OSDN Git Service

* doc/cfg.texi, doc/hostconfig.texi, doc/install.texi,
[pf3gnuchains/gcc-fork.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2 @c 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @ignore
7 @c man begin COPYRIGHT
8 Copyright @copyright{} 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
9 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
10
11 Permission is granted to copy, distribute and/or modify this document
12 under the terms of the GNU Free Documentation License, Version 1.2 or
13 any later version published by the Free Software Foundation; with the
14 Invariant Sections being ``GNU General Public License'' and ``Funding
15 Free Software'', the Front-Cover texts being (a) (see below), and with
16 the Back-Cover Texts being (b) (see below).  A copy of the license is
17 included in the gfdl(7) man page.
18
19 (a) The FSF's Front-Cover Text is:
20
21      A GNU Manual
22
23 (b) The FSF's Back-Cover Text is:
24
25      You have freedom to copy and modify this GNU Manual, like GNU
26      software.  Copies published by the Free Software Foundation raise
27      funds for GNU development.
28 @c man end
29 @c Set file name and title for the man page.
30 @setfilename gcc
31 @settitle GNU project C and C++ compiler
32 @c man begin SYNOPSIS
33 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
34     [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
35     [@option{-W}@var{warn}@dots{}] [@option{-pedantic}]
36     [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
37     [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
38     [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
39     [@option{-o} @var{outfile}] @var{infile}@dots{}
40
41 Only the most useful options are listed here; see below for the
42 remainder.  @samp{g++} accepts mostly the same options as @samp{gcc}.
43 @c man end
44 @c man begin SEEALSO
45 gpl(7), gfdl(7), fsf-funding(7),
46 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
47 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
48 @file{ld}, @file{binutils} and @file{gdb}.
49 @c man end
50 @c man begin BUGS
51 For instructions on reporting bugs, see
52 @w{@uref{http://gcc.gnu.org/bugs.html}}.  Use of the @command{gccbug}
53 script to report bugs is recommended.
54 @c man end
55 @c man begin AUTHOR
56 See the Info entry for @command{gcc}, or
57 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
58 for contributors to GCC@.
59 @c man end
60 @end ignore
61
62 @node Invoking GCC
63 @chapter GCC Command Options
64 @cindex GCC command options
65 @cindex command options
66 @cindex options, GCC command
67
68 @c man begin DESCRIPTION
69 When you invoke GCC, it normally does preprocessing, compilation,
70 assembly and linking.  The ``overall options'' allow you to stop this
71 process at an intermediate stage.  For example, the @option{-c} option
72 says not to run the linker.  Then the output consists of object files
73 output by the assembler.
74
75 Other options are passed on to one stage of processing.  Some options
76 control the preprocessor and others the compiler itself.  Yet other
77 options control the assembler and linker; most of these are not
78 documented here, since you rarely need to use any of them.
79
80 @cindex C compilation options
81 Most of the command line options that you can use with GCC are useful
82 for C programs; when an option is only useful with another language
83 (usually C++), the explanation says so explicitly.  If the description
84 for a particular option does not mention a source language, you can use
85 that option with all supported languages.
86
87 @cindex C++ compilation options
88 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
89 options for compiling C++ programs.
90
91 @cindex grouping options
92 @cindex options, grouping
93 The @command{gcc} program accepts options and file names as operands.  Many
94 options have multi-letter names; therefore multiple single-letter options
95 may @emph{not} be grouped: @option{-dr} is very different from @w{@samp{-d
96 -r}}.
97
98 @cindex order of options
99 @cindex options, order
100 You can mix options and other arguments.  For the most part, the order
101 you use doesn't matter.  Order does matter when you use several options
102 of the same kind; for example, if you specify @option{-L} more than once,
103 the directories are searched in the order specified.
104
105 Many options have long names starting with @samp{-f} or with
106 @samp{-W}---for example, @option{-fforce-mem},
107 @option{-fstrength-reduce}, @option{-Wformat} and so on.  Most of
108 these have both positive and negative forms; the negative form of
109 @option{-ffoo} would be @option{-fno-foo}.  This manual documents
110 only one of these two forms, whichever one is not the default.
111
112 @c man end
113
114 @xref{Option Index}, for an index to GCC's options.
115
116 @menu
117 * Option Summary::      Brief list of all options, without explanations.
118 * Overall Options::     Controlling the kind of output:
119                         an executable, object files, assembler files,
120                         or preprocessed source.
121 * Invoking G++::        Compiling C++ programs.
122 * C Dialect Options::   Controlling the variant of C language compiled.
123 * C++ Dialect Options:: Variations on C++.
124 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
125                         and Objective-C++.
126 * Language Independent Options:: Controlling how diagnostics should be
127                         formatted.
128 * Warning Options::     How picky should the compiler be?
129 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
130 * Optimize Options::    How much optimization?
131 * Preprocessor Options:: Controlling header files and macro definitions.
132                          Also, getting dependency information for Make.
133 * Assembler Options::   Passing options to the assembler.
134 * Link Options::        Specifying libraries and so on.
135 * Directory Options::   Where to find header files and libraries.
136                         Where to find the compiler executable files.
137 * Spec Files::          How to pass switches to sub-processes.
138 * Target Options::      Running a cross-compiler, or an old version of GCC.
139 * Submodel Options::    Specifying minor hardware or convention variations,
140                         such as 68010 vs 68020.
141 * Code Gen Options::    Specifying conventions for function calls, data layout
142                         and register usage.
143 * Environment Variables:: Env vars that affect GCC.
144 * Precompiled Headers:: Compiling a header once, and using it many times.
145 * Running Protoize::    Automatically adding or removing function prototypes.
146 @end menu
147
148 @c man begin OPTIONS
149
150 @node Option Summary
151 @section Option Summary
152
153 Here is a summary of all the options, grouped by type.  Explanations are
154 in the following sections.
155
156 @table @emph
157 @item Overall Options
158 @xref{Overall Options,,Options Controlling the Kind of Output}.
159 @gccoptlist{-c  -S  -E  -o @var{file}  -combine -pipe  -pass-exit-codes  @gol
160 -x @var{language}  -v  -###  --help  --target-help  --version}
161
162 @item C Language Options
163 @xref{C Dialect Options,,Options Controlling C Dialect}.
164 @gccoptlist{-ansi  -std=@var{standard}  -aux-info @var{filename} @gol
165 -fno-asm  -fno-builtin  -fno-builtin-@var{function} @gol
166 -fhosted  -ffreestanding  -fms-extensions @gol
167 -trigraphs  -no-integrated-cpp  -traditional  -traditional-cpp @gol
168 -fallow-single-precision  -fcond-mismatch @gol
169 -fsigned-bitfields  -fsigned-char @gol
170 -funsigned-bitfields  -funsigned-char}
171
172 @item C++ Language Options
173 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
174 @gccoptlist{-fabi-version=@var{n}  -fno-access-control  -fcheck-new @gol
175 -fconserve-space  -fno-const-strings @gol
176 -fno-elide-constructors @gol
177 -fno-enforce-eh-specs @gol
178 -ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
179 -fno-implicit-templates @gol
180 -fno-implicit-inline-templates @gol
181 -fno-implement-inlines  -fms-extensions @gol
182 -fno-nonansi-builtins  -fno-operator-names @gol
183 -fno-optional-diags  -fpermissive @gol
184 -frepo  -fno-rtti  -fstats  -ftemplate-depth-@var{n} @gol
185 -fno-threadsafe-statics -fuse-cxa-atexit  -fno-weak  -nostdinc++ @gol
186 -fno-default-inline  -fvisibility-inlines-hidden @gol
187 -Wabi  -Wctor-dtor-privacy @gol
188 -Wnon-virtual-dtor  -Wreorder @gol
189 -Weffc++  -Wno-deprecated @gol
190 -Wno-non-template-friend  -Wold-style-cast @gol
191 -Woverloaded-virtual  -Wno-pmf-conversions @gol
192 -Wsign-promo  -Wsynth}
193
194 @item Objective-C and Objective-C++ Language Options
195 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
196 Objective-C and Objective-C++ Dialects}.
197 @gccoptlist{
198 -fconstant-string-class=@var{class-name} @gol
199 -fgnu-runtime  -fnext-runtime @gol
200 -fno-nil-receivers @gol
201 -fobjc-exceptions @gol
202 -freplace-objc-classes @gol
203 -fzero-link @gol
204 -gen-decls @gol
205 -Wno-protocol  -Wselector -Wundeclared-selector}
206
207 @item Language Independent Options
208 @xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
209 @gccoptlist{-fmessage-length=@var{n}  @gol
210 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}}
211
212 @item Warning Options
213 @xref{Warning Options,,Options to Request or Suppress Warnings}.
214 @gccoptlist{-fsyntax-only  -pedantic  -pedantic-errors @gol
215 -w  -Wextra  -Wall  -Waggregate-return @gol
216 -Wcast-align  -Wcast-qual  -Wchar-subscripts  -Wcomment @gol
217 -Wconversion  -Wno-deprecated-declarations @gol
218 -Wdisabled-optimization  -Wno-div-by-zero  -Wendif-labels @gol
219 -Werror  -Werror-implicit-function-declaration @gol
220 -Wfatal-errors  -Wfloat-equal  -Wformat  -Wformat=2 @gol
221 -Wno-format-extra-args -Wformat-nonliteral @gol
222 -Wformat-security  -Wformat-y2k @gol
223 -Wimplicit  -Wimplicit-function-declaration  -Wimplicit-int @gol
224 -Wimport  -Wno-import  -Winit-self  -Winline @gol
225 -Wno-invalid-offsetof  -Winvalid-pch @gol
226 -Wlarger-than-@var{len}  -Wlong-long @gol
227 -Wmain  -Wmissing-braces  -Wmissing-field-initializers @gol
228 -Wmissing-format-attribute  -Wmissing-include-dirs @gol
229 -Wmissing-noreturn @gol
230 -Wno-multichar  -Wnonnull  -Wpacked  -Wpadded @gol
231 -Wparentheses  -Wpointer-arith  -Wredundant-decls @gol
232 -Wreturn-type  -Wsequence-point  -Wshadow @gol
233 -Wsign-compare  -Wstrict-aliasing -Wstrict-aliasing=2 @gol
234 -Wswitch  -Wswitch-default  -Wswitch-enum @gol
235 -Wsystem-headers  -Wtrigraphs  -Wundef  -Wuninitialized @gol
236 -Wunknown-pragmas  -Wunreachable-code @gol
237 -Wunused  -Wunused-function  -Wunused-label  -Wunused-parameter @gol
238 -Wunused-value  -Wunused-variable  -Wwrite-strings @gol
239 -Wvariadic-macros}
240
241 @item C-only Warning Options
242 @gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
243 -Wmissing-prototypes  -Wnested-externs  -Wold-style-definition @gol
244 -Wstrict-prototypes  -Wtraditional @gol
245 -Wdeclaration-after-statement}
246
247 @item Debugging Options
248 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
249 @gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
250 -fdump-unnumbered  -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
251 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
252 -fdump-ipa-all -fdump-ipa-cgraph @gol
253 -fdump-tree-all @gol
254 -fdump-tree-original@r{[}-@var{n}@r{]}  @gol
255 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
256 -fdump-tree-inlined@r{[}-@var{n}@r{]} @gol
257 -fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias @gol
258 -fdump-tree-ch @gol
259 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
260 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
261 -fdump-tree-gimple@r{[}-raw@r{]} -fdump-tree-mudflap@r{[}-@var{n}@r{]} @gol
262 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
263 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
264 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
265 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
266 -fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
267 -fdump-tree-nrv -fdump-tree-vect @gol
268 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
269 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
270 -feliminate-dwarf2-dups -feliminate-unused-debug-types @gol
271 -feliminate-unused-debug-symbols -fmem-report -fprofile-arcs -ftree-based-profiling @gol
272 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
273 -ftest-coverage  -ftime-report -fvar-tracking @gol
274 -g  -g@var{level}  -gcoff -gdwarf-2 @gol
275 -ggdb  -gstabs  -gstabs+  -gvms  -gxcoff  -gxcoff+ @gol
276 -p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name @gol
277 -print-multi-directory  -print-multi-lib @gol
278 -print-prog-name=@var{program}  -print-search-dirs  -Q @gol
279 -save-temps  -time}
280
281 @item Optimization Options
282 @xref{Optimize Options,,Options that Control Optimization}.
283 @gccoptlist{-falign-functions=@var{n}  -falign-jumps=@var{n} @gol
284 -falign-labels=@var{n}  -falign-loops=@var{n}  @gol
285 -fbounds-check -fmudflap -fmudflapth -fmudflapir @gol
286 -fbranch-probabilities -fprofile-values -fvpt -fbranch-target-load-optimize @gol
287 -fbranch-target-load-optimize2 -fbtr-bb-exclusive @gol
288 -fcaller-saves  -fcprop-registers @gol
289 -fcse-follow-jumps  -fcse-skip-blocks  -fdata-sections @gol
290 -fdelayed-branch  -fdelete-null-pointer-checks @gol
291 -fexpensive-optimizations  -ffast-math  -ffloat-store @gol
292 -fforce-addr  -fforce-mem  -ffunction-sections @gol
293 -fgcse  -fgcse-lm  -fgcse-sm  -fgcse-las  -fgcse-after-reload @gol
294 -floop-optimize -fcrossjumping  -fif-conversion  -fif-conversion2 @gol
295 -finline-functions  -finline-limit=@var{n}  -fkeep-inline-functions @gol
296 -fkeep-static-consts  -fmerge-constants  -fmerge-all-constants @gol
297 -fmodulo-sched -fmove-all-movables  -fnew-ra  -fno-branch-count-reg @gol
298 -fno-default-inline  -fno-defer-pop -floop-optimize2 -fmove-loop-invariants @gol
299 -fno-function-cse  -fno-guess-branch-probability @gol
300 -fno-inline  -fno-math-errno  -fno-peephole  -fno-peephole2 @gol
301 -funsafe-math-optimizations  -ffinite-math-only @gol
302 -fno-trapping-math  -fno-zero-initialized-in-bss @gol
303 -fomit-frame-pointer  -foptimize-register-move @gol
304 -foptimize-sibling-calls  -fprefetch-loop-arrays @gol
305 -fprofile-generate -fprofile-use @gol
306 -freduce-all-givs  -fregmove  -frename-registers @gol
307 -freorder-blocks  -freorder-blocks-and-partition -freorder-functions @gol
308 -frerun-cse-after-loop  -frerun-loop-opt @gol
309 -frounding-math -fschedule-insns  -fschedule-insns2 @gol
310 -fno-sched-interblock  -fno-sched-spec  -fsched-spec-load @gol
311 -fsched-spec-load-dangerous  @gol
312 -fsched-stalled-insns=@var{n} -sched-stalled-insns-dep=@var{n} @gol
313 -fsched2-use-superblocks @gol
314 -fsched2-use-traces -freschedule-modulo-scheduled-loops @gol
315 -fsignaling-nans -fsingle-precision-constant  -fspeculative-prefetching @gol
316 -fstrength-reduce  -fstrict-aliasing  -ftracer  -fthread-jumps @gol
317 -funroll-all-loops  -funroll-loops  -fpeel-loops @gol
318 -funswitch-loops  -fold-unroll-loops  -fold-unroll-all-loops @gol
319 -ftree-pre  -ftree-ccp  -ftree-dce -ftree-loop-optimize @gol
320 -ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -fivopts @gol
321 -ftree-dominator-opts -ftree-dse -ftree-copyrename @gol
322 -ftree-ch -ftree-sra -ftree-ter -ftree-lrs -ftree-fre -ftree-vectorize @gol
323 --param @var{name}=@var{value}
324 -O  -O0  -O1  -O2  -O3  -Os}
325
326 @item Preprocessor Options
327 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
328 @gccoptlist{-A@var{question}=@var{answer} @gol
329 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
330 -C  -dD  -dI  -dM  -dN @gol
331 -D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H @gol
332 -idirafter @var{dir} @gol
333 -include @var{file}  -imacros @var{file} @gol
334 -iprefix @var{file}  -iwithprefix @var{dir} @gol
335 -iwithprefixbefore @var{dir}  -isystem @var{dir} @gol
336 -M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  @gol
337 -P  -fworking-directory  -remap @gol
338 -trigraphs  -undef  -U@var{macro}  -Wp,@var{option} @gol
339 -Xpreprocessor @var{option}}
340
341 @item Assembler Option
342 @xref{Assembler Options,,Passing Options to the Assembler}.
343 @gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
344
345 @item Linker Options
346 @xref{Link Options,,Options for Linking}.
347 @gccoptlist{@var{object-file-name}  -l@var{library} @gol
348 -nostartfiles  -nodefaultlibs  -nostdlib -pie @gol
349 -s  -static  -static-libgcc  -shared  -shared-libgcc  -symbolic @gol
350 -Wl,@var{option}  -Xlinker @var{option} @gol
351 -u @var{symbol}}
352
353 @item Directory Options
354 @xref{Directory Options,,Options for Directory Search}.
355 @gccoptlist{-B@var{prefix}  -I@var{dir}  -iquote@var{dir}  -L@var{dir}  -specs=@var{file}  -I-}
356
357 @item Target Options
358 @c I wrote this xref this way to avoid overfull hbox. -- rms
359 @xref{Target Options}.
360 @gccoptlist{-V @var{version}  -b @var{machine}}
361
362 @item Machine Dependent Options
363 @xref{Submodel Options,,Hardware Models and Configurations}.
364 @c This list is ordered alphanumerically by subsection name.
365 @c Try and put the significant identifier (CPU or system) first,
366 @c so users have a clue at guessing where the ones they want will be.
367
368 @emph{ARC Options}
369 @gccoptlist{-EB  -EL @gol
370 -mmangle-cpu  -mcpu=@var{cpu}  -mtext=@var{text-section} @gol
371 -mdata=@var{data-section}  -mrodata=@var{readonly-data-section}}
372
373 @emph{ARM Options}
374 @gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
375 -mabi=@var{name} @gol
376 -mapcs-stack-check  -mno-apcs-stack-check @gol
377 -mapcs-float  -mno-apcs-float @gol
378 -mapcs-reentrant  -mno-apcs-reentrant @gol
379 -msched-prolog  -mno-sched-prolog @gol
380 -mlittle-endian  -mbig-endian  -mwords-little-endian @gol
381 -mfloat-abi=@var{name}  -msoft-float  -mhard-float  -mfpe @gol
382 -mthumb-interwork  -mno-thumb-interwork @gol
383 -mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
384 -mstructure-size-boundary=@var{n} @gol
385 -mabort-on-noreturn @gol
386 -mlong-calls  -mno-long-calls @gol
387 -msingle-pic-base  -mno-single-pic-base @gol
388 -mpic-register=@var{reg} @gol
389 -mnop-fun-dllimport @gol
390 -mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns @gol
391 -mpoke-function-name @gol
392 -mthumb  -marm @gol
393 -mtpcs-frame  -mtpcs-leaf-frame @gol
394 -mcaller-super-interworking  -mcallee-super-interworking}
395
396 @emph{AVR Options}
397 @gccoptlist{-mmcu=@var{mcu}  -msize  -minit-stack=@var{n}  -mno-interrupts @gol
398 -mcall-prologues  -mno-tablejump  -mtiny-stack  -mint8}
399
400 @emph{CRIS Options}
401 @gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
402 -mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
403 -metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
404 -mstack-align  -mdata-align  -mconst-align @gol
405 -m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
406 -melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
407 -mmul-bug-workaround  -mno-mul-bug-workaround}
408
409 @emph{Darwin Options}
410 @gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
411 -arch_only  -bind_at_load  -bundle  -bundle_loader @gol
412 -client_name  -compatibility_version  -current_version @gol
413 -dead_strip @gol
414 -dependency-file  -dylib_file  -dylinker_install_name @gol
415 -dynamic  -dynamiclib  -exported_symbols_list @gol
416 -filelist  -flat_namespace  -force_cpusubtype_ALL @gol
417 -force_flat_namespace  -headerpad_max_install_names @gol
418 -image_base  -init  -install_name  -keep_private_externs @gol
419 -multi_module  -multiply_defined  -multiply_defined_unused @gol
420 -noall_load   -no_dead_strip_inits_and_terms @gol
421 -nofixprebinding -nomultidefs  -noprebind  -noseglinkedit @gol
422 -pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
423 -private_bundle  -read_only_relocs  -sectalign @gol
424 -sectobjectsymbols  -whyload  -seg1addr @gol
425 -sectcreate  -sectobjectsymbols  -sectorder @gol
426 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
427 -seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
428 -segprot  -segs_read_only_addr  -segs_read_write_addr @gol
429 -single_module  -static  -sub_library  -sub_umbrella @gol
430 -twolevel_namespace  -umbrella  -undefined @gol
431 -unexported_symbols_list  -weak_reference_mismatches @gol
432 -whatsloaded -F -gused -gfull -mone-byte-bool}
433
434 @emph{DEC Alpha Options}
435 @gccoptlist{-mno-fp-regs  -msoft-float  -malpha-as  -mgas @gol
436 -mieee  -mieee-with-inexact  -mieee-conformant @gol
437 -mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
438 -mtrap-precision=@var{mode}  -mbuild-constants @gol
439 -mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
440 -mbwx  -mmax  -mfix  -mcix @gol
441 -mfloat-vax  -mfloat-ieee @gol
442 -mexplicit-relocs  -msmall-data  -mlarge-data @gol
443 -msmall-text  -mlarge-text @gol
444 -mmemory-latency=@var{time}}
445
446 @emph{DEC Alpha/VMS Options}
447 @gccoptlist{-mvms-return-codes}
448
449 @emph{FRV Options}
450 @gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
451 -mhard-float  -msoft-float @gol
452 -malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
453 -mdouble  -mno-double @gol
454 -mmedia  -mno-media  -mmuladd  -mno-muladd @gol
455 -mfdpic  -minline-plt -mgprel-ro  -multilib-library-pic @gol
456 -mlinked-fp  -mlong-calls  -malign-labels @gol
457 -mlibrary-pic  -macc-4  -macc-8 @gol
458 -mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
459 -mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
460 -mvliw-branch  -mno-vliw-branch @gol
461 -mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
462 -mno-nested-cond-exec  -mtomcat-stats @gol
463 -mcpu=@var{cpu}}
464
465 @emph{H8/300 Options}
466 @gccoptlist{-mrelax  -mh  -ms  -mn  -mint32  -malign-300}
467
468 @emph{HPPA Options}
469 @gccoptlist{-march=@var{architecture-type} @gol
470 -mbig-switch  -mdisable-fpregs  -mdisable-indexing @gol
471 -mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
472 -mfixed-range=@var{register-range} @gol
473 -mjump-in-delay -mlinker-opt -mlong-calls @gol
474 -mlong-load-store  -mno-big-switch  -mno-disable-fpregs @gol
475 -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
476 -mno-jump-in-delay  -mno-long-load-store @gol
477 -mno-portable-runtime  -mno-soft-float @gol
478 -mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
479 -mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
480 -mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
481 -munix=@var{unix-std}  -nolibdld  -static  -threads}
482
483 @emph{i386 and x86-64 Options}
484 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
485 -mfpmath=@var{unit} @gol
486 -masm=@var{dialect}  -mno-fancy-math-387 @gol
487 -mno-fp-ret-in-387  -msoft-float  -msvr3-shlib @gol
488 -mno-wide-multiply  -mrtd  -malign-double @gol
489 -mpreferred-stack-boundary=@var{num} @gol
490 -mmmx  -msse  -msse2 -msse3 -m3dnow @gol
491 -mthreads  -mno-align-stringops  -minline-all-stringops @gol
492 -mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
493 -m96bit-long-double  -mregparm=@var{num}  -momit-leaf-frame-pointer @gol
494 -mno-red-zone -mno-tls-direct-seg-refs @gol
495 -mcmodel=@var{code-model} @gol
496 -m32  -m64}
497
498 @emph{IA-64 Options}
499 @gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
500 -mvolatile-asm-stop  -mb-step  -mregister-names  -mno-sdata @gol
501 -mconstant-gp  -mauto-pic  -minline-float-divide-min-latency @gol
502 -minline-float-divide-max-throughput @gol
503 -minline-int-divide-min-latency @gol
504 -minline-int-divide-max-throughput  -mno-dwarf2-asm @gol
505 -mfixed-range=@var{register-range}}
506
507 @emph{M32R/D Options}
508 @gccoptlist{-m32r2 -m32rx -m32r @gol
509 -mdebug @gol
510 -malign-loops -mno-align-loops @gol
511 -missue-rate=@var{number} @gol
512 -mbranch-cost=@var{number} @gol
513 -mmodel=@var{code-size-model-type} @gol
514 -msdata=@var{sdata-type} @gol
515 -mno-flush-func -mflush-func=@var{name} @gol
516 -mno-flush-trap -mflush-trap=@var{number} @gol
517 -G @var{num}}
518
519 @emph{M680x0 Options}
520 @gccoptlist{-m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
521 -m68060  -mcpu32  -m5200  -m68881  -mbitfield  -mc68000  -mc68020   @gol
522 -mnobitfield  -mrtd  -mshort  -msoft-float  -mpcrel @gol
523 -malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
524 -mshared-library-id=n  -mid-shared-library  -mno-id-shared-library}
525
526 @emph{M68hc1x Options}
527 @gccoptlist{-m6811  -m6812  -m68hc11  -m68hc12   -m68hcs12 @gol
528 -mauto-incdec  -minmax  -mlong-calls  -mshort @gol
529 -msoft-reg-count=@var{count}}
530
531 @emph{MCore Options}
532 @gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
533 -mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
534 -m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
535 -mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
536 -mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
537
538 @emph{MIPS Options}
539 @gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
540 -mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips64 @gol
541 -mips16  -mno-mips16  -mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
542 -mxgot  -mno-xgot  -mgp32  -mgp64  -mfp32  -mfp64 @gol
543 -mhard-float  -msoft-float  -msingle-float  -mdouble-float @gol
544 -mpaired-single  -mips3d @gol
545 -mint64  -mlong64  -mlong32 @gol
546 -G@var{num}  -membedded-data  -mno-embedded-data @gol
547 -muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
548 -msplit-addresses  -mno-split-addresses  @gol
549 -mexplicit-relocs  -mno-explicit-relocs  @gol
550 -mcheck-zero-division  -mno-check-zero-division @gol
551 -mdivide-traps  -mdivide-breaks @gol
552 -mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
553 -mmad  -mno-mad  -mfused-madd  -mno-fused-madd  -nocpp @gol
554 -mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
555 -mfix-vr4120  -mno-fix-vr4120  -mfix-sb1  -mno-fix-sb1 @gol
556 -mflush-func=@var{func}  -mno-flush-func @gol
557 -mbranch-likely  -mno-branch-likely @gol
558 -mfp-exceptions -mno-fp-exceptions @gol
559 -mvr4130-align -mno-vr4130-align}
560
561 @emph{MMIX Options}
562 @gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
563 -mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
564 -melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
565 -mno-base-addresses  -msingle-exit  -mno-single-exit}
566
567 @emph{MN10300 Options}
568 @gccoptlist{-mmult-bug  -mno-mult-bug @gol
569 -mam33  -mno-am33 @gol
570 -mam33-2  -mno-am33-2 @gol
571 -mno-crt0  -mrelax}
572
573 @emph{NS32K Options}
574 @gccoptlist{-m32032  -m32332  -m32532  -m32081  -m32381 @gol
575 -mmult-add  -mnomult-add  -msoft-float  -mrtd  -mnortd @gol
576 -mregparam  -mnoregparam  -msb  -mnosb @gol
577 -mbitfield  -mnobitfield  -mhimem  -mnohimem}
578
579 @emph{PDP-11 Options}
580 @gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
581 -mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
582 -mint16  -mno-int32  -mfloat32  -mno-float64 @gol
583 -mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
584 -mbranch-expensive  -mbranch-cheap @gol
585 -msplit  -mno-split  -munix-asm  -mdec-asm}
586
587 @emph{PowerPC Options}
588 See RS/6000 and PowerPC Options.
589
590 @emph{RS/6000 and PowerPC Options}
591 @gccoptlist{-mcpu=@var{cpu-type} @gol
592 -mtune=@var{cpu-type} @gol
593 -mpower  -mno-power  -mpower2  -mno-power2 @gol
594 -mpowerpc  -mpowerpc64  -mno-powerpc @gol
595 -maltivec  -mno-altivec @gol
596 -mpowerpc-gpopt  -mno-powerpc-gpopt @gol
597 -mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
598 -mnew-mnemonics  -mold-mnemonics @gol
599 -mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
600 -m64  -m32  -mxl-call  -mno-xl-call  -mpe @gol
601 -malign-power  -malign-natural @gol
602 -msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
603 -mstring  -mno-string  -mupdate  -mno-update @gol
604 -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
605 -mstrict-align  -mno-strict-align  -mrelocatable @gol
606 -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
607 -mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
608 -mdynamic-no-pic @gol
609 -mprioritize-restricted-insns=@var{priority} @gol
610 -msched-costly-dep=@var{dependence_type} @gol
611 -minsert-sched-nops=@var{scheme} @gol
612 -mcall-sysv  -mcall-netbsd @gol
613 -maix-struct-return  -msvr4-struct-return @gol
614 -mabi=altivec  -mabi=no-altivec @gol
615 -mabi=spe  -mabi=no-spe @gol
616 -misel=yes  -misel=no @gol
617 -mspe=yes  -mspe=no @gol
618 -mfloat-gprs=yes  -mfloat-gprs=no @gol
619 -mprototype  -mno-prototype @gol
620 -msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
621 -msdata=@var{opt}  -mvxworks  -mwindiss  -G @var{num}  -pthread}
622
623 @emph{S/390 and zSeries Options}
624 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
625 -mhard-float  -msoft-float  -mbackchain  -mno-backchain -mkernel-backchain @gol
626 -msmall-exec  -mno-small-exec  -mmvcle -mno-mvcle @gol
627 -m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
628 -mtpf-trace -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
629 -mwarn-framesize  -mwarn-dynamicstack  -mstack-size -mstack-guard}
630
631 @emph{SH Options}
632 @gccoptlist{-m1  -m2  -m2e  -m3  -m3e @gol
633 -m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
634 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
635 -m5-64media  -m5-64media-nofpu @gol
636 -m5-32media  -m5-32media-nofpu @gol
637 -m5-compact  -m5-compact-nofpu @gol
638 -mb  -ml  -mdalign  -mrelax @gol
639 -mbigtable  -mfmovd  -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
640 -mieee  -misize  -mpadstruct  -mspace @gol
641 -mprefergot  -musermode}
642
643 @emph{SPARC Options}
644 @gccoptlist{-mcpu=@var{cpu-type} @gol
645 -mtune=@var{cpu-type} @gol
646 -mcmodel=@var{code-model} @gol
647 -m32  -m64  -mapp-regs  -mno-app-regs @gol
648 -mfaster-structs  -mno-faster-structs @gol
649 -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
650 -mhard-quad-float  -msoft-quad-float @gol
651 -mimpure-text  -mno-impure-text  -mlittle-endian @gol
652 -mstack-bias  -mno-stack-bias @gol
653 -munaligned-doubles  -mno-unaligned-doubles @gol
654 -mv8plus  -mno-v8plus  -mvis  -mno-vis
655 -threads -pthreads}
656
657 @emph{System V Options}
658 @gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
659
660 @emph{TMS320C3x/C4x Options}
661 @gccoptlist{-mcpu=@var{cpu}  -mbig  -msmall  -mregparm  -mmemparm @gol
662 -mfast-fix  -mmpyi  -mbk  -mti  -mdp-isr-reload @gol
663 -mrpts=@var{count}  -mrptb  -mdb  -mloop-unsigned @gol
664 -mparallel-insns  -mparallel-mpy  -mpreserve-float}
665
666 @emph{V850 Options}
667 @gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
668 -mprolog-function  -mno-prolog-function  -mspace @gol
669 -mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
670 -mapp-regs  -mno-app-regs @gol
671 -mdisable-callt  -mno-disable-callt @gol
672 -mv850e1 @gol
673 -mv850e @gol
674 -mv850  -mbig-switch}
675
676 @emph{VAX Options}
677 @gccoptlist{-mg  -mgnu  -munix}
678
679 @emph{x86-64 Options}
680 See i386 and x86-64 Options.
681
682 @emph{Xstormy16 Options}
683 @gccoptlist{-msim}
684
685 @emph{Xtensa Options}
686 @gccoptlist{-mconst16 -mno-const16 @gol
687 -mfused-madd  -mno-fused-madd @gol
688 -mtext-section-literals  -mno-text-section-literals @gol
689 -mtarget-align  -mno-target-align @gol
690 -mlongcalls  -mno-longcalls}
691
692 @emph{zSeries Options}
693 See S/390 and zSeries Options.
694
695 @item Code Generation Options
696 @xref{Code Gen Options,,Options for Code Generation Conventions}.
697 @gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
698 -ffixed-@var{reg}  -fexceptions @gol
699 -fnon-call-exceptions  -funwind-tables @gol
700 -fasynchronous-unwind-tables @gol
701 -finhibit-size-directive  -finstrument-functions @gol
702 -fno-common  -fno-ident @gol
703 -fpcc-struct-return  -fpic  -fPIC -fpie -fPIE @gol
704 -freg-struct-return  -fshared-data  -fshort-enums @gol
705 -fshort-double  -fshort-wchar @gol
706 -fverbose-asm  -fpack-struct[=@var{n}]  -fstack-check @gol
707 -fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
708 -fargument-alias  -fargument-noalias @gol
709 -fargument-noalias-global  -fleading-underscore @gol
710 -ftls-model=@var{model} @gol
711 -ftrapv  -fwrapv  -fbounds-check @gol
712 -fvisibility}
713 @end table
714
715 @menu
716 * Overall Options::     Controlling the kind of output:
717                         an executable, object files, assembler files,
718                         or preprocessed source.
719 * C Dialect Options::   Controlling the variant of C language compiled.
720 * C++ Dialect Options:: Variations on C++.
721 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
722                         and Objective-C++.
723 * Language Independent Options:: Controlling how diagnostics should be
724                         formatted.
725 * Warning Options::     How picky should the compiler be?
726 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
727 * Optimize Options::    How much optimization?
728 * Preprocessor Options:: Controlling header files and macro definitions.
729                          Also, getting dependency information for Make.
730 * Assembler Options::   Passing options to the assembler.
731 * Link Options::        Specifying libraries and so on.
732 * Directory Options::   Where to find header files and libraries.
733                         Where to find the compiler executable files.
734 * Spec Files::          How to pass switches to sub-processes.
735 * Target Options::      Running a cross-compiler, or an old version of GCC.
736 @end menu
737
738 @node Overall Options
739 @section Options Controlling the Kind of Output
740
741 Compilation can involve up to four stages: preprocessing, compilation
742 proper, assembly and linking, always in that order.  GCC is capable of
743 preprocessing and compiling several files either into several
744 assembler input files, or into one assembler input file; then each
745 assembler input file produces an object file, and linking combines all
746 the object files (those newly compiled, and those specified as input)
747 into an executable file.
748
749 @cindex file name suffix
750 For any given input file, the file name suffix determines what kind of
751 compilation is done:
752
753 @table @gcctabopt
754 @item @var{file}.c
755 C source code which must be preprocessed.
756
757 @item @var{file}.i
758 C source code which should not be preprocessed.
759
760 @item @var{file}.ii
761 C++ source code which should not be preprocessed.
762
763 @item @var{file}.m
764 Objective-C source code.  Note that you must link with the @file{libobjc}
765 library to make an Objective-C program work.
766
767 @item @var{file}.mi
768 Objective-C source code which should not be preprocessed.
769
770 @item @var{file}.mm
771 @itemx @var{file}.M
772 Objective-C++ source code.  Note that you must link with the @file{libobjc}
773 library to make an Objective-C++ program work.  Note that @samp{.M} refers
774 to a literal capital M@.
775
776 @item @var{file}.mii
777 Objective-C++ source code which should not be preprocessed.
778
779 @item @var{file}.h
780 C, C++, Objective-C or Objective-C++ header file to be turned into a
781 precompiled header.
782
783 @item @var{file}.cc
784 @itemx @var{file}.cp
785 @itemx @var{file}.cxx
786 @itemx @var{file}.cpp
787 @itemx @var{file}.CPP
788 @itemx @var{file}.c++
789 @itemx @var{file}.C
790 C++ source code which must be preprocessed.  Note that in @samp{.cxx},
791 the last two letters must both be literally @samp{x}.  Likewise,
792 @samp{.C} refers to a literal capital C@.
793
794 @item @var{file}.hh
795 @itemx @var{file}.H
796 C++ header file to be turned into a precompiled header.
797
798 @item @var{file}.f
799 @itemx @var{file}.for
800 @itemx @var{file}.FOR
801 Fortran source code which should not be preprocessed.
802
803 @item @var{file}.F
804 @itemx @var{file}.fpp
805 @itemx @var{file}.FPP
806 Fortran source code which must be preprocessed (with the traditional
807 preprocessor).
808
809 @item @var{file}.r
810 Fortran source code which must be preprocessed with a RATFOR
811 preprocessor (not included with GCC)@.
812
813 @item @var{file}.f90
814 @itemx @var{file}.f95
815 Fortran 90/95 source code which should not be preprocessed.
816
817 @c FIXME: Descriptions of Java file types.
818 @c @var{file}.java
819 @c @var{file}.class
820 @c @var{file}.zip
821 @c @var{file}.jar
822
823 @item @var{file}.ads
824 Ada source code file which contains a library unit declaration (a
825 declaration of a package, subprogram, or generic, or a generic
826 instantiation), or a library unit renaming declaration (a package,
827 generic, or subprogram renaming declaration).  Such files are also
828 called @dfn{specs}.
829
830 @itemx @var{file}.adb
831 Ada source code file containing a library unit body (a subprogram or
832 package body).  Such files are also called @dfn{bodies}.
833
834 @c GCC also knows about some suffixes for languages not yet included:
835 @c Pascal:
836 @c @var{file}.p
837 @c @var{file}.pas
838
839 @item @var{file}.s
840 Assembler code.
841
842 @item @var{file}.S
843 Assembler code which must be preprocessed.
844
845 @item @var{other}
846 An object file to be fed straight into linking.
847 Any file name with no recognized suffix is treated this way.
848 @end table
849
850 @opindex x
851 You can specify the input language explicitly with the @option{-x} option:
852
853 @table @gcctabopt
854 @item -x @var{language}
855 Specify explicitly the @var{language} for the following input files
856 (rather than letting the compiler choose a default based on the file
857 name suffix).  This option applies to all following input files until
858 the next @option{-x} option.  Possible values for @var{language} are:
859 @smallexample
860 c  c-header  c-cpp-output
861 c++  c++-header  c++-cpp-output
862 objective-c  objective-c-header  objective-c-cpp-output
863 objective-c++ objective-c++-header objective-c++-cpp-output
864 assembler  assembler-with-cpp
865 ada
866 f77  f77-cpp-input  ratfor
867 f95
868 java
869 treelang
870 @end smallexample
871
872 @item -x none
873 Turn off any specification of a language, so that subsequent files are
874 handled according to their file name suffixes (as they are if @option{-x}
875 has not been used at all).
876
877 @item -pass-exit-codes
878 @opindex pass-exit-codes
879 Normally the @command{gcc} program will exit with the code of 1 if any
880 phase of the compiler returns a non-success return code.  If you specify
881 @option{-pass-exit-codes}, the @command{gcc} program will instead return with
882 numerically highest error produced by any phase that returned an error
883 indication.
884 @end table
885
886 If you only want some of the stages of compilation, you can use
887 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
888 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
889 @command{gcc} is to stop.  Note that some combinations (for example,
890 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
891
892 @table @gcctabopt
893 @item -c
894 @opindex c
895 Compile or assemble the source files, but do not link.  The linking
896 stage simply is not done.  The ultimate output is in the form of an
897 object file for each source file.
898
899 By default, the object file name for a source file is made by replacing
900 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
901
902 Unrecognized input files, not requiring compilation or assembly, are
903 ignored.
904
905 @item -S
906 @opindex S
907 Stop after the stage of compilation proper; do not assemble.  The output
908 is in the form of an assembler code file for each non-assembler input
909 file specified.
910
911 By default, the assembler file name for a source file is made by
912 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
913
914 Input files that don't require compilation are ignored.
915
916 @item -E
917 @opindex E
918 Stop after the preprocessing stage; do not run the compiler proper.  The
919 output is in the form of preprocessed source code, which is sent to the
920 standard output.
921
922 Input files which don't require preprocessing are ignored.
923
924 @cindex output file option
925 @item -o @var{file}
926 @opindex o
927 Place output in file @var{file}.  This applies regardless to whatever
928 sort of output is being produced, whether it be an executable file,
929 an object file, an assembler file or preprocessed C code.
930
931 If @option{-o} is not specified, the default is to put an executable
932 file in @file{a.out}, the object file for
933 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
934 assembler file in @file{@var{source}.s}, a precompiled header file in
935 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
936 standard output.
937
938 @item -v
939 @opindex v
940 Print (on standard error output) the commands executed to run the stages
941 of compilation.  Also print the version number of the compiler driver
942 program and of the preprocessor and the compiler proper.
943
944 @item -###
945 @opindex ###
946 Like @option{-v} except the commands are not executed and all command
947 arguments are quoted.  This is useful for shell scripts to capture the
948 driver-generated command lines.
949
950 @item -pipe
951 @opindex pipe
952 Use pipes rather than temporary files for communication between the
953 various stages of compilation.  This fails to work on some systems where
954 the assembler is unable to read from a pipe; but the GNU assembler has
955 no trouble.
956
957 @item -combine
958 @opindex combine
959 If you are compiling multiple source files, this option tells the driver
960 to pass all the source files to the compiler at once (for those
961 languages for which the compiler can handle this).  This will allow
962 intermodule analysis (IMA) to be performed by the compiler.  Currently the only
963 language for which this is supported is C.  If you pass source files for
964 multiple languages to the driver, using this option, the driver will invoke
965 the compiler(s) that support IMA once each, passing each compiler all the
966 source files appropriate for it.  For those languages that do not support
967 IMA this option will be ignored, and the compiler will be invoked once for
968 each source file in that language.  If you use this option in conjunction
969 with -save-temps, the compiler will generate multiple pre-processed files
970 (one for each source file), but only one (combined) .o or .s file.
971
972 @item --help
973 @opindex help
974 Print (on the standard output) a description of the command line options
975 understood by @command{gcc}.  If the @option{-v} option is also specified
976 then @option{--help} will also be passed on to the various processes
977 invoked by @command{gcc}, so that they can display the command line options
978 they accept.  If the @option{-Wextra} option is also specified then command
979 line options which have no documentation associated with them will also
980 be displayed.
981
982 @item --target-help
983 @opindex target-help
984 Print (on the standard output) a description of target specific command
985 line options for each tool.
986
987 @item --version
988 @opindex version
989 Display the version number and copyrights of the invoked GCC.
990 @end table
991
992 @node Invoking G++
993 @section Compiling C++ Programs
994
995 @cindex suffixes for C++ source
996 @cindex C++ source file suffixes
997 C++ source files conventionally use one of the suffixes @samp{.C},
998 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
999 @samp{.cxx}; C++ header files often use @samp{.hh} or @samp{.H}; and
1000 preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
1001 files with these names and compiles them as C++ programs even if you
1002 call the compiler the same way as for compiling C programs (usually
1003 with the name @command{gcc}).
1004
1005 @findex g++
1006 @findex c++
1007 However, C++ programs often require class libraries as well as a
1008 compiler that understands the C++ language---and under some
1009 circumstances, you might want to compile programs or header files from
1010 standard input, or otherwise without a suffix that flags them as C++
1011 programs.  You might also like to precompile a C header file with a
1012 @samp{.h} extension to be used in C++ compilations.  @command{g++} is a
1013 program that calls GCC with the default language set to C++, and
1014 automatically specifies linking against the C++ library.  On many
1015 systems, @command{g++} is also installed with the name @command{c++}.
1016
1017 @cindex invoking @command{g++}
1018 When you compile C++ programs, you may specify many of the same
1019 command-line options that you use for compiling programs in any
1020 language; or command-line options meaningful for C and related
1021 languages; or options that are meaningful only for C++ programs.
1022 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1023 explanations of options for languages related to C@.
1024 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1025 explanations of options that are meaningful only for C++ programs.
1026
1027 @node C Dialect Options
1028 @section Options Controlling C Dialect
1029 @cindex dialect options
1030 @cindex language dialect options
1031 @cindex options, dialect
1032
1033 The following options control the dialect of C (or languages derived
1034 from C, such as C++, Objective-C and Objective-C++) that the compiler
1035 accepts:
1036
1037 @table @gcctabopt
1038 @cindex ANSI support
1039 @cindex ISO support
1040 @item -ansi
1041 @opindex ansi
1042 In C mode, support all ISO C90 programs.  In C++ mode,
1043 remove GNU extensions that conflict with ISO C++.
1044
1045 This turns off certain features of GCC that are incompatible with ISO
1046 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1047 such as the @code{asm} and @code{typeof} keywords, and
1048 predefined macros such as @code{unix} and @code{vax} that identify the
1049 type of system you are using.  It also enables the undesirable and
1050 rarely used ISO trigraph feature.  For the C compiler,
1051 it disables recognition of C++ style @samp{//} comments as well as
1052 the @code{inline} keyword.
1053
1054 The alternate keywords @code{__asm__}, @code{__extension__},
1055 @code{__inline__} and @code{__typeof__} continue to work despite
1056 @option{-ansi}.  You would not want to use them in an ISO C program, of
1057 course, but it is useful to put them in header files that might be included
1058 in compilations done with @option{-ansi}.  Alternate predefined macros
1059 such as @code{__unix__} and @code{__vax__} are also available, with or
1060 without @option{-ansi}.
1061
1062 The @option{-ansi} option does not cause non-ISO programs to be
1063 rejected gratuitously.  For that, @option{-pedantic} is required in
1064 addition to @option{-ansi}.  @xref{Warning Options}.
1065
1066 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1067 option is used.  Some header files may notice this macro and refrain
1068 from declaring certain functions or defining certain macros that the
1069 ISO standard doesn't call for; this is to avoid interfering with any
1070 programs that might use these names for other things.
1071
1072 Functions which would normally be built in but do not have semantics
1073 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1074 functions with @option{-ansi} is used.  @xref{Other Builtins,,Other
1075 built-in functions provided by GCC}, for details of the functions
1076 affected.
1077
1078 @item -std=
1079 @opindex std
1080 Determine the language standard.  This option is currently only
1081 supported when compiling C or C++.  A value for this option must be
1082 provided; possible values are
1083
1084 @table @samp
1085 @item c89
1086 @itemx iso9899:1990
1087 ISO C90 (same as @option{-ansi}).
1088
1089 @item iso9899:199409
1090 ISO C90 as modified in amendment 1.
1091
1092 @item c99
1093 @itemx c9x
1094 @itemx iso9899:1999
1095 @itemx iso9899:199x
1096 ISO C99.  Note that this standard is not yet fully supported; see
1097 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1098 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1099
1100 @item gnu89
1101 Default, ISO C90 plus GNU extensions (including some C99 features).
1102
1103 @item gnu99
1104 @itemx gnu9x
1105 ISO C99 plus GNU extensions.  When ISO C99 is fully implemented in GCC,
1106 this will become the default.  The name @samp{gnu9x} is deprecated.
1107
1108 @item c++98
1109 The 1998 ISO C++ standard plus amendments.
1110
1111 @item gnu++98
1112 The same as @option{-std=c++98} plus GNU extensions.  This is the
1113 default for C++ code.
1114 @end table
1115
1116 Even when this option is not specified, you can still use some of the
1117 features of newer standards in so far as they do not conflict with
1118 previous C standards.  For example, you may use @code{__restrict__} even
1119 when @option{-std=c99} is not specified.
1120
1121 The @option{-std} options specifying some version of ISO C have the same
1122 effects as @option{-ansi}, except that features that were not in ISO C90
1123 but are in the specified version (for example, @samp{//} comments and
1124 the @code{inline} keyword in ISO C99) are not disabled.
1125
1126 @xref{Standards,,Language Standards Supported by GCC}, for details of
1127 these standard versions.
1128
1129 @item -aux-info @var{filename}
1130 @opindex aux-info
1131 Output to the given filename prototyped declarations for all functions
1132 declared and/or defined in a translation unit, including those in header
1133 files.  This option is silently ignored in any language other than C@.
1134
1135 Besides declarations, the file indicates, in comments, the origin of
1136 each declaration (source file and line), whether the declaration was
1137 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1138 @samp{O} for old, respectively, in the first character after the line
1139 number and the colon), and whether it came from a declaration or a
1140 definition (@samp{C} or @samp{F}, respectively, in the following
1141 character).  In the case of function definitions, a K&R-style list of
1142 arguments followed by their declarations is also provided, inside
1143 comments, after the declaration.
1144
1145 @item -fno-asm
1146 @opindex fno-asm
1147 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1148 keyword, so that code can use these words as identifiers.  You can use
1149 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1150 instead.  @option{-ansi} implies @option{-fno-asm}.
1151
1152 In C++, this switch only affects the @code{typeof} keyword, since
1153 @code{asm} and @code{inline} are standard keywords.  You may want to
1154 use the @option{-fno-gnu-keywords} flag instead, which has the same
1155 effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1156 switch only affects the @code{asm} and @code{typeof} keywords, since
1157 @code{inline} is a standard keyword in ISO C99.
1158
1159 @item -fno-builtin
1160 @itemx -fno-builtin-@var{function}
1161 @opindex fno-builtin
1162 @cindex built-in functions
1163 Don't recognize built-in functions that do not begin with
1164 @samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
1165 functions provided by GCC}, for details of the functions affected,
1166 including those which are not built-in functions when @option{-ansi} or
1167 @option{-std} options for strict ISO C conformance are used because they
1168 do not have an ISO standard meaning.
1169
1170 GCC normally generates special code to handle certain built-in functions
1171 more efficiently; for instance, calls to @code{alloca} may become single
1172 instructions that adjust the stack directly, and calls to @code{memcpy}
1173 may become inline copy loops.  The resulting code is often both smaller
1174 and faster, but since the function calls no longer appear as such, you
1175 cannot set a breakpoint on those calls, nor can you change the behavior
1176 of the functions by linking with a different library.
1177
1178 With the @option{-fno-builtin-@var{function}} option
1179 only the built-in function @var{function} is
1180 disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
1181 function is named this is not built-in in this version of GCC, this
1182 option is ignored.  There is no corresponding
1183 @option{-fbuiltin-@var{function}} option; if you wish to enable
1184 built-in functions selectively when using @option{-fno-builtin} or
1185 @option{-ffreestanding}, you may define macros such as:
1186
1187 @smallexample
1188 #define abs(n)          __builtin_abs ((n))
1189 #define strcpy(d, s)    __builtin_strcpy ((d), (s))
1190 @end smallexample
1191
1192 @item -fhosted
1193 @opindex fhosted
1194 @cindex hosted environment
1195
1196 Assert that compilation takes place in a hosted environment.  This implies
1197 @option{-fbuiltin}.  A hosted environment is one in which the
1198 entire standard library is available, and in which @code{main} has a return
1199 type of @code{int}.  Examples are nearly everything except a kernel.
1200 This is equivalent to @option{-fno-freestanding}.
1201
1202 @item -ffreestanding
1203 @opindex ffreestanding
1204 @cindex hosted environment
1205
1206 Assert that compilation takes place in a freestanding environment.  This
1207 implies @option{-fno-builtin}.  A freestanding environment
1208 is one in which the standard library may not exist, and program startup may
1209 not necessarily be at @code{main}.  The most obvious example is an OS kernel.
1210 This is equivalent to @option{-fno-hosted}.
1211
1212 @xref{Standards,,Language Standards Supported by GCC}, for details of
1213 freestanding and hosted environments.
1214
1215 @item -fms-extensions
1216 @opindex fms-extensions
1217 Accept some non-standard constructs used in Microsoft header files.
1218
1219 @item -trigraphs
1220 @opindex trigraphs
1221 Support ISO C trigraphs.  The @option{-ansi} option (and @option{-std}
1222 options for strict ISO C conformance) implies @option{-trigraphs}.
1223
1224 @item -no-integrated-cpp
1225 @opindex no-integrated-cpp
1226 Performs a compilation in two passes: preprocessing and compiling.  This
1227 option allows a user supplied "cc1", "cc1plus", or "cc1obj" via the
1228 @option{-B} option. The user supplied compilation step can then add in
1229 an additional preprocessing step after normal preprocessing but before
1230 compiling. The default is to use the integrated cpp (internal cpp)
1231
1232 The semantics of this option will change if "cc1", "cc1plus", and
1233 "cc1obj" are merged.
1234
1235 @cindex traditional C language
1236 @cindex C language, traditional
1237 @item -traditional
1238 @itemx -traditional-cpp
1239 @opindex traditional-cpp
1240 @opindex traditional
1241 Formerly, these options caused GCC to attempt to emulate a pre-standard
1242 C compiler.  They are now only supported with the @option{-E} switch.
1243 The preprocessor continues to support a pre-standard mode.  See the GNU
1244 CPP manual for details.
1245
1246 @item -fcond-mismatch
1247 @opindex fcond-mismatch
1248 Allow conditional expressions with mismatched types in the second and
1249 third arguments.  The value of such an expression is void.  This option
1250 is not supported for C++.
1251
1252 @item -funsigned-char
1253 @opindex funsigned-char
1254 Let the type @code{char} be unsigned, like @code{unsigned char}.
1255
1256 Each kind of machine has a default for what @code{char} should
1257 be.  It is either like @code{unsigned char} by default or like
1258 @code{signed char} by default.
1259
1260 Ideally, a portable program should always use @code{signed char} or
1261 @code{unsigned char} when it depends on the signedness of an object.
1262 But many programs have been written to use plain @code{char} and
1263 expect it to be signed, or expect it to be unsigned, depending on the
1264 machines they were written for.  This option, and its inverse, let you
1265 make such a program work with the opposite default.
1266
1267 The type @code{char} is always a distinct type from each of
1268 @code{signed char} or @code{unsigned char}, even though its behavior
1269 is always just like one of those two.
1270
1271 @item -fsigned-char
1272 @opindex fsigned-char
1273 Let the type @code{char} be signed, like @code{signed char}.
1274
1275 Note that this is equivalent to @option{-fno-unsigned-char}, which is
1276 the negative form of @option{-funsigned-char}.  Likewise, the option
1277 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
1278
1279 @item -fsigned-bitfields
1280 @itemx -funsigned-bitfields
1281 @itemx -fno-signed-bitfields
1282 @itemx -fno-unsigned-bitfields
1283 @opindex fsigned-bitfields
1284 @opindex funsigned-bitfields
1285 @opindex fno-signed-bitfields
1286 @opindex fno-unsigned-bitfields
1287 These options control whether a bit-field is signed or unsigned, when the
1288 declaration does not use either @code{signed} or @code{unsigned}.  By
1289 default, such a bit-field is signed, because this is consistent: the
1290 basic integer types such as @code{int} are signed types.
1291 @end table
1292
1293 @node C++ Dialect Options
1294 @section Options Controlling C++ Dialect
1295
1296 @cindex compiler options, C++
1297 @cindex C++ options, command line
1298 @cindex options, C++
1299 This section describes the command-line options that are only meaningful
1300 for C++ programs; but you can also use most of the GNU compiler options
1301 regardless of what language your program is in.  For example, you
1302 might compile a file @code{firstClass.C} like this:
1303
1304 @smallexample
1305 g++ -g -frepo -O -c firstClass.C
1306 @end smallexample
1307
1308 @noindent
1309 In this example, only @option{-frepo} is an option meant
1310 only for C++ programs; you can use the other options with any
1311 language supported by GCC@.
1312
1313 Here is a list of options that are @emph{only} for compiling C++ programs:
1314
1315 @table @gcctabopt
1316
1317 @item -fabi-version=@var{n}
1318 @opindex fabi-version
1319 Use version @var{n} of the C++ ABI.  Version 2 is the version of the
1320 C++ ABI that first appeared in G++ 3.4.  Version 1 is the version of
1321 the C++ ABI that first appeared in G++ 3.2.  Version 0 will always be
1322 the version that conforms most closely to the C++ ABI specification.
1323 Therefore, the ABI obtained using version 0 will change as ABI bugs
1324 are fixed.
1325
1326 The default is version 2.
1327
1328 @item -fno-access-control
1329 @opindex fno-access-control
1330 Turn off all access checking.  This switch is mainly useful for working
1331 around bugs in the access control code.
1332
1333 @item -fcheck-new
1334 @opindex fcheck-new
1335 Check that the pointer returned by @code{operator new} is non-null
1336 before attempting to modify the storage allocated.  This check is
1337 normally unnecessary because the C++ standard specifies that
1338 @code{operator new} will only return @code{0} if it is declared
1339 @samp{throw()}, in which case the compiler will always check the
1340 return value even without this option.  In all other cases, when
1341 @code{operator new} has a non-empty exception specification, memory
1342 exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
1343 @samp{new (nothrow)}.
1344
1345 @item -fconserve-space
1346 @opindex fconserve-space
1347 Put uninitialized or runtime-initialized global variables into the
1348 common segment, as C does.  This saves space in the executable at the
1349 cost of not diagnosing duplicate definitions.  If you compile with this
1350 flag and your program mysteriously crashes after @code{main()} has
1351 completed, you may have an object that is being destroyed twice because
1352 two definitions were merged.
1353
1354 This option is no longer useful on most targets, now that support has
1355 been added for putting variables into BSS without making them common.
1356
1357 @item -fno-const-strings
1358 @opindex fno-const-strings
1359 Give string constants type @code{char *} instead of type @code{const
1360 char *}.  By default, G++ uses type @code{const char *} as required by
1361 the standard.  Even if you use @option{-fno-const-strings}, you cannot
1362 actually modify the value of a string constant.
1363
1364 This option might be removed in a future release of G++.  For maximum
1365 portability, you should structure your code so that it works with
1366 string constants that have type @code{const char *}.
1367
1368 @item -fno-elide-constructors
1369 @opindex fno-elide-constructors
1370 The C++ standard allows an implementation to omit creating a temporary
1371 which is only used to initialize another object of the same type.
1372 Specifying this option disables that optimization, and forces G++ to
1373 call the copy constructor in all cases.
1374
1375 @item -fno-enforce-eh-specs
1376 @opindex fno-enforce-eh-specs
1377 Don't check for violation of exception specifications at runtime.  This
1378 option violates the C++ standard, but may be useful for reducing code
1379 size in production builds, much like defining @samp{NDEBUG}.  The compiler
1380 will still optimize based on the exception specifications.
1381
1382 @item -ffor-scope
1383 @itemx -fno-for-scope
1384 @opindex ffor-scope
1385 @opindex fno-for-scope
1386 If @option{-ffor-scope} is specified, the scope of variables declared in
1387 a @i{for-init-statement} is limited to the @samp{for} loop itself,
1388 as specified by the C++ standard.
1389 If @option{-fno-for-scope} is specified, the scope of variables declared in
1390 a @i{for-init-statement} extends to the end of the enclosing scope,
1391 as was the case in old versions of G++, and other (traditional)
1392 implementations of C++.
1393
1394 The default if neither flag is given to follow the standard,
1395 but to allow and give a warning for old-style code that would
1396 otherwise be invalid, or have different behavior.
1397
1398 @item -fno-gnu-keywords
1399 @opindex fno-gnu-keywords
1400 Do not recognize @code{typeof} as a keyword, so that code can use this
1401 word as an identifier.  You can use the keyword @code{__typeof__} instead.
1402 @option{-ansi} implies @option{-fno-gnu-keywords}.
1403
1404 @item -fno-implicit-templates
1405 @opindex fno-implicit-templates
1406 Never emit code for non-inline templates which are instantiated
1407 implicitly (i.e.@: by use); only emit code for explicit instantiations.
1408 @xref{Template Instantiation}, for more information.
1409
1410 @item -fno-implicit-inline-templates
1411 @opindex fno-implicit-inline-templates
1412 Don't emit code for implicit instantiations of inline templates, either.
1413 The default is to handle inlines differently so that compiles with and
1414 without optimization will need the same set of explicit instantiations.
1415
1416 @item -fno-implement-inlines
1417 @opindex fno-implement-inlines
1418 To save space, do not emit out-of-line copies of inline functions
1419 controlled by @samp{#pragma implementation}.  This will cause linker
1420 errors if these functions are not inlined everywhere they are called.
1421
1422 @item -fms-extensions
1423 @opindex fms-extensions
1424 Disable pedantic warnings about constructs used in MFC, such as implicit
1425 int and getting a pointer to member function via non-standard syntax.
1426
1427 @item -fno-nonansi-builtins
1428 @opindex fno-nonansi-builtins
1429 Disable built-in declarations of functions that are not mandated by
1430 ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
1431 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
1432
1433 @item -fno-operator-names
1434 @opindex fno-operator-names
1435 Do not treat the operator name keywords @code{and}, @code{bitand},
1436 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
1437 synonyms as keywords.
1438
1439 @item -fno-optional-diags
1440 @opindex fno-optional-diags
1441 Disable diagnostics that the standard says a compiler does not need to
1442 issue.  Currently, the only such diagnostic issued by G++ is the one for
1443 a name having multiple meanings within a class.
1444
1445 @item -fpermissive
1446 @opindex fpermissive
1447 Downgrade some diagnostics about nonconformant code from errors to
1448 warnings.  Thus, using @option{-fpermissive} will allow some
1449 nonconforming code to compile.
1450
1451 @item -frepo
1452 @opindex frepo
1453 Enable automatic template instantiation at link time.  This option also
1454 implies @option{-fno-implicit-templates}.  @xref{Template
1455 Instantiation}, for more information.
1456
1457 @item -fno-rtti
1458 @opindex fno-rtti
1459 Disable generation of information about every class with virtual
1460 functions for use by the C++ runtime type identification features
1461 (@samp{dynamic_cast} and @samp{typeid}).  If you don't use those parts
1462 of the language, you can save some space by using this flag.  Note that
1463 exception handling uses the same information, but it will generate it as
1464 needed.
1465
1466 @item -fstats
1467 @opindex fstats
1468 Emit statistics about front-end processing at the end of the compilation.
1469 This information is generally only useful to the G++ development team.
1470
1471 @item -ftemplate-depth-@var{n}
1472 @opindex ftemplate-depth
1473 Set the maximum instantiation depth for template classes to @var{n}.
1474 A limit on the template instantiation depth is needed to detect
1475 endless recursions during template class instantiation.  ANSI/ISO C++
1476 conforming programs must not rely on a maximum depth greater than 17.
1477
1478 @item -fno-threadsafe-statics
1479 @opindex fno-threadsafe-statics
1480 Do not emit the extra code to use the routines specified in the C++
1481 ABI for thread-safe initialization of local statics.  You can use this
1482 option to reduce code size slightly in code that doesn't need to be
1483 thread-safe.
1484
1485 @item -fuse-cxa-atexit
1486 @opindex fuse-cxa-atexit
1487 Register destructors for objects with static storage duration with the
1488 @code{__cxa_atexit} function rather than the @code{atexit} function.
1489 This option is required for fully standards-compliant handling of static
1490 destructors, but will only work if your C library supports
1491 @code{__cxa_atexit}.
1492
1493 @item -fvisibility-inlines-hidden
1494 @opindex fvisibility-inlines-hidden
1495 Causes all inlined methods to be marked with
1496 @code{__attribute__ ((visibility ("hidden")))} so that they do not
1497 appear in the export table of a DSO and do not require a PLT indirection
1498 when used within the DSO. Enabling this option can have a dramatic effect
1499 on load and link times of a DSO as it massively reduces the size of the
1500 dynamic export table when the library makes heavy use of templates. While
1501 it can cause bloating through duplication of code within each DSO where
1502 it is used, often the wastage is less than the considerable space occupied
1503 by a long symbol name in the export table which is typical when using
1504 templates and namespaces. For even more savings, combine with the
1505 @code{-fvisibility=hidden} switch.
1506
1507 @item -fno-weak
1508 @opindex fno-weak
1509 Do not use weak symbol support, even if it is provided by the linker.
1510 By default, G++ will use weak symbols if they are available.  This
1511 option exists only for testing, and should not be used by end-users;
1512 it will result in inferior code and has no benefits.  This option may
1513 be removed in a future release of G++.
1514
1515 @item -nostdinc++
1516 @opindex nostdinc++
1517 Do not search for header files in the standard directories specific to
1518 C++, but do still search the other standard directories.  (This option
1519 is used when building the C++ library.)
1520 @end table
1521
1522 In addition, these optimization, warning, and code generation options
1523 have meanings only for C++ programs:
1524
1525 @table @gcctabopt
1526 @item -fno-default-inline
1527 @opindex fno-default-inline
1528 Do not assume @samp{inline} for functions defined inside a class scope.
1529 @xref{Optimize Options,,Options That Control Optimization}.  Note that these
1530 functions will have linkage like inline functions; they just won't be
1531 inlined by default.
1532
1533 @item -Wabi @r{(C++ only)}
1534 @opindex Wabi
1535 Warn when G++ generates code that is probably not compatible with the
1536 vendor-neutral C++ ABI.  Although an effort has been made to warn about
1537 all such cases, there are probably some cases that are not warned about,
1538 even though G++ is generating incompatible code.  There may also be
1539 cases where warnings are emitted even though the code that is generated
1540 will be compatible.
1541
1542 You should rewrite your code to avoid these warnings if you are
1543 concerned about the fact that code generated by G++ may not be binary
1544 compatible with code generated by other compilers.
1545
1546 The known incompatibilities at this point include:
1547
1548 @itemize @bullet
1549
1550 @item
1551 Incorrect handling of tail-padding for bit-fields.  G++ may attempt to
1552 pack data into the same byte as a base class.  For example:
1553
1554 @smallexample
1555 struct A @{ virtual void f(); int f1 : 1; @};
1556 struct B : public A @{ int f2 : 1; @};
1557 @end smallexample
1558
1559 @noindent
1560 In this case, G++ will place @code{B::f2} into the same byte
1561 as@code{A::f1}; other compilers will not.  You can avoid this problem
1562 by explicitly padding @code{A} so that its size is a multiple of the
1563 byte size on your platform; that will cause G++ and other compilers to
1564 layout @code{B} identically.
1565
1566 @item
1567 Incorrect handling of tail-padding for virtual bases.  G++ does not use
1568 tail padding when laying out virtual bases.  For example:
1569
1570 @smallexample
1571 struct A @{ virtual void f(); char c1; @};
1572 struct B @{ B(); char c2; @};
1573 struct C : public A, public virtual B @{@};
1574 @end smallexample
1575
1576 @noindent
1577 In this case, G++ will not place @code{B} into the tail-padding for
1578 @code{A}; other compilers will.  You can avoid this problem by
1579 explicitly padding @code{A} so that its size is a multiple of its
1580 alignment (ignoring virtual base classes); that will cause G++ and other
1581 compilers to layout @code{C} identically.
1582
1583 @item
1584 Incorrect handling of bit-fields with declared widths greater than that
1585 of their underlying types, when the bit-fields appear in a union.  For
1586 example:
1587
1588 @smallexample
1589 union U @{ int i : 4096; @};
1590 @end smallexample
1591
1592 @noindent
1593 Assuming that an @code{int} does not have 4096 bits, G++ will make the
1594 union too small by the number of bits in an @code{int}.
1595
1596 @item
1597 Empty classes can be placed at incorrect offsets.  For example:
1598
1599 @smallexample
1600 struct A @{@};
1601
1602 struct B @{
1603   A a;
1604   virtual void f ();
1605 @};
1606
1607 struct C : public B, public A @{@};
1608 @end smallexample
1609
1610 @noindent
1611 G++ will place the @code{A} base class of @code{C} at a nonzero offset;
1612 it should be placed at offset zero.  G++ mistakenly believes that the
1613 @code{A} data member of @code{B} is already at offset zero.
1614
1615 @item
1616 Names of template functions whose types involve @code{typename} or
1617 template template parameters can be mangled incorrectly.
1618
1619 @smallexample
1620 template <typename Q>
1621 void f(typename Q::X) @{@}
1622
1623 template <template <typename> class Q>
1624 void f(typename Q<int>::X) @{@}
1625 @end smallexample
1626
1627 @noindent
1628 Instantiations of these templates may be mangled incorrectly.
1629
1630 @end itemize
1631
1632 @item -Wctor-dtor-privacy @r{(C++ only)}
1633 @opindex Wctor-dtor-privacy
1634 Warn when a class seems unusable because all the constructors or
1635 destructors in that class are private, and it has neither friends nor
1636 public static member functions.
1637
1638 @item -Wnon-virtual-dtor @r{(C++ only)}
1639 @opindex Wnon-virtual-dtor
1640 Warn when a class appears to be polymorphic, thereby requiring a virtual
1641 destructor, yet it declares a non-virtual one.
1642 This warning is enabled by @option{-Wall}.
1643
1644 @item -Wreorder @r{(C++ only)}
1645 @opindex Wreorder
1646 @cindex reordering, warning
1647 @cindex warning for reordering of member initializers
1648 Warn when the order of member initializers given in the code does not
1649 match the order in which they must be executed.  For instance:
1650
1651 @smallexample
1652 struct A @{
1653   int i;
1654   int j;
1655   A(): j (0), i (1) @{ @}
1656 @};
1657 @end smallexample
1658
1659 The compiler will rearrange the member initializers for @samp{i}
1660 and @samp{j} to match the declaration order of the members, emitting
1661 a warning to that effect.  This warning is enabled by @option{-Wall}.
1662 @end table
1663
1664 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
1665
1666 @table @gcctabopt
1667 @item -Weffc++ @r{(C++ only)}
1668 @opindex Weffc++
1669 Warn about violations of the following style guidelines from Scott Meyers'
1670 @cite{Effective C++} book:
1671
1672 @itemize @bullet
1673 @item
1674 Item 11:  Define a copy constructor and an assignment operator for classes
1675 with dynamically allocated memory.
1676
1677 @item
1678 Item 12:  Prefer initialization to assignment in constructors.
1679
1680 @item
1681 Item 14:  Make destructors virtual in base classes.
1682
1683 @item
1684 Item 15:  Have @code{operator=} return a reference to @code{*this}.
1685
1686 @item
1687 Item 23:  Don't try to return a reference when you must return an object.
1688
1689 @end itemize
1690
1691 Also warn about violations of the following style guidelines from
1692 Scott Meyers' @cite{More Effective C++} book:
1693
1694 @itemize @bullet
1695 @item
1696 Item 6:  Distinguish between prefix and postfix forms of increment and
1697 decrement operators.
1698
1699 @item
1700 Item 7:  Never overload @code{&&}, @code{||}, or @code{,}.
1701
1702 @end itemize
1703
1704 When selecting this option, be aware that the standard library
1705 headers do not obey all of these guidelines; use @samp{grep -v}
1706 to filter out those warnings.
1707
1708 @item -Wno-deprecated @r{(C++ only)}
1709 @opindex Wno-deprecated
1710 Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
1711
1712 @item -Wno-non-template-friend @r{(C++ only)}
1713 @opindex Wno-non-template-friend
1714 Disable warnings when non-templatized friend functions are declared
1715 within a template.  Since the advent of explicit template specification
1716 support in G++, if the name of the friend is an unqualified-id (i.e.,
1717 @samp{friend foo(int)}), the C++ language specification demands that the
1718 friend declare or define an ordinary, nontemplate function.  (Section
1719 14.5.3).  Before G++ implemented explicit specification, unqualified-ids
1720 could be interpreted as a particular specialization of a templatized
1721 function.  Because this non-conforming behavior is no longer the default
1722 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
1723 check existing code for potential trouble spots and is on by default.
1724 This new compiler behavior can be turned off with
1725 @option{-Wno-non-template-friend} which keeps the conformant compiler code
1726 but disables the helpful warning.
1727
1728 @item -Wold-style-cast @r{(C++ only)}
1729 @opindex Wold-style-cast
1730 Warn if an old-style (C-style) cast to a non-void type is used within
1731 a C++ program.  The new-style casts (@samp{static_cast},
1732 @samp{reinterpret_cast}, and @samp{const_cast}) are less vulnerable to
1733 unintended effects and much easier to search for.
1734
1735 @item -Woverloaded-virtual @r{(C++ only)}
1736 @opindex Woverloaded-virtual
1737 @cindex overloaded virtual fn, warning
1738 @cindex warning for overloaded virtual fn
1739 Warn when a function declaration hides virtual functions from a
1740 base class.  For example, in:
1741
1742 @smallexample
1743 struct A @{
1744   virtual void f();
1745 @};
1746
1747 struct B: public A @{
1748   void f(int);
1749 @};
1750 @end smallexample
1751
1752 the @code{A} class version of @code{f} is hidden in @code{B}, and code
1753 like:
1754
1755 @smallexample
1756 B* b;
1757 b->f();
1758 @end smallexample
1759
1760 will fail to compile.
1761
1762 @item -Wno-pmf-conversions @r{(C++ only)}
1763 @opindex Wno-pmf-conversions
1764 Disable the diagnostic for converting a bound pointer to member function
1765 to a plain pointer.
1766
1767 @item -Wsign-promo @r{(C++ only)}
1768 @opindex Wsign-promo
1769 Warn when overload resolution chooses a promotion from unsigned or
1770 enumerated type to a signed type, over a conversion to an unsigned type of
1771 the same size.  Previous versions of G++ would try to preserve
1772 unsignedness, but the standard mandates the current behavior.
1773
1774 @item -Wsynth @r{(C++ only)}
1775 @opindex Wsynth
1776 @cindex warning for synthesized methods
1777 @cindex synthesized methods, warning
1778 Warn when G++'s synthesis behavior does not match that of cfront.  For
1779 instance:
1780
1781 @smallexample
1782 struct A @{
1783   operator int ();
1784   A& operator = (int);
1785 @};
1786
1787 main ()
1788 @{
1789   A a,b;
1790   a = b;
1791 @}
1792 @end smallexample
1793
1794 In this example, G++ will synthesize a default @samp{A& operator =
1795 (const A&);}, while cfront will use the user-defined @samp{operator =}.
1796 @end table
1797
1798 @node Objective-C and Objective-C++ Dialect Options
1799 @section Options Controlling Objective-C and Objective-C++ Dialects
1800
1801 @cindex compiler options, Objective-C and Objective-C++
1802 @cindex Objective-C and Objective-C++ options, command line
1803 @cindex options, Objective-C and Objective-C++
1804 (NOTE: This manual does not describe the Objective-C and Objective-C++
1805 languages themselves.  See @xref{Standards,,Language Standards
1806 Supported by GCC}, for references.)
1807
1808 This section describes the command-line options that are only meaningful
1809 for Objective-C and Objective-C++ programs, but you can also use most of
1810 the language-independent GNU compiler options.
1811 For example, you might compile a file @code{some_class.m} like this:
1812
1813 @smallexample
1814 gcc -g -fgnu-runtime -O -c some_class.m
1815 @end smallexample
1816
1817 @noindent
1818 In this example, @option{-fgnu-runtime} is an option meant only for
1819 Objective-C and Objective-C++ programs; you can use the other options with
1820 any language supported by GCC@.
1821
1822 Note that since Objective-C is an extension of the C language, Objective-C
1823 compilations may also use options specific to the C front-end (e.g., 
1824 @option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
1825 C++-specific options (e.g., @option{-Wabi}).
1826
1827 Here is a list of options that are @emph{only} for compiling Objective-C
1828 and Objective-C++ programs:
1829
1830 @table @gcctabopt
1831 @item -fconstant-string-class=@var{class-name}
1832 @opindex fconstant-string-class
1833 Use @var{class-name} as the name of the class to instantiate for each
1834 literal string specified with the syntax @code{@@"@dots{}"}.  The default
1835 class name is @code{NXConstantString} if the GNU runtime is being used, and
1836 @code{NSConstantString} if the NeXT runtime is being used (see below).  The
1837 @option{-fconstant-cfstrings} option, if also present, will override the
1838 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
1839 to be laid out as constant CoreFoundation strings.
1840
1841 @item -fgnu-runtime
1842 @opindex fgnu-runtime
1843 Generate object code compatible with the standard GNU Objective-C
1844 runtime.  This is the default for most types of systems.
1845
1846 @item -fnext-runtime
1847 @opindex fnext-runtime
1848 Generate output compatible with the NeXT runtime.  This is the default
1849 for NeXT-based systems, including Darwin and Mac OS X@.  The macro
1850 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
1851 used.
1852
1853 @item -fno-nil-receivers
1854 @opindex fno-nil-receivers
1855 Assume that all Objective-C message dispatches (e.g.,
1856 @code{[receiver message:arg]}) in this translation unit ensure that the receiver
1857 is not @code{nil}.  This allows for more efficient entry points in the runtime
1858 to be used.  Currently, this option is only available in conjunction with
1859 the NeXT runtime on Mac OS X 10.3 and later.
1860
1861 @item -fobjc-exceptions
1862 @opindex fobjc-exceptions
1863 Enable syntactic support for structured exception handling in Objective-C,
1864 similar to what is offered by C++ and Java.  Currently, this option is only
1865 available in conjunction with the NeXT runtime on Mac OS X 10.3 and later.
1866
1867 @smallexample
1868   @@try @{
1869     @dots{}
1870        @@throw expr;
1871     @dots{}
1872   @}
1873   @@catch (AnObjCClass *exc) @{
1874     @dots{}
1875       @@throw expr;
1876     @dots{}
1877       @@throw;
1878     @dots{}
1879   @}
1880   @@catch (AnotherClass *exc) @{
1881     @dots{}
1882   @}
1883   @@catch (id allOthers) @{
1884     @dots{}
1885   @}
1886   @@finally @{
1887     @dots{}
1888       @@throw expr;
1889     @dots{}
1890   @}
1891 @end smallexample
1892
1893 The @code{@@throw} statement may appear anywhere in an Objective-C or
1894 Objective-C++ program; when used inside of a @code{@@catch} block, the
1895 @code{@@throw} may appear without an argument (as shown above), in which case
1896 the object caught by the @code{@@catch} will be rethrown.
1897
1898 Note that only (pointers to) Objective-C objects may be thrown and
1899 caught using this scheme.  When an object is thrown, it will be caught
1900 by the nearest @code{@@catch} clause capable of handling objects of that type,
1901 analogously to how @code{catch} blocks work in C++ and Java.  A
1902 @code{@@catch(id @dots{})} clause (as shown above) may also be provided to catch
1903 any and all Objective-C exceptions not caught by previous @code{@@catch}
1904 clauses (if any).
1905
1906 The @code{@@finally} clause, if present, will be executed upon exit from the
1907 immediately preceding @code{@@try @dots{} @@catch} section.  This will happen
1908 regardless of whether any exceptions are thrown, caught or rethrown
1909 inside the @code{@@try @dots{} @@catch} section, analogously to the behavior
1910 of the @code{finally} clause in Java.
1911
1912 There are several caveats to using the new exception mechanism:
1913
1914 @itemize @bullet
1915 @item
1916 Although currently designed to be binary compatible with @code{NS_HANDLER}-style
1917 idioms provided by the @code{NSException} class, the new
1918 exceptions can only be used on Mac OS X 10.3 (Panther) and later
1919 systems, due to additional functionality needed in the (NeXT) Objective-C
1920 runtime.
1921
1922 @item
1923 As mentioned above, the new exceptions do not support handling
1924 types other than Objective-C objects.   Furthermore, when used from
1925 Objective-C++, the Objective-C exception model does not interoperate with C++
1926 exceptions at this time.  This means you cannot @code{@@throw} an exception
1927 from Objective-C and @code{catch} it in C++, or vice versa
1928 (i.e., @code{throw @dots{} @@catch}).
1929 @end itemize
1930
1931 The @option{-fobjc-exceptions} switch also enables the use of synchronization
1932 blocks for thread-safe execution:
1933
1934 @smallexample
1935   @@synchronized (ObjCClass *guard) @{
1936     @dots{}
1937   @}
1938 @end smallexample
1939
1940 Upon entering the @code{@@synchronized} block, a thread of execution shall
1941 first check whether a lock has been placed on the corresponding @code{guard}
1942 object by another thread.  If it has, the current thread shall wait until
1943 the other thread relinquishes its lock.  Once @code{guard} becomes available,
1944 the current thread will place its own lock on it, execute the code contained in
1945 the @code{@@synchronized} block, and finally relinquish the lock (thereby
1946 making @code{guard} available to other threads).
1947
1948 Unlike Java, Objective-C does not allow for entire methods to be marked
1949 @code{@@synchronized}.  Note that throwing exceptions out of
1950 @code{@@synchronized} blocks is allowed, and will cause the guarding object
1951 to be unlocked properly.
1952
1953 @item -freplace-objc-classes
1954 @opindex freplace-objc-classes
1955 Emit a special marker instructing @command{ld(1)} not to statically link in
1956 the resulting object file, and allow @command{dyld(1)} to load it in at
1957 run time instead.  This is used in conjunction with the Fix-and-Continue
1958 debugging mode, where the object file in question may be recompiled and
1959 dynamically reloaded in the course of program execution, without the need
1960 to restart the program itself.  Currently, Fix-and-Continue functionality
1961 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
1962 and later.
1963
1964 @item -fzero-link
1965 @opindex fzero-link
1966 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
1967 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
1968 compile time) with static class references that get initialized at load time,
1969 which improves run-time performance.  Specifying the @option{-fzero-link} flag
1970 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
1971 to be retained.  This is useful in Zero-Link debugging mode, since it allows
1972 for individual class implementations to be modified during program execution.
1973
1974 @item -gen-decls
1975 @opindex gen-decls
1976 Dump interface declarations for all classes seen in the source file to a
1977 file named @file{@var{sourcename}.decl}.
1978
1979 @item -Wno-protocol
1980 @opindex Wno-protocol
1981 If a class is declared to implement a protocol, a warning is issued for
1982 every method in the protocol that is not implemented by the class.  The
1983 default behavior is to issue a warning for every method not explicitly
1984 implemented in the class, even if a method implementation is inherited
1985 from the superclass.  If you use the @code{-Wno-protocol} option, then
1986 methods inherited from the superclass are considered to be implemented,
1987 and no warning is issued for them.
1988
1989 @item -Wselector
1990 @opindex Wselector
1991 Warn if multiple methods of different types for the same selector are
1992 found during compilation.  The check is performed on the list of methods
1993 in the final stage of compilation.  Additionally, a check is performed
1994 for each selector appearing in a @code{@@selector(@dots{})}
1995 expression, and a corresponding method for that selector has been found
1996 during compilation.  Because these checks scan the method table only at
1997 the end of compilation, these warnings are not produced if the final
1998 stage of compilation is not reached, for example because an error is
1999 found during compilation, or because the @code{-fsyntax-only} option is
2000 being used.
2001
2002 @item -Wundeclared-selector
2003 @opindex Wundeclared-selector
2004 Warn if a @code{@@selector(@dots{})} expression referring to an
2005 undeclared selector is found.  A selector is considered undeclared if no
2006 method with that name has been declared before the
2007 @code{@@selector(@dots{})} expression, either explicitly in an
2008 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
2009 an @code{@@implementation} section.  This option always performs its
2010 checks as soon as a @code{@@selector(@dots{})} expression is found,
2011 while @code{-Wselector} only performs its checks in the final stage of
2012 compilation.  This also enforces the coding style convention
2013 that methods and selectors must be declared before being used.
2014
2015 @item -print-objc-runtime-info
2016 @opindex print-objc-runtime-info
2017 Generate C header describing the largest structure that is passed by
2018 value, if any.
2019
2020 @end table
2021
2022 @node Language Independent Options
2023 @section Options to Control Diagnostic Messages Formatting
2024 @cindex options to control diagnostics formatting
2025 @cindex diagnostic messages
2026 @cindex message formatting
2027
2028 Traditionally, diagnostic messages have been formatted irrespective of
2029 the output device's aspect (e.g.@: its width, @dots{}).  The options described
2030 below can be used to control the diagnostic messages formatting
2031 algorithm, e.g.@: how many characters per line, how often source location
2032 information should be reported.  Right now, only the C++ front end can
2033 honor these options.  However it is expected, in the near future, that
2034 the remaining front ends would be able to digest them correctly.
2035
2036 @table @gcctabopt
2037 @item -fmessage-length=@var{n}
2038 @opindex fmessage-length
2039 Try to format error messages so that they fit on lines of about @var{n}
2040 characters.  The default is 72 characters for @command{g++} and 0 for the rest of
2041 the front ends supported by GCC@.  If @var{n} is zero, then no
2042 line-wrapping will be done; each error message will appear on a single
2043 line.
2044
2045 @opindex fdiagnostics-show-location
2046 @item -fdiagnostics-show-location=once
2047 Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
2048 reporter to emit @emph{once} source location information; that is, in
2049 case the message is too long to fit on a single physical line and has to
2050 be wrapped, the source location won't be emitted (as prefix) again,
2051 over and over, in subsequent continuation lines.  This is the default
2052 behavior.
2053
2054 @item -fdiagnostics-show-location=every-line
2055 Only meaningful in line-wrapping mode.  Instructs the diagnostic
2056 messages reporter to emit the same source location information (as
2057 prefix) for physical lines that result from the process of breaking
2058 a message which is too long to fit on a single line.
2059
2060 @end table
2061
2062 @node Warning Options
2063 @section Options to Request or Suppress Warnings
2064 @cindex options to control warnings
2065 @cindex warning messages
2066 @cindex messages, warning
2067 @cindex suppressing warnings
2068
2069 Warnings are diagnostic messages that report constructions which
2070 are not inherently erroneous but which are risky or suggest there
2071 may have been an error.
2072
2073 You can request many specific warnings with options beginning @samp{-W},
2074 for example @option{-Wimplicit} to request warnings on implicit
2075 declarations.  Each of these specific warning options also has a
2076 negative form beginning @samp{-Wno-} to turn off warnings;
2077 for example, @option{-Wno-implicit}.  This manual lists only one of the
2078 two forms, whichever is not the default.
2079
2080 The following options control the amount and kinds of warnings produced
2081 by GCC; for further, language-specific options also refer to
2082 @ref{C++ Dialect Options} and @ref{Objective-C and Objective-C++ Dialect
2083 Options}.
2084
2085 @table @gcctabopt
2086 @cindex syntax checking
2087 @item -fsyntax-only
2088 @opindex fsyntax-only
2089 Check the code for syntax errors, but don't do anything beyond that.
2090
2091 @item -pedantic
2092 @opindex pedantic
2093 Issue all the warnings demanded by strict ISO C and ISO C++;
2094 reject all programs that use forbidden extensions, and some other
2095 programs that do not follow ISO C and ISO C++.  For ISO C, follows the
2096 version of the ISO C standard specified by any @option{-std} option used.
2097
2098 Valid ISO C and ISO C++ programs should compile properly with or without
2099 this option (though a rare few will require @option{-ansi} or a
2100 @option{-std} option specifying the required version of ISO C)@.  However,
2101 without this option, certain GNU extensions and traditional C and C++
2102 features are supported as well.  With this option, they are rejected.
2103
2104 @option{-pedantic} does not cause warning messages for use of the
2105 alternate keywords whose names begin and end with @samp{__}.  Pedantic
2106 warnings are also disabled in the expression that follows
2107 @code{__extension__}.  However, only system header files should use
2108 these escape routes; application programs should avoid them.
2109 @xref{Alternate Keywords}.
2110
2111 Some users try to use @option{-pedantic} to check programs for strict ISO
2112 C conformance.  They soon find that it does not do quite what they want:
2113 it finds some non-ISO practices, but not all---only those for which
2114 ISO C @emph{requires} a diagnostic, and some others for which
2115 diagnostics have been added.
2116
2117 A feature to report any failure to conform to ISO C might be useful in
2118 some instances, but would require considerable additional work and would
2119 be quite different from @option{-pedantic}.  We don't have plans to
2120 support such a feature in the near future.
2121
2122 Where the standard specified with @option{-std} represents a GNU
2123 extended dialect of C, such as @samp{gnu89} or @samp{gnu99}, there is a
2124 corresponding @dfn{base standard}, the version of ISO C on which the GNU
2125 extended dialect is based.  Warnings from @option{-pedantic} are given
2126 where they are required by the base standard.  (It would not make sense
2127 for such warnings to be given only for features not in the specified GNU
2128 C dialect, since by definition the GNU dialects of C include all
2129 features the compiler supports with the given option, and there would be
2130 nothing to warn about.)
2131
2132 @item -pedantic-errors
2133 @opindex pedantic-errors
2134 Like @option{-pedantic}, except that errors are produced rather than
2135 warnings.
2136
2137 @item -w
2138 @opindex w
2139 Inhibit all warning messages.
2140
2141 @item -Wno-import
2142 @opindex Wno-import
2143 Inhibit warning messages about the use of @samp{#import}.
2144
2145 @item -Wchar-subscripts
2146 @opindex Wchar-subscripts
2147 Warn if an array subscript has type @code{char}.  This is a common cause
2148 of error, as programmers often forget that this type is signed on some
2149 machines.
2150
2151 @item -Wcomment
2152 @opindex Wcomment
2153 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
2154 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
2155
2156 @item -Wfatal-errors
2157 @opindex Wfatal-errors
2158 This option causes the compiler to abort compilation on the first error
2159 occurred rather than trying to keep going and printing further error
2160 messages.
2161
2162 @item -Wformat
2163 @opindex Wformat
2164 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
2165 the arguments supplied have types appropriate to the format string
2166 specified, and that the conversions specified in the format string make
2167 sense.  This includes standard functions, and others specified by format
2168 attributes (@pxref{Function Attributes}), in the @code{printf},
2169 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
2170 not in the C standard) families (or other target-specific families).
2171
2172 The formats are checked against the format features supported by GNU
2173 libc version 2.2.  These include all ISO C90 and C99 features, as well
2174 as features from the Single Unix Specification and some BSD and GNU
2175 extensions.  Other library implementations may not support all these
2176 features; GCC does not support warning about features that go beyond a
2177 particular library's limitations.  However, if @option{-pedantic} is used
2178 with @option{-Wformat}, warnings will be given about format features not
2179 in the selected standard version (but not for @code{strfmon} formats,
2180 since those are not in any version of the C standard).  @xref{C Dialect
2181 Options,,Options Controlling C Dialect}.
2182
2183 Since @option{-Wformat} also checks for null format arguments for
2184 several functions, @option{-Wformat} also implies @option{-Wnonnull}.
2185
2186 @option{-Wformat} is included in @option{-Wall}.  For more control over some
2187 aspects of format checking, the options @option{-Wformat-y2k},
2188 @option{-Wno-format-extra-args}, @option{-Wno-format-zero-length},
2189 @option{-Wformat-nonliteral}, @option{-Wformat-security}, and
2190 @option{-Wformat=2} are available, but are not included in @option{-Wall}.
2191
2192 @item -Wformat-y2k
2193 @opindex Wformat-y2k
2194 If @option{-Wformat} is specified, also warn about @code{strftime}
2195 formats which may yield only a two-digit year.
2196
2197 @item -Wno-format-extra-args
2198 @opindex Wno-format-extra-args
2199 If @option{-Wformat} is specified, do not warn about excess arguments to a
2200 @code{printf} or @code{scanf} format function.  The C standard specifies
2201 that such arguments are ignored.
2202
2203 Where the unused arguments lie between used arguments that are
2204 specified with @samp{$} operand number specifications, normally
2205 warnings are still given, since the implementation could not know what
2206 type to pass to @code{va_arg} to skip the unused arguments.  However,
2207 in the case of @code{scanf} formats, this option will suppress the
2208 warning if the unused arguments are all pointers, since the Single
2209 Unix Specification says that such unused arguments are allowed.
2210
2211 @item -Wno-format-zero-length
2212 @opindex Wno-format-zero-length
2213 If @option{-Wformat} is specified, do not warn about zero-length formats.
2214 The C standard specifies that zero-length formats are allowed.
2215
2216 @item -Wformat-nonliteral
2217 @opindex Wformat-nonliteral
2218 If @option{-Wformat} is specified, also warn if the format string is not a
2219 string literal and so cannot be checked, unless the format function
2220 takes its format arguments as a @code{va_list}.
2221
2222 @item -Wformat-security
2223 @opindex Wformat-security
2224 If @option{-Wformat} is specified, also warn about uses of format
2225 functions that represent possible security problems.  At present, this
2226 warns about calls to @code{printf} and @code{scanf} functions where the
2227 format string is not a string literal and there are no format arguments,
2228 as in @code{printf (foo);}.  This may be a security hole if the format
2229 string came from untrusted input and contains @samp{%n}.  (This is
2230 currently a subset of what @option{-Wformat-nonliteral} warns about, but
2231 in future warnings may be added to @option{-Wformat-security} that are not
2232 included in @option{-Wformat-nonliteral}.)
2233
2234 @item -Wformat=2
2235 @opindex Wformat=2
2236 Enable @option{-Wformat} plus format checks not included in
2237 @option{-Wformat}.  Currently equivalent to @samp{-Wformat
2238 -Wformat-nonliteral -Wformat-security -Wformat-y2k}.
2239
2240 @item -Wnonnull
2241 @opindex Wnonnull
2242 Warn about passing a null pointer for arguments marked as
2243 requiring a non-null value by the @code{nonnull} function attribute.
2244
2245 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
2246 can be disabled with the @option{-Wno-nonnull} option.
2247
2248 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
2249 @opindex Winit-self
2250 Warn about uninitialized variables which are initialized with themselves.
2251 Note this option can only be used with the @option{-Wuninitialized} option,
2252 which in turn only works with @option{-O1} and above.
2253
2254 For example, GCC will warn about @code{i} being uninitialized in the
2255 following snippet only when @option{-Winit-self} has been specified:
2256 @smallexample
2257 @group
2258 int f()
2259 @{
2260   int i = i;
2261   return i;
2262 @}
2263 @end group
2264 @end smallexample
2265
2266 @item -Wimplicit-int
2267 @opindex Wimplicit-int
2268 Warn when a declaration does not specify a type.
2269
2270 @item -Wimplicit-function-declaration
2271 @itemx -Werror-implicit-function-declaration
2272 @opindex Wimplicit-function-declaration
2273 @opindex Werror-implicit-function-declaration
2274 Give a warning (or error) whenever a function is used before being
2275 declared.
2276
2277 @item -Wimplicit
2278 @opindex Wimplicit
2279 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
2280
2281 @item -Wmain
2282 @opindex Wmain
2283 Warn if the type of @samp{main} is suspicious.  @samp{main} should be a
2284 function with external linkage, returning int, taking either zero
2285 arguments, two, or three arguments of appropriate types.
2286
2287 @item -Wmissing-braces
2288 @opindex Wmissing-braces
2289 Warn if an aggregate or union initializer is not fully bracketed.  In
2290 the following example, the initializer for @samp{a} is not fully
2291 bracketed, but that for @samp{b} is fully bracketed.
2292
2293 @smallexample
2294 int a[2][2] = @{ 0, 1, 2, 3 @};
2295 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
2296 @end smallexample
2297
2298 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
2299 @opindex Wmissing-include-dirs
2300 Warn if a user-supplied include directory does not exist.
2301
2302 @item -Wparentheses
2303 @opindex Wparentheses
2304 Warn if parentheses are omitted in certain contexts, such
2305 as when there is an assignment in a context where a truth value
2306 is expected, or when operators are nested whose precedence people
2307 often get confused about.  Only the warning for an assignment used as
2308 a truth value is supported when compiling C++; the other warnings are
2309 only supported when compiling C@.
2310
2311 Also warn if a comparison like @samp{x<=y<=z} appears; this is
2312 equivalent to @samp{(x<=y ? 1 : 0) <= z}, which is a different
2313 interpretation from that of ordinary mathematical notation.
2314
2315 Also warn about constructions where there may be confusion to which
2316 @code{if} statement an @code{else} branch belongs.  Here is an example of
2317 such a case:
2318
2319 @smallexample
2320 @group
2321 @{
2322   if (a)
2323     if (b)
2324       foo ();
2325   else
2326     bar ();
2327 @}
2328 @end group
2329 @end smallexample
2330
2331 In C, every @code{else} branch belongs to the innermost possible @code{if}
2332 statement, which in this example is @code{if (b)}.  This is often not
2333 what the programmer expected, as illustrated in the above example by
2334 indentation the programmer chose.  When there is the potential for this
2335 confusion, GCC will issue a warning when this flag is specified.
2336 To eliminate the warning, add explicit braces around the innermost
2337 @code{if} statement so there is no way the @code{else} could belong to
2338 the enclosing @code{if}.  The resulting code would look like this:
2339
2340 @smallexample
2341 @group
2342 @{
2343   if (a)
2344     @{
2345       if (b)
2346         foo ();
2347       else
2348         bar ();
2349     @}
2350 @}
2351 @end group
2352 @end smallexample
2353
2354 @item -Wsequence-point
2355 @opindex Wsequence-point
2356 Warn about code that may have undefined semantics because of violations
2357 of sequence point rules in the C standard.
2358
2359 The C standard defines the order in which expressions in a C program are
2360 evaluated in terms of @dfn{sequence points}, which represent a partial
2361 ordering between the execution of parts of the program: those executed
2362 before the sequence point, and those executed after it.  These occur
2363 after the evaluation of a full expression (one which is not part of a
2364 larger expression), after the evaluation of the first operand of a
2365 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
2366 function is called (but after the evaluation of its arguments and the
2367 expression denoting the called function), and in certain other places.
2368 Other than as expressed by the sequence point rules, the order of
2369 evaluation of subexpressions of an expression is not specified.  All
2370 these rules describe only a partial order rather than a total order,
2371 since, for example, if two functions are called within one expression
2372 with no sequence point between them, the order in which the functions
2373 are called is not specified.  However, the standards committee have
2374 ruled that function calls do not overlap.
2375
2376 It is not specified when between sequence points modifications to the
2377 values of objects take effect.  Programs whose behavior depends on this
2378 have undefined behavior; the C standard specifies that ``Between the
2379 previous and next sequence point an object shall have its stored value
2380 modified at most once by the evaluation of an expression.  Furthermore,
2381 the prior value shall be read only to determine the value to be
2382 stored.''.  If a program breaks these rules, the results on any
2383 particular implementation are entirely unpredictable.
2384
2385 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
2386 = b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
2387 diagnosed by this option, and it may give an occasional false positive
2388 result, but in general it has been found fairly effective at detecting
2389 this sort of problem in programs.
2390
2391 The present implementation of this option only works for C programs.  A
2392 future implementation may also work for C++ programs.
2393
2394 The C standard is worded confusingly, therefore there is some debate
2395 over the precise meaning of the sequence point rules in subtle cases.
2396 Links to discussions of the problem, including proposed formal
2397 definitions, may be found on the GCC readings page, at
2398 @w{@uref{http://gcc.gnu.org/readings.html}}.
2399
2400 @item -Wreturn-type
2401 @opindex Wreturn-type
2402 Warn whenever a function is defined with a return-type that defaults to
2403 @code{int}.  Also warn about any @code{return} statement with no
2404 return-value in a function whose return-type is not @code{void}.
2405
2406 For C, also warn if the return type of a function has a type qualifier
2407 such as @code{const}.  Such a type qualifier has no effect, since the
2408 value returned by a function is not an lvalue.  ISO C prohibits
2409 qualified @code{void} return types on function definitions, so such
2410 return types always receive a warning even without this option.
2411
2412 For C++, a function without return type always produces a diagnostic
2413 message, even when @option{-Wno-return-type} is specified.  The only
2414 exceptions are @samp{main} and functions defined in system headers.
2415
2416 @item -Wswitch
2417 @opindex Wswitch
2418 Warn whenever a @code{switch} statement has an index of enumerated type
2419 and lacks a @code{case} for one or more of the named codes of that
2420 enumeration.  (The presence of a @code{default} label prevents this
2421 warning.)  @code{case} labels outside the enumeration range also
2422 provoke warnings when this option is used.
2423
2424 @item -Wswitch-default
2425 @opindex Wswitch-switch
2426 Warn whenever a @code{switch} statement does not have a @code{default}
2427 case.
2428
2429 @item -Wswitch-enum
2430 @opindex Wswitch-enum
2431 Warn whenever a @code{switch} statement has an index of enumerated type
2432 and lacks a @code{case} for one or more of the named codes of that
2433 enumeration.  @code{case} labels outside the enumeration range also
2434 provoke warnings when this option is used.
2435
2436 @item -Wtrigraphs
2437 @opindex Wtrigraphs
2438 Warn if any trigraphs are encountered that might change the meaning of
2439 the program (trigraphs within comments are not warned about).
2440
2441 @item -Wunused-function
2442 @opindex Wunused-function
2443 Warn whenever a static function is declared but not defined or a
2444 non\-inline static function is unused.
2445
2446 @item -Wunused-label
2447 @opindex Wunused-label
2448 Warn whenever a label is declared but not used.
2449
2450 To suppress this warning use the @samp{unused} attribute
2451 (@pxref{Variable Attributes}).
2452
2453 @item -Wunused-parameter
2454 @opindex Wunused-parameter
2455 Warn whenever a function parameter is unused aside from its declaration.
2456
2457 To suppress this warning use the @samp{unused} attribute
2458 (@pxref{Variable Attributes}).
2459
2460 @item -Wunused-variable
2461 @opindex Wunused-variable
2462 Warn whenever a local variable or non-constant static variable is unused
2463 aside from its declaration
2464
2465 To suppress this warning use the @samp{unused} attribute
2466 (@pxref{Variable Attributes}).
2467
2468 @item -Wunused-value
2469 @opindex Wunused-value
2470 Warn whenever a statement computes a result that is explicitly not used.
2471
2472 To suppress this warning cast the expression to @samp{void}.
2473
2474 @item -Wunused
2475 @opindex Wunused
2476 All the above @option{-Wunused} options combined.
2477
2478 In order to get a warning about an unused function parameter, you must
2479 either specify @samp{-Wextra -Wunused} (note that @samp{-Wall} implies
2480 @samp{-Wunused}), or separately specify @option{-Wunused-parameter}.
2481
2482 @item -Wuninitialized
2483 @opindex Wuninitialized
2484 Warn if an automatic variable is used without first being initialized or
2485 if a variable may be clobbered by a @code{setjmp} call.
2486
2487 These warnings are possible only in optimizing compilation,
2488 because they require data flow information that is computed only
2489 when optimizing.  If you don't specify @option{-O}, you simply won't
2490 get these warnings.
2491
2492 If you want to warn about code which uses the uninitialized value of the
2493 variable in its own initializer, use the @option{-Winit-self} option.
2494
2495 These warnings occur only for variables that are candidates for
2496 register allocation.  Therefore, they do not occur for a variable that
2497 is declared @code{volatile}, or whose address is taken, or whose size
2498 is other than 1, 2, 4 or 8 bytes.  Also, they do not occur for
2499 structures, unions or arrays, even when they are in registers.
2500
2501 Note that there may be no warning about a variable that is used only
2502 to compute a value that itself is never used, because such
2503 computations may be deleted by data flow analysis before the warnings
2504 are printed.
2505
2506 These warnings are made optional because GCC is not smart
2507 enough to see all the reasons why the code might be correct
2508 despite appearing to have an error.  Here is one example of how
2509 this can happen:
2510
2511 @smallexample
2512 @group
2513 @{
2514   int x;
2515   switch (y)
2516     @{
2517     case 1: x = 1;
2518       break;
2519     case 2: x = 4;
2520       break;
2521     case 3: x = 5;
2522     @}
2523   foo (x);
2524 @}
2525 @end group
2526 @end smallexample
2527
2528 @noindent
2529 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
2530 always initialized, but GCC doesn't know this.  Here is
2531 another common case:
2532
2533 @smallexample
2534 @{
2535   int save_y;
2536   if (change_y) save_y = y, y = new_y;
2537   @dots{}
2538   if (change_y) y = save_y;
2539 @}
2540 @end smallexample
2541
2542 @noindent
2543 This has no bug because @code{save_y} is used only if it is set.
2544
2545 @cindex @code{longjmp} warnings
2546 This option also warns when a non-volatile automatic variable might be
2547 changed by a call to @code{longjmp}.  These warnings as well are possible
2548 only in optimizing compilation.
2549
2550 The compiler sees only the calls to @code{setjmp}.  It cannot know
2551 where @code{longjmp} will be called; in fact, a signal handler could
2552 call it at any point in the code.  As a result, you may get a warning
2553 even when there is in fact no problem because @code{longjmp} cannot
2554 in fact be called at the place which would cause a problem.
2555
2556 Some spurious warnings can be avoided if you declare all the functions
2557 you use that never return as @code{noreturn}.  @xref{Function
2558 Attributes}.
2559
2560 @item -Wunknown-pragmas
2561 @opindex Wunknown-pragmas
2562 @cindex warning for unknown pragmas
2563 @cindex unknown pragmas, warning
2564 @cindex pragmas, warning of unknown
2565 Warn when a #pragma directive is encountered which is not understood by
2566 GCC@.  If this command line option is used, warnings will even be issued
2567 for unknown pragmas in system header files.  This is not the case if
2568 the warnings were only enabled by the @option{-Wall} command line option.
2569
2570 @item -Wstrict-aliasing
2571 @opindex Wstrict-aliasing
2572 This option is only active when @option{-fstrict-aliasing} is active.
2573 It warns about code which might break the strict aliasing rules that the
2574 compiler is using for optimization. The warning does not catch all
2575 cases, but does attempt to catch the more common pitfalls. It is
2576 included in @option{-Wall}.
2577
2578 @item -Wstrict-aliasing=2
2579 @opindex Wstrict-aliasing=2
2580 This option is only active when @option{-fstrict-aliasing} is active.
2581 It warns about all code which might break the strict aliasing rules that the
2582 compiler is using for optimization.  This warning catches all cases, but
2583 it will also give a warning for some ambiguous cases that are safe.
2584
2585 @item -Wall
2586 @opindex Wall
2587 All of the above @samp{-W} options combined.  This enables all the
2588 warnings about constructions that some users consider questionable, and
2589 that are easy to avoid (or modify to prevent the warning), even in
2590 conjunction with macros.  This also enables some language-specific
2591 warnings described in @ref{C++ Dialect Options} and
2592 @ref{Objective-C and Objective-C++ Dialect Options}.
2593 @end table
2594
2595 The following @option{-W@dots{}} options are not implied by @option{-Wall}.
2596 Some of them warn about constructions that users generally do not
2597 consider questionable, but which occasionally you might wish to check
2598 for; others warn about constructions that are necessary or hard to avoid
2599 in some cases, and there is no simple way to modify the code to suppress
2600 the warning.
2601
2602 @table @gcctabopt
2603 @item -Wextra
2604 @opindex W
2605 @opindex Wextra
2606 (This option used to be called @option{-W}.  The older name is still
2607 supported, but the newer name is more descriptive.)  Print extra warning
2608 messages for these events:
2609
2610 @itemize @bullet
2611 @item
2612 A function can return either with or without a value.  (Falling
2613 off the end of the function body is considered returning without
2614 a value.)  For example, this function would evoke such a
2615 warning:
2616
2617 @smallexample
2618 @group
2619 foo (a)
2620 @{
2621   if (a > 0)
2622     return a;
2623 @}
2624 @end group
2625 @end smallexample
2626
2627 @item
2628 An expression-statement or the left-hand side of a comma expression
2629 contains no side effects.
2630 To suppress the warning, cast the unused expression to void.
2631 For example, an expression such as @samp{x[i,j]} will cause a warning,
2632 but @samp{x[(void)i,j]} will not.
2633
2634 @item
2635 An unsigned value is compared against zero with @samp{<} or @samp{>=}.
2636
2637 @item
2638 Storage-class specifiers like @code{static} are not the first things in
2639 a declaration.  According to the C Standard, this usage is obsolescent.
2640
2641 @item
2642 If @option{-Wall} or @option{-Wunused} is also specified, warn about unused
2643 arguments.
2644
2645 @item
2646 A comparison between signed and unsigned values could produce an
2647 incorrect result when the signed value is converted to unsigned.
2648 (But don't warn if @option{-Wno-sign-compare} is also specified.)
2649
2650 @item
2651 An aggregate has an initializer which does not initialize all members.
2652 This warning can be independently controlled by
2653 @option{-Wmissing-field-initializers}.
2654
2655 @item
2656 A function parameter is declared without a type specifier in K&R-style
2657 functions:
2658
2659 @smallexample
2660 void foo(bar) @{ @}
2661 @end smallexample
2662
2663 @item
2664 An empty body occurs in an @samp{if} or @samp{else} statement.
2665
2666 @item
2667 A pointer is compared against integer zero with @samp{<}, @samp{<=},
2668 @samp{>}, or @samp{>=}.
2669
2670 @item
2671 A variable might be changed by @samp{longjmp} or @samp{vfork}.
2672
2673 @item
2674 Any of several floating-point events that often indicate errors, such as
2675 overflow, underflow, loss of precision, etc.
2676
2677 @item @r{(C++ only)}
2678 An enumerator and a non-enumerator both appear in a conditional expression.
2679
2680 @item @r{(C++ only)}
2681 A non-static reference or non-static @samp{const} member appears in a
2682 class without constructors.
2683
2684 @item @r{(C++ only)}
2685 Ambiguous virtual bases.
2686
2687 @item @r{(C++ only)}
2688 Subscripting an array which has been declared @samp{register}.
2689
2690 @item @r{(C++ only)}
2691 Taking the address of a variable which has been declared @samp{register}.
2692
2693 @item @r{(C++ only)}
2694 A base class is not initialized in a derived class' copy constructor.
2695 @end itemize
2696
2697 @item -Wno-div-by-zero
2698 @opindex Wno-div-by-zero
2699 @opindex Wdiv-by-zero
2700 Do not warn about compile-time integer division by zero.  Floating point
2701 division by zero is not warned about, as it can be a legitimate way of
2702 obtaining infinities and NaNs.
2703
2704 @item -Wsystem-headers
2705 @opindex Wsystem-headers
2706 @cindex warnings from system headers
2707 @cindex system headers, warnings from
2708 Print warning messages for constructs found in system header files.
2709 Warnings from system headers are normally suppressed, on the assumption
2710 that they usually do not indicate real problems and would only make the
2711 compiler output harder to read.  Using this command line option tells
2712 GCC to emit warnings from system headers as if they occurred in user
2713 code.  However, note that using @option{-Wall} in conjunction with this
2714 option will @emph{not} warn about unknown pragmas in system
2715 headers---for that, @option{-Wunknown-pragmas} must also be used.
2716
2717 @item -Wfloat-equal
2718 @opindex Wfloat-equal
2719 Warn if floating point values are used in equality comparisons.
2720
2721 The idea behind this is that sometimes it is convenient (for the
2722 programmer) to consider floating-point values as approximations to
2723 infinitely precise real numbers.  If you are doing this, then you need
2724 to compute (by analyzing the code, or in some other way) the maximum or
2725 likely maximum error that the computation introduces, and allow for it
2726 when performing comparisons (and when producing output, but that's a
2727 different problem).  In particular, instead of testing for equality, you
2728 would check to see whether the two values have ranges that overlap; and
2729 this is done with the relational operators, so equality comparisons are
2730 probably mistaken.
2731
2732 @item -Wtraditional @r{(C only)}
2733 @opindex Wtraditional
2734 Warn about certain constructs that behave differently in traditional and
2735 ISO C@.  Also warn about ISO C constructs that have no traditional C
2736 equivalent, and/or problematic constructs which should be avoided.
2737
2738 @itemize @bullet
2739 @item
2740 Macro parameters that appear within string literals in the macro body.
2741 In traditional C macro replacement takes place within string literals,
2742 but does not in ISO C@.
2743
2744 @item
2745 In traditional C, some preprocessor directives did not exist.
2746 Traditional preprocessors would only consider a line to be a directive
2747 if the @samp{#} appeared in column 1 on the line.  Therefore
2748 @option{-Wtraditional} warns about directives that traditional C
2749 understands but would ignore because the @samp{#} does not appear as the
2750 first character on the line.  It also suggests you hide directives like
2751 @samp{#pragma} not understood by traditional C by indenting them.  Some
2752 traditional implementations would not recognize @samp{#elif}, so it
2753 suggests avoiding it altogether.
2754
2755 @item
2756 A function-like macro that appears without arguments.
2757
2758 @item
2759 The unary plus operator.
2760
2761 @item
2762 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating point
2763 constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
2764 constants.)  Note, these suffixes appear in macros defined in the system
2765 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
2766 Use of these macros in user code might normally lead to spurious
2767 warnings, however GCC's integrated preprocessor has enough context to
2768 avoid warning in these cases.
2769
2770 @item
2771 A function declared external in one block and then used after the end of
2772 the block.
2773
2774 @item
2775 A @code{switch} statement has an operand of type @code{long}.
2776
2777 @item
2778 A non-@code{static} function declaration follows a @code{static} one.
2779 This construct is not accepted by some traditional C compilers.
2780
2781 @item
2782 The ISO type of an integer constant has a different width or
2783 signedness from its traditional type.  This warning is only issued if
2784 the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
2785 typically represent bit patterns, are not warned about.
2786
2787 @item
2788 Usage of ISO string concatenation is detected.
2789
2790 @item
2791 Initialization of automatic aggregates.
2792
2793 @item
2794 Identifier conflicts with labels.  Traditional C lacks a separate
2795 namespace for labels.
2796
2797 @item
2798 Initialization of unions.  If the initializer is zero, the warning is
2799 omitted.  This is done under the assumption that the zero initializer in
2800 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
2801 initializer warnings and relies on default initialization to zero in the
2802 traditional C case.
2803
2804 @item
2805 Conversions by prototypes between fixed/floating point values and vice
2806 versa.  The absence of these prototypes when compiling with traditional
2807 C would cause serious problems.  This is a subset of the possible
2808 conversion warnings, for the full set use @option{-Wconversion}.
2809
2810 @item
2811 Use of ISO C style function definitions.  This warning intentionally is
2812 @emph{not} issued for prototype declarations or variadic functions
2813 because these ISO C features will appear in your code when using
2814 libiberty's traditional C compatibility macros, @code{PARAMS} and
2815 @code{VPARAMS}.  This warning is also bypassed for nested functions
2816 because that feature is already a GCC extension and thus not relevant to
2817 traditional C compatibility.
2818 @end itemize
2819
2820 @item -Wdeclaration-after-statement @r{(C only)}
2821 @opindex Wdeclaration-after-statement
2822 Warn when a declaration is found after a statement in a block.  This
2823 construct, known from C++, was introduced with ISO C99 and is by default
2824 allowed in GCC@.  It is not supported by ISO C90 and was not supported by
2825 GCC versions before GCC 3.0.  @xref{Mixed Declarations}.
2826
2827 @item -Wundef
2828 @opindex Wundef
2829 Warn if an undefined identifier is evaluated in an @samp{#if} directive.
2830
2831 @item -Wendif-labels
2832 @opindex Wendif-labels
2833 Warn whenever an @samp{#else} or an @samp{#endif} are followed by text.
2834
2835 @item -Wshadow
2836 @opindex Wshadow
2837 Warn whenever a local variable shadows another local variable, parameter or
2838 global variable or whenever a built-in function is shadowed.
2839
2840 @item -Wlarger-than-@var{len}
2841 @opindex Wlarger-than
2842 Warn whenever an object of larger than @var{len} bytes is defined.
2843
2844 @item -Wpointer-arith
2845 @opindex Wpointer-arith
2846 Warn about anything that depends on the ``size of'' a function type or
2847 of @code{void}.  GNU C assigns these types a size of 1, for
2848 convenience in calculations with @code{void *} pointers and pointers
2849 to functions.
2850
2851 @item -Wbad-function-cast @r{(C only)}
2852 @opindex Wbad-function-cast
2853 Warn whenever a function call is cast to a non-matching type.
2854 For example, warn if @code{int malloc()} is cast to @code{anything *}.
2855
2856 @item -Wcast-qual
2857 @opindex Wcast-qual
2858 Warn whenever a pointer is cast so as to remove a type qualifier from
2859 the target type.  For example, warn if a @code{const char *} is cast
2860 to an ordinary @code{char *}.
2861
2862 @item -Wcast-align
2863 @opindex Wcast-align
2864 Warn whenever a pointer is cast such that the required alignment of the
2865 target is increased.  For example, warn if a @code{char *} is cast to
2866 an @code{int *} on machines where integers can only be accessed at
2867 two- or four-byte boundaries.
2868
2869 @item -Wwrite-strings
2870 @opindex Wwrite-strings
2871 When compiling C, give string constants the type @code{const
2872 char[@var{length}]} so that
2873 copying the address of one into a non-@code{const} @code{char *}
2874 pointer will get a warning; when compiling C++, warn about the
2875 deprecated conversion from string constants to @code{char *}.
2876 These warnings will help you find at
2877 compile time code that can try to write into a string constant, but
2878 only if you have been very careful about using @code{const} in
2879 declarations and prototypes.  Otherwise, it will just be a nuisance;
2880 this is why we did not make @option{-Wall} request these warnings.
2881
2882 @item -Wconversion
2883 @opindex Wconversion
2884 Warn if a prototype causes a type conversion that is different from what
2885 would happen to the same argument in the absence of a prototype.  This
2886 includes conversions of fixed point to floating and vice versa, and
2887 conversions changing the width or signedness of a fixed point argument
2888 except when the same as the default promotion.
2889
2890 Also, warn if a negative integer constant expression is implicitly
2891 converted to an unsigned type.  For example, warn about the assignment
2892 @code{x = -1} if @code{x} is unsigned.  But do not warn about explicit
2893 casts like @code{(unsigned) -1}.
2894
2895 @item -Wsign-compare
2896 @opindex Wsign-compare
2897 @cindex warning for comparison of signed and unsigned values
2898 @cindex comparison of signed and unsigned values, warning
2899 @cindex signed and unsigned values, comparison warning
2900 Warn when a comparison between signed and unsigned values could produce
2901 an incorrect result when the signed value is converted to unsigned.
2902 This warning is also enabled by @option{-Wextra}; to get the other warnings
2903 of @option{-Wextra} without this warning, use @samp{-Wextra -Wno-sign-compare}.
2904
2905 @item -Waggregate-return
2906 @opindex Waggregate-return
2907 Warn if any functions that return structures or unions are defined or
2908 called.  (In languages where you can return an array, this also elicits
2909 a warning.)
2910
2911 @item -Wstrict-prototypes @r{(C only)}
2912 @opindex Wstrict-prototypes
2913 Warn if a function is declared or defined without specifying the
2914 argument types.  (An old-style function definition is permitted without
2915 a warning if preceded by a declaration which specifies the argument
2916 types.)
2917
2918 @item -Wold-style-definition @r{(C only)}
2919 @opindex Wold-style-definition
2920 Warn if an old-style function definition is used.  A warning is given
2921 even if there is a previous prototype.
2922
2923 @item -Wmissing-prototypes @r{(C only)}
2924 @opindex Wmissing-prototypes
2925 Warn if a global function is defined without a previous prototype
2926 declaration.  This warning is issued even if the definition itself
2927 provides a prototype.  The aim is to detect global functions that fail
2928 to be declared in header files.
2929
2930 @item -Wmissing-declarations @r{(C only)}
2931 @opindex Wmissing-declarations
2932 Warn if a global function is defined without a previous declaration.
2933 Do so even if the definition itself provides a prototype.
2934 Use this option to detect global functions that are not declared in
2935 header files.
2936
2937 @item -Wmissing-field-initializers
2938 @opindex Wmissing-field-initializers
2939 @opindex W
2940 @opindex Wextra
2941 Warn if a structure's initializer has some fields missing.  For
2942 example, the following code would cause such a warning, because
2943 @code{x.h} is implicitly zero:
2944
2945 @smallexample
2946 struct s @{ int f, g, h; @};
2947 struct s x = @{ 3, 4 @};
2948 @end smallexample
2949
2950 This option does not warn about designated initializers, so the following
2951 modification would not trigger a warning:
2952
2953 @smallexample
2954 struct s @{ int f, g, h; @};
2955 struct s x = @{ .f = 3, .g = 4 @};
2956 @end smallexample
2957
2958 This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
2959 warnings without this one, use @samp{-Wextra -Wno-missing-field-initializers}.
2960
2961 @item -Wmissing-noreturn
2962 @opindex Wmissing-noreturn
2963 Warn about functions which might be candidates for attribute @code{noreturn}.
2964 Note these are only possible candidates, not absolute ones.  Care should
2965 be taken to manually verify functions actually do not ever return before
2966 adding the @code{noreturn} attribute, otherwise subtle code generation
2967 bugs could be introduced.  You will not get a warning for @code{main} in
2968 hosted C environments.
2969
2970 @item -Wmissing-format-attribute
2971 @opindex Wmissing-format-attribute
2972 @opindex Wformat
2973 If @option{-Wformat} is enabled, also warn about functions which might be
2974 candidates for @code{format} attributes.  Note these are only possible
2975 candidates, not absolute ones.  GCC will guess that @code{format}
2976 attributes might be appropriate for any function that calls a function
2977 like @code{vprintf} or @code{vscanf}, but this might not always be the
2978 case, and some functions for which @code{format} attributes are
2979 appropriate may not be detected.  This option has no effect unless
2980 @option{-Wformat} is enabled (possibly by @option{-Wall}).
2981
2982 @item -Wno-multichar
2983 @opindex Wno-multichar
2984 @opindex Wmultichar
2985 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
2986 Usually they indicate a typo in the user's code, as they have
2987 implementation-defined values, and should not be used in portable code.
2988
2989 @item -Wno-deprecated-declarations
2990 @opindex Wno-deprecated-declarations
2991 Do not warn about uses of functions, variables, and types marked as
2992 deprecated by using the @code{deprecated} attribute.
2993 (@pxref{Function Attributes}, @pxref{Variable Attributes},
2994 @pxref{Type Attributes}.)
2995
2996 @item -Wpacked
2997 @opindex Wpacked
2998 Warn if a structure is given the packed attribute, but the packed
2999 attribute has no effect on the layout or size of the structure.
3000 Such structures may be mis-aligned for little benefit.  For
3001 instance, in this code, the variable @code{f.x} in @code{struct bar}
3002 will be misaligned even though @code{struct bar} does not itself
3003 have the packed attribute:
3004
3005 @smallexample
3006 @group
3007 struct foo @{
3008   int x;
3009   char a, b, c, d;
3010 @} __attribute__((packed));
3011 struct bar @{
3012   char z;
3013   struct foo f;
3014 @};
3015 @end group
3016 @end smallexample
3017
3018 @item -Wpadded
3019 @opindex Wpadded
3020 Warn if padding is included in a structure, either to align an element
3021 of the structure or to align the whole structure.  Sometimes when this
3022 happens it is possible to rearrange the fields of the structure to
3023 reduce the padding and so make the structure smaller.
3024
3025 @item -Wredundant-decls
3026 @opindex Wredundant-decls
3027 Warn if anything is declared more than once in the same scope, even in
3028 cases where multiple declaration is valid and changes nothing.
3029
3030 @item -Wnested-externs @r{(C only)}
3031 @opindex Wnested-externs
3032 Warn if an @code{extern} declaration is encountered within a function.
3033
3034 @item -Wunreachable-code
3035 @opindex Wunreachable-code
3036 Warn if the compiler detects that code will never be executed.
3037
3038 This option is intended to warn when the compiler detects that at
3039 least a whole line of source code will never be executed, because
3040 some condition is never satisfied or because it is after a
3041 procedure that never returns.
3042
3043 It is possible for this option to produce a warning even though there
3044 are circumstances under which part of the affected line can be executed,
3045 so care should be taken when removing apparently-unreachable code.
3046
3047 For instance, when a function is inlined, a warning may mean that the
3048 line is unreachable in only one inlined copy of the function.
3049
3050 This option is not made part of @option{-Wall} because in a debugging
3051 version of a program there is often substantial code which checks
3052 correct functioning of the program and is, hopefully, unreachable
3053 because the program does work.  Another common use of unreachable
3054 code is to provide behavior which is selectable at compile-time.
3055
3056 @item -Winline
3057 @opindex Winline
3058 Warn if a function can not be inlined and it was declared as inline.
3059 Even with this option, the compiler will not warn about failures to
3060 inline functions declared in system headers.
3061
3062 The compiler uses a variety of heuristics to determine whether or not
3063 to inline a function.  For example, the compiler takes into account
3064 the size of the function being inlined and the the amount of inlining
3065 that has already been done in the current function.  Therefore,
3066 seemingly insignificant changes in the source program can cause the
3067 warnings produced by @option{-Winline} to appear or disappear.
3068
3069 @item -Wno-invalid-offsetof @r{(C++ only)}
3070 @opindex Wno-invalid-offsetof
3071 Suppress warnings from applying the @samp{offsetof} macro to a non-POD
3072 type.  According to the 1998 ISO C++ standard, applying @samp{offsetof}
3073 to a non-POD type is undefined.  In existing C++ implementations,
3074 however, @samp{offsetof} typically gives meaningful results even when
3075 applied to certain kinds of non-POD types. (Such as a simple
3076 @samp{struct} that fails to be a POD type only by virtue of having a
3077 constructor.)  This flag is for users who are aware that they are
3078 writing nonportable code and who have deliberately chosen to ignore the
3079 warning about it.
3080
3081 The restrictions on @samp{offsetof} may be relaxed in a future version
3082 of the C++ standard.
3083
3084 @item -Winvalid-pch
3085 @opindex Winvalid-pch
3086 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
3087 the search path but can't be used.
3088
3089 @item -Wlong-long
3090 @opindex Wlong-long
3091 @opindex Wno-long-long
3092 Warn if @samp{long long} type is used.  This is default.  To inhibit
3093 the warning messages, use @option{-Wno-long-long}.  Flags
3094 @option{-Wlong-long} and @option{-Wno-long-long} are taken into account
3095 only when @option{-pedantic} flag is used.
3096
3097 @item -Wvariadic-macros
3098 @opindex Wvariadic-macros
3099 @opindex Wno-variadic-macros
3100 Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
3101 alternate syntax when in pedantic ISO C99 mode.  This is default.
3102 To inhibit the warning messages, use @option{-Wno-variadic-macros}.
3103
3104 @item -Wdisabled-optimization
3105 @opindex Wdisabled-optimization
3106 Warn if a requested optimization pass is disabled.  This warning does
3107 not generally indicate that there is anything wrong with your code; it
3108 merely indicates that GCC's optimizers were unable to handle the code
3109 effectively.  Often, the problem is that your code is too big or too
3110 complex; GCC will refuse to optimize programs when the optimization
3111 itself is likely to take inordinate amounts of time.
3112
3113 @item -Werror
3114 @opindex Werror
3115 Make all warnings into errors.
3116 @end table
3117
3118 @node Debugging Options
3119 @section Options for Debugging Your Program or GCC
3120 @cindex options, debugging
3121 @cindex debugging information options
3122
3123 GCC has various special options that are used for debugging
3124 either your program or GCC:
3125
3126 @table @gcctabopt
3127 @item -g
3128 @opindex g
3129 Produce debugging information in the operating system's native format
3130 (stabs, COFF, XCOFF, or DWARF 2)@.  GDB can work with this debugging
3131 information.
3132
3133 On most systems that use stabs format, @option{-g} enables use of extra
3134 debugging information that only GDB can use; this extra information
3135 makes debugging work better in GDB but will probably make other debuggers
3136 crash or
3137 refuse to read the program.  If you want to control for certain whether
3138 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
3139 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
3140
3141 GCC allows you to use @option{-g} with
3142 @option{-O}.  The shortcuts taken by optimized code may occasionally
3143 produce surprising results: some variables you declared may not exist
3144 at all; flow of control may briefly move where you did not expect it;
3145 some statements may not be executed because they compute constant
3146 results or their values were already at hand; some statements may
3147 execute in different places because they were moved out of loops.
3148
3149 Nevertheless it proves possible to debug optimized output.  This makes
3150 it reasonable to use the optimizer for programs that might have bugs.
3151
3152 The following options are useful when GCC is generated with the
3153 capability for more than one debugging format.
3154
3155 @item -ggdb
3156 @opindex ggdb
3157 Produce debugging information for use by GDB@.  This means to use the
3158 most expressive format available (DWARF 2, stabs, or the native format
3159 if neither of those are supported), including GDB extensions if at all
3160 possible.
3161
3162 @item -gstabs
3163 @opindex gstabs
3164 Produce debugging information in stabs format (if that is supported),
3165 without GDB extensions.  This is the format used by DBX on most BSD
3166 systems.  On MIPS, Alpha and System V Release 4 systems this option
3167 produces stabs debugging output which is not understood by DBX or SDB@.
3168 On System V Release 4 systems this option requires the GNU assembler.
3169
3170 @item -feliminate-unused-debug-symbols
3171 @opindex feliminate-unused-debug-symbols
3172 Produce debugging information in stabs format (if that is supported),
3173 for only symbols that are actually used.
3174
3175 @item -gstabs+
3176 @opindex gstabs+
3177 Produce debugging information in stabs format (if that is supported),
3178 using GNU extensions understood only by the GNU debugger (GDB)@.  The
3179 use of these extensions is likely to make other debuggers crash or
3180 refuse to read the program.
3181
3182 @item -gcoff
3183 @opindex gcoff
3184 Produce debugging information in COFF format (if that is supported).
3185 This is the format used by SDB on most System V systems prior to
3186 System V Release 4.
3187
3188 @item -gxcoff
3189 @opindex gxcoff
3190 Produce debugging information in XCOFF format (if that is supported).
3191 This is the format used by the DBX debugger on IBM RS/6000 systems.
3192
3193 @item -gxcoff+
3194 @opindex gxcoff+
3195 Produce debugging information in XCOFF format (if that is supported),
3196 using GNU extensions understood only by the GNU debugger (GDB)@.  The
3197 use of these extensions is likely to make other debuggers crash or
3198 refuse to read the program, and may cause assemblers other than the GNU
3199 assembler (GAS) to fail with an error.
3200
3201 @item -gdwarf-2
3202 @opindex gdwarf-2
3203 Produce debugging information in DWARF version 2 format (if that is
3204 supported).  This is the format used by DBX on IRIX 6.  With this
3205 option, GCC uses features of DWARF version 3 when they are useful;
3206 version 3 is upward compatible with version 2, but may still cause
3207 problems for older debuggers.
3208
3209 @item -gvms
3210 @opindex gvms
3211 Produce debugging information in VMS debug format (if that is
3212 supported).  This is the format used by DEBUG on VMS systems.
3213
3214 @item -g@var{level}
3215 @itemx -ggdb@var{level}
3216 @itemx -gstabs@var{level}
3217 @itemx -gcoff@var{level}
3218 @itemx -gxcoff@var{level}
3219 @itemx -gvms@var{level}
3220 Request debugging information and also use @var{level} to specify how
3221 much information.  The default level is 2.
3222
3223 Level 1 produces minimal information, enough for making backtraces in
3224 parts of the program that you don't plan to debug.  This includes
3225 descriptions of functions and external variables, but no information
3226 about local variables and no line numbers.
3227
3228 Level 3 includes extra information, such as all the macro definitions
3229 present in the program.  Some debuggers support macro expansion when
3230 you use @option{-g3}.
3231
3232 @option{-gdwarf-2} does not accept a concatenated debug level, because
3233 GCC used to support an option @option{-gdwarf} that meant to generate
3234 debug information in version 1 of the DWARF format (which is very
3235 different from version 2), and it would have been too confusing.  That
3236 debug format is long obsolete, but the option cannot be changed now.
3237 Instead use an additional @option{-g@var{level}} option to change the
3238 debug level for DWARF2.
3239
3240 @item -feliminate-dwarf2-dups
3241 @opindex feliminate-dwarf2-dups
3242 Compress DWARF2 debugging information by eliminating duplicated
3243 information about each symbol.  This option only makes sense when
3244 generating DWARF2 debugging information with @option{-gdwarf-2}.
3245
3246 @cindex @command{prof}
3247 @item -p
3248 @opindex p
3249 Generate extra code to write profile information suitable for the
3250 analysis program @command{prof}.  You must use this option when compiling
3251 the source files you want data about, and you must also use it when
3252 linking.
3253
3254 @cindex @command{gprof}
3255 @item -pg
3256 @opindex pg
3257 Generate extra code to write profile information suitable for the
3258 analysis program @command{gprof}.  You must use this option when compiling
3259 the source files you want data about, and you must also use it when
3260 linking.
3261
3262 @item -Q
3263 @opindex Q
3264 Makes the compiler print out each function name as it is compiled, and
3265 print some statistics about each pass when it finishes.
3266
3267 @item -ftime-report
3268 @opindex ftime-report
3269 Makes the compiler print some statistics about the time consumed by each
3270 pass when it finishes.
3271
3272 @item -fmem-report
3273 @opindex fmem-report
3274 Makes the compiler print some statistics about permanent memory
3275 allocation when it finishes.
3276
3277 @item -fprofile-arcs
3278 @opindex fprofile-arcs
3279 Add code so that program flow @dfn{arcs} are instrumented.  During
3280 execution the program records how many times each branch and call is
3281 executed and how many times it is taken or returns.  When the compiled
3282 program exits it saves this data to a file called
3283 @file{@var{auxname}.gcda} for each source file. The data may be used for
3284 profile-directed optimizations (@option{-fbranch-probabilities}), or for
3285 test coverage analysis (@option{-ftest-coverage}). Each object file's
3286 @var{auxname} is generated from the name of the output file, if
3287 explicitly specified and it is not the final executable, otherwise it is
3288 the basename of the source file. In both cases any suffix is removed
3289 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
3290 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
3291
3292 @itemize
3293
3294 @item
3295 Compile the source files with @option{-fprofile-arcs} plus optimization
3296 and code generation options. For test coverage analysis, use the
3297 additional @option{-ftest-coverage} option. You do not need to profile
3298 every source file in a program.
3299
3300 @item
3301 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
3302 (the latter implies the former).
3303
3304 @item
3305 Run the program on a representative workload to generate the arc profile
3306 information. This may be repeated any number of times. You can run
3307 concurrent instances of your program, and provided that the file system
3308 supports locking, the data files will be correctly updated. Also
3309 @code{fork} calls are detected and correctly handled (double counting
3310 will not happen).
3311
3312 @item
3313 For profile-directed optimizations, compile the source files again with
3314 the same optimization and code generation options plus
3315 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
3316 Control Optimization}).
3317
3318 @item
3319 For test coverage analysis, use @command{gcov} to produce human readable
3320 information from the @file{.gcno} and @file{.gcda} files. Refer to the
3321 @command{gcov} documentation for further information.
3322
3323 @end itemize
3324
3325 With @option{-fprofile-arcs}, for each function of your program GCC
3326 creates a program flow graph, then finds a spanning tree for the graph.
3327 Only arcs that are not on the spanning tree have to be instrumented: the
3328 compiler adds code to count the number of times that these arcs are
3329 executed.  When an arc is the only exit or only entrance to a block, the
3330 instrumentation code can be added to the block; otherwise, a new basic
3331 block must be created to hold the instrumentation code.
3332
3333 @item -ftree-based-profiling
3334 @opindex ftree-based-profiling
3335 This option is used in addition to @option{-fprofile-arcs} or
3336 @option{-fbranch-probabilities} to control whether those optimizations
3337 are performed on a tree-based or rtl-based internal representation.
3338 If you use this option when compiling with @option{-fprofile-arcs},
3339 you must also use it when compiling later with @option{-fbranch-probabilities}.
3340 Currently the tree-based optimization is in an early stage of
3341 development, and this option is recommended only for those people
3342 working on improving it.
3343
3344 @need 2000
3345 @item -ftest-coverage
3346 @opindex ftest-coverage
3347 Produce a notes file that the @command{gcov} code-coverage utility
3348 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
3349 show program coverage. Each source file's note file is called
3350 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
3351 above for a description of @var{auxname} and instructions on how to
3352 generate test coverage data. Coverage data will match the source files
3353 more closely, if you do not optimize.
3354
3355 @item -d@var{letters}
3356 @item -fdump-rtl-@var{pass}
3357 @opindex d
3358 Says to make debugging dumps during compilation at times specified by
3359 @var{letters}.    This is used for debugging the RTL-based passes of the
3360 compiler.  The file names for most of the dumps are made by appending a
3361 pass number and a word to the @var{dumpname}.  @var{dumpname} is generated
3362 from the name of the output file, if explicitly specified and it is not
3363 an executable, otherwise it is the basename of the source file.
3364
3365 Most debug dumps can be enabled either passing a letter to the @option{-d}
3366 option, or with a long @option{-fdump-rtl} switch; here are the possible
3367 letters for use in @var{letters} and @var{pass}, and their meanings:
3368
3369 @table @gcctabopt
3370 @item -dA
3371 @opindex dA
3372 Annotate the assembler output with miscellaneous debugging information.
3373
3374 @item -db
3375 @itemx -fdump-rtl-bp
3376 @opindex db
3377 @opindex fdump-rtl-bp
3378 Dump after computing branch probabilities, to @file{@var{file}.09.bp}.
3379
3380 @item -dB
3381 @itemx -fdump-rtl-bbro
3382 @opindex dB
3383 @opindex fdump-rtl-bbro
3384 Dump after block reordering, to @file{@var{file}.30.bbro}.
3385
3386 @item -dc
3387 @itemx -fdump-rtl-combine
3388 @opindex dc
3389 @opindex fdump-rtl-combine
3390 Dump after instruction combination, to the file @file{@var{file}.17.combine}.
3391
3392 @item -dC
3393 @itemx -fdump-rtl-ce1
3394 @itemx -fdump-rtl-ce2
3395 @opindex dC
3396 @opindex fdump-rtl-ce1
3397 @opindex fdump-rtl-ce2
3398 @option{-dC} and @option{-fdump-rtl-ce1} enable dumping after the
3399 first if conversion, to the file @file{@var{file}.11.ce1}.  @option{-dC}
3400 and @option{-fdump-rtl-ce2} enable dumping after the second if
3401 conversion, to the file @file{@var{file}.18.ce2}.
3402
3403 @item -dd
3404 @itemx -fdump-rtl-btl
3405 @itemx -fdump-rtl-dbr
3406 @opindex dd
3407 @opindex fdump-rtl-btl
3408 @opindex fdump-rtl-dbr
3409 @option{-dd} and @option{-fdump-rtl-btl} enable dumping after branch
3410 target load optimization, to to @file{@var{file}.31.btl}.  @option{-dd}
3411 and @option{-fdump-rtl-dbr} enable dumping after delayed branch
3412 scheduling, to @file{@var{file}.36.dbr}.
3413
3414 @item -dD
3415 @opindex dD
3416 Dump all macro definitions, at the end of preprocessing, in addition to
3417 normal output.
3418
3419 @item -dE
3420 @itemx -fdump-rtl-ce3
3421 @opindex dE
3422 @opindex fdump-rtl-ce3
3423 Dump after the third if conversion, to @file{@var{file}.28.ce3}.
3424
3425 @item -df
3426 @itemx -fdump-rtl-cfg
3427 @itemx -fdump-rtl-life
3428 @opindex df
3429 @opindex fdump-rtl-cfg
3430 @opindex fdump-rtl-life
3431 @option{-df} and @option{-fdump-rtl-cfg} enable dumping after control
3432 and data flow analysis, to @file{@var{file}.08.cfg}.  @option{-df}
3433 and @option{-fdump-rtl-cfg} enable dumping dump after life analysis,
3434 to @file{@var{file}.16.life}.
3435
3436 @item -dg
3437 @itemx -fdump-rtl-greg
3438 @opindex dg
3439 @opindex fdump-rtl-greg
3440 Dump after global register allocation, to @file{@var{file}.23.greg}.
3441
3442 @item -dG
3443 @itemx -fdump-rtl-gcse
3444 @itemx -fdump-rtl-bypass
3445 @opindex dG
3446 @opindex fdump-rtl-gcse
3447 @opindex fdump-rtl-bypass
3448 @option{-dG} and @option{-fdump-rtl-gcse} enable dumping after GCSE, to
3449 @file{@var{file}.05.gcse}.  @option{-dG} and @option{-fdump-rtl-bypass}
3450 enable dumping after jump bypassing and control flow optimizations, to
3451 @file{@var{file}.07.bypass}.
3452
3453 @item -dh
3454 @itemx -fdump-rtl-eh
3455 @opindex dh
3456 @opindex fdump-rtl-eh
3457 Dump after finalization of EH handling code, to @file{@var{file}.02.eh}.
3458
3459 @item -di
3460 @itemx -fdump-rtl-sibling
3461 @opindex di
3462 @opindex fdump-rtl-sibling
3463 Dump after sibling call optimizations, to @file{@var{file}.01.sibling}.
3464
3465 @item -dj
3466 @itemx -fdump-rtl-jump
3467 @opindex dj
3468 @opindex fdump-rtl-jump
3469 Dump after the first jump optimization, to @file{@var{file}.03.jump}.
3470
3471 @item -dk
3472 @itemx -fdump-rtl-stack
3473 @opindex dk
3474 @opindex fdump-rtl-stack
3475 Dump after conversion from registers to stack, to @file{@var{file}.33.stack}.
3476
3477 @item -dl
3478 @itemx -fdump-rtl-lreg
3479 @opindex dl
3480 @opindex fdump-rtl-lreg
3481 Dump after local register allocation, to @file{@var{file}.22.lreg}.
3482
3483 @item -dL
3484 @itemx -fdump-rtl-loop
3485 @itemx -fdump-rtl-loop2
3486 @opindex dL
3487 @opindex fdump-rtl-loop
3488 @opindex fdump-rtl-loop2
3489 @option{-dL} and @option{-fdump-rtl-loop} enable dumping after the first
3490 loop optimization pass, to @file{@var{file}.06.loop}.  @option{-dL} and
3491 @option{-fdump-rtl-loop2} enable dumping after the second pass, to
3492 @file{@var{file}.13.loop2}.
3493
3494 @item -dm
3495 @itemx -fdump-rtl-sms
3496 @opindex dm
3497 @opindex fdump-rtl-sms
3498 Dump after modulo scheduling, to @file{@var{file}.20.sms}. 
3499
3500 @item -dM
3501 @itemx -fdump-rtl-mach
3502 @opindex dM
3503 @opindex fdump-rtl-mach
3504 Dump after performing the machine dependent reorganization pass, to
3505 @file{@var{file}.35.mach}.
3506
3507 @item -dn
3508 @itemx -fdump-rtl-rnreg
3509 @opindex dn
3510 @opindex fdump-rtl-rnreg
3511 Dump after register renumbering, to @file{@var{file}.29.rnreg}.
3512
3513 @item -dN
3514 @itemx -fdump-rtl-regmove
3515 @opindex dN
3516 @opindex fdump-rtl-regmove
3517 Dump after the register move pass, to @file{@var{file}.19.regmove}.
3518
3519 @item -do
3520 @itemx -fdump-rtl-postreload
3521 @opindex do
3522 @opindex fdump-rtl-postreload
3523 Dump after post-reload optimizations, to @file{@var{file}.24.postreload}.
3524
3525 @item -dr
3526 @itemx -fdump-rtl-expand
3527 @opindex dr
3528 @opindex fdump-rtl-expand
3529 Dump after RTL generation, to @file{@var{file}.00.expand}.
3530
3531 @item -dR
3532 @itemx -fdump-rtl-sched2
3533 @opindex dR
3534 @opindex fdump-rtl-sched2
3535 Dump after the second scheduling pass, to @file{@var{file}.32.sched2}.
3536
3537 @item -ds
3538 @itemx -fdump-rtl-cse
3539 @opindex ds
3540 @opindex fdump-rtl-cse
3541 Dump after CSE (including the jump optimization that sometimes follows
3542 CSE), to @file{@var{file}.04.cse}.
3543
3544 @item -dS
3545 @itemx -fdump-rtl-sched
3546 @opindex dS
3547 @opindex fdump-rtl-sched
3548 Dump after the first scheduling pass, to @file{@var{file}.21.sched}.
3549
3550 @item -dt
3551 @itemx -fdump-rtl-cse2
3552 @opindex dt
3553 @opindex fdump-rtl-cse2
3554 Dump after the second CSE pass (including the jump optimization that
3555 sometimes follows CSE), to @file{@var{file}.15.cse2}.
3556
3557 @item -dT
3558 @itemx -fdump-rtl-tracer
3559 @opindex dT
3560 @opindex fdump-rtl-tracer
3561 Dump after running tracer, to @file{@var{file}.12.tracer}.
3562
3563 @item -dV
3564 @itemx -fdump-rtl-vpt
3565 @itemx -fdump-rtl-vartrack
3566 @opindex dV
3567 @opindex fdump-rtl-vpt
3568 @opindex fdump-rtl-vartrack
3569 @option{-dV} and @option{-fdump-rtl-vpt} enable dumping after the value
3570 profile transformations, to @file{@var{file}.10.vpt}.  @option{-dV}
3571 and @option{-fdump-rtl-vartrack} enable dumping after variable tracking,
3572 to @file{@var{file}.34.vartrack}.
3573
3574 @item -dw
3575 @itemx -fdump-rtl-flow2
3576 @opindex dw
3577 @opindex fdump-rtl-flow2
3578 Dump after the second flow pass, to @file{@var{file}.26.flow2}.
3579
3580 @item -dz
3581 @itemx -fdump-rtl-peephole2
3582 @opindex dz
3583 @opindex fdump-rtl-peephole2
3584 Dump after the peephole pass, to @file{@var{file}.27.peephole2}.
3585
3586 @item -dZ
3587 @itemx -fdump-rtl-web
3588 @opindex dZ
3589 @opindex fdump-rtl-web
3590 Dump after live range splitting, to @file{@var{file}.14.web}.
3591
3592 @item -da
3593 @itemx -fdump-rtl-all
3594 @opindex da
3595 @opindex fdump-rtl-all
3596 Produce all the dumps listed above.
3597
3598 @item -dH
3599 @opindex dH
3600 Produce a core dump whenever an error occurs.
3601
3602 @item -dm
3603 @opindex dm
3604 Print statistics on memory usage, at the end of the run, to
3605 standard error.
3606
3607 @item -dp
3608 @opindex dp
3609 Annotate the assembler output with a comment indicating which
3610 pattern and alternative was used.  The length of each instruction is
3611 also printed.
3612
3613 @item -dP
3614 @opindex dP
3615 Dump the RTL in the assembler output as a comment before each instruction.
3616 Also turns on @option{-dp} annotation.
3617
3618 @item -dv
3619 @opindex dv
3620 For each of the other indicated dump files (either with @option{-d} or
3621 @option{-fdump-rtl-@var{pass}}), dump a representation of the control flow
3622 graph suitable for viewing with VCG to @file{@var{file}.@var{pass}.vcg}.
3623
3624 @item -dx
3625 @opindex dx
3626 Just generate RTL for a function instead of compiling it.  Usually used
3627 with @samp{r} (@option{-fdump-rtl-expand}).
3628
3629 @item -dy
3630 @opindex dy
3631 Dump debugging information during parsing, to standard error.
3632 @end table
3633
3634 @item -fdump-unnumbered
3635 @opindex fdump-unnumbered
3636 When doing debugging dumps (see @option{-d} option above), suppress instruction
3637 numbers and line number note output.  This makes it more feasible to
3638 use diff on debugging dumps for compiler invocations with different
3639 options, in particular with and without @option{-g}.
3640
3641 @item -fdump-translation-unit @r{(C and C++ only)}
3642 @itemx -fdump-translation-unit-@var{options} @r{(C and C++ only)}
3643 @opindex fdump-translation-unit
3644 Dump a representation of the tree structure for the entire translation
3645 unit to a file.  The file name is made by appending @file{.tu} to the
3646 source file name.  If the @samp{-@var{options}} form is used, @var{options}
3647 controls the details of the dump as described for the
3648 @option{-fdump-tree} options.
3649
3650 @item -fdump-class-hierarchy @r{(C++ only)}
3651 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
3652 @opindex fdump-class-hierarchy
3653 Dump a representation of each class's hierarchy and virtual function
3654 table layout to a file.  The file name is made by appending @file{.class}
3655 to the source file name.  If the @samp{-@var{options}} form is used,
3656 @var{options} controls the details of the dump as described for the
3657 @option{-fdump-tree} options.
3658
3659 @item -fdump-ipa-@var{switch}
3660 @opindex fdump-ipa
3661 Control the dumping at various stages of inter-procedural analyisis
3662 language tree to a file.  The file name is generated by appending a switch
3663 specific suffix to the source file name. The following dumps are possible:
3664
3665 @table @samp
3666 @item all
3667 Enables all inter-procedural analysis dumps; currently the only produced
3668 dump is the @samp{cgraph} dump.
3669
3670 @item cgraph
3671 Dumps information about call-graph optimization, unused function removal,
3672 and inlining decisions.
3673 @end table
3674
3675 @item -fdump-tree-@var{switch} @r{(C and C++ only)}
3676 @itemx -fdump-tree-@var{switch}-@var{options} @r{(C and C++ only)}
3677 @opindex fdump-tree
3678 Control the dumping at various stages of processing the intermediate
3679 language tree to a file.  The file name is generated by appending a switch
3680 specific suffix to the source file name.  If the @samp{-@var{options}}
3681 form is used, @var{options} is a list of @samp{-} separated options that
3682 control the details of the dump. Not all options are applicable to all
3683 dumps, those which are not meaningful will be ignored. The following
3684 options are available
3685
3686 @table @samp
3687 @item address
3688 Print the address of each node.  Usually this is not meaningful as it
3689 changes according to the environment and source file. Its primary use
3690 is for tying up a dump file with a debug environment.
3691 @item slim
3692 Inhibit dumping of members of a scope or body of a function merely
3693 because that scope has been reached.  Only dump such items when they
3694 are directly reachable by some other path.  When dumping pretty-printed
3695 trees, this option inhibits dumping the bodies of control structures.
3696 @item raw
3697 Print a raw representation of the tree.  By default, trees are
3698 pretty-printed into a C-like representation.
3699 @item details
3700 Enable more detailed dumps (not honored by every dump option).
3701 @item stats
3702 Enable dumping various statistics about the pass (not honored by every dump
3703 option).
3704 @item blocks
3705 Enable showing basic block boundaries (disabled in raw dumps).
3706 @item vops
3707 Enable showing virtual operands for every statement.
3708 @item lineno
3709 Enable showing line numbers for statements.
3710 @item uid
3711 Enable showing the unique ID (@code{DECL_UID}) for each variable.
3712 @item all
3713 Turn on all options, except @option{raw}, @option{slim} and @option{lineno}.
3714 @end table
3715
3716 The following tree dumps are possible:
3717 @table @samp
3718
3719 @item original
3720 Dump before any tree based optimization, to @file{@var{file}.original}.
3721
3722 @item optimized
3723 Dump after all tree based optimization, to @file{@var{file}.optimized}.
3724
3725 @item inlined
3726 Dump after function inlining, to @file{@var{file}.inlined}.
3727
3728 @item gimple
3729 @opindex fdump-tree-gimple
3730 Dump each function before and after the gimplification pass to a file.  The
3731 file name is made by appending @file{.gimple} to the source file name.
3732
3733 @item cfg
3734 @opindex fdump-tree-cfg
3735 Dump the control flow graph of each function to a file.  The file name is
3736 made by appending @file{.cfg} to the source file name.
3737
3738 @item vcg
3739 @opindex fdump-tree-vcg
3740 Dump the control flow graph of each function to a file in VCG format.  The
3741 file name is made by appending @file{.vcg} to the source file name.  Note
3742 that if the file contains more than one function, the generated file cannot
3743 be used directly by VCG.  You will need to cut and paste each function's
3744 graph into its own separate file first.
3745
3746 @item ch
3747 @opindex fdump-tree-ch
3748 Dump each function after copying loop headers.  The file name is made by
3749 appending @file{.ch} to the source file name.
3750
3751 @item ssa
3752 @opindex fdump-tree-ssa
3753 Dump SSA related information to a file.  The file name is made by appending
3754 @file{.ssa} to the source file name.
3755
3756 @item alias
3757 @opindex fdump-tree-alias
3758 Dump aliasing information for each function.  The file name is made by
3759 appending @file{.alias} to the source file name.
3760
3761 @item ccp
3762 @opindex fdump-tree-ccp
3763 Dump each function after CCP.  The file name is made by appending
3764 @file{.ccp} to the source file name.
3765
3766 @item pre
3767 @opindex fdump-tree-pre
3768 Dump trees after partial redundancy elimination.  The file name is made
3769 by appending @file{.pre} to the source file name.
3770
3771 @item fre
3772 @opindex fdump-tree-fre
3773 Dump trees after full redundancy elimination.  The file name is made
3774 by appending @file{.fre} to the source file name.
3775
3776 @item dce
3777 @opindex fdump-tree-dce
3778 Dump each function after dead code elimination.  The file name is made by
3779 appending @file{.dce} to the source file name.
3780
3781 @item mudflap
3782 @opindex fdump-tree-mudflap
3783 Dump each function after adding mudflap instrumentation.  The file name is
3784 made by appending @file{.mudflap} to the source file name.
3785
3786 @item sra
3787 @opindex fdump-tree-sra
3788 Dump each function after performing scalar replacement of aggregates.  The
3789 file name is made by appending @file{.sra} to the source file name.
3790
3791 @item dom
3792 @opindex fdump-tree-dom
3793 Dump each function after applying dominator tree optimizations.  The file
3794 name is made by appending @file{.dom} to the source file name.
3795
3796 @item dse
3797 @opindex fdump-tree-dse
3798 Dump each function after applying dead store elimination.  The file
3799 name is made by appending @file{.dse} to the source file name.
3800
3801 @item phiopt
3802 @opindex fdump-tree-phiopt
3803 Dump each function after optimizing PHI nodes into straightline code.  The file
3804 name is made by appending @file{.phiopt} to the source file name.
3805
3806 @item forwprop
3807 @opindex fdump-tree-forwprop
3808 Dump each function after forward propagating single use variables.  The file
3809 name is made by appending @file{.forwprop} to the source file name.
3810
3811 @item copyrename
3812 @opindex fdump-tree-copyrename
3813 Dump each function after applying the copy rename optimization.  The file
3814 name is made by appending @file{.copyrename} to the source file name.
3815
3816 @item nrv
3817 @opindex fdump-tree-nrv
3818 Dump each function after applying the named return value optimization on
3819 generic trees.  The file name is made by appending @file{.nrv} to the source
3820 file name.
3821
3822 @item vect
3823 @opindex fdump-tree-vect
3824 Dump each function after applying vectorization of loops.  The file name is 
3825 made by appending @file{.vect} to the source file name.
3826
3827 @item all
3828 @opindex fdump-tree-all
3829 Enable all the available tree dumps with the flags provided in this option.
3830 @end table
3831
3832 @item -frandom-seed=@var{string}
3833 @opindex frandom-string
3834 This option provides a seed that GCC uses when it would otherwise use
3835 random numbers.  It is used to generate certain symbol names
3836 that have to be different in every compiled file. It is also used to
3837 place unique stamps in coverage data files and the object files that
3838 produce them. You can use the @option{-frandom-seed} option to produce
3839 reproducibly identical object files.
3840
3841 The @var{string} should be different for every file you compile.
3842
3843 @item -fsched-verbose=@var{n}
3844 @opindex fsched-verbose
3845 On targets that use instruction scheduling, this option controls the
3846 amount of debugging output the scheduler prints.  This information is
3847 written to standard error, unless @option{-dS} or @option{-dR} is
3848 specified, in which case it is output to the usual dump
3849 listing file, @file{.sched} or @file{.sched2} respectively.  However
3850 for @var{n} greater than nine, the output is always printed to standard
3851 error.
3852
3853 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
3854 same information as @option{-dRS}.  For @var{n} greater than one, it
3855 also output basic block probabilities, detailed ready list information
3856 and unit/insn info.  For @var{n} greater than two, it includes RTL
3857 at abort point, control-flow and regions info.  And for @var{n} over
3858 four, @option{-fsched-verbose} also includes dependence info.
3859
3860 @item -save-temps
3861 @opindex save-temps
3862 Store the usual ``temporary'' intermediate files permanently; place them
3863 in the current directory and name them based on the source file.  Thus,
3864 compiling @file{foo.c} with @samp{-c -save-temps} would produce files
3865 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
3866 preprocessed @file{foo.i} output file even though the compiler now
3867 normally uses an integrated preprocessor.
3868
3869 @item -time
3870 @opindex time
3871 Report the CPU time taken by each subprocess in the compilation
3872 sequence.  For C source files, this is the compiler proper and assembler
3873 (plus the linker if linking is done).  The output looks like this:
3874
3875 @smallexample
3876 # cc1 0.12 0.01
3877 # as 0.00 0.01
3878 @end smallexample
3879
3880 The first number on each line is the ``user time,'' that is time spent
3881 executing the program itself.  The second number is ``system time,''
3882 time spent executing operating system routines on behalf of the program.
3883 Both numbers are in seconds.
3884
3885 @item -fvar-tracking
3886 @opindex fvar-tracking
3887 Run variable tracking pass. It computes where variables are stored at each
3888 position in code. Better debugging information is then generated
3889 (if the debugging information format supports this information).
3890
3891 It is enabled by default when compiling with optimization (@option{-Os},
3892 @option{-O}, @option{-O2}, ...), debugging information (@option{-g}) and
3893 the debug info format supports it.
3894
3895 @item -print-file-name=@var{library}
3896 @opindex print-file-name
3897 Print the full absolute name of the library file @var{library} that
3898 would be used when linking---and don't do anything else.  With this
3899 option, GCC does not compile or link anything; it just prints the
3900 file name.
3901
3902 @item -print-multi-directory
3903 @opindex print-multi-directory
3904 Print the directory name corresponding to the multilib selected by any
3905 other switches present in the command line.  This directory is supposed
3906 to exist in @env{GCC_EXEC_PREFIX}.
3907
3908 @item -print-multi-lib
3909 @opindex print-multi-lib
3910 Print the mapping from multilib directory names to compiler switches
3911 that enable them.  The directory name is separated from the switches by
3912 @samp{;}, and each switch starts with an @samp{@@} instead of the
3913 @samp{-}, without spaces between multiple switches.  This is supposed to
3914 ease shell-processing.
3915
3916 @item -print-prog-name=@var{program}
3917 @opindex print-prog-name
3918 Like @option{-print-file-name}, but searches for a program such as @samp{cpp}.
3919
3920 @item -print-libgcc-file-name
3921 @opindex print-libgcc-file-name
3922 Same as @option{-print-file-name=libgcc.a}.
3923
3924 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
3925 but you do want to link with @file{libgcc.a}.  You can do
3926
3927 @smallexample
3928 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
3929 @end smallexample
3930
3931 @item -print-search-dirs
3932 @opindex print-search-dirs
3933 Print the name of the configured installation directory and a list of
3934 program and library directories @command{gcc} will search---and don't do anything else.
3935
3936 This is useful when @command{gcc} prints the error message
3937 @samp{installation problem, cannot exec cpp0: No such file or directory}.
3938 To resolve this you either need to put @file{cpp0} and the other compiler
3939 components where @command{gcc} expects to find them, or you can set the environment
3940 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
3941 Don't forget the trailing '/'.
3942 @xref{Environment Variables}.
3943
3944 @item -dumpmachine
3945 @opindex dumpmachine
3946 Print the compiler's target machine (for example,
3947 @samp{i686-pc-linux-gnu})---and don't do anything else.
3948
3949 @item -dumpversion
3950 @opindex dumpversion
3951 Print the compiler version (for example, @samp{3.0})---and don't do
3952 anything else.
3953
3954 @item -dumpspecs
3955 @opindex dumpspecs
3956 Print the compiler's built-in specs---and don't do anything else.  (This
3957 is used when GCC itself is being built.)  @xref{Spec Files}.
3958
3959 @item -feliminate-unused-debug-types
3960 @opindex feliminate-unused-debug-types
3961 Normally, when producing DWARF2 output, GCC will emit debugging
3962 information for all types declared in a compilation
3963 unit, regardless of whether or not they are actually used
3964 in that compilation unit.  Sometimes this is useful, such as
3965 if, in the debugger, you want to cast a value to a type that is
3966 not actually used in your program (but is declared).  More often,
3967 however, this results in a significant amount of wasted space.
3968 With this option, GCC will avoid producing debug symbol output
3969 for types that are nowhere used in the source file being compiled.
3970 @end table
3971
3972 @node Optimize Options
3973 @section Options That Control Optimization
3974 @cindex optimize options
3975 @cindex options, optimization
3976
3977 These options control various sorts of optimizations.
3978
3979 Without any optimization option, the compiler's goal is to reduce the
3980 cost of compilation and to make debugging produce the expected
3981 results.  Statements are independent: if you stop the program with a
3982 breakpoint between statements, you can then assign a new value to any
3983 variable or change the program counter to any other statement in the
3984 function and get exactly the results you would expect from the source
3985 code.
3986
3987 Turning on optimization flags makes the compiler attempt to improve
3988 the performance and/or code size at the expense of compilation time
3989 and possibly the ability to debug the program.
3990
3991 The compiler performs optimization based on the knowledge it has of
3992 the program.  Optimization levels @option{-O2} and above, in
3993 particular, enable @emph{unit-at-a-time} mode, which allows the
3994 compiler to consider information gained from later functions in
3995 the file when compiling a function.  Compiling multiple files at
3996 once to a single output file in @emph{unit-at-a-time} mode allows
3997 the compiler to use information gained from all of the files when
3998 compiling each of them.
3999
4000 Not all optimizations are controlled directly by a flag.  Only
4001 optimizations that have a flag are listed.
4002
4003 @table @gcctabopt
4004 @item -O
4005 @itemx -O1
4006 @opindex O
4007 @opindex O1
4008 Optimize.  Optimizing compilation takes somewhat more time, and a lot
4009 more memory for a large function.
4010
4011 With @option{-O}, the compiler tries to reduce code size and execution
4012 time, without performing any optimizations that take a great deal of
4013 compilation time.
4014
4015 @option{-O} turns on the following optimization flags:
4016 @gccoptlist{-fdefer-pop @gol
4017 -fmerge-constants @gol
4018 -fthread-jumps @gol
4019 -floop-optimize @gol
4020 -fif-conversion @gol
4021 -fif-conversion2 @gol
4022 -fdelayed-branch @gol
4023 -fguess-branch-probability @gol
4024 -fcprop-registers}
4025
4026 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
4027 where doing so does not interfere with debugging.
4028
4029 @item -O2
4030 @opindex O2
4031 Optimize even more.  GCC performs nearly all supported optimizations
4032 that do not involve a space-speed tradeoff.  The compiler does not
4033 perform loop unrolling or function inlining when you specify @option{-O2}.
4034 As compared to @option{-O}, this option increases both compilation time
4035 and the performance of the generated code.
4036
4037 @option{-O2} turns on all optimization flags specified by @option{-O}.  It
4038 also turns on the following optimization flags:
4039 @gccoptlist{-fforce-mem @gol
4040 -foptimize-sibling-calls @gol
4041 -fstrength-reduce @gol
4042 -fcse-follow-jumps  -fcse-skip-blocks @gol
4043 -frerun-cse-after-loop  -frerun-loop-opt @gol
4044 -fgcse  -fgcse-lm  -fgcse-sm  -fgcse-las @gol
4045 -fdelete-null-pointer-checks @gol
4046 -fexpensive-optimizations @gol
4047 -fregmove @gol
4048 -fschedule-insns  -fschedule-insns2 @gol
4049 -fsched-interblock  -fsched-spec @gol
4050 -fcaller-saves @gol
4051 -fpeephole2 @gol
4052 -freorder-blocks  -freorder-functions @gol
4053 -fstrict-aliasing @gol
4054 -funit-at-a-time @gol
4055 -falign-functions  -falign-jumps @gol
4056 -falign-loops  -falign-labels @gol
4057 -fcrossjumping}
4058
4059 Please note the warning under @option{-fgcse} about
4060 invoking @option{-O2} on programs that use computed gotos.
4061
4062 @item -O3
4063 @opindex O3
4064 Optimize yet more.  @option{-O3} turns on all optimizations specified by
4065 @option{-O2} and also turns on the @option{-finline-functions},
4066 @option{-fweb} and @option{-fgcse-after-reload} options.
4067
4068 @item -O0
4069 @opindex O0
4070 Do not optimize.  This is the default.
4071
4072 @item -Os
4073 @opindex Os
4074 Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
4075 do not typically increase code size.  It also performs further
4076 optimizations designed to reduce code size.
4077
4078 @option{-Os} disables the following optimization flags:
4079 @gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
4080 -falign-labels  -freorder-blocks  -freorder-blocks-and-partition -fprefetch-loop-arrays}
4081
4082 If you use multiple @option{-O} options, with or without level numbers,
4083 the last such option is the one that is effective.
4084 @end table
4085
4086 Options of the form @option{-f@var{flag}} specify machine-independent
4087 flags.  Most flags have both positive and negative forms; the negative
4088 form of @option{-ffoo} would be @option{-fno-foo}.  In the table
4089 below, only one of the forms is listed---the one you typically will
4090 use.  You can figure out the other form by either removing @samp{no-}
4091 or adding it.
4092
4093 The following options control specific optimizations.  They are either
4094 activated by @option{-O} options or are related to ones that are.  You
4095 can use the following flags in the rare cases when ``fine-tuning'' of
4096 optimizations to be performed is desired.
4097
4098 @table @gcctabopt
4099 @item -fno-default-inline
4100 @opindex fno-default-inline
4101 Do not make member functions inline by default merely because they are
4102 defined inside the class scope (C++ only).  Otherwise, when you specify
4103 @w{@option{-O}}, member functions defined inside class scope are compiled
4104 inline by default; i.e., you don't need to add @samp{inline} in front of
4105 the member function name.
4106
4107 @item -fno-defer-pop
4108 @opindex fno-defer-pop
4109 Always pop the arguments to each function call as soon as that function
4110 returns.  For machines which must pop arguments after a function call,
4111 the compiler normally lets arguments accumulate on the stack for several
4112 function calls and pops them all at once.
4113
4114 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4115
4116 @item -fforce-mem
4117 @opindex fforce-mem
4118 Force memory operands to be copied into registers before doing
4119 arithmetic on them.  This produces better code by making all memory
4120 references potential common subexpressions.  When they are not common
4121 subexpressions, instruction combination should eliminate the separate
4122 register-load.
4123
4124 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4125
4126 @item -fforce-addr
4127 @opindex fforce-addr
4128 Force memory address constants to be copied into registers before
4129 doing arithmetic on them.  This may produce better code just as
4130 @option{-fforce-mem} may.
4131
4132 @item -fomit-frame-pointer
4133 @opindex fomit-frame-pointer
4134 Don't keep the frame pointer in a register for functions that
4135 don't need one.  This avoids the instructions to save, set up and
4136 restore frame pointers; it also makes an extra register available
4137 in many functions.  @strong{It also makes debugging impossible on
4138 some machines.}
4139
4140 On some machines, such as the VAX, this flag has no effect, because
4141 the standard calling sequence automatically handles the frame pointer
4142 and nothing is saved by pretending it doesn't exist.  The
4143 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
4144 whether a target machine supports this flag.  @xref{Registers,,Register
4145 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
4146
4147 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4148
4149 @item -foptimize-sibling-calls
4150 @opindex foptimize-sibling-calls
4151 Optimize sibling and tail recursive calls.
4152
4153 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4154
4155 @item -fno-inline
4156 @opindex fno-inline
4157 Don't pay attention to the @code{inline} keyword.  Normally this option
4158 is used to keep the compiler from expanding any functions inline.
4159 Note that if you are not optimizing, no functions can be expanded inline.
4160
4161 @item -finline-functions
4162 @opindex finline-functions
4163 Integrate all simple functions into their callers.  The compiler
4164 heuristically decides which functions are simple enough to be worth
4165 integrating in this way.
4166
4167 If all calls to a given function are integrated, and the function is
4168 declared @code{static}, then the function is normally not output as
4169 assembler code in its own right.
4170
4171 Enabled at level @option{-O3}.
4172
4173 @item -finline-limit=@var{n}
4174 @opindex finline-limit
4175 By default, GCC limits the size of functions that can be inlined.  This flag
4176 allows the control of this limit for functions that are explicitly marked as
4177 inline (i.e., marked with the inline keyword or defined within the class
4178 definition in c++).  @var{n} is the size of functions that can be inlined in
4179 number of pseudo instructions (not counting parameter handling).  The default
4180 value of @var{n} is 600.
4181 Increasing this value can result in more inlined code at
4182 the cost of compilation time and memory consumption.  Decreasing usually makes
4183 the compilation faster and less code will be inlined (which presumably
4184 means slower programs).  This option is particularly useful for programs that
4185 use inlining heavily such as those based on recursive templates with C++.
4186
4187 Inlining is actually controlled by a number of parameters, which may be
4188 specified individually by using @option{--param @var{name}=@var{value}}.
4189 The @option{-finline-limit=@var{n}} option sets some of these parameters
4190 as follows:
4191
4192 @table @gcctabopt
4193  @item max-inline-insns-single
4194   is set to @var{n}/2.
4195  @item max-inline-insns-auto
4196   is set to @var{n}/2.
4197  @item min-inline-insns
4198   is set to 130 or @var{n}/4, whichever is smaller.
4199  @item max-inline-insns-rtl
4200   is set to @var{n}.
4201 @end table
4202
4203 See below for a documentation of the individual
4204 parameters controlling inlining.
4205
4206 @emph{Note:} pseudo instruction represents, in this particular context, an
4207 abstract measurement of function's size.  In no way, it represents a count
4208 of assembly instructions and as such its exact meaning might change from one
4209 release to an another.
4210
4211 @item -fkeep-inline-functions
4212 @opindex fkeep-inline-functions
4213 In C, emit @code{static} functions that are declared @code{inline}
4214 into the object file, even if the function has been inlined into all
4215 of its callers.  This switch does not affect functions using the
4216 @code{extern inline} extension in GNU C.  In C++, emit any and all
4217 inline functions into the object file.
4218
4219 @item -fkeep-static-consts
4220 @opindex fkeep-static-consts
4221 Emit variables declared @code{static const} when optimization isn't turned
4222 on, even if the variables aren't referenced.
4223
4224 GCC enables this option by default.  If you want to force the compiler to
4225 check if the variable was referenced, regardless of whether or not
4226 optimization is turned on, use the @option{-fno-keep-static-consts} option.
4227
4228 @item -fmerge-constants
4229 Attempt to merge identical constants (string constants and floating point
4230 constants) across compilation units.
4231
4232 This option is the default for optimized compilation if the assembler and
4233 linker support it.  Use @option{-fno-merge-constants} to inhibit this
4234 behavior.
4235
4236 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4237
4238 @item -fmerge-all-constants
4239 Attempt to merge identical constants and identical variables.
4240
4241 This option implies @option{-fmerge-constants}.  In addition to
4242 @option{-fmerge-constants} this considers e.g.@: even constant initialized
4243 arrays or initialized constant variables with integral or floating point
4244 types.  Languages like C or C++ require each non-automatic variable to
4245 have distinct location, so using this option will result in non-conforming
4246 behavior.
4247
4248 @item -fmodulo-sched
4249 @opindex fmodulo-sched
4250 Perform swing modulo scheduling immediately before the first scheduling
4251 pass.  This pass looks at innermost loops and reorders their
4252 instructions by overlapping different iterations.
4253
4254 @item -fnew-ra
4255 @opindex fnew-ra
4256 Use a graph coloring register allocator.  Currently this option is meant
4257 only for testing.  Users should not specify this option, since it is not
4258 yet ready for production use.
4259
4260 @item -fno-branch-count-reg
4261 @opindex fno-branch-count-reg
4262 Do not use ``decrement and branch'' instructions on a count register,
4263 but instead generate a sequence of instructions that decrement a
4264 register, compare it against zero, then branch based upon the result.
4265 This option is only meaningful on architectures that support such
4266 instructions, which include x86, PowerPC, IA-64 and S/390.
4267
4268 The default is @option{-fbranch-count-reg}, enabled when
4269 @option{-fstrength-reduce} is enabled.
4270
4271 @item -fno-function-cse
4272 @opindex fno-function-cse
4273 Do not put function addresses in registers; make each instruction that
4274 calls a constant function contain the function's address explicitly.
4275
4276 This option results in less efficient code, but some strange hacks
4277 that alter the assembler output may be confused by the optimizations
4278 performed when this option is not used.
4279
4280 The default is @option{-ffunction-cse}
4281
4282 @item -fno-zero-initialized-in-bss
4283 @opindex fno-zero-initialized-in-bss
4284 If the target supports a BSS section, GCC by default puts variables that
4285 are initialized to zero into BSS@.  This can save space in the resulting
4286 code.
4287
4288 This option turns off this behavior because some programs explicitly
4289 rely on variables going to the data section.  E.g., so that the
4290 resulting executable can find the beginning of that section and/or make
4291 assumptions based on that.
4292
4293 The default is @option{-fzero-initialized-in-bss}.
4294
4295 @item -fbounds-check
4296 @opindex fbounds-check
4297 For front-ends that support it, generate additional code to check that
4298 indices used to access arrays are within the declared range.  This is
4299 currently only supported by the Java and Fortran front-ends, where
4300 this option defaults to true and false respectively.
4301
4302 @item -fmudflap -fmudflapth -fmudflapir
4303 @opindex fmudflap
4304 @opindex fmudflapth
4305 @opindex fmudflapir
4306 @cindex bounds checking
4307 @cindex mudflap
4308 For front-ends that support it (C and C++), instrument all risky
4309 pointer/array dereferencing operations, some standard library
4310 string/heap functions, and some other associated constructs with
4311 range/validity tests.  Modules so instrumented should be immune to
4312 buffer overflows, invalid heap use, and some other classes of C/C++
4313 programming errors.  The instrumentation relies on a separate runtime
4314 library (@file{libmudflap}), which will be linked into a program if
4315 @option{-fmudflap} is given at link time.  Run-time behavior of the
4316 instrumented program is controlled by the @env{MUDFLAP_OPTIONS}
4317 environment variable.  See @code{env MUDFLAP_OPTIONS=-help a.out}
4318 for its options.
4319
4320 Use @option{-fmudflapth} instead of @option{-fmudflap} to compile and to
4321 link if your program is multi-threaded.  Use @option{-fmudflapir}, in
4322 addition to @option{-fmudflap} or @option{-fmudflapth}, if
4323 instrumentation should ignore pointer reads.  This produces less
4324 instrumentation (and therefore faster execution) and still provides
4325 some protection against outright memory corrupting writes, but allows
4326 erroneously read data to propagate within a program.
4327
4328 @item -fstrength-reduce
4329 @opindex fstrength-reduce
4330 Perform the optimizations of loop strength reduction and
4331 elimination of iteration variables.
4332
4333 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4334
4335 @item -fthread-jumps
4336 @opindex fthread-jumps
4337 Perform optimizations where we check to see if a jump branches to a
4338 location where another comparison subsumed by the first is found.  If
4339 so, the first branch is redirected to either the destination of the
4340 second branch or a point immediately following it, depending on whether
4341 the condition is known to be true or false.
4342
4343 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4344
4345 @item -fcse-follow-jumps
4346 @opindex fcse-follow-jumps
4347 In common subexpression elimination, scan through jump instructions
4348 when the target of the jump is not reached by any other path.  For
4349 example, when CSE encounters an @code{if} statement with an
4350 @code{else} clause, CSE will follow the jump when the condition
4351 tested is false.
4352
4353 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4354
4355 @item -fcse-skip-blocks
4356 @opindex fcse-skip-blocks
4357 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
4358 follow jumps which conditionally skip over blocks.  When CSE
4359 encounters a simple @code{if} statement with no else clause,
4360 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
4361 body of the @code{if}.
4362
4363 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4364
4365 @item -frerun-cse-after-loop
4366 @opindex frerun-cse-after-loop
4367 Re-run common subexpression elimination after loop optimizations has been
4368 performed.
4369
4370 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4371
4372 @item -frerun-loop-opt
4373 @opindex frerun-loop-opt
4374 Run the loop optimizer twice.
4375
4376 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4377
4378 @item -fgcse
4379 @opindex fgcse
4380 Perform a global common subexpression elimination pass.
4381 This pass also performs global constant and copy propagation.
4382
4383 @emph{Note:} When compiling a program using computed gotos, a GCC
4384 extension, you may get better runtime performance if you disable
4385 the global common subexpression elimination pass by adding
4386 @option{-fno-gcse} to the command line.
4387
4388 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4389
4390 @item -fgcse-lm
4391 @opindex fgcse-lm
4392 When @option{-fgcse-lm} is enabled, global common subexpression elimination will
4393 attempt to move loads which are only killed by stores into themselves.  This
4394 allows a loop containing a load/store sequence to be changed to a load outside
4395 the loop, and a copy/store within the loop.
4396
4397 Enabled by default when gcse is enabled.
4398
4399 @item -fgcse-sm
4400 @opindex fgcse-sm
4401 When @option{-fgcse-sm} is enabled, a store motion pass is run after
4402 global common subexpression elimination.  This pass will attempt to move
4403 stores out of loops.  When used in conjunction with @option{-fgcse-lm},
4404 loops containing a load/store sequence can be changed to a load before
4405 the loop and a store after the loop.
4406
4407 Enabled by default when gcse is enabled.
4408
4409 @item -fgcse-las
4410 @opindex fgcse-las
4411 When @option{-fgcse-las} is enabled, the global common subexpression
4412 elimination pass eliminates redundant loads that come after stores to the
4413 same memory location (both partial and full redundancies).
4414
4415 Enabled by default when gcse is enabled.
4416
4417 @item -fgcse-after-reload
4418 @opindex fgcse-after-reload
4419 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
4420 pass is performed after reload. The purpose of this pass is to cleanup
4421 redundant spilling.
4422
4423 @item -floop-optimize
4424 @opindex floop-optimize
4425 Perform loop optimizations: move constant expressions out of loops, simplify
4426 exit test conditions and optionally do strength-reduction and loop unrolling as
4427 well.
4428
4429 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4430
4431 @item -floop-optimize2
4432 @opindex floop-optimize2
4433 Perform loop optimizations using the new loop optimizer.  The optimizations
4434 (loop unrolling, peeling and unswitching, loop invariant motion) are enabled
4435 by separate flags.
4436
4437 @item -fcrossjumping
4438 @opindex crossjumping
4439 Perform cross-jumping transformation. This transformation unifies equivalent code and save code size. The
4440 resulting code may or may not perform better than without cross-jumping.
4441
4442 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4443
4444 @item -fif-conversion
4445 @opindex if-conversion
4446 Attempt to transform conditional jumps into branch-less equivalents.  This
4447 include use of conditional moves, min, max, set flags and abs instructions, and
4448 some tricks doable by standard arithmetics.  The use of conditional execution
4449 on chips where it is available is controlled by @code{if-conversion2}.
4450
4451 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4452
4453 @item -fif-conversion2
4454 @opindex if-conversion2
4455 Use conditional execution (where available) to transform conditional jumps into
4456 branch-less equivalents.
4457
4458 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4459
4460 @item -fdelete-null-pointer-checks
4461 @opindex fdelete-null-pointer-checks
4462 Use global dataflow analysis to identify and eliminate useless checks
4463 for null pointers.  The compiler assumes that dereferencing a null
4464 pointer would have halted the program.  If a pointer is checked after
4465 it has already been dereferenced, it cannot be null.
4466
4467 In some environments, this assumption is not true, and programs can
4468 safely dereference null pointers.  Use
4469 @option{-fno-delete-null-pointer-checks} to disable this optimization
4470 for programs which depend on that behavior.
4471
4472 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4473
4474 @item -fexpensive-optimizations
4475 @opindex fexpensive-optimizations
4476 Perform a number of minor optimizations that are relatively expensive.
4477
4478 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4479
4480 @item -foptimize-register-move
4481 @itemx -fregmove
4482 @opindex foptimize-register-move
4483 @opindex fregmove
4484 Attempt to reassign register numbers in move instructions and as
4485 operands of other simple instructions in order to maximize the amount of
4486 register tying.  This is especially helpful on machines with two-operand
4487 instructions.
4488
4489 Note @option{-fregmove} and @option{-foptimize-register-move} are the same
4490 optimization.
4491
4492 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4493
4494 @item -fdelayed-branch
4495 @opindex fdelayed-branch
4496 If supported for the target machine, attempt to reorder instructions
4497 to exploit instruction slots available after delayed branch
4498 instructions.
4499
4500 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4501
4502 @item -fschedule-insns
4503 @opindex fschedule-insns
4504 If supported for the target machine, attempt to reorder instructions to
4505 eliminate execution stalls due to required data being unavailable.  This
4506 helps machines that have slow floating point or memory load instructions
4507 by allowing other instructions to be issued until the result of the load
4508 or floating point instruction is required.
4509
4510 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4511
4512 @item -fschedule-insns2
4513 @opindex fschedule-insns2
4514 Similar to @option{-fschedule-insns}, but requests an additional pass of
4515 instruction scheduling after register allocation has been done.  This is
4516 especially useful on machines with a relatively small number of
4517 registers and where memory load instructions take more than one cycle.
4518
4519 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4520
4521 @item -fno-sched-interblock
4522 @opindex fno-sched-interblock
4523 Don't schedule instructions across basic blocks.  This is normally
4524 enabled by default when scheduling before register allocation, i.e.@:
4525 with @option{-fschedule-insns} or at @option{-O2} or higher.
4526
4527 @item -fno-sched-spec
4528 @opindex fno-sched-spec
4529 Don't allow speculative motion of non-load instructions.  This is normally
4530 enabled by default when scheduling before register allocation, i.e.@:
4531 with @option{-fschedule-insns} or at @option{-O2} or higher.
4532
4533 @item -fsched-spec-load
4534 @opindex fsched-spec-load
4535 Allow speculative motion of some load instructions.  This only makes
4536 sense when scheduling before register allocation, i.e.@: with
4537 @option{-fschedule-insns} or at @option{-O2} or higher.
4538
4539 @item -fsched-spec-load-dangerous
4540 @opindex fsched-spec-load-dangerous
4541 Allow speculative motion of more load instructions.  This only makes
4542 sense when scheduling before register allocation, i.e.@: with
4543 @option{-fschedule-insns} or at @option{-O2} or higher.
4544
4545 @item -fsched-stalled-insns=@var{n}
4546 @opindex fsched-stalled-insns
4547 Define how many insns (if any) can be moved prematurely from the queue
4548 of stalled insns into the ready list, during the second scheduling pass.
4549
4550 @item -fsched-stalled-insns-dep=@var{n}
4551 @opindex fsched-stalled-insns-dep
4552 Define how many insn groups (cycles) will be examined for a dependency
4553 on a stalled insn that is candidate for premature removal from the queue
4554 of stalled insns.  Has an effect only during the second scheduling pass,
4555 and only if @option{-fsched-stalled-insns} is used and its value is not zero.
4556
4557 @item -fsched2-use-superblocks
4558 @opindex fsched2-use-superblocks
4559 When scheduling after register allocation, do use superblock scheduling
4560 algorithm.  Superblock scheduling allows motion across basic block boundaries
4561 resulting on faster schedules.  This option is experimental, as not all machine
4562 descriptions used by GCC model the CPU closely enough to avoid unreliable
4563 results from the algorithm.
4564
4565 This only makes sense when scheduling after register allocation, i.e.@: with
4566 @option{-fschedule-insns2} or at @option{-O2} or higher.
4567
4568 @item -fsched2-use-traces
4569 @opindex fsched2-use-traces
4570 Use @option{-fsched2-use-superblocks} algorithm when scheduling after register
4571 allocation and additionally perform code duplication in order to increase the
4572 size of superblocks using tracer pass.  See @option{-ftracer} for details on
4573 trace formation.
4574
4575 This mode should produce faster but significantly longer programs.  Also
4576 without @code{-fbranch-probabilities} the traces constructed may not match the
4577 reality and hurt the performance.  This only makes
4578 sense when scheduling after register allocation, i.e.@: with
4579 @option{-fschedule-insns2} or at @option{-O2} or higher.
4580
4581 @item -freschedule-modulo-scheduled-loops
4582 @opindex fscheduling-in-modulo-scheduled-loops
4583 The modulo scheduling comes before the traditional scheduling, if a loop was modulo scheduled
4584 we may want to prevent the later scheduling passes from changing its schedule, we use this
4585 option to control that.
4586
4587 @item -fcaller-saves
4588 @opindex fcaller-saves
4589 Enable values to be allocated in registers that will be clobbered by
4590 function calls, by emitting extra instructions to save and restore the
4591 registers around such calls.  Such allocation is done only when it
4592 seems to result in better code than would otherwise be produced.
4593
4594 This option is always enabled by default on certain machines, usually
4595 those which have no call-preserved registers to use instead.
4596
4597 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4598
4599 @item -ftree-pre
4600 Perform Partial Redundancy Elimination (PRE) on trees.  This flag is
4601 enabled by default at -O and higher.
4602
4603 @item -ftree-fre
4604 Perform Full Redundancy Elimination (FRE) on trees.  The difference
4605 between FRE and PRE is that FRE only considers expressions
4606 that are computed on all paths leading to the redundant computation.
4607 This analysis faster than PRE, though it exposes fewer redundancies.
4608 This flag is enabled by default at -O and higher.
4609
4610 @item -ftree-ccp
4611 Perform sparse conditional constant propagation (CCP) on trees.  This flag
4612 is enabled by default at -O and higher.
4613
4614 @item -ftree-dce
4615 Perform dead code elimination (DCE) on trees.  This flag is enabled by
4616 default at -O and higher.
4617
4618 @item -ftree-dominator-opts
4619 Perform dead code elimination (DCE) on trees.  This flag is enabled by
4620 default at -O and higher.
4621
4622 @item -ftree-ch
4623 Perform loop header copying on trees.  This is beneficial since it increases
4624 effectivity of code motion optimizations.  It also saves one jump.  This flag
4625 is enabled by default at -O and higher.  It is not enabled for -Os, since it
4626 usually increases code size.
4627
4628 @item -ftree-loop-optimize
4629 Perform loop optimizations on trees.  This flag is enabled by default at -O
4630 and higher.
4631
4632 @item -ftree-loop-linear
4633 Perform linear loop transformations on tree. This flag can improve cache 
4634 performance and allow further loop optimizations to take place.
4635
4636 @item -ftree-lim
4637 Perform loop invariant motion on trees.  This pass moves only invartiants that
4638 would be hard to handle on rtl level (function calls, operations that expand to
4639 nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
4640 operands of conditions that are invariant out of the loop, so that we can use
4641 just trivial invariantness analysis in loop unswitching.  The pass also includes
4642 store motion.
4643
4644 @item -fivcanon
4645 Create a canonical counter for number of iterations in the loop for that
4646 determining number of iterations requires complicated analysis.  Later
4647 optimizations then may determine the number easily.  Useful especially
4648 in connection with unrolling.
4649
4650 @item -fivopts
4651 Perform induction variable optimizations (strength reduction, induction
4652 variable merging and induction variable elimination) on trees.
4653
4654 @item -ftree-sra
4655 Perform scalar replacement of aggregates.  This pass replaces structure
4656 references with scalars to prevent committing structures to memory too
4657 early.  This flag is enabled by default at -O and higher.
4658
4659 @item -ftree-copyrename
4660 Perform copy renaming on trees.  This pass attempts to rename compiler
4661 temporaries to other variables at copy locations, usually resulting in
4662 variable names which more closely resemble the original variables.  This flag
4663 is enabled by default at -O and higher.
4664
4665 @item -ftree-ter
4666 Perform temporary expression replacement during the SSA->normal phase.  Single
4667 use/single def temporaries are replaced at their use location with their
4668 defining expression.  This results in non-GIMPLE code, but gives the expanders
4669 much more complex trees to work on resulting in better RTL generation.  This is
4670 enabled by default at -O and higher.
4671
4672 @item -ftree-lrs
4673 Perform live range splitting during the SSA->normal phase.  Distinct live
4674 ranges of a variable are split into unique variables, allowing for better
4675 optimization later.  This is enabled by default at -O and higher.
4676
4677 @item -ftree-vectorize
4678 Perform loop vectorization on trees.
4679
4680 @item -ftracer
4681 @opindex ftracer
4682 Perform tail duplication to enlarge superblock size. This transformation
4683 simplifies the control flow of the function allowing other optimizations to do
4684 better job.
4685
4686 @item -funroll-loops
4687 @opindex funroll-loops
4688 Unroll loops whose number of iterations can be determined at compile
4689 time or upon entry to the loop.  @option{-funroll-loops} implies both
4690 @option{-fstrength-reduce} and @option{-frerun-cse-after-loop}.  This
4691 option makes code larger, and may or may not make it run faster.
4692
4693 @item -funroll-all-loops
4694 @opindex funroll-all-loops
4695 Unroll all loops, even if their number of iterations is uncertain when
4696 the loop is entered.  This usually makes programs run more slowly.
4697 @option{-funroll-all-loops} implies the same options as
4698 @option{-funroll-loops},
4699
4700 @item -fprefetch-loop-arrays
4701 @opindex fprefetch-loop-arrays
4702 If supported by the target machine, generate instructions to prefetch
4703 memory to improve the performance of loops that access large arrays.
4704
4705 @item -fmove-all-movables
4706 @opindex fmove-all-movables
4707 Forces all invariant computations in loops to be moved
4708 outside the loop.
4709
4710 @item -freduce-all-givs
4711 @opindex freduce-all-givs
4712 Forces all general-induction variables in loops to be
4713 strength-reduced.
4714
4715 @emph{Note:} When compiling programs written in Fortran,
4716 @option{-fmove-all-movables} and @option{-freduce-all-givs} are enabled
4717 by default when you use the optimizer.
4718
4719 These options may generate better or worse code; results are highly
4720 dependent on the structure of loops within the source code.
4721
4722 These two options are intended to be removed someday, once
4723 they have helped determine the efficacy of various
4724 approaches to improving loop optimizations.
4725
4726 Please contact @w{@email{gcc@@gcc.gnu.org}}, and describe how use of
4727 these options affects the performance of your production code.
4728 Examples of code that runs @emph{slower} when these options are
4729 @emph{enabled} are very valuable.
4730
4731 @item -fno-peephole
4732 @itemx -fno-peephole2
4733 @opindex fno-peephole
4734 @opindex fno-peephole2
4735 Disable any machine-specific peephole optimizations.  The difference
4736 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
4737 are implemented in the compiler; some targets use one, some use the
4738 other, a few use both.
4739
4740 @option{-fpeephole} is enabled by default.
4741 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4742
4743 @item -fno-guess-branch-probability
4744 @opindex fno-guess-branch-probability
4745 Do not guess branch probabilities using a randomized model.
4746
4747 Sometimes GCC will opt to use a randomized model to guess branch
4748 probabilities, when none are available from either profiling feedback
4749 (@option{-fprofile-arcs}) or @samp{__builtin_expect}.  This means that
4750 different runs of the compiler on the same program may produce different
4751 object code.
4752
4753 In a hard real-time system, people don't want different runs of the
4754 compiler to produce code that has different behavior; minimizing
4755 non-determinism is of paramount import.  This switch allows users to
4756 reduce non-determinism, possibly at the expense of inferior
4757 optimization.
4758
4759 The default is @option{-fguess-branch-probability} at levels
4760 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4761
4762 @item -freorder-blocks
4763 @opindex freorder-blocks
4764 Reorder basic blocks in the compiled function in order to reduce number of
4765 taken branches and improve code locality.
4766
4767 Enabled at levels @option{-O2}, @option{-O3}.
4768
4769 @item -freorder-blocks-and-partition
4770 @opindex freorder-blocks-and-partition
4771 In addition to reordering basic blocks in the compiled function, in order
4772 to reduce number of taken branches, partitions hot and cold basic blocks
4773 into separate sections of the assembly and .o files, to improve
4774 paging and cache locality performance.
4775
4776 This optimization is automatically turned off in the presence of
4777 exception handling, for linkonce sections, for functions with a user-defined
4778 section attribute and on any architecture that does not support named
4779 sections.
4780
4781 @item -freorder-functions
4782 @opindex freorder-functions
4783 Reorder basic blocks in the compiled function in order to reduce number of
4784 taken branches and improve code locality. This is implemented by using special
4785 subsections @code{.text.hot} for most frequently executed functions and
4786 @code{.text.unlikely} for unlikely executed functions.  Reordering is done by
4787 the linker so object file format must support named sections and linker must
4788 place them in a reasonable way.
4789
4790 Also profile feedback must be available in to make this option effective.  See
4791 @option{-fprofile-arcs} for details.
4792
4793 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4794
4795 @item -fstrict-aliasing
4796 @opindex fstrict-aliasing
4797 Allows the compiler to assume the strictest aliasing rules applicable to
4798 the language being compiled.  For C (and C++), this activates
4799 optimizations based on the type of expressions.  In particular, an
4800 object of one type is assumed never to reside at the same address as an
4801 object of a different type, unless the types are almost the same.  For
4802 example, an @code{unsigned int} can alias an @code{int}, but not a
4803 @code{void*} or a @code{double}.  A character type may alias any other
4804 type.
4805
4806 Pay special attention to code like this:
4807 @smallexample
4808 union a_union @{
4809   int i;
4810   double d;
4811 @};
4812
4813 int f() @{
4814   a_union t;
4815   t.d = 3.0;
4816   return t.i;
4817 @}
4818 @end smallexample
4819 The practice of reading from a different union member than the one most
4820 recently written to (called ``type-punning'') is common.  Even with
4821 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
4822 is accessed through the union type.  So, the code above will work as
4823 expected.  However, this code might not:
4824 @smallexample
4825 int f() @{
4826   a_union t;
4827   int* ip;
4828   t.d = 3.0;
4829   ip = &t.i;
4830   return *ip;
4831 @}
4832 @end smallexample
4833
4834 Every language that wishes to perform language-specific alias analysis
4835 should define a function that computes, given an @code{tree}
4836 node, an alias set for the node.  Nodes in different alias sets are not
4837 allowed to alias.  For an example, see the C front-end function
4838 @code{c_get_alias_set}.
4839
4840 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4841
4842 @item -falign-functions
4843 @itemx -falign-functions=@var{n}
4844 @opindex falign-functions
4845 Align the start of functions to the next power-of-two greater than
4846 @var{n}, skipping up to @var{n} bytes.  For instance,
4847 @option{-falign-functions=32} aligns functions to the next 32-byte
4848 boundary, but @option{-falign-functions=24} would align to the next
4849 32-byte boundary only if this can be done by skipping 23 bytes or less.
4850
4851 @option{-fno-align-functions} and @option{-falign-functions=1} are
4852 equivalent and mean that functions will not be aligned.
4853
4854 Some assemblers only support this flag when @var{n} is a power of two;
4855 in that case, it is rounded up.
4856
4857 If @var{n} is not specified or is zero, use a machine-dependent default.
4858
4859 Enabled at levels @option{-O2}, @option{-O3}.
4860
4861 @item -falign-labels
4862 @itemx -falign-labels=@var{n}
4863 @opindex falign-labels
4864 Align all branch targets to a power-of-two boundary, skipping up to
4865 @var{n} bytes like @option{-falign-functions}.  This option can easily
4866 make code slower, because it must insert dummy operations for when the
4867 branch target is reached in the usual flow of the code.
4868
4869 @option{-fno-align-labels} and @option{-falign-labels=1} are
4870 equivalent and mean that labels will not be aligned.
4871
4872 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
4873 are greater than this value, then their values are used instead.
4874
4875 If @var{n} is not specified or is zero, use a machine-dependent default
4876 which is very likely to be @samp{1}, meaning no alignment.
4877
4878 Enabled at levels @option{-O2}, @option{-O3}.
4879
4880 @item -falign-loops
4881 @itemx -falign-loops=@var{n}
4882 @opindex falign-loops
4883 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
4884 like @option{-falign-functions}.  The hope is that the loop will be
4885 executed many times, which will make up for any execution of the dummy
4886 operations.
4887
4888 @option{-fno-align-loops} and @option{-falign-loops=1} are
4889 equivalent and mean that loops will not be aligned.
4890
4891 If @var{n} is not specified or is zero, use a machine-dependent default.
4892
4893 Enabled at levels @option{-O2}, @option{-O3}.
4894
4895 @item -falign-jumps
4896 @itemx -falign-jumps=@var{n}
4897 @opindex falign-jumps
4898 Align branch targets to a power-of-two boundary, for branch targets
4899 where the targets can only be reached by jumping, skipping up to @var{n}
4900 bytes like @option{-falign-functions}.  In this case, no dummy operations
4901 need be executed.
4902
4903 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
4904 equivalent and mean that loops will not be aligned.
4905
4906 If @var{n} is not specified or is zero, use a machine-dependent default.
4907
4908 Enabled at levels @option{-O2}, @option{-O3}.
4909
4910 @item -funit-at-a-time
4911 @opindex funit-at-a-time
4912 Parse the whole compilation unit before starting to produce code.
4913 This allows some extra optimizations to take place but consumes
4914 more memory (in general).  There are some compatibility issues
4915 with @emph{unit-at-at-time} mode:
4916 @itemize @bullet
4917 @item
4918 enabling @emph{unit-at-a-time} mode may change the order
4919 in which functions, variables, and top-level @code{asm} statements
4920 are emitted, and will likely break code relying on some particular
4921 ordering.  The majority of such top-level @code{asm} statements,
4922 though, can be replaced by @code{section} attributes.
4923
4924 @item
4925 @emph{unit-at-a-time} mode removes unreferenced static variables
4926 and functions are removed.  This may result in undefined references
4927 when an @code{asm} statement refers directly to variables or functions
4928 that are otherwise unused.  In that case either the variable/function
4929 shall be listed as an operand of the @code{asm} statement operand or,
4930 in the case of top-level @code{asm} statements the attribute @code{used}
4931 shall be used on the declaration.
4932
4933 @item
4934 Static functions now can use non-standard passing conventions that
4935 may break @code{asm} statements calling functions directly. Again,
4936 attribute @code{used} will prevent this behavior.
4937 @end itemize
4938
4939 As a temporary workaround, @option{-fno-unit-at-a-time} can be used,
4940 but this scheme may not be supported by future releases of GCC.
4941
4942 Enabled at levels @option{-O2}, @option{-O3}.
4943
4944 @item -fweb
4945 @opindex fweb
4946 Constructs webs as commonly used for register allocation purposes and assign
4947 each web individual pseudo register.  This allows the register allocation pass
4948 to operate on pseudos directly, but also strengthens several other optimization
4949 passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
4950 however, make debugging impossible, since variables will no longer stay in a
4951 ``home register''.
4952
4953 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os},
4954 on targets where the default format for debugging information supports
4955 variable tracking.
4956
4957 @item -fno-cprop-registers
4958 @opindex fno-cprop-registers
4959 After register allocation and post-register allocation instruction splitting,
4960 we perform a copy-propagation pass to try to reduce scheduling dependencies
4961 and occasionally eliminate the copy.
4962
4963 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4964
4965 @item -fprofile-generate
4966 @opindex fprofile-generate
4967
4968 Enable options usually used for instrumenting application to produce
4969 profile useful for later recompilation with profile feedback based
4970 optimization.  You must use @code{-fprofile-generate} both when
4971 compiling and when linking your program.
4972
4973 The following options are enabled: @code{-fprofile-arcs}, @code{-fprofile-values}, @code{-fvpt}.
4974
4975 @item -fprofile-use
4976 @opindex fprofile-use
4977 Enable profile feedback directed optimizations, and optimizations
4978 generally profitable only with profile feedback available.
4979
4980 The following options are enabled: @code{-fbranch-probabilities},
4981 @code{-fvpt}, @code{-funroll-loops}, @code{-fpeel-loops}, @code{-ftracer}.
4982
4983 @end table
4984
4985 The following options control compiler behavior regarding floating
4986 point arithmetic.  These options trade off between speed and
4987 correctness.  All must be specifically enabled.
4988
4989 @table @gcctabopt
4990 @item -ffloat-store
4991 @opindex ffloat-store
4992 Do not store floating point variables in registers, and inhibit other
4993 options that might change whether a floating point value is taken from a
4994 register or memory.
4995
4996 @cindex floating point precision
4997 This option prevents undesirable excess precision on machines such as
4998 the 68000 where the floating registers (of the 68881) keep more
4999 precision than a @code{double} is supposed to have.  Similarly for the
5000 x86 architecture.  For most programs, the excess precision does only
5001 good, but a few programs rely on the precise definition of IEEE floating
5002 point.  Use @option{-ffloat-store} for such programs, after modifying
5003 them to store all pertinent intermediate computations into variables.
5004
5005 @item -ffast-math
5006 @opindex ffast-math
5007 Sets @option{-fno-math-errno}, @option{-funsafe-math-optimizations}, @*
5008 @option{-fno-trapping-math}, @option{-ffinite-math-only},
5009 @option{-fno-rounding-math} and @option{-fno-signaling-nans}.
5010
5011 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
5012
5013 This option should never be turned on by any @option{-O} option since
5014 it can result in incorrect output for programs which depend on
5015 an exact implementation of IEEE or ISO rules/specifications for
5016 math functions.
5017
5018 @item -fno-math-errno
5019 @opindex fno-math-errno
5020 Do not set ERRNO after calling math functions that are executed
5021 with a single instruction, e.g., sqrt.  A program that relies on
5022 IEEE exceptions for math error handling may want to use this flag
5023 for speed while maintaining IEEE arithmetic compatibility.
5024
5025 This option should never be turned on by any @option{-O} option since
5026 it can result in incorrect output for programs which depend on
5027 an exact implementation of IEEE or ISO rules/specifications for
5028 math functions.
5029
5030 The default is @option{-fmath-errno}.
5031
5032 @item -funsafe-math-optimizations
5033 @opindex funsafe-math-optimizations
5034 Allow optimizations for floating-point arithmetic that (a) assume
5035 that arguments and results are valid and (b) may violate IEEE or
5036 ANSI standards.  When used at link-time, it may include libraries
5037 or startup files that change the default FPU control word or other
5038 similar optimizations.
5039
5040 This option should never be turned on by any @option{-O} option since
5041 it can result in incorrect output for programs which depend on
5042 an exact implementation of IEEE or ISO rules/specifications for
5043 math functions.
5044
5045 The default is @option{-fno-unsafe-math-optimizations}.
5046
5047 @item -ffinite-math-only
5048 @opindex ffinite-math-only
5049 Allow optimizations for floating-point arithmetic that assume
5050 that arguments and results are not NaNs or +-Infs.
5051
5052 This option should never be turned on by any @option{-O} option since
5053 it can result in incorrect output for programs which depend on
5054 an exact implementation of IEEE or ISO rules/specifications.
5055
5056 The default is @option{-fno-finite-math-only}.
5057
5058 @item -fno-trapping-math
5059 @opindex fno-trapping-math
5060 Compile code assuming that floating-point operations cannot generate
5061 user-visible traps.  These traps include division by zero, overflow,
5062 underflow, inexact result and invalid operation.  This option implies
5063 @option{-fno-signaling-nans}.  Setting this option may allow faster
5064 code if one relies on ``non-stop'' IEEE arithmetic, for example.
5065
5066 This option should never be turned on by any @option{-O} option since
5067 it can result in incorrect output for programs which depend on
5068 an exact implementation of IEEE or ISO rules/specifications for
5069 math functions.
5070
5071 The default is @option{-ftrapping-math}.
5072
5073 @item -frounding-math
5074 @opindex frounding-math
5075 Disable transformations and optimizations that assume default floating
5076 point rounding behavior.  This is round-to-zero for all floating point
5077 to integer conversions, and round-to-nearest for all other arithmetic
5078 truncations.  This option should be specified for programs that change
5079 the FP rounding mode dynamically, or that may be executed with a
5080 non-default rounding mode.  This option disables constant folding of
5081 floating point expressions at compile-time (which may be affected by
5082 rounding mode) and arithmetic transformations that are unsafe in the
5083 presence of sign-dependent rounding modes.
5084
5085 The default is @option{-fno-rounding-math}.
5086
5087 This option is experimental and does not currently guarantee to
5088 disable all GCC optimizations that are affected by rounding mode.
5089 Future versions of GCC may provide finer control of this setting
5090 using C99's @code{FENV_ACCESS} pragma.  This command line option
5091 will be used to specify the default state for @code{FENV_ACCESS}.
5092
5093 @item -fsignaling-nans
5094 @opindex fsignaling-nans
5095 Compile code assuming that IEEE signaling NaNs may generate user-visible
5096 traps during floating-point operations.  Setting this option disables
5097 optimizations that may change the number of exceptions visible with
5098 signaling NaNs.  This option implies @option{-ftrapping-math}.
5099
5100 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
5101 be defined.
5102
5103 The default is @option{-fno-signaling-nans}.
5104
5105 This option is experimental and does not currently guarantee to
5106 disable all GCC optimizations that affect signaling NaN behavior.
5107
5108 @item -fsingle-precision-constant
5109 @opindex fsingle-precision-constant
5110 Treat floating point constant as single precision constant instead of
5111 implicitly converting it to double precision constant.
5112
5113
5114 @end table
5115
5116 The following options control optimizations that may improve
5117 performance, but are not enabled by any @option{-O} options.  This
5118 section includes experimental options that may produce broken code.
5119
5120 @table @gcctabopt
5121 @item -fbranch-probabilities
5122 @opindex fbranch-probabilities
5123 After running a program compiled with @option{-fprofile-arcs}
5124 (@pxref{Debugging Options,, Options for Debugging Your Program or
5125 @command{gcc}}), you can compile it a second time using
5126 @option{-fbranch-probabilities}, to improve optimizations based on
5127 the number of times each branch was taken.  When the program
5128 compiled with @option{-fprofile-arcs} exits it saves arc execution
5129 counts to a file called @file{@var{sourcename}.gcda} for each source
5130 file  The information in this data file is very dependent on the
5131 structure of the generated code, so you must use the same source code
5132 and the same optimization options for both compilations.
5133
5134 With @option{-fbranch-probabilities}, GCC puts a
5135 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
5136 These can be used to improve optimization.  Currently, they are only
5137 used in one place: in @file{reorg.c}, instead of guessing which path a
5138 branch is mostly to take, the @samp{REG_BR_PROB} values are used to
5139 exactly determine which path is taken more often.
5140
5141 @item -fprofile-values
5142 @opindex fprofile-values
5143 If combined with @option{-fprofile-arcs}, it adds code so that some
5144 data about values of expressions in the program is gathered.
5145
5146 With @option{-fbranch-probabilities}, it reads back the data gathered
5147 from profiling values of expressions and adds @samp{REG_VALUE_PROFILE}
5148 notes to instructions for their later usage in optimizations.
5149
5150 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
5151
5152 @item -fvpt
5153 @opindex fvpt
5154 If combined with @option{-fprofile-arcs}, it instructs the compiler to add
5155 a code to gather information about values of expressions.
5156
5157 With @option{-fbranch-probabilities}, it reads back the data gathered
5158 and actually performs the optimizations based on them.
5159 Currently the optimizations include specialization of division operation
5160 using the knowledge about the value of the denominator.
5161
5162 @item -fspeculative-prefetching
5163 @opindex fspeculative-prefetching
5164 If combined with @option{-fprofile-arcs}, it instructs the compiler to add
5165 a code to gather information about addresses of memory references in the
5166 program.
5167
5168 With @option{-fbranch-probabilities}, it reads back the data gathered
5169 and issues prefetch instructions according to them.  In addition to the opportunities
5170 noticed by @option{-fprefetch-loop-arrays}, it also notices more complicated
5171 memory access patterns -- for example accesses to the data stored in linked
5172 list whose elements are usually allocated sequentially.
5173
5174 In order to prevent issuing double prefetches, usage of
5175 @option{-fspeculative-prefetching} implies @option{-fno-prefetch-loop-arrays}.
5176
5177 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
5178
5179 @item -frename-registers
5180 @opindex frename-registers
5181 Attempt to avoid false dependencies in scheduled code by making use
5182 of registers left over after register allocation.  This optimization
5183 will most benefit processors with lots of registers.  Depending on the
5184 debug information format adopted by the target, however, it can
5185 make debugging impossible, since variables will no longer stay in
5186 a ``home register''.
5187
5188 Not enabled by default at any level because it has known bugs.
5189
5190 @item -fnew-ra
5191 @opindex fnew-ra
5192 Use a graph coloring register allocator.  Currently this option is meant
5193 for testing, so we are interested to hear about miscompilations with
5194 @option{-fnew-ra}.
5195
5196 @item -ftracer
5197 @opindex ftracer
5198 Perform tail duplication to enlarge superblock size. This transformation
5199 simplifies the control flow of the function allowing other optimizations to do
5200 better job.
5201
5202 Enabled with @option{-fprofile-use}.
5203
5204 @item -funroll-loops
5205 @opindex funroll-loops
5206 Unroll loops whose number of iterations can be determined at compile time or
5207 upon entry to the loop.  @option{-funroll-loops} implies
5208 @option{-frerun-cse-after-loop}.  It also turns on complete loop peeling
5209 (i.e.@: complete removal of loops with small constant number of iterations).
5210 This option makes code larger, and may or may not make it run faster.
5211
5212 Enabled with @option{-fprofile-use}.
5213
5214 @item -funroll-all-loops
5215 @opindex funroll-all-loops
5216 Unroll all loops, even if their number of iterations is uncertain when
5217 the loop is entered.  This usually makes programs run more slowly.
5218 @option{-funroll-all-loops} implies the same options as
5219 @option{-funroll-loops}.
5220
5221 @item -fpeel-loops
5222 @opindex fpeel-loops
5223 Peels the loops for that there is enough information that they do not
5224 roll much (from profile feedback).  It also turns on complete loop peeling
5225 (i.e.@: complete removal of loops with small constant number of iterations).
5226
5227 Enabled with @option{-fprofile-use}.
5228
5229 @item -fmove-loop-invariants
5230 @opindex fmove-loop-invariants
5231 Enables the loop invariant motion pass in the new loop optimizer.  Enabled
5232 at level @option{-O1}
5233
5234 @item -funswitch-loops
5235 @opindex funswitch-loops
5236 Move branches with loop invariant conditions out of the loop, with duplicates
5237 of the loop on both branches (modified according to result of the condition).
5238
5239 @item -fold-unroll-loops
5240 @opindex fold-unroll-loops
5241 Unroll loops whose number of iterations can be determined at compile
5242 time or upon entry to the loop, using the old loop unroller whose loop
5243 recognition is based on notes from frontend.  @option{-fold-unroll-loops} implies
5244 both @option{-fstrength-reduce} and @option{-frerun-cse-after-loop}.  This
5245 option makes code larger, and may or may not make it run faster.
5246
5247 @item -fold-unroll-all-loops
5248 @opindex fold-unroll-all-loops
5249 Unroll all loops, even if their number of iterations is uncertain when
5250 the loop is entered. This is done using the old loop unroller whose loop
5251 recognition is based on notes from frontend.  This usually makes programs run more slowly.
5252 @option{-fold-unroll-all-loops} implies the same options as
5253 @option{-fold-unroll-loops}.
5254
5255 @item -fprefetch-loop-arrays
5256 @opindex fprefetch-loop-arrays
5257 If supported by the target machine, generate instructions to prefetch
5258 memory to improve the performance of loops that access large arrays.
5259
5260 Disabled at level @option{-Os}.
5261
5262 @item -ffunction-sections
5263 @itemx -fdata-sections
5264 @opindex ffunction-sections
5265 @opindex fdata-sections
5266 Place each function or data item into its own section in the output
5267 file if the target supports arbitrary sections.  The name of the
5268 function or the name of the data item determines the section's name
5269 in the output file.
5270
5271 Use these options on systems where the linker can perform optimizations
5272 to improve locality of reference in the instruction space.  Most systems
5273 using the ELF object format and SPARC processors running Solaris 2 have
5274 linkers with such optimizations.  AIX may have these optimizations in
5275 the future.
5276
5277 Only use these options when there are significant benefits from doing
5278 so.  When you specify these options, the assembler and linker will
5279 create larger object and executable files and will also be slower.
5280 You will not be able to use @code{gprof} on all systems if you
5281 specify this option and you may have problems with debugging if
5282 you specify both this option and @option{-g}.
5283
5284 @item -fbranch-target-load-optimize
5285 @opindex fbranch-target-load-optimize
5286 Perform branch target register load optimization before prologue / epilogue
5287 threading.
5288 The use of target registers can typically be exposed only during reload,
5289 thus hoisting loads out of loops and doing inter-block scheduling needs
5290 a separate optimization pass.
5291
5292 @item -fbranch-target-load-optimize2
5293 @opindex fbranch-target-load-optimize2
5294 Perform branch target register load optimization after prologue / epilogue
5295 threading.
5296
5297 @item -fbtr-bb-exclusive
5298 @opindex fbtr-bb-exclusive
5299 When performing branch target register load optimization, don't reuse
5300 branch target registers in within any basic block.
5301
5302 @item --param @var{name}=@var{value}
5303 @opindex param
5304 In some places, GCC uses various constants to control the amount of
5305 optimization that is done.  For example, GCC will not inline functions
5306 that contain more that a certain number of instructions.  You can
5307 control some of these constants on the command-line using the
5308 @option{--param} option.
5309
5310 The names of specific parameters, and the meaning of the values, are
5311 tied to the internals of the compiler, and are subject to change
5312 without notice in future releases.
5313
5314 In each case, the @var{value} is an integer.  The allowable choices for
5315 @var{name} are given in the following table:
5316
5317 @table @gcctabopt
5318 @item max-crossjump-edges
5319 The maximum number of incoming edges to consider for crossjumping.
5320 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
5321 the number of edges incoming to each block.  Increasing values mean
5322 more aggressive optimization, making the compile time increase with
5323 probably small improvement in executable size.
5324
5325 @item min-crossjump-insns
5326 The minimum number of instructions which must be matched at the end
5327 of two blocks before crossjumping will be performed on them.  This
5328 value is ignored in the case where all instructions in the block being
5329 crossjumped from are matched.  The default value is 5.
5330
5331 @item max-delay-slot-insn-search
5332 The maximum number of instructions to consider when looking for an
5333 instruction to fill a delay slot.  If more than this arbitrary number of
5334 instructions is searched, the time savings from filling the delay slot
5335 will be minimal so stop searching.  Increasing values mean more
5336 aggressive optimization, making the compile time increase with probably
5337 small improvement in executable run time.
5338
5339 @item max-delay-slot-live-search
5340 When trying to fill delay slots, the maximum number of instructions to
5341 consider when searching for a block with valid live register
5342 information.  Increasing this arbitrarily chosen value means more
5343 aggressive optimization, increasing the compile time.  This parameter
5344 should be removed when the delay slot code is rewritten to maintain the
5345 control-flow graph.
5346
5347 @item max-gcse-memory
5348 The approximate maximum amount of memory that will be allocated in
5349 order to perform the global common subexpression elimination
5350 optimization.  If more memory than specified is required, the
5351 optimization will not be done.
5352
5353 @item max-gcse-passes
5354 The maximum number of passes of GCSE to run.  The default is 1.
5355
5356 @item max-pending-list-length
5357 The maximum number of pending dependencies scheduling will allow
5358 before flushing the current state and starting over.  Large functions
5359 with few branches or calls can create excessively large lists which
5360 needlessly consume memory and resources.
5361
5362 @item max-inline-insns-single
5363 Several parameters control the tree inliner used in gcc.
5364 This number sets the maximum number of instructions (counted in GCC's
5365 internal representation) in a single function that the tree inliner
5366 will consider for inlining.  This only affects functions declared
5367 inline and methods implemented in a class declaration (C++).
5368 The default value is 500.
5369
5370 @item max-inline-insns-auto
5371 When you use @option{-finline-functions} (included in @option{-O3}),
5372 a lot of functions that would otherwise not be considered for inlining
5373 by the compiler will be investigated.  To those functions, a different
5374 (more restrictive) limit compared to functions declared inline can
5375 be applied.
5376 The default value is 120.
5377
5378 @item large-function-insns
5379 The limit specifying really large functions.  For functions greater than this
5380 limit inlining is constrained by @option{--param large-function-growth}.
5381 This parameter is useful primarily to avoid extreme compilation time caused by non-linear
5382 algorithms used by the backend.
5383 This parameter is ignored when @option{-funit-at-a-time} is not used.
5384 The default value is 3000.
5385
5386 @item large-function-growth
5387 Specifies maximal growth of large function caused by inlining in percents.
5388 This parameter is ignored when @option{-funit-at-a-time} is not used.
5389 The default value is 200.
5390
5391 @item inline-unit-growth
5392 Specifies maximal overall growth of the compilation unit caused by inlining.
5393 This parameter is ignored when @option{-funit-at-a-time} is not used.
5394 The default value is 150.
5395
5396 @item max-inline-insns-recursive
5397 @itemx max-inline-insns-recursive-auto
5398 Specifies maximum number of instructions out-of-line copy of self recursive inline
5399 function can grow into by performing recursive inlining.
5400
5401 For functions declared inline @option{--param max-inline-insns-recursive} is
5402 taken into acount.  For function not declared inline, recursive inlining
5403 happens only when @option{-finline-functions} (included in @option{-O3}) is
5404 enabled and @option{--param max-inline-insns-recursive-auto} is used.  The
5405 default value is 500.
5406
5407 @item max-inline-recursive-depth
5408 @itemx max-inline-recursive-depth-auto
5409 Specifies maximum recursion depth used by the recursive inlining.
5410
5411 For functions declared inline @option{--param max-inline-recursive-depth} is
5412 taken into acount.  For function not declared inline, recursive inlining
5413 happens only when @option{-finline-functions} (included in @option{-O3}) is
5414 enabled and @option{--param max-inline-recursive-depth-auto} is used.  The
5415 default value is 500.
5416
5417 @item max-inline-insns-rtl
5418 For languages that use the RTL inliner (this happens at a later stage
5419 than tree inlining), you can set the maximum allowable size (counted
5420 in RTL instructions) for the RTL inliner with this parameter.
5421 The default value is 600.
5422
5423 @item max-unrolled-insns
5424 The maximum number of instructions that a loop should have if that loop
5425 is unrolled, and if the loop is unrolled, it determines how many times
5426 the loop code is unrolled.
5427
5428 @item max-average-unrolled-insns
5429 The maximum number of instructions biased by probabilities of their execution
5430 that a loop should have if that loop is unrolled, and if the loop is unrolled,
5431 it determines how many times the loop code is unrolled.
5432
5433 @item max-unroll-times
5434 The maximum number of unrollings of a single loop.
5435
5436 @item max-peeled-insns
5437 The maximum number of instructions that a loop should have if that loop
5438 is peeled, and if the loop is peeled, it determines how many times
5439 the loop code is peeled.
5440
5441 @item max-peel-times
5442 The maximum number of peelings of a single loop.
5443
5444 @item max-completely-peeled-insns
5445 The maximum number of insns of a completely peeled loop.
5446
5447 @item max-completely-peel-times
5448 The maximum number of iterations of a loop to be suitable for complete peeling.
5449
5450 @item max-unswitch-insns
5451 The maximum number of insns of an unswitched loop.
5452
5453 @item max-unswitch-level
5454 The maximum number of branches unswitched in a single loop.
5455
5456 @item lim-expensive
5457 The minimum cost of an expensive expression in the loop invariant motion.
5458
5459 @item iv-consider-all-candidates-bound
5460 Bound on number of candidates for induction variables below that
5461 all candidates are considered for each use in induction variable
5462 optimizations.  Only the most relevant candidates are considered
5463 if there are more candidates, to avoid quadratic time complexity.
5464
5465 @item iv-max-considered-uses
5466 The induction variable optimizations give up on loops that contain more
5467 induction variable uses.
5468
5469 @item max-iterations-to-track
5470
5471 The maximum number of iterations of a loop the brute force algorithm
5472 for analysis of # of iterations of the loop tries to evaluate.
5473
5474 @item hot-bb-count-fraction
5475 Select fraction of the maximal count of repetitions of basic block in program
5476 given basic block needs to have to be considered hot.
5477
5478 @item hot-bb-frequency-fraction
5479 Select fraction of the maximal frequency of executions of basic block in
5480 function given basic block needs to have to be considered hot
5481
5482 @item tracer-dynamic-coverage
5483 @itemx tracer-dynamic-coverage-feedback
5484
5485 This value is used to limit superblock formation once the given percentage of
5486 executed instructions is covered.  This limits unnecessary code size
5487 expansion.
5488
5489 The @option{tracer-dynamic-coverage-feedback} is used only when profile
5490 feedback is available.  The real profiles (as opposed to statically estimated
5491 ones) are much less balanced allowing the threshold to be larger value.
5492
5493 @item tracer-max-code-growth
5494 Stop tail duplication once code growth has reached given percentage.  This is
5495 rather hokey argument, as most of the duplicates will be eliminated later in
5496 cross jumping, so it may be set to much higher values than is the desired code
5497 growth.
5498
5499 @item tracer-min-branch-ratio
5500
5501 Stop reverse growth when the reverse probability of best edge is less than this
5502 threshold (in percent).
5503
5504 @item tracer-min-branch-ratio
5505 @itemx tracer-min-branch-ratio-feedback
5506
5507 Stop forward growth if the best edge do have probability lower than this
5508 threshold.
5509
5510 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
5511 compilation for profile feedback and one for compilation without.  The value
5512 for compilation with profile feedback needs to be more conservative (higher) in
5513 order to make tracer effective.
5514
5515 @item max-cse-path-length
5516
5517 Maximum number of basic blocks on path that cse considers.  The default is 10.
5518
5519 @item global-var-threshold
5520
5521 Counts the number of function calls (N) and the number of
5522 call-clobbered variables (V).  If NxV is larger than this limit, a
5523 single artificial variable will be created to represent all the
5524 call-clobbered variables at function call sites.  This artificial
5525 variable will then be made to alias every call-clobbered variable.
5526 (done as int * size_t on the host machine; beware overflow).
5527
5528 @item max-aliased-vops
5529
5530 Maximum number of virtual operands allowed to represent aliases
5531 before triggering the alias grouping heuristic.  Alias grouping
5532 reduces compile times and memory consumption needed for aliasing at
5533 the expense of precision loss in alias information.
5534
5535 @item ggc-min-expand
5536
5537 GCC uses a garbage collector to manage its own memory allocation.  This
5538 parameter specifies the minimum percentage by which the garbage
5539 collector's heap should be allowed to expand between collections.
5540 Tuning this may improve compilation speed; it has no effect on code
5541 generation.
5542
5543 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
5544 RAM >= 1GB.  If @code{getrlimit} is available, the notion of "RAM" is
5545 the smallest of actual RAM and RLIMIT_DATA or RLIMIT_AS.  If
5546 GCC is not able to calculate RAM on a particular platform, the lower
5547 bound of 30% is used.  Setting this parameter and
5548 @option{ggc-min-heapsize} to zero causes a full collection to occur at
5549 every opportunity.  This is extremely slow, but can be useful for
5550 debugging.
5551
5552 @item ggc-min-heapsize
5553
5554 Minimum size of the garbage collector's heap before it begins bothering
5555 to collect garbage.  The first collection occurs after the heap expands
5556 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
5557 tuning this may improve compilation speed, and has no effect on code
5558 generation.
5559
5560 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit which
5561 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
5562 with a lower bound of 4096 (four megabytes) and an upper bound of
5563 131072 (128 megabytes).  If GCC is not able to calculate RAM on a
5564 particular platform, the lower bound is used.  Setting this parameter
5565 very large effectively disables garbage collection.  Setting this
5566 parameter and @option{ggc-min-expand} to zero causes a full collection
5567 to occur at every opportunity.
5568
5569 @item max-reload-search-insns
5570 The maximum number of instruction reload should look backward for equivalent
5571 register.  Increasing values mean more aggressive optimization, making the
5572 compile time increase with probably slightly better performance.  The default
5573 value is 100.
5574
5575 @item max-cselib-memory-location
5576 The maximum number of memory locations cselib should take into acount.
5577 Increasing values mean more aggressive optimization, making the compile time
5578 increase with probably slightly better performance.  The default value is 500.
5579
5580 @item reorder-blocks-duplicate
5581 @itemx reorder-blocks-duplicate-feedback
5582
5583 Used by basic block reordering pass to decide whether to use unconditional
5584 branch or duplicate the code on its destination.  Code is duplicated when its
5585 estimated size is smaller than this value multiplied by the estimated size of
5586 unconditional jump in the hot spots of the program.
5587
5588 The @option{reorder-block-duplicate-feedback} is used only when profile
5589 feedback is available and may be set to higher values than
5590 @option{reorder-block-duplicate} since information about the hot spots is more
5591 accurate.
5592
5593 @item max-sched-region-blocks
5594 The maximum number of blocks in a region to be considered for
5595 interblock scheduling.  The default value is 10.
5596
5597 @item max-sched-region-insns
5598 The maximum number of insns in a region to be considered for
5599 interblock scheduling.  The default value is 100.
5600
5601 @item integer-share-limit
5602 Small integer constants can use a shared data structure, reducing the
5603 compiler's memory usage and increasing its speed.  This sets the maximum
5604 value of a shared integer constant's.  The default value is 256.
5605
5606 @end table
5607 @end table
5608
5609 @node Preprocessor Options
5610 @section Options Controlling the Preprocessor
5611 @cindex preprocessor options
5612 @cindex options, preprocessor
5613
5614 These options control the C preprocessor, which is run on each C source
5615 file before actual compilation.
5616
5617 If you use the @option{-E} option, nothing is done except preprocessing.
5618 Some of these options make sense only together with @option{-E} because
5619 they cause the preprocessor output to be unsuitable for actual
5620 compilation.
5621
5622 @table @gcctabopt
5623 @opindex Wp
5624 You can use @option{-Wp,@var{option}} to bypass the compiler driver
5625 and pass @var{option} directly through to the preprocessor.  If
5626 @var{option} contains commas, it is split into multiple options at the
5627 commas.  However, many options are modified, translated or interpreted
5628 by the compiler driver before being passed to the preprocessor, and
5629 @option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
5630 interface is undocumented and subject to change, so whenever possible
5631 you should avoid using @option{-Wp} and let the driver handle the
5632 options instead.
5633
5634 @item -Xpreprocessor @var{option}
5635 @opindex preprocessor
5636 Pass @var{option} as an option to the preprocessor.  You can use this to
5637 supply system-specific preprocessor options which GCC does not know how to
5638 recognize.
5639
5640 If you want to pass an option that takes an argument, you must use
5641 @option{-Xpreprocessor} twice, once for the option and once for the argument.
5642 @end table
5643
5644 @include cppopts.texi
5645
5646 @node Assembler Options
5647 @section Passing Options to the Assembler
5648
5649 @c prevent bad page break with this line
5650 You can pass options to the assembler.
5651
5652 @table @gcctabopt
5653 @item -Wa,@var{option}
5654 @opindex Wa
5655 Pass @var{option} as an option to the assembler.  If @var{option}
5656 contains commas, it is split into multiple options at the commas.
5657
5658 @item -Xassembler @var{option}
5659 @opindex Xassembler
5660 Pass @var{option} as an option to the assembler.  You can use this to
5661 supply system-specific assembler options which GCC does not know how to
5662 recognize.
5663
5664 If you want to pass an option that takes an argument, you must use
5665 @option{-Xassembler} twice, once for the option and once for the argument.
5666
5667 @end table
5668
5669 @node Link Options
5670 @section Options for Linking
5671 @cindex link options
5672 @cindex options, linking
5673
5674 These options come into play when the compiler links object files into
5675 an executable output file.  They are meaningless if the compiler is
5676 not doing a link step.
5677
5678 @table @gcctabopt
5679 @cindex file names
5680 @item @var{object-file-name}
5681 A file name that does not end in a special recognized suffix is
5682 considered to name an object file or library.  (Object files are
5683 distinguished from libraries by the linker according to the file
5684 contents.)  If linking is done, these object files are used as input
5685 to the linker.
5686
5687 @item -c
5688 @itemx -S
5689 @itemx -E
5690 @opindex c
5691 @opindex S
5692 @opindex E
5693 If any of these options is used, then the linker is not run, and
5694 object file names should not be used as arguments.  @xref{Overall
5695 Options}.
5696
5697 @cindex Libraries
5698 @item -l@var{library}
5699 @itemx -l @var{library}
5700 @opindex l
5701 Search the library named @var{library} when linking.  (The second
5702 alternative with the library as a separate argument is only for
5703 POSIX compliance and is not recommended.)
5704
5705 It makes a difference where in the command you write this option; the
5706 linker searches and processes libraries and object files in the order they
5707 are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
5708 after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
5709 to functions in @samp{z}, those functions may not be loaded.
5710
5711 The linker searches a standard list of directories for the library,
5712 which is actually a file named @file{lib@var{library}.a}.  The linker
5713 then uses this file as if it had been specified precisely by name.
5714
5715 The directories searched include several standard system directories
5716 plus any that you specify with @option{-L}.
5717
5718 Normally the files found this way are library files---archive files
5719 whose members are object files.  The linker handles an archive file by
5720 scanning through it for members which define symbols that have so far
5721 been referenced but not defined.  But if the file that is found is an
5722 ordinary object file, it is linked in the usual fashion.  The only
5723 difference between using an @option{-l} option and specifying a file name
5724 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
5725 and searches several directories.
5726
5727 @item -lobjc
5728 @opindex lobjc
5729 You need this special case of the @option{-l} option in order to
5730 link an Objective-C or Objective-C++ program.
5731
5732 @item -nostartfiles
5733 @opindex nostartfiles
5734 Do not use the standard system startup files when linking.
5735 The standard system libraries are used normally, unless @option{-nostdlib}
5736 or @option{-nodefaultlibs} is used.
5737
5738 @item -nodefaultlibs
5739 @opindex nodefaultlibs
5740 Do not use the standard system libraries when linking.
5741 Only the libraries you specify will be passed to the linker.
5742 The standard startup files are used normally, unless @option{-nostartfiles}
5743 is used.  The compiler may generate calls to @code{memcmp},
5744 @code{memset}, @code{memcpy} and @code{memmove}.
5745 These entries are usually resolved by entries in
5746 libc.  These entry points should be supplied through some other
5747 mechanism when this option is specified.
5748
5749 @item -nostdlib
5750 @opindex nostdlib
5751 Do not use the standard system startup files or libraries when linking.
5752 No startup files and only the libraries you specify will be passed to
5753 the linker.  The compiler may generate calls to @code{memcmp}, @code{memset},
5754 @code{memcpy} and @code{memmove}.
5755 These entries are usually resolved by entries in
5756 libc.  These entry points should be supplied through some other
5757 mechanism when this option is specified.
5758
5759 @cindex @option{-lgcc}, use with @option{-nostdlib}
5760 @cindex @option{-nostdlib} and unresolved references
5761 @cindex unresolved references and @option{-nostdlib}
5762 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
5763 @cindex @option{-nodefaultlibs} and unresolved references
5764 @cindex unresolved references and @option{-nodefaultlibs}
5765 One of the standard libraries bypassed by @option{-nostdlib} and
5766 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
5767 that GCC uses to overcome shortcomings of particular machines, or special
5768 needs for some languages.
5769 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
5770 Collection (GCC) Internals},
5771 for more discussion of @file{libgcc.a}.)
5772 In most cases, you need @file{libgcc.a} even when you want to avoid
5773 other standard libraries.  In other words, when you specify @option{-nostdlib}
5774 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
5775 This ensures that you have no unresolved references to internal GCC
5776 library subroutines.  (For example, @samp{__main}, used to ensure C++
5777 constructors will be called; @pxref{Collect2,,@code{collect2}, gccint,
5778 GNU Compiler Collection (GCC) Internals}.)
5779
5780 @item -pie
5781 @opindex pie
5782 Produce a position independent executable on targets which support it.
5783 For predictable results, you must also specify the same set of options
5784 that were used to generate code (@option{-fpie}, @option{-fPIE},
5785 or model suboptions) when you specify this option.
5786
5787 @item -s
5788 @opindex s
5789 Remove all symbol table and relocation information from the executable.
5790
5791 @item -static
5792 @opindex static
5793 On systems that support dynamic linking, this prevents linking with the shared
5794 libraries.  On other systems, this option has no effect.
5795
5796 @item -shared
5797 @opindex shared
5798 Produce a shared object which can then be linked with other objects to
5799 form an executable.  Not all systems support this option.  For predictable
5800 results, you must also specify the same set of options that were used to
5801 generate code (@option{-fpic}, @option{-fPIC}, or model suboptions)
5802 when you specify this option.@footnote{On some systems, @samp{gcc -shared}
5803 needs to build supplementary stub code for constructors to work.  On
5804 multi-libbed systems, @samp{gcc -shared} must select the correct support
5805 libraries to link against.  Failing to supply the correct flags may lead
5806 to subtle defects.  Supplying them in cases where they are not necessary
5807 is innocuous.}
5808
5809 @item -shared-libgcc
5810 @itemx -static-libgcc
5811 @opindex shared-libgcc
5812 @opindex static-libgcc
5813 On systems that provide @file{libgcc} as a shared library, these options
5814 force the use of either the shared or static version respectively.
5815 If no shared version of @file{libgcc} was built when the compiler was
5816 configured, these options have no effect.
5817
5818 There are several situations in which an application should use the
5819 shared @file{libgcc} instead of the static version.  The most common
5820 of these is when the application wishes to throw and catch exceptions
5821 across different shared libraries.  In that case, each of the libraries
5822 as well as the application itself should use the shared @file{libgcc}.
5823
5824 Therefore, the G++ and GCJ drivers automatically add
5825 @option{-shared-libgcc} whenever you build a shared library or a main
5826 executable, because C++ and Java programs typically use exceptions, so
5827 this is the right thing to do.
5828
5829 If, instead, you use the GCC driver to create shared libraries, you may
5830 find that they will not always be linked with the shared @file{libgcc}.
5831 If GCC finds, at its configuration time, that you have a non-GNU linker
5832 or a GNU linker that does not support option @option{--eh-frame-hdr},
5833 it will link the shared version of @file{libgcc} into shared libraries
5834 by default.  Otherwise, it will take advantage of the linker and optimize
5835 away the linking with the shared version of @file{libgcc}, linking with
5836 the static version of libgcc by default.  This allows exceptions to
5837 propagate through such shared libraries, without incurring relocation
5838 costs at library load time.
5839
5840 However, if a library or main executable is supposed to throw or catch
5841 exceptions, you must link it using the G++ or GCJ driver, as appropriate
5842 for the languages used in the program, or using the option
5843 @option{-shared-libgcc}, such that it is linked with the shared
5844 @file{libgcc}.
5845
5846 @item -symbolic
5847 @opindex symbolic
5848 Bind references to global symbols when building a shared object.  Warn
5849 about any unresolved references (unless overridden by the link editor
5850 option @samp{-Xlinker -z -Xlinker defs}).  Only a few systems support
5851 this option.
5852
5853 @item -Xlinker @var{option}
5854 @opindex Xlinker
5855 Pass @var{option} as an option to the linker.  You can use this to
5856 supply system-specific linker options which GCC does not know how to
5857 recognize.
5858
5859 If you want to pass an option that takes an argument, you must use
5860 @option{-Xlinker} twice, once for the option and once for the argument.
5861 For example, to pass @option{-assert definitions}, you must write
5862 @samp{-Xlinker -assert -Xlinker definitions}.  It does not work to write
5863 @option{-Xlinker "-assert definitions"}, because this passes the entire
5864 string as a single argument, which is not what the linker expects.
5865
5866 @item -Wl,@var{option}
5867 @opindex Wl
5868 Pass @var{option} as an option to the linker.  If @var{option} contains
5869 commas, it is split into multiple options at the commas.
5870
5871 @item -u @var{symbol}
5872 @opindex u
5873 Pretend the symbol @var{symbol} is undefined, to force linking of
5874 library modules to define it.  You can use @option{-u} multiple times with
5875 different symbols to force loading of additional library modules.
5876 @end table
5877
5878 @node Directory Options
5879 @section Options for Directory Search
5880 @cindex directory options
5881 @cindex options, directory search
5882 @cindex search path
5883
5884 These options specify directories to search for header files, for
5885 libraries and for parts of the compiler:
5886
5887 @table @gcctabopt
5888 @item -I@var{dir}
5889 @opindex I
5890 Add the directory @var{dir} to the head of the list of directories to be
5891 searched for header files.  This can be used to override a system header
5892 file, substituting your own version, since these directories are
5893 searched before the system header file directories.  However, you should
5894 not use this option to add directories that contain vendor-supplied
5895 system header files (use @option{-isystem} for that).  If you use more than
5896 one @option{-I} option, the directories are scanned in left-to-right
5897 order; the standard system directories come after.
5898
5899 If a standard system include directory, or a directory specified with
5900 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
5901 option will be ignored.  The directory will still be searched but as a
5902 system directory at its normal position in the system include chain.
5903 This is to ensure that GCC's procedure to fix buggy system headers and
5904 the ordering for the include_next directive are not inadvertently changed.
5905 If you really need to change the search order for system directories,
5906 use the @option{-nostdinc} and/or @option{-isystem} options.
5907
5908 @item -iquote@var{dir}
5909 @opindex iquote
5910 Add the directory @var{dir} to the head of the list of directories to
5911 be searched for header files only for the case of @samp{#include
5912 "@var{file}"}; they are not searched for @samp{#include <@var{file}>},
5913 otherwise just like @option{-I}.
5914
5915 @item -L@var{dir}
5916 @opindex L
5917 Add directory @var{dir} to the list of directories to be searched
5918 for @option{-l}.
5919
5920 @item -B@var{prefix}
5921 @opindex B
5922 This option specifies where to find the executables, libraries,
5923 include files, and data files of the compiler itself.
5924
5925 The compiler driver program runs one or more of the subprograms
5926 @file{cpp}, @file{cc1}, @file{as} and @file{ld}.  It tries
5927 @var{prefix} as a prefix for each program it tries to run, both with and
5928 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
5929
5930 For each subprogram to be run, the compiler driver first tries the
5931 @option{-B} prefix, if any.  If that name is not found, or if @option{-B}
5932 was not specified, the driver tries two standard prefixes, which are
5933 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
5934 those results in a file name that is found, the unmodified program
5935 name is searched for using the directories specified in your
5936 @env{PATH} environment variable.
5937
5938 The compiler will check to see if the path provided by the @option{-B}
5939 refers to a directory, and if necessary it will add a directory
5940 separator character at the end of the path.
5941
5942 @option{-B} prefixes that effectively specify directory names also apply
5943 to libraries in the linker, because the compiler translates these
5944 options into @option{-L} options for the linker.  They also apply to
5945 includes files in the preprocessor, because the compiler translates these
5946 options into @option{-isystem} options for the preprocessor.  In this case,
5947 the compiler appends @samp{include} to the prefix.
5948
5949 The run-time support file @file{libgcc.a} can also be searched for using
5950 the @option{-B} prefix, if needed.  If it is not found there, the two
5951 standard prefixes above are tried, and that is all.  The file is left
5952 out of the link if it is not found by those means.
5953
5954 Another way to specify a prefix much like the @option{-B} prefix is to use
5955 the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
5956 Variables}.
5957
5958 As a special kludge, if the path provided by @option{-B} is
5959 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
5960 9, then it will be replaced by @file{[dir/]include}.  This is to help
5961 with boot-strapping the compiler.
5962
5963 @item -specs=@var{file}
5964 @opindex specs
5965 Process @var{file} after the compiler reads in the standard @file{specs}
5966 file, in order to override the defaults that the @file{gcc} driver
5967 program uses when determining what switches to pass to @file{cc1},
5968 @file{cc1plus}, @file{as}, @file{ld}, etc.  More than one
5969 @option{-specs=@var{file}} can be specified on the command line, and they
5970 are processed in order, from left to right.
5971
5972 @item -I-
5973 @opindex I-
5974 This option has been deprecated.  Please use @option{-iquote} instead for
5975 @option{-I} directories before the @option{-I-} and remove the @option{-I-}.
5976 Any directories you specify with @option{-I} options before the @option{-I-}
5977 option are searched only for the case of @samp{#include "@var{file}"};
5978 they are not searched for @samp{#include <@var{file}>}.
5979
5980 If additional directories are specified with @option{-I} options after
5981 the @option{-I-}, these directories are searched for all @samp{#include}
5982 directives.  (Ordinarily @emph{all} @option{-I} directories are used
5983 this way.)
5984
5985 In addition, the @option{-I-} option inhibits the use of the current
5986 directory (where the current input file came from) as the first search
5987 directory for @samp{#include "@var{file}"}.  There is no way to
5988 override this effect of @option{-I-}.  With @option{-I.} you can specify
5989 searching the directory which was current when the compiler was
5990 invoked.  That is not exactly the same as what the preprocessor does
5991 by default, but it is often satisfactory.
5992
5993 @option{-I-} does not inhibit the use of the standard system directories
5994 for header files.  Thus, @option{-I-} and @option{-nostdinc} are
5995 independent.
5996 @end table
5997
5998 @c man end
5999
6000 @node Spec Files
6001 @section Specifying subprocesses and the switches to pass to them
6002 @cindex Spec Files
6003
6004 @command{gcc} is a driver program.  It performs its job by invoking a
6005 sequence of other programs to do the work of compiling, assembling and
6006 linking.  GCC interprets its command-line parameters and uses these to
6007 deduce which programs it should invoke, and which command-line options
6008 it ought to place on their command lines.  This behavior is controlled
6009 by @dfn{spec strings}.  In most cases there is one spec string for each
6010 program that GCC can invoke, but a few programs have multiple spec
6011 strings to control their behavior.  The spec strings built into GCC can
6012 be overridden by using the @option{-specs=} command-line switch to specify
6013 a spec file.
6014
6015 @dfn{Spec files} are plaintext files that are used to construct spec
6016 strings.  They consist of a sequence of directives separated by blank
6017 lines.  The type of directive is determined by the first non-whitespace
6018 character on the line and it can be one of the following:
6019
6020 @table @code
6021 @item %@var{command}
6022 Issues a @var{command} to the spec file processor.  The commands that can
6023 appear here are:
6024
6025 @table @code
6026 @item %include <@var{file}>
6027 @cindex %include
6028 Search for @var{file} and insert its text at the current point in the
6029 specs file.
6030
6031 @item %include_noerr <@var{file}>
6032 @cindex %include_noerr
6033 Just like @samp{%include}, but do not generate an error message if the include
6034 file cannot be found.
6035
6036 @item %rename @var{old_name} @var{new_name}
6037 @cindex %rename
6038 Rename the spec string @var{old_name} to @var{new_name}.
6039
6040 @end table
6041
6042 @item *[@var{spec_name}]:
6043 This tells the compiler to create, override or delete the named spec
6044 string.  All lines after this directive up to the next directive or
6045 blank line are considered to be the text for the spec string.  If this
6046 results in an empty string then the spec will be deleted.  (Or, if the
6047 spec did not exist, then nothing will happened.)  Otherwise, if the spec
6048 does not currently exist a new spec will be created.  If the spec does
6049 exist then its contents will be overridden by the text of this
6050 directive, unless the first character of that text is the @samp{+}
6051 character, in which case the text will be appended to the spec.
6052
6053 @item [@var{suffix}]:
6054 Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
6055 and up to the next directive or blank line are considered to make up the
6056 spec string for the indicated suffix.  When the compiler encounters an
6057 input file with the named suffix, it will processes the spec string in
6058 order to work out how to compile that file.  For example:
6059
6060 @smallexample
6061 .ZZ:
6062 z-compile -input %i
6063 @end smallexample
6064
6065 This says that any input file whose name ends in @samp{.ZZ} should be
6066 passed to the program @samp{z-compile}, which should be invoked with the
6067 command-line switch @option{-input} and with the result of performing the
6068 @samp{%i} substitution.  (See below.)
6069
6070 As an alternative to providing a spec string, the text that follows a
6071 suffix directive can be one of the following:
6072
6073 @table @code
6074 @item @@@var{language}
6075 This says that the suffix is an alias for a known @var{language}.  This is
6076 similar to using the @option{-x} command-line switch to GCC to specify a
6077 language explicitly.  For example:
6078
6079 @smallexample
6080 .ZZ:
6081 @@c++
6082 @end smallexample
6083
6084 Says that .ZZ files are, in fact, C++ source files.
6085
6086 @item #@var{name}
6087 This causes an error messages saying:
6088
6089 @smallexample
6090 @var{name} compiler not installed on this system.
6091 @end smallexample
6092 @end table
6093
6094 GCC already has an extensive list of suffixes built into it.
6095 This directive will add an entry to the end of the list of suffixes, but
6096 since the list is searched from the end backwards, it is effectively
6097 possible to override earlier entries using this technique.
6098
6099 @end table
6100
6101 GCC has the following spec strings built into it.  Spec files can
6102 override these strings or create their own.  Note that individual
6103 targets can also add their own spec strings to this list.
6104
6105 @smallexample
6106 asm          Options to pass to the assembler
6107 asm_final    Options to pass to the assembler post-processor
6108 cpp          Options to pass to the C preprocessor
6109 cc1          Options to pass to the C compiler
6110 cc1plus      Options to pass to the C++ compiler
6111 endfile      Object files to include at the end of the link
6112 link         Options to pass to the linker
6113 lib          Libraries to include on the command line to the linker
6114 libgcc       Decides which GCC support library to pass to the linker
6115 linker       Sets the name of the linker
6116 predefines   Defines to be passed to the C preprocessor
6117 signed_char  Defines to pass to CPP to say whether @code{char} is signed
6118              by default
6119 startfile    Object files to include at the start of the link
6120 @end smallexample
6121
6122 Here is a small example of a spec file:
6123
6124 @smallexample
6125 %rename lib                 old_lib
6126
6127 *lib:
6128 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
6129 @end smallexample
6130
6131 This example renames the spec called @samp{lib} to @samp{old_lib} and
6132 then overrides the previous definition of @samp{lib} with a new one.
6133 The new definition adds in some extra command-line options before
6134 including the text of the old definition.
6135
6136 @dfn{Spec strings} are a list of command-line options to be passed to their
6137 corresponding program.  In addition, the spec strings can contain
6138 @samp{%}-prefixed sequences to substitute variable text or to
6139 conditionally insert text into the command line.  Using these constructs
6140 it is possible to generate quite complex command lines.
6141
6142 Here is a table of all defined @samp{%}-sequences for spec
6143 strings.  Note that spaces are not generated automatically around the
6144 results of expanding these sequences.  Therefore you can concatenate them
6145 together or combine them with constant text in a single argument.
6146
6147 @table @code
6148 @item %%
6149 Substitute one @samp{%} into the program name or argument.
6150
6151 @item %i
6152 Substitute the name of the input file being processed.
6153
6154 @item %b
6155 Substitute the basename of the input file being processed.
6156 This is the substring up to (and not including) the last period
6157 and not including the directory.
6158
6159 @item %B
6160 This is the same as @samp{%b}, but include the file suffix (text after
6161 the last period).
6162
6163 @item %d
6164 Marks the argument containing or following the @samp{%d} as a
6165 temporary file name, so that that file will be deleted if GCC exits
6166 successfully.  Unlike @samp{%g}, this contributes no text to the
6167 argument.
6168
6169 @item %g@var{suffix}
6170 Substitute a file name that has suffix @var{suffix} and is chosen
6171 once per compilation, and mark the argument in the same way as
6172 @samp{%d}.  To reduce exposure to denial-of-service attacks, the file
6173 name is now chosen in a way that is hard to predict even when previously
6174 chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
6175 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
6176 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
6177 treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
6178 was simply substituted with a file name chosen once per compilation,
6179 without regard to any appended suffix (which was therefore treated
6180 just like ordinary text), making such attacks more likely to succeed.
6181
6182 @item %u@var{suffix}
6183 Like @samp{%g}, but generates a new temporary file name even if
6184 @samp{%u@var{suffix}} was already seen.
6185
6186 @item %U@var{suffix}
6187 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
6188 new one if there is no such last file name.  In the absence of any
6189 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
6190 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
6191 would involve the generation of two distinct file names, one
6192 for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
6193 simply substituted with a file name chosen for the previous @samp{%u},
6194 without regard to any appended suffix.
6195
6196 @item %j@var{suffix}
6197 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
6198 writable, and if save-temps is off; otherwise, substitute the name
6199 of a temporary file, just like @samp{%u}.  This temporary file is not
6200 meant for communication between processes, but rather as a junk
6201 disposal mechanism.
6202
6203 @item %|@var{suffix}
6204 @itemx %m@var{suffix}
6205 Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
6206 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
6207 all.  These are the two most common ways to instruct a program that it
6208 should read from standard input or write to standard output.  If you
6209 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
6210 construct: see for example @file{f/lang-specs.h}.
6211
6212 @item %.@var{SUFFIX}
6213 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
6214 when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
6215 terminated by the next space or %.
6216
6217 @item %w
6218 Marks the argument containing or following the @samp{%w} as the
6219 designated output file of this compilation.  This puts the argument
6220 into the sequence of arguments that @samp{%o} will substitute later.
6221
6222 @item %o
6223 Substitutes the names of all the output files, with spaces
6224 automatically placed around them.  You should write spaces
6225 around the @samp{%o} as well or the results are undefined.
6226 @samp{%o} is for use in the specs for running the linker.
6227 Input files whose names have no recognized suffix are not compiled
6228 at all, but they are included among the output files, so they will
6229 be linked.
6230
6231 @item %O
6232 Substitutes the suffix for object files.  Note that this is
6233 handled specially when it immediately follows @samp{%g, %u, or %U},
6234 because of the need for those to form complete file names.  The
6235 handling is such that @samp{%O} is treated exactly as if it had already
6236 been substituted, except that @samp{%g, %u, and %U} do not currently
6237 support additional @var{suffix} characters following @samp{%O} as they would
6238 following, for example, @samp{.o}.
6239
6240 @item %p
6241 Substitutes the standard macro predefinitions for the
6242 current target machine.  Use this when running @code{cpp}.
6243
6244 @item %P
6245 Like @samp{%p}, but puts @samp{__} before and after the name of each
6246 predefined macro, except for macros that start with @samp{__} or with
6247 @samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
6248 C@.
6249
6250 @item %I
6251 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
6252 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}), and
6253 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
6254 as necessary.
6255
6256 @item %s
6257 Current argument is the name of a library or startup file of some sort.
6258 Search for that file in a standard list of directories and substitute
6259 the full name found.
6260
6261 @item %e@var{str}
6262 Print @var{str} as an error message.  @var{str} is terminated by a newline.
6263 Use this when inconsistent options are detected.
6264
6265 @item %(@var{name})
6266 Substitute the contents of spec string @var{name} at this point.
6267
6268 @item %[@var{name}]
6269 Like @samp{%(@dots{})} but put @samp{__} around @option{-D} arguments.
6270
6271 @item %x@{@var{option}@}
6272 Accumulate an option for @samp{%X}.
6273
6274 @item %X
6275 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
6276 spec string.
6277
6278 @item %Y
6279 Output the accumulated assembler options specified by @option{-Wa}.
6280
6281 @item %Z
6282 Output the accumulated preprocessor options specified by @option{-Wp}.
6283
6284 @item %a
6285 Process the @code{asm} spec.  This is used to compute the
6286 switches to be passed to the assembler.
6287
6288 @item %A
6289 Process the @code{asm_final} spec.  This is a spec string for
6290 passing switches to an assembler post-processor, if such a program is
6291 needed.
6292
6293 @item %l
6294 Process the @code{link} spec.  This is the spec for computing the
6295 command line passed to the linker.  Typically it will make use of the
6296 @samp{%L %G %S %D and %E} sequences.
6297
6298 @item %D
6299 Dump out a @option{-L} option for each directory that GCC believes might
6300 contain startup files.  If the target supports multilibs then the
6301 current multilib directory will be prepended to each of these paths.
6302
6303 @item %M
6304 Output the multilib directory with directory separators replaced with
6305 @samp{_}.  If multilib directories are not set, or the multilib directory is
6306 @file{.} then this option emits nothing.
6307
6308 @item %L
6309 Process the @code{lib} spec.  This is a spec string for deciding which
6310 libraries should be included on the command line to the linker.
6311
6312 @item %G
6313 Process the @code{libgcc} spec.  This is a spec string for deciding
6314 which GCC support library should be included on the command line to the linker.
6315
6316 @item %S
6317 Process the @code{startfile} spec.  This is a spec for deciding which
6318 object files should be the first ones passed to the linker.  Typically
6319 this might be a file named @file{crt0.o}.
6320
6321 @item %E
6322 Process the @code{endfile} spec.  This is a spec string that specifies
6323 the last object files that will be passed to the linker.
6324
6325 @item %C
6326 Process the @code{cpp} spec.  This is used to construct the arguments
6327 to be passed to the C preprocessor.
6328
6329 @item %1
6330 Process the @code{cc1} spec.  This is used to construct the options to be
6331 passed to the actual C compiler (@samp{cc1}).
6332
6333 @item %2
6334 Process the @code{cc1plus} spec.  This is used to construct the options to be
6335 passed to the actual C++ compiler (@samp{cc1plus}).
6336
6337 @item %*
6338 Substitute the variable part of a matched option.  See below.
6339 Note that each comma in the substituted string is replaced by
6340 a single space.
6341
6342 @item %<@code{S}
6343 Remove all occurrences of @code{-S} from the command line.  Note---this
6344 command is position dependent.  @samp{%} commands in the spec string
6345 before this one will see @code{-S}, @samp{%} commands in the spec string
6346 after this one will not.
6347
6348 @item %:@var{function}(@var{args})
6349 Call the named function @var{function}, passing it @var{args}.
6350 @var{args} is first processed as a nested spec string, then split
6351 into an argument vector in the usual fashion.  The function returns
6352 a string which is processed as if it had appeared literally as part
6353 of the current spec.
6354
6355 The following built-in spec functions are provided:
6356
6357 @table @code
6358 @item @code{if-exists}
6359 The @code{if-exists} spec function takes one argument, an absolute
6360 pathname to a file.  If the file exists, @code{if-exists} returns the
6361 pathname.  Here is a small example of its usage:
6362
6363 @smallexample
6364 *startfile:
6365 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
6366 @end smallexample
6367
6368 @item @code{if-exists-else}
6369 The @code{if-exists-else} spec function is similar to the @code{if-exists}
6370 spec function, except that it takes two arguments.  The first argument is
6371 an absolute pathname to a file.  If the file exists, @code{if-exists-else}
6372 returns the pathname.  If it does not exist, it returns the second argument.
6373 This way, @code{if-exists-else} can be used to select one file or another,
6374 based on the existence of the first.  Here is a small example of its usage:
6375
6376 @smallexample
6377 *startfile:
6378 crt0%O%s %:if-exists(crti%O%s) \
6379 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
6380 @end smallexample
6381 @end table
6382
6383 @item %@{@code{S}@}
6384 Substitutes the @code{-S} switch, if that switch was given to GCC@.
6385 If that switch was not specified, this substitutes nothing.  Note that
6386 the leading dash is omitted when specifying this option, and it is
6387 automatically inserted if the substitution is performed.  Thus the spec
6388 string @samp{%@{foo@}} would match the command-line option @option{-foo}
6389 and would output the command line option @option{-foo}.
6390
6391 @item %W@{@code{S}@}
6392 Like %@{@code{S}@} but mark last argument supplied within as a file to be
6393 deleted on failure.
6394
6395 @item %@{@code{S}*@}
6396 Substitutes all the switches specified to GCC whose names start
6397 with @code{-S}, but which also take an argument.  This is used for
6398 switches like @option{-o}, @option{-D}, @option{-I}, etc.
6399 GCC considers @option{-o foo} as being
6400 one switch whose names starts with @samp{o}.  %@{o*@} would substitute this
6401 text, including the space.  Thus two arguments would be generated.
6402
6403 @item %@{@code{S}*&@code{T}*@}
6404 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
6405 (the order of @code{S} and @code{T} in the spec is not significant).
6406 There can be any number of ampersand-separated variables; for each the
6407 wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
6408
6409 @item %@{@code{S}:@code{X}@}
6410 Substitutes @code{X}, if the @samp{-S} switch was given to GCC@.
6411
6412 @item %@{!@code{S}:@code{X}@}
6413 Substitutes @code{X}, if the @samp{-S} switch was @emph{not} given to GCC@.
6414
6415 @item %@{@code{S}*:@code{X}@}
6416 Substitutes @code{X} if one or more switches whose names start with
6417 @code{-S} are specified to GCC@.  Normally @code{X} is substituted only
6418 once, no matter how many such switches appeared.  However, if @code{%*}
6419 appears somewhere in @code{X}, then @code{X} will be substituted once
6420 for each matching switch, with the @code{%*} replaced by the part of
6421 that switch that matched the @code{*}.
6422
6423 @item %@{.@code{S}:@code{X}@}
6424 Substitutes @code{X}, if processing a file with suffix @code{S}.
6425
6426 @item %@{!.@code{S}:@code{X}@}
6427 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
6428
6429 @item %@{@code{S}|@code{P}:@code{X}@}
6430 Substitutes @code{X} if either @code{-S} or @code{-P} was given to GCC@.
6431 This may be combined with @samp{!}, @samp{.}, and @code{*} sequences as well,
6432 although they have a stronger binding than the @samp{|}.  If @code{%*}
6433 appears in @code{X}, all of the alternatives must be starred, and only
6434 the first matching alternative is substituted.
6435
6436 For example, a spec string like this:
6437
6438 @smallexample
6439 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
6440 @end smallexample
6441
6442 will output the following command-line options from the following input
6443 command-line options:
6444
6445 @smallexample
6446 fred.c        -foo -baz
6447 jim.d         -bar -boggle
6448 -d fred.c     -foo -baz -boggle
6449 -d jim.d      -bar -baz -boggle
6450 @end smallexample
6451
6452 @item %@{S:X; T:Y; :D@}
6453
6454 If @code{S} was given to GCC, substitutes @code{X}; else if @code{T} was
6455 given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
6456 be as many clauses as you need.  This may be combined with @code{.},
6457 @code{!}, @code{|}, and @code{*} as needed.
6458
6459
6460 @end table
6461
6462 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
6463 construct may contain other nested @samp{%} constructs or spaces, or
6464 even newlines.  They are processed as usual, as described above.
6465 Trailing white space in @code{X} is ignored.  White space may also
6466 appear anywhere on the left side of the colon in these constructs,
6467 except between @code{.} or @code{*} and the corresponding word.
6468
6469 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
6470 handled specifically in these constructs.  If another value of
6471 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
6472 @option{-W} switch is found later in the command line, the earlier
6473 switch value is ignored, except with @{@code{S}*@} where @code{S} is
6474 just one letter, which passes all matching options.
6475
6476 The character @samp{|} at the beginning of the predicate text is used to
6477 indicate that a command should be piped to the following command, but
6478 only if @option{-pipe} is specified.
6479
6480 It is built into GCC which switches take arguments and which do not.
6481 (You might think it would be useful to generalize this to allow each
6482 compiler's spec to say which switches take arguments.  But this cannot
6483 be done in a consistent fashion.  GCC cannot even decide which input
6484 files have been specified without knowing which switches take arguments,
6485 and it must know which input files to compile in order to tell which
6486 compilers to run).
6487
6488 GCC also knows implicitly that arguments starting in @option{-l} are to be
6489 treated as compiler output files, and passed to the linker in their
6490 proper position among the other output files.
6491
6492 @c man begin OPTIONS
6493
6494 @node Target Options
6495 @section Specifying Target Machine and Compiler Version
6496 @cindex target options
6497 @cindex cross compiling
6498 @cindex specifying machine version
6499 @cindex specifying compiler version and target machine
6500 @cindex compiler version, specifying
6501 @cindex target machine, specifying
6502
6503 The usual way to run GCC is to run the executable called @file{gcc}, or
6504 @file{<machine>-gcc} when cross-compiling, or
6505 @file{<machine>-gcc-<version>} to run a version other than the one that
6506 was installed last.  Sometimes this is inconvenient, so GCC provides
6507 options that will switch to another cross-compiler or version.
6508
6509 @table @gcctabopt
6510 @item -b @var{machine}
6511 @opindex b
6512 The argument @var{machine} specifies the target machine for compilation.
6513
6514 The value to use for @var{machine} is the same as was specified as the
6515 machine type when configuring GCC as a cross-compiler.  For
6516 example, if a cross-compiler was configured with @samp{configure
6517 i386v}, meaning to compile for an 80386 running System V, then you
6518 would specify @option{-b i386v} to run that cross compiler.
6519
6520 @item -V @var{version}
6521 @opindex V
6522 The argument @var{version} specifies which version of GCC to run.
6523 This is useful when multiple versions are installed.  For example,
6524 @var{version} might be @samp{2.0}, meaning to run GCC version 2.0.
6525 @end table
6526
6527 The @option{-V} and @option{-b} options work by running the
6528 @file{<machine>-gcc-<version>} executable, so there's no real reason to
6529 use them if you can just run that directly.
6530
6531 @node Submodel Options
6532 @section Hardware Models and Configurations
6533 @cindex submodel options
6534 @cindex specifying hardware config
6535 @cindex hardware models and configurations, specifying
6536 @cindex machine dependent options
6537
6538 Earlier we discussed the standard option @option{-b} which chooses among
6539 different installed compilers for completely different target
6540 machines, such as VAX vs.@: 68000 vs.@: 80386.
6541
6542 In addition, each of these target machine types can have its own
6543 special options, starting with @samp{-m}, to choose among various
6544 hardware models or configurations---for example, 68010 vs 68020,
6545 floating coprocessor or none.  A single installed version of the
6546 compiler can compile for any model or configuration, according to the
6547 options specified.
6548
6549 Some configurations of the compiler also support additional special
6550 options, usually for compatibility with other compilers on the same
6551 platform.
6552
6553 These options are defined by the macro @code{TARGET_SWITCHES} in the
6554 machine description.  The default for the options is also defined by
6555 that macro, which enables you to change the defaults.
6556
6557 @c This list is ordered alphanumerically by subsection name.
6558 @c It should be the same order and spelling as these options are listed
6559 @c in Machine Dependent Options
6560
6561 @menu
6562 * ARC Options::
6563 * ARM Options::
6564 * AVR Options::
6565 * CRIS Options::
6566 * Darwin Options::
6567 * DEC Alpha Options::
6568 * DEC Alpha/VMS Options::
6569 * FRV Options::
6570 * H8/300 Options::
6571 * HPPA Options::
6572 * i386 and x86-64 Options::
6573 * IA-64 Options::
6574 * M32R/D Options::
6575 * M680x0 Options::
6576 * M68hc1x Options::
6577 * MCore Options::
6578 * MIPS Options::
6579 * MMIX Options::
6580 * MN10300 Options::
6581 * NS32K Options::
6582 * PDP-11 Options::
6583 * PowerPC Options::
6584 * RS/6000 and PowerPC Options::
6585 * S/390 and zSeries Options::
6586 * SH Options::
6587 * SPARC Options::
6588 * System V Options::
6589 * TMS320C3x/C4x Options::
6590 * V850 Options::
6591 * VAX Options::
6592 * x86-64 Options::
6593 * Xstormy16 Options::
6594 * Xtensa Options::
6595 * zSeries Options::
6596 @end menu
6597
6598 @node ARC Options
6599 @subsection ARC Options
6600 @cindex ARC Options
6601
6602 These options are defined for ARC implementations:
6603
6604 @table @gcctabopt
6605 @item -EL
6606 @opindex EL
6607 Compile code for little endian mode.  This is the default.
6608
6609 @item -EB
6610 @opindex EB
6611 Compile code for big endian mode.
6612
6613 @item -mmangle-cpu
6614 @opindex mmangle-cpu
6615 Prepend the name of the cpu to all public symbol names.
6616 In multiple-processor systems, there are many ARC variants with different
6617 instruction and register set characteristics.  This flag prevents code
6618 compiled for one cpu to be linked with code compiled for another.
6619 No facility exists for handling variants that are ``almost identical''.
6620 This is an all or nothing option.
6621
6622 @item -mcpu=@var{cpu}
6623 @opindex mcpu
6624 Compile code for ARC variant @var{cpu}.
6625 Which variants are supported depend on the configuration.
6626 All variants support @option{-mcpu=base}, this is the default.
6627
6628 @item -mtext=@var{text-section}
6629 @itemx -mdata=@var{data-section}
6630 @itemx -mrodata=@var{readonly-data-section}
6631 @opindex mtext
6632 @opindex mdata
6633 @opindex mrodata
6634 Put functions, data, and readonly data in @var{text-section},
6635 @var{data-section}, and @var{readonly-data-section} respectively
6636 by default.  This can be overridden with the @code{section} attribute.
6637 @xref{Variable Attributes}.
6638
6639 @end table
6640
6641 @node ARM Options
6642 @subsection ARM Options
6643 @cindex ARM options
6644
6645 These @samp{-m} options are defined for Advanced RISC Machines (ARM)
6646 architectures:
6647
6648 @table @gcctabopt
6649 @item -mabi=@var{name}
6650 @opindex mabi
6651 Generate code for the specified ABI.  Permissible values are: @samp{apcs-gnu},
6652 @samp{atpcs}, @samp{aapcs} and @samp{iwmmxt}.
6653
6654 @item -mapcs-frame
6655 @opindex mapcs-frame
6656 Generate a stack frame that is compliant with the ARM Procedure Call
6657 Standard for all functions, even if this is not strictly necessary for
6658 correct execution of the code.  Specifying @option{-fomit-frame-pointer}
6659 with this option will cause the stack frames not to be generated for
6660 leaf functions.  The default is @option{-mno-apcs-frame}.
6661
6662 @item -mapcs
6663 @opindex mapcs
6664 This is a synonym for @option{-mapcs-frame}.
6665
6666 @ignore
6667 @c not currently implemented
6668 @item -mapcs-stack-check
6669 @opindex mapcs-stack-check
6670 Generate code to check the amount of stack space available upon entry to
6671 every function (that actually uses some stack space).  If there is
6672 insufficient space available then either the function
6673 @samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} will be
6674 called, depending upon the amount of stack space required.  The run time
6675 system is required to provide these functions.  The default is
6676 @option{-mno-apcs-stack-check}, since this produces smaller code.
6677
6678 @c not currently implemented
6679 @item -mapcs-float
6680 @opindex mapcs-float
6681 Pass floating point arguments using the float point registers.  This is
6682 one of the variants of the APCS@.  This option is recommended if the
6683 target hardware has a floating point unit or if a lot of floating point
6684 arithmetic is going to be performed by the code.  The default is
6685 @option{-mno-apcs-float}, since integer only code is slightly increased in
6686 size if @option{-mapcs-float} is used.
6687
6688 @c not currently implemented
6689 @item -mapcs-reentrant
6690 @opindex mapcs-reentrant
6691 Generate reentrant, position independent code.  The default is
6692 @option{-mno-apcs-reentrant}.
6693 @end ignore
6694
6695 @item -mthumb-interwork
6696 @opindex mthumb-interwork
6697 Generate code which supports calling between the ARM and Thumb
6698 instruction sets.  Without this option the two instruction sets cannot
6699 be reliably used inside one program.  The default is
6700 @option{-mno-thumb-interwork}, since slightly larger code is generated
6701 when @option{-mthumb-interwork} is specified.
6702
6703 @item -mno-sched-prolog
6704 @opindex mno-sched-prolog
6705 Prevent the reordering of instructions in the function prolog, or the
6706 merging of those instruction with the instructions in the function's
6707 body.  This means that all functions will start with a recognizable set
6708 of instructions (or in fact one of a choice from a small set of
6709 different function prologues), and this information can be used to
6710 locate the start if functions inside an executable piece of code.  The
6711 default is @option{-msched-prolog}.
6712
6713 @item -mhard-float
6714 @opindex mhard-float
6715 Generate output containing floating point instructions.  This is the
6716 default.
6717
6718 @item -msoft-float
6719 @opindex msoft-float
6720 Generate output containing library calls for floating point.
6721 @strong{Warning:} the requisite libraries are not available for all ARM
6722 targets.  Normally the facilities of the machine's usual C compiler are
6723 used, but this cannot be done directly in cross-compilation.  You must make
6724 your own arrangements to provide suitable library functions for
6725 cross-compilation.
6726
6727 @option{-msoft-float} changes the calling convention in the output file;
6728 therefore, it is only useful if you compile @emph{all} of a program with
6729 this option.  In particular, you need to compile @file{libgcc.a}, the
6730 library that comes with GCC, with @option{-msoft-float} in order for
6731 this to work.
6732
6733 @item -mfloat-abi=@var{name}
6734 @opindex mfloat-abi
6735 Specifies which ABI to use for floating point values.  Permissible values
6736 are: @samp{soft}, @samp{softfp} and @samp{hard}.
6737
6738 @samp{soft} and @samp{hard} are equivalent to @option{-msoft-float}
6739 and @option{-mhard-float} respectively.  @samp{softfp} allows the generation
6740 of floating point instructions, but still uses the soft-float calling
6741 conventions.
6742
6743 @item -mlittle-endian
6744 @opindex mlittle-endian
6745 Generate code for a processor running in little-endian mode.  This is
6746 the default for all standard configurations.
6747
6748 @item -mbig-endian
6749 @opindex mbig-endian
6750 Generate code for a processor running in big-endian mode; the default is
6751 to compile code for a little-endian processor.
6752
6753 @item -mwords-little-endian
6754 @opindex mwords-little-endian
6755 This option only applies when generating code for big-endian processors.
6756 Generate code for a little-endian word order but a big-endian byte
6757 order.  That is, a byte order of the form @samp{32107654}.  Note: this
6758 option should only be used if you require compatibility with code for
6759 big-endian ARM processors generated by versions of the compiler prior to
6760 2.8.
6761
6762 @item -mcpu=@var{name}
6763 @opindex mcpu
6764 This specifies the name of the target ARM processor.  GCC uses this name
6765 to determine what kind of instructions it can emit when generating
6766 assembly code.  Permissible names are: @samp{arm2}, @samp{arm250},
6767 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
6768 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
6769 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
6770 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
6771 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
6772 @samp{arm8}, @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
6773 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
6774 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
6775 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
6776 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
6777 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
6778 @samp{arm1136j-s}, @samp{arm1136jf-s} ,@samp{xscale}, @samp{iwmmxt},
6779 @samp{ep9312}.
6780
6781 @itemx -mtune=@var{name}
6782 @opindex mtune
6783 This option is very similar to the @option{-mcpu=} option, except that
6784 instead of specifying the actual target processor type, and hence
6785 restricting which instructions can be used, it specifies that GCC should
6786 tune the performance of the code as if the target were of the type
6787 specified in this option, but still choosing the instructions that it
6788 will generate based on the cpu specified by a @option{-mcpu=} option.
6789 For some ARM implementations better performance can be obtained by using
6790 this option.
6791
6792 @item -march=@var{name}
6793 @opindex march
6794 This specifies the name of the target ARM architecture.  GCC uses this
6795 name to determine what kind of instructions it can emit when generating
6796 assembly code.  This option can be used in conjunction with or instead
6797 of the @option{-mcpu=} option.  Permissible names are: @samp{armv2},
6798 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
6799 @samp{armv5}, @samp{armv5t}, @samp{armv5te}, @samp{armv6}, @samp{armv6j},
6800 @samp{iwmmxt}, @samp{ep9312}.
6801
6802 @item -mfpu=@var{name}
6803 @itemx -mfpe=@var{number}
6804 @itemx -mfp=@var{number}
6805 @opindex mfpu
6806 @opindex mfpe
6807 @opindex mfp
6808 This specifies what floating point hardware (or hardware emulation) is
6809 available on the target.  Permissible names are: @samp{fpa}, @samp{fpe2},
6810 @samp{fpe3}, @samp{maverick}, @samp{vfp}.  @option{-mfp} and @option{-mfpe}
6811 are synonyms for @option{-mfpu}=@samp{fpe}@var{number}, for compatibility
6812 with older versions of GCC@.
6813
6814 If @option{-msoft-float} is specified this specifies the format of
6815 floating point values.
6816
6817 @item -mstructure-size-boundary=@var{n}
6818 @opindex mstructure-size-boundary
6819 The size of all structures and unions will be rounded up to a multiple
6820 of the number of bits set by this option.  Permissible values are 8, 32
6821 and 64.  The default value varies for different toolchains.  For the COFF
6822 targeted toolchain the default value is 8.  A value of 64 is only allowed
6823 if the underlying ABI supports it.
6824
6825 Specifying the larger number can produce faster, more efficient code, but
6826 can also increase the size of the program.  Different values are potentially
6827 incompatible.  Code compiled with one value cannot necessarily expect to
6828 work with code or libraries compiled with another value, if they exchange
6829 information using structures or unions.
6830
6831 @item -mabort-on-noreturn
6832 @opindex mabort-on-noreturn
6833 Generate a call to the function @code{abort} at the end of a
6834 @code{noreturn} function.  It will be executed if the function tries to
6835 return.
6836
6837 @item -mlong-calls
6838 @itemx -mno-long-calls
6839 @opindex mlong-calls
6840 @opindex mno-long-calls
6841 Tells the compiler to perform function calls by first loading the
6842 address of the function into a register and then performing a subroutine
6843 call on this register.  This switch is needed if the target function
6844 will lie outside of the 64 megabyte addressing range of the offset based
6845 version of subroutine call instruction.
6846
6847 Even if this switch is enabled, not all function calls will be turned
6848 into long calls.  The heuristic is that static functions, functions
6849 which have the @samp{short-call} attribute, functions that are inside
6850 the scope of a @samp{#pragma no_long_calls} directive and functions whose
6851 definitions have already been compiled within the current compilation
6852 unit, will not be turned into long calls.  The exception to this rule is
6853 that weak function definitions, functions with the @samp{long-call}
6854 attribute or the @samp{section} attribute, and functions that are within
6855 the scope of a @samp{#pragma long_calls} directive, will always be
6856 turned into long calls.
6857
6858 This feature is not enabled by default.  Specifying
6859 @option{-mno-long-calls} will restore the default behavior, as will
6860 placing the function calls within the scope of a @samp{#pragma
6861 long_calls_off} directive.  Note these switches have no effect on how
6862 the compiler generates code to handle function calls via function
6863 pointers.
6864
6865 @item -mnop-fun-dllimport
6866 @opindex mnop-fun-dllimport
6867 Disable support for the @code{dllimport} attribute.
6868
6869 @item -msingle-pic-base
6870 @opindex msingle-pic-base
6871 Treat the register used for PIC addressing as read-only, rather than
6872 loading it in the prologue for each function.  The run-time system is
6873 responsible for initializing this register with an appropriate value
6874 before execution begins.
6875
6876 @item -mpic-register=@var{reg}
6877 @opindex mpic-register
6878 Specify the register to be used for PIC addressing.  The default is R10
6879 unless stack-checking is enabled, when R9 is used.
6880
6881 @item -mcirrus-fix-invalid-insns
6882 @opindex mcirrus-fix-invalid-insns
6883 @opindex mno-cirrus-fix-invalid-insns
6884 Insert NOPs into the instruction stream to in order to work around
6885 problems with invalid Maverick instruction combinations.  This option
6886 is only valid if the @option{-mcpu=ep9312} option has been used to
6887 enable generation of instructions for the Cirrus Maverick floating
6888 point co-processor.  This option is not enabled by default, since the
6889 problem is only present in older Maverick implementations.  The default
6890 can be re-enabled by use of the @option{-mno-cirrus-fix-invalid-insns}
6891 switch.
6892
6893 @item -mpoke-function-name
6894 @opindex mpoke-function-name
6895 Write the name of each function into the text section, directly
6896 preceding the function prologue.  The generated code is similar to this:
6897
6898 @smallexample
6899      t0
6900          .ascii "arm_poke_function_name", 0
6901          .align
6902      t1
6903          .word 0xff000000 + (t1 - t0)
6904      arm_poke_function_name
6905          mov     ip, sp
6906          stmfd   sp!, @{fp, ip, lr, pc@}
6907          sub     fp, ip, #4
6908 @end smallexample
6909
6910 When performing a stack backtrace, code can inspect the value of
6911 @code{pc} stored at @code{fp + 0}.  If the trace function then looks at
6912 location @code{pc - 12} and the top 8 bits are set, then we know that
6913 there is a function name embedded immediately preceding this location
6914 and has length @code{((pc[-3]) & 0xff000000)}.
6915
6916 @item -mthumb
6917 @opindex mthumb
6918 Generate code for the 16-bit Thumb instruction set.  The default is to
6919 use the 32-bit ARM instruction set.
6920
6921 @item -mtpcs-frame
6922 @opindex mtpcs-frame
6923 Generate a stack frame that is compliant with the Thumb Procedure Call
6924 Standard for all non-leaf functions.  (A leaf function is one that does
6925 not call any other functions.)  The default is @option{-mno-tpcs-frame}.
6926
6927 @item -mtpcs-leaf-frame
6928 @opindex mtpcs-leaf-frame
6929 Generate a stack frame that is compliant with the Thumb Procedure Call
6930 Standard for all leaf functions.  (A leaf function is one that does
6931 not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
6932
6933 @item -mcallee-super-interworking
6934 @opindex mcallee-super-interworking
6935 Gives all externally visible functions in the file being compiled an ARM
6936 instruction set header which switches to Thumb mode before executing the
6937 rest of the function.  This allows these functions to be called from
6938 non-interworking code.
6939
6940 @item -mcaller-super-interworking
6941 @opindex mcaller-super-interworking
6942 Allows calls via function pointers (including virtual functions) to
6943 execute correctly regardless of whether the target code has been
6944 compiled for interworking or not.  There is a small overhead in the cost
6945 of executing a function pointer if this option is enabled.
6946
6947 @end table
6948
6949 @node AVR Options
6950 @subsection AVR Options
6951 @cindex AVR Options
6952
6953 These options are defined for AVR implementations:
6954
6955 @table @gcctabopt
6956 @item -mmcu=@var{mcu}
6957 @opindex mmcu
6958 Specify ATMEL AVR instruction set or MCU type.
6959
6960 Instruction set avr1 is for the minimal AVR core, not supported by the C
6961 compiler, only for assembler programs (MCU types: at90s1200, attiny10,
6962 attiny11, attiny12, attiny15, attiny28).
6963
6964 Instruction set avr2 (default) is for the classic AVR core with up to
6965 8K program memory space (MCU types: at90s2313, at90s2323, attiny22,
6966 at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515,
6967 at90c8534, at90s8535).
6968
6969 Instruction set avr3 is for the classic AVR core with up to 128K program
6970 memory space (MCU types: atmega103, atmega603, at43usb320, at76c711).
6971
6972 Instruction set avr4 is for the enhanced AVR core with up to 8K program
6973 memory space (MCU types: atmega8, atmega83, atmega85).
6974
6975 Instruction set avr5 is for the enhanced AVR core with up to 128K program
6976 memory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323,
6977 atmega64, atmega128, at43usb355, at94k).
6978
6979 @item -msize
6980 @opindex msize
6981 Output instruction sizes to the asm file.
6982
6983 @item -minit-stack=@var{N}
6984 @opindex minit-stack
6985 Specify the initial stack address, which may be a symbol or numeric value,
6986 @samp{__stack} is the default.
6987
6988 @item -mno-interrupts
6989 @opindex mno-interrupts
6990 Generated code is not compatible with hardware interrupts.
6991 Code size will be smaller.
6992
6993 @item -mcall-prologues
6994 @opindex mcall-prologues
6995 Functions prologues/epilogues expanded as call to appropriate
6996 subroutines.  Code size will be smaller.
6997
6998 @item -mno-tablejump
6999 @opindex mno-tablejump
7000 Do not generate tablejump insns which sometimes increase code size.
7001
7002 @item -mtiny-stack
7003 @opindex mtiny-stack
7004 Change only the low 8 bits of the stack pointer.
7005
7006 @item -mint8
7007 @opindex mint8
7008 Assume int to be 8 bit integer. This affects the sizes of all types: A
7009 char will be 1 byte, an int will be 1 byte, an long will be 2 bytes
7010 and long long will be 4 bytes. Please note that this option does not
7011 comply to the C standards, but it will provide you with smaller code
7012 size.
7013 @end table
7014
7015 @node CRIS Options
7016 @subsection CRIS Options
7017 @cindex CRIS Options
7018
7019 These options are defined specifically for the CRIS ports.
7020
7021 @table @gcctabopt
7022 @item -march=@var{architecture-type}
7023 @itemx -mcpu=@var{architecture-type}
7024 @opindex march
7025 @opindex mcpu
7026 Generate code for the specified architecture.  The choices for
7027 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
7028 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX.
7029 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
7030 @samp{v10}.
7031
7032 @item -mtune=@var{architecture-type}
7033 @opindex mtune
7034 Tune to @var{architecture-type} everything applicable about the generated
7035 code, except for the ABI and the set of available instructions.  The
7036 choices for @var{architecture-type} are the same as for
7037 @option{-march=@var{architecture-type}}.
7038
7039 @item -mmax-stack-frame=@var{n}
7040 @opindex mmax-stack-frame
7041 Warn when the stack frame of a function exceeds @var{n} bytes.
7042
7043 @item -melinux-stacksize=@var{n}
7044 @opindex melinux-stacksize
7045 Only available with the @samp{cris-axis-aout} target.  Arranges for
7046 indications in the program to the kernel loader that the stack of the
7047 program should be set to @var{n} bytes.
7048
7049 @item -metrax4
7050 @itemx -metrax100
7051 @opindex metrax4
7052 @opindex metrax100
7053 The options @option{-metrax4} and @option{-metrax100} are synonyms for
7054 @option{-march=v3} and @option{-march=v8} respectively.
7055
7056 @item -mmul-bug-workaround
7057 @itemx -mno-mul-bug-workaround
7058 @opindex mmul-bug-workaround
7059 @opindex mno-mul-bug-workaround
7060 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
7061 models where it applies.  This option is active by default.
7062
7063 @item -mpdebug
7064 @opindex mpdebug
7065 Enable CRIS-specific verbose debug-related information in the assembly
7066 code.  This option also has the effect to turn off the @samp{#NO_APP}
7067 formatted-code indicator to the assembler at the beginning of the
7068 assembly file.
7069
7070 @item -mcc-init
7071 @opindex mcc-init
7072 Do not use condition-code results from previous instruction; always emit
7073 compare and test instructions before use of condition codes.
7074
7075 @item -mno-side-effects
7076 @opindex mno-side-effects
7077 Do not emit instructions with side-effects in addressing modes other than
7078 post-increment.
7079
7080 @item -mstack-align
7081 @itemx -mno-stack-align
7082 @itemx -mdata-align
7083 @itemx -mno-data-align
7084 @itemx -mconst-align
7085 @itemx -mno-const-align
7086 @opindex mstack-align
7087 @opindex mno-stack-align
7088 @opindex mdata-align
7089 @opindex mno-data-align
7090 @opindex mconst-align
7091 @opindex mno-const-align
7092 These options (no-options) arranges (eliminate arrangements) for the
7093 stack-frame, individual data and constants to be aligned for the maximum
7094 single data access size for the chosen CPU model.  The default is to
7095 arrange for 32-bit alignment.  ABI details such as structure layout are
7096 not affected by these options.
7097
7098 @item -m32-bit
7099 @itemx -m16-bit
7100 @itemx -m8-bit
7101 @opindex m32-bit
7102 @opindex m16-bit
7103 @opindex m8-bit
7104 Similar to the stack- data- and const-align options above, these options
7105 arrange for stack-frame, writable data and constants to all be 32-bit,
7106 16-bit or 8-bit aligned.  The default is 32-bit alignment.
7107
7108 @item -mno-prologue-epilogue
7109 @itemx -mprologue-epilogue
7110 @opindex mno-prologue-epilogue
7111 @opindex mprologue-epilogue
7112 With @option{-mno-prologue-epilogue}, the normal function prologue and
7113 epilogue that sets up the stack-frame are omitted and no return
7114 instructions or return sequences are generated in the code.  Use this
7115 option only together with visual inspection of the compiled code: no
7116 warnings or errors are generated when call-saved registers must be saved,
7117 or storage for local variable needs to be allocated.
7118
7119 @item -mno-gotplt
7120 @itemx -mgotplt
7121 @opindex mno-gotplt
7122 @opindex mgotplt
7123 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
7124 instruction sequences that load addresses for functions from the PLT part
7125 of the GOT rather than (traditional on other architectures) calls to the
7126 PLT.  The default is @option{-mgotplt}.
7127
7128 @item -maout
7129 @opindex maout
7130 Legacy no-op option only recognized with the cris-axis-aout target.
7131
7132 @item -melf
7133 @opindex melf
7134 Legacy no-op option only recognized with the cris-axis-elf and
7135 cris-axis-linux-gnu targets.
7136
7137 @item -melinux
7138 @opindex melinux
7139 Only recognized with the cris-axis-aout target, where it selects a
7140 GNU/linux-like multilib, include files and instruction set for
7141 @option{-march=v8}.
7142
7143 @item -mlinux
7144 @opindex mlinux
7145 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
7146
7147 @item -sim
7148 @opindex sim
7149 This option, recognized for the cris-axis-aout and cris-axis-elf arranges
7150 to link with input-output functions from a simulator library.  Code,
7151 initialized data and zero-initialized data are allocated consecutively.
7152
7153 @item -sim2
7154 @opindex sim2
7155 Like @option{-sim}, but pass linker options to locate initialized data at
7156 0x40000000 and zero-initialized data at 0x80000000.
7157 @end table
7158
7159 @node Darwin Options
7160 @subsection Darwin Options
7161 @cindex Darwin options
7162
7163 These options are defined for all architectures running the Darwin operating
7164 system.  They are useful for compatibility with other Mac OS compilers.
7165
7166 @table @gcctabopt
7167 @item -F@var{dir}
7168 @opindex F
7169 Add the framework directory @var{dir} to the head of the list of
7170 directories to be searched for header files.  These directories are
7171 interleaved with those specified by @option{-I} options and are
7172 scanned in a left-to-right order.
7173
7174 A framework directory is a directory with frameworks in it.  A
7175 framework is a directory with a @samp{"Headers"} and/or
7176 @samp{"PrivateHeaders"} directory contained directly in it that ends
7177 in @samp{".framework"}.  The name of a framework is the name of this
7178 directory excluding the @samp{".framework"}.  Headers associated with
7179 the framework are found in one of those two directories, with
7180 @samp{"Headers"} being searched first.  A subframework is a framework
7181 directory that is in a framework's @samp{"Frameworks"} directory.
7182 Includes of subframework headers can only appear in a header of a
7183 framework that contains the subframework, or in a sibling subframework
7184 header.  Two subframeworks are siblings if they occur in the same
7185 framework.  A subframework should not have the same name as a
7186 framework, a warning will be issued if this is violated.  Currently a
7187 subframework cannot have subframeworks, in the future, the mechanism
7188 may be extended to support this.  The standard frameworks can be found
7189 in @samp{"/System/Library/Frameworks"} and
7190 @samp{"/Library/Frameworks"}.  An example include looks like
7191 @code{#include <Framework/header.h>}, where @samp{Framework} denotes
7192 the name of the framework and header.h is found in the
7193 @samp{"PrivateHeaders"} or @samp{"Headers"} directory.
7194
7195 @item -gused
7196 @opindex -gused
7197 Emit debugging information for symbols that are used. For STABS
7198 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
7199 This is by default ON.
7200
7201 @item -gfull
7202 @opindex -gfull
7203 Emit debugging information for all symbols and types.
7204
7205 @item -mone-byte-bool
7206 @opindex -mone-byte-bool
7207 Override the defaults for @samp{bool} so that @samp{sizeof(bool)==1}.
7208 By default @samp{sizeof(bool)} is @samp{4} when compiling for 
7209 Darwin/PowerPC and @samp{1} when compiling for Darwin/x86, so this
7210 option has no effect on x86.
7211
7212 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
7213 to generate code that is not binary compatible with code generated
7214 without that switch.  Using this switch may require recompiling all
7215 other modules in a program, including system libraries.  Use this 
7216 switch to conform to a non-default data model.
7217
7218 @item -mfix-and-continue
7219 @itemx -ffix-and-continue
7220 @itemx -findirect-data
7221 @opindex mfix-and-continue
7222 @opindex ffix-and-continue
7223 @opindex findirect-data
7224 Generate code suitable for fast turn around development.  Needed to
7225 enable gdb to dynamically load @code{.o} files into already running
7226 programs.  @option{-findirect-data} and @option{-ffix-and-continue}
7227 are provided for backwards compatibility.
7228
7229 @item -all_load
7230 @opindex all_load
7231 Loads all members of static archive libraries.
7232 See man ld(1) for more information.
7233
7234 @item -arch_errors_fatal
7235 @opindex arch_errors_fatal
7236 Cause the errors having to do with files that have the wrong architecture
7237 to be fatal.
7238
7239 @item -bind_at_load
7240 @opindex bind_at_load
7241 Causes the output file to be marked such that the dynamic linker will
7242 bind all undefined references when the file is loaded or launched.
7243
7244 @item -bundle
7245 @opindex bundle
7246 Produce a Mach-o bundle format file.
7247 See man ld(1) for more information.
7248
7249 @item -bundle_loader @var{executable}
7250 @opindex bundle_loader
7251 This specifies the @var{executable} that will be loading the build
7252 output file being linked. See man ld(1) for more information.
7253
7254 @item -allowable_client  @var{client_name}
7255 @itemx -arch_only
7256
7257 @itemx -client_name
7258 @itemx -compatibility_version
7259 @itemx -current_version
7260 @itemx -dead_strip
7261 @itemx -dependency-file
7262 @itemx -dylib_file
7263 @itemx -dylinker_install_name
7264 @itemx -dynamic
7265 @itemx -dynamiclib
7266 @itemx -exported_symbols_list
7267 @itemx -filelist
7268 @itemx -flat_namespace
7269 @itemx -force_cpusubtype_ALL
7270 @itemx -force_flat_namespace
7271 @itemx -headerpad_max_install_names
7272 @itemx -image_base
7273 @itemx -init
7274 @itemx -install_name
7275 @itemx -keep_private_externs
7276 @itemx -multi_module
7277 @itemx -multiply_defined
7278 @itemx -multiply_defined_unused
7279 @itemx -noall_load
7280 @itemx -no_dead_strip_inits_and_terms
7281 @itemx -nofixprebinding
7282 @itemx -nomultidefs
7283 @itemx -noprebind
7284 @itemx -noseglinkedit
7285 @itemx -pagezero_size
7286 @itemx -prebind
7287 @itemx -prebind_all_twolevel_modules
7288 @itemx -private_bundle
7289 @itemx -read_only_relocs
7290 @itemx -sectalign
7291 @itemx -sectobjectsymbols
7292 @itemx -whyload
7293 @itemx -seg1addr
7294 @itemx -sectcreate
7295 @itemx -sectobjectsymbols
7296 @itemx -sectorder
7297 @itemx -segaddr
7298 @itemx -segs_read_only_addr
7299 @itemx -segs_read_write_addr
7300 @itemx -seg_addr_table
7301 @itemx -seg_addr_table_filename
7302 @itemx -seglinkedit
7303 @itemx -segprot
7304 @itemx -segs_read_only_addr
7305 @itemx -segs_read_write_addr
7306 @itemx -single_module
7307 @itemx -static
7308 @itemx -sub_library
7309 @itemx -sub_umbrella
7310 @itemx -twolevel_namespace
7311 @itemx -umbrella
7312 @itemx -undefined
7313 @itemx -unexported_symbols_list
7314 @itemx -weak_reference_mismatches
7315 @itemx -whatsloaded
7316
7317 @opindex allowable_client
7318 @opindex arch_only
7319 @opindex client_name
7320 @opindex compatibility_version
7321 @opindex current_version
7322 @opindex dead_strip
7323 @opindex dependency-file
7324 @opindex dylib_file
7325 @opindex dylinker_install_name
7326 @opindex dynamic
7327 @opindex dynamiclib
7328 @opindex exported_symbols_list
7329 @opindex filelist
7330 @opindex flat_namespace
7331 @opindex force_cpusubtype_ALL
7332 @opindex force_flat_namespace
7333 @opindex headerpad_max_install_names
7334 @opindex image_base
7335 @opindex init
7336 @opindex install_name
7337 @opindex keep_private_externs
7338 @opindex multi_module
7339 @opindex multiply_defined
7340 @opindex multiply_defined_unused
7341 @opindex noall_load
7342 @opindex no_dead_strip_inits_and_terms
7343 @opindex nofixprebinding
7344 @opindex nomultidefs
7345 @opindex noprebind
7346 @opindex noseglinkedit
7347 @opindex pagezero_size
7348 @opindex prebind
7349 @opindex prebind_all_twolevel_modules
7350 @opindex private_bundle
7351 @opindex read_only_relocs
7352 @opindex sectalign
7353 @opindex sectobjectsymbols
7354 @opindex whyload
7355 @opindex seg1addr
7356 @opindex sectcreate
7357 @opindex sectobjectsymbols
7358 @opindex sectorder
7359 @opindex segaddr
7360 @opindex segs_read_only_addr
7361 @opindex segs_read_write_addr
7362 @opindex seg_addr_table
7363 @opindex seg_addr_table_filename
7364 @opindex seglinkedit
7365 @opindex segprot
7366 @opindex segs_read_only_addr
7367 @opindex segs_read_write_addr
7368 @opindex single_module
7369 @opindex static
7370 @opindex sub_library
7371 @opindex sub_umbrella
7372 @opindex twolevel_namespace
7373 @opindex umbrella
7374 @opindex undefined
7375 @opindex unexported_symbols_list
7376 @opindex weak_reference_mismatches
7377 @opindex whatsloaded
7378
7379 These options are available for Darwin linker. Darwin linker man page
7380 describes them in detail.
7381 @end table
7382
7383 @node DEC Alpha Options
7384 @subsection DEC Alpha Options
7385
7386 These @samp{-m} options are defined for the DEC Alpha implementations:
7387
7388 @table @gcctabopt
7389 @item -mno-soft-float
7390 @itemx -msoft-float
7391 @opindex mno-soft-float
7392 @opindex msoft-float
7393 Use (do not use) the hardware floating-point instructions for
7394 floating-point operations.  When @option{-msoft-float} is specified,
7395 functions in @file{libgcc.a} will be used to perform floating-point
7396 operations.  Unless they are replaced by routines that emulate the
7397 floating-point operations, or compiled in such a way as to call such
7398 emulations routines, these routines will issue floating-point
7399 operations.   If you are compiling for an Alpha without floating-point
7400 operations, you must ensure that the library is built so as not to call
7401 them.
7402
7403 Note that Alpha implementations without floating-point operations are
7404 required to have floating-point registers.
7405
7406 @item -mfp-reg
7407 @itemx -mno-fp-regs
7408 @opindex mfp-reg
7409 @opindex mno-fp-regs
7410 Generate code that uses (does not use) the floating-point register set.
7411 @option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
7412 register set is not used, floating point operands are passed in integer
7413 registers as if they were integers and floating-point results are passed
7414 in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
7415 so any function with a floating-point argument or return value called by code
7416 compiled with @option{-mno-fp-regs} must also be compiled with that
7417 option.
7418
7419 A typical use of this option is building a kernel that does not use,
7420 and hence need not save and restore, any floating-point registers.
7421
7422 @item -mieee
7423 @opindex mieee
7424 The Alpha architecture implements floating-point hardware optimized for
7425 maximum performance.  It is mostly compliant with the IEEE floating
7426 point standard.  However, for full compliance, software assistance is
7427 required.  This option generates code fully IEEE compliant code
7428 @emph{except} that the @var{inexact-flag} is not maintained (see below).
7429 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
7430 defined during compilation.  The resulting code is less efficient but is
7431 able to correctly support denormalized numbers and exceptional IEEE
7432 values such as not-a-number and plus/minus infinity.  Other Alpha
7433 compilers call this option @option{-ieee_with_no_inexact}.
7434
7435 @item -mieee-with-inexact
7436 @opindex mieee-with-inexact
7437 This is like @option{-mieee} except the generated code also maintains
7438 the IEEE @var{inexact-flag}.  Turning on this option causes the
7439 generated code to implement fully-compliant IEEE math.  In addition to
7440 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
7441 macro.  On some Alpha implementations the resulting code may execute
7442 significantly slower than the code generated by default.  Since there is
7443 very little code that depends on the @var{inexact-flag}, you should
7444 normally not specify this option.  Other Alpha compilers call this
7445 option @option{-ieee_with_inexact}.
7446
7447 @item -mfp-trap-mode=@var{trap-mode}
7448 @opindex mfp-trap-mode
7449 This option controls what floating-point related traps are enabled.
7450 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
7451 The trap mode can be set to one of four values:
7452
7453 @table @samp
7454 @item n
7455 This is the default (normal) setting.  The only traps that are enabled
7456 are the ones that cannot be disabled in software (e.g., division by zero
7457 trap).
7458
7459 @item u
7460 In addition to the traps enabled by @samp{n}, underflow traps are enabled
7461 as well.
7462
7463 @item su
7464 Like @samp{su}, but the instructions are marked to be safe for software
7465 completion (see Alpha architecture manual for details).
7466
7467 @item sui
7468 Like @samp{su}, but inexact traps are enabled as well.
7469 @end table
7470
7471 @item -mfp-rounding-mode=@var{rounding-mode}
7472 @opindex mfp-rounding-mode
7473 Selects the IEEE rounding mode.  Other Alpha compilers call this option
7474 @option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
7475 of:
7476
7477 @table @samp
7478 @item n
7479 Normal IEEE rounding mode.  Floating point numbers are rounded towards
7480 the nearest machine number or towards the even machine number in case
7481 of a tie.
7482
7483 @item m
7484 Round towards minus infinity.
7485
7486 @item c
7487 Chopped rounding mode.  Floating point numbers are rounded towards zero.
7488
7489 @item d
7490 Dynamic rounding mode.  A field in the floating point control register
7491 (@var{fpcr}, see Alpha architecture reference manual) controls the
7492 rounding mode in effect.  The C library initializes this register for
7493 rounding towards plus infinity.  Thus, unless your program modifies the
7494 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
7495 @end table
7496
7497 @item -mtrap-precision=@var{trap-precision}
7498 @opindex mtrap-precision
7499 In the Alpha architecture, floating point traps are imprecise.  This
7500 means without software assistance it is impossible to recover from a
7501 floating trap and program execution normally needs to be terminated.
7502 GCC can generate code that can assist operating system trap handlers
7503 in determining the exact location that caused a floating point trap.
7504 Depending on the requirements of an application, different levels of
7505 precisions can be selected:
7506
7507 @table @samp
7508 @item p
7509 Program precision.  This option is the default and means a trap handler
7510 can only identify which program caused a floating point exception.
7511
7512 @item f
7513 Function precision.  The trap handler can determine the function that
7514 caused a floating point exception.
7515
7516 @item i
7517 Instruction precision.  The trap handler can determine the exact
7518 instruction that caused a floating point exception.
7519 @end table
7520
7521 Other Alpha compilers provide the equivalent options called
7522 @option{-scope_safe} and @option{-resumption_safe}.
7523
7524 @item -mieee-conformant
7525 @opindex mieee-conformant
7526 This option marks the generated code as IEEE conformant.  You must not
7527 use this option unless you also specify @option{-mtrap-precision=i} and either
7528 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
7529 is to emit the line @samp{.eflag 48} in the function prologue of the
7530 generated assembly file.  Under DEC Unix, this has the effect that
7531 IEEE-conformant math library routines will be linked in.
7532
7533 @item -mbuild-constants
7534 @opindex mbuild-constants
7535 Normally GCC examines a 32- or 64-bit integer constant to
7536 see if it can construct it from smaller constants in two or three
7537 instructions.  If it cannot, it will output the constant as a literal and
7538 generate code to load it from the data segment at runtime.
7539
7540 Use this option to require GCC to construct @emph{all} integer constants
7541 using code, even if it takes more instructions (the maximum is six).
7542
7543 You would typically use this option to build a shared library dynamic
7544 loader.  Itself a shared library, it must relocate itself in memory
7545 before it can find the variables and constants in its own data segment.
7546
7547 @item -malpha-as
7548 @itemx -mgas
7549 @opindex malpha-as
7550 @opindex mgas
7551 Select whether to generate code to be assembled by the vendor-supplied
7552 assembler (@option{-malpha-as}) or by the GNU assembler @option{-mgas}.
7553
7554 @item -mbwx
7555 @itemx -mno-bwx
7556 @itemx -mcix
7557 @itemx -mno-cix
7558 @itemx -mfix
7559 @itemx -mno-fix
7560 @itemx -mmax
7561 @itemx -mno-max
7562 @opindex mbwx
7563 @opindex mno-bwx
7564 @opindex mcix
7565 @opindex mno-cix
7566 @opindex mfix
7567 @opindex mno-fix
7568 @opindex mmax
7569 @opindex mno-max
7570 Indicate whether GCC should generate code to use the optional BWX,
7571 CIX, FIX and MAX instruction sets.  The default is to use the instruction
7572 sets supported by the CPU type specified via @option{-mcpu=} option or that
7573 of the CPU on which GCC was built if none was specified.
7574
7575 @item -mfloat-vax
7576 @itemx -mfloat-ieee
7577 @opindex mfloat-vax
7578 @opindex mfloat-ieee
7579 Generate code that uses (does not use) VAX F and G floating point
7580 arithmetic instead of IEEE single and double precision.
7581
7582 @item -mexplicit-relocs
7583 @itemx -mno-explicit-relocs
7584 @opindex mexplicit-relocs
7585 @opindex mno-explicit-relocs
7586 Older Alpha assemblers provided no way to generate symbol relocations
7587 except via assembler macros.  Use of these macros does not allow
7588 optimal instruction scheduling.  GNU binutils as of version 2.12
7589 supports a new syntax that allows the compiler to explicitly mark
7590 which relocations should apply to which instructions.  This option
7591 is mostly useful for debugging, as GCC detects the capabilities of
7592 the assembler when it is built and sets the default accordingly.
7593
7594 @item -msmall-data
7595 @itemx -mlarge-data
7596 @opindex msmall-data
7597 @opindex mlarge-data
7598 When @option{-mexplicit-relocs} is in effect, static data is
7599 accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
7600 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
7601 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
7602 16-bit relocations off of the @code{$gp} register.  This limits the
7603 size of the small data area to 64KB, but allows the variables to be
7604 directly accessed via a single instruction.
7605
7606 The default is @option{-mlarge-data}.  With this option the data area
7607 is limited to just below 2GB.  Programs that require more than 2GB of
7608 data must use @code{malloc} or @code{mmap} to allocate the data in the
7609 heap instead of in the program's data segment.
7610
7611 When generating code for shared libraries, @option{-fpic} implies
7612 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
7613
7614 @item -msmall-text
7615 @itemx -mlarge-text
7616 @opindex msmall-text
7617 @opindex mlarge-text
7618 When @option{-msmall-text} is used, the compiler assumes that the
7619 code of the entire program (or shared library) fits in 4MB, and is
7620 thus reachable with a branch instruction.  When @option{-msmall-data}
7621 is used, the compiler can assume that all local symbols share the
7622 same @code{$gp} value, and thus reduce the number of instructions
7623 required for a function call from 4 to 1.
7624
7625 The default is @option{-mlarge-text}.
7626
7627 @item -mcpu=@var{cpu_type}
7628 @opindex mcpu
7629 Set the instruction set and instruction scheduling parameters for
7630 machine type @var{cpu_type}.  You can specify either the @samp{EV}
7631 style name or the corresponding chip number.  GCC supports scheduling
7632 parameters for the EV4, EV5 and EV6 family of processors and will
7633 choose the default values for the instruction set from the processor
7634 you specify.  If you do not specify a processor type, GCC will default
7635 to the processor on which the compiler was built.
7636
7637 Supported values for @var{cpu_type} are
7638
7639 @table @samp
7640 @item ev4
7641 @itemx ev45
7642 @itemx 21064
7643 Schedules as an EV4 and has no instruction set extensions.
7644
7645 @item ev5
7646 @itemx 21164
7647 Schedules as an EV5 and has no instruction set extensions.
7648
7649 @item ev56
7650 @itemx 21164a
7651 Schedules as an EV5 and supports the BWX extension.
7652
7653 @item pca56
7654 @itemx 21164pc
7655 @itemx 21164PC
7656 Schedules as an EV5 and supports the BWX and MAX extensions.
7657
7658 @item ev6
7659 @itemx 21264
7660 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
7661
7662 @item ev67
7663 @itemx 21264a
7664 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
7665 @end table
7666
7667 @item -mtune=@var{cpu_type}
7668 @opindex mtune
7669 Set only the instruction scheduling parameters for machine type
7670 @var{cpu_type}.  The instruction set is not changed.
7671
7672 @item -mmemory-latency=@var{time}
7673 @opindex mmemory-latency
7674 Sets the latency the scheduler should assume for typical memory
7675 references as seen by the application.  This number is highly
7676 dependent on the memory access patterns used by the application
7677 and the size of the external cache on the machine.
7678
7679 Valid options for @var{time} are
7680
7681 @table @samp
7682 @item @var{number}
7683 A decimal number representing clock cycles.
7684
7685 @item L1
7686 @itemx L2
7687 @itemx L3
7688 @itemx main
7689 The compiler contains estimates of the number of clock cycles for
7690 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
7691 (also called Dcache, Scache, and Bcache), as well as to main memory.
7692 Note that L3 is only valid for EV5.
7693
7694 @end table
7695 @end table
7696
7697 @node DEC Alpha/VMS Options
7698 @subsection DEC Alpha/VMS Options
7699
7700 These @samp{-m} options are defined for the DEC Alpha/VMS implementations:
7701
7702 @table @gcctabopt
7703 @item -mvms-return-codes
7704 @opindex mvms-return-codes
7705 Return VMS condition codes from main.  The default is to return POSIX
7706 style condition (e.g.@ error) codes.
7707 @end table
7708
7709 @node FRV Options
7710 @subsection FRV Options
7711 @cindex FRV Options
7712
7713 @table @gcctabopt
7714 @item -mgpr-32
7715 @opindex mgpr-32
7716
7717 Only use the first 32 general purpose registers.
7718
7719 @item -mgpr-64
7720 @opindex mgpr-64
7721
7722 Use all 64 general purpose registers.
7723
7724 @item -mfpr-32
7725 @opindex mfpr-32
7726
7727 Use only the first 32 floating point registers.
7728
7729 @item -mfpr-64
7730 @opindex mfpr-64
7731
7732 Use all 64 floating point registers
7733
7734 @item -mhard-float
7735 @opindex mhard-float
7736
7737 Use hardware instructions for floating point operations.
7738
7739 @item -msoft-float
7740 @opindex msoft-float
7741
7742 Use library routines for floating point operations.
7743
7744 @item -malloc-cc
7745 @opindex malloc-cc
7746
7747 Dynamically allocate condition code registers.
7748
7749 @item -mfixed-cc
7750 @opindex mfixed-cc
7751
7752 Do not try to dynamically allocate condition code registers, only
7753 use @code{icc0} and @code{fcc0}.
7754
7755 @item -mdword
7756 @opindex mdword
7757
7758 Change ABI to use double word insns.
7759
7760 @item -mno-dword
7761 @opindex mno-dword
7762
7763 Do not use double word instructions.
7764
7765 @item -mdouble
7766 @opindex mdouble
7767
7768 Use floating point double instructions.
7769
7770 @item -mno-double
7771 @opindex mno-double
7772
7773 Do not use floating point double instructions.
7774
7775 @item -mmedia
7776 @opindex mmedia
7777
7778 Use media instructions.
7779
7780 @item -mno-media
7781 @opindex mno-media
7782
7783 Do not use media instructions.
7784
7785 @item -mmuladd
7786 @opindex mmuladd
7787
7788 Use multiply and add/subtract instructions.
7789
7790 @item -mno-muladd
7791 @opindex mno-muladd
7792
7793 Do not use multiply and add/subtract instructions.
7794
7795 @item -mfdpic
7796 @opindex mfdpic
7797
7798 Select the FDPIC ABI, that uses function descriptors to represent
7799 pointers to functions.  Without any PIC/PIE-related options, it
7800 implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
7801 assumes GOT entries and small data are within a 12-bit range from the
7802 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
7803 are computed with 32 bits.
7804
7805 @item -minline-plt
7806 @opindex minline-plt
7807
7808 Enable inlining of PLT entries in function calls to functions that are
7809 not known to bind locally.  It has no effect without @option{-mfdpic}.
7810 It's enabled by default if optimizing for speed and compiling for
7811 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
7812 optimization option such as @option{-O3} or above is present in the
7813 command line.
7814
7815 @item -mgprel-ro
7816 @opindex mgprel-ro
7817
7818 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
7819 that is known to be in read-only sections.  It's enabled by default,
7820 except for @option{-fpic} or @option{-fpie}: even though it may help
7821 make the global offset table smaller, it trades 1 instruction for 4.
7822 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
7823 one of which may be shared by multiple symbols, and it avoids the need
7824 for a GOT entry for the referenced symbol, so it's more likely to be a
7825 win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
7826
7827 @item -multilib-library-pic
7828 @opindex multilib-library-pic
7829
7830 Link with the (library, not FD) pic libraries.  It's implied by
7831 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
7832 @option{-fpic} without @option{-mfdpic}.  You should never have to use
7833 it explicitly.
7834
7835 @item -mlinked-fp
7836 @opindex mlinked-fp
7837
7838 Follow the EABI requirement of always creating a frame pointer whenever
7839 a stack frame is allocated.  This option is enabled by default and can
7840 be disabled with @option{-mno-linked-fp}.
7841
7842 @item -mlong-calls
7843 @opindex mlong-calls
7844
7845 Use indirect addressing to call functions outside the current
7846 compilation unit.  This allows the functions to be placed anywhere
7847 within the 32-bit address space.
7848
7849 @item -malign-labels
7850 @opindex malign-labels
7851
7852 Try to align labels to an 8-byte boundary by inserting nops into the
7853 previous packet.  This option only has an effect when VLIW packing
7854 is enabled.  It doesn't create new packets; it merely adds nops to
7855 existing ones.
7856
7857 @item -mlibrary-pic
7858 @opindex mlibrary-pic
7859
7860 Generate position-independent EABI code.
7861
7862 @item -macc-4
7863 @opindex macc-4
7864
7865 Use only the first four media accumulator registers.
7866
7867 @item -macc-8
7868 @opindex macc-8
7869
7870 Use all eight media accumulator registers.
7871
7872 @item -mpack
7873 @opindex mpack
7874
7875 Pack VLIW instructions.
7876
7877 @item -mno-pack
7878 @opindex mno-pack
7879
7880 Do not pack VLIW instructions.
7881
7882 @item -mno-eflags
7883 @opindex mno-eflags
7884
7885 Do not mark ABI switches in e_flags.
7886
7887 @item -mcond-move
7888 @opindex mcond-move
7889
7890 Enable the use of conditional-move instructions (default).
7891
7892 This switch is mainly for debugging the compiler and will likely be removed
7893 in a future version.
7894
7895 @item -mno-cond-move
7896 @opindex mno-cond-move
7897
7898 Disable the use of conditional-move instructions.
7899
7900 This switch is mainly for debugging the compiler and will likely be removed
7901 in a future version.
7902
7903 @item -mscc
7904 @opindex mscc
7905
7906 Enable the use of conditional set instructions (default).
7907
7908 This switch is mainly for debugging the compiler and will likely be removed
7909 in a future version.
7910
7911 @item -mno-scc
7912 @opindex mno-scc
7913
7914 Disable the use of conditional set instructions.
7915
7916 This switch is mainly for debugging the compiler and will likely be removed
7917 in a future version.
7918
7919 @item -mcond-exec
7920 @opindex mcond-exec
7921
7922 Enable the use of conditional execution (default).
7923
7924 This switch is mainly for debugging the compiler and will likely be removed
7925 in a future version.
7926
7927 @item -mno-cond-exec
7928 @opindex mno-cond-exec
7929
7930 Disable the use of conditional execution.
7931
7932 This switch is mainly for debugging the compiler and will likely be removed
7933 in a future version.
7934
7935 @item -mvliw-branch
7936 @opindex mvliw-branch
7937
7938 Run a pass to pack branches into VLIW instructions (default).
7939
7940 This switch is mainly for debugging the compiler and will likely be removed
7941 in a future version.
7942
7943 @item -mno-vliw-branch
7944 @opindex mno-vliw-branch
7945
7946 Do not run a pass to pack branches into VLIW instructions.
7947
7948 This switch is mainly for debugging the compiler and will likely be removed
7949 in a future version.
7950
7951 @item -mmulti-cond-exec
7952 @opindex mmulti-cond-exec
7953
7954 Enable optimization of @code{&&} and @code{||} in conditional execution
7955 (default).
7956
7957 This switch is mainly for debugging the compiler and will likely be removed
7958 in a future version.
7959
7960 @item -mno-multi-cond-exec
7961 @opindex mno-multi-cond-exec
7962
7963 Disable optimization of @code{&&} and @code{||} in conditional execution.
7964
7965 This switch is mainly for debugging the compiler and will likely be removed
7966 in a future version.
7967
7968 @item -mnested-cond-exec
7969 @opindex mnested-cond-exec
7970
7971 Enable nested conditional execution optimizations (default).
7972
7973 This switch is mainly for debugging the compiler and will likely be removed
7974 in a future version.
7975
7976 @item -mno-nested-cond-exec
7977 @opindex mno-nested-cond-exec
7978
7979 Disable nested conditional execution optimizations.
7980
7981 This switch is mainly for debugging the compiler and will likely be removed
7982 in a future version.
7983
7984 @item -mtomcat-stats
7985 @opindex mtomcat-stats
7986
7987 Cause gas to print out tomcat statistics.
7988
7989 @item -mcpu=@var{cpu}
7990 @opindex mcpu
7991
7992 Select the processor type for which to generate code.  Possible values are
7993 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
7994 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
7995
7996 @end table
7997
7998 @node H8/300 Options
7999 @subsection H8/300 Options
8000
8001 These @samp{-m} options are defined for the H8/300 implementations:
8002
8003 @table @gcctabopt
8004 @item -mrelax
8005 @opindex mrelax
8006 Shorten some address references at link time, when possible; uses the
8007 linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
8008 ld, Using ld}, for a fuller description.
8009
8010 @item -mh
8011 @opindex mh
8012 Generate code for the H8/300H@.
8013
8014 @item -ms
8015 @opindex ms
8016 Generate code for the H8S@.
8017
8018 @item -mn
8019 @opindex mn
8020 Generate code for the H8S and H8/300H in the normal mode.  This switch
8021 must be used either with -mh or -ms.
8022
8023 @item -ms2600
8024 @opindex ms2600
8025 Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
8026
8027 @item -mint32
8028 @opindex mint32
8029 Make @code{int} data 32 bits by default.
8030
8031 @item -malign-300
8032 @opindex malign-300
8033 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
8034 The default for the H8/300H and H8S is to align longs and floats on 4
8035 byte boundaries.
8036 @option{-malign-300} causes them to be aligned on 2 byte boundaries.
8037 This option has no effect on the H8/300.
8038 @end table
8039
8040 @node HPPA Options
8041 @subsection HPPA Options
8042 @cindex HPPA Options
8043
8044 These @samp{-m} options are defined for the HPPA family of computers:
8045
8046 @table @gcctabopt
8047 @item -march=@var{architecture-type}
8048 @opindex march
8049 Generate code for the specified architecture.  The choices for
8050 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
8051 1.1, and @samp{2.0} for PA 2.0 processors.  Refer to
8052 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
8053 architecture option for your machine.  Code compiled for lower numbered
8054 architectures will run on higher numbered architectures, but not the
8055 other way around.
8056
8057 @item -mpa-risc-1-0
8058 @itemx -mpa-risc-1-1
8059 @itemx -mpa-risc-2-0
8060 @opindex mpa-risc-1-0
8061 @opindex mpa-risc-1-1
8062 @opindex mpa-risc-2-0
8063 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
8064
8065 @item -mbig-switch
8066 @opindex mbig-switch
8067 Generate code suitable for big switch tables.  Use this option only if
8068 the assembler/linker complain about out of range branches within a switch
8069 table.
8070
8071 @item -mjump-in-delay
8072 @opindex mjump-in-delay
8073 Fill delay slots of function calls with unconditional jump instructions
8074 by modifying the return pointer for the function call to be the target
8075 of the conditional jump.
8076
8077 @item -mdisable-fpregs
8078 @opindex mdisable-fpregs
8079 Prevent floating point registers from being used in any manner.  This is
8080 necessary for compiling kernels which perform lazy context switching of
8081 floating point registers.  If you use this option and attempt to perform
8082 floating point operations, the compiler will abort.
8083
8084 @item -mdisable-indexing
8085 @opindex mdisable-indexing
8086 Prevent the compiler from using indexing address modes.  This avoids some
8087 rather obscure problems when compiling MIG generated code under MACH@.
8088
8089 @item -mno-space-regs
8090 @opindex mno-space-regs
8091 Generate code that assumes the target has no space registers.  This allows
8092 GCC to generate faster indirect calls and use unscaled index address modes.
8093
8094 Such code is suitable for level 0 PA systems and kernels.
8095
8096 @item -mfast-indirect-calls
8097 @opindex mfast-indirect-calls
8098 Generate code that assumes calls never cross space boundaries.  This
8099 allows GCC to emit code which performs faster indirect calls.
8100
8101 This option will not work in the presence of shared libraries or nested
8102 functions.
8103
8104 @item -mfixed-range=@var{register-range}
8105 @opindex mfixed-range
8106 Generate code treating the given register range as fixed registers.
8107 A fixed register is one that the register allocator can not use.  This is
8108 useful when compiling kernel code.  A register range is specified as
8109 two registers separated by a dash.  Multiple register ranges can be
8110 specified separated by a comma.
8111
8112 @item -mlong-load-store
8113 @opindex mlong-load-store
8114 Generate 3-instruction load and store sequences as sometimes required by
8115 the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
8116 the HP compilers.
8117
8118 @item -mportable-runtime
8119 @opindex mportable-runtime
8120 Use the portable calling conventions proposed by HP for ELF systems.
8121
8122 @item -mgas
8123 @opindex mgas
8124 Enable the use of assembler directives only GAS understands.
8125
8126 @item -mschedule=@var{cpu-type}
8127 @opindex mschedule
8128 Schedule code according to the constraints for the machine type
8129 @var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
8130 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
8131 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
8132 proper scheduling option for your machine.  The default scheduling is
8133 @samp{8000}.
8134
8135 @item -mlinker-opt
8136 @opindex mlinker-opt
8137 Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
8138 debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
8139 linkers in which they give bogus error messages when linking some programs.
8140
8141 @item -msoft-float
8142 @opindex msoft-float
8143 Generate output containing library calls for floating point.
8144 @strong{Warning:} the requisite libraries are not available for all HPPA
8145 targets.  Normally the facilities of the machine's usual C compiler are
8146 used, but this cannot be done directly in cross-compilation.  You must make
8147 your own arrangements to provide suitable library functions for
8148 cross-compilation.  The embedded target @samp{hppa1.1-*-pro}
8149 does provide software floating point support.
8150
8151 @option{-msoft-float} changes the calling convention in the output file;
8152 therefore, it is only useful if you compile @emph{all} of a program with
8153 this option.  In particular, you need to compile @file{libgcc.a}, the
8154 library that comes with GCC, with @option{-msoft-float} in order for
8155 this to work.
8156
8157 @item -msio
8158 @opindex msio
8159 Generate the predefine, @code{_SIO}, for server IO.  The default is
8160 @option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
8161 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO.  These
8162 options are available under HP-UX and HI-UX.
8163
8164 @item -mgnu-ld
8165 @opindex gnu-ld
8166 Use GNU ld specific options.  This passes @option{-shared} to ld when
8167 building a shared library.  It is the default when GCC is configured,
8168 explicitly or implicitly, with the GNU linker.  This option does not
8169 have any affect on which ld is called, it only changes what parameters
8170 are passed to that ld.  The ld that is called is determined by the
8171 @option{--with-ld} configure option, GCC's program search path, and
8172 finally by the user's @env{PATH}.  The linker used by GCC can be printed
8173 using @samp{which `gcc -print-prog-name=ld`}.
8174
8175 @item -mhp-ld
8176 @opindex hp-ld
8177 Use HP ld specific options.  This passes @option{-b} to ld when building
8178 a shared library and passes @option{+Accept TypeMismatch} to ld on all
8179 links.  It is the default when GCC is configured, explicitly or
8180 implicitly, with the HP linker.  This option does not have any affect on
8181 which ld is called, it only changes what parameters are passed to that
8182 ld.  The ld that is called is determined by the @option{--with-ld}
8183 configure option, GCC's program search path, and finally by the user's
8184 @env{PATH}.  The linker used by GCC can be printed using @samp{which
8185 `gcc -print-prog-name=ld`}.
8186
8187 @item -mlong-calls
8188 @opindex mno-long-calls
8189 Generate code that uses long call sequences.  This ensures that a call
8190 is always able to reach linker generated stubs.  The default is to generate
8191 long calls only when the distance from the call site to the beginning
8192 of the function or translation unit, as the case may be, exceeds a
8193 predefined limit set by the branch type being used.  The limits for
8194 normal calls are 7,600,000 and 240,000 bytes, respectively for the
8195 PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
8196 240,000 bytes.
8197
8198 Distances are measured from the beginning of functions when using the
8199 @option{-ffunction-sections} option, or when using the @option{-mgas}
8200 and @option{-mno-portable-runtime} options together under HP-UX with
8201 the SOM linker.
8202
8203 It is normally not desirable to use this option as it will degrade
8204 performance.  However, it may be useful in large applications,
8205 particularly when partial linking is used to build the application.
8206
8207 The types of long calls used depends on the capabilities of the
8208 assembler and linker, and the type of code being generated.  The
8209 impact on systems that support long absolute calls, and long pic
8210 symbol-difference or pc-relative calls should be relatively small.
8211 However, an indirect call is used on 32-bit ELF systems in pic code
8212 and it is quite long.
8213
8214 @item -munix=@var{unix-std}
8215 @opindex march
8216 Generate compiler predefines and select a startfile for the specified
8217 UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
8218 and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
8219 is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
8220 11.11 and later.  The default values are @samp{93} for HP-UX 10.00,
8221 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
8222 and later.
8223
8224 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
8225 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
8226 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
8227 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
8228 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
8229 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
8230
8231 It is @emph{important} to note that this option changes the interfaces
8232 for various library routines.  It also affects the operational behavior
8233 of the C library.  Thus, @emph{extreme} care is needed in using this
8234 option.
8235
8236 Library code that is intended to operate with more than one UNIX
8237 standard must test, set and restore the variable @var{__xpg4_extended_mask}
8238 as appropriate.  Most GNU software doesn't provide this capability.
8239
8240 @item -nolibdld
8241 @opindex nolibdld
8242 Suppress the generation of link options to search libdld.sl when the
8243 @option{-static} option is specified on HP-UX 10 and later.
8244
8245 @item -static
8246 @opindex static
8247 The HP-UX implementation of setlocale in libc has a dependency on
8248 libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
8249 when the @option{-static} option is specified, special link options
8250 are needed to resolve this dependency.
8251
8252 On HP-UX 10 and later, the GCC driver adds the necessary options to
8253 link with libdld.sl when the @option{-static} option is specified.
8254 This causes the resulting binary to be dynamic.  On the 64-bit port,
8255 the linkers generate dynamic binaries by default in any case.  The
8256 @option{-nolibdld} option can be used to prevent the GCC driver from
8257 adding these link options.
8258
8259 @item -threads
8260 @opindex threads
8261 Add support for multithreading with the @dfn{dce thread} library
8262 under HP-UX.  This option sets flags for both the preprocessor and
8263 linker.
8264 @end table
8265
8266 @node i386 and x86-64 Options
8267 @subsection Intel 386 and AMD x86-64 Options
8268 @cindex i386 Options
8269 @cindex x86-64 Options
8270 @cindex Intel 386 Options
8271 @cindex AMD x86-64 Options
8272
8273 These @samp{-m} options are defined for the i386 and x86-64 family of
8274 computers:
8275
8276 @table @gcctabopt
8277 @item -mtune=@var{cpu-type}
8278 @opindex mtune
8279 Tune to @var{cpu-type} everything applicable about the generated code, except
8280 for the ABI and the set of available instructions.  The choices for
8281 @var{cpu-type} are:
8282 @table @emph
8283 @item i386
8284 Original Intel's i386 CPU.
8285 @item i486
8286 Intel's i486 CPU.  (No scheduling is implemented for this chip.)
8287 @item i586, pentium
8288 Intel Pentium CPU with no MMX support.
8289 @item pentium-mmx
8290 Intel PentiumMMX CPU based on Pentium core with MMX instruction set support.
8291 @item i686, pentiumpro
8292 Intel PentiumPro CPU.
8293 @item pentium2
8294 Intel Pentium2 CPU based on PentiumPro core with MMX instruction set support.
8295 @item pentium3, pentium3m
8296 Intel Pentium3 CPU based on PentiumPro core with MMX and SSE instruction set
8297 support.
8298 @item pentium-m
8299 Low power version of Intel Pentium3 CPU with MMX, SSE and SSE2 instruction set
8300 support.  Used by Centrino notebooks.
8301 @item pentium4, pentium4m
8302 Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set support.
8303 @item prescott
8304 Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2 and SSE3 instruction
8305 set support.
8306 @item nocona
8307 Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX, SSE,
8308 SSE2 and SSE3 instruction set support.
8309 @item k6
8310 AMD K6 CPU with MMX instruction set support.
8311 @item k6-2, k6-3
8312 Improved versions of AMD K6 CPU with MMX and 3dNOW! instruction set support.
8313 @item athlon, athlon-tbird
8314 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and SSE prefetch instructions
8315 support.
8316 @item athlon-4, athlon-xp, athlon-mp
8317 Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and full SSE
8318 instruction set support.
8319 @item k8, opteron, athlon64, athlon-fx
8320 AMD K8 core based CPUs with x86-64 instruction set support.  (This supersets
8321 MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW! and 64-bit instruction set extensions.)
8322 @item winchip-c6
8323 IDT Winchip C6 CPU, dealt in same way as i486 with additional MMX instruction
8324 set support.
8325 @item winchip2
8326 IDT Winchip2 CPU, dealt in same way as i486 with additional MMX and 3dNOW!
8327 instruction set support.
8328 @item c3
8329 Via C3 CPU with MMX and 3dNOW!  instruction set support.  (No scheduling is
8330 implemented for this chip.)
8331 @item c3-2
8332 Via C3-2 CPU with MMX and SSE instruction set support.  (No scheduling is
8333 implemented for this chip.)
8334 @end table
8335
8336 While picking a specific @var{cpu-type} will schedule things appropriately
8337 for that particular chip, the compiler will not generate any code that
8338 does not run on the i386 without the @option{-march=@var{cpu-type}} option
8339 being used.
8340
8341 @item -march=@var{cpu-type}
8342 @opindex march
8343 Generate instructions for the machine type @var{cpu-type}.  The choices
8344 for @var{cpu-type} are the same as for @option{-mtune}.  Moreover,
8345 specifying @option{-march=@var{cpu-type}} implies @option{-mtune=@var{cpu-type}}.
8346
8347 @item -mcpu=@var{cpu-type}
8348 @opindex mcpu
8349 A deprecated synonym for @option{-mtune}.
8350
8351 @item -m386
8352 @itemx -m486
8353 @itemx -mpentium
8354 @itemx -mpentiumpro
8355 @opindex m386
8356 @opindex m486
8357 @opindex mpentium
8358 @opindex mpentiumpro
8359 These options are synonyms for @option{-mtune=i386}, @option{-mtune=i486},
8360 @option{-mtune=pentium}, and @option{-mtune=pentiumpro} respectively.
8361 These synonyms are deprecated.
8362
8363 @item -mfpmath=@var{unit}
8364 @opindex march
8365 Generate floating point arithmetics for selected unit @var{unit}.  The choices
8366 for @var{unit} are:
8367
8368 @table @samp
8369 @item 387
8370 Use the standard 387 floating point coprocessor present majority of chips and
8371 emulated otherwise.  Code compiled with this option will run almost everywhere.
8372 The temporary results are computed in 80bit precision instead of precision
8373 specified by the type resulting in slightly different results compared to most
8374 of other chips. See @option{-ffloat-store} for more detailed description.
8375
8376 This is the default choice for i386 compiler.
8377
8378 @item sse
8379 Use scalar floating point instructions present in the SSE instruction set.
8380 This instruction set is supported by Pentium3 and newer chips, in the AMD line
8381 by Athlon-4, Athlon-xp and Athlon-mp chips.  The earlier version of SSE
8382 instruction set supports only single precision arithmetics, thus the double and
8383 extended precision arithmetics is still done using 387.  Later version, present
8384 only in Pentium4 and the future AMD x86-64 chips supports double precision
8385 arithmetics too.
8386
8387 For i387 you need to use @option{-march=@var{cpu-type}}, @option{-msse} or
8388 @option{-msse2} switches to enable SSE extensions and make this option
8389 effective.  For x86-64 compiler, these extensions are enabled by default.
8390
8391 The resulting code should be considerably faster in the majority of cases and avoid
8392 the numerical instability problems of 387 code, but may break some existing
8393 code that expects temporaries to be 80bit.
8394
8395 This is the default choice for the x86-64 compiler.
8396
8397 @item sse,387
8398 Attempt to utilize both instruction sets at once.  This effectively double the
8399 amount of available registers and on chips with separate execution units for
8400 387 and SSE the execution resources too.  Use this option with care, as it is
8401 still experimental, because the GCC register allocator does not model separate
8402 functional units well resulting in instable performance.
8403 @end table
8404
8405 @item -masm=@var{dialect}
8406 @opindex masm=@var{dialect}
8407 Output asm instructions using selected @var{dialect}. Supported choices are
8408 @samp{intel} or @samp{att} (the default one).
8409
8410 @item -mieee-fp
8411 @itemx -mno-ieee-fp
8412 @opindex mieee-fp
8413 @opindex mno-ieee-fp
8414 Control whether or not the compiler uses IEEE floating point
8415 comparisons.  These handle correctly the case where the result of a
8416 comparison is unordered.
8417
8418 @item -msoft-float
8419 @opindex msoft-float
8420 Generate output containing library calls for floating point.
8421 @strong{Warning:} the requisite libraries are not part of GCC@.
8422 Normally the facilities of the machine's usual C compiler are used, but
8423 this can't be done directly in cross-compilation.  You must make your
8424 own arrangements to provide suitable library functions for
8425 cross-compilation.
8426
8427 On machines where a function returns floating point results in the 80387
8428 register stack, some floating point opcodes may be emitted even if
8429 @option{-msoft-float} is used.
8430
8431 @item -mno-fp-ret-in-387
8432 @opindex mno-fp-ret-in-387
8433 Do not use the FPU registers for return values of functions.
8434
8435 The usual calling convention has functions return values of types
8436 @code{float} and @code{double} in an FPU register, even if there
8437 is no FPU@.  The idea is that the operating system should emulate
8438 an FPU@.
8439
8440 The option @option{-mno-fp-ret-in-387} causes such values to be returned
8441 in ordinary CPU registers instead.
8442
8443 @item -mno-fancy-math-387
8444 @opindex mno-fancy-math-387
8445 Some 387 emulators do not support the @code{sin}, @code{cos} and
8446 @code{sqrt} instructions for the 387.  Specify this option to avoid
8447 generating those instructions.  This option is the default on FreeBSD,
8448 OpenBSD and NetBSD@.  This option is overridden when @option{-march}
8449 indicates that the target cpu will always have an FPU and so the
8450 instruction will not need emulation.  As of revision 2.6.1, these
8451 instructions are not generated unless you also use the
8452 @option{-funsafe-math-optimizations} switch.
8453
8454 @item -malign-double
8455 @itemx -mno-align-double
8456 @opindex malign-double
8457 @opindex mno-align-double
8458 Control whether GCC aligns @code{double}, @code{long double}, and
8459 @code{long long} variables on a two word boundary or a one word
8460 boundary.  Aligning @code{double} variables on a two word boundary will
8461 produce code that runs somewhat faster on a @samp{Pentium} at the
8462 expense of more memory.
8463
8464 @strong{Warning:} if you use the @option{-malign-double} switch,
8465 structures containing the above types will be aligned differently than
8466 the published application binary interface specifications for the 386
8467 and will not be binary compatible with structures in code compiled
8468 without that switch.
8469
8470 @item -m96bit-long-double
8471 @itemx -m128bit-long-double
8472 @opindex m96bit-long-double
8473 @opindex m128bit-long-double
8474 These switches control the size of @code{long double} type. The i386
8475 application binary interface specifies the size to be 96 bits,
8476 so @option{-m96bit-long-double} is the default in 32 bit mode.
8477
8478 Modern architectures (Pentium and newer) would prefer @code{long double}
8479 to be aligned to an 8 or 16 byte boundary.  In arrays or structures
8480 conforming to the ABI, this would not be possible.  So specifying a
8481 @option{-m128bit-long-double} will align @code{long double}
8482 to a 16 byte boundary by padding the @code{long double} with an additional
8483 32 bit zero.
8484
8485 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
8486 its ABI specifies that @code{long double} is to be aligned on 16 byte boundary.
8487
8488 Notice that neither of these options enable any extra precision over the x87
8489 standard of 80 bits for a @code{long double}.
8490
8491 @strong{Warning:} if you override the default value for your target ABI, the
8492 structures and arrays containing @code{long double} variables will change
8493 their size as well as function calling convention for function taking
8494 @code{long double} will be modified.  Hence they will not be binary
8495 compatible with arrays or structures in code compiled without that switch.
8496
8497
8498 @item -msvr3-shlib
8499 @itemx -mno-svr3-shlib
8500 @opindex msvr3-shlib
8501 @opindex mno-svr3-shlib
8502 Control whether GCC places uninitialized local variables into the
8503 @code{bss} or @code{data} segments.  @option{-msvr3-shlib} places them
8504 into @code{bss}.  These options are meaningful only on System V Release 3.
8505
8506 @item -mrtd
8507 @opindex mrtd
8508 Use a different function-calling convention, in which functions that
8509 take a fixed number of arguments return with the @code{ret} @var{num}
8510 instruction, which pops their arguments while returning.  This saves one
8511 instruction in the caller since there is no need to pop the arguments
8512 there.
8513
8514 You can specify that an individual function is called with this calling
8515 sequence with the function attribute @samp{stdcall}.  You can also
8516 override the @option{-mrtd} option by using the function attribute
8517 @samp{cdecl}.  @xref{Function Attributes}.
8518
8519 @strong{Warning:} this calling convention is incompatible with the one
8520 normally used on Unix, so you cannot use it if you need to call
8521 libraries compiled with the Unix compiler.
8522
8523 Also, you must provide function prototypes for all functions that
8524 take variable numbers of arguments (including @code{printf});
8525 otherwise incorrect code will be generated for calls to those
8526 functions.
8527
8528 In addition, seriously incorrect code will result if you call a
8529 function with too many arguments.  (Normally, extra arguments are
8530 harmlessly ignored.)
8531
8532 @item -mregparm=@var{num}
8533 @opindex mregparm
8534 Control how many registers are used to pass integer arguments.  By
8535 default, no registers are used to pass arguments, and at most 3
8536 registers can be used.  You can control this behavior for a specific
8537 function by using the function attribute @samp{regparm}.
8538 @xref{Function Attributes}.
8539
8540 @strong{Warning:} if you use this switch, and
8541 @var{num} is nonzero, then you must build all modules with the same
8542 value, including any libraries.  This includes the system libraries and
8543 startup modules.
8544
8545 @item -mpreferred-stack-boundary=@var{num}
8546 @opindex mpreferred-stack-boundary
8547 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
8548 byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
8549 the default is 4 (16 bytes or 128 bits), except when optimizing for code
8550 size (@option{-Os}), in which case the default is the minimum correct
8551 alignment (4 bytes for x86, and 8 bytes for x86-64).
8552
8553 On Pentium and PentiumPro, @code{double} and @code{long double} values
8554 should be aligned to an 8 byte boundary (see @option{-malign-double}) or
8555 suffer significant run time performance penalties.  On Pentium III, the
8556 Streaming SIMD Extension (SSE) data type @code{__m128} suffers similar
8557 penalties if it is not 16 byte aligned.
8558
8559 To ensure proper alignment of this values on the stack, the stack boundary
8560 must be as aligned as that required by any value stored on the stack.
8561 Further, every function must be generated such that it keeps the stack
8562 aligned.  Thus calling a function compiled with a higher preferred
8563 stack boundary from a function compiled with a lower preferred stack
8564 boundary will most likely misalign the stack.  It is recommended that
8565 libraries that use callbacks always use the default setting.
8566
8567 This extra alignment does consume extra stack space, and generally
8568 increases code size.  Code that is sensitive to stack space usage, such
8569 as embedded systems and operating system kernels, may want to reduce the
8570 preferred alignment to @option{-mpreferred-stack-boundary=2}.
8571
8572 @item -mmmx
8573 @itemx -mno-mmx
8574 @item -msse
8575 @itemx -mno-sse
8576 @item -msse2
8577 @itemx -mno-sse2
8578 @item -msse3
8579 @itemx -mno-sse3
8580 @item -m3dnow
8581 @itemx -mno-3dnow
8582 @opindex mmmx
8583 @opindex mno-mmx
8584 @opindex msse
8585 @opindex mno-sse
8586 @opindex m3dnow
8587 @opindex mno-3dnow
8588 These switches enable or disable the use of built-in functions that allow
8589 direct access to the MMX, SSE, SSE2, SSE3 and 3Dnow extensions of the
8590 instruction set.
8591
8592 @xref{X86 Built-in Functions}, for details of the functions enabled
8593 and disabled by these switches.
8594
8595 To have SSE/SSE2 instructions generated automatically from floating-point
8596 code, see @option{-mfpmath=sse}.
8597
8598 @item -mpush-args
8599 @itemx -mno-push-args
8600 @opindex mpush-args
8601 @opindex mno-push-args
8602 Use PUSH operations to store outgoing parameters.  This method is shorter
8603 and usually equally fast as method using SUB/MOV operations and is enabled
8604 by default.  In some cases disabling it may improve performance because of
8605 improved scheduling and reduced dependencies.
8606
8607 @item -maccumulate-outgoing-args
8608 @opindex maccumulate-outgoing-args
8609 If enabled, the maximum amount of space required for outgoing arguments will be
8610 computed in the function prologue.  This is faster on most modern CPUs
8611 because of reduced dependencies, improved scheduling and reduced stack usage
8612 when preferred stack boundary is not equal to 2.  The drawback is a notable
8613 increase in code size.  This switch implies @option{-mno-push-args}.
8614
8615 @item -mthreads
8616 @opindex mthreads
8617 Support thread-safe exception handling on @samp{Mingw32}.  Code that relies
8618 on thread-safe exception handling must compile and link all code with the
8619 @option{-mthreads} option.  When compiling, @option{-mthreads} defines
8620 @option{-D_MT}; when linking, it links in a special thread helper library
8621 @option{-lmingwthrd} which cleans up per thread exception handling data.
8622
8623 @item -mno-align-stringops
8624 @opindex mno-align-stringops
8625 Do not align destination of inlined string operations.  This switch reduces
8626 code size and improves performance in case the destination is already aligned,
8627 but GCC doesn't know about it.
8628
8629 @item -minline-all-stringops
8630 @opindex minline-all-stringops
8631 By default GCC inlines string operations only when destination is known to be
8632 aligned at least to 4 byte boundary.  This enables more inlining, increase code
8633 size, but may improve performance of code that depends on fast memcpy, strlen
8634 and memset for short lengths.
8635
8636 @item -momit-leaf-frame-pointer
8637 @opindex momit-leaf-frame-pointer
8638 Don't keep the frame pointer in a register for leaf functions.  This
8639 avoids the instructions to save, set up and restore frame pointers and
8640 makes an extra register available in leaf functions.  The option
8641 @option{-fomit-frame-pointer} removes the frame pointer for all functions
8642 which might make debugging harder.
8643
8644 @item -mtls-direct-seg-refs
8645 @itemx -mno-tls-direct-seg-refs
8646 @opindex mtls-direct-seg-refs
8647 Controls whether TLS variables may be accessed with offsets from the
8648 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
8649 or whether the thread base pointer must be added.  Whether or not this
8650 is legal depends on the operating system, and whether it maps the
8651 segment to cover the entire TLS area.
8652
8653 For systems that use GNU libc, the default is on.
8654 @end table
8655
8656 These @samp{-m} switches are supported in addition to the above
8657 on AMD x86-64 processors in 64-bit environments.
8658
8659 @table @gcctabopt
8660 @item -m32
8661 @itemx -m64
8662 @opindex m32
8663 @opindex m64
8664 Generate code for a 32-bit or 64-bit environment.
8665 The 32-bit environment sets int, long and pointer to 32 bits and
8666 generates code that runs on any i386 system.
8667 The 64-bit environment sets int to 32 bits and long and pointer
8668 to 64 bits and generates code for AMD's x86-64 architecture.
8669
8670 @item -mno-red-zone
8671 @opindex no-red-zone
8672 Do not use a so called red zone for x86-64 code.  The red zone is mandated
8673 by the x86-64 ABI, it is a 128-byte area beyond the location of the
8674 stack pointer that will not be modified by signal or interrupt handlers
8675 and therefore can be used for temporary data without adjusting the stack
8676 pointer.  The flag @option{-mno-red-zone} disables this red zone.
8677
8678 @item -mcmodel=small
8679 @opindex mcmodel=small
8680 Generate code for the small code model: the program and its symbols must
8681 be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
8682 Programs can be statically or dynamically linked.  This is the default
8683 code model.
8684
8685 @item -mcmodel=kernel
8686 @opindex mcmodel=kernel
8687 Generate code for the kernel code model.  The kernel runs in the
8688 negative 2 GB of the address space.
8689 This model has to be used for Linux kernel code.
8690
8691 @item -mcmodel=medium
8692 @opindex mcmodel=medium
8693 Generate code for the medium model: The program is linked in the lower 2
8694 GB of the address space but symbols can be located anywhere in the
8695 address space.  Programs can be statically or dynamically linked, but
8696 building of shared libraries are not supported with the medium model.
8697
8698 @item -mcmodel=large
8699 @opindex mcmodel=large
8700 Generate code for the large model: This model makes no assumptions
8701 about addresses and sizes of sections.  Currently GCC does not implement
8702 this model.
8703 @end table
8704
8705 @node IA-64 Options
8706 @subsection IA-64 Options
8707 @cindex IA-64 Options
8708
8709 These are the @samp{-m} options defined for the Intel IA-64 architecture.
8710
8711 @table @gcctabopt
8712 @item -mbig-endian
8713 @opindex mbig-endian
8714 Generate code for a big endian target.  This is the default for HP-UX@.
8715
8716 @item -mlittle-endian
8717 @opindex mlittle-endian
8718 Generate code for a little endian target.  This is the default for AIX5
8719 and GNU/Linux.
8720
8721 @item -mgnu-as
8722 @itemx -mno-gnu-as
8723 @opindex mgnu-as
8724 @opindex mno-gnu-as
8725 Generate (or don't) code for the GNU assembler.  This is the default.
8726 @c Also, this is the default if the configure option @option{--with-gnu-as}
8727 @c is used.
8728
8729 @item -mgnu-ld
8730 @itemx -mno-gnu-ld
8731 @opindex mgnu-ld
8732 @opindex mno-gnu-ld
8733 Generate (or don't) code for the GNU linker.  This is the default.
8734 @c Also, this is the default if the configure option @option{--with-gnu-ld}
8735 @c is used.
8736
8737 @item -mno-pic
8738 @opindex mno-pic
8739 Generate code that does not use a global pointer register.  The result
8740 is not position independent code, and violates the IA-64 ABI@.
8741
8742 @item -mvolatile-asm-stop
8743 @itemx -mno-volatile-asm-stop
8744 @opindex mvolatile-asm-stop
8745 @opindex mno-volatile-asm-stop
8746 Generate (or don't) a stop bit immediately before and after volatile asm
8747 statements.
8748
8749 @item -mb-step
8750 @opindex mb-step
8751 Generate code that works around Itanium B step errata.
8752
8753 @item -mregister-names
8754 @itemx -mno-register-names
8755 @opindex mregister-names
8756 @opindex mno-register-names
8757 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
8758 the stacked registers.  This may make assembler output more readable.
8759
8760 @item -mno-sdata
8761 @itemx -msdata
8762 @opindex mno-sdata
8763 @opindex msdata
8764 Disable (or enable) optimizations that use the small data section.  This may
8765 be useful for working around optimizer bugs.
8766
8767 @item -mconstant-gp
8768 @opindex mconstant-gp
8769 Generate code that uses a single constant global pointer value.  This is
8770 useful when compiling kernel code.
8771
8772 @item -mauto-pic
8773 @opindex mauto-pic
8774 Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
8775 This is useful when compiling firmware code.
8776
8777 @item -minline-float-divide-min-latency
8778 @opindex minline-float-divide-min-latency
8779 Generate code for inline divides of floating point values
8780 using the minimum latency algorithm.
8781
8782 @item -minline-float-divide-max-throughput
8783 @opindex minline-float-divide-max-throughput
8784 Generate code for inline divides of floating point values
8785 using the maximum throughput algorithm.
8786
8787 @item -minline-int-divide-min-latency
8788 @opindex minline-int-divide-min-latency
8789 Generate code for inline divides of integer values
8790 using the minimum latency algorithm.
8791
8792 @item -minline-int-divide-max-throughput
8793 @opindex minline-int-divide-max-throughput
8794 Generate code for inline divides of integer values
8795 using the maximum throughput algorithm.
8796
8797 @item -mno-dwarf2-asm
8798 @itemx -mdwarf2-asm
8799 @opindex mno-dwarf2-asm
8800 @opindex mdwarf2-asm
8801 Don't (or do) generate assembler code for the DWARF2 line number debugging
8802 info.  This may be useful when not using the GNU assembler.
8803
8804 @item -mfixed-range=@var{register-range}
8805 @opindex mfixed-range
8806 Generate code treating the given register range as fixed registers.
8807 A fixed register is one that the register allocator can not use.  This is
8808 useful when compiling kernel code.  A register range is specified as
8809 two registers separated by a dash.  Multiple register ranges can be
8810 specified separated by a comma.
8811
8812 @item -mearly-stop-bits
8813 @itemx -mno-early-stop-bits
8814 @opindex mearly-stop-bits
8815 @opindex mno-early-stop-bits
8816 Allow stop bits to be placed earlier than immediately preceding the
8817 instruction that triggered the stop bit.  This can improve instruction
8818 scheduling, but does not always do so.
8819 @end table
8820
8821 @node M32R/D Options
8822 @subsection M32R/D Options
8823 @cindex M32R/D options
8824
8825 These @option{-m} options are defined for Renesas M32R/D architectures:
8826
8827 @table @gcctabopt
8828 @item -m32r2
8829 @opindex m32r2
8830 Generate code for the M32R/2@.
8831
8832 @item -m32rx
8833 @opindex m32rx
8834 Generate code for the M32R/X@.
8835
8836 @item -m32r
8837 @opindex m32r
8838 Generate code for the M32R@.  This is the default.
8839
8840 @item -mmodel=small
8841 @opindex mmodel=small
8842 Assume all objects live in the lower 16MB of memory (so that their addresses
8843 can be loaded with the @code{ld24} instruction), and assume all subroutines
8844 are reachable with the @code{bl} instruction.
8845 This is the default.
8846
8847 The addressability of a particular object can be set with the
8848 @code{model} attribute.
8849
8850 @item -mmodel=medium
8851 @opindex mmodel=medium
8852 Assume objects may be anywhere in the 32-bit address space (the compiler
8853 will generate @code{seth/add3} instructions to load their addresses), and
8854 assume all subroutines are reachable with the @code{bl} instruction.
8855
8856 @item -mmodel=large
8857 @opindex mmodel=large
8858 Assume objects may be anywhere in the 32-bit address space (the compiler
8859 will generate @code{seth/add3} instructions to load their addresses), and
8860 assume subroutines may not be reachable with the @code{bl} instruction
8861 (the compiler will generate the much slower @code{seth/add3/jl}
8862 instruction sequence).
8863
8864 @item -msdata=none
8865 @opindex msdata=none
8866 Disable use of the small data area.  Variables will be put into
8867 one of @samp{.data}, @samp{bss}, or @samp{.rodata} (unless the
8868 @code{section} attribute has been specified).
8869 This is the default.
8870
8871 The small data area consists of sections @samp{.sdata} and @samp{.sbss}.
8872 Objects may be explicitly put in the small data area with the
8873 @code{section} attribute using one of these sections.
8874
8875 @item -msdata=sdata
8876 @opindex msdata=sdata
8877 Put small global and static data in the small data area, but do not
8878 generate special code to reference them.
8879
8880 @item -msdata=use
8881 @opindex msdata=use
8882 Put small global and static data in the small data area, and generate
8883 special instructions to reference them.
8884
8885 @item -G @var{num}
8886 @opindex G
8887 @cindex smaller data references
8888 Put global and static objects less than or equal to @var{num} bytes
8889 into the small data or bss sections instead of the normal data or bss
8890 sections.  The default value of @var{num} is 8.
8891 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
8892 for this option to have any effect.
8893
8894 All modules should be compiled with the same @option{-G @var{num}} value.
8895 Compiling with different values of @var{num} may or may not work; if it
8896 doesn't the linker will give an error message---incorrect code will not be
8897 generated.
8898
8899 @item -mdebug
8900 @opindex mdebug
8901 Makes the M32R specific code in the compiler display some statistics
8902 that might help in debugging programs.
8903
8904 @item -malign-loops
8905 @opindex malign-loops
8906 Align all loops to a 32-byte boundary.
8907
8908 @item -mno-align-loops
8909 @opindex mno-align-loops
8910 Do not enforce a 32-byte alignment for loops.  This is the default.
8911
8912 @item -missue-rate=@var{number}
8913 @opindex missue-rate=@var{number}
8914 Issue @var{number} instructions per cycle.  @var{number} can only be 1
8915 or 2.
8916
8917 @item -mbranch-cost=@var{number}
8918 @opindex mbranch-cost=@var{number}
8919 @var{number} can only be 1 or 2.  If it is 1 then branches will be
8920 preferred over conditional code, if it is 2, then the opposite will
8921 apply.
8922
8923 @item -mflush-trap=@var{number}
8924 @opindex mflush-trap=@var{number}
8925 Specifies the trap number to use to flush the cache.  The default is
8926 12.  Valid numbers are between 0 and 15 inclusive.
8927
8928 @item -mno-flush-trap
8929 @opindex mno-flush-trap
8930 Specifies that the cache cannot be flushed by using a trap.
8931
8932 @item -mflush-func=@var{name}
8933 @opindex mflush-func=@var{name}
8934 Specifies the name of the operating system function to call to flush
8935 the cache.  The default is @emph{_flush_cache}, but a function call
8936 will only be used if a trap is not available.
8937
8938 @item -mno-flush-func
8939 @opindex mno-flush-func
8940 Indicates that there is no OS function for flushing the cache.
8941
8942 @end table
8943
8944 @node M680x0 Options
8945 @subsection M680x0 Options
8946 @cindex M680x0 options
8947
8948 These are the @samp{-m} options defined for the 68000 series.  The default
8949 values for these options depends on which style of 68000 was selected when
8950 the compiler was configured; the defaults for the most common choices are
8951 given below.
8952
8953 @table @gcctabopt
8954 @item -m68000
8955 @itemx -mc68000
8956 @opindex m68000
8957 @opindex mc68000
8958 Generate output for a 68000.  This is the default
8959 when the compiler is configured for 68000-based systems.
8960
8961 Use this option for microcontrollers with a 68000 or EC000 core,
8962 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
8963
8964 @item -m68020
8965 @itemx -mc68020
8966 @opindex m68020
8967 @opindex mc68020
8968 Generate output for a 68020.  This is the default
8969 when the compiler is configured for 68020-based systems.
8970
8971 @item -m68881
8972 @opindex m68881
8973 Generate output containing 68881 instructions for floating point.
8974 This is the default for most 68020 systems unless @option{--nfp} was
8975 specified when the compiler was configured.
8976
8977 @item -m68030
8978 @opindex m68030
8979 Generate output for a 68030.  This is the default when the compiler is
8980 configured for 68030-based systems.
8981
8982 @item -m68040
8983 @opindex m68040
8984 Generate output for a 68040.  This is the default when the compiler is
8985 configured for 68040-based systems.
8986
8987 This option inhibits the use of 68881/68882 instructions that have to be
8988 emulated by software on the 68040.  Use this option if your 68040 does not
8989 have code to emulate those instructions.
8990
8991 @item -m68060
8992 @opindex m68060
8993 Generate output for a 68060.  This is the default when the compiler is
8994 configured for 68060-based systems.
8995
8996 This option inhibits the use of 68020 and 68881/68882 instructions that
8997 have to be emulated by software on the 68060.  Use this option if your 68060
8998 does not have code to emulate those instructions.
8999
9000 @item -mcpu32
9001 @opindex mcpu32
9002 Generate output for a CPU32.  This is the default
9003 when the compiler is configured for CPU32-based systems.
9004
9005 Use this option for microcontrollers with a
9006 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
9007 68336, 68340, 68341, 68349 and 68360.
9008
9009 @item -m5200
9010 @opindex m5200
9011 Generate output for a 520X ``coldfire'' family cpu.  This is the default
9012 when the compiler is configured for 520X-based systems.
9013
9014 Use this option for microcontroller with a 5200 core, including
9015 the MCF5202, MCF5203, MCF5204 and MCF5202.
9016
9017
9018 @item -m68020-40
9019 @opindex m68020-40
9020 Generate output for a 68040, without using any of the new instructions.
9021 This results in code which can run relatively efficiently on either a
9022 68020/68881 or a 68030 or a 68040.  The generated code does use the
9023 68881 instructions that are emulated on the 68040.
9024
9025 @item -m68020-60
9026 @opindex m68020-60
9027 Generate output for a 68060, without using any of the new instructions.
9028 This results in code which can run relatively efficiently on either a
9029 68020/68881 or a 68030 or a 68040.  The generated code does use the
9030 68881 instructions that are emulated on the 68060.
9031
9032 @item -msoft-float
9033 @opindex msoft-float
9034 Generate output containing library calls for floating point.
9035 @strong{Warning:} the requisite libraries are not available for all m68k
9036 targets.  Normally the facilities of the machine's usual C compiler are
9037 used, but this can't be done directly in cross-compilation.  You must
9038 make your own arrangements to provide suitable library functions for
9039 cross-compilation.  The embedded targets @samp{m68k-*-aout} and
9040 @samp{m68k-*-coff} do provide software floating point support.
9041
9042 @item -mshort
9043 @opindex mshort
9044 Consider type @code{int} to be 16 bits wide, like @code{short int}.
9045 Additionally, parameters passed on the stack are also aligned to a
9046 16-bit boundary even on targets whose API mandates promotion to 32-bit.
9047
9048 @item -mnobitfield
9049 @opindex mnobitfield
9050 Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
9051 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
9052
9053 @item -mbitfield
9054 @opindex mbitfield
9055 Do use the bit-field instructions.  The @option{-m68020} option implies
9056 @option{-mbitfield}.  This is the default if you use a configuration
9057 designed for a 68020.
9058
9059 @item -mrtd
9060 @opindex mrtd
9061 Use a different function-calling convention, in which functions
9062 that take a fixed number of arguments return with the @code{rtd}
9063 instruction, which pops their arguments while returning.  This
9064 saves one instruction in the caller since there is no need to pop
9065 the arguments there.
9066
9067 This calling convention is incompatible with the one normally
9068 used on Unix, so you cannot use it if you need to call libraries
9069 compiled with the Unix compiler.
9070
9071 Also, you must provide function prototypes for all functions that
9072 take variable numbers of arguments (including @code{printf});
9073 otherwise incorrect code will be generated for calls to those
9074 functions.
9075
9076 In addition, seriously incorrect code will result if you call a
9077 function with too many arguments.  (Normally, extra arguments are
9078 harmlessly ignored.)
9079
9080 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
9081 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
9082
9083 @item -malign-int
9084 @itemx -mno-align-int
9085 @opindex malign-int
9086 @opindex mno-align-int
9087 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
9088 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
9089 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
9090 Aligning variables on 32-bit boundaries produces code that runs somewhat
9091 faster on processors with 32-bit busses at the expense of more memory.
9092
9093 @strong{Warning:} if you use the @option{-malign-int} switch, GCC will
9094 align structures containing the above types  differently than
9095 most published application binary interface specifications for the m68k.
9096
9097 @item -mpcrel
9098 @opindex mpcrel
9099 Use the pc-relative addressing mode of the 68000 directly, instead of
9100 using a global offset table.  At present, this option implies @option{-fpic},
9101 allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
9102 not presently supported with @option{-mpcrel}, though this could be supported for
9103 68020 and higher processors.
9104
9105 @item -mno-strict-align
9106 @itemx -mstrict-align
9107 @opindex mno-strict-align
9108 @opindex mstrict-align
9109 Do not (do) assume that unaligned memory references will be handled by
9110 the system.
9111
9112 @item -msep-data
9113 Generate code that allows the data segment to be located in a different
9114 area of memory from the text segment.  This allows for execute in place in
9115 an environment without virtual memory management.  This option implies -fPIC.
9116
9117 @item -mno-sep-data
9118 Generate code that assumes that the data segment follows the text segment.
9119 This is the default.
9120
9121 @item -mid-shared-library
9122 Generate code that supports shared libraries via the library ID method.
9123 This allows for execute in place and shared libraries in an environment
9124 without virtual memory management.  This option implies -fPIC.
9125
9126 @item -mno-id-shared-library
9127 Generate code that doesn't assume ID based shared libraries are being used.
9128 This is the default.
9129
9130 @item -mshared-library-id=n
9131 Specified the identification number of the ID based shared library being
9132 compiled.  Specifying a value of 0 will generate more compact code, specifying
9133 other values will force the allocation of that number to the current
9134 library but is no more space or time efficient than omitting this option.
9135
9136 @end table
9137
9138 @node M68hc1x Options
9139 @subsection M68hc1x Options
9140 @cindex M68hc1x options
9141
9142 These are the @samp{-m} options defined for the 68hc11 and 68hc12
9143 microcontrollers.  The default values for these options depends on
9144 which style of microcontroller was selected when the compiler was configured;
9145 the defaults for the most common choices are given below.
9146
9147 @table @gcctabopt
9148 @item -m6811
9149 @itemx -m68hc11
9150 @opindex m6811
9151 @opindex m68hc11
9152 Generate output for a 68HC11.  This is the default
9153 when the compiler is configured for 68HC11-based systems.
9154
9155 @item -m6812
9156 @itemx -m68hc12
9157 @opindex m6812
9158 @opindex m68hc12
9159 Generate output for a 68HC12.  This is the default
9160 when the compiler is configured for 68HC12-based systems.
9161
9162 @item -m68S12
9163 @itemx -m68hcs12
9164 @opindex m68S12
9165 @opindex m68hcs12
9166 Generate output for a 68HCS12.
9167
9168 @item -mauto-incdec
9169 @opindex mauto-incdec
9170 Enable the use of 68HC12 pre and post auto-increment and auto-decrement
9171 addressing modes.
9172
9173 @item -minmax
9174 @itemx -nominmax
9175 @opindex minmax
9176 @opindex mnominmax
9177 Enable the use of 68HC12 min and max instructions.
9178
9179 @item -mlong-calls
9180 @itemx -mno-long-calls
9181 @opindex mlong-calls
9182 @opindex mno-long-calls
9183 Treat all calls as being far away (near).  If calls are assumed to be
9184 far away, the compiler will use the @code{call} instruction to
9185 call a function and the @code{rtc} instruction for returning.
9186
9187 @item -mshort
9188 @opindex mshort
9189 Consider type @code{int} to be 16 bits wide, like @code{short int}.
9190
9191 @item -msoft-reg-count=@var{count}
9192 @opindex msoft-reg-count
9193 Specify the number of pseudo-soft registers which are used for the
9194 code generation.  The maximum number is 32.  Using more pseudo-soft
9195 register may or may not result in better code depending on the program.
9196 The default is 4 for 68HC11 and 2 for 68HC12.
9197
9198 @end table
9199
9200 @node MCore Options
9201 @subsection MCore Options
9202 @cindex MCore options
9203
9204 These are the @samp{-m} options defined for the Motorola M*Core
9205 processors.
9206
9207 @table @gcctabopt
9208
9209 @item -mhardlit
9210 @itemx -mno-hardlit
9211 @opindex mhardlit
9212 @opindex mno-hardlit
9213 Inline constants into the code stream if it can be done in two
9214 instructions or less.
9215
9216 @item -mdiv
9217 @itemx -mno-div
9218 @opindex mdiv
9219 @opindex mno-div
9220 Use the divide instruction.  (Enabled by default).
9221
9222 @item -mrelax-immediate
9223 @itemx -mno-relax-immediate
9224 @opindex mrelax-immediate
9225 @opindex mno-relax-immediate
9226 Allow arbitrary sized immediates in bit operations.
9227
9228 @item -mwide-bitfields
9229 @itemx -mno-wide-bitfields
9230 @opindex mwide-bitfields
9231 @opindex mno-wide-bitfields
9232 Always treat bit-fields as int-sized.
9233
9234 @item -m4byte-functions
9235 @itemx -mno-4byte-functions
9236 @opindex m4byte-functions
9237 @opindex mno-4byte-functions
9238 Force all functions to be aligned to a four byte boundary.
9239
9240 @item -mcallgraph-data
9241 @itemx -mno-callgraph-data
9242 @opindex mcallgraph-data
9243 @opindex mno-callgraph-data
9244 Emit callgraph information.
9245
9246 @item -mslow-bytes
9247 @itemx -mno-slow-bytes
9248 @opindex mslow-bytes
9249 @opindex mno-slow-bytes
9250 Prefer word access when reading byte quantities.
9251
9252 @item -mlittle-endian
9253 @itemx -mbig-endian
9254 @opindex mlittle-endian
9255 @opindex mbig-endian
9256 Generate code for a little endian target.
9257
9258 @item -m210
9259 @itemx -m340
9260 @opindex m210
9261 @opindex m340
9262 Generate code for the 210 processor.
9263 @end table
9264
9265 @node MIPS Options
9266 @subsection MIPS Options
9267 @cindex MIPS options
9268
9269 @table @gcctabopt
9270
9271 @item -EB
9272 @opindex EB
9273 Generate big-endian code.
9274
9275 @item -EL
9276 @opindex EL
9277 Generate little-endian code.  This is the default for @samp{mips*el-*-*}
9278 configurations.
9279
9280 @item -march=@var{arch}
9281 @opindex march
9282 Generate code that will run on @var{arch}, which can be the name of a
9283 generic MIPS ISA, or the name of a particular processor.
9284 The ISA names are:
9285 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
9286 @samp{mips32}, @samp{mips32r2}, and @samp{mips64}.
9287 The processor names are:
9288 @samp{4kc}, @samp{4kp}, @samp{5kc}, @samp{20kc},
9289 @samp{m4k},
9290 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
9291 @samp{r4600}, @samp{r4650}, @samp{r6000}, @samp{r8000}, @samp{rm7000},
9292 @samp{rm9000},
9293 @samp{orion},
9294 @samp{sb1},
9295 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
9296 @samp{vr5000}, @samp{vr5400} and @samp{vr5500}.
9297 The special value @samp{from-abi} selects the
9298 most compatible architecture for the selected ABI (that is,
9299 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
9300
9301 In processor names, a final @samp{000} can be abbreviated as @samp{k}
9302 (for example, @samp{-march=r2k}).  Prefixes are optional, and
9303 @samp{vr} may be written @samp{r}.
9304
9305 GCC defines two macros based on the value of this option.  The first
9306 is @samp{_MIPS_ARCH}, which gives the name of target architecture, as
9307 a string.  The second has the form @samp{_MIPS_ARCH_@var{foo}},
9308 where @var{foo} is the capitalized value of @samp{_MIPS_ARCH}@.
9309 For example, @samp{-march=r2000} will set @samp{_MIPS_ARCH}
9310 to @samp{"r2000"} and define the macro @samp{_MIPS_ARCH_R2000}.
9311
9312 Note that the @samp{_MIPS_ARCH} macro uses the processor names given
9313 above.  In other words, it will have the full prefix and will not
9314 abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
9315 the macro names the resolved architecture (either @samp{"mips1"} or
9316 @samp{"mips3"}).  It names the default architecture when no
9317 @option{-march} option is given.
9318
9319 @item -mtune=@var{arch}
9320 @opindex mtune
9321 Optimize for @var{arch}.  Among other things, this option controls
9322 the way instructions are scheduled, and the perceived cost of arithmetic
9323 operations.  The list of @var{arch} values is the same as for
9324 @option{-march}.
9325
9326 When this option is not used, GCC will optimize for the processor
9327 specified by @option{-march}.  By using @option{-march} and
9328 @option{-mtune} together, it is possible to generate code that will
9329 run on a family of processors, but optimize the code for one
9330 particular member of that family.
9331
9332 @samp{-mtune} defines the macros @samp{_MIPS_TUNE} and
9333 @samp{_MIPS_TUNE_@var{foo}}, which work in the same way as the
9334 @samp{-march} ones described above.
9335
9336 @item -mips1
9337 @opindex mips1
9338 Equivalent to @samp{-march=mips1}.
9339
9340 @item -mips2
9341 @opindex mips2
9342 Equivalent to @samp{-march=mips2}.
9343
9344 @item -mips3
9345 @opindex mips3
9346 Equivalent to @samp{-march=mips3}.
9347
9348 @item -mips4
9349 @opindex mips4
9350 Equivalent to @samp{-march=mips4}.
9351
9352 @item -mips32
9353 @opindex mips32
9354 Equivalent to @samp{-march=mips32}.
9355
9356 @item -mips32r2
9357 @opindex mips32r2
9358 Equivalent to @samp{-march=mips32r2}.
9359
9360 @item -mips64
9361 @opindex mips64
9362 Equivalent to @samp{-march=mips64}.
9363
9364 @item -mips16
9365 @itemx -mno-mips16
9366 @opindex mips16
9367 @opindex mno-mips16
9368 Use (do not use) the MIPS16 ISA.
9369
9370 @item -mabi=32
9371 @itemx -mabi=o64
9372 @itemx -mabi=n32
9373 @itemx -mabi=64
9374 @itemx -mabi=eabi
9375 @opindex mabi=32
9376 @opindex mabi=o64
9377 @opindex mabi=n32
9378 @opindex mabi=64
9379 @opindex mabi=eabi
9380 Generate code for the given ABI@.
9381
9382 Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
9383 generates 64-bit code when you select a 64-bit architecture, but you
9384 can use @option{-mgp32} to get 32-bit code instead.
9385
9386 For information about the O64 ABI, see
9387 @w{@uref{http://gcc.gnu.org/projects/mipso64-abi.html}}.
9388
9389 @item -mabicalls
9390 @itemx -mno-abicalls
9391 @opindex mabicalls
9392 @opindex mno-abicalls
9393 Generate (do not generate) SVR4-style position-independent code.
9394 @option{-mabicalls} is the default for SVR4-based systems.
9395
9396 @item -mxgot
9397 @itemx -mno-xgot
9398 @opindex mxgot
9399 @opindex mno-xgot
9400 Lift (do not lift) the usual restrictions on the size of the global
9401 offset table.
9402
9403 GCC normally uses a single instruction to load values from the GOT.
9404 While this is relatively efficient, it will only work if the GOT
9405 is smaller than about 64k.  Anything larger will cause the linker
9406 to report an error such as:
9407
9408 @cindex relocation truncated to fit (MIPS)
9409 @smallexample
9410 relocation truncated to fit: R_MIPS_GOT16 foobar
9411 @end smallexample
9412
9413 If this happens, you should recompile your code with @option{-mxgot}.
9414 It should then work with very large GOTs, although it will also be
9415 less efficient, since it will take three instructions to fetch the
9416 value of a global symbol.
9417
9418 Note that some linkers can create multiple GOTs.  If you have such a
9419 linker, you should only need to use @option{-mxgot} when a single object
9420 file accesses more than 64k's worth of GOT entries.  Very few do.
9421
9422 These options have no effect unless GCC is generating position
9423 independent code.
9424
9425 @item -mgp32
9426 @opindex mgp32
9427 Assume that general-purpose registers are 32 bits wide.
9428
9429 @item -mgp64
9430 @opindex mgp64
9431 Assume that general-purpose registers are 64 bits wide.
9432
9433 @item -mfp32
9434 @opindex mfp32
9435 Assume that floating-point registers are 32 bits wide.
9436
9437 @item -mfp64
9438 @opindex mfp64
9439 Assume that floating-point registers are 64 bits wide.
9440
9441 @item -mhard-float
9442 @opindex mhard-float
9443 Use floating-point coprocessor instructions.
9444
9445 @item -msoft-float
9446 @opindex msoft-float
9447 Do not use floating-point coprocessor instructions.  Implement
9448 floating-point calculations using library calls instead.
9449
9450 @item -msingle-float
9451 @opindex msingle-float
9452 Assume that the floating-point coprocessor only supports single-precision
9453 operations.
9454
9455 @itemx -mdouble-float
9456 @opindex mdouble-float
9457 Assume that the floating-point coprocessor supports double-precision
9458 operations.  This is the default.
9459
9460 @itemx -mpaired-single
9461 @itemx -mno-paired-single
9462 @opindex mpaired-single
9463 @opindex mno-paired-single
9464 Use (do not use) the paired single instructions.
9465
9466 @itemx -mips3d
9467 @itemx -mno-mips3d
9468 @opindex mips3d
9469 @opindex mno-mips3d
9470 Use (do not use) the MIPS-3D ASE.  The option @option{-mips3d} implies
9471 @option{-mpaired-single}.
9472
9473 @item -mint64
9474 @opindex mint64
9475 Force @code{int} and @code{long} types to be 64 bits wide.  See
9476 @option{-mlong32} for an explanation of the default and the way
9477 that the pointer size is determined.
9478
9479 @item -mlong64
9480 @opindex mlong64
9481 Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
9482 an explanation of the default and the way that the pointer size is
9483 determined.
9484
9485 @item -mlong32
9486 @opindex mlong32
9487 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
9488
9489 The default size of @code{int}s, @code{long}s and pointers depends on
9490 the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
9491 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
9492 32-bit @code{long}s.  Pointers are the same size as @code{long}s,
9493 or the same size as integer registers, whichever is smaller.
9494
9495 @item -G @var{num}
9496 @opindex G
9497 @cindex smaller data references (MIPS)
9498 @cindex gp-relative references (MIPS)
9499 Put global and static items less than or equal to @var{num} bytes into
9500 the small data or bss section instead of the normal data or bss section.
9501 This allows the data to be accessed using a single instruction.
9502
9503 All modules should be compiled with the same @option{-G @var{num}}
9504 value.
9505
9506 @item -membedded-data
9507 @itemx -mno-embedded-data
9508 @opindex membedded-data
9509 @opindex mno-embedded-data
9510 Allocate variables to the read-only data section first if possible, then
9511 next in the small data section if possible, otherwise in data.  This gives
9512 slightly slower code than the default, but reduces the amount of RAM required
9513 when executing, and thus may be preferred for some embedded systems.
9514
9515 @item -muninit-const-in-rodata
9516 @itemx -mno-uninit-const-in-rodata
9517 @opindex muninit-const-in-rodata
9518 @opindex mno-uninit-const-in-rodata
9519 Put uninitialized @code{const} variables in the read-only data section.
9520 This option is only meaningful in conjunction with @option{-membedded-data}.
9521
9522 @item -msplit-addresses
9523 @itemx -mno-split-addresses
9524 @opindex msplit-addresses
9525 @opindex mno-split-addresses
9526 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
9527 relocation operators.  This option has been superceded by
9528 @option{-mexplicit-relocs} but is retained for backwards compatibility.
9529
9530 @item -mexplicit-relocs
9531 @itemx -mno-explicit-relocs
9532 @opindex mexplicit-relocs
9533 @opindex mno-explicit-relocs
9534 Use (do not use) assembler relocation operators when dealing with symbolic
9535 addresses.  The alternative, selected by @option{-mno-explicit-relocs},
9536 is to use assembler macros instead.
9537
9538 @option{-mexplicit-relocs} is the default if GCC was configured
9539 to use an assembler that supports relocation operators.
9540
9541 @item -mcheck-zero-division
9542 @itemx -mno-check-zero-division
9543 @opindex mcheck-zero-division
9544 @opindex mno-check-zero-division
9545 Trap (do not trap) on integer division by zero.  The default is
9546 @option{-mcheck-zero-division}.
9547
9548 @item -mdivide-traps
9549 @itemx -mdivide-breaks
9550 @opindex mdivide-traps
9551 @opindex mdivide-breaks
9552 MIPS systems check for division by zero by generating either a
9553 conditional trap or a break instruction.  Using traps results in
9554 smaller code, but is only supported on MIPS II and later.  Also, some
9555 versions of the Linux kernel have a bug that prevents trap from
9556 generating the proper signal (SIGFPE).  Use @option{-mdivide-traps} to
9557 allow conditional traps on architectures that support them and
9558 @option{-mdivide-breaks} to force the use of breaks.
9559
9560 The default is usually @option{-mdivide-traps}, but this can be
9561 overridden at configure time using @option{--with-divide=breaks}.
9562 Divide-by-zero checks can be completely disabled using
9563 @option{-mno-check-zero-division}.
9564
9565 @item -mmemcpy
9566 @itemx -mno-memcpy
9567 @opindex mmemcpy
9568 @opindex mno-memcpy
9569 Force (do not force) the use of @code{memcpy()} for non-trivial block
9570 moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
9571 most constant-sized copies.
9572
9573 @item -mlong-calls
9574 @itemx -mno-long-calls
9575 @opindex mlong-calls
9576 @opindex mno-long-calls
9577 Disable (do not disable) use of the @code{jal} instruction.  Calling
9578 functions using @code{jal} is more efficient but requires the caller
9579 and callee to be in the same 256 megabyte segment.
9580
9581 This option has no effect on abicalls code.  The default is
9582 @option{-mno-long-calls}.
9583
9584 @item -mmad
9585 @itemx -mno-mad
9586 @opindex mmad
9587 @opindex mno-mad
9588 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
9589 instructions, as provided by the R4650 ISA.
9590
9591 @item -mfused-madd
9592 @itemx -mno-fused-madd
9593 @opindex mfused-madd
9594 @opindex mno-fused-madd
9595 Enable (disable) use of the floating point multiply-accumulate
9596 instructions, when they are available.  The default is
9597 @option{-mfused-madd}.
9598
9599 When multiply-accumulate instructions are used, the intermediate
9600 product is calculated to infinite precision and is not subject to
9601 the FCSR Flush to Zero bit.  This may be undesirable in some
9602 circumstances.
9603
9604 @item -nocpp
9605 @opindex nocpp
9606 Tell the MIPS assembler to not run its preprocessor over user
9607 assembler files (with a @samp{.s} suffix) when assembling them.
9608
9609 @item -mfix-r4000
9610 @itemx -mno-fix-r4000
9611 @opindex mfix-r4000
9612 @opindex mno-fix-r4000
9613 Work around certain R4000 CPU errata:
9614 @itemize @minus
9615 @item
9616 A double-word or a variable shift may give an incorrect result if executed
9617 immediately after starting an integer division.
9618 @item
9619 A double-word or a variable shift may give an incorrect result if executed
9620 while an integer multiplication is in progress.
9621 @item
9622 An integer division may give an incorrect result if started in a delay slot
9623 of a taken branch or a jump.
9624 @end itemize
9625
9626 @item -mfix-r4400
9627 @itemx -mno-fix-r4400
9628 @opindex mfix-r4400
9629 @opindex mno-fix-r4400
9630 Work around certain R4400 CPU errata:
9631 @itemize @minus
9632 @item
9633 A double-word or a variable shift may give an incorrect result if executed
9634 immediately after starting an integer division.
9635 @end itemize
9636
9637 @item -mfix-vr4120
9638 @itemx -mno-fix-vr4120
9639 @opindex mfix-vr4120
9640 Work around certain VR4120 errata:
9641 @itemize @minus
9642 @item
9643 @code{dmultu} does not always produce the correct result.
9644 @item
9645 @code{div} and @code{ddiv} do not always produce the correct result if one
9646 of the operands is negative.
9647 @end itemize
9648 The workarounds for the division errata rely on special functions in
9649 @file{libgcc.a}.  At present, these functions are only provided by
9650 the @code{mips64vr*-elf} configurations.
9651
9652 Other VR4120 errata require a nop to be inserted between certain pairs of
9653 instructions.  These errata are handled by the assembler, not by GCC itself.
9654
9655 @item -mfix-sb1
9656 @itemx -mno-fix-sb1
9657 @opindex mfix-sb1
9658 Work around certain SB-1 CPU core errata.
9659 (This flag currently works around the SB-1 revision 2
9660 ``F1'' and ``F2'' floating point errata.)
9661
9662 @item -mflush-func=@var{func}
9663 @itemx -mno-flush-func
9664 @opindex mflush-func
9665 Specifies the function to call to flush the I and D caches, or to not
9666 call any such function.  If called, the function must take the same
9667 arguments as the common @code{_flush_func()}, that is, the address of the
9668 memory range for which the cache is being flushed, the size of the
9669 memory range, and the number 3 (to flush both caches).  The default
9670 depends on the target GCC was configured for, but commonly is either
9671 @samp{_flush_func} or @samp{__cpu_flush}.
9672
9673 @item -mbranch-likely
9674 @itemx -mno-branch-likely
9675 @opindex mbranch-likely
9676 @opindex mno-branch-likely
9677 Enable or disable use of Branch Likely instructions, regardless of the
9678 default for the selected architecture.  By default, Branch Likely
9679 instructions may be generated if they are supported by the selected
9680 architecture.  An exception is for the MIPS32 and MIPS64 architectures
9681 and processors which implement those architectures; for those, Branch
9682 Likely instructions will not be generated by default because the MIPS32
9683 and MIPS64 architectures specifically deprecate their use.
9684
9685 @item -mfp-exceptions
9686 @itemx -mno-fp-exceptions
9687 @opindex mfp-exceptions
9688 Specifies whether FP exceptions are enabled.  This affects how we schedule
9689 FP instructions for some processors.  The default is that FP exceptions are
9690 enabled.
9691
9692 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
9693 64-bit code, then we can use both FP pipes.  Otherwise, we can only use one
9694 FP pipe.
9695
9696 @item -mvr4130-align
9697 @itemx -mno-vr4130-align
9698 @opindex mvr4130-align
9699 The VR4130 pipeline is two-way superscalar, but can only issue two
9700 instructions together if the first one is 8-byte aligned.  When this
9701 option is enabled, GCC will align pairs of instructions that it
9702 thinks should execute in parallel.
9703
9704 This option only has an effect when optimizing for the VR4130.
9705 It normally makes code faster, but at the expense of making it bigger.
9706 It is enabled by default at optimization level @option{-O3}.
9707 @end table
9708
9709 @node MMIX Options
9710 @subsection MMIX Options
9711 @cindex MMIX Options
9712
9713 These options are defined for the MMIX:
9714
9715 @table @gcctabopt
9716 @item -mlibfuncs
9717 @itemx -mno-libfuncs
9718 @opindex mlibfuncs
9719 @opindex mno-libfuncs
9720 Specify that intrinsic library functions are being compiled, passing all
9721 values in registers, no matter the size.
9722
9723 @item -mepsilon
9724 @itemx -mno-epsilon
9725 @opindex mepsilon
9726 @opindex mno-epsilon
9727 Generate floating-point comparison instructions that compare with respect
9728 to the @code{rE} epsilon register.
9729
9730 @item -mabi=mmixware
9731 @itemx -mabi=gnu
9732 @opindex mabi-mmixware
9733 @opindex mabi=gnu
9734 Generate code that passes function parameters and return values that (in
9735 the called function) are seen as registers @code{$0} and up, as opposed to
9736 the GNU ABI which uses global registers @code{$231} and up.
9737
9738 @item -mzero-extend
9739 @itemx -mno-zero-extend
9740 @opindex mzero-extend
9741 @opindex mno-zero-extend
9742 When reading data from memory in sizes shorter than 64 bits, use (do not
9743 use) zero-extending load instructions by default, rather than
9744 sign-extending ones.
9745
9746 @item -mknuthdiv
9747 @itemx -mno-knuthdiv
9748 @opindex mknuthdiv
9749 @opindex mno-knuthdiv
9750 Make the result of a division yielding a remainder have the same sign as
9751 the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
9752 remainder follows the sign of the dividend.  Both methods are
9753 arithmetically valid, the latter being almost exclusively used.
9754
9755 @item -mtoplevel-symbols
9756 @itemx -mno-toplevel-symbols
9757 @opindex mtoplevel-symbols
9758 @opindex mno-toplevel-symbols
9759 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
9760 code can be used with the @code{PREFIX} assembly directive.
9761
9762 @item -melf
9763 @opindex melf
9764 Generate an executable in the ELF format, rather than the default
9765 @samp{mmo} format used by the @command{mmix} simulator.
9766
9767 @item -mbranch-predict
9768 @itemx -mno-branch-predict
9769 @opindex mbranch-predict
9770 @opindex mno-branch-predict
9771 Use (do not use) the probable-branch instructions, when static branch
9772 prediction indicates a probable branch.
9773
9774 @item -mbase-addresses
9775 @itemx -mno-base-addresses
9776 @opindex mbase-addresses
9777 @opindex mno-base-addresses
9778 Generate (do not generate) code that uses @emph{base addresses}.  Using a
9779 base address automatically generates a request (handled by the assembler
9780 and the linker) for a constant to be set up in a global register.  The
9781 register is used for one or more base address requests within the range 0
9782 to 255 from the value held in the register.  The generally leads to short
9783 and fast code, but the number of different data items that can be
9784 addressed is limited.  This means that a program that uses lots of static
9785 data may require @option{-mno-base-addresses}.
9786
9787 @item -msingle-exit
9788 @itemx -mno-single-exit
9789 @opindex msingle-exit
9790 @opindex mno-single-exit
9791 Force (do not force) generated code to have a single exit point in each
9792 function.
9793 @end table
9794
9795 @node MN10300 Options
9796 @subsection MN10300 Options
9797 @cindex MN10300 options
9798
9799 These @option{-m} options are defined for Matsushita MN10300 architectures:
9800
9801 @table @gcctabopt
9802 @item -mmult-bug
9803 @opindex mmult-bug
9804 Generate code to avoid bugs in the multiply instructions for the MN10300
9805 processors.  This is the default.
9806
9807 @item -mno-mult-bug
9808 @opindex mno-mult-bug
9809 Do not generate code to avoid bugs in the multiply instructions for the
9810 MN10300 processors.
9811
9812 @item -mam33
9813 @opindex mam33
9814 Generate code which uses features specific to the AM33 processor.
9815
9816 @item -mno-am33
9817 @opindex mno-am33
9818 Do not generate code which uses features specific to the AM33 processor.  This
9819 is the default.
9820
9821 @item -mno-crt0
9822 @opindex mno-crt0
9823 Do not link in the C run-time initialization object file.
9824
9825 @item -mrelax
9826 @opindex mrelax
9827 Indicate to the linker that it should perform a relaxation optimization pass
9828 to shorten branches, calls and absolute memory addresses.  This option only
9829 has an effect when used on the command line for the final link step.
9830
9831 This option makes symbolic debugging impossible.
9832 @end table
9833
9834 @node NS32K Options
9835 @subsection NS32K Options
9836 @cindex NS32K options
9837
9838 These are the @samp{-m} options defined for the 32000 series.  The default
9839 values for these options depends on which style of 32000 was selected when
9840 the compiler was configured; the defaults for the most common choices are
9841 given below.
9842
9843 @table @gcctabopt
9844 @item -m32032
9845 @itemx -m32032
9846 @opindex m32032
9847 @opindex m32032
9848 Generate output for a 32032.  This is the default
9849 when the compiler is configured for 32032 and 32016 based systems.
9850
9851 @item -m32332
9852 @itemx -m32332
9853 @opindex m32332
9854 @opindex m32332
9855 Generate output for a 32332.  This is the default
9856 when the compiler is configured for 32332-based systems.
9857
9858 @item -m32532
9859 @itemx -m32532
9860 @opindex m32532
9861 @opindex m32532
9862 Generate output for a 32532.  This is the default
9863 when the compiler is configured for 32532-based systems.
9864
9865 @item -m32081
9866 @opindex m32081
9867 Generate output containing 32081 instructions for floating point.
9868 This is the default for all systems.
9869
9870 @item -m32381
9871 @opindex m32381
9872 Generate output containing 32381 instructions for floating point.  This
9873 also implies @option{-m32081}.  The 32381 is only compatible with the 32332
9874 and 32532 cpus.  This is the default for the pc532-netbsd configuration.
9875
9876 @item -mmulti-add
9877 @opindex mmulti-add
9878 Try and generate multiply-add floating point instructions @code{polyF}
9879 and @code{dotF}.  This option is only available if the @option{-m32381}
9880 option is in effect.  Using these instructions requires changes to
9881 register allocation which generally has a negative impact on
9882 performance.  This option should only be enabled when compiling code
9883 particularly likely to make heavy use of multiply-add instructions.
9884
9885 @item -mnomulti-add
9886 @opindex mnomulti-add
9887 Do not try and generate multiply-add floating point instructions
9888 @code{polyF} and @code{dotF}.  This is the default on all platforms.
9889
9890 @item -msoft-float
9891 @opindex msoft-float
9892 Generate output containing library calls for floating point.
9893 @strong{Warning:} the requisite libraries may not be available.
9894
9895 @item -mieee-compare
9896 @itemx -mno-ieee-compare
9897 @opindex mieee-compare
9898 @opindex mno-ieee-compare
9899 Control whether or not the compiler uses IEEE floating point
9900 comparisons.  These handle correctly the case where the result of a
9901 comparison is unordered.
9902 @strong{Warning:} the requisite kernel support may not be available.
9903
9904 @item -mnobitfield
9905 @opindex mnobitfield
9906 Do not use the bit-field instructions.  On some machines it is faster to
9907 use shifting and masking operations.  This is the default for the pc532.
9908
9909 @item -mbitfield
9910 @opindex mbitfield
9911 Do use the bit-field instructions.  This is the default for all platforms
9912 except the pc532.
9913
9914 @item -mrtd
9915 @opindex mrtd
9916 Use a different function-calling convention, in which functions
9917 that take a fixed number of arguments return pop their
9918 arguments on return with the @code{ret} instruction.
9919
9920 This calling convention is incompatible with the one normally
9921 used on Unix, so you cannot use it if you need to call libraries
9922 compiled with the Unix compiler.
9923
9924 Also, you must provide function prototypes for all functions that
9925 take variable numbers of arguments (including @code{printf});
9926 otherwise incorrect code will be generated for calls to those
9927 functions.
9928
9929 In addition, seriously incorrect code will result if you call a
9930 function with too many arguments.  (Normally, extra arguments are
9931 harmlessly ignored.)
9932
9933 This option takes its name from the 680x0 @code{rtd} instruction.
9934
9935
9936 @item -mregparam
9937 @opindex mregparam
9938 Use a different function-calling convention where the first two arguments
9939 are passed in registers.
9940
9941 This calling convention is incompatible with the one normally
9942 used on Unix, so you cannot use it if you need to call libraries
9943 compiled with the Unix compiler.
9944
9945 @item -mnoregparam
9946 @opindex mnoregparam
9947 Do not pass any arguments in registers.  This is the default for all
9948 targets.
9949
9950 @item -msb
9951 @opindex msb
9952 It is OK to use the sb as an index register which is always loaded with
9953 zero.  This is the default for the pc532-netbsd target.
9954
9955 @item -mnosb
9956 @opindex mnosb
9957 The sb register is not available for use or has not been initialized to
9958 zero by the run time system.  This is the default for all targets except
9959 the pc532-netbsd.  It is also implied whenever @option{-mhimem} or
9960 @option{-fpic} is set.
9961
9962 @item -mhimem
9963 @opindex mhimem
9964 Many ns32000 series addressing modes use displacements of up to 512MB@.
9965 If an address is above 512MB then displacements from zero can not be used.
9966 This option causes code to be generated which can be loaded above 512MB@.
9967 This may be useful for operating systems or ROM code.
9968
9969 @item -mnohimem
9970 @opindex mnohimem
9971 Assume code will be loaded in the first 512MB of virtual address space.
9972 This is the default for all platforms.
9973
9974 @end table
9975
9976 @node PDP-11 Options
9977 @subsection PDP-11 Options
9978 @cindex PDP-11 Options
9979
9980 These options are defined for the PDP-11:
9981
9982 @table @gcctabopt
9983 @item -mfpu
9984 @opindex mfpu
9985 Use hardware FPP floating point.  This is the default.  (FIS floating
9986 point on the PDP-11/40 is not supported.)
9987
9988 @item -msoft-float
9989 @opindex msoft-float
9990 Do not use hardware floating point.
9991
9992 @item -mac0
9993 @opindex mac0
9994 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
9995
9996 @item -mno-ac0
9997 @opindex mno-ac0
9998 Return floating-point results in memory.  This is the default.
9999
10000 @item -m40
10001 @opindex m40
10002 Generate code for a PDP-11/40.
10003
10004 @item -m45
10005 @opindex m45
10006 Generate code for a PDP-11/45.  This is the default.
10007
10008 @item -m10
10009 @opindex m10
10010 Generate code for a PDP-11/10.
10011
10012 @item -mbcopy-builtin
10013 @opindex bcopy-builtin
10014 Use inline @code{movmemhi} patterns for copying memory.  This is the
10015 default.
10016
10017 @item -mbcopy
10018 @opindex mbcopy
10019 Do not use inline @code{movmemhi} patterns for copying memory.
10020
10021 @item -mint16
10022 @itemx -mno-int32
10023 @opindex mint16
10024 @opindex mno-int32
10025 Use 16-bit @code{int}.  This is the default.
10026
10027 @item -mint32
10028 @itemx -mno-int16
10029 @opindex mint32
10030 @opindex mno-int16
10031 Use 32-bit @code{int}.
10032
10033 @item -mfloat64
10034 @itemx -mno-float32
10035 @opindex mfloat64
10036 @opindex mno-float32
10037 Use 64-bit @code{float}.  This is the default.
10038
10039 @item -mfloat32
10040 @itemx -mno-float64
10041 @opindex mfloat32
10042 @opindex mno-float64
10043 Use 32-bit @code{float}.
10044
10045 @item -mabshi
10046 @opindex mabshi
10047 Use @code{abshi2} pattern.  This is the default.
10048
10049 @item -mno-abshi
10050 @opindex mno-abshi
10051 Do not use @code{abshi2} pattern.
10052
10053 @item -mbranch-expensive
10054 @opindex mbranch-expensive
10055 Pretend that branches are expensive.  This is for experimenting with
10056 code generation only.
10057
10058 @item -mbranch-cheap
10059 @opindex mbranch-cheap
10060 Do not pretend that branches are expensive.  This is the default.
10061
10062 @item -msplit
10063 @opindex msplit
10064 Generate code for a system with split I&D.
10065
10066 @item -mno-split
10067 @opindex mno-split
10068 Generate code for a system without split I&D.  This is the default.
10069
10070 @item -munix-asm
10071 @opindex munix-asm
10072 Use Unix assembler syntax.  This is the default when configured for
10073 @samp{pdp11-*-bsd}.
10074
10075 @item -mdec-asm
10076 @opindex mdec-asm
10077 Use DEC assembler syntax.  This is the default when configured for any
10078 PDP-11 target other than @samp{pdp11-*-bsd}.
10079 @end table
10080
10081 @node PowerPC Options
10082 @subsection PowerPC Options
10083 @cindex PowerPC options
10084
10085 These are listed under @xref{RS/6000 and PowerPC Options}.
10086
10087 @node RS/6000 and PowerPC Options
10088 @subsection IBM RS/6000 and PowerPC Options
10089 @cindex RS/6000 and PowerPC Options
10090 @cindex IBM RS/6000 and PowerPC Options
10091
10092 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
10093 @table @gcctabopt
10094 @item -mpower
10095 @itemx -mno-power
10096 @itemx -mpower2
10097 @itemx -mno-power2
10098 @itemx -mpowerpc
10099 @itemx -mno-powerpc
10100 @itemx -mpowerpc-gpopt
10101 @itemx -mno-powerpc-gpopt
10102 @itemx -mpowerpc-gfxopt
10103 @itemx -mno-powerpc-gfxopt
10104 @itemx -mpowerpc64
10105 @itemx -mno-powerpc64
10106 @opindex mpower
10107 @opindex mno-power
10108 @opindex mpower2
10109 @opindex mno-power2
10110 @opindex mpowerpc
10111 @opindex mno-powerpc
10112 @opindex mpowerpc-gpopt
10113 @opindex mno-powerpc-gpopt
10114 @opindex mpowerpc-gfxopt
10115 @opindex mno-powerpc-gfxopt
10116 @opindex mpowerpc64
10117 @opindex mno-powerpc64
10118 GCC supports two related instruction set architectures for the
10119 RS/6000 and PowerPC@.  The @dfn{POWER} instruction set are those
10120 instructions supported by the @samp{rios} chip set used in the original
10121 RS/6000 systems and the @dfn{PowerPC} instruction set is the
10122 architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and
10123 the IBM 4xx microprocessors.
10124
10125 Neither architecture is a subset of the other.  However there is a
10126 large common subset of instructions supported by both.  An MQ
10127 register is included in processors supporting the POWER architecture.
10128
10129 You use these options to specify which instructions are available on the
10130 processor you are using.  The default value of these options is
10131 determined when configuring GCC@.  Specifying the
10132 @option{-mcpu=@var{cpu_type}} overrides the specification of these
10133 options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
10134 rather than the options listed above.
10135
10136 The @option{-mpower} option allows GCC to generate instructions that
10137 are found only in the POWER architecture and to use the MQ register.
10138 Specifying @option{-mpower2} implies @option{-power} and also allows GCC
10139 to generate instructions that are present in the POWER2 architecture but
10140 not the original POWER architecture.
10141
10142 The @option{-mpowerpc} option allows GCC to generate instructions that
10143 are found only in the 32-bit subset of the PowerPC architecture.
10144 Specifying @option{-mpowerpc-gpopt} implies @option{-mpowerpc} and also allows
10145 GCC to use the optional PowerPC architecture instructions in the
10146 General Purpose group, including floating-point square root.  Specifying
10147 @option{-mpowerpc-gfxopt} implies @option{-mpowerpc} and also allows GCC to
10148 use the optional PowerPC architecture instructions in the Graphics
10149 group, including floating-point select.
10150
10151 The @option{-mpowerpc64} option allows GCC to generate the additional
10152 64-bit instructions that are found in the full PowerPC64 architecture
10153 and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
10154 @option{-mno-powerpc64}.
10155
10156 If you specify both @option{-mno-power} and @option{-mno-powerpc}, GCC
10157 will use only the instructions in the common subset of both
10158 architectures plus some special AIX common-mode calls, and will not use
10159 the MQ register.  Specifying both @option{-mpower} and @option{-mpowerpc}
10160 permits GCC to use any instruction from either architecture and to
10161 allow use of the MQ register; specify this for the Motorola MPC601.
10162
10163 @item -mnew-mnemonics
10164 @itemx -mold-mnemonics
10165 @opindex mnew-mnemonics
10166 @opindex mold-mnemonics
10167 Select which mnemonics to use in the generated assembler code.  With
10168 @option{-mnew-mnemonics}, GCC uses the assembler mnemonics defined for
10169 the PowerPC architecture.  With @option{-mold-mnemonics} it uses the
10170 assembler mnemonics defined for the POWER architecture.  Instructions
10171 defined in only one architecture have only one mnemonic; GCC uses that
10172 mnemonic irrespective of which of these options is specified.
10173
10174 GCC defaults to the mnemonics appropriate for the architecture in
10175 use.  Specifying @option{-mcpu=@var{cpu_type}} sometimes overrides the
10176 value of these option.  Unless you are building a cross-compiler, you
10177 should normally not specify either @option{-mnew-mnemonics} or
10178 @option{-mold-mnemonics}, but should instead accept the default.
10179
10180 @item -mcpu=@var{cpu_type}
10181 @opindex mcpu
10182 Set architecture type, register usage, choice of mnemonics, and
10183 instruction scheduling parameters for machine type @var{cpu_type}.
10184 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
10185 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{505},
10186 @samp{601}, @samp{602}, @samp{603}, @samp{603e}, @samp{604},
10187 @samp{604e}, @samp{620}, @samp{630}, @samp{740}, @samp{7400},
10188 @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
10189 @samp{860}, @samp{970}, @samp{common}, @samp{ec603e}, @samp{G3},
10190 @samp{G4}, @samp{G5}, @samp{power}, @samp{power2}, @samp{power3},
10191 @samp{power4}, @samp{power5}, @samp{powerpc}, @samp{powerpc64},
10192 @samp{rios}, @samp{rios1}, @samp{rios2}, @samp{rsc}, and @samp{rs64a}.
10193
10194 @option{-mcpu=common} selects a completely generic processor.  Code
10195 generated under this option will run on any POWER or PowerPC processor.
10196 GCC will use only the instructions in the common subset of both
10197 architectures, and will not use the MQ register.  GCC assumes a generic
10198 processor model for scheduling purposes.
10199
10200 @option{-mcpu=power}, @option{-mcpu=power2}, @option{-mcpu=powerpc}, and
10201 @option{-mcpu=powerpc64} specify generic POWER, POWER2, pure 32-bit
10202 PowerPC (i.e., not MPC601), and 64-bit PowerPC architecture machine
10203 types, with an appropriate, generic processor model assumed for
10204 scheduling purposes.
10205
10206 The other options specify a specific processor.  Code generated under
10207 those options will run best on that processor, and may not run at all on
10208 others.
10209
10210 The @option{-mcpu} options automatically enable or disable the
10211 following options: @option{-maltivec}, @option{-mhard-float},
10212 @option{-mmfcrf}, @option{-mmultiple}, @option{-mnew-mnemonics},
10213 @option{-mpower}, @option{-mpower2}, @option{-mpowerpc64},
10214 @option{-mpowerpc-gpopt}, @option{-mpowerpc-gfxopt},
10215 @option{-mstring}.  The particular options set for any particular CPU
10216 will vary between compiler versions, depending on what setting seems
10217 to produce optimal code for that CPU; it doesn't necessarily reflect
10218 the actual hardware's capabilities.  If you wish to set an individual
10219 option to a particular value, you may specify it after the
10220 @option{-mcpu} option, like @samp{-mcpu=970 -mno-altivec}.
10221
10222 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
10223 not enabled or disabled by the @option{-mcpu} option at present, since
10224 AIX does not have full support for these options.  You may still
10225 enable or disable them individually if you're sure it'll work in your
10226 environment.
10227
10228 @item -mtune=@var{cpu_type}
10229 @opindex mtune
10230 Set the instruction scheduling parameters for machine type
10231 @var{cpu_type}, but do not set the architecture type, register usage, or
10232 choice of mnemonics, as @option{-mcpu=@var{cpu_type}} would.  The same
10233 values for @var{cpu_type} are used for @option{-mtune} as for
10234 @option{-mcpu}.  If both are specified, the code generated will use the
10235 architecture, registers, and mnemonics set by @option{-mcpu}, but the
10236 scheduling parameters set by @option{-mtune}.
10237
10238 @item -maltivec
10239 @itemx -mno-altivec
10240 @opindex maltivec
10241 @opindex mno-altivec
10242 These switches enable or disable the use of built-in functions that
10243 allow access to the AltiVec instruction set.  You may also need to set
10244 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
10245 enhancements.
10246
10247 @item -mabi=spe
10248 @opindex mabi=spe
10249 Extend the current ABI with SPE ABI extensions.  This does not change
10250 the default ABI, instead it adds the SPE ABI extensions to the current
10251 ABI@.
10252
10253 @item -mabi=no-spe
10254 @opindex mabi=no-spe
10255 Disable Booke SPE ABI extensions for the current ABI.
10256
10257 @item -misel=@var{yes/no}
10258 @itemx -misel
10259 @opindex misel
10260 This switch enables or disables the generation of ISEL instructions.
10261
10262 @item -mspe=@var{yes/no}
10263 @itemx -mspe
10264 @opindex mspe
10265 This switch enables or disables the generation of SPE simd
10266 instructions.
10267
10268 @item -mfloat-gprs=@var{yes/no}
10269 @itemx -mfloat-gprs
10270 @opindex mfloat-gprs
10271 This switch enables or disables the generation of floating point
10272 operations on the general purpose registers for architectures that
10273 support it.  This option is currently only available on the MPC8540.
10274
10275 @item -m32
10276 @itemx -m64
10277 @opindex m32
10278 @opindex m64
10279 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
10280 targets (including GNU/Linux).  The 32-bit environment sets int, long
10281 and pointer to 32 bits and generates code that runs on any PowerPC
10282 variant.  The 64-bit environment sets int to 32 bits and long and
10283 pointer to 64 bits, and generates code for PowerPC64, as for
10284 @option{-mpowerpc64}.
10285
10286 @item -mfull-toc
10287 @itemx -mno-fp-in-toc
10288 @itemx -mno-sum-in-toc
10289 @itemx -mminimal-toc
10290 @opindex mfull-toc
10291 @opindex mno-fp-in-toc
10292 @opindex mno-sum-in-toc
10293 @opindex mminimal-toc
10294 Modify generation of the TOC (Table Of Contents), which is created for
10295 every executable file.  The @option{-mfull-toc} option is selected by
10296 default.  In that case, GCC will allocate at least one TOC entry for
10297 each unique non-automatic variable reference in your program.  GCC
10298 will also place floating-point constants in the TOC@.  However, only
10299 16,384 entries are available in the TOC@.
10300
10301 If you receive a linker error message that saying you have overflowed
10302 the available TOC space, you can reduce the amount of TOC space used
10303 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
10304 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
10305 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
10306 generate code to calculate the sum of an address and a constant at
10307 run-time instead of putting that sum into the TOC@.  You may specify one
10308 or both of these options.  Each causes GCC to produce very slightly
10309 slower and larger code at the expense of conserving TOC space.
10310
10311 If you still run out of space in the TOC even when you specify both of
10312 these options, specify @option{-mminimal-toc} instead.  This option causes
10313 GCC to make only one TOC entry for every file.  When you specify this
10314 option, GCC will produce code that is slower and larger but which
10315 uses extremely little TOC space.  You may wish to use this option
10316 only on files that contain less frequently executed code.
10317
10318 @item -maix64
10319 @itemx -maix32
10320 @opindex maix64
10321 @opindex maix32
10322 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
10323 @code{long} type, and the infrastructure needed to support them.
10324 Specifying @option{-maix64} implies @option{-mpowerpc64} and
10325 @option{-mpowerpc}, while @option{-maix32} disables the 64-bit ABI and
10326 implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
10327
10328 @item -mxl-call
10329 @itemx -mno-xl-call
10330 @opindex mxl-call
10331 @opindex mno-xl-call
10332 On AIX, pass floating-point arguments to prototyped functions beyond the
10333 register save area (RSA) on the stack in addition to argument FPRs.  The
10334 AIX calling convention was extended but not initially documented to
10335 handle an obscure K&R C case of calling a function that takes the
10336 address of its arguments with fewer arguments than declared.  AIX XL
10337 compilers access floating point arguments which do not fit in the
10338 RSA from the stack when a subroutine is compiled without
10339 optimization.  Because always storing floating-point arguments on the
10340 stack is inefficient and rarely needed, this option is not enabled by
10341 default and only is necessary when calling subroutines compiled by AIX
10342 XL compilers without optimization.
10343
10344 @item -mpe
10345 @opindex mpe
10346 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
10347 application written to use message passing with special startup code to
10348 enable the application to run.  The system must have PE installed in the
10349 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
10350 must be overridden with the @option{-specs=} option to specify the
10351 appropriate directory location.  The Parallel Environment does not
10352 support threads, so the @option{-mpe} option and the @option{-pthread}
10353 option are incompatible.
10354
10355 @item -malign-natural
10356 @itemx -malign-power
10357 @opindex malign-natural
10358 @opindex malign-power
10359 On AIX, Darwin, and 64-bit PowerPC GNU/Linux, the option
10360 @option{-malign-natural} overrides the ABI-defined alignment of larger
10361 types, such as floating-point doubles, on their natural size-based boundary.
10362 The option @option{-malign-power} instructs GCC to follow the ABI-specified
10363 alignment rules.  GCC defaults to the standard alignment defined in the ABI.
10364
10365 @item -msoft-float
10366 @itemx -mhard-float
10367 @opindex msoft-float
10368 @opindex mhard-float
10369 Generate code that does not use (uses) the floating-point register set.
10370 Software floating point emulation is provided if you use the
10371 @option{-msoft-float} option, and pass the option to GCC when linking.
10372
10373 @item -mmultiple
10374 @itemx -mno-multiple
10375 @opindex mmultiple
10376 @opindex mno-multiple
10377 Generate code that uses (does not use) the load multiple word
10378 instructions and the store multiple word instructions.  These
10379 instructions are generated by default on POWER systems, and not
10380 generated on PowerPC systems.  Do not use @option{-mmultiple} on little
10381 endian PowerPC systems, since those instructions do not work when the
10382 processor is in little endian mode.  The exceptions are PPC740 and
10383 PPC750 which permit the instructions usage in little endian mode.
10384
10385 @item -mstring
10386 @itemx -mno-string
10387 @opindex mstring
10388 @opindex mno-string
10389 Generate code that uses (does not use) the load string instructions
10390 and the store string word instructions to save multiple registers and
10391 do small block moves.  These instructions are generated by default on
10392 POWER systems, and not generated on PowerPC systems.  Do not use
10393 @option{-mstring} on little endian PowerPC systems, since those
10394 instructions do not work when the processor is in little endian mode.
10395 The exceptions are PPC740 and PPC750 which permit the instructions
10396 usage in little endian mode.
10397
10398 @item -mupdate
10399 @itemx -mno-update
10400 @opindex mupdate
10401 @opindex mno-update
10402 Generate code that uses (does not use) the load or store instructions
10403 that update the base register to the address of the calculated memory
10404 location.  These instructions are generated by default.  If you use
10405 @option{-mno-update}, there is a small window between the time that the
10406 stack pointer is updated and the address of the previous frame is
10407 stored, which means code that walks the stack frame across interrupts or
10408 signals may get corrupted data.
10409
10410 @item -mfused-madd
10411 @itemx -mno-fused-madd
10412 @opindex mfused-madd
10413 @opindex mno-fused-madd
10414 Generate code that uses (does not use) the floating point multiply and
10415 accumulate instructions.  These instructions are generated by default if
10416 hardware floating is used.
10417
10418 @item -mno-bit-align
10419 @itemx -mbit-align
10420 @opindex mno-bit-align
10421 @opindex mbit-align
10422 On System V.4 and embedded PowerPC systems do not (do) force structures
10423 and unions that contain bit-fields to be aligned to the base type of the
10424 bit-field.
10425
10426 For example, by default a structure containing nothing but 8
10427 @code{unsigned} bit-fields of length 1 would be aligned to a 4 byte
10428 boundary and have a size of 4 bytes.  By using @option{-mno-bit-align},
10429 the structure would be aligned to a 1 byte boundary and be one byte in
10430 size.
10431
10432 @item -mno-strict-align
10433 @itemx -mstrict-align
10434 @opindex mno-strict-align
10435 @opindex mstrict-align
10436 On System V.4 and embedded PowerPC systems do not (do) assume that
10437 unaligned memory references will be handled by the system.
10438
10439 @item -mrelocatable
10440 @itemx -mno-relocatable
10441 @opindex mrelocatable
10442 @opindex mno-relocatable
10443 On embedded PowerPC systems generate code that allows (does not allow)
10444 the program to be relocated to a different address at runtime.  If you
10445 use @option{-mrelocatable} on any module, all objects linked together must
10446 be compiled with @option{-mrelocatable} or @option{-mrelocatable-lib}.
10447
10448 @item -mrelocatable-lib
10449 @itemx -mno-relocatable-lib
10450 @opindex mrelocatable-lib
10451 @opindex mno-relocatable-lib
10452 On embedded PowerPC systems generate code that allows (does not allow)
10453 the program to be relocated to a different address at runtime.  Modules
10454 compiled with @option{-mrelocatable-lib} can be linked with either modules
10455 compiled without @option{-mrelocatable} and @option{-mrelocatable-lib} or
10456 with modules compiled with the @option{-mrelocatable} options.
10457
10458 @item -mno-toc
10459 @itemx -mtoc
10460 @opindex mno-toc
10461 @opindex mtoc
10462 On System V.4 and embedded PowerPC systems do not (do) assume that
10463 register 2 contains a pointer to a global area pointing to the addresses
10464 used in the program.
10465
10466 @item -mlittle
10467 @itemx -mlittle-endian
10468 @opindex mlittle
10469 @opindex mlittle-endian
10470 On System V.4 and embedded PowerPC systems compile code for the
10471 processor in little endian mode.  The @option{-mlittle-endian} option is
10472 the same as @option{-mlittle}.
10473
10474 @item -mbig
10475 @itemx -mbig-endian
10476 @opindex mbig
10477 @opindex mbig-endian
10478 On System V.4 and embedded PowerPC systems compile code for the
10479 processor in big endian mode.  The @option{-mbig-endian} option is
10480 the same as @option{-mbig}.
10481
10482 @item -mdynamic-no-pic
10483 @opindex mdynamic-no-pic
10484 On Darwin and Mac OS X systems, compile code so that it is not
10485 relocatable, but that its external references are relocatable.  The
10486 resulting code is suitable for applications, but not shared
10487 libraries.
10488
10489 @item -mprioritize-restricted-insns=@var{priority}
10490 @opindex mprioritize-restricted-insns
10491 This option controls the priority that is assigned to
10492 dispatch-slot restricted instructions during the second scheduling
10493 pass.  The argument @var{priority} takes the value @var{0/1/2} to assign
10494 @var{no/highest/second-highest} priority to dispatch slot restricted
10495 instructions.
10496
10497 @item -msched-costly-dep=@var{dependence_type}
10498 @opindex msched-costly-dep
10499 This option controls which dependences are considered costly
10500 by the target during instruction scheduling.  The argument
10501 @var{dependence_type} takes one of the following values:
10502 @var{no}: no dependence is costly,
10503 @var{all}: all dependences are costly,
10504 @var{true_store_to_load}: a true dependence from store to load is costly,
10505 @var{store_to_load}: any dependence from store to load is costly,
10506 @var{number}: any dependence which latency >= @var{number} is costly.
10507
10508 @item -minsert-sched-nops=@var{scheme}
10509 @opindex minsert-sched-nops
10510 This option controls which nop insertion scheme will be used during
10511 the second scheduling pass. The argument @var{scheme} takes one of the
10512 following values:
10513 @var{no}: Don't insert nops.
10514 @var{pad}: Pad with nops any dispatch group which has vacant issue slots,
10515 according to the scheduler's grouping.
10516 @var{regroup_exact}: Insert nops to force costly dependent insns into
10517 separate groups.  Insert exactly as many nops as needed to force an insn
10518 to a new group, according to the estimated processor grouping.
10519 @var{number}: Insert nops to force costly dependent insns into
10520 separate groups.  Insert @var{number} nops to force an insn to a new group.
10521
10522 @item -mcall-sysv
10523 @opindex mcall-sysv
10524 On System V.4 and embedded PowerPC systems compile code using calling
10525 conventions that adheres to the March 1995 draft of the System V
10526 Application Binary Interface, PowerPC processor supplement.  This is the
10527 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
10528
10529 @item -mcall-sysv-eabi
10530 @opindex mcall-sysv-eabi
10531 Specify both @option{-mcall-sysv} and @option{-meabi} options.
10532
10533 @item -mcall-sysv-noeabi
10534 @opindex mcall-sysv-noeabi
10535 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
10536
10537 @item -mcall-solaris
10538 @opindex mcall-solaris
10539 On System V.4 and embedded PowerPC systems compile code for the Solaris
10540 operating system.
10541
10542 @item -mcall-linux
10543 @opindex mcall-linux
10544 On System V.4 and embedded PowerPC systems compile code for the
10545 Linux-based GNU system.
10546
10547 @item -mcall-gnu
10548 @opindex mcall-gnu
10549 On System V.4 and embedded PowerPC systems compile code for the
10550 Hurd-based GNU system.
10551
10552 @item -mcall-netbsd
10553 @opindex mcall-netbsd
10554 On System V.4 and embedded PowerPC systems compile code for the
10555 NetBSD operating system.
10556
10557 @item -maix-struct-return
10558 @opindex maix-struct-return
10559 Return all structures in memory (as specified by the AIX ABI)@.
10560
10561 @item -msvr4-struct-return
10562 @opindex msvr4-struct-return
10563 Return structures smaller than 8 bytes in registers (as specified by the
10564 SVR4 ABI)@.
10565
10566 @item -mabi=altivec
10567 @opindex mabi=altivec
10568 Extend the current ABI with AltiVec ABI extensions.  This does not
10569 change the default ABI, instead it adds the AltiVec ABI extensions to
10570 the current ABI@.
10571
10572 @item -mabi=no-altivec
10573 @opindex mabi=no-altivec
10574 Disable AltiVec ABI extensions for the current ABI.
10575
10576 @item -mprototype
10577 @itemx -mno-prototype
10578 @opindex mprototype
10579 @opindex mno-prototype
10580 On System V.4 and embedded PowerPC systems assume that all calls to
10581 variable argument functions are properly prototyped.  Otherwise, the
10582 compiler must insert an instruction before every non prototyped call to
10583 set or clear bit 6 of the condition code register (@var{CR}) to
10584 indicate whether floating point values were passed in the floating point
10585 registers in case the function takes a variable arguments.  With
10586 @option{-mprototype}, only calls to prototyped variable argument functions
10587 will set or clear the bit.
10588
10589 @item -msim
10590 @opindex msim
10591 On embedded PowerPC systems, assume that the startup module is called
10592 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
10593 @file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}.
10594 configurations.
10595
10596 @item -mmvme
10597 @opindex mmvme
10598 On embedded PowerPC systems, assume that the startup module is called
10599 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
10600 @file{libc.a}.
10601
10602 @item -mads
10603 @opindex mads
10604 On embedded PowerPC systems, assume that the startup module is called
10605 @file{crt0.o} and the standard C libraries are @file{libads.a} and
10606 @file{libc.a}.
10607
10608 @item -myellowknife
10609 @opindex myellowknife
10610 On embedded PowerPC systems, assume that the startup module is called
10611 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
10612 @file{libc.a}.
10613
10614 @item -mvxworks
10615 @opindex mvxworks
10616 On System V.4 and embedded PowerPC systems, specify that you are
10617 compiling for a VxWorks system.
10618
10619 @item -mwindiss
10620 @opindex mwindiss
10621 Specify that you are compiling for the WindISS simulation environment.
10622
10623 @item -memb
10624 @opindex memb
10625 On embedded PowerPC systems, set the @var{PPC_EMB} bit in the ELF flags
10626 header to indicate that @samp{eabi} extended relocations are used.
10627
10628 @item -meabi
10629 @itemx -mno-eabi
10630 @opindex meabi
10631 @opindex mno-eabi
10632 On System V.4 and embedded PowerPC systems do (do not) adhere to the
10633 Embedded Applications Binary Interface (eabi) which is a set of
10634 modifications to the System V.4 specifications.  Selecting @option{-meabi}
10635 means that the stack is aligned to an 8 byte boundary, a function
10636 @code{__eabi} is called to from @code{main} to set up the eabi
10637 environment, and the @option{-msdata} option can use both @code{r2} and
10638 @code{r13} to point to two separate small data areas.  Selecting
10639 @option{-mno-eabi} means that the stack is aligned to a 16 byte boundary,
10640 do not call an initialization function from @code{main}, and the
10641 @option{-msdata} option will only use @code{r13} to point to a single
10642 small data area.  The @option{-meabi} option is on by default if you
10643 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
10644
10645 @item -msdata=eabi
10646 @opindex msdata=eabi
10647 On System V.4 and embedded PowerPC systems, put small initialized
10648 @code{const} global and static data in the @samp{.sdata2} section, which
10649 is pointed to by register @code{r2}.  Put small initialized
10650 non-@code{const} global and static data in the @samp{.sdata} section,
10651 which is pointed to by register @code{r13}.  Put small uninitialized
10652 global and static data in the @samp{.sbss} section, which is adjacent to
10653 the @samp{.sdata} section.  The @option{-msdata=eabi} option is
10654 incompatible with the @option{-mrelocatable} option.  The
10655 @option{-msdata=eabi} option also sets the @option{-memb} option.
10656
10657 @item -msdata=sysv
10658 @opindex msdata=sysv
10659 On System V.4 and embedded PowerPC systems, put small global and static
10660 data in the @samp{.sdata} section, which is pointed to by register
10661 @code{r13}.  Put small uninitialized global and static data in the
10662 @samp{.sbss} section, which is adjacent to the @samp{.sdata} section.
10663 The @option{-msdata=sysv} option is incompatible with the
10664 @option{-mrelocatable} option.
10665
10666 @item -msdata=default
10667 @itemx -msdata
10668 @opindex msdata=default
10669 @opindex msdata
10670 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
10671 compile code the same as @option{-msdata=eabi}, otherwise compile code the
10672 same as @option{-msdata=sysv}.
10673
10674 @item -msdata-data
10675 @opindex msdata-data
10676 On System V.4 and embedded PowerPC systems, put small global and static
10677 data in the @samp{.sdata} section.  Put small uninitialized global and
10678 static data in the @samp{.sbss} section.  Do not use register @code{r13}
10679 to address small data however.  This is the default behavior unless
10680 other @option{-msdata} options are used.
10681
10682 @item -msdata=none
10683 @itemx -mno-sdata
10684 @opindex msdata=none
10685 @opindex mno-sdata
10686 On embedded PowerPC systems, put all initialized global and static data
10687 in the @samp{.data} section, and all uninitialized data in the
10688 @samp{.bss} section.
10689
10690 @item -G @var{num}
10691 @opindex G
10692 @cindex smaller data references (PowerPC)
10693 @cindex .sdata/.sdata2 references (PowerPC)
10694 On embedded PowerPC systems, put global and static items less than or
10695 equal to @var{num} bytes into the small data or bss sections instead of
10696 the normal data or bss section.  By default, @var{num} is 8.  The
10697 @option{-G @var{num}} switch is also passed to the linker.
10698 All modules should be compiled with the same @option{-G @var{num}} value.
10699
10700 @item -mregnames
10701 @itemx -mno-regnames
10702 @opindex mregnames
10703 @opindex mno-regnames
10704 On System V.4 and embedded PowerPC systems do (do not) emit register
10705 names in the assembly language output using symbolic forms.
10706
10707 @item -mlongcall
10708 @itemx -mno-longcall
10709 @opindex mlongcall
10710 @opindex mno-longcall
10711 Default to making all function calls indirectly, using a register, so
10712 that functions which reside further than 32 megabytes (33,554,432
10713 bytes) from the current location can be called.  This setting can be
10714 overridden by the @code{shortcall} function attribute, or by
10715 @code{#pragma longcall(0)}.
10716
10717 Some linkers are capable of detecting out-of-range calls and generating
10718 glue code on the fly.  On these systems, long calls are unnecessary and
10719 generate slower code.  As of this writing, the AIX linker can do this,
10720 as can the GNU linker for PowerPC/64.  It is planned to add this feature
10721 to the GNU linker for 32-bit PowerPC systems as well.
10722
10723 On Darwin/PPC systems, @code{#pragma longcall} will generate ``jbsr
10724 callee, L42'', plus a ``branch island'' (glue code).  The two target
10725 addresses represent the callee and the ``branch island.'' The
10726 Darwin/PPC linker will prefer the first address and generate a ``bl
10727 callee'' if the PPC ``bl'' instruction will reach the callee directly;
10728 otherwise, the linker will generate ``bl L42'' to call the ``branch
10729 island.''  The ``branch island'' is appended to the body of the
10730 calling function; it computes the full 32-bit address of the callee
10731 and jumps to it.
10732
10733 On Mach-O (Darwin) systems, this option directs the compiler emit to
10734 the glue for every direct call, and the Darwin linker decides whether
10735 to use or discard it.
10736
10737 In the future, we may cause GCC to ignore all longcall specifications
10738 when the linker is known to generate glue.
10739
10740 @item -pthread
10741 @opindex pthread
10742 Adds support for multithreading with the @dfn{pthreads} library.
10743 This option sets flags for both the preprocessor and linker.
10744
10745 @end table
10746
10747 @node S/390 and zSeries Options
10748 @subsection S/390 and zSeries Options
10749 @cindex S/390 and zSeries Options
10750
10751 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
10752
10753 @table @gcctabopt
10754 @item -mhard-float
10755 @itemx -msoft-float
10756 @opindex mhard-float
10757 @opindex msoft-float
10758 Use (do not use) the hardware floating-point instructions and registers
10759 for floating-point operations.  When @option{-msoft-float} is specified,
10760 functions in @file{libgcc.a} will be used to perform floating-point
10761 operations.  When @option{-mhard-float} is specified, the compiler
10762 generates IEEE floating-point instructions.  This is the default.
10763
10764 @item -mbackchain
10765 @itemx -mno-backchain
10766 @itemx -mkernel-backchain
10767 @opindex mbackchain
10768 @opindex mno-backchain
10769 @opindex mkernel-backchain
10770 In order to provide a backchain the address of the caller's frame
10771 is stored within the callee's stack frame.
10772 A backchain may be needed to allow debugging using tools that do not understand
10773 DWARF-2 call frame information.
10774 For @option{-mno-backchain} no backchain is maintained at all which is the 
10775 default. 
10776 If one of the other options is present the backchain pointer is placed either 
10777 on top of the stack frame  (@option{-mkernel-backchain}) or on
10778 the bottom (@option{-mbackchain}).
10779 Beside the different backchain location @option{-mkernel-backchain}
10780 also changes stack frame layout breaking the ABI. This option
10781 is intended to be used for code which internally needs a backchain but has
10782 to get by with a limited stack size e.g.@: the linux kernel. 
10783 Internal unwinding code not using DWARF-2 info has to be able to locate the
10784 return address of a function. That will be eased be the fact that
10785 the return address of a function is placed two words below the backchain 
10786 pointer.
10787
10788 @item -msmall-exec
10789 @itemx -mno-small-exec
10790 @opindex msmall-exec
10791 @opindex mno-small-exec
10792 Generate (or do not generate) code using the @code{bras} instruction
10793 to do subroutine calls.
10794 This only works reliably if the total executable size does not
10795 exceed 64k.  The default is to use the @code{basr} instruction instead,
10796 which does not have this limitation.
10797
10798 @item -m64
10799 @itemx -m31
10800 @opindex m64
10801 @opindex m31
10802 When @option{-m31} is specified, generate code compliant to the
10803 GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
10804 code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
10805 particular to generate 64-bit instructions.  For the @samp{s390}
10806 targets, the default is @option{-m31}, while the @samp{s390x}
10807 targets default to @option{-m64}.
10808
10809 @item -mzarch
10810 @itemx -mesa
10811 @opindex mzarch
10812 @opindex mesa
10813 When @option{-mzarch} is specified, generate code using the
10814 instructions available on z/Architecture.
10815 When @option{-mesa} is specified, generate code using the
10816 instructions available on ESA/390. Note that @option{-mesa} is
10817 not possible with @option{-m64}.
10818 When generating code compliant to the GNU/Linux for S/390 ABI,
10819 the default is @option{-mesa}.  When generating code compliant
10820 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
10821
10822 @item -mmvcle
10823 @itemx -mno-mvcle
10824 @opindex mmvcle
10825 @opindex mno-mvcle
10826 Generate (or do not generate) code using the @code{mvcle} instruction
10827 to perform block moves.  When @option{-mno-mvcle} is specified,
10828 use a @code{mvc} loop instead.  This is the default.
10829
10830 @item -mdebug
10831 @itemx -mno-debug
10832 @opindex mdebug
10833 @opindex mno-debug
10834 Print (or do not print) additional debug information when compiling.
10835 The default is to not print debug information.
10836
10837 @item -march=@var{cpu-type}
10838 @opindex march
10839 Generate code that will run on @var{cpu-type}, which is the name of a system
10840 representing a certain processor type. Possible values for
10841 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, and @samp{z990}.
10842 When generating code using the instructions available on z/Architecture,
10843 the default is @option{-march=z900}.  Otherwise, the default is
10844 @option{-march=g5}.
10845
10846 @item -mtune=@var{cpu-type}
10847 @opindex mtune
10848 Tune to @var{cpu-type} everything applicable about the generated code,
10849 except for the ABI and the set of available instructions.
10850 The list of @var{cpu-type} values is the same as for @option{-march}.
10851 The default is the value used for @option{-march}.
10852
10853 @item -mtpf-trace
10854 @itemx -mno-tpf-trace
10855 @opindex mtpf-trace
10856 @opindex mno-tpf-trace
10857 Generate code that adds (does not add) in TPF OS specific branches to trace
10858 routines in the operating system.  This option is off by default, even
10859 when compiling for the TPF OS.
10860
10861 @item -mfused-madd
10862 @itemx -mno-fused-madd
10863 @opindex mfused-madd
10864 @opindex mno-fused-madd
10865 Generate code that uses (does not use) the floating point multiply and
10866 accumulate instructions.  These instructions are generated by default if
10867 hardware floating point is used.
10868
10869 @item -mwarn-framesize=@var{framesize}
10870 @opindex mwarn-framesize
10871 Emit a warning if the current function exceeds the given frame size.  Because
10872 this is a compile time check it doesn't need to be a real problem when the program
10873 runs.  It is intended to identify functions which most probably cause 
10874 a stack overflow.  It is useful to be used in an environment with limited stack 
10875 size e.g.@: the linux kernel.
10876
10877 @item -mwarn-dynamicstack
10878 @opindex mwarn-dynamicstack
10879 Emit a warning if the function calls alloca or uses dynamically
10880 sized arrays.  This is generally a bad idea with a limited stack size.
10881
10882 @item -mstack-guard=@var{stack-guard}
10883 @item -mstack-size=@var{stack-size}
10884 @opindex mstack-guard
10885 @opindex mstack-size
10886 These arguments always have to be used in conjunction.  If they are present the s390
10887 back end emits additional instructions in the function prologue which trigger a trap
10888 if the stack size is @var{stack-guard} bytes above the @var{stack-size} 
10889 (remember that the stack on s390 grows downward).  These options are intended to 
10890 be used to help debugging stack overflow problems.  The additionally emitted code 
10891 cause only little overhead and hence can also be used in production like systems 
10892 without greater performance degradation.  The given values have to be exact 
10893 powers of 2 and @var{stack-size} has to be greater than @var{stack-guard}.
10894 In order to be efficient the extra code makes the assumption that the stack starts
10895 at an address aligned to the value given by @var{stack-size}.
10896 @end table
10897
10898 @node SH Options
10899 @subsection SH Options
10900
10901 These @samp{-m} options are defined for the SH implementations:
10902
10903 @table @gcctabopt
10904 @item -m1
10905 @opindex m1
10906 Generate code for the SH1.
10907
10908 @item -m2
10909 @opindex m2
10910 Generate code for the SH2.
10911
10912 @item -m2e
10913 Generate code for the SH2e.
10914
10915 @item -m3
10916 @opindex m3
10917 Generate code for the SH3.
10918
10919 @item -m3e
10920 @opindex m3e
10921 Generate code for the SH3e.
10922
10923 @item -m4-nofpu
10924 @opindex m4-nofpu
10925 Generate code for the SH4 without a floating-point unit.
10926
10927 @item -m4-single-only
10928 @opindex m4-single-only
10929 Generate code for the SH4 with a floating-point unit that only
10930 supports single-precision arithmetic.
10931
10932 @item -m4-single
10933 @opindex m4-single
10934 Generate code for the SH4 assuming the floating-point unit is in
10935 single-precision mode by default.
10936
10937 @item -m4
10938 @opindex m4
10939 Generate code for the SH4.
10940
10941 @item -m4a-nofpu
10942 @opindex m4a-nofpu
10943 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
10944 floating-point unit is not used.
10945
10946 @item -m4a-single-only
10947 @opindex m4a-single-only
10948 Generate code for the SH4a, in such a way that no double-precision
10949 floating point operations are used.
10950
10951 @item -m4a-single
10952 @opindex m4a-single
10953 Generate code for the SH4a assuming the floating-point unit is in
10954 single-precision mode by default.
10955
10956 @item -m4a
10957 @opindex m4a
10958 Generate code for the SH4a.
10959
10960 @item -m4al
10961 @opindex m4al
10962 Same as @option{-m4a-nofpu}, except that it implicitly passes
10963 @option{-dsp} to the assembler.  GCC doesn't generate any DSP
10964 instructions at the moment.
10965
10966 @item -mb
10967 @opindex mb
10968 Compile code for the processor in big endian mode.
10969
10970 @item -ml
10971 @opindex ml
10972 Compile code for the processor in little endian mode.
10973
10974 @item -mdalign
10975 @opindex mdalign
10976 Align doubles at 64-bit boundaries.  Note that this changes the calling
10977 conventions, and thus some functions from the standard C library will
10978 not work unless you recompile it first with @option{-mdalign}.
10979
10980 @item -mrelax
10981 @opindex mrelax
10982 Shorten some address references at link time, when possible; uses the
10983 linker option @option{-relax}.
10984
10985 @item -mbigtable
10986 @opindex mbigtable
10987 Use 32-bit offsets in @code{switch} tables.  The default is to use
10988 16-bit offsets.
10989
10990 @item -mfmovd
10991 @opindex mfmovd
10992 Enable the use of the instruction @code{fmovd}.
10993
10994 @item -mhitachi
10995 @opindex mhitachi
10996 Comply with the calling conventions defined by Renesas.
10997
10998 @item -mrenesas
10999 @opindex mhitachi
11000 Comply with the calling conventions defined by Renesas.
11001
11002 @item -mno-renesas
11003 @opindex mhitachi
11004 Comply with the calling conventions defined for GCC before the Renesas
11005 conventions were available.  This option is the default for all
11006 targets of the SH toolchain except for @samp{sh-symbianelf}.
11007
11008 @item -mnomacsave
11009 @opindex mnomacsave
11010 Mark the @code{MAC} register as call-clobbered, even if
11011 @option{-mhitachi} is given.
11012
11013 @item -mieee
11014 @opindex mieee
11015 Increase IEEE-compliance of floating-point code.
11016
11017 @item -misize
11018 @opindex misize
11019 Dump instruction size and location in the assembly code.
11020
11021 @item -mpadstruct
11022 @opindex mpadstruct
11023 This option is deprecated.  It pads structures to multiple of 4 bytes,
11024 which is incompatible with the SH ABI@.
11025
11026 @item -mspace
11027 @opindex mspace
11028 Optimize for space instead of speed.  Implied by @option{-Os}.
11029
11030 @item -mprefergot
11031 @opindex mprefergot
11032 When generating position-independent code, emit function calls using
11033 the Global Offset Table instead of the Procedure Linkage Table.
11034
11035 @item -musermode
11036 @opindex musermode
11037 Generate a library function call to invalidate instruction cache
11038 entries, after fixing up a trampoline.  This library function call
11039 doesn't assume it can write to the whole memory address space.  This
11040 is the default when the target is @code{sh-*-linux*}.
11041 @end table
11042
11043 @node SPARC Options
11044 @subsection SPARC Options
11045 @cindex SPARC options
11046
11047 These @samp{-m} options are supported on the SPARC:
11048
11049 @table @gcctabopt
11050 @item -mno-app-regs
11051 @itemx -mapp-regs
11052 @opindex mno-app-regs
11053 @opindex mapp-regs
11054 Specify @option{-mapp-regs} to generate output using the global registers
11055 2 through 4, which the SPARC SVR4 ABI reserves for applications.  This
11056 is the default.
11057
11058 To be fully SVR4 ABI compliant at the cost of some performance loss,
11059 specify @option{-mno-app-regs}.  You should compile libraries and system
11060 software with this option.
11061
11062 @item -mfpu
11063 @itemx -mhard-float
11064 @opindex mfpu
11065 @opindex mhard-float
11066 Generate output containing floating point instructions.  This is the
11067 default.
11068
11069 @item -mno-fpu
11070 @itemx -msoft-float
11071 @opindex mno-fpu
11072 @opindex msoft-float
11073 Generate output containing library calls for floating point.
11074 @strong{Warning:} the requisite libraries are not available for all SPARC
11075 targets.  Normally the facilities of the machine's usual C compiler are
11076 used, but this cannot be done directly in cross-compilation.  You must make
11077 your own arrangements to provide suitable library functions for
11078 cross-compilation.  The embedded targets @samp{sparc-*-aout} and
11079 @samp{sparclite-*-*} do provide software floating point support.
11080
11081 @option{-msoft-float} changes the calling convention in the output file;
11082 therefore, it is only useful if you compile @emph{all} of a program with
11083 this option.  In particular, you need to compile @file{libgcc.a}, the
11084 library that comes with GCC, with @option{-msoft-float} in order for
11085 this to work.
11086
11087 @item -mhard-quad-float
11088 @opindex mhard-quad-float
11089 Generate output containing quad-word (long double) floating point
11090 instructions.
11091
11092 @item -msoft-quad-float
11093 @opindex msoft-quad-float
11094 Generate output containing library calls for quad-word (long double)
11095 floating point instructions.  The functions called are those specified
11096 in the SPARC ABI@.  This is the default.
11097
11098 As of this writing, there are no SPARC implementations that have hardware
11099 support for the quad-word floating point instructions.  They all invoke
11100 a trap handler for one of these instructions, and then the trap handler
11101 emulates the effect of the instruction.  Because of the trap handler overhead,
11102 this is much slower than calling the ABI library routines.  Thus the
11103 @option{-msoft-quad-float} option is the default.
11104
11105 @item -mno-unaligned-doubles
11106 @itemx -munaligned-doubles
11107 @opindex mno-unaligned-doubles
11108 @opindex munaligned-doubles
11109 Assume that doubles have 8 byte alignment.  This is the default.
11110
11111 With @option{-munaligned-doubles}, GCC assumes that doubles have 8 byte
11112 alignment only if they are contained in another type, or if they have an
11113 absolute address.  Otherwise, it assumes they have 4 byte alignment.
11114 Specifying this option avoids some rare compatibility problems with code
11115 generated by other compilers.  It is not the default because it results
11116 in a performance loss, especially for floating point code.
11117
11118 @item -mno-faster-structs
11119 @itemx -mfaster-structs
11120 @opindex mno-faster-structs
11121 @opindex mfaster-structs
11122 With @option{-mfaster-structs}, the compiler assumes that structures
11123 should have 8 byte alignment.  This enables the use of pairs of
11124 @code{ldd} and @code{std} instructions for copies in structure
11125 assignment, in place of twice as many @code{ld} and @code{st} pairs.
11126 However, the use of this changed alignment directly violates the SPARC
11127 ABI@.  Thus, it's intended only for use on targets where the developer
11128 acknowledges that their resulting code will not be directly in line with
11129 the rules of the ABI@.
11130
11131 @item -mimpure-text
11132 @opindex mimpure-text
11133 @option{-mimpure-text}, used in addition to @option{-shared}, tells
11134 the compiler to not pass @option{-z text} to the linker when linking a
11135 shared object.  Using this option, you can link position-dependent
11136 code into a shared object.
11137
11138 @option{-mimpure-text} suppresses the ``relocations remain against
11139 allocatable but non-writable sections'' linker error message.
11140 However, the necessary relocations will trigger copy-on-write, and the
11141 shared object is not actually shared across processes.  Instead of
11142 using @option{-mimpure-text}, you should compile all source code with
11143 @option{-fpic} or @option{-fPIC}.
11144
11145 This option is only available on SunOS and Solaris.
11146
11147 @item -mcpu=@var{cpu_type}
11148 @opindex mcpu
11149 Set the instruction set, register set, and instruction scheduling parameters
11150 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
11151 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{sparclite},
11152 @samp{f930}, @samp{f934}, @samp{hypersparc}, @samp{sparclite86x},
11153 @samp{sparclet}, @samp{tsc701}, @samp{v9}, @samp{ultrasparc}, and
11154 @samp{ultrasparc3}.
11155
11156 Default instruction scheduling parameters are used for values that select
11157 an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
11158 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
11159
11160 Here is a list of each supported architecture and their supported
11161 implementations.
11162
11163 @smallexample
11164     v7:             cypress
11165     v8:             supersparc, hypersparc
11166     sparclite:      f930, f934, sparclite86x
11167     sparclet:       tsc701
11168     v9:             ultrasparc, ultrasparc3
11169 @end smallexample
11170
11171 By default (unless configured otherwise), GCC generates code for the V7
11172 variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
11173 additionally optimizes it for the Cypress CY7C602 chip, as used in the
11174 SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
11175 SPARCStation 1, 2, IPX etc.
11176
11177 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
11178 architecture.  The only difference from V7 code is that the compiler emits
11179 the integer multiply and integer divide instructions which exist in SPARC-V8
11180 but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
11181 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
11182 2000 series.
11183
11184 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
11185 the SPARC architecture.  This adds the integer multiply, integer divide step
11186 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
11187 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
11188 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU.  With
11189 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
11190 MB86934 chip, which is the more recent SPARClite with FPU.
11191
11192 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
11193 the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
11194 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
11195 but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
11196 optimizes it for the TEMIC SPARClet chip.
11197
11198 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
11199 architecture.  This adds 64-bit integer and floating-point move instructions,
11200 3 additional floating-point condition code registers and conditional move
11201 instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
11202 optimizes it for the Sun UltraSPARC I/II chips.  With
11203 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
11204 Sun UltraSPARC III chip.
11205
11206 @item -mtune=@var{cpu_type}
11207 @opindex mtune
11208 Set the instruction scheduling parameters for machine type
11209 @var{cpu_type}, but do not set the instruction set or register set that the
11210 option @option{-mcpu=@var{cpu_type}} would.
11211
11212 The same values for @option{-mcpu=@var{cpu_type}} can be used for
11213 @option{-mtune=@var{cpu_type}}, but the only useful values are those
11214 that select a particular cpu implementation.  Those are @samp{cypress},
11215 @samp{supersparc}, @samp{hypersparc}, @samp{f930}, @samp{f934},
11216 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc}, and
11217 @samp{ultrasparc3}.
11218
11219 @item -mv8plus
11220 @itemx -mno-v8plus
11221 @opindex mv8plus
11222 @opindex mno-v8plus
11223 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI.  The
11224 difference from the V8 ABI is that the global and out registers are
11225 considered 64-bit wide.  This is enabled by default on Solaris in 32-bit
11226 mode for all SPARC-V9 processors.
11227
11228 @item -mvis
11229 @itemx -mno-vis
11230 @opindex mvis
11231 @opindex mno-vis
11232 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
11233 Visual Instruction Set extensions.  The default is @option{-mno-vis}.
11234 @end table
11235
11236 These @samp{-m} options are supported in addition to the above
11237 on SPARC-V9 processors in 64-bit environments:
11238
11239 @table @gcctabopt
11240 @item -mlittle-endian
11241 @opindex mlittle-endian
11242 Generate code for a processor running in little-endian mode. It is only
11243 available for a few configurations and most notably not on Solaris.
11244
11245 @item -m32
11246 @itemx -m64
11247 @opindex m32
11248 @opindex m64
11249 Generate code for a 32-bit or 64-bit environment.
11250 The 32-bit environment sets int, long and pointer to 32 bits.
11251 The 64-bit environment sets int to 32 bits and long and pointer
11252 to 64 bits.
11253
11254 @item -mcmodel=medlow
11255 @opindex mcmodel=medlow
11256 Generate code for the Medium/Low code model: 64-bit addresses, programs
11257 must be linked in the low 32 bits of memory.  Programs can be statically
11258 or dynamically linked.
11259
11260 @item -mcmodel=medmid
11261 @opindex mcmodel=medmid
11262 Generate code for the Medium/Middle code model: 64-bit addresses, programs
11263 must be linked in the low 44 bits of memory, the text and data segments must
11264 be less than 2GB in size and the data segment must be located within 2GB of
11265 the text segment.
11266
11267 @item -mcmodel=medany
11268 @opindex mcmodel=medany
11269 Generate code for the Medium/Anywhere code model: 64-bit addresses, programs
11270 may be linked anywhere in memory, the text and data segments must be less
11271 than 2GB in size and the data segment must be located within 2GB of the
11272 text segment.
11273
11274 @item -mcmodel=embmedany
11275 @opindex mcmodel=embmedany
11276 Generate code for the Medium/Anywhere code model for embedded systems:
11277 64-bit addresses, the text and data segments must be less than 2GB in
11278 size, both starting anywhere in memory (determined at link time).  The
11279 global register %g4 points to the base of the data segment.  Programs
11280 are statically linked and PIC is not supported.
11281
11282 @item -mstack-bias
11283 @itemx -mno-stack-bias
11284 @opindex mstack-bias
11285 @opindex mno-stack-bias
11286 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
11287 frame pointer if present, are offset by @minus{}2047 which must be added back
11288 when making stack frame references.  This is the default in 64-bit mode.
11289 Otherwise, assume no such offset is present.
11290 @end table
11291
11292 These switches are supported in addition to the above on Solaris:
11293
11294 @table @gcctabopt
11295 @item -threads
11296 @opindex threads
11297 Add support for multithreading using the Solaris threads library.  This
11298 option sets flags for both the preprocessor and linker.  This option does
11299 not affect the thread safety of object code produced by the compiler or
11300 that of libraries supplied with it.
11301
11302 @item -pthreads
11303 @opindex pthreads
11304 Add support for multithreading using the POSIX threads library.  This
11305 option sets flags for both the preprocessor and linker.  This option does
11306 not affect the thread safety of object code produced  by the compiler or
11307 that of libraries supplied with it.
11308 @end table
11309
11310 @node System V Options
11311 @subsection Options for System V
11312
11313 These additional options are available on System V Release 4 for
11314 compatibility with other compilers on those systems:
11315
11316 @table @gcctabopt
11317 @item -G
11318 @opindex G
11319 Create a shared object.
11320 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
11321
11322 @item -Qy
11323 @opindex Qy
11324 Identify the versions of each tool used by the compiler, in a
11325 @code{.ident} assembler directive in the output.
11326
11327 @item -Qn
11328 @opindex Qn
11329 Refrain from adding @code{.ident} directives to the output file (this is
11330 the default).
11331
11332 @item -YP,@var{dirs}
11333 @opindex YP
11334 Search the directories @var{dirs}, and no others, for libraries
11335 specified with @option{-l}.
11336
11337 @item -Ym,@var{dir}
11338 @opindex Ym
11339 Look in the directory @var{dir} to find the M4 preprocessor.
11340 The assembler uses this option.
11341 @c This is supposed to go with a -Yd for predefined M4 macro files, but
11342 @c the generic assembler that comes with Solaris takes just -Ym.
11343 @end table
11344
11345 @node TMS320C3x/C4x Options
11346 @subsection TMS320C3x/C4x Options
11347 @cindex TMS320C3x/C4x Options
11348
11349 These @samp{-m} options are defined for TMS320C3x/C4x implementations:
11350
11351 @table @gcctabopt
11352
11353 @item -mcpu=@var{cpu_type}
11354 @opindex mcpu
11355 Set the instruction set, register set, and instruction scheduling
11356 parameters for machine type @var{cpu_type}.  Supported values for
11357 @var{cpu_type} are @samp{c30}, @samp{c31}, @samp{c32}, @samp{c40}, and
11358 @samp{c44}.  The default is @samp{c40} to generate code for the
11359 TMS320C40.
11360
11361 @item -mbig-memory
11362 @itemx -mbig
11363 @itemx -msmall-memory
11364 @itemx -msmall
11365 @opindex mbig-memory
11366 @opindex mbig
11367 @opindex msmall-memory
11368 @opindex msmall
11369 Generates code for the big or small memory model.  The small memory
11370 model assumed that all data fits into one 64K word page.  At run-time
11371 the data page (DP) register must be set to point to the 64K page
11372 containing the .bss and .data program sections.  The big memory model is
11373 the default and requires reloading of the DP register for every direct
11374 memory access.
11375
11376 @item -mbk
11377 @itemx -mno-bk
11378 @opindex mbk
11379 @opindex mno-bk
11380 Allow (disallow) allocation of general integer operands into the block
11381 count register BK@.
11382
11383 @item -mdb
11384 @itemx -mno-db
11385 @opindex mdb
11386 @opindex mno-db
11387 Enable (disable) generation of code using decrement and branch,
11388 DBcond(D), instructions.  This is enabled by default for the C4x.  To be
11389 on the safe side, this is disabled for the C3x, since the maximum
11390 iteration count on the C3x is @math{2^{23} + 1} (but who iterates loops more than
11391 @math{2^{23}} times on the C3x?).  Note that GCC will try to reverse a loop so
11392 that it can utilize the decrement and branch instruction, but will give
11393 up if there is more than one memory reference in the loop.  Thus a loop
11394 where the loop counter is decremented can generate slightly more
11395 efficient code, in cases where the RPTB instruction cannot be utilized.
11396
11397 @item -mdp-isr-reload
11398 @itemx -mparanoid
11399 @opindex mdp-isr-reload
11400 @opindex mparanoid
11401 Force the DP register to be saved on entry to an interrupt service
11402 routine (ISR), reloaded to point to the data section, and restored on
11403 exit from the ISR@.  This should not be required unless someone has
11404 violated the small memory model by modifying the DP register, say within
11405 an object library.
11406
11407 @item -mmpyi
11408 @itemx -mno-mpyi
11409 @opindex mmpyi
11410 @opindex mno-mpyi
11411 For the C3x use the 24-bit MPYI instruction for integer multiplies
11412 instead of a library call to guarantee 32-bit results.  Note that if one
11413 of the operands is a constant, then the multiplication will be performed
11414 using shifts and adds.  If the @option{-mmpyi} option is not specified for the C3x,
11415 then squaring operations are performed inline instead of a library call.
11416
11417 @item -mfast-fix
11418 @itemx -mno-fast-fix
11419 @opindex mfast-fix
11420 @opindex mno-fast-fix
11421 The C3x/C4x FIX instruction to convert a floating point value to an
11422 integer value chooses the nearest integer less than or equal to the
11423 floating point value rather than to the nearest integer.  Thus if the
11424 floating point number is negative, the result will be incorrectly
11425 truncated an additional code is necessary to detect and correct this
11426 case.  This option can be used to disable generation of the additional
11427 code required to correct the result.
11428
11429 @item -mrptb
11430 @itemx -mno-rptb
11431 @opindex mrptb
11432 @opindex mno-rptb
11433 Enable (disable) generation of repeat block sequences using the RPTB
11434 instruction for zero overhead looping.  The RPTB construct is only used
11435 for innermost loops that do not call functions or jump across the loop
11436 boundaries.  There is no advantage having nested RPTB loops due to the
11437 overhead required to save and restore the RC, RS, and RE registers.
11438 This is enabled by default with @option{-O2}.
11439
11440 @item -mrpts=@var{count}
11441 @itemx -mno-rpts
11442 @opindex mrpts
11443 @opindex mno-rpts
11444 Enable (disable) the use of the single instruction repeat instruction
11445 RPTS@.  If a repeat block contains a single instruction, and the loop
11446 count can be guaranteed to be less than the value @var{count}, GCC will
11447 emit a RPTS instruction instead of a RPTB@.  If no value is specified,
11448 then a RPTS will be emitted even if the loop count cannot be determined
11449 at compile time.  Note that the repeated instruction following RPTS does
11450 not have to be reloaded from memory each iteration, thus freeing up the
11451 CPU buses for operands.  However, since interrupts are blocked by this
11452 instruction, it is disabled by default.
11453
11454 @item -mloop-unsigned
11455 @itemx -mno-loop-unsigned
11456 @opindex mloop-unsigned
11457 @opindex mno-loop-unsigned
11458 The maximum iteration count when using RPTS and RPTB (and DB on the C40)
11459 is @math{2^{31} + 1} since these instructions test if the iteration count is
11460 negative to terminate the loop.  If the iteration count is unsigned
11461 there is a possibility than the @math{2^{31} + 1} maximum iteration count may be
11462 exceeded.  This switch allows an unsigned iteration count.
11463
11464 @item -mti
11465 @opindex mti
11466 Try to emit an assembler syntax that the TI assembler (asm30) is happy
11467 with.  This also enforces compatibility with the API employed by the TI
11468 C3x C compiler.  For example, long doubles are passed as structures
11469 rather than in floating point registers.
11470
11471 @item -mregparm
11472 @itemx -mmemparm
11473 @opindex mregparm
11474 @opindex mmemparm
11475 Generate code that uses registers (stack) for passing arguments to functions.
11476 By default, arguments are passed in registers where possible rather
11477 than by pushing arguments on to the stack.
11478
11479 @item -mparallel-insns
11480 @itemx -mno-parallel-insns
11481 @opindex mparallel-insns
11482 @opindex mno-parallel-insns
11483 Allow the generation of parallel instructions.  This is enabled by
11484 default with @option{-O2}.
11485
11486 @item -mparallel-mpy
11487 @itemx -mno-parallel-mpy
11488 @opindex mparallel-mpy
11489 @opindex mno-parallel-mpy
11490 Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
11491 provided @option{-mparallel-insns} is also specified.  These instructions have
11492 tight register constraints which can pessimize the code generation
11493 of large functions.
11494
11495 @end table
11496
11497 @node V850 Options
11498 @subsection V850 Options
11499 @cindex V850 Options
11500
11501 These @samp{-m} options are defined for V850 implementations:
11502
11503 @table @gcctabopt
11504 @item -mlong-calls
11505 @itemx -mno-long-calls
11506 @opindex mlong-calls
11507 @opindex mno-long-calls
11508 Treat all calls as being far away (near).  If calls are assumed to be
11509 far away, the compiler will always load the functions address up into a
11510 register, and call indirect through the pointer.
11511
11512 @item -mno-ep
11513 @itemx -mep
11514 @opindex mno-ep
11515 @opindex mep
11516 Do not optimize (do optimize) basic blocks that use the same index
11517 pointer 4 or more times to copy pointer into the @code{ep} register, and
11518 use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
11519 option is on by default if you optimize.
11520
11521 @item -mno-prolog-function
11522 @itemx -mprolog-function
11523 @opindex mno-prolog-function
11524 @opindex mprolog-function
11525 Do not use (do use) external functions to save and restore registers
11526 at the prologue and epilogue of a function.  The external functions
11527 are slower, but use less code space if more than one function saves
11528 the same number of registers.  The @option{-mprolog-function} option
11529 is on by default if you optimize.
11530
11531 @item -mspace
11532 @opindex mspace
11533 Try to make the code as small as possible.  At present, this just turns
11534 on the @option{-mep} and @option{-mprolog-function} options.
11535
11536 @item -mtda=@var{n}
11537 @opindex mtda
11538 Put static or global variables whose size is @var{n} bytes or less into
11539 the tiny data area that register @code{ep} points to.  The tiny data
11540 area can hold up to 256 bytes in total (128 bytes for byte references).
11541
11542 @item -msda=@var{n}
11543 @opindex msda
11544 Put static or global variables whose size is @var{n} bytes or less into
11545 the small data area that register @code{gp} points to.  The small data
11546 area can hold up to 64 kilobytes.
11547
11548 @item -mzda=@var{n}
11549 @opindex mzda
11550 Put static or global variables whose size is @var{n} bytes or less into
11551 the first 32 kilobytes of memory.
11552
11553 @item -mv850
11554 @opindex mv850
11555 Specify that the target processor is the V850.
11556
11557 @item -mbig-switch
11558 @opindex mbig-switch
11559 Generate code suitable for big switch tables.  Use this option only if
11560 the assembler/linker complain about out of range branches within a switch
11561 table.
11562
11563 @item -mapp-regs
11564 @opindex mapp-regs
11565 This option will cause r2 and r5 to be used in the code generated by
11566 the compiler.  This setting is the default.
11567
11568 @item -mno-app-regs
11569 @opindex mno-app-regs
11570 This option will cause r2 and r5 to be treated as fixed registers.
11571
11572 @item -mv850e1
11573 @opindex mv850e1
11574 Specify that the target processor is the V850E1.  The preprocessor
11575 constants @samp{__v850e1__} and @samp{__v850e__} will be defined if
11576 this option is used.
11577
11578 @item -mv850e
11579 @opindex mv850e
11580 Specify that the target processor is the V850E.  The preprocessor
11581 constant @samp{__v850e__} will be defined if this option is used.
11582
11583 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
11584 are defined then a default target processor will be chosen and the
11585 relevant @samp{__v850*__} preprocessor constant will be defined.
11586
11587 The preprocessor constants @samp{__v850} and @samp{__v851__} are always
11588 defined, regardless of which processor variant is the target.
11589
11590 @item -mdisable-callt
11591 @opindex mdisable-callt
11592 This option will suppress generation of the CALLT instruction for the
11593 v850e and v850e1 flavors of the v850 architecture.  The default is
11594 @option{-mno-disable-callt} which allows the CALLT instruction to be used.
11595
11596 @end table
11597
11598 @node VAX Options
11599 @subsection VAX Options
11600 @cindex VAX options
11601
11602 These @samp{-m} options are defined for the VAX:
11603
11604 @table @gcctabopt
11605 @item -munix
11606 @opindex munix
11607 Do not output certain jump instructions (@code{aobleq} and so on)
11608 that the Unix assembler for the VAX cannot handle across long
11609 ranges.
11610
11611 @item -mgnu
11612 @opindex mgnu
11613 Do output those jump instructions, on the assumption that you
11614 will assemble with the GNU assembler.
11615
11616 @item -mg
11617 @opindex mg
11618 Output code for g-format floating point numbers instead of d-format.
11619 @end table
11620
11621 @node x86-64 Options
11622 @subsection x86-64 Options
11623 @cindex x86-64 options
11624
11625 These are listed under @xref{i386 and x86-64 Options}.
11626
11627 @node Xstormy16 Options
11628 @subsection Xstormy16 Options
11629 @cindex Xstormy16 Options
11630
11631 These options are defined for Xstormy16:
11632
11633 @table @gcctabopt
11634 @item -msim
11635 @opindex msim
11636 Choose startup files and linker script suitable for the simulator.
11637 @end table
11638
11639 @node Xtensa Options
11640 @subsection Xtensa Options
11641 @cindex Xtensa Options
11642
11643 These options are supported for Xtensa targets:
11644
11645 @table @gcctabopt
11646 @item -mconst16
11647 @itemx -mno-const16
11648 @opindex mconst16
11649 @opindex mno-const16
11650 Enable or disable use of @code{CONST16} instructions for loading
11651 constant values.  The @code{CONST16} instruction is currently not a
11652 standard option from Tensilica.  When enabled, @code{CONST16}
11653 instructions are always used in place of the standard @code{L32R}
11654 instructions.  The use of @code{CONST16} is enabled by default only if
11655 the @code{L32R} instruction is not available.
11656
11657 @item -mfused-madd
11658 @itemx -mno-fused-madd
11659 @opindex mfused-madd
11660 @opindex mno-fused-madd
11661 Enable or disable use of fused multiply/add and multiply/subtract
11662 instructions in the floating-point option.  This has no effect if the
11663 floating-point option is not also enabled.  Disabling fused multiply/add
11664 and multiply/subtract instructions forces the compiler to use separate
11665 instructions for the multiply and add/subtract operations.  This may be
11666 desirable in some cases where strict IEEE 754-compliant results are
11667 required: the fused multiply add/subtract instructions do not round the
11668 intermediate result, thereby producing results with @emph{more} bits of
11669 precision than specified by the IEEE standard.  Disabling fused multiply
11670 add/subtract instructions also ensures that the program output is not
11671 sensitive to the compiler's ability to combine multiply and add/subtract
11672 operations.
11673
11674 @item -mtext-section-literals
11675 @itemx -mno-text-section-literals
11676 @opindex mtext-section-literals
11677 @opindex mno-text-section-literals
11678 Control the treatment of literal pools.  The default is
11679 @option{-mno-text-section-literals}, which places literals in a separate
11680 section in the output file.  This allows the literal pool to be placed
11681 in a data RAM/ROM, and it also allows the linker to combine literal
11682 pools from separate object files to remove redundant literals and
11683 improve code size.  With @option{-mtext-section-literals}, the literals
11684 are interspersed in the text section in order to keep them as close as
11685 possible to their references.  This may be necessary for large assembly
11686 files.
11687
11688 @item -mtarget-align
11689 @itemx -mno-target-align
11690 @opindex mtarget-align
11691 @opindex mno-target-align
11692 When this option is enabled, GCC instructs the assembler to
11693 automatically align instructions to reduce branch penalties at the
11694 expense of some code density.  The assembler attempts to widen density
11695 instructions to align branch targets and the instructions following call
11696 instructions.  If there are not enough preceding safe density
11697 instructions to align a target, no widening will be performed.  The
11698 default is @option{-mtarget-align}.  These options do not affect the
11699 treatment of auto-aligned instructions like @code{LOOP}, which the
11700 assembler will always align, either by widening density instructions or
11701 by inserting no-op instructions.
11702
11703 @item -mlongcalls
11704 @itemx -mno-longcalls
11705 @opindex mlongcalls
11706 @opindex mno-longcalls
11707 When this option is enabled, GCC instructs the assembler to translate
11708 direct calls to indirect calls unless it can determine that the target
11709 of a direct call is in the range allowed by the call instruction.  This
11710 translation typically occurs for calls to functions in other source
11711 files.  Specifically, the assembler translates a direct @code{CALL}
11712 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
11713 The default is @option{-mno-longcalls}.  This option should be used in
11714 programs where the call target can potentially be out of range.  This
11715 option is implemented in the assembler, not the compiler, so the
11716 assembly code generated by GCC will still show direct call
11717 instructions---look at the disassembled object code to see the actual
11718 instructions.  Note that the assembler will use an indirect call for
11719 every cross-file call, not just those that really will be out of range.
11720 @end table
11721
11722 @node zSeries Options
11723 @subsection zSeries Options
11724 @cindex zSeries options
11725
11726 These are listed under @xref{S/390 and zSeries Options}.
11727
11728 @node Code Gen Options
11729 @section Options for Code Generation Conventions
11730 @cindex code generation conventions
11731 @cindex options, code generation
11732 @cindex run-time options
11733
11734 These machine-independent options control the interface conventions
11735 used in code generation.
11736
11737 Most of them have both positive and negative forms; the negative form
11738 of @option{-ffoo} would be @option{-fno-foo}.  In the table below, only
11739 one of the forms is listed---the one which is not the default.  You
11740 can figure out the other form by either removing @samp{no-} or adding
11741 it.
11742
11743 @table @gcctabopt
11744 @item -fbounds-check
11745 @opindex fbounds-check
11746 For front-ends that support it, generate additional code to check that
11747 indices used to access arrays are within the declared range.  This is
11748 currently only supported by the Java and Fortran 77 front-ends, where
11749 this option defaults to true and false respectively.
11750
11751 @item -ftrapv
11752 @opindex ftrapv
11753 This option generates traps for signed overflow on addition, subtraction,
11754 multiplication operations.
11755
11756 @item -fwrapv
11757 @opindex fwrapv
11758 This option instructs the compiler to assume that signed arithmetic
11759 overflow of addition, subtraction and multiplication wraps around
11760 using twos-complement representation.  This flag enables some optimizations
11761 and disables other.  This option is enabled by default for the Java
11762 front-end, as required by the Java language specification.
11763
11764 @item -fexceptions
11765 @opindex fexceptions
11766 Enable exception handling.  Generates extra code needed to propagate
11767 exceptions.  For some targets, this implies GCC will generate frame
11768 unwind information for all functions, which can produce significant data
11769 size overhead, although it does not affect execution.  If you do not
11770 specify this option, GCC will enable it by default for languages like
11771 C++ which normally require exception handling, and disable it for
11772 languages like C that do not normally require it.  However, you may need
11773 to enable this option when compiling C code that needs to interoperate
11774 properly with exception handlers written in C++.  You may also wish to
11775 disable this option if you are compiling older C++ programs that don't
11776 use exception handling.
11777
11778 @item -fnon-call-exceptions
11779 @opindex fnon-call-exceptions
11780 Generate code that allows trapping instructions to throw exceptions.
11781 Note that this requires platform-specific runtime support that does
11782 not exist everywhere.  Moreover, it only allows @emph{trapping}
11783 instructions to throw exceptions, i.e.@: memory references or floating
11784 point instructions.  It does not allow exceptions to be thrown from
11785 arbitrary signal handlers such as @code{SIGALRM}.
11786
11787 @item -funwind-tables
11788 @opindex funwind-tables
11789 Similar to @option{-fexceptions}, except that it will just generate any needed
11790 static data, but will not affect the generated code in any other way.
11791 You will normally not enable this option; instead, a language processor
11792 that needs this handling would enable it on your behalf.
11793
11794 @item -fasynchronous-unwind-tables
11795 @opindex fasynchronous-unwind-tables
11796 Generate unwind table in dwarf2 format, if supported by target machine.  The
11797 table is exact at each instruction boundary, so it can be used for stack
11798 unwinding from asynchronous events (such as debugger or garbage collector).
11799
11800 @item -fpcc-struct-return
11801 @opindex fpcc-struct-return
11802 Return ``short'' @code{struct} and @code{union} values in memory like
11803 longer ones, rather than in registers.  This convention is less
11804 efficient, but it has the advantage of allowing intercallability between
11805 GCC-compiled files and files compiled with other compilers, particularly
11806 the Portable C Compiler (pcc).
11807
11808 The precise convention for returning structures in memory depends
11809 on the target configuration macros.
11810
11811 Short structures and unions are those whose size and alignment match
11812 that of some integer type.
11813
11814 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
11815 switch is not binary compatible with code compiled with the
11816 @option{-freg-struct-return} switch.
11817 Use it to conform to a non-default application binary interface.
11818
11819 @item -freg-struct-return
11820 @opindex freg-struct-return
11821 Return @code{struct} and @code{union} values in registers when possible.
11822 This is more efficient for small structures than
11823 @option{-fpcc-struct-return}.
11824
11825 If you specify neither @option{-fpcc-struct-return} nor
11826 @option{-freg-struct-return}, GCC defaults to whichever convention is
11827 standard for the target.  If there is no standard convention, GCC
11828 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
11829 the principal compiler.  In those cases, we can choose the standard, and
11830 we chose the more efficient register return alternative.
11831
11832 @strong{Warning:} code compiled with the @option{-freg-struct-return}
11833 switch is not binary compatible with code compiled with the
11834 @option{-fpcc-struct-return} switch.
11835 Use it to conform to a non-default application binary interface.
11836
11837 @item -fshort-enums
11838 @opindex fshort-enums
11839 Allocate to an @code{enum} type only as many bytes as it needs for the
11840 declared range of possible values.  Specifically, the @code{enum} type
11841 will be equivalent to the smallest integer type which has enough room.
11842
11843 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
11844 code that is not binary compatible with code generated without that switch.
11845 Use it to conform to a non-default application binary interface.
11846
11847 @item -fshort-double
11848 @opindex fshort-double
11849 Use the same size for @code{double} as for @code{float}.
11850
11851 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
11852 code that is not binary compatible with code generated without that switch.
11853 Use it to conform to a non-default application binary interface.
11854
11855 @item -fshort-wchar
11856 @opindex fshort-wchar
11857 Override the underlying type for @samp{wchar_t} to be @samp{short
11858 unsigned int} instead of the default for the target.  This option is
11859 useful for building programs to run under WINE@.
11860
11861 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
11862 code that is not binary compatible with code generated without that switch.
11863 Use it to conform to a non-default application binary interface.
11864
11865 @item -fshared-data
11866 @opindex fshared-data
11867 Requests that the data and non-@code{const} variables of this
11868 compilation be shared data rather than private data.  The distinction
11869 makes sense only on certain operating systems, where shared data is
11870 shared between processes running the same program, while private data
11871 exists in one copy per process.
11872
11873 @item -fno-common
11874 @opindex fno-common
11875 In C, allocate even uninitialized global variables in the data section of the
11876 object file, rather than generating them as common blocks.  This has the
11877 effect that if the same variable is declared (without @code{extern}) in
11878 two different compilations, you will get an error when you link them.
11879 The only reason this might be useful is if you wish to verify that the
11880 program will work on other systems which always work this way.
11881
11882 @item -fno-ident
11883 @opindex fno-ident
11884 Ignore the @samp{#ident} directive.
11885
11886 @item -finhibit-size-directive
11887 @opindex finhibit-size-directive
11888 Don't output a @code{.size} assembler directive, or anything else that
11889 would cause trouble if the function is split in the middle, and the
11890 two halves are placed at locations far apart in memory.  This option is
11891 used when compiling @file{crtstuff.c}; you should not need to use it
11892 for anything else.
11893
11894 @item -fverbose-asm
11895 @opindex fverbose-asm
11896 Put extra commentary information in the generated assembly code to
11897 make it more readable.  This option is generally only of use to those
11898 who actually need to read the generated assembly code (perhaps while
11899 debugging the compiler itself).
11900
11901 @option{-fno-verbose-asm}, the default, causes the
11902 extra information to be omitted and is useful when comparing two assembler
11903 files.
11904
11905 @item -fpic
11906 @opindex fpic
11907 @cindex global offset table
11908 @cindex PIC
11909 Generate position-independent code (PIC) suitable for use in a shared
11910 library, if supported for the target machine.  Such code accesses all
11911 constant addresses through a global offset table (GOT)@.  The dynamic
11912 loader resolves the GOT entries when the program starts (the dynamic
11913 loader is not part of GCC; it is part of the operating system).  If
11914 the GOT size for the linked executable exceeds a machine-specific
11915 maximum size, you get an error message from the linker indicating that
11916 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
11917 instead.  (These maximums are 8k on the SPARC and 32k
11918 on the m68k and RS/6000.  The 386 has no such limit.)
11919
11920 Position-independent code requires special support, and therefore works
11921 only on certain machines.  For the 386, GCC supports PIC for System V
11922 but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
11923 position-independent.
11924
11925 @item -fPIC
11926 @opindex fPIC
11927 If supported for the target machine, emit position-independent code,
11928 suitable for dynamic linking and avoiding any limit on the size of the
11929 global offset table.  This option makes a difference on the m68k
11930 and the SPARC.
11931
11932 Position-independent code requires special support, and therefore works
11933 only on certain machines.
11934
11935 @item -fpie
11936 @itemx -fPIE
11937 @opindex fpie
11938 @opindex fPIE
11939 These options are similar to @option{-fpic} and @option{-fPIC}, but
11940 generated position independent code can be only linked into executables.
11941 Usually these options are used when @option{-pie} GCC option will be
11942 used during linking.
11943
11944 @item -ffixed-@var{reg}
11945 @opindex ffixed
11946 Treat the register named @var{reg} as a fixed register; generated code
11947 should never refer to it (except perhaps as a stack pointer, frame
11948 pointer or in some other fixed role).
11949
11950 @var{reg} must be the name of a register.  The register names accepted
11951 are machine-specific and are defined in the @code{REGISTER_NAMES}
11952 macro in the machine description macro file.
11953
11954 This flag does not have a negative form, because it specifies a
11955 three-way choice.
11956
11957 @item -fcall-used-@var{reg}
11958 @opindex fcall-used
11959 Treat the register named @var{reg} as an allocable register that is
11960 clobbered by function calls.  It may be allocated for temporaries or
11961 variables that do not live across a call.  Functions compiled this way
11962 will not save and restore the register @var{reg}.
11963
11964 It is an error to used this flag with the frame pointer or stack pointer.
11965 Use of this flag for other registers that have fixed pervasive roles in
11966 the machine's execution model will produce disastrous results.
11967
11968 This flag does not have a negative form, because it specifies a
11969 three-way choice.
11970
11971 @item -fcall-saved-@var{reg}
11972 @opindex fcall-saved
11973 Treat the register named @var{reg} as an allocable register saved by
11974 functions.  It may be allocated even for temporaries or variables that
11975 live across a call.  Functions compiled this way will save and restore
11976 the register @var{reg} if they use it.
11977
11978 It is an error to used this flag with the frame pointer or stack pointer.
11979 Use of this flag for other registers that have fixed pervasive roles in
11980 the machine's execution model will produce disastrous results.
11981
11982 A different sort of disaster will result from the use of this flag for
11983 a register in which function values may be returned.
11984
11985 This flag does not have a negative form, because it specifies a
11986 three-way choice.
11987
11988 @item -fpack-struct[=@var{n}]
11989 @opindex fpack-struct
11990 Without a value specified, pack all structure members together without
11991 holes. When a value is specified (which must be a small power of two), pack
11992 structure members according to this value, representing the maximum
11993 alignment (that is, objects with default alignment requirements larger than
11994 this will be output potentially unaligned at the next fitting location.
11995
11996 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
11997 code that is not binary compatible with code generated without that switch.
11998 Additionally, it makes the code suboptimal.
11999 Use it to conform to a non-default application binary interface.
12000
12001 @item -finstrument-functions
12002 @opindex finstrument-functions
12003 Generate instrumentation calls for entry and exit to functions.  Just
12004 after function entry and just before function exit, the following
12005 profiling functions will be called with the address of the current
12006 function and its call site.  (On some platforms,
12007 @code{__builtin_return_address} does not work beyond the current
12008 function, so the call site information may not be available to the
12009 profiling functions otherwise.)
12010
12011 @smallexample
12012 void __cyg_profile_func_enter (void *this_fn,
12013                                void *call_site);
12014 void __cyg_profile_func_exit  (void *this_fn,
12015                                void *call_site);
12016 @end smallexample
12017
12018 The first argument is the address of the start of the current function,
12019 which may be looked up exactly in the symbol table.
12020
12021 This instrumentation is also done for functions expanded inline in other
12022 functions.  The profiling calls will indicate where, conceptually, the
12023 inline function is entered and exited.  This means that addressable
12024 versions of such functions must be available.  If all your uses of a
12025 function are expanded inline, this may mean an additional expansion of
12026 code size.  If you use @samp{extern inline} in your C code, an
12027 addressable version of such functions must be provided.  (This is
12028 normally the case anyways, but if you get lucky and the optimizer always
12029 expands the functions inline, you might have gotten away without
12030 providing static copies.)
12031
12032 A function may be given the attribute @code{no_instrument_function}, in
12033 which case this instrumentation will not be done.  This can be used, for
12034 example, for the profiling functions listed above, high-priority
12035 interrupt routines, and any functions from which the profiling functions
12036 cannot safely be called (perhaps signal handlers, if the profiling
12037 routines generate output or allocate memory).
12038
12039 @item -fstack-check
12040 @opindex fstack-check
12041 Generate code to verify that you do not go beyond the boundary of the
12042 stack.  You should specify this flag if you are running in an
12043 environment with multiple threads, but only rarely need to specify it in
12044 a single-threaded environment since stack overflow is automatically
12045 detected on nearly all systems if there is only one stack.
12046
12047 Note that this switch does not actually cause checking to be done; the
12048 operating system must do that.  The switch causes generation of code
12049 to ensure that the operating system sees the stack being extended.
12050
12051 @item -fstack-limit-register=@var{reg}
12052 @itemx -fstack-limit-symbol=@var{sym}
12053 @itemx -fno-stack-limit
12054 @opindex fstack-limit-register
12055 @opindex fstack-limit-symbol
12056 @opindex fno-stack-limit
12057 Generate code to ensure that the stack does not grow beyond a certain value,
12058 either the value of a register or the address of a symbol.  If the stack
12059 would grow beyond the value, a signal is raised.  For most targets,
12060 the signal is raised before the stack overruns the boundary, so
12061 it is possible to catch the signal without taking special precautions.
12062
12063 For instance, if the stack starts at absolute address @samp{0x80000000}
12064 and grows downwards, you can use the flags
12065 @option{-fstack-limit-symbol=__stack_limit} and
12066 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
12067 of 128KB@.  Note that this may only work with the GNU linker.
12068
12069 @cindex aliasing of parameters
12070 @cindex parameters, aliased
12071 @item -fargument-alias
12072 @itemx -fargument-noalias
12073 @itemx -fargument-noalias-global
12074 @opindex fargument-alias
12075 @opindex fargument-noalias
12076 @opindex fargument-noalias-global
12077 Specify the possible relationships among parameters and between
12078 parameters and global data.
12079
12080 @option{-fargument-alias} specifies that arguments (parameters) may
12081 alias each other and may alias global storage.@*
12082 @option{-fargument-noalias} specifies that arguments do not alias
12083 each other, but may alias global storage.@*
12084 @option{-fargument-noalias-global} specifies that arguments do not
12085 alias each other and do not alias global storage.
12086
12087 Each language will automatically use whatever option is required by
12088 the language standard.  You should not need to use these options yourself.
12089
12090 @item -fleading-underscore
12091 @opindex fleading-underscore
12092 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
12093 change the way C symbols are represented in the object file.  One use
12094 is to help link with legacy assembly code.
12095
12096 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
12097 generate code that is not binary compatible with code generated without that
12098 switch.  Use it to conform to a non-default application binary interface.
12099 Not all targets provide complete support for this switch.
12100
12101 @item -ftls-model=@var{model}
12102 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
12103 The @var{model} argument should be one of @code{global-dynamic},
12104 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
12105
12106 The default without @option{-fpic} is @code{initial-exec}; with
12107 @option{-fpic} the default is @code{global-dynamic}.
12108
12109 @item -fvisibility=@var{default|internal|hidden|protected}
12110 @opindex fvisibility
12111 Set the default ELF image symbol visibility to the specified option - all
12112 symbols will be marked with this unless overridden within the code.
12113 Using this feature can very substantially improve linking and
12114 load times of shared object libraries, produce more optimized
12115 code, provide near-perfect API export and prevent symbol clashes.
12116 It is @strong{strongly} recommended that you use this in any shared objects
12117 you distribute.
12118      
12119 Despite the nomenclature, @code{default} always means public ie;
12120 available to be linked against from outside the shared object.
12121 @code{protected} and @code{internal} are pretty useless in real-world
12122 usage so the only other commonly used option will be @code{hidden}.
12123 The default if -fvisibility isn't specified is @code{default} ie; make every
12124 symbol public - this causes the same behaviour as previous versions of
12125 GCC.
12126      
12127 A good explanation of the benefits offered by ensuring ELF
12128 symbols have the correct visibility is given by ``How To Write
12129 Shared Libraries'' by Ulrich Drepper (which can be found at
12130 @w{@uref{http://people.redhat.com/~drepper/}}) - however a superior
12131 solution made possible by this option to marking things hidden when
12132 the default is public is to make the default hidden and mark things
12133 public. This is the norm with DLL's on Windows and with @option{-fvisibility=hidden}
12134 and @code{__attribute__ ((visibility("default")))} instead of
12135 @code{__declspec(dllexport)} you get almost identical semantics with
12136 identical syntax. This is a great boon to those working with
12137 cross-platform projects.
12138
12139 For those adding visibility support to existing code, you may find
12140 @samp{#pragma GCC visibility} of use. This works by you enclosing
12141 the declarations you wish to set visibility for with (for example)
12142 @samp{#pragma GCC visibility push(hidden)} and
12143 @samp{#pragma GCC visibility pop}. These can be nested up to sixteen
12144 times. Bear in mind that symbol visibility should be viewed @strong{as
12145 part of the API interface contract} and thus all new code should
12146 always specify visibility when it is not the default ie; declarations
12147 only for use within the local DSO should @strong{always} be marked explicitly
12148 as hidden as so to avoid PLT indirection overheads - making this
12149 abundantly clear also aids readability and self-documentation of the code.
12150 Note that due to ISO C++ specification requirements, operator new and
12151 operator delete must always be of default visibility.
12152
12153 An overview of these techniques, their benefits and how to use them
12154 is at @w{@uref{http://www.nedprod.com/programs/gccvisibility.html}}.
12155
12156 @end table
12157
12158 @c man end
12159
12160 @node Environment Variables
12161 @section Environment Variables Affecting GCC
12162 @cindex environment variables
12163
12164 @c man begin ENVIRONMENT
12165 This section describes several environment variables that affect how GCC
12166 operates.  Some of them work by specifying directories or prefixes to use
12167 when searching for various kinds of files.  Some are used to specify other
12168 aspects of the compilation environment.
12169
12170 Note that you can also specify places to search using options such as
12171 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
12172 take precedence over places specified using environment variables, which
12173 in turn take precedence over those specified by the configuration of GCC@.
12174 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
12175 GNU Compiler Collection (GCC) Internals}.
12176
12177 @table @env
12178 @item LANG
12179 @itemx LC_CTYPE
12180 @c @itemx LC_COLLATE
12181 @itemx LC_MESSAGES
12182 @c @itemx LC_MONETARY
12183 @c @itemx LC_NUMERIC
12184 @c @itemx LC_TIME
12185 @itemx LC_ALL
12186 @findex LANG
12187 @findex LC_CTYPE
12188 @c @findex LC_COLLATE
12189 @findex LC_MESSAGES
12190 @c @findex LC_MONETARY
12191 @c @findex LC_NUMERIC
12192 @c @findex LC_TIME
12193 @findex LC_ALL
12194 @cindex locale
12195 These environment variables control the way that GCC uses
12196 localization information that allow GCC to work with different
12197 national conventions.  GCC inspects the locale categories
12198 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
12199 so.  These locale categories can be set to any value supported by your
12200 installation.  A typical value is @samp{en_UK} for English in the United
12201 Kingdom.
12202
12203 The @env{LC_CTYPE} environment variable specifies character
12204 classification.  GCC uses it to determine the character boundaries in
12205 a string; this is needed for some multibyte encodings that contain quote
12206 and escape characters that would otherwise be interpreted as a string
12207 end or escape.
12208
12209 The @env{LC_MESSAGES} environment variable specifies the language to
12210 use in diagnostic messages.
12211
12212 If the @env{LC_ALL} environment variable is set, it overrides the value
12213 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
12214 and @env{LC_MESSAGES} default to the value of the @env{LANG}
12215 environment variable.  If none of these variables are set, GCC
12216 defaults to traditional C English behavior.
12217
12218 @item TMPDIR
12219 @findex TMPDIR
12220 If @env{TMPDIR} is set, it specifies the directory to use for temporary
12221 files.  GCC uses temporary files to hold the output of one stage of
12222 compilation which is to be used as input to the next stage: for example,
12223 the output of the preprocessor, which is the input to the compiler
12224 proper.
12225
12226 @item GCC_EXEC_PREFIX
12227 @findex GCC_EXEC_PREFIX
12228 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
12229 names of the subprograms executed by the compiler.  No slash is added
12230 when this prefix is combined with the name of a subprogram, but you can
12231 specify a prefix that ends with a slash if you wish.
12232
12233 If @env{GCC_EXEC_PREFIX} is not set, GCC will attempt to figure out
12234 an appropriate prefix to use based on the pathname it was invoked with.
12235
12236 If GCC cannot find the subprogram using the specified prefix, it
12237 tries looking in the usual places for the subprogram.
12238
12239 The default value of @env{GCC_EXEC_PREFIX} is
12240 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the value
12241 of @code{prefix} when you ran the @file{configure} script.
12242
12243 Other prefixes specified with @option{-B} take precedence over this prefix.
12244
12245 This prefix is also used for finding files such as @file{crt0.o} that are
12246 used for linking.
12247
12248 In addition, the prefix is used in an unusual way in finding the
12249 directories to search for header files.  For each of the standard
12250 directories whose name normally begins with @samp{/usr/local/lib/gcc}
12251 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
12252 replacing that beginning with the specified prefix to produce an
12253 alternate directory name.  Thus, with @option{-Bfoo/}, GCC will search
12254 @file{foo/bar} where it would normally search @file{/usr/local/lib/bar}.
12255 These alternate directories are searched first; the standard directories
12256 come next.
12257
12258 @item COMPILER_PATH
12259 @findex COMPILER_PATH
12260 The value of @env{COMPILER_PATH} is a colon-separated list of
12261 directories, much like @env{PATH}.  GCC tries the directories thus
12262 specified when searching for subprograms, if it can't find the
12263 subprograms using @env{GCC_EXEC_PREFIX}.
12264
12265 @item LIBRARY_PATH
12266 @findex LIBRARY_PATH
12267 The value of @env{LIBRARY_PATH} is a colon-separated list of
12268 directories, much like @env{PATH}.  When configured as a native compiler,
12269 GCC tries the directories thus specified when searching for special
12270 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}.  Linking
12271 using GCC also uses these directories when searching for ordinary
12272 libraries for the @option{-l} option (but directories specified with
12273 @option{-L} come first).
12274
12275 @item LANG
12276 @findex LANG
12277 @cindex locale definition
12278 This variable is used to pass locale information to the compiler.  One way in
12279 which this information is used is to determine the character set to be used
12280 when character literals, string literals and comments are parsed in C and C++.
12281 When the compiler is configured to allow multibyte characters,
12282 the following values for @env{LANG} are recognized:
12283
12284 @table @samp
12285 @item C-JIS
12286 Recognize JIS characters.
12287 @item C-SJIS
12288 Recognize SJIS characters.
12289 @item C-EUCJP
12290 Recognize EUCJP characters.
12291 @end table
12292
12293 If @env{LANG} is not defined, or if it has some other value, then the
12294 compiler will use mblen and mbtowc as defined by the default locale to
12295 recognize and translate multibyte characters.
12296 @end table
12297
12298 @noindent
12299 Some additional environments variables affect the behavior of the
12300 preprocessor.
12301
12302 @include cppenv.texi
12303
12304 @c man end
12305
12306 @node Precompiled Headers
12307 @section Using Precompiled Headers
12308 @cindex precompiled headers
12309 @cindex speed of compilation
12310
12311 Often large projects have many header files that are included in every
12312 source file.  The time the compiler takes to process these header files
12313 over and over again can account for nearly all of the time required to
12314 build the project.  To make builds faster, GCC allows users to
12315 `precompile' a header file; then, if builds can use the precompiled
12316 header file they will be much faster.
12317
12318 @strong{Caution:} There are a few known situations where GCC will
12319 crash when trying to use a precompiled header.  If you have trouble
12320 with a precompiled header, you should remove the precompiled header
12321 and compile without it.  In addition, please use GCC's on-line
12322 defect-tracking system to report any problems you encounter with
12323 precompiled headers.  @xref{Bugs}.
12324
12325 To create a precompiled header file, simply compile it as you would any
12326 other file, if necessary using the @option{-x} option to make the driver
12327 treat it as a C or C++ header file.  You will probably want to use a
12328 tool like @command{make} to keep the precompiled header up-to-date when
12329 the headers it contains change.
12330
12331 A precompiled header file will be searched for when @code{#include} is
12332 seen in the compilation.  As it searches for the included file
12333 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
12334 compiler looks for a precompiled header in each directory just before it
12335 looks for the include file in that directory.  The name searched for is
12336 the name specified in the @code{#include} with @samp{.gch} appended.  If
12337 the precompiled header file can't be used, it is ignored.
12338
12339 For instance, if you have @code{#include "all.h"}, and you have
12340 @file{all.h.gch} in the same directory as @file{all.h}, then the
12341 precompiled header file will be used if possible, and the original
12342 header will be used otherwise.
12343
12344 Alternatively, you might decide to put the precompiled header file in a
12345 directory and use @option{-I} to ensure that directory is searched
12346 before (or instead of) the directory containing the original header.
12347 Then, if you want to check that the precompiled header file is always
12348 used, you can put a file of the same name as the original header in this
12349 directory containing an @code{#error} command.
12350
12351 This also works with @option{-include}.  So yet another way to use
12352 precompiled headers, good for projects not designed with precompiled
12353 header files in mind, is to simply take most of the header files used by
12354 a project, include them from another header file, precompile that header
12355 file, and @option{-include} the precompiled header.  If the header files
12356 have guards against multiple inclusion, they will be skipped because
12357 they've already been included (in the precompiled header).
12358
12359 If you need to precompile the same header file for different
12360 languages, targets, or compiler options, you can instead make a
12361 @emph{directory} named like @file{all.h.gch}, and put each precompiled
12362 header in the directory, perhaps using @option{-o}.  It doesn't matter
12363 what you call the files in the directory, every precompiled header in
12364 the directory will be considered.  The first precompiled header
12365 encountered in the directory that is valid for this compilation will
12366 be used; they're searched in no particular order.
12367
12368 There are many other possibilities, limited only by your imagination,
12369 good sense, and the constraints of your build system.
12370
12371 A precompiled header file can be used only when these conditions apply:
12372
12373 @itemize
12374 @item
12375 Only one precompiled header can be used in a particular compilation.
12376
12377 @item
12378 A precompiled header can't be used once the first C token is seen.  You
12379 can have preprocessor directives before a precompiled header; you can
12380 even include a precompiled header from inside another header, so long as
12381 there are no C tokens before the @code{#include}.
12382
12383 @item
12384 The precompiled header file must be produced for the same language as
12385 the current compilation.  You can't use a C precompiled header for a C++
12386 compilation.
12387
12388 @item
12389 The precompiled header file must be produced by the same compiler
12390 version and configuration as the current compilation is using.
12391 The easiest way to guarantee this is to use the same compiler binary
12392 for creating and using precompiled headers.
12393
12394 @item
12395 Any macros defined before the precompiled header is included must
12396 either be defined in the same way as when the precompiled header was
12397 generated, or must not affect the precompiled header, which usually
12398 means that the they don't appear in the precompiled header at all.
12399
12400 The @option{-D} option is one way to define a macro before a
12401 precompiled header is included; using a @code{#define} can also do it.
12402 There are also some options that define macros implicitly, like
12403 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
12404 defined this way.
12405
12406 @item If debugging information is output when using the precompiled
12407 header, using @option{-g} or similar, the same kind of debugging information
12408 must have been output when building the precompiled header.  However,
12409 a precompiled header built using @option{-g} can be used in a compilation
12410 when no debugging information is being output.
12411
12412 @item The same @option{-m} options must generally be used when building
12413 and using the precompiled header.  @xref{Submodel Options},
12414 for any cases where this rule is relaxed.
12415
12416 @item Each of the following options must be the same when building and using
12417 the precompiled header:
12418
12419 @gccoptlist{-fexceptions -funit-at-a-time}
12420
12421 @item
12422 Some other command-line options starting with @option{-f},
12423 @option{-p}, or @option{-O} must be defined in the same way as when
12424 the precompiled header was generated.  At present, it's not clear
12425 which options are safe to change and which are not; the safest choice
12426 is to use exactly the same options when generating and using the
12427 precompiled header.  The following are known to be safe:
12428
12429 @gccoptlist{-fpreprocessed -pedantic-errors}
12430
12431 @end itemize
12432
12433 For all of these except the last, the compiler will automatically
12434 ignore the precompiled header if the conditions aren't met.  If you
12435 find an option combination that doesn't work and doesn't cause the
12436 precompiled header to be ignored, please consider filing a bug report,
12437 see @ref{Bugs}.
12438
12439 If you do use differing options when generating and using the
12440 precompiled header, the actual behaviour will be a mixture of the
12441 behaviour for the options.  For instance, if you use @option{-g} to
12442 generate the precompiled header but not when using it, you may or may
12443 not get debugging information for routines in the precompiled header.
12444
12445 @node Running Protoize
12446 @section Running Protoize
12447
12448 The program @code{protoize} is an optional part of GCC@.  You can use
12449 it to add prototypes to a program, thus converting the program to ISO
12450 C in one respect.  The companion program @code{unprotoize} does the
12451 reverse: it removes argument types from any prototypes that are found.
12452
12453 When you run these programs, you must specify a set of source files as
12454 command line arguments.  The conversion programs start out by compiling
12455 these files to see what functions they define.  The information gathered
12456 about a file @var{foo} is saved in a file named @file{@var{foo}.X}.
12457
12458 After scanning comes actual conversion.  The specified files are all
12459 eligible to be converted; any files they include (whether sources or
12460 just headers) are eligible as well.
12461
12462 But not all the eligible files are converted.  By default,
12463 @code{protoize} and @code{unprotoize} convert only source and header
12464 files in the current directory.  You can specify additional directories
12465 whose files should be converted with the @option{-d @var{directory}}
12466 option.  You can also specify particular files to exclude with the
12467 @option{-x @var{file}} option.  A file is converted if it is eligible, its
12468 directory name matches one of the specified directory names, and its
12469 name within the directory has not been excluded.
12470
12471 Basic conversion with @code{protoize} consists of rewriting most
12472 function definitions and function declarations to specify the types of
12473 the arguments.  The only ones not rewritten are those for varargs
12474 functions.
12475
12476 @code{protoize} optionally inserts prototype declarations at the
12477 beginning of the source file, to make them available for any calls that
12478 precede the function's definition.  Or it can insert prototype
12479 declarations with block scope in the blocks where undeclared functions
12480 are called.
12481
12482 Basic conversion with @code{unprotoize} consists of rewriting most
12483 function declarations to remove any argument types, and rewriting
12484 function definitions to the old-style pre-ISO form.
12485
12486 Both conversion programs print a warning for any function declaration or
12487 definition that they can't convert.  You can suppress these warnings
12488 with @option{-q}.
12489
12490 The output from @code{protoize} or @code{unprotoize} replaces the
12491 original source file.  The original file is renamed to a name ending
12492 with @samp{.save} (for DOS, the saved filename ends in @samp{.sav}
12493 without the original @samp{.c} suffix).  If the @samp{.save} (@samp{.sav}
12494 for DOS) file already exists, then the source file is simply discarded.
12495
12496 @code{protoize} and @code{unprotoize} both depend on GCC itself to
12497 scan the program and collect information about the functions it uses.
12498 So neither of these programs will work until GCC is installed.
12499
12500 Here is a table of the options you can use with @code{protoize} and
12501 @code{unprotoize}.  Each option works with both programs unless
12502 otherwise stated.
12503
12504 @table @code
12505 @item -B @var{directory}
12506 Look for the file @file{SYSCALLS.c.X} in @var{directory}, instead of the
12507 usual directory (normally @file{/usr/local/lib}).  This file contains
12508 prototype information about standard system functions.  This option
12509 applies only to @code{protoize}.
12510
12511 @item -c @var{compilation-options}
12512 Use @var{compilation-options} as the options when running @command{gcc} to
12513 produce the @samp{.X} files.  The special option @option{-aux-info} is
12514 always passed in addition, to tell @command{gcc} to write a @samp{.X} file.
12515
12516 Note that the compilation options must be given as a single argument to
12517 @code{protoize} or @code{unprotoize}.  If you want to specify several
12518 @command{gcc} options, you must quote the entire set of compilation options
12519 to make them a single word in the shell.
12520
12521 There are certain @command{gcc} arguments that you cannot use, because they
12522 would produce the wrong kind of output.  These include @option{-g},
12523 @option{-O}, @option{-c}, @option{-S}, and @option{-o} If you include these in
12524 the @var{compilation-options}, they are ignored.
12525
12526 @item -C
12527 Rename files to end in @samp{.C} (@samp{.cc} for DOS-based file
12528 systems) instead of @samp{.c}.  This is convenient if you are converting
12529 a C program to C++.  This option applies only to @code{protoize}.
12530
12531 @item -g
12532 Add explicit global declarations.  This means inserting explicit
12533 declarations at the beginning of each source file for each function
12534 that is called in the file and was not declared.  These declarations
12535 precede the first function definition that contains a call to an
12536 undeclared function.  This option applies only to @code{protoize}.
12537
12538 @item -i @var{string}
12539 Indent old-style parameter declarations with the string @var{string}.
12540 This option applies only to @code{protoize}.
12541
12542 @code{unprotoize} converts prototyped function definitions to old-style
12543 function definitions, where the arguments are declared between the
12544 argument list and the initial @samp{@{}.  By default, @code{unprotoize}
12545 uses five spaces as the indentation.  If you want to indent with just
12546 one space instead, use @option{-i " "}.
12547
12548 @item -k
12549 Keep the @samp{.X} files.  Normally, they are deleted after conversion
12550 is finished.
12551
12552 @item -l
12553 Add explicit local declarations.  @code{protoize} with @option{-l} inserts
12554 a prototype declaration for each function in each block which calls the
12555 function without any declaration.  This option applies only to
12556 @code{protoize}.
12557
12558 @item -n
12559 Make no real changes.  This mode just prints information about the conversions
12560 that would have been done without @option{-n}.
12561
12562 @item -N
12563 Make no @samp{.save} files.  The original files are simply deleted.
12564 Use this option with caution.
12565
12566 @item -p @var{program}
12567 Use the program @var{program} as the compiler.  Normally, the name
12568 @file{gcc} is used.
12569
12570 @item -q
12571 Work quietly.  Most warnings are suppressed.
12572
12573 @item -v
12574 Print the version number, just like @option{-v} for @command{gcc}.
12575 @end table
12576
12577 If you need special compiler options to compile one of your program's
12578 source files, then you should generate that file's @samp{.X} file
12579 specially, by running @command{gcc} on that source file with the
12580 appropriate options and the option @option{-aux-info}.  Then run
12581 @code{protoize} on the entire set of files.  @code{protoize} will use
12582 the existing @samp{.X} file because it is newer than the source file.
12583 For example:
12584
12585 @smallexample
12586 gcc -Dfoo=bar file1.c -aux-info file1.X
12587 protoize *.c
12588 @end smallexample
12589
12590 @noindent
12591 You need to include the special files along with the rest in the
12592 @code{protoize} command, even though their @samp{.X} files already
12593 exist, because otherwise they won't get converted.
12594
12595 @xref{Protoize Caveats}, for more information on how to use
12596 @code{protoize} successfully.