
2015
2016 @item a
2017 The @code{a} register.
2018
2019 @item b
2020 The @code{b} register.
2021
2022 @item c
2023 The @code{c} register.
2024
2025 @item d
2026 The @code{d} register.
2027
2028 @item S
2029 The @code{si} register.
2030
2031 @item D
2032 The @code{di} register.
2033
2034 @item A
2035 The @code{a} and @code{d} registers, as a pair (for instructions that
2036 return half the result in one and half in the other).
2037
2038 @item f
2039 Any 80387 floating-point (stack) register.
2040
2041 @item t
2042 Top of 80387 floating-point stack (@code{%st(0)}).
2043
2044 @item u
2045 Second from top of 80387 floating-point stack (@code{%st(1)}).
2046
2047 @item y
2048 Any MMX register.
2049
2050 @item x
2051 Any SSE register.
2052
2053 @ifset INTERNALS
2054 @item Y
2055 Any SSE2 register.
2056 @end ifset
2057
2058 @item I
2059 Integer constant in the range 0 @dots{} 31, for 32-bit shifts.
2060
2061 @item J
2062 Integer constant in the range 0 @dots{} 63, for 64-bit shifts.
2063
2064 @item K
2065 Signed 8-bit integer constant.
2066
2067 @item L
2068 @code{0xFF} or @code{0xFFFF}, for andsi as a zero-extending move.
2069
2070 @item M
2071 0, 1, 2, or 3 (shifts for the @code{lea} instruction).
2072
2073 @item N
2074 Unsigned 8-bit integer constant (for @code{in} and @code{out} 
2075 instructions).
2076
2077 @ifset INTERNALS
2078 @item O
2079 Integer constant in the range 0 @dots{} 127, for 128-bit shifts.
2080 @end ifset
2081
2082 @item G
2083 Standard 80387 floating point constant.
2084
2085 @item C
2086 Standard SSE floating point constant.
2087
2088 @item e
2089 32-bit signed integer constant, or a symbolic reference known
2090 to fit that range (for immediate operands in sign-extending x86-64
2091 instructions).
2092
2093 @item Z
2094 32-bit unsigned integer constant, or a symbolic reference known
2095 to fit that range (for immediate operands in zero-extending x86-64
2096 instructions).
2097
2098 @end table
2099
2100 @item Intel IA-64---@file{config/ia64/ia64.h}
2101 @table @code
2102 @item a
2103 General register @code{r0} to @code{r3} for @code{addl} instruction
2104
2105 @item b
2106 Branch register
2107
2108 @item c
2109 Predicate register (@samp{c} as in ``conditional'')
2110
2111 @item d
2112 Application register residing in M-unit
2113
2114 @item e
2115 Application register residing in I-unit
2116
2117 @item f
2118 Floating-point register
2119
2120 @item m
2121 Memory operand.
2122 Remember that @samp{m} allows postincrement and postdecrement which
2123 require printing with @samp{%Pn} on IA-64.
2124 Use @samp{S} to disallow postincrement and postdecrement.
2125
2126 @item G
2127 Floating-point constant 0.0 or 1.0
2128
2129 @item I
2130 14-bit signed integer constant
2131
2132 @item J
2133 22-bit signed integer constant
2134
2135 @item K
2136 8-bit signed integer constant for logical instructions
2137
2138 @item L
2139 8-bit adjusted signed integer constant for compare pseudo-ops
2140
2141 @item M
2142 6-bit unsigned integer constant for shift counts
2143
2144 @item N
2145 9-bit signed integer constant for load and store postincrements
2146
2147 @item O
2148 The constant zero
2149
2150 @item P
2151 0 or @minus{}1 for @code{dep} instruction
2152
2153 @item Q
2154 Non-volatile memory for floating-point loads and stores
2155
2156 @item R
2157 Integer constant in the range 1 to 4 for @code{shladd} instruction
2158
2159 @item S
2160 Memory operand except postincrement and postdecrement
2161 @end table
2162
2163 @item FRV---@file{config/frv/frv.h}
2164 @table @code
2165 @item a
2166 Register in the class @code{ACC_REGS} (@code{acc0} to @code{acc7}).
2167
2168 @item b
2169 Register in the class @code{EVEN_ACC_REGS} (@code{acc0} to @code{acc7}).
2170
2171 @item c
2172 Register in the class @code{CC_REGS} (@code{fcc0} to @code{fcc3} and
2173 @code{icc0} to @code{icc3}).
2174
2175 @item d
2176 Register in the class @code{GPR_REGS} (@code{gr0} to @code{gr63}).
2177
2178 @item e
2179 Register in the class @code{EVEN_REGS} (@code{gr0} to @code{gr63}).
2180 Odd registers are excluded not in the class but through the use of a machine
2181 mode larger than 4 bytes.
2182
2183 @item f
2184 Register in the class @code{FPR_REGS} (@code{fr0} to @code{fr63}).
2185
2186 @item h
2187 Register in the class @code{FEVEN_REGS} (@code{fr0} to @code{fr63}).
2188 Odd registers are excluded not in the class but through the use of a machine
2189 mode larger than 4 bytes.
2190
2191 @item l
2192 Register in the class @code{LR_REG} (the @code{lr} register).
2193
2194 @item q
2195 Register in the class @code{QUAD_REGS} (@code{gr2} to @code{gr63}).
2196 Register numbers not divisible by 4 are excluded not in the class but through
2197 the use of a machine mode larger than 8 bytes.
2198
2199 @item t
2200 Register in the class @code{ICC_REGS} (@code{icc0} to @code{icc3}).
2201
2202 @item u
2203 Register in the class @code{FCC_REGS} (@code{fcc0} to @code{fcc3}).
2204
2205 @item v
2206 Register in the class @code{ICR_REGS} (@code{cc4} to @code{cc7}).
2207
2208 @item w
2209 Register in the class @code{FCR_REGS} (@code{cc0} to @code{cc3}).
2210
2211 @item x
2212 Register in the class @code{QUAD_FPR_REGS} (@code{fr0} to @code{fr63}).
2213 Register numbers not divisible by 4 are excluded not in the class but through
2214 the use of a machine mode larger than 8 bytes.
2215
2216 @item z
2217 Register in the class @code{SPR_REGS} (@code{lcr} and @code{lr}).
2218
2219 @item A
2220 Register in the class @code{QUAD_ACC_REGS} (@code{acc0} to @code{acc7}).
2221
2222 @item B
2223 Register in the class @code{ACCG_REGS} (@code{accg0} to @code{accg7}).
2224
2225 @item C
2226 Register in the class @code{CR_REGS} (@code{cc0} to @code{cc7}).
2227
2228 @item G
2229 Floating point constant zero
2230
2231 @item I
2232 6-bit signed integer constant
2233
2234 @item J
2235 10-bit signed integer constant
2236
2237 @item L
2238 16-bit signed integer constant
2239
2240 @item M
2241 16-bit unsigned integer constant
2242
2243 @item N
2244 12-bit signed integer constant that is negative---i.e.@: in the
2245 range of @minus{}2048 to @minus{}1
2246
2247 @item O
2248 Constant zero
2249
2250 @item P
2251 12-bit signed integer constant that is greater than zero---i.e.@: in the
2252 range of 1 to 2047.
2253
2254 @end table
2255
2256 @item Blackfin family---@file{config/bfin/constraints.md}
2257 @table @code
2258 @item a
2259 P register
2260
2261 @item d
2262 D register
2263
2264 @item z
2265 A call clobbered P register.
2266
2267 @item q@var{n}
2268 A single register.  If @var{n} is in the range 0 to 7, the corresponding D
2269 register.  If it is @code{A}, then the register P0.
2270
2271 @item D
2272 Even-numbered D register
2273
2274 @item W
2275 Odd-numbered D register
2276
2277 @item e
2278 Accumulator register.
2279
2280 @item A
2281 Even-numbered accumulator register.
2282
2283 @item B
2284 Odd-numbered accumulator register.
2285
2286 @item b
2287 I register
2288
2289 @item v
2290 B register
2291
2292 @item f
2293 M register
2294
2295 @item c
2296 Registers used for circular buffering, i.e. I, B, or L registers.
2297
2298 @item C
2299 The CC register.
2300
2301 @item t
2302 LT0 or LT1.
2303
2304 @item k
2305 LC0 or LC1.
2306
2307 @item u
2308 LB0 or LB1.
2309
2310 @item x
2311 Any D, P, B, M, I or L register.
2312
2313 @item y
2314 Additional registers typically used only in prologues and epilogues: RETS,
2315 RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
2316
2317 @item w
2318 Any register except accumulators or CC.
2319
2320 @item Ksh
2321 Signed 16 bit integer (in the range -32768 to 32767)
2322
2323 @item Kuh
2324 Unsigned 16 bit integer (in the range 0 to 65535)
2325
2326 @item Ks7
2327 Signed 7 bit integer (in the range -64 to 63)
2328
2329 @item Ku7
2330 Unsigned 7 bit integer (in the range 0 to 127)
2331
2332 @item Ku5
2333 Unsigned 5 bit integer (in the range 0 to 31)
2334
2335 @item Ks4
2336 Signed 4 bit integer (in the range -8 to 7)
2337
2338 @item Ks3
2339 Signed 3 bit integer (in the range -3 to 4)
2340
2341 @item Ku3
2342 Unsigned 3 bit integer (in the range 0 to 7)
2343
2344 @item P@var{n}
2345 Constant @var{n}, where @var{n} is a single-digit constant in the range 0 to 4.
2346
2347 @item PA
2348 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2349 use with either accumulator.
2350
2351 @item PB
2352 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2353 use only with accumulator A1.
2354
2355 @item M1
2356 Constant 255.
2357
2358 @item M2
2359 Constant 65535.
2360
2361 @item J
2362 An integer constant with exactly a single bit set.
2363
2364 @item L
2365 An integer constant with all bits set except exactly one.
2366
2367 @item H
2368
2369 @item Q
2370 Any SYMBOL_REF.
2371 @end table
2372
2373 @item M32C---@file{config/m32c/m32c.c}
2374 @table @code
2375 @item Rsp
2376 @itemx Rfb
2377 @itemx Rsb
2378 @samp{$sp}, @samp{$fb}, @samp{$sb}.
2379
2380 @item Rcr
2381 Any control register, when they're 16 bits wide (nothing if control
2382 registers are 24 bits wide)
2383
2384 @item Rcl
2385 Any control register, when they're 24 bits wide.
2386
2387 @item R0w
2388 @itemx R1w
2389 @itemx R2w
2390 @itemx R3w
2391 $r0, $r1, $r2, $r3.
2392
2393 @item R02
2394 $r0 or $r2, or $r2r0 for 32 bit values.
2395
2396 @item R13
2397 $r1 or $r3, or $r3r1 for 32 bit values.
2398
2399 @item Rdi
2400 A register that can hold a 64 bit value.
2401
2402 @item Rhl
2403 $r0 or $r1 (registers with addressable high/low bytes)
2404
2405 @item R23
2406 $r2 or $r3
2407
2408 @item Raa
2409 Address registers
2410
2411 @item Raw
2412 Address registers when they're 16 bits wide.
2413
2414 @item Ral
2415 Address registers when they're 24 bits wide.
2416
2417 @item Rqi
2418 Registers that can hold QI values.
2419
2420 @item Rad
2421 Registers that can be used with displacements ($a0, $a1, $sb).
2422
2423 @item Rsi
2424 Registers that can hold 32 bit values.
2425
2426 @item Rhi
2427 Registers that can hold 16 bit values.
2428
2429 @item Rhc
2430 Registers chat can hold 16 bit values, including all control
2431 registers.
2432
2433 @item Rra
2434 $r0 through R1, plus $a0 and $a1.
2435
2436 @item Rfl
2437 The flags register.
2438
2439 @item Rmm
2440 The memory-based pseudo-registers $mem0 through $mem15.
2441
2442 @item Rpi
2443 Registers that can hold pointers (16 bit registers for r8c, m16c; 24
2444 bit registers for m32cm, m32c).
2445
2446 @item Rpa
2447 Matches multiple registers in a PARALLEL to form a larger register.
2448 Used to match function return values.
2449
2450 @item Is3
2451 -8 @dots{} 7
2452
2453 @item IS1
2454 -128 @dots{} 127
2455
2456 @item IS2
2457 -32768 @dots{} 32767
2458
2459 @item IU2
2460 0 @dots{} 65535
2461
2462 @item In4
2463 -8 @dots{} -1 or 1 @dots{} 8
2464
2465 @item In5
2466 -16 @dots{} -1 or 1 @dots{} 16
2467
2468 @item In6
2469 -32 @dots{} -1 or 1 @dots{} 32
2470
2471 @item IM2
2472 -65536 @dots{} -1
2473
2474 @item Ilb
2475 An 8 bit value with exactly one bit set.
2476
2477 @item Ilw
2478 A 16 bit value with exactly one bit set.
2479
2480 @item Sd
2481 The common src/dest memory addressing modes.
2482
2483 @item Sa
2484 Memory addressed using $a0 or $a1.
2485
2486 @item Si
2487 Memory addressed with immediate addresses.
2488
2489 @item Ss
2490 Memory addressed using the stack pointer ($sp).
2491
2492 @item Sf
2493 Memory addressed using the frame base register ($fb).
2494
2495 @item Ss
2496 Memory addressed using the small base register ($sb).
2497
2498 @item S1
2499 $r1h
2500 @end table
2501
2502 @item MIPS---@file{config/mips/constraints.md}
2503 @table @code
2504 @item d
2505 An address register.  This is equivalent to @code{r} unless
2506 generating MIPS16 code.
2507
2508 @item f
2509 A floating-point register (if available).
2510
2511 @item h
2512 Formerly the @code{hi} register.  This constraint is no longer supported.
2513
2514 @item l
2515 The @code{lo} register.  Use this register to store values that are
2516 no bigger than a word.
2517
2518 @item x
2519 The concatenated @code{hi} and @code{lo} registers.  Use this register
2520 to store doubleword values.
2521
2522 @item c
2523 A register suitable for use in an indirect jump.  This will always be
2524 @code{$25} for @option{-mabicalls}.
2525
2526 @item v
2527 Register @code{$3}.  Do not use this constraint in new code;
2528 it is retained only for compatibility with glibc.
2529
2530 @item y
2531 Equivalent to @code{r}; retained for backwards compatibility.
2532
2533 @item z
2534 A floating-point condition code register.
2535
2536 @item I
2537 A signed 16-bit constant (for arithmetic instructions).
2538
2539 @item J
2540 Integer zero.
2541
2542 @item K
2543 An unsigned 16-bit constant (for logic instructions).
2544
2545 @item L
2546 A signed 32-bit constant in which the lower 16 bits are zero.
2547 Such constants can be loaded using @code{lui}.
2548
2549 @item M
2550 A constant that cannot be loaded using @code{lui}, @code{addiu}
2551 or @code{ori}.
2552
2553 @item N
2554 A constant in the range -65535 to -1 (inclusive).
2555
2556 @item O
2557 A signed 15-bit constant.
2558
2559 @item P
2560 A constant in the range 1 to 65535 (inclusive).
2561
2562 @item G
2563 Floating-point zero.
2564
2565 @item R
2566 An address that can be used in a non-macro load or store.
2567 @end table
2568
2569 @item Motorola 680x0---@file{config/m68k/constraints.md}
2570 @table @code
2571 @item a
2572 Address register
2573
2574 @item d
2575 Data register
2576
2577 @item f
2578 68881 floating-point register, if available
2579
2580 @item I
2581 Integer in the range 1 to 8
2582
2583 @item J
2584 16-bit signed number
2585
2586 @item K
2587 Signed number whose magnitude is greater than 0x80
2588
2589 @item L
2590 Integer in the range @minus{}8 to @minus{}1
2591
2592 @item M
2593 Signed number whose magnitude is greater than 0x100
2594
2595 @item N
2596 Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
2597
2598 @item O
2599 16 (for rotate using swap)
2600
2601 @item P
2602 Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
2603
2604 @item R
2605 Numbers that mov3q can handle
2606
2607 @item G
2608 Floating point constant that is not a 68881 constant
2609
2610 @item S
2611 Operands that satisfy 'm' when -mpcrel is in effect
2612
2613 @item T
2614 Operands that satisfy 's' when -mpcrel is not in effect
2615
2616 @item Q
2617 Address register indirect addressing mode
2618
2619 @item U
2620 Register offset addressing
2621
2622 @item W
2623 const_call_operand
2624
2625 @item Cs
2626 symbol_ref or const
2627
2628 @item Ci
2629 const_int
2630
2631 @item C0
2632 const_int 0
2633
2634 @item Cj
2635 Range of signed numbers that don't fit in 16 bits
2636
2637 @item Cmvq
2638 Integers valid for mvq
2639
2640 @item Capsw
2641 Integers valid for a moveq followed by a swap
2642
2643 @item Cmvz
2644 Integers valid for mvz
2645
2646 @item Cmvs
2647 Integers valid for mvs
2648
2649 @item Ap
2650 push_operand
2651
2652 @item Ac
2653 Non-register operands allowed in clr
2654
2655 @end table
2656
2657 @item Motorola 68HC11 & 68HC12 families---@file{config/m68hc11/m68hc11.h}
2658 @table @code
2659 @item a
2660 Register `a'
2661
2662 @item b
2663 Register `b'
2664
2665 @item d
2666 Register `d'
2667
2668 @item q
2669 An 8-bit register
2670
2671 @item t
2672 Temporary soft register _.tmp
2673
2674 @item u
2675 A soft register _.d1 to _.d31
2676
2677 @item w
2678 Stack pointer register
2679
2680 @item x
2681 Register `x'
2682
2683 @item y
2684 Register `y'
2685
2686 @item z
2687 Pseudo register `z' (replaced by `x' or `y' at the end)
2688
2689 @item A
2690 An address register: x, y or z
2691
2692 @item B
2693 An address register: x or y
2694
2695 @item D
2696 Register pair (x:d) to form a 32-bit value
2697
2698 @item L
2699 Constants in the range @minus{}65536 to 65535
2700
2701 @item M
2702 Constants whose 16-bit low part is zero
2703
2704 @item N
2705 Constant integer 1 or @minus{}1
2706
2707 @item O
2708 Constant integer 16
2709
2710 @item P
2711 Constants in the range @minus{}8 to 2
2712
2713 @end table
2714
2715 @need 1000
2716 @item SPARC---@file{config/sparc/sparc.h}
2717 @table @code
2718 @item f
2719 Floating-point register on the SPARC-V8 architecture and
2720 lower floating-point register on the SPARC-V9 architecture.
2721
2722 @item e
2723 Floating-point register.  It is equivalent to @samp{f} on the
2724 SPARC-V8 architecture and contains both lower and upper
2725 floating-point registers on the SPARC-V9 architecture.
2726
2727 @item c
2728 Floating-point condition code register.
2729
2730 @item d
2731 Lower floating-point register.  It is only valid on the SPARC-V9
2732 architecture when the Visual Instruction Set is available.
2733
2734 @item b
2735 Floating-point register.  It is only valid on the SPARC-V9 architecture
2736 when the Visual Instruction Set is available.
2737
2738 @item h
2739 64-bit global or out register for the SPARC-V8+ architecture.
2740
2741 @item I
2742 Signed 13-bit constant
2743
2744 @item J
2745 Zero
2746
2747 @item K
2748 32-bit constant with the low 12 bits clear (a constant that can be
2749 loaded with the @code{sethi} instruction)
2750
2751 @item L
2752 A constant in the range supported by @code{movcc} instructions
2753
2754 @item M
2755 A constant in the range supported by @code{movrcc} instructions
2756
2757 @item N
2758 Same as @samp{K}, except that it verifies that bits that are not in the
2759 lower 32-bit range are all zero.  Must be used instead of @samp{K} for
2760 modes wider than @code{SImode}
2761
2762 @item O
2763 The constant 4096
2764
2765 @item G
2766 Floating-point zero
2767
2768 @item H
2769 Signed 13-bit constant, sign-extended to 32 or 64 bits
2770
2771 @item Q
2772 Floating-point constant whose integral representation can
2773 be moved into an integer register using a single sethi
2774 instruction
2775
2776 @item R
2777 Floating-point constant whose integral representation can
2778 be moved into an integer register using a single mov
2779 instruction
2780
2781 @item S
2782 Floating-point constant whose integral representation can
2783 be moved into an integer register using a high/lo_sum
2784 instruction sequence
2785
2786 @item T
2787 Memory address aligned to an 8-byte boundary
2788
2789 @item U
2790 Even register
2791
2792 @item W
2793 Memory address for @samp{e} constraint registers
2794
2795 @item Y
2796 Vector zero
2797
2798 @end table
2799
2800 @item SPU---@file{config/spu/spu.h}
2801 @table @code
2802 @item a
2803 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 64 bit value.  
2804
2805 @item c
2806 An immediate for and/xor/or instructions.  const_int is treated as a 64 bit value.  
2807
2808 @item d
2809 An immediate for the @code{iohl} instruction.  const_int is treated as a 64 bit value.  
2810
2811 @item f
2812 An immediate which can be loaded with @code{fsmbi}.  
2813
2814 @item A
2815 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 32 bit value.  
2816
2817 @item B
2818 An immediate for most arithmetic instructions.  const_int is treated as a 32 bit value.  
2819
2820 @item C
2821 An immediate for and/xor/or instructions.  const_int is treated as a 32 bit value.  
2822
2823 @item D
2824 An immediate for the @code{iohl} instruction.  const_int is treated as a 32 bit value.  
2825
2826 @item I
2827 A constant in the range [-64, 63] for shift/rotate instructions.  
2828
2829 @item J
2830 An unsigned 7-bit constant for conversion/nop/channel instructions.  
2831
2832 @item K
2833 A signed 10-bit constant for most arithmetic instructions.  
2834
2835 @item M
2836 A signed 16 bit immediate for @code{stop}.  
2837
2838 @item N
2839 An unsigned 16-bit constant for @code{iohl} and @code{fsmbi}.  
2840
2841 @item O
2842 An unsigned 7-bit constant whose 3 least significant bits are 0.  
2843
2844 @item P
2845 An unsigned 3-bit constant for 16-byte rotates and shifts 
2846
2847 @item R
2848 Call operand, reg, for indirect calls 
2849
2850 @item S
2851 Call operand, symbol, for relative calls.  
2852
2853 @item T
2854 Call operand, const_int, for absolute calls.  
2855
2856 @item U
2857 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is sign extended to 128 bit.  
2858
2859 @item W
2860 An immediate for shift and rotate instructions.  const_int is treated as a 32 bit value.  
2861
2862 @item Y
2863 An immediate for and/xor/or instructions.  const_int is sign extended as a 128 bit.  
2864
2865 @item Z
2866 An immediate for the @code{iohl} instruction.  const_int is sign extended to 128 bit.  
2867
2868 @end table
2869
2870 @item S/390 and zSeries---@file{config/s390/s390.h}
2871 @table @code
2872 @item a
2873 Address register (general purpose register except r0)
2874
2875 @item c
2876 Condition code register
2877
2878 @item d
2879 Data register (arbitrary general purpose register)
2880
2881 @item f
2882 Floating-point register
2883
2884 @item I
2885 Unsigned 8-bit constant (0--255)
2886
2887 @item J
2888 Unsigned 12-bit constant (0--4095)
2889
2890 @item K
2891 Signed 16-bit constant (@minus{}32768--32767)
2892
2893 @item L
2894 Value appropriate as displacement.
2895 @table @code
2896 @item (0..4095)
2897 for short displacement
2898 @item (-524288..524287)
2899 for long displacement
2900 @end table
2901
2902 @item M
2903 Constant integer with a value of 0x7fffffff.
2904
2905 @item N
2906 Multiple letter constraint followed by 4 parameter letters.
2907 @table @code
2908 @item 0..9:
2909 number of the part counting from most to least significant
2910 @item H,Q:
2911 mode of the part
2912 @item D,S,H:
2913 mode of the containing operand
2914 @item 0,F:
2915 value of the other parts (F---all bits set)
2916 @end table
2917 The constraint matches if the specified part of a constant
2918 has a value different from its other parts.
2919
2920 @item Q
2921 Memory reference without index register and with short displacement.
2922
2923 @item R
2924 Memory reference with index register and short displacement.
2925
2926 @item S
2927 Memory reference without index register but with long displacement.
2928
2929 @item T
2930 Memory reference with index register and long displacement.
2931
2932 @item U
2933 Pointer with short displacement.
2934
2935 @item W
2936 Pointer with long displacement.
2937
2938 @item Y
2939 Shift count operand.
2940
2941 @end table
2942
2943 @item Score family---@file{config/score/score.h}
2944 @table @code
2945 @item d
2946 Registers from r0 to r32.
2947
2948 @item e
2949 Registers from r0 to r16.
2950
2951 @item t
2952 r8---r11 or r22---r27 registers.
2953
2954 @item h
2955 hi register.
2956
2957 @item l
2958 lo register.
2959
2960 @item x
2961 hi + lo register.
2962
2963 @item q
2964 cnt register.
2965
2966 @item y
2967 lcb register.
2968
2969 @item z
2970 scb register.
2971
2972 @item a
2973 cnt + lcb + scb register.
2974
2975 @item c
2976 cr0---cr15 register.
2977
2978 @item b
2979 cp1 registers.
2980
2981 @item f
2982 cp2 registers.
2983
2984 @item i
2985 cp3 registers.
2986
2987 @item j
2988 cp1 + cp2 + cp3 registers.
2989
2990 @item I
2991 High 16-bit constant (32-bit constant with 16 LSBs zero).
2992
2993 @item J
2994 Unsigned 5 bit integer (in the range 0 to 31).
2995
2996 @item K
2997 Unsigned 16 bit integer (in the range 0 to 65535).
2998
2999 @item L
3000 Signed 16 bit integer (in the range @minus{}32768 to 32767).
3001
3002 @item M
3003 Unsigned 14 bit integer (in the range 0 to 16383).
3004
3005 @item N
3006 Signed 14 bit integer (in the range @minus{}8192 to 8191).
3007
3008 @item Z
3009 Any SYMBOL_REF.
3010 @end table
3011
3012 @item Xstormy16---@file{config/stormy16/stormy16.h}
3013 @table @code
3014 @item a
3015 Register r0.
3016
3017 @item b
3018 Register r1.
3019
3020 @item c
3021 Register r2.
3022
3023 @item d
3024 Register r8.
3025
3026 @item e
3027 Registers r0 through r7.
3028
3029 @item t
3030 Registers r0 and r1.
3031
3032 @item y
3033 The carry register.
3034
3035 @item z
3036 Registers r8 and r9.
3037
3038 @item I
3039 A constant between 0 and 3 inclusive.
3040
3041 @item J
3042 A constant that has exactly one bit set.
3043
3044 @item K
3045 A constant that has exactly one bit clear.
3046
3047 @item L
3048 A constant between 0 and 255 inclusive.
3049
3050 @item M
3051 A constant between @minus{}255 and 0 inclusive.
3052
3053 @item N
3054 A constant between @minus{}3 and 0 inclusive.
3055
3056 @item O
3057 A constant between 1 and 4 inclusive.
3058
3059 @item P
3060 A constant between @minus{}4 and @minus{}1 inclusive.
3061
3062 @item Q
3063 A memory reference that is a stack push.
3064
3065 @item R
3066 A memory reference that is a stack pop.
3067
3068 @item S
3069 A memory reference that refers to a constant address of known value.
3070
3071 @item T
3072 The register indicated by Rx (not implemented yet).
3073
3074 @item U
3075 A constant that is not between 2 and 15 inclusive.
3076
3077 @item Z
3078 The constant 0.
3079
3080 @end table
3081
3082 @item Xtensa---@file{config/xtensa/constraints.md}
3083 @table @code
3084 @item a
3085 General-purpose 32-bit register
3086
3087 @item b
3088 One-bit boolean register
3089
3090 @item A
3091 MAC16 40-bit accumulator register
3092
3093 @item I
3094 Signed 12-bit integer constant, for use in MOVI instructions
3095
3096 @item J
3097 Signed 8-bit integer constant, for use in ADDI instructions
3098
3099 @item K
3100 Integer constant valid for BccI instructions
3101
3102 @item L
3103 Unsigned constant valid for BccUI instructions
3104
3105 @end table
3106
3107 @end table
3108
3109 @ifset INTERNALS
3110 @node Disable Insn Alternatives
3111 @subsection Disable insn alternatives using the @code{enabled} attribute
3112 @cindex enabled
3113
3114 The @code{enabled} insn attribute may be used to disable certain insn
3115 alternatives for machine-specific reasons.  This is useful when adding
3116 new instructions to an existing pattern which are only available for
3117 certain cpu architecture levels as specified with the @code{-march=}
3118 option.
3119
3120 If an insn alternative is disabled, then it will never be used.  The
3121 compiler treats the constraints for the disabled alternative as
3122 unsatisfiable.
3123
3124 In order to make use of the @code{enabled} attribute a back end has to add
3125 in the machine description files:
3126
3127 @enumerate
3128 @item
3129 A definition of the @code{enabled} insn attribute.  The attribute is
3130 defined as usual using the @code{define_attr} command.  This
3131 definition should be based on other insn attributes and/or target flags.
3132 The @code{enabled} attribute is a numeric attribute and should evaluate to
3133 @code{(const_int 1)} for an enabled alternative and to
3134 @code{(const_int 0)} otherwise.
3135 @item
3136 A definition of another insn attribute used to describe for what
3137 reason an insn alternative might be available or
3138 not.  E.g. @code{cpu_facility} as in the example below.
3139 @item
3140 An assignement for the second attribute to each insn definition
3141 combining instructions which are not all available under the same
3142 circumstances.  (Note: It obviously only makes sense for definitions
3143 with more than one alternative.  Otherwise the insn pattern should be
3144 disabled or enabled using the insn condition.)
3145 @end enumerate
3146
3147 E.g. the following two patterns could easily be merged using the @code{enabled}
3148 attribute:
3149
3150 @smallexample
3151
3152 (define_insn "*movdi_old"
3153   [(set (match_operand:DI 0 "register_operand" "=d")
3154         (match_operand:DI 1 "register_operand" " d"))]
3155   "!TARGET_NEW"
3156   "lgr %0,%1")
3157
3158 (define_insn "*movdi_new"
3159   [(set (match_operand:DI 0 "register_operand" "=d,f,d")
3160         (match_operand:DI 1 "register_operand" " d,d,f"))]
3161   "TARGET_NEW"
3162   "@@
3163    lgr  %0,%1
3164    ldgr %0,%1
3165    lgdr %0,%1")
3166
3167 @end smallexample
3168
3169 to:
3170
3171 @smallexample
3172
3173 (define_insn "*movdi_combined"
3174   [(set (match_operand:DI 0 "register_operand" "=d,f,d")
3175         (match_operand:DI 1 "register_operand" " d,d,f"))]
3176   ""
3177   "@@
3178    lgr  %0,%1
3179    ldgr %0,%1
3180    lgdr %0,%1"
3181   [(set_attr "cpu_facility" "*,new,new")])
3182
3183 @end smallexample
3184
3185 with the @code{enabled} attribute defined like this:
3186
3187 @smallexample
3188
3189 (define_attr "cpu_facility" "standard,new" (const_string "standard"))
3190
3191 (define_attr "enabled" ""
3192   (cond [(eq_attr "cpu_facility" "standard") (const_int 1)
3193          (and (eq_attr "cpu_facility" "new")
3194               (ne (symbol_ref "TARGET_NEW") (const_int 0)))
3195          (const_int 1)]
3196         (const_int 0)))
3197
3198 @end smallexample
3199
3200 @end ifset
3201
3202 @ifset INTERNALS
3203 @node Define Constraints
3204 @subsection Defining Machine-Specific Constraints
3205 @cindex defining constraints
3206 @cindex constraints, defining
3207
3208 Machine-specific constraints fall into two categories: register and
3209 non-register constraints.  Within the latter category, constraints
3210 which allow subsets of all possible memory or address operands should
3211 be specially marked, to give @code{reload} more information.
3212
3213 Machine-specific constraints can be given names of arbitrary length,
3214 but they must be entirely composed of letters, digits, underscores
3215 (@samp{_}), and angle brackets (@samp{< >}).  Like C identifiers, they
3216 must begin with a letter or underscore. 
3217
3218 In order to avoid ambiguity in operand constraint strings, no
3219 constraint can have a name that begins with any other constraint's
3220 name.  For example, if @code{x} is defined as a constraint name,
3221 @code{xy} may not be, and vice versa.  As a consequence of this rule,
3222 no constraint may begin with one of the generic constraint letters:
3223 @samp{E F V X g i m n o p r s}.
3224
3225 Register constraints correspond directly to register classes.
3226 @xref{Register Classes}.  There is thus not much flexibility in their
3227 definitions.
3228
3229 @deffn {MD Expression} define_register_constraint name regclass docstring
3230 All three arguments are string constants.
3231 @var{name} is the name of the constraint, as it will appear in
3232 @code{match_operand} expressions.  If @var{name} is a multi-letter
3233 constraint its length shall be the same for all constraints starting
3234 with the same letter.  @var{regclass} can be either the
3235 name of the corresponding register class (@pxref{Register Classes}),
3236 or a C expression which evaluates to the appropriate register class.
3237 If it is an expression, it must have no side effects, and it cannot
3238 look at the operand.  The usual use of expressions is to map some
3239 register constraints to @code{NO_REGS} when the register class
3240 is not available on a given subarchitecture.
3241
3242 @var{docstring} is a sentence documenting the meaning of the
3243 constraint.  Docstrings are explained further below.
3244 @end deffn
3245
3246 Non-register constraints are more like predicates: the constraint
3247 definition gives a Boolean expression which indicates whether the
3248 constraint matches.
3249
3250 @deffn {MD Expression} define_constraint name docstring exp
3251 The @var{name} and @var{docstring} arguments are the same as for
3252 @code{define_register_constraint}, but note that the docstring comes
3253 immediately after the name for these expressions.  @var{exp} is an RTL
3254 expression, obeying the same rules as the RTL expressions in predicate
3255 definitions.  @xref{Defining Predicates}, for details.  If it
3256 evaluates true, the constraint matches; if it evaluates false, it
3257 doesn't. Constraint expressions should indicate which RTL codes they
3258 might match, just like predicate expressions.
3259
3260 @code{match_test} C expressions have access to the
3261 following variables:
3262
3263 @table @var
3264 @item op
3265 The RTL object defining the operand.
3266 @item mode
3267 The machine mode of @var{op}.
3268 @item ival
3269 @samp{INTVAL (@var{op})}, if @var{op} is a @code{const_int}.
3270 @item hval
3271 @samp{CONST_DOUBLE_HIGH (@var{op})}, if @var{op} is an integer
3272 @code{const_double}.
3273 @item lval
3274 @samp{CONST_DOUBLE_LOW (@var{op})}, if @var{op} is an integer
3275 @code{const_double}.
3276 @item rval
3277 @samp{CONST_DOUBLE_REAL_VALUE (@var{op})}, if @var{op} is a floating-point
3278 @code{const_double}.
3279 @end table
3280
3281 The @var{*val} variables should only be used once another piece of the
3282 expression has verified that @var{op} is the appropriate kind of RTL
3283 object.
3284 @end deffn
3285
3286 Most non-register constraints should be defined with
3287 @code{define_constraint}.  The remaining two definition expressions
3288 are only appropriate for constraints that should be handled specially
3289 by @code{reload} if they fail to match.
3290
3291 @deffn {MD Expression} define_memory_constraint name docstring exp
3292 Use this expression for constraints that match a subset of all memory
3293 operands: that is, @code{reload} can make them match by converting the
3294 operand to the form @samp{@w{(mem (reg @var{X}))}}, where @var{X} is a
3295 base register (from the register class specified by
3296 @code{BASE_REG_CLASS}, @pxref{Register Classes}).
3297
3298 For example, on the S/390, some instructions do not accept arbitrary
3299 memory references, but only those that do not make use of an index
3300 register.  The constraint letter @samp{Q} is defined to represent a
3301 memory address of this type.  If @samp{Q} is defined with
3302 @code{define_memory_constraint}, a @samp{Q} constraint can handle any
3303 memory operand, because @code{reload} knows it can simply copy the
3304 memory address into a base register if required.  This is analogous to
3305 the way a @samp{o} constraint can handle any memory operand.
3306
3307 The syntax and semantics are otherwise identical to
3308 @code{define_constraint}.
3309 @end deffn
3310
3311 @deffn {MD Expression} define_address_constraint name docstring exp
3312 Use this expression for constraints that match a subset of all address
3313 operands: that is, @code{reload} can make the constraint match by
3314 converting the operand to the form @samp{@w{(reg @var{X})}}, again
3315 with @var{X} a base register.
3316
3317 Constraints defined with @code{define_address_constraint} can only be
3318 used with the @code{address_operand} predicate, or machine-specific
3319 predicates that work the same way.  They are treated analogously to
3320 the generic @samp{p} constraint.
3321
3322 The syntax and semantics are otherwise identical to
3323 @code{define_constraint}.
3324 @end deffn
3325
3326 For historical reasons, names beginning with the letters @samp{G H}
3327 are reserved for constraints that match only @code{const_double}s, and
3328 names beginning with the letters @samp{I J K L M N O P} are reserved
3329 for constraints that match only @code{const_int}s.  This may change in
3330 the future.  For the time being, constraints with these names must be
3331 written in a stylized form, so that @code{genpreds} can tell you did
3332 it correctly:
3333
3334 @smallexample
3335 @group
3336 (define_constraint "[@var{GHIJKLMNOP}]@dots{}"
3337   "@var{doc}@dots{}"
3338   (and (match_code "const_int")  ; @r{@code{const_double} for G/H}
3339        @var{condition}@dots{}))            ; @r{usually a @code{match_test}}
3340 @end group
3341 @end smallexample
3342 @c the semicolons line up in the formatted manual
3343
3344 It is fine to use names beginning with other letters for constraints
3345 that match @code{const_double}s or @code{const_int}s.
3346
3347 Each docstring in a constraint definition should be one or more complete
3348 sentences, marked up in Texinfo format.  @emph{They are currently unused.}
3349 In the future they will be copied into the GCC manual, in @ref{Machine
3350 Constraints}, replacing the hand-maintained tables currently found in
3351 that section.  Also, in the future the compiler may use this to give
3352 more helpful diagnostics when poor choice of @code{asm} constraints
3353 causes a reload failure.
3354
3355 If you put the pseudo-Texinfo directive @samp{@@internal} at the
3356 beginning of a docstring, then (in the future) it will appear only in
3357 the internals manual's version of the machine-specific constraint tables.
3358 Use this for constraints that should not appear in @code{asm} statements.
3359
3360 @node C Constraint Interface
3361 @subsection Testing constraints from C
3362 @cindex testing constraints
3363 @cindex constraints, testing
3364
3365 It is occasionally useful to test a constraint from C code rather than
3366 implicitly via the constraint string in a @code{match_operand}.  The
3367 generated file @file{tm_p.h} declares a few interfaces for working
3368 with machine-specific constraints.  None of these interfaces work with
3369 the generic constraints described in @ref{Simple Constraints}.  This
3370 may change in the future.
3371
3372 @strong{Warning:} @file{tm_p.h} may declare other functions that
3373 operate on constraints, besides the ones documented here.  Do not use
3374 those functions from machine-dependent code.  They exist to implement
3375 the old constraint interface that machine-independent components of
3376 the compiler still expect.  They will change or disappear in the
3377 future.
3378
3379 Some valid constraint names are not valid C identifiers, so there is a
3380 mangling scheme for referring to them from C@.  Constraint names that
3381 do not contain angle brackets or underscores are left unchanged.
3382 Underscores are doubled, each @samp{<} is replaced with @samp{_l}, and
3383 each @samp{>} with @samp{_g}.  Here are some examples:
3384
3385 @c the @c's prevent double blank lines in the printed manual.
3386 @example
3387 @multitable {Original} {Mangled}
3388 @item @strong{Original} @tab @strong{Mangled}  @c
3389 @item @code{x}     @tab @code{x}       @c
3390 @item @code{P42x}  @tab @code{P42x}    @c
3391 @item @code{P4_x}  @tab @code{P4__x}   @c
3392 @item @code{P4>x}  @tab @code{P4_gx}   @c
3393 @item @code{P4>>}  @tab @code{P4_g_g}  @c
3394 @item @code{P4_g>} @tab @code{P4__g_g} @c
3395 @end multitable
3396 @end example
3397
3398 Throughout this section, the variable @var{c} is either a constraint
3399 in the abstract sense, or a constant from @code{enum constraint_num};
3400 the variable @var{m} is a mangled constraint name (usually as part of
3401 a larger identifier).
3402
3403 @deftp Enum constraint_num
3404 For each machine-specific constraint, there is a corresponding
3405 enumeration constant: @samp{CONSTRAINT_} plus the mangled name of the
3406 constraint.  Functions that take an @code{enum constraint_num} as an
3407 argument expect one of these constants.
3408
3409 Machine-independent constraints do not have associated constants.
3410 This may change in the future.
3411 @end deftp
3412
3413 @deftypefun {inline bool} satisfies_constraint_@var{m} (rtx @var{exp})
3414 For each machine-specific, non-register constraint @var{m}, there is
3415 one of these functions; it returns @code{true} if @var{exp} satisfies the
3416 constraint.  These functions are only visible if @file{rtl.h} was included
3417 before @file{tm_p.h}.
3418 @end deftypefun
3419
3420 @deftypefun bool constraint_satisfied_p (rtx @var{exp}, enum constraint_num @var{c})
3421 Like the @code{satisfies_constraint_@var{m}} functions, but the
3422 constraint to test is given as an argument, @var{c}.  If @var{c}
3423 specifies a register constraint, this function will always return
3424 @code{false}.
3425 @end deftypefun
3426
3427 @deftypefun {enum reg_class} regclass_for_constraint (enum constraint_num @var{c})
3428 Returns the register class associated with @var{c}.  If @var{c} is not
3429 a register constraint, or those registers are not available for the
3430 currently selected subtarget, returns @code{NO_REGS}.
3431 @end deftypefun
3432
3433 Here is an example use of @code{satisfies_constraint_@var{m}}.  In
3434 peephole optimizations (@pxref{Peephole Definitions}), operand
3435 constraint strings are ignored, so if there are relevant constraints,
3436 they must be tested in the C condition.  In the example, the
3437 optimization is applied if operand 2 does @emph{not} satisfy the
3438 @samp{K} constraint.  (This is a simplified version of a peephole
3439 definition from the i386 machine description.)
3440
3441 @smallexample
3442 (define_peephole2
3443   [(match_scratch:SI 3 "r")
3444    (set (match_operand:SI 0 "register_operand" "")
3445         (mult:SI (match_operand:SI 1 "memory_operand" "")
3446                  (match_operand:SI 2 "immediate_operand" "")))]
3447
3448   "!satisfies_constraint_K (operands[2])"
3449
3450   [(set (match_dup 3) (match_dup 1))
3451    (set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]
3452
3453   "")
3454 @end smallexample
3455
3456 @node Standard Names
3457 @section Standard Pattern Names For Generation
3458 @cindex standard pattern names
3459 @cindex pattern names
3460 @cindex names, pattern
3461
3462 Here is a table of the instruction names that are meaningful in the RTL
3463 generation pass of the compiler.  Giving one of these names to an
3464 instruction pattern tells the RTL generation pass that it can use the
3465 pattern to accomplish a certain task.
3466
3467 @table @asis
3468 @cindex @code{mov@var{m}} instruction pattern
3469 @item @samp{mov@var{m}}
3470 Here @var{m} stands for a two-letter machine mode name, in lowercase.
3471 This instruction pattern moves data with that machine mode from operand
3472 1 to operand 0.  For example, @samp{movsi} moves full-word data.
3473
3474 If operand 0 is a @code{subreg} with mode @var{m} of a register whose
3475 own mode is wider than @var{m}, the effect of this instruction is
3476 to store the specified value in the part of the register that corresponds
3477 to mode @var{m}.  Bits outside of @var{m}, but which are within the
3478 same target word as the @code{subreg} are undefined.  Bits which are
3479 outside the target word are left unchanged.
3480
3481 This class of patterns is special in several ways.  First of all, each
3482 of these names up to and including full word size @emph{must} be defined,
3483 because there is no other way to copy a datum from one place to another.
3484 If there are patterns accepting operands in larger modes,
3485 @samp{mov@var{m}} must be defined for integer modes of those sizes.
3486
3487 Second, these patterns are not used solely in the RTL generation pass.
3488 Even the reload pass can generate move insns to copy values from stack
3489 slots into temporary registers.  When it does so, one of the operands is
3490 a hard register and the other is an operand that can need to be reloaded
3491 into a register.
3492
3493 @findex force_reg
3494 Therefore, when given such a pair of operands, the pattern must generate
3495 RTL which needs no reloading and needs no temporary registers---no
3496 registers other than the operands.  For example, if you support the
3497 pattern with a @code{define_expand}, then in such a case the
3498 @code{define_expand} mustn't call @code{force_reg} or any other such
3499 function which might generate new pseudo registers.
3500
3501 This requirement exists even for subword modes on a RISC machine where
3502 fetching those modes from memory normally requires several insns and
3503 some temporary registers.
3504
3505 @findex change_address
3506 During reload a memory reference with an invalid address may be passed
3507 as an operand.  Such an address will be replaced with a valid address
3508 later in the reload pass.  In this case, nothing may be done with the
3509 address except to use it as it stands.  If it is copied, it will not be
3510 replaced with a valid address.  No attempt should be made to make such
3511 an address into a valid address and no routine (such as
3512 @code{change_address}) that will do so may be called.  Note that
3513 @code{general_operand} will fail when applied to such an address.
3514
3515 @findex reload_in_progress
3516 The global variable @code{reload_in_progress} (which must be explicitly
3517 declared if required) can be used to determine whether such special
3518 handling is required.
3519
3520 The variety of operands that have reloads depends on the rest of the
3521 machine description, but typically on a RISC machine these can only be
3522 pseudo registers that did not get hard registers, while on other
3523 machines explicit memory references will get optional reloads.
3524
3525 If a scratch register is required to move an object to or from memory,
3526 it can be allocated using @code{gen_reg_rtx} prior to life analysis.
3527
3528 If there are cases which need scratch registers during or after reload,
3529 you must provide an appropriate secondary_reload target hook.
3530
3531 @findex can_create_pseudo_p
3532 The macro @code{can_create_pseudo_p} can be used to determine if it
3533 is unsafe to create new pseudo registers.  If this variable is nonzero, then
3534 it is unsafe to call @code{gen_reg_rtx} to allocate a new pseudo.
3535
3536 The constraints on a @samp{mov@var{m}} must permit moving any hard
3537 register to any other hard register provided that
3538 @code{HARD_REGNO_MODE_OK} permits mode @var{m} in both registers and
3539 @code{REGISTER_MOVE_COST} applied to their classes returns a value of 2.
3540
3541 It is obligatory to support floating point @samp{mov@var{m}}
3542 instructions into and out of any registers that can hold fixed point
3543 values, because unions and structures (which have modes @code{SImode} or
3544 @code{DImode}) can be in those registers and they may have floating
3545 point members.
3546
3547 There may also be a need to support fixed point @samp{mov@var{m}}
3548 instructions in and out of floating point registers.  Unfortunately, I
3549 have forgotten why this was so, and I don't know whether it is still
3550 true.  If @code{HARD_REGNO_MODE_OK} rejects fixed point values in
3551 floating point registers, then the constraints of the fixed point
3552 @samp{mov@var{m}} instructions must be designed to avoid ever trying to
3553 reload into a floating point register.
3554
3555 @cindex @code{reload_in} instruction pattern
3556 @cindex @code{reload_out} instruction pattern
3557 @item @samp{reload_in@var{m}}
3558 @itemx @samp{reload_out@var{m}}
3559 These named patterns have been obsoleted by the target hook
3560 @code{secondary_reload}.
3561
3562 Like @samp{mov@var{m}}, but used when a scratch register is required to
3563 move between operand 0 and operand 1.  Operand 2 describes the scratch
3564 register.  See the discussion of the @code{SECONDARY_RELOAD_CLASS}
3565 macro in @pxref{Register Classes}.
3566
3567 There are special restrictions on the form of the @code{match_operand}s
3568 used in these patterns.  First, only the predicate for the reload
3569 operand is examined, i.e., @code{reload_in} examines operand 1, but not
3570 the predicates for operand 0 or 2.  Second, there may be only one
3571 alternative in the constraints.  Third, only a single register class
3572 letter may be used for the constraint; subsequent constraint letters
3573 are ignored.  As a special exception, an empty constraint string
3574 matches the @code{ALL_REGS} register class.  This may relieve ports
3575 of the burden of defining an @code{ALL_REGS} constraint letter just
3576 for these patterns.
3577
3578 @cindex @code{movstrict@var{m}} instruction pattern
3579 @item @samp{movstrict@var{m}}
3580 Like @samp{mov@var{m}} except that if operand 0 is a @code{subreg}
3581 with mode @var{m} of a register whose natural mode is wider,
3582 the @samp{movstrict@var{m}} instruction is guaranteed not to alter
3583 any of the register except the part which belongs to mode @var{m}.
3584
3585 @cindex @code{movmisalign@var{m}} instruction pattern
3586 @item @samp{movmisalign@var{m}}
3587 This variant of a move pattern is designed to load or store a value
3588 from a memory address that is not naturally aligned for its mode.
3589 For a store, the memory will be in operand 0; for a load, the memory
3590 will be in operand 1.  The other operand is guaranteed not to be a
3591 memory, so that it's easy to tell whether this is a load or store.
3592
3593 This pattern is used by the autovectorizer, and when expanding a
3594 @code{MISALIGNED_INDIRECT_REF} expression.
3595
3596 @cindex @code{load_multiple} instruction pattern
3597 @item @samp{load_multiple}
3598 Load several consecutive memory locations into consecutive registers.
3599 Operand 0 is the first of the consecutive registers, operand 1
3600 is the first memory location, and operand 2 is a constant: the
3601 number of consecutive registers.
3602
3603 Define this only if the target machine really has such an instruction;
3604 do not define this if the most efficient way of loading consecutive
3605 registers from memory is to do them one at a time.
3606
3607 On some machines, there are restrictions as to which consecutive
3608 registers can be stored into memory, such as particular starting or
3609 ending register numbers or only a range of valid counts.  For those
3610 machines, use a @code{define_expand} (@pxref{Expander Definitions})
3611 and make the pattern fail if the restrictions are not met.
3612
3613 Write the generated insn as a @code{parallel} with elements being a
3614 @code{set} of one register from the appropriate memory location (you may
3615 also need @code{use} or @code{clobber} elements).  Use a
3616 @code{match_parallel} (@pxref{RTL Template}) to recognize the insn.  See
3617 @file{rs6000.md} for examples of the use of this insn pattern.
3618
3619 @cindex @samp{store_multiple} instruction pattern
3620 @item @samp{store_multiple}
3621 Similar to @samp{load_multiple}, but store several consecutive registers
3622 into consecutive memory locations.  Operand 0 is the first of the
3623 consecutive memory locations, operand 1 is the first register, and
3624 operand 2 is a constant: the number of consecutive registers.
3625
3626 @cindex @code{vec_set@var{m}} instruction pattern
3627 @item @samp{vec_set@var{m}}
3628 Set given field in the vector value.  Operand 0 is the vector to modify,
3629 operand 1 is new value of field and operand 2 specify the field index.
3630
3631 @cindex @code{vec_extract@var{m}} instruction pattern
3632 @item @samp{vec_extract@var{m}}
3633 Extract given field from the vector value.  Operand 1 is the vector, operand 2
3634 specify field index and operand 0 place to store value into.
3635
3636 @cindex @code{vec_extract_even@var{m}} instruction pattern
3637 @item @samp{vec_extract_even@var{m}}
3638 Extract even elements from the input vectors (operand 1 and operand 2). 
3639 The even elements of operand 2 are concatenated to the even elements of operand
3640 1 in their original order. The result is stored in operand 0. 
3641 The output and input vectors should have the same modes. 
3642
3643 @cindex @code{vec_extract_odd@var{m}} instruction pattern
3644 @item @samp{vec_extract_odd@var{m}}
3645 Extract odd elements from the input vectors (operand 1 and operand 2). 
3646 The odd elements of operand 2 are concatenated to the odd elements of operand 
3647 1 in their original order. The result is stored in operand 0.
3648 The output and input vectors should have the same modes.
3649
3650 @cindex @code{vec_interleave_high@var{m}} instruction pattern
3651 @item @samp{vec_interleave_high@var{m}}
3652 Merge high elements of the two input vectors into the output vector. The output
3653 and input vectors should have the same modes (@code{N} elements). The high
3654 @code{N/2} elements of the first input vector are interleaved with the high
3655 @code{N/2} elements of the second input vector.
3656
3657 @cindex @code{vec_interleave_low@var{m}} instruction pattern
3658 @item @samp{vec_interleave_low@var{m}}
3659 Merge low elements of the two input vectors into the output vector. The output
3660 and input vectors should have the same modes (@code{N} elements). The low
3661 @code{N/2} elements of the first input vector are interleaved with the low 
3662 @code{N/2} elements of the second input vector.
3663
3664 @cindex @code{vec_init@var{m}} instruction pattern
3665 @item @samp{vec_init@var{m}}
3666 Initialize the vector to given values.  Operand 0 is the vector to initialize
3667 and operand 1 is parallel containing values for individual fields.
3668
3669 @cindex @code{push@var{m}1} instruction pattern
3670 @item @samp{push@var{m}1}
3671 Output a push instruction.  Operand 0 is value to push.  Used only when
3672 @code{PUSH_ROUNDING} is defined.  For historical reason, this pattern may be
3673 missing and in such case an @code{mov} expander is used instead, with a
3674 @code{MEM} expression forming the push operation.  The @code{mov} expander
3675 method is deprecated.
3676
3677 @cindex @code{add@var{m}3} instruction pattern
3678 @item @samp{add@var{m}3}
3679 Add operand 2 and operand 1, storing the result in operand 0.  All operands
3680 must have mode @var{m}.  This can be used even on two-address machines, by
3681 means of constraints requiring operands 1 and 0 to be the same location.
3682
3683 @cindex @code{ssadd@var{m}3} instruction pattern
3684 @cindex @code{usadd@var{m}3} instruction pattern
3685 @cindex @code{sub@var{m}3} instruction pattern
3686 @cindex @code{sssub@var{m}3} instruction pattern
3687 @cindex @code{ussub@var{m}3} instruction pattern
3688 @cindex @code{mul@var{m}3} instruction pattern
3689 @cindex @code{ssmul@var{m}3} instruction pattern
3690 @cindex @code{usmul@var{m}3} instruction pattern
3691 @cindex @code{div@var{m}3} instruction pattern
3692 @cindex @code{ssdiv@var{m}3} instruction pattern
3693 @cindex @code{udiv@var{m}3} instruction pattern
3694 @cindex @code{usdiv@var{m}3} instruction pattern
3695 @cindex @code{mod@var{m}3} instruction pattern
3696 @cindex @code{umod@var{m}3} instruction pattern
3697 @cindex @code{umin@var{m}3} instruction pattern
3698 @cindex @code{umax@var{m}3} instruction pattern
3699 @cindex @code{and@var{m}3} instruction pattern
3700 @cindex @code{ior@var{m}3} instruction pattern
3701 @cindex @code{xor@var{m}3} instruction pattern
3702 @item @samp{ssadd@var{m}3}, @samp{usadd@var{m}3}
3703 @item @samp{sub@var{m}3}, @samp{sssub@var{m}3}, @samp{ussub@var{m}3}
3704 @item @samp{mul@var{m}3}, @samp{ssmul@var{m}3}, @samp{usmul@var{m}3}
3705 @itemx @samp{div@var{m}3}, @samp{ssdiv@var{m}3}
3706 @itemx @samp{udiv@var{m}3}, @samp{usdiv@var{m}3}
3707 @itemx @samp{mod@var{m}3}, @samp{umod@var{m}3}
3708 @itemx @samp{umin@var{m}3}, @samp{umax@var{m}3}
3709 @itemx @samp{and@var{m}3}, @samp{ior@var{m}3}, @samp{xor@var{m}3}
3710 Similar, for other arithmetic operations.
3711
3712 @cindex @code{min@var{m}3} instruction pattern
3713 @cindex @code{max@var{m}3} instruction pattern
3714 @item @samp{smin@var{m}3}, @samp{smax@var{m}3}
3715 Signed minimum and maximum operations.  When used with floating point,
3716 if both operands are zeros, or if either operand is @code{NaN}, then
3717 it is unspecified which of the two operands is returned as the result.
3718
3719 @cindex @code{reduc_smin_@var{m}} instruction pattern
3720 @cindex @code{reduc_smax_@var{m}} instruction pattern
3721 @item @samp{reduc_smin_@var{m}}, @samp{reduc_smax_@var{m}}
3722 Find the signed minimum/maximum of the elements of a vector. The vector is
3723 operand 1, and the scalar result is stored in the least significant bits of
3724 operand 0 (also a vector). The output and input vector should have the same
3725 modes.
3726
3727 @cindex @code{reduc_umin_@var{m}} instruction pattern
3728 @cindex @code{reduc_umax_@var{m}} instruction pattern
3729 @item @samp{reduc_umin_@var{m}}, @samp{reduc_umax_@var{m}}
3730 Find the unsigned minimum/maximum of the elements of a vector. The vector is
3731 operand 1, and the scalar result is stored in the least significant bits of
3732 operand 0 (also a vector). The output and input vector should have the same
3733 modes.
3734
3735 @cindex @code{reduc_splus_@var{m}} instruction pattern
3736 @item @samp{reduc_splus_@var{m}}
3737 Compute the sum of the signed elements of a vector. The vector is operand 1,
3738 and the scalar result is stored in the least significant bits of operand 0
3739 (also a vector). The output and input vector should have the same modes.
3740
3741 @cindex @code{reduc_uplus_@var{m}} instruction pattern
3742 @item @samp{reduc_uplus_@var{m}}
3743 Compute the sum of the unsigned elements of a vector. The vector is operand 1,
3744 and the scalar result is stored in the least significant bits of operand 0
3745 (also a vector). The output and input vector should have the same modes.
3746
3747 @cindex @code{sdot_prod@var{m}} instruction pattern
3748 @item @samp{sdot_prod@var{m}}
3749 @cindex @code{udot_prod@var{m}} instruction pattern
3750 @item @samp{udot_prod@var{m}}
3751 Compute the sum of the products of two signed/unsigned elements. 
3752 Operand 1 and operand 2 are of the same mode. Their product, which is of a 
3753 wider mode, is computed and added to operand 3. Operand 3 is of a mode equal or 
3754 wider than the mode of the product. The result is placed in operand 0, which
3755 is of the same mode as operand 3. 
3756
3757 @cindex @code{ssum_widen@var{m3}} instruction pattern
3758 @item @samp{ssum_widen@var{m3}}
3759 @cindex @code{usum_widen@var{m3}} instruction pattern
3760 @item @samp{usum_widen@var{m3}}
3761 Operands 0 and 2 are of the same mode, which is wider than the mode of 
3762 operand 1. Add operand 1 to operand 2 and place the widened result in
3763 operand 0. (This is used express accumulation of elements into an accumulator
3764 of a wider mode.)
3765
3766 @cindex @code{vec_shl_@var{m}} instruction pattern
3767 @cindex @code{vec_shr_@var{m}} instruction pattern
3768 @item @samp{vec_shl_@var{m}}, @samp{vec_shr_@var{m}}
3769 Whole vector left/right shift in bits.
3770 Operand 1 is a vector to be shifted.
3771 Operand 2 is an integer shift amount in bits.
3772 Operand 0 is where the resulting shifted vector is stored.
3773 The output and input vectors should have the same modes.
3774
3775 @cindex @code{vec_pack_trunc_@var{m}} instruction pattern
3776 @item @samp{vec_pack_trunc_@var{m}}
3777 Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
3778 are vectors of the same mode having N integral or floating point elements
3779 of size S@.  Operand 0 is the resulting vector in which 2*N elements of
3780 size N/2 are concatenated after narrowing them down using truncation.
3781
3782 @cindex @code{vec_pack_ssat_@var{m}} instruction pattern
3783 @cindex @code{vec_pack_usat_@var{m}} instruction pattern
3784 @item @samp{vec_pack_ssat_@var{m}}, @samp{vec_pack_usat_@var{m}}
3785 Narrow (demote) and merge the elements of two vectors.  Operands 1 and 2
3786 are vectors of the same mode having N integral elements of size S.
3787 Operand 0 is the resulting vector in which the elements of the two input
3788 vectors are concatenated after narrowing them down using signed/unsigned
3789 saturating arithmetic.
3790
3791 @cindex @code{vec_pack_sfix_trunc_@var{m}} instruction pattern
3792 @cindex @code{vec_pack_ufix_trunc_@var{m}} instruction pattern
3793 @item @samp{vec_pack_sfix_trunc_@var{m}}, @samp{vec_pack_ufix_trunc_@var{m}}
3794 Narrow, convert to signed/unsigned integral type and merge the elements
3795 of two vectors.  Operands 1 and 2 are vectors of the same mode having N
3796 floating point elements of size S@.  Operand 0 is the resulting vector
3797 in which 2*N elements of size N/2 are concatenated.
3798
3799 @cindex @code{vec_unpacks_hi_@var{m}} instruction pattern
3800 @cindex @code{vec_unpacks_lo_@var{m}} instruction pattern
3801 @item @samp{vec_unpacks_hi_@var{m}}, @samp{vec_unpacks_lo_@var{m}}
3802 Extract and widen (promote) the high/low part of a vector of signed
3803 integral or floating point elements.  The input vector (operand 1) has N
3804 elements of size S@.  Widen (promote) the high/low elements of the vector
3805 using signed or floating point extension and place the resulting N/2
3806 values of size 2*S in the output vector (operand 0).
3807
3808 @cindex @code{vec_unpacku_hi_@var{m}} instruction pattern
3809 @cindex @code{vec_unpacku_lo_@var{m}} instruction pattern
3810 @item @samp{vec_unpacku_hi_@var{m}}, @samp{vec_unpacku_lo_@var{m}}
3811 Extract and widen (promote) the high/low part of a vector of unsigned
3812 integral elements.  The input vector (operand 1) has N elements of size S.
3813 Widen (promote) the high/low elements of the vector using zero extension and
3814 place the resulting N/2 values of size 2*S in the output vector (operand 0).
3815
3816 @cindex @code{vec_unpacks_float_hi_@var{m}} instruction pattern
3817 @cindex @code{vec_unpacks_float_lo_@var{m}} instruction pattern
3818 @cindex @code{vec_unpacku_float_hi_@var{m}} instruction pattern
3819 @cindex @code{vec_unpacku_float_lo_@var{m}} instruction pattern
3820 @item @samp{vec_unpacks_float_hi_@var{m}}, @samp{vec_unpacks_float_lo_@var{m}}
3821 @itemx @samp{vec_unpacku_float_hi_@var{m}}, @samp{vec_unpacku_float_lo_@var{m}}
3822 Extract, convert to floating point type and widen the high/low part of a
3823 vector of signed/unsigned integral elements.  The input vector (operand 1)
3824 has N elements of size S@.  Convert the high/low elements of the vector using
3825 floating point conversion and place the resulting N/2 values of size 2*S in
3826 the output vector (operand 0).
3827
3828 @cindex @code{vec_widen_umult_hi_@var{m}} instruction pattern
3829 @cindex @code{vec_widen_umult_lo__@var{m}} instruction pattern
3830 @cindex @code{vec_widen_smult_hi_@var{m}} instruction pattern
3831 @cindex @code{vec_widen_smult_lo_@var{m}} instruction pattern
3832 @item @samp{vec_widen_umult_hi_@var{m}}, @samp{vec_widen_umult_lo_@var{m}}
3833 @itemx @samp{vec_widen_smult_hi_@var{m}}, @samp{vec_widen_smult_lo_@var{m}}
3834 Signed/Unsigned widening multiplication.  The two inputs (operands 1 and 2)
3835 are vectors with N signed/unsigned elements of size S@.  Multiply the high/low
3836 elements of the two vectors, and put the N/2 products of size 2*S in the
3837 output vector (operand 0).
3838
3839 @cindex @code{mulhisi3} instruction pattern
3840 @item @samp{mulhisi3}
3841 Multiply operands 1 and 2, which have mode @code{HImode}, and store
3842 a @code{SImode} product in operand 0.
3843
3844 @cindex @code{mulqihi3} instruction pattern
3845 @cindex @code{mulsidi3} instruction pattern
3846 @item @samp{mulqihi3}, @samp{mulsidi3}
3847 Similar widening-multiplication instructions of other widths.
3848
3849 @cindex @code{umulqihi3} instruction pattern
3850 @cindex @code{umulhisi3} instruction pattern
3851 @cindex @code{umulsidi3} instruction pattern
3852 @item @samp{umulqihi3}, @samp{umulhisi3}, @samp{umulsidi3}
3853 Similar widening-multiplication instructions that do unsigned
3854 multiplication.
3855
3856 @cindex @code{usmulqihi3} instruction pattern
3857 @cindex @code{usmulhisi3} instruction pattern
3858 @cindex @code{usmulsidi3} instruction pattern
3859 @item @samp{usmulqihi3}, @samp{usmulhisi3}, @samp{usmulsidi3}
3860 Similar widening-multiplication instructions that interpret the first
3861 operand as unsigned and the second operand as signed, then do a signed
3862 multiplication.
3863
3864 @cindex @code{smul@var{m}3_highpart} instruction pattern
3865 @item @samp{smul@var{m}3_highpart}
3866 Perform a signed multiplication of operands 1 and 2, which have mode
3867 @var{m}, and store the most significant half of the product in operand 0.
3868 The least significant half of the product is discarded.
3869
3870 @cindex @code{umul@var{m}3_highpart} instruction pattern
3871 @item @samp{umul@var{m}3_highpart}
3872 Similar, but the multiplication is unsigned.
3873
3874 @cindex @code{madd@var{m}@var{n}4} instruction pattern
3875 @item @samp{madd@var{m}@var{n}4}
3876 Multiply operands 1 and 2, sign-extend them to mode @var{n}, add
3877 operand 3, and store the result in operand 0.  Operands 1 and 2
3878 have mode @var{m} and operands 0 and 3 have mode @var{n}.
3879 Both modes must be integer or fixed-point modes and @var{n} must be twice
3880 the size of @var{m}.
3881
3882 In other words, @code{madd@var{m}@var{n}4} is like
3883 @code{mul@var{m}@var{n}3} except that it also adds operand 3.
3884
3885 These instructions are not allowed to @code{FAIL}.
3886
3887 @cindex @code{umadd@var{m}@var{n}4} instruction pattern
3888 @item @samp{umadd@var{m}@var{n}4}
3889 Like @code{madd@var{m}@var{n}4}, but zero-extend the multiplication
3890 operands instead of sign-extending them.
3891
3892 @cindex @code{ssmadd@var{m}@var{n}4} instruction pattern
3893 @item @samp{ssmadd@var{m}@var{n}4}
3894 Like @code{madd@var{m}@var{n}4}, but all involved operations must be
3895 signed-saturating.
3896
3897 @cindex @code{usmadd@var{m}@var{n}4} instruction pattern
3898 @item @samp{usmadd@var{m}@var{n}4}
3899 Like @code{umadd@var{m}@var{n}4}, but all involved operations must be
3900 unsigned-saturating.
3901
3902 @cindex @code{msub@var{m}@var{n}4} instruction pattern
3903 @item @samp{msub@var{m}@var{n}4}
3904 Multiply operands 1 and 2, sign-extend them to mode @var{n}, subtract the
3905 result from operand 3, and store the result in operand 0.  Operands 1 and 2
3906 have mode @var{m} and operands 0 and 3 have mode @var{n}.
3907 Both modes must be integer or fixed-point modes and @var{n} must be twice
3908 the size of @var{m}.
3909
3910 In other words, @code{msub@var{m}@var{n}4} is like
3911 @code{mul@var{m}@var{n}3} except that it also subtracts the result
3912 from operand 3.
3913
3914 These instructions are not allowed to @code{FAIL}.
3915
3916 @cindex @code{umsub@var{m}@var{n}4} instruction pattern
3917 @item @samp{umsub@var{m}@var{n}4}
3918 Like @code{msub@var{m}@var{n}4}, but zero-extend the multiplication
3919 operands instead of sign-extending them.
3920
3921 @cindex @code{ssmsub@var{m}@var{n}4} instruction pattern
3922 @item @samp{ssmsub@var{m}@var{n}4}
3923 Like @code{msub@var{m}@var{n}4}, but all involved operations must be
3924 signed-saturating.
3925
3926 @cindex @code{usmsub@var{m}@var{n}4} instruction pattern
3927 @item @samp{usmsub@var{m}@var{n}4}
3928 Like @code{umsub@var{m}@var{n}4}, but all involved operations must be
3929 unsigned-saturating.
3930
3931 @cindex @code{divmod@var{m}4} instruction pattern
3932 @item @samp{divmod@var{m}4}
3933 Signed division that produces both a quotient and a remainder.
3934 Operand 1 is divided by operand 2 to produce a quotient stored
3935 in operand 0 and a remainder stored in operand 3.
3936
3937 For machines with an instruction that produces both a quotient and a
3938 remainder, provide a pattern for @samp{divmod@var{m}4} but do not
3939 provide patterns for @samp{div@var{m}3} and @samp{mod@var{m}3}.  This
3940 allows optimization in the relatively common case when both the quotient
3941 and remainder are computed.
3942
3943 If an instruction that just produces a quotient or just a remainder
3944 exists and is more efficient than the instruction that produces both,
3945 write the output routine of @samp{divmod@var{m}4} to call
3946 @code{find_reg_note} and look for a @code{REG_UNUSED} note on the
3947 quotient or remainder and generate the appropriate instruction.
3948
3949 @cindex @code{udivmod@var{m}4} instruction pattern
3950 @item @samp{udivmod@var{m}4}
3951 Similar, but does unsigned division.
3952
3953 @anchor{shift patterns}
3954 @cindex @code{ashl@var{m}3} instruction pattern
3955 @cindex @code{ssashl@var{m}3} instruction pattern
3956 @cindex @code{usashl@var{m}3} instruction pattern
3957 @item @samp{ashl@var{m}3}, @samp{ssashl@var{m}3}, @samp{usashl@var{m}3}
3958 Arithmetic-shift operand 1 left by a number of bits specified by operand
3959 2, and store the result in operand 0.  Here @var{m} is the mode of
3960 operand 0 and operand 1; operand 2's mode is specified by the
3961 instruction pattern, and the compiler will convert the operand to that
3962 mode before generating the instruction.  The meaning of out-of-range shift
3963 counts can optionally be specified by @code{TARGET_SHIFT_TRUNCATION_MASK}.
3964 @xref{TARGET_SHIFT_TRUNCATION_MASK}.  Operand 2 is always a scalar type.
3965
3966 @cindex @code{ashr@var{m}3} instruction pattern
3967 @cindex @code{lshr@var{m}3} instruction pattern
3968 @cindex @code{rotl@var{m}3} instruction pattern
3969 @cindex @code{rotr@var{m}3} instruction pattern
3970 @item @samp{ashr@var{m}3}, @samp{lshr@var{m}3}, @samp{rotl@var{m}3}, @samp{rotr@var{m}3}
3971 Other shift and rotate instructions, analogous to the
3972 @code{ashl@var{m}3} instructions.  Operand 2 is always a scalar type.
3973
3974 @cindex @code{vashl@var{m}3} instruction pattern
3975 @cindex @code{vashr@var{m}3} instruction pattern
3976 @cindex @code{vlshr@var{m}3} instruction pattern
3977 @cindex @code{vrotl@var{m}3} instruction pattern
3978 @cindex @code{vrotr@var{m}3} instruction pattern
3979 @item @samp{vashl@var{m}3}, @samp{vashr@var{m}3}, @samp{vlshr@var{m}3}, @samp{vrotl@var{m}3}, @samp{vrotr@var{m}3}
3980 Vector shift and rotate instructions that take vectors as operand 2
3981 instead of a scalar type.
3982
3983 @cindex @code{neg@var{m}2} instruction pattern
3984 @cindex @code{ssneg@var{m}2} instruction pattern
3985 @cindex @code{usneg@var{m}2} instruction pattern
3986 @item @samp{neg@var{m}2}, @samp{ssneg@var{m}2}, @samp{usneg@var{m}2}
3987 Negate operand 1 and store the result in operand 0.
3988
3989 @cindex @code{abs@var{m}2} instruction pattern
3990 @item @samp{abs@var{m}2}
3991 Store the absolute value of operand 1 into operand 0.
3992
3993 @cindex @code{sqrt@var{m}2} instruction pattern
3994 @item @samp{sqrt@var{m}2}
3995 Store the square root of operand 1 into operand 0.
3996
3997 The @code{sqrt} built-in function of C always uses the mode which
3998 corresponds to the C data type @code{double} and the @code{sqrtf}
3999 built-in function uses the mode which corresponds to the C data
4000 type @code{float}.
4001
4002 @cindex @code{fmod@var{m}3} instruction pattern
4003 @item @samp{fmod@var{m}3}
4004 Store the remainder of dividing operand 1 by operand 2 into
4005 operand 0, rounded towards zero to an integer.
4006
4007 The @code{fmod} built-in function of C always uses the mode which
4008 corresponds to the C data type @code{double} and the @code{fmodf}
4009 built-in function uses the mode which corresponds to the C data
4010 type @code{float}.
4011
4012 @cindex @code{remainder@var{m}3} instruction pattern
4013 @item @samp{remainder@var{m}3}
4014 Store the remainder of dividing operand 1 by operand 2 into
4015 operand 0, rounded to the nearest integer.
4016
4017 The @code{remainder} built-in function of C always uses the mode
4018 which corresponds to the C data type @code{double} and the
4019 @code{remainderf} built-in function uses the mode which corresponds
4020 to the C data type @code{float}.
4021
4022 @cindex @code{cos@var{m}2} instruction pattern
4023 @item @samp{cos@var{m}2}
4024 Store the cosine of operand 1 into operand 0.
4025
4026 The @code{cos} built-in function of C always uses the mode which
4027 corresponds to the C data type @code{double} and the @code{cosf}
4028 built-in function uses the mode which corresponds to the C data
4029 type @code{float}.
4030
4031 @cindex @code{sin@var{m}2} instruction pattern
4032 @item @samp{sin@var{m}2}
4033 Store the sine of operand 1 into operand 0.
4034
4035 The @code{sin} built-in function of C always uses the mode which
4036 corresponds to the C data type @code{double} and the @code{sinf}
4037 built-in function uses the mode which corresponds to the C data
4038 type @code{float}.
4039
4040 @cindex @code{exp@var{m}2} instruction pattern
4041 @item @samp{exp@var{m}2}
4042 Store the exponential of operand 1 into operand 0.
4043
4044 The @code{exp} built-in function of C always uses the mode which
4045 corresponds to the C data type @code{double} and the @code{expf}
4046 built-in function uses the mode which corresponds to the C data
4047 type @code{float}.
4048
4049 @cindex @code{log@var{m}2} instruction pattern
4050 @item @samp{log@var{m}2}
4051 Store the natural logarithm of operand 1 into operand 0.
4052
4053 The @code{log} built-in function of C always uses the mode which
4054 corresponds to the C data type @code{double} and the @code{logf}
4055 built-in function uses the mode which corresponds to the C data
4056 type @code{float}.
4057
4058 @cindex @code{pow@var{m}3} instruction pattern
4059 @item @samp{pow@var{m}3}
4060 Store the value of operand 1 raised to the exponent operand 2
4061 into operand 0.
4062
4063 The @code{pow} built-in function of C always uses the mode which
4064 corresponds to the C data type @code{double} and the @code{powf}
4065 built-in function uses the mode which corresponds to the C data
4066 type @code{float}.
4067
4068 @cindex @code{atan2@var{m}3} instruction pattern
4069 @item @samp{atan2@var{m}3}
4070 Store the arc tangent (inverse tangent) of operand 1 divided by
4071 operand 2 into operand 0, using the signs of both arguments to
4072 determine the quadrant of the result.
4073
4074 The @code{atan2} built-in function of C always uses the mode which
4075 corresponds to the C data type @code{double} and the @code{atan2f}
4076 built-in function uses the mode which corresponds to the C data
4077 type @code{float}.
4078
4079 @cindex @code{floor@var{m}2} instruction pattern
4080 @item @samp{floor@var{m}2}
4081 Store the largest integral value not greater than argument.
4082
4083 The @code{floor} built-in function of C always uses the mode which
4084 corresponds to the C data type @code{double} and the @code{floorf}
4085 built-in function uses the mode which corresponds to the C data
4086 type @code{float}.
4087
4088 @cindex @code{btrunc@var{m}2} instruction pattern
4089 @item @samp{btrunc@var{m}2}
4090 Store the argument rounded to integer towards zero.
4091
4092 The @code{trunc} built-in function of C always uses the mode which
4093 corresponds to the C data type @code{double} and the @code{truncf}
4094 built-in function uses the mode which corresponds to the C data
4095 type @code{float}.
4096
4097 @cindex @code{round@var{m}2} instruction pattern
4098 @item @samp{round@var{m}2}
4099 Store the argument rounded to integer away from zero.
4100
4101 The @code{round} built-in function of C always uses the mode which
4102 corresponds to the C data type @code{double} and the @code{roundf}
4103 built-in function uses the mode which corresponds to the C data
4104 type @code{float}.
4105
4106 @cindex @code{ceil@var{m}2} instruction pattern
4107 @item @samp{ceil@var{m}2}
4108 Store the argument rounded to integer away from zero.
4109
4110 The @code{ceil} built-in function of C always uses the mode which
4111 corresponds to the C data type @code{double} and the @code{ceilf}
4112 built-in function uses the mode which corresponds to the C data
4113 type @code{float}.
4114
4115 @cindex @code{nearbyint@var{m}2} instruction pattern
4116 @item @samp{nearbyint@var{m}2}
4117 Store the argument rounded according to the default rounding mode
4118
4119 The @code{nearbyint} built-in function of C always uses the mode which
4120 corresponds to the C data type @code{double} and the @code{nearbyintf}
4121 built-in function uses the mode which corresponds to the C data
4122 type @code{float}.
4123
4124 @cindex @code{rint@var{m}2} instruction pattern
4125 @item @samp{rint@var{m}2}
4126 Store the argument rounded according to the default rounding mode and
4127 raise the inexact exception when the result differs in value from
4128 the argument
4129
4130 The @code{rint} built-in function of C always uses the mode which
4131 corresponds to the C data type @code{double} and the @code{rintf}
4132 built-in function uses the mode which corresponds to the C data
4133 type @code{float}.
4134
4135 @cindex @code{lrint@var{m}@var{n}2}
4136 @item @samp{lrint@var{m}@var{n}2}
4137 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4138 point mode @var{n} as a signed number according to the current
4139 rounding mode and store in operand 0 (which has mode @var{n}).
4140
4141 @cindex @code{lround@var{m}@var{n}2}
4142 @item @samp{lround@var{m}2}
4143 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4144 point mode @var{n} as a signed number rounding to nearest and away
4145 from zero and store in operand 0 (which has mode @var{n}).
4146
4147 @cindex @code{lfloor@var{m}@var{n}2}
4148 @item @samp{lfloor@var{m}2}
4149 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4150 point mode @var{n} as a signed number rounding down and store in
4151 operand 0 (which has mode @var{n}).
4152
4153 @cindex @code{lceil@var{m}@var{n}2}
4154 @item @samp{lceil@var{m}2}
4155 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4156 point mode @var{n} as a signed number rounding up and store in
4157 operand 0 (which has mode @var{n}).
4158
4159 @cindex @code{copysign@var{m}3} instruction pattern
4160 @item @samp{copysign@var{m}3}
4161 Store a value with the magnitude of operand 1 and the sign of operand
4162 2 into operand 0.
4163
4164 The @code{copysign} built-in function of C always uses the mode which
4165 corresponds to the C data type @code{double} and the @code{copysignf}
4166 built-in function uses the mode which corresponds to the C data
4167 type @code{float}.
4168
4169 @cindex @code{ffs@var{m}2} instruction pattern
4170 @item @samp{ffs@var{m}2}
4171 Store into operand 0 one plus the index of the least significant 1-bit
4172 of operand 1.  If operand 1 is zero, store zero.  @var{m} is the mode
4173 of operand 0; operand 1's mode is specified by the instruction
4174 pattern, and the compiler will convert the operand to that mode before
4175 generating the instruction.
4176
4177 The @code{ffs} built-in function of C always uses the mode which
4178 corresponds to the C data type @code{int}.
4179
4180 @cindex @code{clz@var{m}2} instruction pattern
4181 @item @samp{clz@var{m}2}
4182 Store into operand 0 the number of leading 0-bits in @var{x}, starting
4183 at the most significant bit position.  If @var{x} is 0, the
4184 @code{CLZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
4185 the result is undefined or has a useful value.
4186 @var{m} is the mode of operand 0; operand 1's mode is
4187 specified by the instruction pattern, and the compiler will convert the
4188 operand to that mode before generating the instruction.
4189
4190 @cindex @code{ctz@var{m}2} instruction pattern
4191 @item @samp{ctz@var{m}2}
4192 Store into operand 0 the number of trailing 0-bits in @var{x}, starting
4193 at the least significant bit position.  If @var{x} is 0, the
4194 @code{CTZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
4195 the result is undefined or has a useful value.
4196 @var{m} is the mode of operand 0; operand 1's mode is
4197 specified by the instruction pattern, and the compiler will convert the
4198 operand to that mode before generating the instruction.
4199
4200 @cindex @code{popcount@var{m}2} instruction pattern
4201 @item @samp{popcount@var{m}2}
4202 Store into operand 0 the number of 1-bits in @var{x}.  @var{m} is the
4203 mode of operand 0; operand 1's mode is specified by the instruction
4204 pattern, and the compiler will convert the operand to that mode before
4205 generating the instruction.
4206
4207 @cindex @code{parity@var{m}2} instruction pattern
4208 @item @samp{parity@var{m}2}
4209 Store into operand 0 the parity of @var{x}, i.e.@: the number of 1-bits
4210 in @var{x} modulo 2.  @var{m} is the mode of operand 0; operand 1's mode
4211 is specified by the instruction pattern, and the compiler will convert
4212 the operand to that mode before generating the instruction.
4213
4214 @cindex @code{one_cmpl@var{m}2} instruction pattern
4215 @item @samp{one_cmpl@var{m}2}
4216 Store the bitwise-complement of operand 1 into operand 0.
4217
4218 @cindex @code{cmp@var{m}} instruction pattern
4219 @item @samp{cmp@var{m}}
4220 Compare operand 0 and operand 1, and set the condition codes.
4221 The RTL pattern should look like this:
4222
4223 @smallexample
4224 (set (cc0) (compare (match_operand:@var{m} 0 @dots{})
4225                     (match_operand:@var{m} 1 @dots{})))
4226 @end smallexample
4227
4228 @cindex @code{tst@var{m}} instruction pattern
4229 @item @samp{tst@var{m}}
4230 Compare operand 0 against zero, and set the condition codes.
4231 The RTL pattern should look like this:
4232
4233 @smallexample
4234 (set (cc0) (match_operand:@var{m} 0 @dots{}))
4235 @end smallexample
4236
4237 @samp{tst@var{m}} patterns should not be defined for machines that do
4238 not use @code{(cc0)}.  Doing so would confuse the optimizer since it
4239 would no longer be clear which @code{set} operations were comparisons.
4240 The @samp{cmp@var{m}} patterns should be used instead.
4241
4242 @cindex @code{movmem@var{m}} instruction pattern
4243 @item @samp{movmem@var{m}}
4244 Block move instruction.  The destination and source blocks of memory
4245 are the first two operands, and both are @code{mem:BLK}s with an
4246 address in mode @code{Pmode}.
4247
4248 The number of bytes to move is the third operand, in mode @var{m}.
4249 Usually, you specify @code{word_mode} for @var{m}.  However, if you can
4250 generate better code knowing the range of valid lengths is smaller than
4251 those representable in a full word, you should provide a pattern with a
4252 mode corresponding to the range of values you can handle efficiently
4253 (e.g., @code{QImode} for values in the range 0--127; note we avoid numbers
4254 that appear negative) and also a pattern with @code{word_mode}.
4255
4256 The fourth operand is the known shared alignment of the source and
4257 destination, in the form of a @code{const_int} rtx.  Thus, if the
4258 compiler knows that both source and destination are word-aligned,
4259 it may provide the value 4 for this operand.
4260
4261 Optional operands 5 and 6 specify expected alignment and size of block
4262 respectively.  The expected alignment differs from alignment in operand 4
4263 in a way that the blocks are not required to be aligned according to it in
4264 all cases. This expected alignment is also in bytes, just like operand 4.
4265 Expected size, when unknown, is set to @code{(const_int -1)}.
4266
4267 Descriptions of multiple @code{movmem@var{m}} patterns can only be
4268 beneficial if the patterns for smaller modes have fewer restrictions
4269 on their first, second and fourth operands.  Note that the mode @var{m}
4270 in @code{movmem@var{m}} does not impose any restriction on the mode of
4271 individually moved data units in the block.
4272
4273 These patterns need not give special consideration to the possibility
4274 that the source and destination strings might overlap.
4275
4276 @cindex @code{movstr} instruction pattern
4277 @item @samp{movstr}
4278 String copy instruction, with @code{stpcpy} semantics.  Operand 0 is
4279 an output operand in mode @code{Pmode}.  The addresses of the
4280 destination and source strings are operands 1 and 2, and both are
4281 @code{mem:BLK}s with addresses in mode @code{Pmode}.  The execution of
4282 the expansion of this pattern should store in operand 0 the address in
4283 which the @code{NUL} terminator was stored in the destination string.
4284
4285 @cindex @code{setmem@var{m}} instruction pattern
4286 @item @samp{setmem@var{m}}
4287 Block set instruction.  The destination string is the first operand,
4288 given as a @code{mem:BLK} whose address is in mode @code{Pmode}.  The
4289 number of bytes to set is the second operand, in mode @var{m}.  The value to
4290 initialize the memory with is the third operand. Targets that only support the
4291 clearing of memory should reject any value that is not the constant 0.  See
4292 @samp{movmem@var{m}} for a discussion of the choice of mode.
4293
4294 The fourth operand is the known alignment of the destination, in the form
4295 of a @code{const_int} rtx.  Thus, if the compiler knows that the
4296 destination is word-aligned, it may provide the value 4 for this
4297 operand.
4298
4299 Optional operands 5 and 6 specify expected alignment and size of block
4300 respectively.  The expected alignment differs from alignment in operand 4
4301 in a way that the blocks are not required to be aligned according to it in
4302 all cases. This expected alignment is also in bytes, just like operand 4.
4303 Expected size, when unknown, is set to @code{(const_int -1)}.
4304
4305 The use for multiple @code{setmem@var{m}} is as for @code{movmem@var{m}}.
4306
4307 @cindex @code{cmpstrn@var{m}} instruction pattern
4308 @item @samp{cmpstrn@var{m}}
4309 String compare instruction, with five operands.  Operand 0 is the output;
4310 it has mode @var{m}.  The remaining four operands are like the operands
4311 of @samp{movmem@var{m}}.  The two memory blocks specified are compared
4312 byte by byte in lexicographic order starting at the beginning of each
4313 string.  The instruction is not allowed to prefetch more than one byte
4314 at a time since either string may end in the first byte and reading past
4315 that may access an invalid page or segment and cause a fault.  The
4316 effect of the instruction is to store a value in operand 0 whose sign
4317 indicates the result of the comparison.
4318
4319 @cindex @code{cmpstr@var{m}} instruction pattern
4320 @item @samp{cmpstr@var{m}}
4321 String compare instruction, without known maximum length.  Operand 0 is the
4322 output; it has mode @var{m}.  The second and third operand are the blocks of
4323 memory to be compared; both are @code{mem:BLK} with an address in mode
4324 @code{Pmode}.
4325
4326 The fourth operand is the known shared alignment of the source and
4327 destination, in the form of a @code{const_int} rtx.  Thus, if the
4328 compiler knows that both source and destination are word-aligned,
4329 it may provide the value 4 for this operand.
4330
4331 The two memory blocks specified are compared byte by byte in lexicographic
4332 order starting at the beginning of each string.  The instruction is not allowed
4333 to prefetch more than one byte at a time since either string may end in the
4334 first byte and reading past that may access an invalid page or segment and
4335 cause a fault.  The effect of the instruction is to store a value in operand 0
4336 whose sign indicates the result of the comparison.
4337
4338 @cindex @code{cmpmem@var{m}} instruction pattern
4339 @item @samp{cmpmem@var{m}}
4340 Block compare instruction, with five operands like the operands
4341 of @samp{cmpstr@var{m}}.  The two memory blocks specified are compared
4342 byte by byte in lexicographic order starting at the beginning of each
4343 block.  Unlike @samp{cmpstr@var{m}} the instruction can prefetch
4344 any bytes in the two memory blocks.  The effect of the instruction is
4345 to store a value in operand 0 whose sign indicates the result of the
4346 comparison.
4347
4348 @cindex @code{strlen@var{m}} instruction pattern
4349 @item @samp{strlen@var{m}}
4350 Compute the length of a string, with three operands.
4351 Operand 0 is the result (of mode @var{m}), operand 1 is
4352 a @code{mem} referring to the first character of the string,
4353 operand 2 is the character to search for (normally zero),
4354 and operand 3 is a constant describing the known alignment
4355 of the beginning of the string.
4356
4357 @cindex @code{float@var{mn}2} instruction pattern
4358 @item @samp{float@var{m}@var{n}2}
4359 Convert signed integer operand 1 (valid for fixed point mode @var{m}) to
4360 floating point mode @var{n} and store in operand 0 (which has mode
4361 @var{n}).
4362
4363 @cindex @code{floatuns@var{mn}2} instruction pattern
4364 @item @samp{floatuns@var{m}@var{n}2}
4365 Convert unsigned integer operand 1 (valid for fixed point mode @var{m})
4366 to floating point mode @var{n} and store in operand 0 (which has mode
4367 @var{n}).
4368
4369 @cindex @code{fix@var{mn}2} instruction pattern
4370 @item @samp{fix@var{m}@var{n}2}
4371 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4372 point mode @var{n} as a signed number and store in operand 0 (which
4373 has mode @var{n}).  This instruction's result is defined only when
4374 the value of operand 1 is an integer.
4375
4376 If the machine description defines this pattern, it also needs to
4377 define the @code{ftrunc} pattern.
4378
4379 @cindex @code{fixuns@var{mn}2} instruction pattern
4380 @item @samp{fixuns@var{m}@var{n}2}
4381 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4382 point mode @var{n} as an unsigned number and store in operand 0 (which
4383 has mode @var{n}).  This instruction's result is defined only when the
4384 value of operand 1 is an integer.
4385
4386 @cindex @code{ftrunc@var{m}2} instruction pattern
4387 @item @samp{ftrunc@var{m}2}
4388 Convert operand 1 (valid for floating point mode @var{m}) to an
4389 integer value, still represented in floating point mode @var{m}, and
4390 store it in operand 0 (valid for floating point mode @var{m}).
4391
4392 @cindex @code{fix_trunc@var{mn}2} instruction pattern
4393 @item @samp{fix_trunc@var{m}@var{n}2}
4394 Like @samp{fix@var{m}@var{n}2} but works for any floating point value
4395 of mode @var{m} by converting the value to an integer.
4396
4397 @cindex @code{fixuns_trunc@var{mn}2} instruction pattern
4398 @item @samp{fixuns_trunc@var{m}@var{n}2}
4399 Like @samp{fixuns@var{m}@var{n}2} but works for any floating point
4400 value of mode @var{m} by converting the value to an integer.
4401
4402 @cindex @code{trunc@var{mn}2} instruction pattern
4403 @item @samp{trunc@var{m}@var{n}2}
4404 Truncate operand 1 (valid for mode @var{m}) to mode @var{n} and
4405 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
4406 point or both floating point.
4407
4408 @cindex @code{extend@var{mn}2} instruction pattern
4409 @item @samp{extend@var{m}@var{n}2}
4410 Sign-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
4411 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
4412 point or both floating point.
4413
4414 @cindex @code{zero_extend@var{mn}2} instruction pattern
4415 @item @samp{zero_extend@var{m}@var{n}2}
4416 Zero-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
4417 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
4418 point.
4419
4420 @cindex @code{fract@var{mn}2} instruction pattern
4421 @item @samp{fract@var{m}@var{n}2}
4422 Convert operand 1 of mode @var{m} to mode @var{n} and store in
4423 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
4424 could be fixed-point to fixed-point, signed integer to fixed-point,
4425 fixed-point to signed integer, floating-point to fixed-point,
4426 or fixed-point to floating-point.
4427 When overflows or underflows happen, the results are undefined.
4428
4429 @cindex @code{satfract@var{mn}2} instruction pattern
4430 @item @samp{satfract@var{m}@var{n}2}
4431 Convert operand 1 of mode @var{m} to mode @var{n} and store in
4432 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
4433 could be fixed-point to fixed-point, signed integer to fixed-point,
4434 or floating-point to fixed-point.
4435 When overflows or underflows happen, the instruction saturates the
4436 results to the maximum or the minimum.
4437
4438 @cindex @code{fractuns@var{mn}2} instruction pattern
4439 @item @samp{fractuns@var{m}@var{n}2}
4440 Convert operand 1 of mode @var{m} to mode @var{n} and store in
4441 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
4442 could be unsigned integer to fixed-point, or
4443 fixed-point to unsigned integer.
4444 When overflows or underflows happen, the results are undefined.
4445
4446 @cindex @code{satfractuns@var{mn}2} instruction pattern
4447 @item @samp{satfractuns@var{m}@var{n}2}
4448 Convert unsigned integer operand 1 of mode @var{m} to fixed-point mode
4449 @var{n} and store in operand 0 (which has mode @var{n}).
4450 When overflows or underflows happen, the instruction saturates the
4451 results to the maximum or the minimum.
4452
4453 @cindex @code{extv} instruction pattern
4454 @item @samp{extv}
4455 Extract a bit-field from operand 1 (a register or memory operand), where
4456 operand 2 specifies the width in bits and operand 3 the starting bit,
4457 and store it in operand 0.  Operand 0 must have mode @code{word_mode}.
4458 Operand 1 may have mode @code{byte_mode} or @code{word_mode}; often
4459 @code{word_mode} is allowed only for registers.  Operands 2 and 3 must
4460 be valid for @code{word_mode}.
4461
4462 The RTL generation pass generates this instruction only with constants
4463 for operands 2 and 3 and the constant is never zero for operand 2.
4464
4465 The bit-field value is sign-extended to a full word integer
4466 before it is stored in operand 0.
4467
4468 @cindex @code{extzv} instruction pattern
4469 @item @samp{extzv}
4470 Like @samp{extv} except that the bit-field value is zero-extended.
4471
4472 @cindex @code{insv} instruction pattern
4473 @item @samp{insv}
4474 Store operand 3 (which must be valid for @code{word_mode}) into a
4475 bit-field in operand 0, where operand 1 specifies the width in bits and
4476 operand 2 the starting bit.  Operand 0 may have mode @code{byte_mode} or
4477 @code{word_mode}; often @code{word_mode} is allowed only for registers.
4478 Operands 1 and 2 must be valid for @code{word_mode}.
4479
4480 The RTL generation pass generates this instruction only with constants
4481 for operands 1 and 2 and the constant is never zero for operand 1.
4482
4483 @cindex @code{mov@var{mode}cc} instruction pattern
4484 @item @samp{mov@var{mode}cc}
4485 Conditionally move operand 2 or operand 3 into operand 0 according to the
4486 comparison in operand 1.  If the comparison is true, operand 2 is moved
4487 into operand 0, otherwise operand 3 is moved.
4488
4489 The mode of the operands being compared need not be the same as the operands
4490 being moved.  Some machines, sparc64 for example, have instructions that
4491 conditionally move an integer value based on the floating point condition
4492 codes and vice versa.
4493
4494 If the machine does not have conditional move instructions, do not
4495 define these patterns.
4496
4497 @cindex @code{add@var{mode}cc} instruction pattern
4498 @item @samp{add@var{mode}cc}
4499 Similar to @samp{mov@var{mode}cc} but for conditional addition.  Conditionally
4500 move operand 2 or (operands 2 + operand 3) into operand 0 according to the
4501 comparison in operand 1.  If the comparison is true, operand 2 is moved into
4502 operand 0, otherwise (operand 2 + operand 3) is moved.
4503
4504 @cindex @code{s@var{cond}} instruction pattern
4505 @item @samp{s@var{cond}}
4506 Store zero or nonzero in the operand according to the condition codes.
4507 Value stored is nonzero iff the condition @var{cond} is true.
4508 @var{cond} is the name of a comparison operation expression code, such
4509 as @code{eq}, @code{lt} or @code{leu}.
4510
4511 You specify the mode that the operand must have when you write the
4512 @code{match_operand} expression.  The compiler automatically sees
4513 which mode you have used and supplies an operand of that mode.
4514
4515 The value stored for a true condition must have 1 as its low bit, or
4516 else must be negative.  Otherwise the instruction is not suitable and
4517 you should omit it from the machine description.  You describe to the
4518 compiler exactly which value is stored by defining the macro
4519 @code{STORE_FLAG_VALUE} (@pxref{Misc}).  If a description cannot be
4520 found that can be used for all the @samp{s@var{cond}} patterns, you
4521 should omit those operations from the machine description.
4522
4523 These operations may fail, but should do so only in relatively
4524 uncommon cases; if they would fail for common cases involving
4525 integer comparisons, it is best to omit these patterns.
4526
4527 If these operations are omitted, the compiler will usually generate code
4528 that copies the constant one to the target and branches around an
4529 assignment of zero to the target.  If this code is more efficient than
4530 the potential instructions used for the @samp{s@var{cond}} pattern
4531 followed by those required to convert the result into a 1 or a zero in
4532 @code{SImode}, you should omit the @samp{s@var{cond}} operations from
4533 the machine description.
4534
4535 @cindex @code{b@var{cond}} instruction pattern
4536 @item @samp{b@var{cond}}
4537 Conditional branch instruction.  Operand 0 is a @code{label_ref} that
4538 refers to the label to jump to.  Jump if the condition codes meet
4539 condition @var{cond}.
4540
4541 Some machines do not follow the model assumed here where a comparison
4542 instruction is followed by a conditional branch instruction.  In that
4543 case, the @samp{cmp@var{m}} (and @samp{tst@var{m}}) patterns should
4544 simply store the operands away and generate all the required insns in a
4545 @code{define_expand} (@pxref{Expander Definitions}) for the conditional
4546 branch operations.  All calls to expand @samp{b@var{cond}} patterns are
4547 immediately preceded by calls to expand either a @samp{cmp@var{m}}
4548 pattern or a @samp{tst@var{m}} pattern.
4549
4550 Machines that use a pseudo register for the condition code value, or
4551 where the mode used for the comparison depends on the condition being
4552 tested, should also use the above mechanism.  @xref{Jump Patterns}.
4553
4554 The above discussion also applies to the @samp{mov@var{mode}cc} and
4555 @samp{s@var{cond}} patterns.
4556
4557 @cindex @code{cbranch@var{mode}4} instruction pattern
4558 @item @samp{cbranch@var{mode}4}
4559 Conditional branch instruction combined with a compare instruction.
4560 Operand 0 is a comparison operator.  Operand 1 and operand 2 are the
4561 first and second operands of the comparison, respectively.  Operand 3
4562 is a @code{label_ref} that refers to the label to jump to.
4563
4564 @cindex @code{jump} instruction pattern
4565 @item @samp{jump}
4566 A jump inside a function; an unconditional branch.  Operand 0 is the
4567 @code{label_ref} of the label to jump to.  This pattern name is mandatory
4568 on all machines.
4569
4570 @cindex @code{call} instruction pattern
4571 @item @samp{call}
4572 Subroutine call instruction returning no value.  Operand 0 is the
4573 function to call; operand 1 is the number of bytes of arguments pushed
4574 as a @code{const_int}; operand 2 is the number of registers used as
4575 operands.
4576
4577 On most machines, operand 2 is not actually stored into the RTL
4578 pattern.  It is supplied for the sake of some RISC machines which need
4579 to put this information into the assembler code; they can put it in
4580 the RTL instead of operand 1.
4581
4582 Operand 0 should be a @code{mem} RTX whose address is the address of the
4583 function.  Note, however, that this address can be a @code{symbol_ref}
4584 expression even if it would not be a legitimate memory address on the
4585 target machine.  If it is also not a valid argument for a call
4586 instruction, the pattern for this operation should be a
4587 @code{define_expand} (@pxref{Expander Definitions}) that places the
4588 address into a register and uses that register in the call instruction.
4589
4590 @cindex @code{call_value} instruction pattern
4591 @item @samp{call_value}
4592 Subroutine call instruction returning a value.  Operand 0 is the hard
4593 register in which the value is returned.  There are three more
4594 operands, the same as the three operands of the @samp{call}
4595 instruction (but with numbers increased by one).
4596
4597 Subroutines that return @code{BLKmode} objects use the @samp{call}
4598 insn.
4599
4600 @cindex @code{call_pop} instruction pattern
4601 @cindex @code{call_value_pop} instruction pattern
4602 @item @samp{call_pop}, @samp{call_value_pop}
4603 Similar to @samp{call} and @samp{call_value}, except used if defined and
4604 if @code{RETURN_POPS_ARGS} is nonzero.  They should emit a @code{parallel}
4605 that contains both the function call and a @code{set} to indicate the
4606 adjustment made to the frame pointer.
4607
4608 For machines where @code{RETURN_POPS_ARGS} can be nonzero, the use of these
4609 patterns increases the number of functions for which the frame pointer
4610 can be eliminated, if desired.
4611
4612 @cindex @code{untyped_call} instruction pattern
4613 @item @samp{untyped_call}
4614 Subroutine call instruction returning a value of any type.  Operand 0 is
4615 the function to call; operand 1 is a memory location where the result of
4616 calling the function is to be stored; operand 2 is a @code{parallel}
4617 expression where each element is a @code{set} expression that indicates
4618 the saving of a function return value into the result block.
4619
4620 This instruction pattern should be defined to support
4621 @code{__builtin_apply} on machines where special instructions are needed
4622 to call a subroutine with arbitrary arguments or to save the value
4623 returned.  This instruction pattern is required on machines that have
4624 multiple registers that can hold a return value
4625 (i.e.@: @code{FUNCTION_VALUE_REGNO_P} is true for more than one register).
4626
4627 @cindex @code{return} instruction pattern
4628 @item @samp{return}
4629 Subroutine return instruction.  This instruction pattern name should be
4630 defined only if a single instruction can do all the work of returning
4631 from a function.
4632
4633 Like the @samp{mov@var{m}} patterns, this pattern is also used after the
4634 RTL generation phase.  In this case it is to support machines where
4635 multiple instructions are usually needed to return from a function, but
4636 some class of functions only requires one instruction to implement a
4637 return.  Normally, the applicable functions are those which do not need
4638 to save any registers or allocate stack space.
4639
4640 @findex reload_completed
4641 @findex leaf_function_p
4642 For such machines, the condition specified in this pattern should only
4643 be true when @code{reload_completed} is nonzero and the function's
4644 epilogue would only be a single instruction.  For machines with register
4645 windows, the routine @code{leaf_function_p} may be used to determine if
4646 a register window push is required.
4647
4648 Machines that have conditional return instructions should define patterns
4649 such as
4650
4651 @smallexample
4652 (define_insn ""
4653   [(set (pc)
4654         (if_then_else (match_operator
4655                          0 "comparison_operator"
4656                          [(cc0) (const_int 0)])
4657                       (return)
4658                       (pc)))]
4659   "@var{condition}"
4660   "@dots{}")
4661 @end smallexample
4662
4663 where @var{condition} would normally be the same condition specified on the
4664 named @samp{return} pattern.
4665
4666 @cindex @code{untyped_return} instruction pattern
4667 @item @samp{untyped_return}
4668 Untyped subroutine return instruction.  This instruction pattern should
4669 be defined to support @code{__builtin_return} on machines where special
4670 instructions are needed to return a value of any type.
4671
4672 Operand 0 is a memory location where the result of calling a function
4673 with @code{__builtin_apply} is stored; operand 1 is a @code{parallel}
4674 expression where each element is a @code{set} expression that indicates
4675 the restoring of a function return value from the result block.
4676
4677 @cindex @code{nop} instruction pattern
4678 @item @samp{nop}
4679 No-op instruction.  This instruction pattern name should always be defined
4680 to output a no-op in assembler code.  @code{(const_int 0)} will do as an
4681 RTL pattern.
4682
4683 @cindex @code{indirect_jump} instruction pattern
4684 @item @samp{indirect_jump}
4685 An instruction to jump to an address which is operand zero.
4686 This pattern name is mandatory on all machines.
4687
4688 @cindex @code{casesi} instruction pattern
4689 @item @samp{casesi}
4690 Instruction to jump through a dispatch table, including bounds checking.
4691 This instruction takes five operands:
4692
4693 @enumerate
4694 @item
4695 The index to dispatch on, which has mode @code{SImode}.
4696
4697 @item
4698 The lower bound for indices in the table, an integer constant.
4699
4700 @item
4701 The total range of indices in the table---the largest index
4702 minus the smallest one (both inclusive).
4703
4704 @item
4705 A label that precedes the table itself.
4706
4707 @item
4708 A label to jump to if the index has a value outside the bounds.
4709 @end enumerate
4710
4711 The table is a @code{addr_vec} or @code{addr_diff_vec} inside of a
4712 @code{jump_insn}.  The number of elements in the table is one plus the
4713 difference between the upper bound and the lower bound.
4714
4715 @cindex @code{tablejump} instruction pattern
4716 @item @samp{tablejump}
4717 Instruction to jump to a variable address.  This is a low-level
4718 capability which can be used to implement a dispatch table when there
4719 is no @samp{casesi} pattern.
4720
4721 This pattern requires two operands: the address or offset, and a label
4722 which should immediately precede the jump table.  If the macro
4723 @code{CASE_VECTOR_PC_RELATIVE} evaluates to a nonzero value then the first
4724 operand is an offset which counts from the address of the table; otherwise,
4725 it is an absolute address to jump to.  In either case, the first operand has
4726 mode @code{Pmode}.
4727
4728 The @samp{tablejump} insn is always the last insn before the jump
4729 table it uses.  Its assembler code normally has no need to use the
4730 second operand, but you should incorporate it in the RTL pattern so
4731 that the jump optimizer will not delete the table as unreachable code.
4732
4733
4734 @cindex @code{decrement_and_branch_until_zero} instruction pattern
4735 @item @samp{decrement_and_branch_until_zero}
4736 Conditional branch instruction that decrements a register and
4737 jumps if the register is nonzero.  Operand 0 is the register to
4738 decrement and test; operand 1 is the label to jump to if the
4739 register is nonzero.  @xref{Looping Patterns}.
4740
4741 This optional instruction pattern is only used by the combiner,
4742 typically for loops reversed by the loop optimizer when strength
4743 reduction is enabled.
4744
4745 @cindex @code{doloop_end} instruction pattern
4746 @item @samp{doloop_end}
4747 Conditional branch instruction that decrements a register and jumps if
4748 the register is nonzero.  This instruction takes five operands: Operand
4749 0 is the register to decrement and test; operand 1 is the number of loop
4750 iterations as a @code{const_int} or @code{const0_rtx} if this cannot be
4751 determined until run-time; operand 2 is the actual or estimated maximum
4752 number of iterations as a @code{const_int}; operand 3 is the number of
4753 enclosed loops as a @code{const_int} (an innermost loop has a value of
4754 1); operand 4 is the label to jump to if the register is nonzero.
4755 @xref{Looping Patterns}.
4756
4757 This optional instruction pattern should be defined for machines with
4758 low-overhead looping instructions as the loop optimizer will try to
4759 modify suitable loops to utilize it.  If nested low-overhead looping is
4760 not supported, use a @code{define_expand} (@pxref{Expander Definitions})
4761 and make the pattern fail if operand 3 is not @code{const1_rtx}.
4762 Similarly, if the actual or estimated maximum number of iterations is
4763 too large for this instruction, make it fail.
4764
4765 @cindex @code{doloop_begin} instruction pattern
4766 @item @samp{doloop_begin}
4767 Companion instruction to @code{doloop_end} required for machines that
4768 need to perform some initialization, such as loading special registers
4769 used by a low-overhead looping instruction.  If initialization insns do
4770 not always need to be emitted, use a @code{define_expand}
4771 (@pxref{Expander Definitions}) and make it fail.
4772
4773
4774 @cindex @code{canonicalize_funcptr_for_compare} instruction pattern
4775 @item @samp{canonicalize_funcptr_for_compare}
4776 Canonicalize the function pointer in operand 1 and store the result
4777 into operand 0.
4778
4779 Operand 0 is always a @code{reg} and has mode @code{Pmode}; operand 1
4780 may be a @code{reg}, @code{mem}, @code{symbol_ref}, @code{const_int}, etc
4781 and also has mode @code{Pmode}.
4782
4783 Canonicalization of a function pointer usually involves computing
4784 the address of the function which would be called if the function
4785 pointer were used in an indirect call.
4786
4787 Only define this pattern if function pointers on the target machine
4788 can have different values but still call the same function when
4789 used in an indirect call.
4790
4791 @cindex @code{save_stack_block} instruction pattern
4792 @cindex @code{save_stack_function} instruction pattern
4793 @cindex @code{save_stack_nonlocal} instruction pattern
4794 @cindex @code{restore_stack_block} instruction pattern
4795 @cindex @code{restore_stack_function} instruction pattern
4796 @cindex @code{restore_stack_nonlocal} instruction pattern
4797 @item @samp{save_stack_block}
4798 @itemx @samp{save_stack_function}
4799 @itemx @samp{save_stack_nonlocal}
4800 @itemx @samp{restore_stack_block}
4801 @itemx @samp{restore_stack_function}
4802 @itemx @samp{restore_stack_nonlocal}
4803 Most machines save and restore the stack pointer by copying it to or
4804 from an object of mode @code{Pmode}.  Do not define these patterns on
4805 such machines.
4806
4807 Some machines require special handling for stack pointer saves and
4808 restores.  On those machines, define the patterns corresponding to the
4809 non-standard cases by using a @code{define_expand} (@pxref{Expander
4810 Definitions}) that produces the required insns.  The three types of
4811 saves and restores are:
4812
4813 @enumerate
4814 @item
4815 @samp{save_stack_block} saves the stack pointer at the start of a block
4816 that allocates a variable-sized object, and @samp{restore_stack_block}
4817 restores the stack pointer when the block is exited.
4818
4819 @item
4820 @samp{save_stack_function} and @samp{restore_stack_function} do a
4821 similar job for the outermost block of a function and are used when the
4822 function allocates variable-sized objects or calls @code{alloca}.  Only
4823 the epilogue uses the restored stack pointer, allowing a simpler save or
4824 restore sequence on some machines.
4825
4826 @item
4827 @samp{save_stack_nonlocal} is used in functions that contain labels
4828 branched to by nested functions.  It saves the stack pointer in such a
4829 way that the inner function can use @samp{restore_stack_nonlocal} to
4830 restore the stack pointer.  The compiler generates code to restore the
4831 frame and argument pointer registers, but some machines require saving
4832 and restoring additional data such as register window information or
4833 stack backchains.  Place insns in these patterns to save and restore any
4834 such required data.
4835 @end enumerate
4836
4837 When saving the stack pointer, operand 0 is the save area and operand 1
4838 is the stack pointer.  The mode used to allocate the save area defaults
4839 to @code{Pmode} but you can override that choice by defining the
4840 @code{STACK_SAVEAREA_MODE} macro (@pxref{Storage Layout}).  You must
4841 specify an integral mode, or @code{VOIDmode} if no save area is needed
4842 for a particular type of save (either because no save is needed or
4843 because a machine-specific save area can be used).  Operand 0 is the
4844 stack pointer and operand 1 is the save area for restore operations.  If
4845 @samp{save_stack_block} is defined, operand 0 must not be
4846 @code{VOIDmode} since these saves can be arbitrarily nested.
4847
4848 A save area is a @code{mem} that is at a constant offset from
4849 @code{virtual_stack_vars_rtx} when the stack pointer is saved for use by
4850 nonlocal gotos and a @code{reg} in the other two cases.
4851
4852 @cindex @code{allocate_stack} instruction pattern
4853 @item @samp{allocate_stack}
4854 Subtract (or add if @code{STACK_GROWS_DOWNWARD} is undefined) operand 1 from
4855 the stack pointer to create space for dynamically allocated data.
4856
4857 Store the resultant pointer to this space into operand 0.  If you
4858 are allocating space from the main stack, do this by emitting a
4859 move insn to copy @code{virtual_stack_dynamic_rtx} to operand 0.
4860 If you are allocating the space elsewhere, generate code to copy the
4861 location of the space to operand 0.  In the latter case, you must
4862 ensure this space gets freed when the corresponding space on the main
4863 stack is free.
4864
4865 Do not define this pattern if all that must be done is the subtraction.
4866 Some machines require other operations such as stack probes or
4867 maintaining the back chain.  Define this pattern to emit those
4868 operations in addition to updating the stack pointer.
4869
4870 @cindex @code{check_stack} instruction pattern
4871 @item @samp{check_stack}
4872 If stack checking cannot be done on your system by probing the stack with
4873 a load or store instruction (@pxref{Stack Checking}), define this pattern
4874 to perform the needed check and signaling an error if the stack
4875 has overflowed.  The single operand is the location in the stack furthest
4876 from the current stack pointer that you need to validate.  Normally,
4877 on machines where this pattern is needed, you would obtain the stack
4878 limit from a global or thread-specific variable or register.
4879
4880 @cindex @code{nonlocal_goto} instruction pattern
4881 @item @samp{nonlocal_goto}
4882 Emit code to generate a non-local goto, e.g., a jump from one function
4883 to a label in an outer function.  This pattern has four arguments,
4884 each representing a value to be used in the jump.  The first
4885 argument is to be loaded into the frame pointer, the second is
4886 the address to branch to (code to dispatch to the actual label),
4887 the third is the address of a location where the stack is saved,
4888 and the last is the address of the label, to be placed in the
4889 location for the incoming static chain.
4890
4891 On most machines you need not define this pattern, since GCC will
4892 already generate the correct code, which is to load the frame pointer
4893 and static chain, restore the stack (using the
4894 @samp{restore_stack_nonlocal} pattern, if defined), and jump indirectly
4895 to the dispatcher.  You need only define this pattern if this code will
4896 not work on your machine.
4897
4898 @cindex @code{nonlocal_goto_receiver} instruction pattern
4899 @item @samp{nonlocal_goto_receiver}
4900 This pattern, if defined, contains code needed at the target of a
4901 nonlocal goto after the code already generated by GCC@.  You will not
4902 normally need to define this pattern.  A typical reason why you might
4903 need this pattern is if some value, such as a pointer to a global table,
4904 must be restored when the frame pointer is restored.  Note that a nonlocal
4905 goto only occurs within a unit-of-translation, so a global table pointer
4906 that is shared by all functions of a given module need not be restored.
4907 There are no arguments.
4908
4909 @cindex @code{exception_receiver} instruction pattern
4910 @item @samp{exception_receiver}
4911 This pattern, if defined, contains code needed at the site of an
4912 exception handler that isn't needed at the site of a nonlocal goto.  You
4913 will not normally need to define this pattern.  A typical reason why you
4914 might need this pattern is if some value, such as a pointer to a global
4915 table, must be restored after control flow is branched to the handler of
4916 an exception.  There are no arguments.
4917
4918 @cindex @code{builtin_setjmp_setup} instruction pattern
4919 @item @samp{builtin_setjmp_setup}
4920 This pattern, if defined, contains additional code needed to initialize
4921 the @code{jmp_buf}.  You will not normally need to define this pattern.
4922 A typical reason why you might need this pattern is if some value, such
4923 as a pointer to a global table, must be restored.  Though it is
4924 preferred that the pointer value be recalculated if possible (given the
4925 address of a label for instance).  The single argument is a pointer to
4926 the @code{jmp_buf}.  Note that the buffer is five words long and that
4927 the first three are normally used by the generic mechanism.
4928
4929 @cindex @code{builtin_setjmp_receiver} instruction pattern
4930 @item @samp{builtin_setjmp_receiver}
4931 This pattern, if defined, contains code needed at the site of an
4932 built-in setjmp that isn't needed at the site of a nonlocal goto.  You
4933 will not normally need to define this pattern.  A typical reason why you
4934 might need this pattern is if some value, such as a pointer to a global
4935 table, must be restored.  It takes one argument, which is the label
4936 to which builtin_longjmp transfered control; this pattern may be emitted
4937 at a small offset from that label.
4938
4939 @cindex @code{builtin_longjmp} instruction pattern
4940 @item @samp{builtin_longjmp}
4941 This pattern, if defined, performs the entire action of the longjmp.
4942 You will not normally need to define this pattern unless you also define
4943 @code{builtin_setjmp_setup}.  The single argument is a pointer to the
4944 @code{jmp_buf}.
4945
4946 @cindex @code{eh_return} instruction pattern
4947 @item @samp{eh_return}
4948 This pattern, if defined, affects the way @code{__builtin_eh_return},
4949 and thence the call frame exception handling library routines, are
4950 built.  It is intended to handle non-trivial actions needed along
4951 the abnormal return path.
4952
4953 The address of the exception handler to which the function should return
4954 is passed as operand to this pattern.  It will normally need to copied by
4955 the pattern to some special register or memory location.
4956 If the pattern needs to determine the location of the target call
4957 frame in order to do so, it may use @code{EH_RETURN_STACKADJ_RTX},
4958 if defined; it will have already been assigned.
4959
4960 If this pattern is not defined, the default action will be to simply
4961 copy the return address to @code{EH_RETURN_HANDLER_RTX}.  Either
4962 that macro or this pattern needs to be defined if call frame exception
4963 handling is to be used.
4964
4965 @cindex @code{prologue} instruction pattern
4966 @anchor{prologue instruction pattern}
4967 @item @samp{prologue}
4968 This pattern, if defined, emits RTL for entry to a function.  The function
4969 entry is responsible for setting up the stack frame, initializing the frame
4970 pointer register, saving callee saved registers, etc.
4971
4972 Using a prologue pattern is generally preferred over defining
4973 @code{TARGET_ASM_FUNCTION_PROLOGUE} to emit assembly code for the prologue.
4974
4975 The @code{prologue} pattern is particularly useful for targets which perform
4976 instruction scheduling.
4977
4978 @cindex @code{epilogue} instruction pattern
4979 @anchor{epilogue instruction pattern}
4980 @item @samp{epilogue}
4981 This pattern emits RTL for exit from a function.  The function
4982 exit is responsible for deallocating the stack frame, restoring callee saved
4983 registers and emitting the return instruction.
4984
4985 Using an epilogue pattern is generally preferred over defining
4986 @code{TARGET_ASM_FUNCTION_EPILOGUE} to emit assembly code for the epilogue.
4987
4988 The @code{epilogue} pattern is particularly useful for targets which perform
4989 instruction scheduling or which have delay slots for their return instruction.
4990
4991 @cindex @code{sibcall_epilogue} instruction pattern
4992 @item @samp{sibcall_epilogue}
4993 This pattern, if defined, emits RTL for exit from a function without the final
4994 branch back to the calling function.  This pattern will be emitted before any
4995 sibling call (aka tail call) sites.
4996
4997 The @code{sibcall_epilogue} pattern must not clobber any arguments used for
4998 parameter passing or any stack slots for arguments passed to the current
4999 function.
5000
5001 @cindex @code{trap} instruction pattern
5002 @item @samp{trap}
5003 This pattern, if defined, signals an error, typically by causing some
5004 kind of signal to be raised.  Among other places, it is used by the Java
5005 front end to signal `invalid array index' exceptions.
5006
5007 @cindex @code{conditional_trap} instruction pattern
5008 @item @samp{conditional_trap}
5009 Conditional trap instruction.  Operand 0 is a piece of RTL which
5010 performs a comparison.  Operand 1 is the trap code, an integer.
5011
5012 A typical @code{conditional_trap} pattern looks like
5013
5014 @smallexample
5015 (define_insn "conditional_trap"
5016   [(trap_if (match_operator 0 "trap_operator"
5017              [(cc0) (const_int 0)])
5018             (match_operand 1 "const_int_operand" "i"))]
5019   ""
5020   "@dots{}")
5021 @end smallexample
5022
5023 @cindex @code{prefetch} instruction pattern
5024 @item @samp{prefetch}
5025
5026 This pattern, if defined, emits code for a non-faulting data prefetch
5027 instruction.  Operand 0 is the address of the memory to prefetch.  Operand 1
5028 is a constant 1 if the prefetch is preparing for a write to the memory
5029 address, or a constant 0 otherwise.  Operand 2 is the expected degree of
5030 temporal locality of the data and is a value between 0 and 3, inclusive; 0
5031 means that the data has no temporal locality, so it need not be left in the
5032 cache after the access; 3 means that the data has a high degree of temporal
5033 locality and should be left in all levels of cache possible;  1 and 2 mean,
5034 respectively, a low or moderate degree of temporal locality.
5035
5036 Targets that do not support write prefetches or locality hints can ignore
5037 the values of operands 1 and 2.
5038
5039 @cindex @code{blockage} instruction pattern
5040 @item @samp{blockage}
5041
5042 This pattern defines a pseudo insn that prevents the instruction
5043 scheduler from moving instructions across the boundary defined by the
5044 blockage insn.  Normally an UNSPEC_VOLATILE pattern.
5045
5046 @cindex @code{memory_barrier} instruction pattern
5047 @item @samp{memory_barrier}
5048
5049 If the target memory model is not fully synchronous, then this pattern
5050 should be defined to an instruction that orders both loads and stores
5051 before the instruction with respect to loads and stores after the instruction.
5052 This pattern has no operands.
5053
5054 @cindex @code{sync_compare_and_swap@var{mode}} instruction pattern
5055 @item @samp{sync_compare_and_swap@var{mode}}
5056
5057 This pattern, if defined, emits code for an atomic compare-and-swap
5058 operation.  Operand 1 is the memory on which the atomic operation is
5059 performed.  Operand 2 is the ``old'' value to be compared against the
5060 current contents of the memory location.  Operand 3 is the ``new'' value
5061 to store in the memory if the compare succeeds.  Operand 0 is the result
5062 of the operation; it should contain the contents of the memory
5063 before the operation.  If the compare succeeds, this should obviously be
5064 a copy of operand 2.
5065
5066 This pattern must show that both operand 0 and operand 1 are modified.
5067
5068 This pattern must issue any memory barrier instructions such that all
5069 memory operations before the atomic operation occur before the atomic
5070 operation and all memory operations after the atomic operation occur
5071 after the atomic operation.
5072
5073 @cindex @code{sync_compare_and_swap_cc@var{mode}} instruction pattern
5074 @item @samp{sync_compare_and_swap_cc@var{mode}}
5075
5076 This pattern is just like @code{sync_compare_and_swap@var{mode}}, except
5077 it should act as if compare part of the compare-and-swap were issued via
5078 @code{cmp@var{m}}.  This comparison will only be used with @code{EQ} and
5079 @code{NE} branches and @code{setcc} operations.
5080
5081 Some targets do expose the success or failure of the compare-and-swap
5082 operation via the status flags.  Ideally we wouldn't need a separate
5083 named pattern in order to take advantage of this, but the combine pass
5084 does not handle patterns with multiple sets, which is required by
5085 definition for @code{sync_compare_and_swap@var{mode}}.
5086
5087 @cindex @code{sync_add@var{mode}} instruction pattern
5088 @cindex @code{sync_sub@var{mode}} instruction pattern
5089 @cindex @code{sync_ior@var{mode}} instruction pattern
5090 @cindex @code{sync_and@var{mode}} instruction pattern
5091 @cindex @code{sync_xor@var{mode}} instruction pattern
5092 @cindex @code{sync_nand@var{mode}} instruction pattern
5093 @item @samp{sync_add@var{mode}}, @samp{sync_sub@var{mode}}
5094 @itemx @samp{sync_ior@var{mode}}, @samp{sync_and@var{mode}}
5095 @itemx @samp{sync_xor@var{mode}}, @samp{sync_nand@var{mode}}
5096
5097 These patterns emit code for an atomic operation on memory.
5098 Operand 0 is the memory on which the atomic operation is performed.
5099 Operand 1 is the second operand to the binary operator.
5100
5101 The ``nand'' operation is @code{~op0 & op1}.
5102
5103 This pattern must issue any memory barrier instructions such that all
5104 memory operations before the atomic operation occur before the atomic
5105 operation and all memory operations after the atomic operation occur
5106 after the atomic operation.
5107
5108 If these patterns are not defined, the operation will be constructed
5109 from a compare-and-swap operation, if defined.
5110
5111 @cindex @code{sync_old_add@var{mode}} instruction pattern
5112 @cindex @code{sync_old_sub@var{mode}} instruction pattern
5113 @cindex @code{sync_old_ior@var{mode}} instruction pattern
5114 @cindex @code{sync_old_and@var{mode}} instruction pattern
5115 @cindex @code{sync_old_xor@var{mode}} instruction pattern
5116 @cindex @code{sync_old_nand@var{mode}} instruction pattern
5117 @item @samp{sync_old_add@var{mode}}, @samp{sync_old_sub@var{mode}}
5118 @itemx @samp{sync_old_ior@var{mode}}, @samp{sync_old_and@var{mode}}
5119 @itemx @samp{sync_old_xor@var{mode}}, @samp{sync_old_nand@var{mode}}
5120
5121 These patterns are emit code for an atomic operation on memory,
5122 and return the value that the memory contained before the operation.
5123 Operand 0 is the result value, operand 1 is the memory on which the
5124 atomic operation is performed, and operand 2 is the second operand
5125 to the binary operator.
5126
5127 This pattern must issue any memory barrier instructions such that all
5128 memory operations before the atomic operation occur before the atomic
5129 operation and all memory operations after the atomic operation occur
5130 after the atomic operation.
5131
5132 If these patterns are not defined, the operation will be constructed
5133 from a compare-and-swap operation, if defined.
5134
5135 @cindex @code{sync_new_add@var{mode}} instruction pattern
5136 @cindex @code{sync_new_sub@var{mode}} instruction pattern
5137 @cindex @code{sync_new_ior@var{mode}} instruction pattern
5138 @cindex @code{sync_new_and@var{mode}} instruction pattern
5139 @cindex @code{sync_new_xor@var{mode}} instruction pattern
5140 @cindex @code{sync_new_nand@var{mode}} instruction pattern
5141 @item @samp{sync_new_add@var{mode}}, @samp{sync_new_sub@var{mode}}
5142 @itemx @samp{sync_new_ior@var{mode}}, @samp{sync_new_and@var{mode}}
5143 @itemx @samp{sync_new_xor@var{mode}}, @samp{sync_new_nand@var{mode}}
5144
5145 These patterns are like their @code{sync_old_@var{op}} counterparts,
5146 except that they return the value that exists in the memory location
5147 after the operation, rather than before the operation.
5148
5149 @cindex @code{sync_lock_test_and_set@var{mode}} instruction pattern
5150 @item @samp{sync_lock_test_and_set@var{mode}}
5151
5152 This pattern takes two forms, based on the capabilities of the target.
5153 In either case, operand 0 is the result of the operand, operand 1 is
5154 the memory on which the atomic operation is performed, and operand 2
5155 is the value to set in the lock.
5156
5157 In the ideal case, this operation is an atomic exchange operation, in
5158 which the previous value in memory operand is copied into the result
5159 operand, and the value operand is stored in the memory operand.
5160
5161 For less capable targets, any value operand that is not the constant 1
5162 should be rejected with @code{FAIL}.  In this case the target may use
5163 an atomic test-and-set bit operation.  The result operand should contain
5164 1 if the bit was previously set and 0 if the bit was previously clear.
5165 The true contents of the memory operand are implementation defined.
5166
5167 This pattern must issue any memory barrier instructions such that the
5168 pattern as a whole acts as an acquire barrier, that is all memory
5169 operations after the pattern do not occur until the lock is acquired.
5170
5171 If this pattern is not defined, the operation will be constructed from
5172 a compare-and-swap operation, if defined.
5173
5174 @cindex @code{sync_lock_release@var{mode}} instruction pattern
5175 @item @samp{sync_lock_release@var{mode}}
5176
5177 This pattern, if defined, releases a lock set by
5178 @code{sync_lock_test_and_set@var{mode}}.  Operand 0 is the memory
5179 that contains the lock; operand 1 is the value to store in the lock.
5180
5181 If the target doesn't implement full semantics for
5182 @code{sync_lock_test_and_set@var{mode}}, any value operand which is not
5183 the constant 0 should be rejected with @code{FAIL}, and the true contents
5184 of the memory operand are implementation defined.
5185
5186 This pattern must issue any memory barrier instructions such that the
5187 pattern as a whole acts as a release barrier, that is the lock is
5188 released only after all previous memory operations have completed.
5189
5190 If this pattern is not defined, then a @code{memory_barrier} pattern
5191 will be emitted, followed by a store of the value to the memory operand.
5192
5193 @cindex @code{stack_protect_set} instruction pattern
5194 @item @samp{stack_protect_set}
5195
5196 This pattern, if defined, moves a @code{Pmode} value from the memory
5197 in operand 1 to the memory in operand 0 without leaving the value in
5198 a register afterward.  This is to avoid leaking the value some place
5199 that an attacker might use to rewrite the stack guard slot after
5200 having clobbered it.
5201
5202 If this pattern is not defined, then a plain move pattern is generated.
5203
5204 @cindex @code{stack_protect_test} instruction pattern
5205 @item @samp{stack_protect_test}
5206
5207 This pattern, if defined, compares a @code{Pmode} value from the
5208 memory in operand 1 with the memory in operand 0 without leaving the
5209 value in a register afterward and branches to operand 2 if the values
5210 weren't equal.
5211
5212 If this pattern is not defined, then a plain compare pattern and
5213 conditional branch pattern is used.
5214
5215 @cindex @code{clear_cache} instruction pattern
5216 @item @samp{clear_cache}
5217
5218 This pattern, if defined, flushes the instruction cache for a region of
5219 memory.  The region is bounded to by the Pmode pointers in operand 0
5220 inclusive and operand 1 exclusive.
5221
5222 If this pattern is not defined, a call to the library function
5223 @code{__clear_cache} is used.
5224
5225 @end table
5226
5227 @end ifset
5228 @c Each of the following nodes are wrapped in separate
5229 @c "@ifset INTERNALS" to work around memory limits for the default
5230 @c configuration in older tetex distributions.  Known to not work:
5231 @c tetex-1.0.7, known to work: tetex-2.0.2.
5232 @ifset INTERNALS
5233 @node Pattern Ordering
5234 @section When the Order of Patterns Matters
5235 @cindex Pattern Ordering
5236 @cindex Ordering of Patterns
5237
5238 Sometimes an insn can match more than one instruction pattern.  Then the
5239 pattern that appears first in the machine description is the one used.
5240 Therefore, more specific patterns (patterns that will match fewer things)
5241 and faster instructions (those that will produce better code when they
5242 do match) should usually go first in the description.
5243
5244 In some cases the effect of ordering the patterns can be used to hide
5245 a pattern when it is not valid.  For example, the 68000 has an
5246 instruction for converting a fullword to floating point and another
5247 for converting a byte to floating point.  An instruction converting
5248 an integer to floating point could match either one.  We put the
5249 pattern to convert the fullword first to make sure that one will
5250 be used rather than the other.  (Otherwise a large integer might
5251 be generated as a single-byte immediate quantity, which would not work.)
5252 Instead of using this pattern ordering it would be possible to make the
5253 pattern for convert-a-byte smart enough to deal properly with any
5254 constant value.
5255
5256 @end ifset
5257 @ifset INTERNALS
5258 @node Dependent Patterns
5259 @section Interdependence of Patterns
5260 @cindex Dependent Patterns
5261 @cindex Interdependence of Patterns
5262
5263 Every machine description must have a named pattern for each of the
5264 conditional branch names @samp{b@var{cond}}.  The recognition template
5265 must always have the form
5266
5267 @smallexample
5268 (set (pc)
5269      (if_then_else (@var{cond} (cc0) (const_int 0))
5270                    (label_ref (match_operand 0 "" ""))
5271                    (pc)))
5272 @end smallexample
5273
5274 @noindent
5275 In addition, every machine description must have an anonymous pattern
5276 for each of the possible reverse-conditional branches.  Their templates
5277 look like
5278
5279 @smallexample
5280 (set (pc)
5281      (if_then_else (@var{cond} (cc0) (const_int 0))
5282                    (pc)
5283                    (label_ref (match_operand 0 "" ""))))
5284 @end smallexample
5285
5286 @noindent
5287 They are necessary because jump optimization can turn direct-conditional
5288 branches into reverse-conditional branches.
5289
5290 It is often convenient to use the @code{match_operator} construct to
5291 reduce the number of patterns that must be specified for branches.  For
5292 example,
5293
5294 @smallexample
5295 (define_insn ""
5296   [(set (pc)
5297         (if_then_else (match_operator 0 "comparison_operator"
5298                                       [(cc0) (const_int 0)])
5299                       (pc)
5300                       (label_ref (match_operand 1 "" ""))))]
5301   "@var{condition}"
5302   "@dots{}")
5303 @end smallexample
5304
5305 In some cases machines support instructions identical except for the
5306 machine mode of one or more operands.  For example, there may be
5307 ``sign-extend halfword'' and ``sign-extend byte'' instructions whose
5308 patterns are
5309
5310 @smallexample
5311 (set (match_operand:SI 0 @dots{})
5312      (extend:SI (match_operand:HI 1 @dots{})))
5313
5314 (set (match_operand:SI 0 @dots{})
5315      (extend:SI (match_operand:QI 1 @dots{})))
5316 @end smallexample
5317
5318 @noindent
5319 Constant integers do not specify a machine mode, so an instruction to
5320 extend a constant value could match either pattern.  The pattern it
5321 actually will match is the one that appears first in the file.  For correct
5322 results, this must be the one for the widest possible mode (@code{HImode},
5323 here).  If the pattern matches the @code{QImode} instruction, the results
5324 will be incorrect if the constant value does not actually fit that mode.
5325
5326 Such instructions to extend constants are rarely generated because they are
5327 optimized away, but they do occasionally happen in nonoptimized
5328 compilations.
5329
5330 If a constraint in a pattern allows a constant, the reload pass may
5331 replace a register with a constant permitted by the constraint in some
5332 cases.  Similarly for memory references.  Because of this substitution,
5333 you should not provide separate patterns for increment and decrement
5334 instructions.  Instead, they should be generated from the same pattern
5335 that supports register-register add insns by examining the operands and
5336 generating the appropriate machine instruction.
5337
5338 @end ifset
5339 @ifset INTERNALS
5340 @node Jump Patterns
5341 @section Defining Jump Instruction Patterns
5342 @cindex jump instruction patterns
5343 @cindex defining jump instruction patterns
5344
5345 For most machines, GCC assumes that the machine has a condition code.
5346 A comparison insn sets the condition code, recording the results of both
5347 signed and unsigned comparison of the given operands.  A separate branch
5348 insn tests the condition code and branches or not according its value.
5349 The branch insns come in distinct signed and unsigned flavors.  Many
5350 common machines, such as the VAX, the 68000 and the 32000, work this
5351 way.
5352
5353 Some machines have distinct signed and unsigned compare instructions, and
5354 only one set of conditional branch instructions.  The easiest way to handle
5355 these machines is to treat them just like the others until the final stage
5356 where assembly code is written.  At this time, when outputting code for the
5357 compare instruction, peek ahead at the following branch using
5358 @code{next_cc0_user (insn)}.  (The variable @code{insn} refers to the insn
5359 being output, in the output-writing code in an instruction pattern.)  If
5360 the RTL says that is an unsigned branch, output an unsigned compare;
5361 otherwise output a signed compare.  When the branch itself is output, you
5362 can treat signed and unsigned branches identically.
5363
5364 The reason you can do this is that GCC always generates a pair of
5365 consecutive RTL insns, possibly separated by @code{note} insns, one to
5366 set the condition code and one to test it, and keeps the pair inviolate
5367 until the end.
5368
5369 To go with this technique, you must define the machine-description macro
5370 @code{NOTICE_UPDATE_CC} to do @code{CC_STATUS_INIT}; in other words, no
5371 compare instruction is superfluous.
5372
5373 Some machines have compare-and-branch instructions and no condition code.
5374 A similar technique works for them.  When it is time to ``output'' a
5375 compare instruction, record its operands in two static variables.  When
5376 outputting the branch-on-condition-code instruction that follows, actually
5377 output a compare-and-branch instruction that uses the remembered operands.
5378
5379 It also works to define patterns for compare-and-branch instructions.
5380 In optimizing compilation, the pair of compare and branch instructions
5381 will be combined according to these patterns.  But this does not happen
5382 if optimization is not requested.  So you must use one of the solutions
5383 above in addition to any special patterns you define.
5384
5385 In many RISC machines, most instructions do not affect the condition
5386 code and there may not even be a separate condition code register.  On
5387 these machines, the restriction that the definition and use of the
5388 condition code be adjacent insns is not necessary and can prevent
5389 important optimizations.  For example, on the IBM RS/6000, there is a
5390 delay for taken branches unless the condition code register is set three
5391 instructions earlier than the conditional branch.  The instruction
5392 scheduler cannot perform this optimization if it is not permitted to
5393 separate the definition and use of the condition code register.
5394
5395 On these machines, do not use @code{(cc0)}, but instead use a register
5396 to represent the condition code.  If there is a specific condition code
5397 register in the machine, use a hard register.  If the condition code or
5398 comparison result can be placed in any general register, or if there are
5399 multiple condition registers, use a pseudo register.
5400
5401 @findex prev_cc0_setter
5402 @findex next_cc0_user
5403 On some machines, the type of branch instruction generated may depend on
5404 the way the condition code was produced; for example, on the 68k and
5405 SPARC, setting the condition code directly from an add or subtract
5406 instruction does not clear the overflow bit the way that a test
5407 instruction does, so a different branch instruction must be used for
5408 some conditional branches.  For machines that use @code{(cc0)}, the set
5409 and use of the condition code must be adjacent (separated only by
5410 @code{note} insns) allowing flags in @code{cc_status} to be used.
5411 (@xref{Condition Code}.)  Also, the comparison and branch insns can be
5412 located from each other by using the functions @code{prev_cc0_setter}
5413 and @code{next_cc0_user}.
5414
5415 However, this is not true on machines that do not use @code{(cc0)}.  On
5416 those machines, no assumptions can be made about the adjacency of the
5417 compare and branch insns and the above methods cannot be used.  Instead,
5418 we use the machine mode of the condition code register to record
5419 different formats of the condition code register.
5420
5421 Registers used to store the condition code value should have a mode that
5422 is in class @code{MODE_CC}.  Normally, it will be @code{CCmode}.  If
5423 additional modes are required (as for the add example mentioned above in
5424 the SPARC), define them in @file{@var{machine}-modes.def}
5425 (@pxref{Condition Code}).  Also define @code{SELECT_CC_MODE} to choose
5426 a mode given an operand of a compare.
5427
5428 If it is known during RTL generation that a different mode will be
5429 required (for example, if the machine has separate compare instructions
5430 for signed and unsigned quantities, like most IBM processors), they can
5431 be specified at that time.
5432
5433 If the cases that require different modes would be made by instruction
5434 combination, the macro @code{SELECT_CC_MODE} determines which machine
5435 mode should be used for the comparison result.  The patterns should be
5436 written using that mode.  To support the case of the add on the SPARC
5437 discussed above, we have the pattern
5438
5439 @smallexample
5440 (define_insn ""
5441   [(set (reg:CC_NOOV 0)
5442         (compare:CC_NOOV
5443           (plus:SI (match_operand:SI 0 "register_operand" "%r")
5444                    (match_operand:SI 1 "arith_operand" "rI"))
5445           (const_int 0)))]
5446   ""
5447   "@dots{}")
5448 @end smallexample
5449
5450 The @code{SELECT_CC_MODE} macro on the SPARC returns @code{CC_NOOVmode}
5451 for comparisons whose argument is a @code{plus}.
5452
5453 @end ifset
5454 @ifset INTERNALS
5455 @node Looping Patterns
5456 @section Defining Looping Instruction Patterns
5457 @cindex looping instruction patterns
5458 @cindex defining looping instruction patterns
5459
5460 Some machines have special jump instructions that can be utilized to
5461 make loops more efficient.  A common example is the 68000 @samp{dbra}
5462 instruction which performs a decrement of a register and a branch if the
5463 result was greater than zero.  Other machines, in particular digital
5464 signal processors (DSPs), have special block repeat instructions to
5465 provide low-overhead loop support.  For example, the TI TMS320C3x/C4x
5466 DSPs have a block repeat instruction that loads special registers to
5467 mark the top and end of a loop and to count the number of loop
5468 iterations.  This avoids the need for fetching and executing a
5469 @samp{dbra}-like instruction and avoids pipeline stalls associated with
5470 the jump.
5471
5472 GCC has three special named patterns to support low overhead looping.
5473 They are @samp{decrement_and_branch_until_zero}, @samp{doloop_begin},
5474 and @samp{doloop_end}.  The first pattern,
5475 @samp{decrement_and_branch_until_zero}, is not emitted during RTL
5476 generation but may be emitted during the instruction combination phase.
5477 This requires the assistance of the loop optimizer, using information
5478 collected during strength reduction, to reverse a loop to count down to
5479 zero.  Some targets also require the loop optimizer to add a
5480 @code{REG_NONNEG} note to indicate that the iteration count is always
5481 positive.  This is needed if the target performs a signed loop
5482 termination test.  For example, the 68000 uses a pattern similar to the
5483 following for its @code{dbra} instruction:
5484
5485 @smallexample
5486 @group
5487 (define_insn "decrement_and_branch_until_zero"
5488   [(set (pc)
5489         (if_then_else
5490           (ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
5491                        (const_int -1))
5492               (const_int 0))
5493           (label_ref (match_operand 1 "" ""))
5494           (pc)))
5495    (set (match_dup 0)
5496         (plus:SI (match_dup 0)
5497                  (const_int -1)))]
5498   "find_reg_note (insn, REG_NONNEG, 0)"
5499   "@dots{}")
5500 @end group
5501 @end smallexample
5502
5503 Note that since the insn is both a jump insn and has an output, it must
5504 deal with its own reloads, hence the `m' constraints.  Also note that
5505 since this insn is generated by the instruction combination phase
5506 combining two sequential insns together into an implicit parallel insn,
5507 the iteration counter needs to be biased by the same amount as the
5508 decrement operation, in this case @minus{}1.  Note that the following similar
5509 pattern will not be matched by the combiner.
5510
5511 @smallexample
5512 @group
5513 (define_insn "decrement_and_branch_until_zero"
5514   [(set (pc)
5515         (if_then_else
5516           (ge (match_operand:SI 0 "general_operand" "+d*am")
5517               (const_int 1))
5518           (label_ref (match_operand 1 "" ""))
5519           (pc)))
5520    (set (match_dup 0)
5521         (plus:SI (match_dup 0)
5522                  (const_int -1)))]
5523   "find_reg_note (insn, REG_NONNEG, 0)"
5524   "@dots{}")
5525 @end group
5526 @end smallexample
5527
5528 The other two special looping patterns, @samp{doloop_begin} and
5529 @samp{doloop_end}, are emitted by the loop optimizer for certain
5530 well-behaved loops with a finite number of loop iterations using
5531 information collected during strength reduction.
5532
5533 The @samp{doloop_end} pattern describes the actual looping instruction
5534 (or the implicit looping operation) and the @samp{doloop_begin} pattern
5535 is an optional companion pattern that can be used for initialization
5536 needed for some low-overhead looping instructions.
5537
5538 Note that some machines require the actual looping instruction to be
5539 emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs).  Emitting
5540 the true RTL for a looping instruction at the top of the loop can cause
5541 problems with flow analysis.  So instead, a dummy @code{doloop} insn is
5542 emitted at the end of the loop.  The machine dependent reorg pass checks
5543 for the presence of this @code{doloop} insn and then searches back to
5544 the top of the loop, where it inserts the true looping insn (provided
5545 there are no instructions in the loop which would cause problems).  Any
5546 additional labels can be emitted at this point.  In addition, if the
5547 desired special iteration counter register was not allocated, this
5548 machine dependent reorg pass could emit a traditional compare and jump
5549 instruction pair.
5550
5551 The essential difference between the
5552 @samp{decrement_and_branch_until_zero} and the @samp{doloop_end}
5553 patterns is that the loop optimizer allocates an additional pseudo
5554 register for the latter as an iteration counter.  This pseudo register
5555 cannot be used within the loop (i.e., general induction variables cannot
5556 be derived from it), however, in many cases the loop induction variable
5557 may become redundant and removed by the flow pass.
5558
5559
5560 @end ifset
5561 @ifset INTERNALS
5562 @node Insn Canonicalizations
5563 @section Canonicalization of Instructions
5564 @cindex canonicalization of instructions
5565 @cindex insn canonicalization
5566
5567 There are often cases where multiple RTL expressions could represent an
5568 operation performed by a single machine instruction.  This situation is
5569 most commonly encountered with logical, branch, and multiply-accumulate
5570 instructions.  In such cases, the compiler attempts to convert these
5571 multiple RTL expressions into a single canonical form to reduce the
5572 number of insn patterns required.
5573
5574 In addition to algebraic simplifications, following canonicalizations
5575 are performed:
5576
5577 @itemize @bullet
5578 @item
5579 For commutative and comparison operators, a constant is always made the
5580 second operand.  If a machine only supports a constant as the second
5581 operand, only patterns that match a constant in the second operand need
5582 be supplied.
5583
5584 @item
5585 For associative operators, a sequence of operators will always chain
5586 to the left; for instance, only the left operand of an integer @code{plus}
5587 can itself be a @code{plus}.  @code{and}, @code{ior}, @code{xor},
5588 @code{plus}, @code{mult}, @code{smin}, @code{smax}, @code{umin}, and
5589 @code{umax} are associative when applied to integers, and sometimes to
5590 floating-point.
5591
5592 @item
5593 @cindex @code{neg}, canonicalization of
5594 @cindex @code{not}, canonicalization of
5595 @cindex @code{mult}, canonicalization of
5596 @cindex @code{plus}, canonicalization of
5597 @cindex @code{minus}, canonicalization of
5598 For these operators, if only one operand is a @code{neg}, @code{not},
5599 @code{mult}, @code{plus}, or @code{minus} expression, it will be the
5600 first operand.
5601
5602 @item
5603 In combinations of @code{neg}, @code{mult}, @code{plus}, and
5604 @code{minus}, the @code{neg} operations (if any) will be moved inside
5605 the operations as far as possible.  For instance,
5606 @code{(neg (mult A B))} is canonicalized as @code{(mult (neg A) B)}, but
5607 @code{(plus (mult (neg A) B) C)} is canonicalized as
5608 @code{(minus A (mult B C))}.
5609
5610 @cindex @code{compare}, canonicalization of
5611 @item
5612 For the @code{compare} operator, a constant is always the second operand
5613 on machines where @code{cc0} is used (@pxref{Jump Patterns}).  On other
5614 machines, there are rare cases where the compiler might want to construct
5615 a @code{compare} with a constant as the first operand.  However, these
5616 cases are not common enough for it to be worthwhile to provide a pattern
5617 matching a constant as the first operand unless the machine actually has
5618 such an instruction.
5619
5620 An operand of @code{neg}, @code{not}, @code{mult}, @code{plus}, or
5621 @code{minus} is made the first operand under the same conditions as
5622 above.
5623
5624 @item
5625 @code{(ltu (plus @var{a} @var{b}) @var{b})} is converted to
5626 @code{(ltu (plus @var{a} @var{b}) @var{a})}. Likewise with @code{geu} instead
5627 of @code{ltu}.
5628
5629 @item
5630 @code{(minus @var{x} (const_int @var{n}))} is converted to
5631 @code{(plus @var{x} (const_int @var{-n}))}.
5632
5633 @item
5634 Within address computations (i.e., inside @code{mem}), a left shift is
5635 converted into the appropriate multiplication by a power of two.
5636
5637 @cindex @code{ior}, canonicalization of
5638 @cindex @code{and}, canonicalization of
5639 @cindex De Morgan's law
5640 @item
5641 De Morgan's Law is used to move bitwise negation inside a bitwise
5642 logical-and or logical-or operation.  If this results in only one
5643 operand being a @code{not} expression, it will be the first one.
5644
5645 A machine that has an instruction that performs a bitwise logical-and of one
5646 operand with the bitwise negation of the other should specify the pattern
5647 for that instruction as
5648
5649 @smallexample
5650 (define_insn ""
5651   [(set (match_operand:@var{m} 0 @dots{})
5652         (and:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
5653                      (match_operand:@var{m} 2 @dots{})))]
5654   "@dots{}"
5655   "@dots{}")
5656 @end smallexample
5657
5658 @noindent
5659 Similarly, a pattern for a ``NAND'' instruction should be written
5660
5661 @smallexample
5662 (define_insn ""
5663   [(set (match_operand:@var{m} 0 @dots{})
5664         (ior:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
5665                      (not:@var{m} (match_operand:@var{m} 2 @dots{}))))]
5666   "@dots{}"
5667   "@dots{}")
5668 @end smallexample
5669
5670 In both cases, it is not necessary to include patterns for the many
5671 logically equivalent RTL expressions.
5672
5673 @cindex @code{xor}, canonicalization of
5674 @item
5675 The only possible RTL expressions involving both bitwise exclusive-or
5676 and bitwise negation are @code{(xor:@var{m} @var{x} @var{y})}
5677 and @code{(not:@var{m} (xor:@var{m} @var{x} @var{y}))}.
5678
5679 @item
5680 The sum of three items, one of which is a constant, will only appear in
5681 the form
5682
5683 @smallexample
5684 (plus:@var{m} (plus:@var{m} @var{x} @var{y}) @var{constant})
5685 @end smallexample
5686
5687 @item
5688 On machines that do not use @code{cc0},
5689 @code{(compare @var{x} (const_int 0))} will be converted to
5690 @var{x}.
5691
5692 @cindex @code{zero_extract}, canonicalization of
5693 @cindex @code{sign_extract}, canonicalization of
5694 @item
5695 Equality comparisons of a group of bits (usually a single bit) with zero
5696 will be written using @code{zero_extract} rather than the equivalent
5697 @code{and} or @code{sign_extract} operations.
5698
5699 @end itemize
5700
5701 Further canonicalization rules are defined in the function
5702 @code{commutative_operand_precedence} in @file{gcc/rtlanal.c}.
5703
5704 @end ifset
5705 @ifset INTERNALS
5706 @node Expander Definitions
5707 @section Defining RTL Sequences for Code Generation
5708 @cindex expander definitions
5709 @cindex code generation RTL sequences
5710 @cindex defining RTL sequences for code generation
5711
5712 On some target machines, some standard pattern names for RTL generation
5713 cannot be handled with single insn, but a sequence of RTL insns can
5714 represent them.  For these target machines, you can write a
5715 @code{define_expand} to specify how to generate the sequence of RTL@.
5716
5717 @findex define_expand
5718 A @code{define_expand} is an RTL expression that looks almost like a
5719 @code{define_insn}; but, unlike the latter, a @code{define_expand} is used
5720 only for RTL generation and it can produce more than one RTL insn.
5721
5722 A @code{define_expand} RTX has four operands:
5723
5724 @itemize @bullet
5725 @item
5726 The name.  Each @code{define_expand} must have a name, since the only
5727 use for it is to refer to it by name.
5728
5729 @item
5730 The RTL template.  This is a vector of RTL expressions representing
5731 a sequence of separate instructions.  Unlike @code{define_insn}, there
5732 is no implicit surrounding @code{PARALLEL}.
5733
5734 @item
5735 The condition, a string containing a C expression.  This expression is
5736 used to express how the availability of this pattern depends on
5737 subclasses of target machine, selected by command-line options when GCC
5738 is run.  This is just like the condition of a @code{define_insn} that
5739 has a standard name.  Therefore, the condition (if present) may not
5740 depend on the data in the insn being matched, but only the
5741 target-machine-type flags.  The compiler needs to test these conditions
5742 during initialization in order to learn exactly which named instructions
5743 are available in a particular run.
5744
5745 @item
5746 The preparation statements, a string containing zero or more C
5747 statements which are to be executed before RTL code is generated from
5748 the RTL template.
5749
5750 Usually these statements prepare temporary registers for use as
5751 internal operands in the RTL template, but they can also generate RTL
5752 insns directly by calling routines such as @code{emit_insn}, etc.
5753 Any such insns precede the ones that come from the RTL template.
5754 @end itemize
5755
5756 Every RTL insn emitted by a @code{define_expand} must match some
5757 @code{define_insn} in the machine description.  Otherwise, the compiler
5758 will crash when trying to generate code for the insn or trying to optimize
5759 it.
5760
5761 The RTL template, in addition to controlling generation of RTL insns,
5762 also describes the operands that need to be specified when this pattern
5763 is used.  In particular, it gives a predicate for each operand.
5764
5765 A true operand, which needs to be specified in order to generate RTL from
5766 the pattern, should be described with a @code{match_operand} in its first
5767 occurrence in the RTL template.  This enters information on the operand's
5768 predicate into the tables that record such things.  GCC uses the
5769 information to preload the operand into a register if that is required for
5770 valid RTL code.  If the operand is referred to more than once, subsequent
5771 references should use @code{match_dup}.
5772
5773 The RTL template may also refer to internal ``operands'' which are
5774 temporary registers or labels used only within the sequence made by the
5775 @code{define_expand}.  Internal operands are substituted into the RTL
5776 template with @code{match_dup}, never with @code{match_operand}.  The
5777 values of the internal operands are not passed in as arguments by the
5778 compiler when it requests use of this pattern.  Instead, they are computed
5779 within the pattern, in the preparation statements.  These statements
5780 compute the values and store them into the appropriate elements of
5781 @code{operands} so that @code{match_dup} can find them.
5782
5783 There are two special macros defined for use in the preparation statements:
5784 @code{DONE} and @code{FAIL}.  Use them with a following semicolon,
5785 as a statement.
5786
5787 @table @code
5788
5789 @findex DONE
5790 @item DONE
5791 Use the @code{DONE} macro to end RTL generation for the pattern.  The
5792 only RTL insns resulting from the pattern on this occasion will be
5793 those already emitted by explicit calls to @code{emit_insn} within the
5794 preparation statements; the RTL template will not be generated.
5795
5796 @findex FAIL
5797 @item FAIL
5798 Make the pattern fail on this occasion.  When a pattern fails, it means
5799 that the pattern was not truly available.  The calling routines in the
5800 compiler will try other strategies for code generation using other patterns.
5801
5802 Failure is currently supported only for binary (addition, multiplication,
5803 shifting, etc.) and bit-field (@code{extv}, @code{extzv}, and @code{insv})
5804 operations.
5805 @end table
5806
5807 If the preparation falls through (invokes neither @code{DONE} nor
5808 @code{FAIL}), then the @code{define_expand} acts like a
5809 @code{define_insn} in that the RTL template is used to generate the
5810 insn.
5811
5812 The RTL template is not used for matching, only for generating the
5813 initial insn list.  If the preparation statement always invokes
5814 @code{DONE} or @code{FAIL}, the RTL template may be reduced to a simple
5815 list of operands, such as this example:
5816
5817 @smallexample
5818 @group
5819 (define_expand "addsi3"
5820   [(match_operand:SI 0 "register_operand" "")
5821    (match_operand:SI 1 "register_operand" "")
5822    (match_operand:SI 2 "register_operand" "")]
5823 @end group
5824 @group
5825   ""
5826   "
5827 @{
5828   handle_add (operands[0], operands[1], operands[2]);
5829   DONE;
5830 @}")
5831 @end group
5832 @end smallexample
5833
5834 Here is an example, the definition of left-shift for the SPUR chip:
5835
5836 @smallexample
5837 @group
5838 (define_expand "ashlsi3"
5839   [(set (match_operand:SI 0 "register_operand" "")
5840         (ashift:SI
5841 @end group
5842 @group
5843           (match_operand:SI 1 "register_operand" "")
5844           (match_operand:SI 2 "nonmemory_operand" "")))]
5845   ""
5846   "
5847 @end group
5848 @end smallexample
5849
5850 @smallexample
5851 @group
5852 @{
5853   if (GET_CODE (operands[2]) != CONST_INT
5854       || (unsigned) INTVAL (operands[2]) > 3)
5855     FAIL;
5856 @}")
5857 @end group
5858 @end smallexample
5859
5860 @noindent
5861 This example uses @code{define_expand} so that it can generate an RTL insn
5862 for shifting when the shift-count is in the supported range of 0 to 3 but
5863 fail in other cases where machine insns aren't available.  When it fails,
5864 the compiler tries another strategy using different patterns (such as, a
5865 library call).
5866
5867 If the compiler were able to handle nontrivial condition-strings in
5868 patterns with names, then it would be possible to use a
5869 @code{define_insn} in that case.  Here is another case (zero-extension
5870 on the 68000) which makes more use of the power of @code{define_expand}:
5871
5872 @smallexample
5873 (define_expand "zero_extendhisi2"
5874   [(set (match_operand:SI 0 "general_operand" "")
5875         (const_int 0))
5876    (set (strict_low_part
5877           (subreg:HI
5878             (match_dup 0)
5879             0))
5880         (match_operand:HI 1 "general_operand" ""))]
5881   ""
5882   "operands[1] = make_safe_from (operands[1], operands[0]);")
5883 @end smallexample
5884
5885 @noindent
5886 @findex make_safe_from
5887 Here two RTL insns are generated, one to clear the entire output operand
5888 and the other to copy the input operand into its low half.  This sequence
5889 is incorrect if the input operand refers to [the old value of] the output
5890 operand, so the preparation statement makes sure this isn't so.  The
5891 function @code{make_safe_from} copies the @code{operands[1]} into a
5892 temporary register if it refers to @code{operands[0]}.  It does this
5893 by emitting another RTL insn.
5894
5895 Finally, a third example shows the use of an internal operand.
5896 Zero-extension on the SPUR chip is done by @code{and}-ing the result
5897 against a halfword mask.  But this mask cannot be represented by a
5898 @code{const_int} because the constant value is too large to be legitimate
5899 on this machine.  So it must be copied into a register with
5900 @code{force_reg} and then the register used in the @code{and}.
5901
5902 @smallexample
5903 (define_expand "zero_extendhisi2"
5904   [(set (match_operand:SI 0 "register_operand" "")
5905         (and:SI (subreg:SI
5906                   (match_operand:HI 1 "register_operand" "")
5907                   0)
5908                 (match_dup 2)))]
5909   ""
5910   "operands[2]
5911      = force_reg (SImode, GEN_INT (65535)); ")
5912 @end smallexample
5913
5914 @emph{Note:} If the @code{define_expand} is used to serve a
5915 standard binary or unary arithmetic operation or a bit-field operation,
5916 then the last insn it generates must not be a @code{code_label},
5917 @code{barrier} or @code{note}.  It must be an @code{insn},
5918 @code{jump_insn} or @code{call_insn}.  If you don't need a real insn
5919 at the end, emit an insn to copy the result of the operation into
5920 itself.  Such an insn will generate no code, but it can avoid problems
5921 in the compiler.
5922
5923 @end ifset
5924 @ifset INTERNALS
5925 @node Insn Splitting
5926 @section Defining How to Split Instructions
5927 @cindex insn splitting
5928 @cindex instruction splitting
5929 @cindex splitting instructions
5930
5931 There are two cases where you should specify how to split a pattern
5932 into multiple insns.  On machines that have instructions requiring
5933 delay slots (@pxref{Delay Slots}) or that have instructions whose
5934 output is not available for multiple cycles (@pxref{Processor pipeline
5935 description}), the compiler phases that optimize these cases need to
5936 be able to move insns into one-instruction delay slots.  However, some
5937 insns may generate more than one machine instruction.  These insns
5938 cannot be placed into a delay slot.
5939
5940 Often you can rewrite the single insn as a list of individual insns,
5941 each corresponding to one machine instruction.  The disadvantage of
5942 doing so is that it will cause the compilation to be slower and require
5943 more space.  If the resulting insns are too complex, it may also
5944 suppress some optimizations.  The compiler splits the insn if there is a
5945 reason to believe that it might improve instruction or delay slot
5946 scheduling.
5947
5948 The insn combiner phase also splits putative insns.  If three insns are
5949 merged into one insn with a complex expression that cannot be matched by
5950 some @code{define_insn} pattern, the combiner phase attempts to split
5951 the complex pattern into two insns that are recognized.  Usually it can
5952 break the complex pattern into two patterns by splitting out some
5953 subexpression.  However, in some other cases, such as performing an
5954 addition of a large constant in two insns on a RISC machine, the way to
5955 split the addition into two insns is machine-dependent.
5956
5957 @findex define_split
5958 The @code{define_split} definition tells the compiler how to split a
5959 complex insn into several simpler insns.  It looks like this:
5960
5961 @smallexample
5962 (define_split
5963   [@var{insn-pattern}]
5964   "@var{condition}"
5965   [@var{new-insn-pattern-1}
5966    @var{new-insn-pattern-2}
5967    @dots{}]
5968   "@var{preparation-statements}")
5969 @end smallexample
5970
5971 @var{insn-pattern} is a pattern that needs to be split and
5972 @var{condition} is the final condition to be tested, as in a
5973 @code{define_insn}.  When an insn matching @var{insn-pattern} and
5974 satisfying @var{condition} is found, it is replaced in the insn list
5975 with the insns given by @var{new-insn-pattern-1},
5976 @var{new-insn-pattern-2}, etc.
5977
5978 The @var{preparation-statements} are similar to those statements that
5979 are specified for @code{define_expand} (@pxref{Expander Definitions})
5980 and are executed before the new RTL is generated to prepare for the
5981 generated code or emit some insns whose pattern is not fixed.  Unlike
5982 those in @code{define_expand}, however, these statements must not
5983 generate any new pseudo-registers.  Once reload has completed, they also
5984 must not allocate any space in the stack frame.
5985
5986 Patterns are matched against @var{insn-pattern} in two different
5987 circumstances.  If an insn needs to be split for delay slot scheduling
5988 or insn scheduling, the insn is already known to be valid, which means
5989 that it must have been matched by some @code{define_insn} and, if
5990 @code{reload_completed} is nonzero, is known to satisfy the constraints
5991 of that @code{define_insn}.  In that case, the new insn patterns must
5992 also be insns that are matched by some @code{define_insn} and, if
5993 @code{reload_completed} is nonzero, must also satisfy the constraints
5994 of those definitions.
5995
5996 As an example of this usage of @code{define_split}, consider the following
5997 example from @file{a29k.md}, which splits a @code{sign_extend} from
5998 @code{HImode} to @code{SImode} into a pair of shift insns:
5999
6000 @smallexample
6001 (define_split
6002   [(set (match_operand:SI 0 "gen_reg_operand" "")
6003         (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
6004   ""
6005   [(set (match_dup 0)
6006         (ashift:SI (match_dup 1)
6007                    (const_int 16)))
6008    (set (match_dup 0)
6009         (ashiftrt:SI (match_dup 0)
6010                      (const_int 16)))]
6011   "
6012 @{ operands[1] = gen_lowpart (SImode, operands[1]); @}")
6013 @end smallexample
6014
6015 When the combiner phase tries to split an insn pattern, it is always the
6016 case that the pattern is @emph{not} matched by any @code{define_insn}.
6017 The combiner pass first tries to split a single @code{set} expression
6018 and then the same @code{set} expression inside a @code{parallel}, but
6019 followed by a @code{clobber} of a pseudo-reg to use as a scratch
6020 register.  In these cases, the combiner expects exactly two new insn
6021 patterns to be generated.  It will verify that these patterns match some
6022 @code{define_insn} definitions, so you need not do this test in the
6023 @code{define_split} (of course, there is no point in writing a
6024 @code{define_split} that will never produce insns that match).
6025
6026 Here is an example of this use of @code{define_split}, taken from
6027 @file{rs6000.md}:
6028
6029 @smallexample
6030 (define_split
6031   [(set (match_operand:SI 0 "gen_reg_operand" "")
6032         (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
6033                  (match_operand:SI 2 "non_add_cint_operand" "")))]
6034   ""
6035   [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
6036    (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
6037 "
6038 @{
6039   int low = INTVAL (operands[2]) & 0xffff;
6040   int high = (unsigned) INTVAL (operands[2]) >> 16;
6041
6042   if (low & 0x8000)
6043     high++, low |= 0xffff0000;
6044
6045   operands[3] = GEN_INT (high << 16);
6046   operands[4] = GEN_INT (low);
6047 @}")
6048 @end smallexample
6049
6050 Here the predicate @code{non_add_cint_operand} matches any
6051 @code{const_int} that is @emph{not} a valid operand of a single add
6052 insn.  The add with the smaller displacement is written so that it
6053 can be substituted into the address of a subsequent operation.
6054
6055 An example that uses a scratch register, from the same file, generates
6056 an equality comparison of a register and a large constant:
6057
6058 @smallexample
6059 (define_split
6060   [(set (match_operand:CC 0 "cc_reg_operand" "")
6061         (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
6062                     (match_operand:SI 2 "non_short_cint_operand" "")))
6063    (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
6064   "find_single_use (operands[0], insn, 0)
6065    && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
6066        || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
6067   [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
6068    (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
6069   "
6070 @{
6071   /* @r{Get the constant we are comparing against, C, and see what it
6072      looks like sign-extended to 16 bits.  Then see what constant
6073      could be XOR'ed with C to get the sign-extended value.}  */
6074
6075   int c = INTVAL (operands[2]);
6076   int sextc = (c << 16) >> 16;
6077   int xorv = c ^ sextc;
6078
6079   operands[4] = GEN_INT (xorv);
6080   operands[5] = GEN_INT (sextc);
6081 @}")
6082 @end smallexample
6083
6084 To avoid confusion, don't write a single @code{define_split} that
6085 accepts some insns that match some @code{define_insn} as well as some
6086 insns that don't.  Instead, write two separate @code{define_split}
6087 definitions, one for the insns that are valid and one for the insns that
6088 are not valid.
6089
6090 The splitter is allowed to split jump instructions into sequence of
6091 jumps or create new jumps in while splitting non-jump instructions.  As
6092 the central flowgraph and branch prediction information needs to be updated,
6093 several restriction apply.
6094
6095 Splitting of jump instruction into sequence that over by another jump
6096 instruction is always valid, as compiler expect identical behavior of new
6097 jump.  When new sequence contains multiple jump instructions or new labels,
6098 more assistance is needed.  Splitter is required to create only unconditional
6099 jumps, or simple conditional jump instructions.  Additionally it must attach a
6100 @code{REG_BR_PROB} note to each conditional jump.  A global variable
6101 @code{split_branch_probability} holds the probability of the original branch in case
6102 it was an simple conditional jump, @minus{}1 otherwise.  To simplify
6103 recomputing of edge frequencies, the new sequence is required to have only
6104 forward jumps to the newly created labels.
6105
6106 @findex define_insn_and_split
6107 For the common case where the pattern of a define_split exactly matches the
6108 pattern of a define_insn, use @code{define_insn_and_split}.  It looks like
6109 this:
6110
6111 @smallexample
6112 (define_insn_and_split
6113   [@var{insn-pattern}]
6114   "@var{condition}"
6115   "@var{output-template}"
6116   "@var{split-condition}"
6117   [@var{new-insn-pattern-1}
6118    @var{new-insn-pattern-2}
6119    @dots{}]
6120   "@var{preparation-statements}"
6121   [@var{insn-attributes}])
6122
6123 @end smallexample
6124
6125 @var{insn-pattern}, @var{condition}, @var{output-template}, and
6126 @var{insn-attributes} are used as in @code{define_insn}.  The
6127 @var{new-insn-pattern} vector and the @var{preparation-statements} are used as
6128 in a @code{define_split}.  The @var{split-condition} is also used as in
6129 @code{define_split}, with the additional behavior that if the condition starts
6130 with @samp{&&}, the condition used for the split will be the constructed as a
6131 logical ``and'' of the split condition with the insn condition.  For example,
6132 from i386.md:
6133
6134 @smallexample
6135 (define_insn_and_split "zero_extendhisi2_and"
6136   [(set (match_operand:SI 0 "register_operand" "=r")
6137      (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
6138    (clobber (reg:CC 17))]
6139   "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
6140   "#"
6141   "&& reload_completed"
6142   [(parallel [(set (match_dup 0)
6143                    (and:SI (match_dup 0) (const_int 65535)))
6144               (clobber (reg:CC 17))])]
6145   ""
6146   [(set_attr "type" "alu1")])
6147
6148 @end smallexample
6149
6150 In this case, the actual split condition will be
6151 @samp{TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed}.
6152
6153 The @code{define_insn_and_split} construction provides exactly the same
6154 functionality as two separate @code{define_insn} and @code{define_split}
6155 patterns.  It exists for compactness, and as a maintenance tool to prevent
6156 having to ensure the two patterns' templates match.
6157
6158 @end ifset
6159 @ifset INTERNALS
6160 @node Including Patterns
6161 @section Including Patterns in Machine Descriptions.
6162 @cindex insn includes
6163
6164 @findex include
6165 The @code{include} pattern tells the compiler tools where to
6166 look for patterns that are in files other than in the file
6167 @file{.md}.  This is used only at build time and there is no preprocessing allowed.
6168
6169 It looks like:
6170
6171 @smallexample
6172
6173 (include
6174   @var{pathname})
6175 @end smallexample
6176
6177 For example:
6178
6179 @smallexample
6180
6181 (include "filestuff")
6182
6183 @end smallexample
6184
6185 Where @var{pathname} is a string that specifies the location of the file,
6186 specifies the include file to be in @file{gcc/config/target/filestuff}.  The
6187 directory @file{gcc/config/target} is regarded as the default directory.
6188
6189
6190 Machine descriptions may be split up into smaller more manageable subsections
6191 and placed into subdirectories.
6192
6193 By specifying:
6194
6195 @smallexample
6196
6197 (include "BOGUS/filestuff")
6198
6199 @end smallexample
6200
6201 the include file is specified to be in @file{gcc/config/@var{target}/BOGUS/filestuff}.
6202
6203 Specifying an absolute path for the include file such as;
6204 @smallexample
6205
6206 (include "/u2/BOGUS/filestuff")
6207
6208 @end smallexample
6209 is permitted but is not encouraged.
6210
6211 @subsection RTL Generation Tool Options for Directory Search
6212 @cindex directory options .md
6213 @cindex options, directory search
6214 @cindex search options
6215
6216 The @option{-I@var{dir}} option specifies directories to search for machine descriptions.
6217 For example:
6218
6219 @smallexample
6220
6221 genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
6222
6223 @end smallexample
6224
6225
6226 Add the directory @var{dir} to the head of the list of directories to be
6227 searched for header files.  This can be used to override a system machine definition
6228 file, substituting your own version, since these directories are
6229 searched before the default machine description file directories.  If you use more than
6230 one @option{-I} option, the directories are scanned in left-to-right
6231 order; the standard default directory come after.
6232
6233
6234 @end ifset
6235 @ifset INTERNALS
6236 @node Peephole Definitions
6237 @section Machine-Specific Peephole Optimizers
6238 @cindex peephole optimizer definitions
6239 @cindex defining peephole optimizers
6240
6241 In addition to instruction patterns the @file{md} file may contain
6242 definitions of machine-specific peephole optimizations.
6243
6244 The combiner does not notice certain peephole optimizations when the data
6245 flow in the program does not suggest that it should try them.  For example,
6246 sometimes two consecutive insns related in purpose can be combined even
6247 though the second one does not appear to use a register computed in the
6248 first one.  A machine-specific peephole optimizer can detect such
6249 opportunities.
6250
6251 There are two forms of peephole definitions that may be used.  The
6252 original @code{define_peephole} is run at assembly output time to
6253 match insns and substitute assembly text.  Use of @code{define_peephole}
6254 is deprecated.
6255
6256 A newer @code{define_peephole2} matches insns and substitutes new
6257 insns.  The @code{peephole2} pass is run after register allocation
6258 but before scheduling, which may result in much better code for
6259 targets that do scheduling.
6260
6261 @menu
6262 * define_peephole::     RTL to Text Peephole Optimizers
6263 * define_peephole2::    RTL to RTL Peephole Optimizers
6264 @end menu
6265
6266 @end ifset
6267 @ifset INTERNALS
6268 @node define_peephole
6269 @subsection RTL to Text Peephole Optimizers
6270 @findex define_peephole
6271
6272 @need 1000
6273 A definition looks like this:
6274
6275 @smallexample
6276 (define_peephole
6277   [@var{insn-pattern-1}
6278    @var{insn-pattern-2}
6279    @dots{}]
6280   "@var{condition}"
6281   "@var{template}"
6282   "@var{optional-insn-attributes}")
6283 @end smallexample
6284
6285 @noindent
6286 The last string operand may be omitted if you are not using any
6287 machine-specific information in this machine description.  If present,
6288 it must obey the same rules as in a @code{define_insn}.
6289
6290 In this skeleton, @var{insn-pattern-1} and so on are patterns to match
6291 consecutive insns.  The optimization applies to a sequence of insns when
6292 @var{insn-pattern-1} matches the first one, @var{insn-pattern-2} matches
6293 the next, and so on.
6294
6295 Each of the insns matched by a peephole must also match a
6296 @code{define_insn}.  Peepholes are checked only at the last stage just
6297 before code generation, and only optionally.  Therefore, any insn which
6298 would match a peephole but no @code{define_insn} will cause a crash in code
6299 generation in an unoptimized compilation, or at various optimization
6300 stages.
6301
6302 The operands of the insns are matched with @code{match_operands},
6303 @code{match_operator}, and @code{match_dup}, as usual.  What is not
6304 usual is that the operand numbers apply to all the insn patterns in the
6305 definition.  So, you can check for identical operands in two insns by
6306 using @code{match_operand} in one insn and @code{match_dup} in the
6307 other.
6308
6309 The operand constraints used in @code{match_operand} patterns do not have
6310 any direct effect on the applicability of the peephole, but they will
6311 be validated afterward, so make sure your constraints are general enough
6312 to apply whenever the peephole matches.  If the peephole matches
6313 but the constraints are not satisfied, the compiler will crash.
6314
6315 It is safe to omit constraints in all the operands of the peephole; or
6316 you can write constraints which serve as a double-check on the criteria
6317 previously tested.
6318
6319 Once a sequence of insns matches the patterns, the @var{condition} is
6320 checked.  This is a C expression which makes the final decision whether to
6321 perform the optimization (we do so if the expression is nonzero).  If
6322 @var{condition} is omitted (in other words, the string is empty) then the
6323 optimization is applied to every sequence of insns that matches the
6324 patterns.
6325
6326 The defined peephole optimizations are applied after register allocation
6327 is complete.  Therefore, the peephole definition can check which
6328 operands have ended up in which kinds of registers, just by looking at
6329 the operands.
6330
6331 @findex prev_active_insn
6332 The way to refer to the operands in @var{condition} is to write
6333 @code{operands[@var{i}]} for operand number @var{i} (as matched by
6334 @code{(match_operand @var{i} @dots{})}).  Use the variable @code{insn}
6335 to refer to the last of the insns being matched; use
6336 @code{prev_active_insn} to find the preceding insns.
6337
6338 @findex dead_or_set_p
6339 When optimizing computations with intermediate results, you can use
6340 @var{condition} to match only when the intermediate results are not used
6341 elsewhere.  Use the C expression @code{dead_or_set_p (@var{insn},
6342 @var{op})}, where @var{insn} is the insn in which you expect the value
6343 to be used for the last time (from the value of @code{insn}, together
6344 with use of @code{prev_nonnote_insn}), and @var{op} is the intermediate
6345 value (from @code{operands[@var{i}]}).
6346
6347 Applying the optimization means replacing the sequence of insns with one
6348 new insn.  The @var{template} controls ultimate output of assembler code
6349 for this combined insn.  It works exactly like the template of a
6350 @code{define_insn}.  Operand numbers in this template are the same ones
6351 used in matching the original sequence of insns.
6352
6353 The result of a defined peephole optimizer does not need to match any of
6354 the insn patterns in the machine description; it does not even have an
6355 opportunity to match them.  The peephole optimizer definition itself serves
6356 as the insn pattern to control how the insn is output.
6357
6358 Defined peephole optimizers are run as assembler code is being output,
6359 so the insns they produce are never combined or rearranged in any way.
6360
6361 Here is an example, taken from the 68000 machine description:
6362
6363 @smallexample
6364 (define_peephole
6365   [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
6366    (set (match_operand:DF 0 "register_operand" "=f")
6367         (match_operand:DF 1 "register_operand" "ad"))]
6368   "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
6369 @{
6370   rtx xoperands[2];
6371   xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
6372 #ifdef MOTOROLA
6373   output_asm_insn ("move.l %1,(sp)", xoperands);
6374   output_asm_insn ("move.l %1,-(sp)", operands);
6375   return "fmove.d (sp)+,%0";
6376 #else
6377   output_asm_insn ("movel %1,sp@@", xoperands);
6378   output_asm_insn ("movel %1,sp@@-", operands);
6379   return "fmoved sp@@+,%0";
6380 #endif
6381 @})
6382 @end smallexample
6383
6384 @need 1000
6385 The effect of this optimization is to change
6386
6387 @smallexample
6388 @group
6389 jbsr _foobar
6390 addql #4,sp
6391 movel d1,sp@@-
6392 movel d0,sp@@-
6393 fmoved sp@@+,fp0
6394 @end group
6395 @end smallexample
6396
6397 @noindent
6398 into
6399
6400 @smallexample
6401 @group
6402 jbsr _foobar
6403 movel d1,sp@@
6404 movel d0,sp@@-
6405 fmoved sp@@+,fp0
6406 @end group
6407 @end smallexample
6408
6409 @ignore
6410 @findex CC_REVERSED
6411 If a peephole matches a sequence including one or more jump insns, you must
6412 take account of the flags such as @code{CC_REVERSED} which specify that the
6413 condition codes are represented in an unusual manner.  The compiler
6414 automatically alters any ordinary conditional jumps which occur in such
6415 situations, but the compiler cannot alter jumps which have been replaced by
6416 peephole optimizations.  So it is up to you to alter the assembler code
6417 that the peephole produces.  Supply C code to write the assembler output,
6418 and in this C code check the condition code status flags and change the
6419 assembler code as appropriate.
6420 @end ignore
6421
6422 @var{insn-pattern-1} and so on look @emph{almost} like the second
6423 operand of @code{define_insn}.  There is one important difference: the
6424 second operand of @code{define_insn} consists of one or more RTX's
6425 enclosed in square brackets.  Usually, there is only one: then the same
6426 action can be written as an element of a @code{define_peephole}.  But
6427 when there are multiple actions in a @code{define_insn}, they are
6428 implicitly enclosed in a @code{parallel}.  Then you must explicitly
6429 write the @code{parallel}, and the square brackets within it, in the
6430 @code{define_peephole}.  Thus, if an insn pattern looks like this,
6431
6432 @smallexample
6433 (define_insn "divmodsi4"
6434   [(set (match_operand:SI 0 "general_operand" "=d")
6435         (div:SI (match_operand:SI 1 "general_operand" "0")
6436                 (match_operand:SI 2 "general_operand" "dmsK")))
6437    (set (match_operand:SI 3 "general_operand" "=d")
6438         (mod:SI (match_dup 1) (match_dup 2)))]
6439   "TARGET_68020"
6440   "divsl%.l %2,%3:%0")
6441 @end smallexample
6442
6443 @noindent
6444 then the way to mention this insn in a peephole is as follows:
6445
6446 @smallexample
6447 (define_peephole
6448   [@dots{}
6449    (parallel
6450     [(set (match_operand:SI 0 "general_operand" "=d")
6451           (div:SI (match_operand:SI 1 "general_operand" "0")
6452                   (match_operand:SI 2 "general_operand" "dmsK")))
6453      (set (match_operand:SI 3 "general_operand" "=d")
6454           (mod:SI (match_dup 1) (match_dup 2)))])
6455    @dots{}]
6456   @dots{})
6457 @end smallexample
6458
6459 @end ifset
6460 @ifset INTERNALS
6461 @node define_peephole2
6462 @subsection RTL to RTL Peephole Optimizers
6463 @findex define_peephole2
6464
6465 The @code{define_peephole2} definition tells the compiler how to
6466 substitute one sequence of instructions for another sequence,
6467 what additional scratch registers may be needed and what their
6468 lifetimes must be.
6469
6470 @smallexample
6471 (define_peephole2
6472   [@var{insn-pattern-1}
6473    @var{insn-pattern-2}
6474    @dots{}]
6475   "@var{condition}"
6476   [@var{new-insn-pattern-1}
6477    @var{new-insn-pattern-2}
6478    @dots{}]
6479   "@var{preparation-statements}")
6480 @end smallexample
6481
6482 The definition is almost identical to @code{define_split}
6483 (@pxref{Insn Splitting}) except that the pattern to match is not a
6484 single instruction, but a sequence of instructions.
6485
6486 It is possible to request additional scratch registers for use in the
6487 output template.  If appropriate registers are not free, the pattern
6488 will simply not match.
6489
6490 @findex match_scratch
6491 @findex match_dup
6492 Scratch registers are requested with a @code{match_scratch} pattern at
6493 the top level of the input pattern.  The allocated register (initially) will
6494 be dead at the point requested within the original sequence.  If the scratch
6495 is used at more than a single point, a @code{match_dup} pattern at the
6496 top level of the input pattern marks the last position in the input sequence
6497 at which the register must be available.
6498
6499 Here is an example from the IA-32 machine description:
6500
6501 @smallexample
6502 (define_peephole2
6503   [(match_scratch:SI 2 "r")
6504    (parallel [(set (match_operand:SI 0 "register_operand" "")
6505                    (match_operator:SI 3 "arith_or_logical_operator"
6506                      [(match_dup 0)
6507                       (match_operand:SI 1 "memory_operand" "")]))
6508               (clobber (reg:CC 17))])]
6509   "! optimize_size && ! TARGET_READ_MODIFY"
6510   [(set (match_dup 2) (match_dup 1))
6511    (parallel [(set (match_dup 0)
6512                    (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
6513               (clobber (reg:CC 17))])]
6514   "")
6515 @end smallexample
6516
6517 @noindent
6518 This pattern tries to split a load from its use in the hopes that we'll be
6519 able to schedule around the memory load latency.  It allocates a single
6520 @code{SImode} register of class @code{GENERAL_REGS} (@code{"r"}) that needs
6521 to be live only at the point just before the arithmetic.
6522
6523 A real example requiring extended scratch lifetimes is harder to come by,
6524 so here's a silly made-up example:
6525
6526 @smallexample
6527 (define_peephole2
6528   [(match_scratch:SI 4 "r")
6529    (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
6530    (set (match_operand:SI 2 "" "") (match_dup 1))
6531    (match_dup 4)
6532    (set (match_operand:SI 3 "" "") (match_dup 1))]
6533   "/* @r{determine 1 does not overlap 0 and 2} */"
6534   [(set (match_dup 4) (match_dup 1))
6535    (set (match_dup 0) (match_dup 4))
6536    (set (match_dup 2) (match_dup 4))]
6537    (set (match_dup 3) (match_dup 4))]
6538   "")
6539 @end smallexample
6540
6541 @noindent
6542 If we had not added the @code{(match_dup 4)} in the middle of the input
6543 sequence, it might have been the case that the register we chose at the
6544 beginning of the sequence is killed by the first or second @code{set}.
6545
6546 @end ifset
6547 @ifset INTERNALS
6548 @node Insn Attributes
6549 @section Instruction Attributes
6550 @cindex insn attributes
6551 @cindex instruction attributes
6552
6553 In addition to describing the instruction supported by the target machine,
6554 the @file{md} file also defines a group of @dfn{attributes} and a set of
6555 values for each.  Every generated insn is assigned a value for each attribute.
6556 One possible attribute would be the effect that the insn has on the machine's
6557 condition code.  This attribute can then be used by @code{NOTICE_UPDATE_CC}
6558 to track the condition codes.
6559
6560 @menu
6561 * Defining Attributes:: Specifying attributes and their values.
6562 * Expressions::         Valid expressions for attribute values.
6563 * Tagging Insns::       Assigning attribute values to insns.
6564 * Attr Example::        An example of assigning attributes.
6565 * Insn Lengths::        Computing the length of insns.
6566 * Constant Attributes:: Defining attributes that are constant.
6567 * Delay Slots::         Defining delay slots required for a machine.
6568 * Processor pipeline description:: Specifying information for insn scheduling.
6569 @end menu
6570
6571 @end ifset
6572 @ifset INTERNALS
6573 @node Defining Attributes
6574 @subsection Defining Attributes and their Values
6575 @cindex defining attributes and their values
6576 @cindex attributes, defining
6577
6578 @findex define_attr
6579 The @code{define_attr} expression is used to define each attribute required
6580 by the target machine.  It looks like:
6581
6582 @smallexample
6583 (define_attr @var{name} @var{list-of-values} @var{default})
6584 @end smallexample
6585
6586 @var{name} is a string specifying the name of the attribute being defined.
6587
6588 @var{list-of-values} is either a string that specifies a comma-separated
6589 list of values that can be assigned to the attribute, or a null string to
6590 indicate that the attribute takes numeric values.
6591
6592 @var{default} is an attribute expression that gives the value of this
6593 attribute for insns that match patterns whose definition does not include
6594 an explicit value for this attribute.  @xref{Attr Example}, for more
6595 information on the handling of defaults.  @xref{Constant Attributes},
6596 for information on attributes that do not depend on any particular insn.
6597
6598 @findex insn-attr.h
6599 For each defined attribute, a number of definitions are written to the
6600 @file{insn-attr.h} file.  For cases where an explicit set of values is
6601 specified for an attribute, the following are defined:
6602
6603 @itemize @bullet
6604 @item
6605 A @samp{#define} is written for the symbol @samp{HAVE_ATTR_@var{name}}.
6606
6607 @item
6608 An enumerated class is defined for @samp{attr_@var{name}} with
6609 elements of the form @samp{@var{upper-name}_@var{upper-value}} where
6610 the attribute name and value are first converted to uppercase.
6611
6612 @item
6613 A function @samp{get_attr_@var{name}} is defined that is passed an insn and
6614 returns the attribute value for that insn.
6615 @end itemize
6616
6617 For example, if the following is present in the @file{md} file:
6618
6619 @smallexample
6620 (define_attr "type" "branch,fp,load,store,arith" @dots{})
6621 @end smallexample
6622
6623 @noindent
6624 the following lines will be written to the file @file{insn-attr.h}.
6625
6626 @smallexample
6627 #define HAVE_ATTR_type
6628 enum attr_type @{TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
6629                  TYPE_STORE, TYPE_ARITH@};
6630 extern enum attr_type get_attr_type ();
6631 @end smallexample
6632
6633 If the attribute takes numeric values, no @code{enum} type will be
6634 defined and the function to obtain the attribute's value will return
6635 @code{int}.
6636
6637 There are attributes which are tied to a specific meaning.  These
6638 attributes are not free to use for other purposes:
6639
6640 @table @code
6641 @item length
6642 The @code{length} attribute is used to calculate the length of emitted
6643 code chunks.  This is especially important when verifying branch
6644 distances. @xref{Insn Lengths}.
6645
6646 @item enabled
6647 The @code{enabled} attribute can be defined to prevent certain
6648 alternatives of an insn definition from being used during code
6649 generation. @xref{Disable Insn Alternatives}.
6650
6651 @end table
6652
6653 @end ifset
6654 @ifset INTERNALS
6655 @node Expressions
6656 @subsection Attribute Expressions
6657 @cindex attribute expressions
6658
6659 RTL expressions used to define attributes use the codes described above
6660 plus a few specific to attribute definitions, to be discussed below.
6661 Attribute value expressions must have one of the following forms:
6662
6663 @table @code
6664 @cindex @code{const_int} and attributes
6665 @item (const_int @var{i})
6666 The integer @var{i} specifies the value of a numeric attribute.  @var{i}
6667 must be non-negative.
6668
6669 The value of a numeric attribute can be specified either with a
6670 @code{const_int}, or as an integer represented as a string in
6671 @code{const_string}, @code{eq_attr} (see below), @code{attr},
6672 @code{symbol_ref}, simple arithmetic expressions, and @code{set_attr}
6673 overrides on specific instructions (@pxref{Tagging Insns}).
6674
6675 @cindex @code{const_string} and attributes
6676 @item (const_string @var{value})
6677 The string @var{value} specifies a constant attribute value.
6678 If @var{value} is specified as @samp{"*"}, it means that the default value of
6679 the attribute is to be used for the insn containing this expression.
6680 @samp{"*"} obviously cannot be used in the @var{default} expression
6681 of a @code{define_attr}.
6682
6683 If the attribute whose value is being specified is numeric, @var{value}
6684 must be a string containing a non-negative integer (normally
6685 @code{const_int} would be used in this case).  Otherwise, it must
6686 contain one of the valid values for the attribute.
6687
6688 @cindex @code{if_then_else} and attributes
6689 @item (if_then_else @var{test} @var{true-value} @var{false-value})
6690 @var{test} specifies an attribute test, whose format is defined below.
6691 The value of this expression is @var{true-value} if @var{test} is true,
6692 otherwise it is @var{false-value}.
6693
6694 @cindex @code{cond} and attributes
6695 @item (cond [@var{test1} @var{value1} @dots{}] @var{default})
6696 The first operand of this expression is a vector containing an even
6697 number of expressions and consisting of pairs of @var{test} and @var{value}
6698 expressions.  The value of the @code{cond} expression is that of the
6699 @var{value} corresponding to the first true @var{test} expression.  If
6700 none of the @var{test} expressions are true, the value of the @code{cond}
6701 expression is that of the @var{default} expression.
6702 @end table
6703
6704 @var{test} expressions can have one of the following forms:
6705
6706 @table @code
6707 @cindex @code{const_int} and attribute tests
6708 @item (const_int @var{i})
6709 This test is true if @var{i} is nonzero and false otherwise.
6710
6711 @cindex @code{not} and attributes
6712 @cindex @code{ior} and attributes
6713 @cindex @code{and} and attributes
6714 @item (not @var{test})
6715 @itemx (ior @var{test1} @var{test2})
6716 @itemx (and @var{test1} @var{test2})
6717 These tests are true if the indicated logical function is true.
6718
6719 @cindex @code{match_operand} and attributes
6720 @item (match_operand:@var{m} @var{n} @var{pred} @var{constraints})
6721 This test is true if operand @var{n} of the insn whose attribute value
6722 is being determined has mode @var{m} (this part of the test is ignored
6723 if @var{m} is @code{VOIDmode}) and the function specified by the string
6724 @var{pred} returns a nonzero value when passed operand @var{n} and mode
6725 @var{m} (this part of the test is ignored if @var{pred} is the null
6726 string).
6727
6728 The @var{constraints} operand is ignored and should be the null string.
6729
6730 @cindex @code{le} and attributes
6731 @cindex @code{leu} and attributes
6732 @cindex @code{lt} and attributes
6733 @cindex @code{gt} and attributes
6734 @cindex @code{gtu} and attributes
6735 @cindex @code{ge} and attributes
6736 @cindex @code{geu} and attributes
6737 @cindex @code{ne} and attributes
6738 @cindex @code{eq} and attributes
6739 @cindex @code{plus} and attributes
6740 @cindex @code{minus} and attributes
6741 @cindex @code{mult} and attributes
6742 @cindex @code{div} and attributes
6743 @cindex @code{mod} and attributes
6744 @cindex @code{abs} and attributes
6745 @cindex @code{neg} and attributes
6746 @cindex @code{ashift} and attributes
6747 @cindex @code{lshiftrt} and attributes
6748 @cindex @code{ashiftrt} and attributes
6749 @item (le @var{arith1} @var{arith2})
6750 @itemx (leu @var{arith1} @var{arith2})
6751 @itemx (lt @var{arith1} @var{arith2})
6752 @itemx (ltu @var{arith1} @var{arith2})
6753 @itemx (gt @var{arith1} @var{arith2})
6754 @itemx (gtu @var{arith1} @var{arith2})
6755 @itemx (ge @var{arith1} @var{arith2})
6756 @itemx (geu @var{arith1} @var{arith2})
6757 @itemx (ne @var{arith1} @var{arith2})
6758 @itemx (eq @var{arith1} @var{arith2})
6759 These tests are true if the indicated comparison of the two arithmetic
6760 expressions is true.  Arithmetic expressions are formed with
6761 @code{plus}, @code{minus}, @code{mult}, @code{div}, @code{mod},
6762 @code{abs}, @code{neg}, @code{and}, @code{ior}, @code{xor}, @code{not},
6763 @code{ashift}, @code{lshiftrt}, and @code{ashiftrt} expressions.
6764
6765 @findex get_attr
6766 @code{const_int} and @code{symbol_ref} are always valid terms (@pxref{Insn
6767 Lengths},for additional forms).  @code{symbol_ref} is a string
6768 denoting a C expression that yields an @code{int} when evaluated by the
6769 @samp{get_attr_@dots{}} routine.  It should normally be a global
6770 variable.
6771
6772 @findex eq_attr
6773 @item (eq_attr @var{name} @var{value})
6774 @var{name} is a string specifying the name of an attribute.
6775
6776 @var{value} is a string that is either a valid value for attribute
6777 @var{name}, a comma-separated list of values, or @samp{!} followed by a
6778 value or list.  If @var{value} does not begin with a @samp{!}, this
6779 test is true if the value of the @var{name} attribute of the current
6780 insn is in the list specified by @var{value}.  If @var{value} begins
6781 with a @samp{!}, this test is true if the attribute's value is
6782 @emph{not} in the specified list.
6783
6784 For example,
6785
6786 @smallexample
6787 (eq_attr "type" "load,store")
6788 @end smallexample
6789
6790 @noindent
6791 is equivalent to
6792
6793 @smallexample
6794 (ior (eq_attr "type" "load") (eq_attr "type" "store"))
6795 @end smallexample
6796
6797 If @var{name} specifies an attribute of @samp{alternative}, it refers to the
6798 value of the compiler variable @code{which_alternative}
6799 (@pxref{Output Statement}) and the values must be small integers.  For
6800 example,
6801
6802 @smallexample
6803 (eq_attr "alternative" "2,3")
6804 @end smallexample
6805
6806 @noindent
6807 is equivalent to
6808
6809 @smallexample
6810 (ior (eq (symbol_ref "which_alternative") (const_int 2))
6811      (eq (symbol_ref "which_alternative") (const_int 3)))
6812 @end smallexample
6813
6814 Note that, for most attributes, an @code{eq_attr} test is simplified in cases
6815 where the value of the attribute being tested is known for all insns matching
6816 a particular pattern.  This is by far the most common case.
6817
6818 @findex attr_flag
6819 @item (attr_flag @var{name})
6820 The value of an @code{attr_flag} expression is true if the flag
6821 specified by @var{name} is true for the @code{insn} currently being
6822 scheduled.
6823
6824 @var{name} is a string specifying one of a fixed set of flags to test.
6825 Test the flags @code{forward} and @code{backward} to determine the
6826 direction of a conditional branch.  Test the flags @code{very_likely},
6827 @code{likely}, @code{very_unlikely}, and @code{unlikely} to determine
6828 if a conditional branch is expected to be taken.
6829
6830 If the @code{very_likely} flag is true, then the @code{likely} flag is also
6831 true.  Likewise for the @code{very_unlikely} and @code{unlikely} flags.
6832
6833 This example describes a conditional branch delay slot which
6834 can be nullified for forward branches that are taken (annul-true) or
6835 for backward branches which are not taken (annul-false).
6836
6837 @smallexample
6838 (define_delay (eq_attr "type" "cbranch")
6839   [(eq_attr "in_branch_delay" "true")
6840    (and (eq_attr "in_branch_delay" "true")
6841         (attr_flag "forward"))
6842    (and (eq_attr "in_branch_delay" "true")
6843         (attr_flag "backward"))])
6844 @end smallexample
6845
6846 The @code{forward} and @code{backward} flags are false if the current
6847 @code{insn} being scheduled is not a conditional branch.
6848
6849 The @code{very_likely} and @code{likely} flags are true if the
6850 @code{insn} being scheduled is not a conditional branch.
6851 The @code{very_unlikely} and @code{unlikely} flags are false if the
6852 @code{insn} being scheduled is not a conditional branch.
6853
6854 @code{attr_flag} is only used during delay slot scheduling and has no
6855 meaning to other passes of the compiler.
6856
6857 @findex attr
6858 @item (attr @var{name})
6859 The value of another attribute is returned.  This is most useful
6860 for numeric attributes, as @code{eq_attr} and @code{attr_flag}
6861 produce more efficient code for non-numeric attributes.
6862 @end table
6863
6864 @end ifset
6865 @ifset INTERNALS
6866 @node Tagging Insns
6867 @subsection Assigning Attribute Values to Insns
6868 @cindex tagging insns
6869 @cindex assigning attribute values to insns
6870
6871 The value assigned to an attribute of an insn is primarily determined by
6872 which pattern is matched by that insn (or which @code{define_peephole}
6873 generated it).  Every @code{define_insn} and @code{define_peephole} can
6874 have an optional last argument to specify the values of attributes for
6875 matching insns.  The value of any attribute not specified in a particular
6876 insn is set to the default value for that attribute, as specified in its
6877 @code{define_attr}.  Extensive use of default values for attributes
6878 permits the specification of the values for only one or two attributes
6879 in the definition of most insn patterns, as seen in the example in the
6880 next section.
6881
6882 The optional last argument of @code{define_insn} and
6883 @code{define_peephole} is a vector of expressions, each of which defines
6884 the value for a single attribute.  The most general way of assigning an
6885 attribute's value is to use a @code{set} expression whose first operand is an
6886 @code{attr} expression giving the name of the attribute being set.  The
6887 second operand of the @code{set} is an attribute expression
6888 (@pxref{Expressions}) giving the value of the attribute.
6889
6890 When the attribute value depends on the @samp{alternative} attribute
6891 (i.e., which is the applicable alternative in the constraint of the
6892 insn), the @code{set_attr_alternative} expression can be used.  It
6893 allows the specification of a vector of attribute expressions, one for
6894 each alternative.
6895
6896 @findex set_attr
6897 When the generality of arbitrary attribute expressions is not required,
6898 the simpler @code{set_attr} expression can be used, which allows
6899 specifying a string giving either a single attribute value or a list
6900 of attribute values, one for each alternative.
6901
6902 The form of each of the above specifications is shown below.  In each case,
6903 @var{name} is a string specifying the attribute to be set.
6904
6905 @table @code
6906 @item (set_attr @var{name} @var{value-string})
6907 @var{value-string} is either a string giving the desired attribute value,
6908 or a string containing a comma-separated list giving the values for
6909 succeeding alternatives.  The number of elements must match the number
6910 of alternatives in the constraint of the insn pattern.
6911
6912 Note that it may be useful to specify @samp{*} for some alternative, in
6913 which case the attribute will assume its default value for insns matching
6914 that alternative.
6915
6916 @findex set_attr_alternative
6917 @item (set_attr_alternative @var{name} [@var{value1} @var{value2} @dots{}])
6918 Depending on the alternative of the insn, the value will be one of the
6919 specified values.  This is a shorthand for using a @code{cond} with
6920 tests on the @samp{alternative} attribute.
6921
6922 @findex attr
6923 @item (set (attr @var{name}) @var{value})
6924 The first operand of this @code{set} must be the special RTL expression
6925 @code{attr}, whose sole operand is a string giving the name of the
6926 attribute being set.  @var{value} is the value of the attribute.
6927 @end table
6928
6929 The following shows three different ways of representing the same
6930 attribute value specification:
6931
6932 @smallexample
6933 (set_attr "type" "load,store,arith")
6934
6935 (set_attr_alternative "type"
6936                       [(const_string "load") (const_string "store")
6937                        (const_string "arith")])
6938
6939 (set (attr "type")
6940      (cond [(eq_attr "alternative" "1") (const_string "load")
6941             (eq_attr "alternative" "2") (const_string "store")]
6942            (const_string "arith")))
6943 @end smallexample
6944
6945 @need 1000
6946 @findex define_asm_attributes
6947 The @code{define_asm_attributes} expression provides a mechanism to
6948 specify the attributes assigned to insns produced from an @code{asm}
6949 statement.  It has the form:
6950
6951 @smallexample
6952 (define_asm_attributes [@var{attr-sets}])
6953 @end smallexample
6954
6955 @noindent
6956 where @var{attr-sets} is specified the same as for both the
6957 @code{define_insn} and the @code{define_peephole} expressions.
6958
6959 These values will typically be the ``worst case'' attribute values.  For
6960 example, they might indicate that the condition code will be clobbered.
6961
6962 A specification for a @code{length} attribute is handled specially.  The
6963 way to compute the length of an @code{asm} insn is to multiply the
6964 length specified in the expression @code{define_asm_attributes} by the
6965 number of machine instructions specified in the @code{asm} statement,
6966 determined by counting the number of semicolons and newlines in the
6967 string.  Therefore, the value of the @code{length} attribute specified
6968 in a @code{define_asm_attributes} should be the maximum possible length
6969 of a single machine instruction.
6970
6971 @end ifset
6972 @ifset INTERNALS
6973 @node Attr Example
6974 @subsection Example of Attribute Specifications
6975 @cindex attribute specifications example
6976 @cindex attribute specifications
6977
6978 The judicious use of defaulting is important in the efficient use of
6979 insn attributes.  Typically, insns are divided into @dfn{types} and an
6980 attribute, customarily called @code{type}, is used to represent this
6981 value.  This attribute is normally used only to define the default value
6982 for other attributes.  An example will clarify this usage.
6983
6984 Assume we have a RISC machine with a condition code and in which only
6985 full-word operations are performed in registers.  Let us assume that we
6986 can divide all insns into loads, stores, (integer) arithmetic
6987 operations, floating point operations, and branches.
6988
6989 Here we will concern ourselves with determining the effect of an insn on
6990 the condition code and will limit ourselves to the following possible
6991 effects:  The condition code can be set unpredictably (clobbered), not
6992 be changed, be set to agree with the results of the operation, or only
6993 changed if the item previously set into the condition code has been
6994 modified.
6995
6996 Here is part of a sample @file{md} file for such a machine:
6997
6998 @smallexample
6999 (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
7000
7001 (define_attr "cc" "clobber,unchanged,set,change0"
7002              (cond [(eq_attr "type" "load")
7003                         (const_string "change0")
7004                     (eq_attr "type" "store,branch")
7005                         (const_string "unchanged")
7006                     (eq_attr "type" "arith")
7007                         (if_then_else (match_operand:SI 0 "" "")
7008                                       (const_string "set")
7009                                       (const_string "clobber"))]
7010                    (const_string "clobber")))
7011
7012 (define_insn ""
7013   [(set (match_operand:SI 0 "general_operand" "=r,r,m")
7014         (match_operand:SI 1 "general_operand" "r,m,r"))]
7015   ""
7016   "@@
7017    move %0,%1
7018    load %0,%1
7019    store %0,%1"
7020   [(set_attr "type" "arith,load,store")])
7021 @end smallexample
7022
7023 Note that we assume in the above example that arithmetic operations
7024 performed on quantities smaller than a machine word clobber the condition
7025 code since they will set the condition code to a value corresponding to the
7026 full-word result.
7027
7028 @end ifset
7029 @ifset INTERNALS
7030 @node Insn Lengths
7031 @subsection Computing the Length of an Insn
7032 @cindex insn lengths, computing
7033 @cindex computing the length of an insn
7034
7035 For many machines, multiple types of branch instructions are provided, each
7036 for different length branch displacements.  In most cases, the assembler
7037 will choose the correct instruction to use.  However, when the assembler
7038 cannot do so, GCC can when a special attribute, the @code{length}
7039 attribute, is defined.  This attribute must be defined to have numeric
7040 values by specifying a null string in its @code{define_attr}.
7041
7042 In the case of the @code{length} attribute, two additional forms of
7043 arithmetic terms are allowed in test expressions:
7044
7045 @table @code
7046 @cindex @code{match_dup} and attributes
7047 @item (match_dup @var{n})
7048 This refers to the address of operand @var{n} of the current insn, which
7049 must be a @code{label_ref}.
7050
7051 @cindex @code{pc} and attributes
7052 @item (pc)
7053 This refers to the address of the @emph{current} insn.  It might have
7054 been more consistent with other usage to make this the address of the
7055 @emph{next} insn but this would be confusing because the length of the
7056 current insn is to be computed.
7057 @end table
7058
7059 @cindex @code{addr_vec}, length of
7060 @cindex @code{addr_diff_vec}, length of
7061 For normal insns, the length will be determined by value of the
7062 @code{length} attribute.  In the case of @code{addr_vec} and
7063 @code{addr_diff_vec} insn patterns, the length is computed as
7064 the number of vectors multiplied by the size of each vector.
7065
7066 Lengths are measured in addressable storage units (bytes).
7067
7068 The following macros can be used to refine the length computation:
7069
7070 @table @code
7071 @findex ADJUST_INSN_LENGTH
7072 @item ADJUST_INSN_LENGTH (@var{insn}, @var{length})
7073 If defined, modifies the length assigned to instruction @var{insn} as a
7074 function of the context in which it is used.  @var{length} is an lvalue
7075 that contains the initially computed length of the insn and should be
7076 updated with the correct length of the insn.
7077
7078 This macro will normally not be required.  A case in which it is
7079 required is the ROMP@.  On this machine, the size of an @code{addr_vec}
7080 insn must be increased by two to compensate for the fact that alignment
7081 may be required.
7082 @end table
7083
7084 @findex get_attr_length
7085 The routine that returns @code{get_attr_length} (the value of the
7086 @code{length} attribute) can be used by the output routine to
7087 determine the form of the branch instruction to be written, as the
7088 example below illustrates.
7089
7090 As an example of the specification of variable-length branches, consider
7091 the IBM 360.  If we adopt the convention that a register will be set to
7092 the starting address of a function, we can jump to labels within 4k of
7093 the start using a four-byte instruction.  Otherwise, we need a six-byte
7094 sequence to load the address from memory and then branch to it.
7095
7096 On such a machine, a pattern for a branch instruction might be specified
7097 as follows:
7098
7099 @smallexample
7100 (define_insn "jump"
7101   [(set (pc)
7102         (label_ref (match_operand 0 "" "")))]
7103   ""
7104 @{
7105    return (get_attr_length (insn) == 4
7106            ? "b %l0" : "l r15,=a(%l0); br r15");
7107 @}
7108   [(set (attr "length")
7109         (if_then_else (lt (match_dup 0) (const_int 4096))
7110                       (const_int 4)
7111                       (const_int 6)))])
7112 @end smallexample
7113
7114 @end ifset
7115 @ifset INTERNALS
7116 @node Constant Attributes
7117 @subsection Constant Attributes
7118 @cindex constant attributes
7119
7120 A special form of @code{define_attr}, where the expression for the
7121 default value is a @code{const} expression, indicates an attribute that
7122 is constant for a given run of the compiler.  Constant attributes may be
7123 used to specify which variety of processor is used.  For example,
7124
7125 @smallexample
7126 (define_attr "cpu" "m88100,m88110,m88000"
7127  (const
7128   (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
7129          (symbol_ref "TARGET_88110") (const_string "m88110")]
7130         (const_string "m88000"))))
7131
7132 (define_attr "memory" "fast,slow"
7133  (const
7134   (if_then_else (symbol_ref "TARGET_FAST_MEM")
7135                 (const_string "fast")
7136                 (const_string "slow"))))
7137 @end smallexample
7138
7139 The routine generated for constant attributes has no parameters as it
7140 does not depend on any particular insn.  RTL expressions used to define
7141 the value of a constant attribute may use the @code{symbol_ref} form,
7142 but may not use either the @code{match_operand} form or @code{eq_attr}
7143 forms involving insn attributes.
7144
7145 @end ifset
7146 @ifset INTERNALS
7147 @node Delay Slots
7148 @subsection Delay Slot Scheduling
7149 @cindex delay slots, defining
7150
7151 The insn attribute mechanism can be used to specify the requirements for
7152 delay slots, if any, on a target machine.  An instruction is said to
7153 require a @dfn{delay slot} if some instructions that are physically
7154 after the instruction are executed as if they were located before it.
7155 Classic examples are branch and call instructions, which often execute
7156 the following instruction before the branch or call is performed.
7157
7158 On some machines, conditional branch instructions can optionally
7159 @dfn{annul} instructions in the delay slot.  This means that the
7160 instruction will not be executed for certain branch outcomes.  Both
7161 instructions that annul if the branch is true and instructions that
7162 annul if the branch is false are supported.
7163
7164 Delay slot scheduling differs from instruction scheduling in that
7165 determining whether an instruction needs a delay slot is dependent only
7166 on the type of instruction being generated, not on data flow between the
7167 instructions.  See the next section for a discussion of data-dependent
7168 instruction scheduling.
7169
7170 @findex define_delay
7171 The requirement of an insn needing one or more delay slots is indicated
7172 via the @code{define_delay} expression.  It has the following form:
7173
7174 @smallexample
7175 (define_delay @var{test}
7176               [@var{delay-1} @var{annul-true-1} @var{annul-false-1}
7177                @var{delay-2} @var{annul-true-2} @var{annul-false-2}
7178                @dots{}])
7179 @end smallexample
7180
7181 @var{test} is an attribute test that indicates whether this
7182 @code{define_delay} applies to a particular insn.  If so, the number of
7183 required delay slots is determined by the length of the vector specified
7184 as the second argument.  An insn placed in delay slot @var{n} must
7185 satisfy attribute test @var{delay-n}.  @var{annul-true-n} is an
7186 attribute test that specifies which insns may be annulled if the branch
7187 is true.  Similarly, @var{annul-false-n} specifies which insns in the
7188 delay slot may be annulled if the branch is false.  If annulling is not
7189 supported for that delay slot, @code{(nil)} should be coded.
7190
7191 For example, in the common case where branch and call insns require
7192 a single delay slot, which may contain any insn other than a branch or
7193 call, the following would be placed in the @file{md} file:
7194
7195 @smallexample
7196 (define_delay (eq_attr "type" "branch,call")
7197               [(eq_attr "type" "!branch,call") (nil) (nil)])
7198 @end smallexample
7199
7200 Multiple @code{define_delay} expressions may be specified.  In this
7201 case, each such expression specifies different delay slot requirements
7202 and there must be no insn for which tests in two @code{define_delay}
7203 expressions are both true.
7204
7205 For example, if we have a machine that requires one delay slot for branches
7206 but two for calls,  no delay slot can contain a branch or call insn,
7207 and any valid insn in the delay slot for the branch can be annulled if the
7208 branch is true, we might represent this as follows:
7209
7210 @smallexample
7211 (define_delay (eq_attr "type" "branch")
7212    [(eq_attr "type" "!branch,call")
7213     (eq_attr "type" "!branch,call")
7214     (nil)])
7215
7216 (define_delay (eq_attr "type" "call")
7217               [(eq_attr "type" "!branch,call") (nil) (nil)
7218                (eq_attr "type" "!branch,call") (nil) (nil)])
7219 @end smallexample
7220 @c the above is *still* too long.  --mew 4feb93
7221
7222 @end ifset
7223 @ifset INTERNALS
7224 @node Processor pipeline description
7225 @subsection Specifying processor pipeline description
7226 @cindex processor pipeline description
7227 @cindex processor functional units
7228 @cindex instruction latency time
7229 @cindex interlock delays
7230 @cindex data dependence delays
7231 @cindex reservation delays
7232 @cindex pipeline hazard recognizer
7233 @cindex automaton based pipeline description
7234 @cindex regular expressions
7235 @cindex deterministic finite state automaton
7236 @cindex automaton based scheduler
7237 @cindex RISC
7238 @cindex VLIW
7239
7240 To achieve better performance, most modern processors
7241 (super-pipelined, superscalar @acronym{RISC}, and @acronym{VLIW}
7242 processors) have many @dfn{functional units} on which several
7243 instructions can be executed simultaneously.  An instruction starts
7244 execution if its issue conditions are satisfied.  If not, the
7245 instruction is stalled until its conditions are satisfied.  Such
7246 @dfn{interlock (pipeline) delay} causes interruption of the fetching
7247 of successor instructions (or demands nop instructions, e.g.@: for some
7248 MIPS processors).
7249
7250 There are two major kinds of interlock delays in modern processors.
7251 The first one is a data dependence delay determining @dfn{instruction
7252 latency time}.  The instruction execution is not started until all
7253 source data have been evaluated by prior instructions (there are more
7254 complex cases when the instruction execution starts even when the data
7255 are not available but will be ready in given time after the
7256 instruction execution start).  Taking the data dependence delays into
7257 account is simple.  The data dependence (true, output, and
7258 anti-dependence) delay between two instructions is given by a
7259 constant.  In most cases this approach is adequate.  The second kind
7260 of interlock delays is a reservation delay.  The reservation delay
7261 means that two instructions under execution will be in need of shared
7262 processors resources, i.e.@: buses, internal registers, and/or
7263 functional units, which are reserved for some time.  Taking this kind
7264 of delay into account is complex especially for modern @acronym{RISC}
7265 processors.
7266
7267 The task of exploiting more processor parallelism is solved by an
7268 instruction scheduler.  For a better solution to this problem, the
7269 instruction scheduler has to have an adequate description of the
7270 processor parallelism (or @dfn{pipeline description}).  GCC
7271 machine descriptions describe processor parallelism and functional
7272 unit reservations for groups of instructions with the aid of
7273 @dfn{regular expressions}.
7274
7275 The GCC instruction scheduler uses a @dfn{pipeline hazard recognizer} to
7276 figure out the possibility of the instruction issue by the processor
7277 on a given simulated processor cycle.  The pipeline hazard recognizer is
7278 automatically generated from the processor pipeline description.  The
7279 pipeline hazard recognizer generated from the machine description
7280 is based on a deterministic finite state automaton (@acronym{DFA}):
7281 the instruction issue is possible if there is a transition from one
7282 automaton state to another one.  This algorithm is very fast, and
7283 furthermore, its speed is not dependent on processor
7284 complexity@footnote{However, the size of the automaton depends on
7285 processor complexity.  To limit this effect, machine descriptions
7286 can split orthogonal parts of the machine description among several
7287 automata: but then, since each of these must be stepped independently,
7288 this does cause a small decrease in the algorithm's performance.}.
7289
7290 @cindex automaton based pipeline description
7291 The rest of this section describes the directives that constitute
7292 an automaton-based processor pipeline description.  The order of
7293 these constructions within the machine description file is not
7294 important.
7295
7296 @findex define_automaton
7297 @cindex pipeline hazard recognizer
7298 The following optional construction describes names of automata
7299 generated and used for the pipeline hazards recognition.  Sometimes
7300 the generated finite state automaton used by the pipeline hazard
7301 recognizer is large.  If we use more than one automaton and bind functional
7302 units to the automata, the total size of the automata is usually
7303 less than the size of the single automaton.  If there is no one such
7304 construction, only one finite state automaton is generated.
7305
7306 @smallexample
7307 (define_automaton @var{automata-names})
7308 @end smallexample
7309
7310 @var{automata-names} is a string giving names of the automata.  The
7311 names are separated by commas.  All the automata should have unique names.
7312 The automaton name is used in the constructions @code{define_cpu_unit} and
7313 @code{define_query_cpu_unit}.
7314
7315 @findex define_cpu_unit
7316 @cindex processor functional units
7317 Each processor functional unit used in the description of instruction
7318 reservations should be described by the following construction.
7319
7320 @smallexample
7321 (define_cpu_unit @var{unit-names} [@var{automaton-name}])
7322 @end smallexample
7323
7324 @var{unit-names} is a string giving the names of the functional units
7325 separated by commas.  Don't use name @samp{nothing}, it is reserved
7326 for other goals.
7327
7328 @var{automaton-name} is a string giving the name of the automaton with
7329 which the unit is bound.  The automaton should be described in
7330 construction @code{define_automaton}.  You should give
7331 @dfn{automaton-name}, if there is a defined automaton.
7332
7333 The assignment of units to automata are constrained by the uses of the
7334 units in insn reservations.  The most important constraint is: if a
7335 unit reservation is present on a particular cycle of an alternative
7336 for an insn reservation, then some unit from the same automaton must
7337 be present on the same cycle for the other alternatives of the insn
7338 reservation.  The rest of the constraints are mentioned in the
7339 description of the subsequent constructions.
7340
7341 @findex define_query_cpu_unit
7342 @cindex querying function unit reservations
7343 The following construction describes CPU functional units analogously
7344 to @code{define_cpu_unit}.  The reservation of such units can be
7345 queried for an automaton state.  The instruction scheduler never
7346 queries reservation of functional units for given automaton state.  So
7347 as a rule, you don't need this construction.  This construction could
7348 be used for future code generation goals (e.g.@: to generate
7349 @acronym{VLIW} insn templates).
7350
7351 @smallexample
7352 (define_query_cpu_unit @var{unit-names} [@var{automaton-name}])
7353 @end smallexample
7354
7355 @var{unit-names} is a string giving names of the functional units
7356 separated by commas.
7357
7358 @var{automaton-name} is a string giving the name of the automaton with
7359 which the unit is bound.
7360
7361 @findex define_insn_reservation
7362 @cindex instruction latency time
7363 @cindex regular expressions
7364 @cindex data bypass
7365 The following construction is the major one to describe pipeline
7366 characteristics of an instruction.
7367
7368 @smallexample
7369 (define_insn_reservation @var{insn-name} @var{default_latency}
7370                          @var{condition} @var{regexp})
7371 @end smallexample
7372
7373 @var{default_latency} is a number giving latency time of the
7374 instruction.  There is an important difference between the old
7375 description and the automaton based pipeline description.  The latency
7376 time is used for all dependencies when we use the old description.  In
7377 the automaton based pipeline description, the given latency time is only
7378 used for true dependencies.  The cost of anti-dependencies is always
7379 zero and the cost of output dependencies is the difference between
7380 latency times of the producing and consuming insns (if the difference
7381 is negative, the cost is considered to be zero).  You can always
7382 change the default costs for any description by using the target hook
7383 @code{TARGET_SCHED_ADJUST_COST} (@pxref{Scheduling}).
7384
7385 @var{insn-name} is a string giving the internal name of the insn.  The
7386 internal names are used in constructions @code{define_bypass} and in
7387 the automaton description file generated for debugging.  The internal
7388 name has nothing in common with the names in @code{define_insn}.  It is a
7389 good practice to use insn classes described in the processor manual.
7390
7391 @var{condition} defines what RTL insns are described by this
7392 construction.  You should remember that you will be in trouble if
7393 @var{condition} for two or more different
7394 @code{define_insn_reservation} constructions is TRUE for an insn.  In
7395 this case what reservation will be used for the insn is not defined.
7396 Such cases are not checked during generation of the pipeline hazards
7397 recognizer because in general recognizing that two conditions may have
7398 the same value is quite difficult (especially if the conditions
7399 contain @code{symbol_ref}).  It is also not checked during the
7400 pipeline hazard recognizer work because it would slow down the
7401 recognizer considerably.
7402
7403 @var{regexp} is a string describing the reservation of the cpu's functional
7404 units by the instruction.  The reservations are described by a regular
7405 expression according to the following syntax:
7406
7407 @smallexample
7408        regexp = regexp "," oneof
7409               | oneof
7410
7411        oneof = oneof "|" allof
7412              | allof
7413
7414        allof = allof "+" repeat
7415              | repeat
7416
7417        repeat = element "*" number
7418               | element
7419
7420        element = cpu_function_unit_name
7421                | reservation_name
7422                | result_name
7423                | "nothing"
7424                | "(" regexp ")"
7425 @end smallexample
7426
7427 @itemize @bullet
7428 @item
7429 @samp{,} is used for describing the start of the next cycle in
7430 the reservation.
7431
7432 @item
7433 @samp{|} is used for describing a reservation described by the first
7434 regular expression @strong{or} a reservation described by the second
7435 regular expression @strong{or} etc.
7436
7437 @item
7438 @samp{+} is used for describing a reservation described by the first
7439 regular expression @strong{and} a reservation described by the
7440 second regular expression @strong{and} etc.
7441
7442 @item
7443 @samp{*} is used for convenience and simply means a sequence in which
7444 the regular expression are repeated @var{number} times with cycle
7445 advancing (see @samp{,}).
7446
7447 @item
7448 @samp{cpu_function_unit_name} denotes reservation of the named
7449 functional unit.
7450
7451 @item
7452 @samp{reservation_name} --- see description of construction
7453 @samp{define_reservation}.
7454
7455 @item
7456 @samp{nothing} denotes no unit reservations.
7457 @end itemize
7458
7459 @findex define_reservation
7460 Sometimes unit reservations for different insns contain common parts.
7461 In such case, you can simplify the pipeline description by describing
7462 the common part by the following construction
7463
7464 @smallexample
7465 (define_reservation @var{reservation-name} @var{regexp})
7466 @end smallexample
7467
7468 @var{reservation-name} is a string giving name of @var{regexp}.
7469 Functional unit names and reservation names are in the same name
7470 space.  So the reservation names should be different from the
7471 functional unit names and can not be the reserved name @samp{nothing}.
7472
7473 @findex define_bypass
7474 @cindex instruction latency time
7475 @cindex data bypass
7476 The following construction is used to describe exceptions in the
7477 latency time for given instruction pair.  This is so called bypasses.
7478
7479 @smallexample
7480 (define_bypass @var{number} @var{out_insn_names} @var{in_insn_names}
7481                [@var{guard}])
7482 @end smallexample
7483
7484 @var{number} defines when the result generated by the instructions
7485 given in string @var{out_insn_names} will be ready for the
7486 instructions given in string @var{in_insn_names}.  The instructions in
7487 the string are separated by commas.
7488
7489 @var{guard} is an optional string giving the name of a C function which
7490 defines an additional guard for the bypass.  The function will get the
7491 two insns as parameters.  If the function returns zero the bypass will
7492 be ignored for this case.  The additional guard is necessary to
7493 recognize complicated bypasses, e.g.@: when the consumer is only an address
7494 of insn @samp{store} (not a stored value).
7495
7496 @findex exclusion_set
7497 @findex presence_set
7498 @findex final_presence_set
7499 @findex absence_set
7500 @findex final_absence_set
7501 @cindex VLIW
7502 @cindex RISC
7503 The following five constructions are usually used to describe
7504 @acronym{VLIW} processors, or more precisely, to describe a placement
7505 of small instructions into @acronym{VLIW} instruction slots.  They
7506 can be used for @acronym{RISC} processors, too.
7507
7508 @smallexample
7509 (exclusion_set @var{unit-names} @var{unit-names})
7510 (presence_set @var{unit-names} @var{patterns})
7511 (final_presence_set @var{unit-names} @var{patterns})
7512 (absence_set @var{unit-names} @var{patterns})
7513 (final_absence_set @var{unit-names} @var{patterns})
7514 @end smallexample
7515
7516 @var{unit-names} is a string giving names of functional units
7517 separated by commas.
7518
7519 @var{patterns} is a string giving patterns of functional units
7520 separated by comma.  Currently pattern is one unit or units
7521 separated by white-spaces.
7522
7523 The first construction (@samp{exclusion_set}) means that each
7524 functional unit in the first string can not be reserved simultaneously
7525 with a unit whose name is in the second string and vice versa.  For
7526 example, the construction is useful for describing processors
7527 (e.g.@: some SPARC processors) with a fully pipelined floating point
7528 functional unit which can execute simultaneously only single floating
7529 point insns or only double floating point insns.
7530
7531 The second construction (@samp{presence_set}) means that each
7532 functional unit in the first string can not be reserved unless at
7533 least one of pattern of units whose names are in the second string is
7534 reserved.  This is an asymmetric relation.  For example, it is useful
7535 for description that @acronym{VLIW} @samp{slot1} is reserved after
7536 @samp{slot0} reservation.  We could describe it by the following
7537 construction
7538
7539 @smallexample
7540 (presence_set "slot1" "slot0")
7541 @end smallexample
7542
7543 Or @samp{slot1} is reserved only after @samp{slot0} and unit @samp{b0}
7544 reservation.  In this case we could write
7545
7546 @smallexample
7547 (presence_set "slot1" "slot0 b0")
7548 @end smallexample
7549
7550 The third construction (@samp{final_presence_set}) is analogous to
7551 @samp{presence_set}.  The difference between them is when checking is
7552 done.  When an instruction is issued in given automaton state
7553 reflecting all current and planned unit reservations, the automaton
7554 state is changed.  The first state is a source state, the second one
7555 is a result state.  Checking for @samp{presence_set} is done on the
7556 source state reservation, checking for @samp{final_presence_set} is
7557 done on the result reservation.  This construction is useful to
7558 describe a reservation which is actually two subsequent reservations.
7559 For example, if we use
7560
7561 @smallexample
7562 (presence_set "slot1" "slot0")
7563 @end smallexample
7564
7565 the following insn will be never issued (because @samp{slot1} requires
7566 @samp{slot0} which is absent in the source state).
7567
7568 @smallexample
7569 (define_reservation "insn_and_nop" "slot0 + slot1")
7570 @end smallexample
7571
7572 but it can be issued if we use analogous @samp{final_presence_set}.
7573
7574 The forth construction (@samp{absence_set}) means that each functional
7575 unit in the first string can be reserved only if each pattern of units
7576 whose names are in the second string is not reserved.  This is an
7577 asymmetric relation (actually @samp{exclusion_set} is analogous to
7578 this one but it is symmetric).  For example it might be useful in a 
7579 @acronym{VLIW} description to say that @samp{slot0} cannot be reserved
7580 after either @samp{slot1} or @samp{slot2} have been reserved.  This
7581 can be described as:
7582
7583 @smallexample
7584 (absence_set "slot0" "slot1, slot2")
7585 @end smallexample
7586
7587 Or @samp{slot2} can not be reserved if @samp{slot0} and unit @samp{b0}
7588 are reserved or @samp{slot1} and unit @samp{b1} are reserved.  In
7589 this case we could write
7590
7591 @smallexample
7592 (absence_set "slot2" "slot0 b0, slot1 b1")
7593 @end smallexample
7594
7595 All functional units mentioned in a set should belong to the same
7596 automaton.
7597
7598 The last construction (@samp{final_absence_set}) is analogous to
7599 @samp{absence_set} but checking is done on the result (state)
7600 reservation.  See comments for @samp{final_presence_set}.
7601
7602 @findex automata_option
7603 @cindex deterministic finite state automaton
7604 @cindex nondeterministic finite state automaton
7605 @cindex finite state automaton minimization
7606 You can control the generator of the pipeline hazard recognizer with
7607 the following construction.
7608
7609 @smallexample
7610 (automata_option @var{options})
7611 @end smallexample
7612
7613 @var{options} is a string giving options which affect the generated
7614 code.  Currently there are the following options:
7615
7616 @itemize @bullet
7617 @item
7618 @dfn{no-minimization} makes no minimization of the automaton.  This is
7619 only worth to do when we are debugging the description and need to
7620 look more accurately at reservations of states.
7621
7622 @item
7623 @dfn{time} means printing time statistics about the generation of
7624 automata.
7625
7626 @item
7627 @dfn{stats} means printing statistics about the generated automata
7628 such as the number of DFA states, NDFA states and arcs.
7629
7630 @item
7631 @dfn{v} means a generation of the file describing the result automata.
7632 The file has suffix @samp{.dfa} and can be used for the description
7633 verification and debugging.
7634
7635 @item
7636 @dfn{w} means a generation of warning instead of error for
7637 non-critical errors.
7638
7639 @item
7640 @dfn{ndfa} makes nondeterministic finite state automata.  This affects
7641 the treatment of operator @samp{|} in the regular expressions.  The
7642 usual treatment of the operator is to try the first alternative and,
7643 if the reservation is not possible, the second alternative.  The
7644 nondeterministic treatment means trying all alternatives, some of them
7645 may be rejected by reservations in the subsequent insns.
7646
7647 @item
7648 @dfn{progress} means output of a progress bar showing how many states
7649 were generated so far for automaton being processed.  This is useful
7650 during debugging a @acronym{DFA} description.  If you see too many
7651 generated states, you could interrupt the generator of the pipeline
7652 hazard recognizer and try to figure out a reason for generation of the
7653 huge automaton.
7654 @end itemize
7655
7656 As an example, consider a superscalar @acronym{RISC} machine which can
7657 issue three insns (two integer insns and one floating point insn) on
7658 the cycle but can finish only two insns.  To describe this, we define
7659 the following functional units.
7660
7661 @smallexample
7662 (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
7663 (define_cpu_unit "port0, port1")
7664 @end smallexample
7665
7666 All simple integer insns can be executed in any integer pipeline and
7667 their result is ready in two cycles.  The simple integer insns are
7668 issued into the first pipeline unless it is reserved, otherwise they
7669 are issued into the second pipeline.  Integer division and
7670 multiplication insns can be executed only in the second integer
7671 pipeline and their results are ready correspondingly in 8 and 4
7672 cycles.  The integer division is not pipelined, i.e.@: the subsequent
7673 integer division insn can not be issued until the current division
7674 insn finished.  Floating point insns are fully pipelined and their
7675 results are ready in 3 cycles.  Where the result of a floating point
7676 insn is used by an integer insn, an additional delay of one cycle is
7677 incurred.  To describe all of this we could specify
7678
7679 @smallexample
7680 (define_cpu_unit "div")
7681
7682 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
7683                          "(i0_pipeline | i1_pipeline), (port0 | port1)")
7684
7685 (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
7686                          "i1_pipeline, nothing*2, (port0 | port1)")
7687
7688 (define_insn_reservation "div" 8 (eq_attr "type" "div")
7689                          "i1_pipeline, div*7, div + (port0 | port1)")
7690
7691 (define_insn_reservation "float" 3 (eq_attr "type" "float")
7692                          "f_pipeline, nothing, (port0 | port1))
7693
7694 (define_bypass 4 "float" "simple,mult,div")
7695 @end smallexample
7696
7697 To simplify the description we could describe the following reservation
7698
7699 @smallexample
7700 (define_reservation "finish" "port0|port1")
7701 @end smallexample
7702
7703 and use it in all @code{define_insn_reservation} as in the following
7704 construction
7705
7706 @smallexample
7707 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
7708                          "(i0_pipeline | i1_pipeline), finish")
7709 @end smallexample
7710
7711
7712 @end ifset
7713 @ifset INTERNALS
7714 @node Conditional Execution
7715 @section Conditional Execution
7716 @cindex conditional execution
7717 @cindex predication
7718
7719 A number of architectures provide for some form of conditional
7720 execution, or predication.  The hallmark of this feature is the
7721 ability to nullify most of the instructions in the instruction set.
7722 When the instruction set is large and not entirely symmetric, it
7723 can be quite tedious to describe these forms directly in the
7724 @file{.md} file.  An alternative is the @code{define_cond_exec} template.
7725
7726 @findex define_cond_exec
7727 @smallexample
7728 (define_cond_exec
7729   [@var{predicate-pattern}]
7730   "@var{condition}"
7731   "@var{output-template}")
7732 @end smallexample
7733
7734 @var{predicate-pattern} is the condition that must be true for the
7735 insn to be executed at runtime and should match a relational operator.
7736 One can use @code{match_operator} to match several relational operators
7737 at once.  Any @code{match_operand} operands must have no more than one
7738 alternative.
7739
7740 @var{condition} is a C expression that must be true for the generated
7741 pattern to match.
7742
7743 @findex current_insn_predicate
7744 @var{output-template} is a string similar to the @code{define_insn}
7745 output template (@pxref{Output Template}), except that the @samp{*}
7746 and @samp{@@} special cases do not apply.  This is only useful if the
7747 assembly text for the predicate is a simple prefix to the main insn.
7748 In order to handle the general case, there is a global variable
7749 @code{current_insn_predicate} that will contain the entire predicate
7750 if the current insn is predicated, and will otherwise be @code{NULL}.
7751
7752 When @code{define_cond_exec} is used, an implicit reference to
7753 the @code{predicable} instruction attribute is made.
7754 @xref{Insn Attributes}.  This attribute must be boolean (i.e.@: have
7755 exactly two elements in its @var{list-of-values}).  Further, it must
7756 not be used with complex expressions.  That is, the default and all
7757 uses in the insns must be a simple constant, not dependent on the
7758 alternative or anything else.
7759
7760 For each @code{define_insn} for which the @code{predicable}
7761 attribute is true, a new @code{define_insn} pattern will be
7762 generated that matches a predicated version of the instruction.
7763 For example,
7764
7765 @smallexample
7766 (define_insn "addsi"
7767   [(set (match_operand:SI 0 "register_operand" "r")
7768         (plus:SI (match_operand:SI 1 "register_operand" "r")
7769                  (match_operand:SI 2 "register_operand" "r")))]
7770   "@var{test1}"
7771   "add %2,%1,%0")
7772
7773 (define_cond_exec
7774   [(ne (match_operand:CC 0 "register_operand" "c")
7775        (const_int 0))]
7776   "@var{test2}"
7777   "(%0)")
7778 @end smallexample
7779
7780 @noindent
7781 generates a new pattern
7782
7783 @smallexample
7784 (define_insn ""
7785   [(cond_exec
7786      (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
7787      (set (match_operand:SI 0 "register_operand" "r")
7788           (plus:SI (match_operand:SI 1 "register_operand" "r")
7789                    (match_operand:SI 2 "register_operand" "r"))))]
7790   "(@var{test2}) && (@var{test1})"
7791   "(%3) add %2,%1,%0")
7792 @end smallexample
7793
7794 @end ifset
7795 @ifset INTERNALS
7796 @node Constant Definitions
7797 @section Constant Definitions
7798 @cindex constant definitions
7799 @findex define_constants
7800
7801 Using literal constants inside instruction patterns reduces legibility and
7802 can be a maintenance problem.
7803
7804 To overcome this problem, you may use the @code{define_constants}
7805 expression.  It contains a vector of name-value pairs.  From that
7806 point on, wherever any of the names appears in the MD file, it is as
7807 if the corresponding value had been written instead.  You may use
7808 @code{define_constants} multiple times; each appearance adds more
7809 constants to the table.  It is an error to redefine a constant with
7810 a different value.
7811
7812 To come back to the a29k load multiple example, instead of
7813
7814 @smallexample
7815 (define_insn ""
7816   [(match_parallel 0 "load_multiple_operation"
7817      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
7818            (match_operand:SI 2 "memory_operand" "m"))
7819       (use (reg:SI 179))
7820       (clobber (reg:SI 179))])]
7821   ""
7822   "loadm 0,0,%1,%2")
7823 @end smallexample
7824
7825 You could write:
7826
7827 @smallexample
7828 (define_constants [
7829     (R_BP 177)
7830     (R_FC 178)
7831     (R_CR 179)
7832     (R_Q  180)
7833 ])
7834
7835 (define_insn ""
7836   [(match_parallel 0 "load_multiple_operation"
7837      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
7838            (match_operand:SI 2 "memory_operand" "m"))
7839       (use (reg:SI R_CR))
7840       (clobber (reg:SI R_CR))])]
7841   ""
7842   "loadm 0,0,%1,%2")
7843 @end smallexample
7844
7845 The constants that are defined with a define_constant are also output
7846 in the insn-codes.h header file as #defines.
7847 @end ifset
7848 @ifset INTERNALS
7849 @node Iterators
7850 @section Iterators
7851 @cindex iterators in @file{.md} files
7852
7853 Ports often need to define similar patterns for more than one machine
7854 mode or for more than one rtx code.  GCC provides some simple iterator
7855 facilities to make this process easier.
7856
7857 @menu
7858 * Mode Iterators::         Generating variations of patterns for different modes.
7859 * Code Iterators::         Doing the same for codes.
7860 @end menu
7861
7862 @node Mode Iterators
7863 @subsection Mode Iterators
7864 @cindex mode iterators in @file{.md} files
7865
7866 Ports often need to define similar patterns for two or more different modes.
7867 For example:
7868
7869 @itemize @bullet
7870 @item
7871 If a processor has hardware support for both single and double
7872 floating-point arithmetic, the @code{SFmode} patterns tend to be
7873 very similar to the @code{DFmode} ones.
7874
7875 @item
7876 If a port uses @code{SImode} pointers in one configuration and
7877 @code{DImode} pointers in another, it will usually have very similar
7878 @code{SImode} and @code{DImode} patterns for manipulating pointers.
7879 @end itemize
7880
7881 Mode iterators allow several patterns to be instantiated from one
7882 @file{.md} file template.  They can be used with any type of
7883 rtx-based construct, such as a @code{define_insn},
7884 @code{define_split}, or @code{define_peephole2}.
7885
7886 @menu
7887 * Defining Mode Iterators:: Defining a new mode iterator.
7888 * Substitutions::           Combining mode iterators with substitutions
7889 * Examples::                Examples
7890 @end menu
7891
7892 @node Defining Mode Iterators
7893 @subsubsection Defining Mode Iterators
7894 @findex define_mode_iterator
7895
7896 The syntax for defining a mode iterator is:
7897
7898 @smallexample
7899 (define_mode_iterator @var{name} [(@var{mode1} "@var{cond1}") @dots{} (@var{moden} "@var{condn}")])
7900 @end smallexample
7901
7902 This allows subsequent @file{.md} file constructs to use the mode suffix
7903 @code{:@var{name}}.  Every construct that does so will be expanded
7904 @var{n} times, once with every use of @code{:@var{name}} replaced by
7905 @code{:@var{mode1}}, once with every use replaced by @code{:@var{mode2}},
7906 and so on.  In the expansion for a particular @var{modei}, every
7907 C condition will also require that @var{condi} be true.
7908
7909 For example:
7910
7911 @smallexample
7912 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
7913 @end smallexample
7914
7915 defines a new mode suffix @code{:P}.  Every construct that uses
7916 @code{:P} will be expanded twice, once with every @code{:P} replaced
7917 by @code{:SI} and once with every @code{:P} replaced by @code{:DI}.
7918 The @code{:SI} version will only apply if @code{Pmode == SImode} and
7919 the @code{:DI} version will only apply if @code{Pmode == DImode}.
7920
7921 As with other @file{.md} conditions, an empty string is treated
7922 as ``always true''.  @code{(@var{mode} "")} can also be abbreviated
7923 to @code{@var{mode}}.  For example:
7924
7925 @smallexample
7926 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
7927 @end smallexample
7928
7929 means that the @code{:DI} expansion only applies if @code{TARGET_64BIT}
7930 but that the @code{:SI} expansion has no such constraint.
7931
7932 Iterators are applied in the order they are defined.  This can be
7933 significant if two iterators are used in a construct that requires
7934 substitutions.  @xref{Substitutions}.
7935
7936 @node Substitutions
7937 @subsubsection Substitution in Mode Iterators
7938 @findex define_mode_attr
7939
7940 If an @file{.md} file construct uses mode iterators, each version of the
7941 construct will often need slightly different strings or modes.  For
7942 example:
7943
7944 @itemize @bullet
7945 @item
7946 When a @code{define_expand} defines several @code{add@var{m}3} patterns
7947 (@pxref{Standard Names}), each expander will need to use the
7948 appropriate mode name for @var{m}.
7949
7950 @item
7951 When a @code{define_insn} defines several instruction patterns,
7952 each instruction will often use a different assembler mnemonic.
7953
7954 @item
7955 When a @code{define_insn} requires operands with different modes,
7956 using an iterator for one of the operand modes usually requires a specific
7957 mode for the other operand(s).
7958 @end itemize
7959
7960 GCC supports such variations through a system of ``mode attributes''.
7961 There are two standard attributes: @code{mode}, which is the name of
7962 the mode in lower case, and @code{MODE}, which is the same thing in
7963 upper case.  You can define other attributes using:
7964
7965 @smallexample
7966 (define_mode_attr @var{name} [(@var{mode1} "@var{value1}") @dots{} (@var{moden} "@var{valuen}")])
7967 @end smallexample
7968
7969 where @var{name} is the name of the attribute and @var{valuei}
7970 is the value associated with @var{modei}.
7971
7972 When GCC replaces some @var{:iterator} with @var{:mode}, it will scan
7973 each string and mode in the pattern for sequences of the form
7974 @code{<@var{iterator}:@var{attr}>}, where @var{attr} is the name of a
7975 mode attribute.  If the attribute is defined for @var{mode}, the whole
7976 @code{<@dots{}>} sequence will be replaced by the appropriate attribute
7977 value.
7978
7979 For example, suppose an @file{.md} file has:
7980
7981 @smallexample
7982 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
7983 (define_mode_attr load [(SI "lw") (DI "ld")])
7984 @end smallexample
7985
7986 If one of the patterns that uses @code{:P} contains the string
7987 @code{"<P:load>\t%0,%1"}, the @code{SI} version of that pattern
7988 will use @code{"lw\t%0,%1"} and the @code{DI} version will use
7989 @code{"ld\t%0,%1"}.
7990
7991 Here is an example of using an attribute for a mode:
7992
7993 @smallexample
7994 (define_mode_iterator LONG [SI DI])
7995 (define_mode_attr SHORT [(SI "HI") (DI "SI")])
7996 (define_insn @dots{}
7997   (sign_extend:LONG (match_operand:<LONG:SHORT> @dots{})) @dots{})
7998 @end smallexample
7999
8000 The @code{@var{iterator}:} prefix may be omitted, in which case the
8001 substitution will be attempted for every iterator expansion.
8002
8003 @node Examples
8004 @subsubsection Mode Iterator Examples
8005
8006 Here is an example from the MIPS port.  It defines the following
8007 modes and attributes (among others):
8008
8009 @smallexample
8010 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
8011 (define_mode_attr d [(SI "") (DI "d")])
8012 @end smallexample
8013
8014 and uses the following template to define both @code{subsi3}
8015 and @code{subdi3}:
8016
8017 @smallexample
8018 (define_insn "sub<mode>3"
8019   [(set (match_operand:GPR 0 "register_operand" "=d")
8020         (minus:GPR (match_operand:GPR 1 "register_operand" "d")
8021                    (match_operand:GPR 2 "register_operand" "d")))]
8022   ""
8023   "<d>subu\t%0,%1,%2"
8024   [(set_attr "type" "arith")
8025    (set_attr "mode" "<MODE>")])
8026 @end smallexample
8027
8028 This is exactly equivalent to:
8029
8030 @smallexample
8031 (define_insn "subsi3"
8032   [(set (match_operand:SI 0 "register_operand" "=d")
8033         (minus:SI (match_operand:SI 1 "register_operand" "d")
8034                   (match_operand:SI 2 "register_operand" "d")))]
8035   ""
8036   "subu\t%0,%1,%2"
8037   [(set_attr "type" "arith")
8038    (set_attr "mode" "SI")])
8039
8040 (define_insn "subdi3"
8041   [(set (match_operand:DI 0 "register_operand" "=d")
8042         (minus:DI (match_operand:DI 1 "register_operand" "d")
8043                   (match_operand:DI 2 "register_operand" "d")))]
8044   ""
8045   "dsubu\t%0,%1,%2"
8046   [(set_attr "type" "arith")
8047    (set_attr "mode" "DI")])
8048 @end smallexample
8049
8050 @node Code Iterators
8051 @subsection Code Iterators
8052 @cindex code iterators in @file{.md} files
8053 @findex define_code_iterator
8054 @findex define_code_attr
8055
8056 Code iterators operate in a similar way to mode iterators.  @xref{Mode Iterators}.
8057
8058 The construct:
8059
8060 @smallexample
8061 (define_code_iterator @var{name} [(@var{code1} "@var{cond1}") @dots{} (@var{coden} "@var{condn}")])
8062 @end smallexample
8063
8064 defines a pseudo rtx code @var{name} that can be instantiated as
8065 @var{codei} if condition @var{condi} is true.  Each @var{codei}
8066 must have the same rtx format.  @xref{RTL Classes}.
8067
8068 As with mode iterators, each pattern that uses @var{name} will be
8069 expanded @var{n} times, once with all uses of @var{name} replaced by
8070 @var{code1}, once with all uses replaced by @var{code2}, and so on.
8071 @xref{Defining Mode Iterators}.
8072
8073 It is possible to define attributes for codes as well as for modes.
8074 There are two standard code attributes: @code{code}, the name of the
8075 code in lower case, and @code{CODE}, the name of the code in upper case.
8076 Other attributes are defined using:
8077
8078 @smallexample
8079 (define_code_attr @var{name} [(@var{code1} "@var{value1}") @dots{} (@var{coden} "@var{valuen}")])
8080 @end smallexample
8081
8082 Here's an example of code iterators in action, taken from the MIPS port:
8083
8084 @smallexample
8085 (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
8086                                 eq ne gt ge lt le gtu geu ltu leu])
8087
8088 (define_expand "b<code>"
8089   [(set (pc)
8090         (if_then_else (any_cond:CC (cc0)
8091                                    (const_int 0))
8092                       (label_ref (match_operand 0 ""))
8093                       (pc)))]
8094   ""
8095 @{
8096   gen_conditional_branch (operands, <CODE>);
8097   DONE;
8098 @})
8099 @end smallexample
8100
8101 This is equivalent to:
8102
8103 @smallexample
8104 (define_expand "bunordered"
8105   [(set (pc)
8106         (if_then_else (unordered:CC (cc0)
8107                                     (const_int 0))
8108                       (label_ref (match_operand 0 ""))
8109                       (pc)))]
8110   ""
8111 @{
8112   gen_conditional_branch (operands, UNORDERED);
8113   DONE;
8114 @})
8115
8116 (define_expand "bordered"
8117   [(set (pc)
8118         (if_then_else (ordered:CC (cc0)
8119                                   (const_int 0))
8120                       (label_ref (match_operand 0 ""))
8121                       (pc)))]
8122   ""
8123 @{
8124   gen_conditional_branch (operands, ORDERED);
8125   DONE;
8126 @})
8127
8128 @dots{}
8129 @end smallexample
8130
8131 @end ifset