OSDN Git Service

PR c/15052
[pf3gnuchains/gcc-fork.git] / gcc / doc / c-tree.texi
1 @c Copyright (c) 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @c ---------------------------------------------------------------------
7 @c Trees
8 @c ---------------------------------------------------------------------
9
10 @node Trees
11 @chapter Trees: The intermediate representation used by the C and C++ front ends
12 @cindex Trees
13 @cindex C/C++ Internal Representation
14
15 This chapter documents the internal representation used by GCC to
16 represent C and C++ source programs.  When presented with a C or C++
17 source program, GCC parses the program, performs semantic analysis
18 (including the generation of error messages), and then produces the
19 internal representation described here.  This representation contains a
20 complete representation for the entire translation unit provided as
21 input to the front end.  This representation is then typically processed
22 by a code-generator in order to produce machine code, but could also be
23 used in the creation of source browsers, intelligent editors, automatic
24 documentation generators, interpreters, and any other programs needing
25 the ability to process C or C++ code.
26
27 This chapter explains the internal representation.  In particular, it
28 documents the internal representation for C and C++ source
29 constructs, and the macros, functions, and variables that can be used to
30 access these constructs.  The C++ representation is largely a superset
31 of the representation used in the C front end.  There is only one
32 construct used in C that does not appear in the C++ front end and that
33 is the GNU ``nested function'' extension.  Many of the macros documented
34 here do not apply in C because the corresponding language constructs do
35 not appear in C@.
36
37 If you are developing a ``back end'', be it is a code-generator or some
38 other tool, that uses this representation, you may occasionally find
39 that you need to ask questions not easily answered by the functions and
40 macros available here.  If that situation occurs, it is quite likely
41 that GCC already supports the functionality you desire, but that the
42 interface is simply not documented here.  In that case, you should ask
43 the GCC maintainers (via mail to @email{gcc@@gcc.gnu.org}) about
44 documenting the functionality you require.  Similarly, if you find
45 yourself writing functions that do not deal directly with your back end,
46 but instead might be useful to other people using the GCC front end, you
47 should submit your patches for inclusion in GCC@.
48
49 @menu
50 * Deficiencies::        Topics net yet covered in this document.
51 * Tree overview::       All about @code{tree}s.
52 * Types::               Fundamental and aggregate types.
53 * Scopes::              Namespaces and classes.
54 * Functions::           Overloading, function bodies, and linkage.
55 * Declarations::        Type declarations and variables.
56 * Attributes::          Declaration and type attributes.
57 * Expression trees::    From @code{typeid} to @code{throw}.
58 @end menu
59
60 @c ---------------------------------------------------------------------
61 @c Deficiencies
62 @c ---------------------------------------------------------------------
63
64 @node Deficiencies
65 @section Deficiencies
66
67 There are many places in which this document is incomplet and incorrekt.
68 It is, as of yet, only @emph{preliminary} documentation.
69
70 @c ---------------------------------------------------------------------
71 @c Overview
72 @c ---------------------------------------------------------------------
73
74 @node Tree overview
75 @section Overview
76 @cindex tree
77 @findex TREE_CODE
78
79 The central data structure used by the internal representation is the
80 @code{tree}.  These nodes, while all of the C type @code{tree}, are of
81 many varieties.  A @code{tree} is a pointer type, but the object to
82 which it points may be of a variety of types.  From this point forward,
83 we will refer to trees in ordinary type, rather than in @code{this
84 font}, except when talking about the actual C type @code{tree}.
85
86 You can tell what kind of node a particular tree is by using the
87 @code{TREE_CODE} macro.  Many, many macros take trees as input and
88 return trees as output.  However, most macros require a certain kind of
89 tree node as input.  In other words, there is a type-system for trees,
90 but it is not reflected in the C type-system.
91
92 For safety, it is useful to configure GCC with @option{--enable-checking}.
93 Although this results in a significant performance penalty (since all
94 tree types are checked at run-time), and is therefore inappropriate in a
95 release version, it is extremely helpful during the development process.
96
97 Many macros behave as predicates.  Many, although not all, of these
98 predicates end in @samp{_P}.  Do not rely on the result type of these
99 macros being of any particular type.  You may, however, rely on the fact
100 that the type can be compared to @code{0}, so that statements like
101 @smallexample
102 if (TEST_P (t) && !TEST_P (y))
103   x = 1;
104 @end smallexample
105 @noindent
106 and
107 @smallexample
108 int i = (TEST_P (t) != 0);
109 @end smallexample
110 @noindent
111 are legal.  Macros that return @code{int} values now may be changed to
112 return @code{tree} values, or other pointers in the future.  Even those
113 that continue to return @code{int} may return multiple nonzero codes
114 where previously they returned only zero and one.  Therefore, you should
115 not write code like
116 @smallexample
117 if (TEST_P (t) == 1)
118 @end smallexample
119 @noindent
120 as this code is not guaranteed to work correctly in the future.
121
122 You should not take the address of values returned by the macros or
123 functions described here.  In particular, no guarantee is given that the
124 values are lvalues.
125
126 In general, the names of macros are all in uppercase, while the names of
127 functions are entirely in lowercase.  There are rare exceptions to this
128 rule.  You should assume that any macro or function whose name is made
129 up entirely of uppercase letters may evaluate its arguments more than
130 once.  You may assume that a macro or function whose name is made up
131 entirely of lowercase letters will evaluate its arguments only once.
132
133 The @code{error_mark_node} is a special tree.  Its tree code is
134 @code{ERROR_MARK}, but since there is only ever one node with that code,
135 the usual practice is to compare the tree against
136 @code{error_mark_node}.  (This test is just a test for pointer
137 equality.)  If an error has occurred during front-end processing the
138 flag @code{errorcount} will be set.  If the front end has encountered
139 code it cannot handle, it will issue a message to the user and set
140 @code{sorrycount}.  When these flags are set, any macro or function
141 which normally returns a tree of a particular kind may instead return
142 the @code{error_mark_node}.  Thus, if you intend to do any processing of
143 erroneous code, you must be prepared to deal with the
144 @code{error_mark_node}.
145
146 Occasionally, a particular tree slot (like an operand to an expression,
147 or a particular field in a declaration) will be referred to as
148 ``reserved for the back end.''  These slots are used to store RTL when
149 the tree is converted to RTL for use by the GCC back end.  However, if
150 that process is not taking place (e.g., if the front end is being hooked
151 up to an intelligent editor), then those slots may be used by the
152 back end presently in use.
153
154 If you encounter situations that do not match this documentation, such
155 as tree nodes of types not mentioned here, or macros documented to
156 return entities of a particular kind that instead return entities of
157 some different kind, you have found a bug, either in the front end or in
158 the documentation.  Please report these bugs as you would any other
159 bug.
160
161 @menu
162 * Macros and Functions::Macros and functions that can be used with all trees.
163 * Identifiers::         The names of things.
164 * Containers::          Lists and vectors.
165 @end menu
166
167 @c ---------------------------------------------------------------------
168 @c Trees
169 @c ---------------------------------------------------------------------
170
171 @node Macros and Functions
172 @subsection Trees
173 @cindex tree
174
175 This section is not here yet.
176
177 @c ---------------------------------------------------------------------
178 @c Identifiers
179 @c ---------------------------------------------------------------------
180
181 @node Identifiers
182 @subsection Identifiers
183 @cindex identifier
184 @cindex name
185 @tindex IDENTIFIER_NODE
186
187 An @code{IDENTIFIER_NODE} represents a slightly more general concept
188 that the standard C or C++ concept of identifier.  In particular, an
189 @code{IDENTIFIER_NODE} may contain a @samp{$}, or other extraordinary
190 characters.
191
192 There are never two distinct @code{IDENTIFIER_NODE}s representing the
193 same identifier.  Therefore, you may use pointer equality to compare
194 @code{IDENTIFIER_NODE}s, rather than using a routine like @code{strcmp}.
195
196 You can use the following macros to access identifiers:
197 @ftable @code
198 @item IDENTIFIER_POINTER
199 The string represented by the identifier, represented as a
200 @code{char*}.  This string is always @code{NUL}-terminated, and contains
201 no embedded @code{NUL} characters.
202
203 @item IDENTIFIER_LENGTH
204 The length of the string returned by @code{IDENTIFIER_POINTER}, not
205 including the trailing @code{NUL}.  This value of
206 @code{IDENTIFIER_LENGTH (x)} is always the same as @code{strlen
207 (IDENTIFIER_POINTER (x))}.
208
209 @item IDENTIFIER_OPNAME_P
210 This predicate holds if the identifier represents the name of an
211 overloaded operator.  In this case, you should not depend on the
212 contents of either the @code{IDENTIFIER_POINTER} or the
213 @code{IDENTIFIER_LENGTH}.
214
215 @item IDENTIFIER_TYPENAME_P
216 This predicate holds if the identifier represents the name of a
217 user-defined conversion operator.  In this case, the @code{TREE_TYPE} of
218 the @code{IDENTIFIER_NODE} holds the type to which the conversion
219 operator converts.
220
221 @end ftable
222
223 @c ---------------------------------------------------------------------
224 @c Containers
225 @c ---------------------------------------------------------------------
226
227 @node Containers
228 @subsection Containers
229 @cindex container
230 @cindex list
231 @cindex vector
232 @tindex TREE_LIST
233 @tindex TREE_VEC
234 @findex TREE_PURPOSE
235 @findex TREE_VALUE
236 @findex TREE_VEC_LENGTH
237 @findex TREE_VEC_ELT
238
239 Two common container data structures can be represented directly with
240 tree nodes.  A @code{TREE_LIST} is a singly linked list containing two
241 trees per node.  These are the @code{TREE_PURPOSE} and @code{TREE_VALUE}
242 of each node.  (Often, the @code{TREE_PURPOSE} contains some kind of
243 tag, or additional information, while the @code{TREE_VALUE} contains the
244 majority of the payload.  In other cases, the @code{TREE_PURPOSE} is
245 simply @code{NULL_TREE}, while in still others both the
246 @code{TREE_PURPOSE} and @code{TREE_VALUE} are of equal stature.)  Given
247 one @code{TREE_LIST} node, the next node is found by following the
248 @code{TREE_CHAIN}.  If the @code{TREE_CHAIN} is @code{NULL_TREE}, then
249 you have reached the end of the list.
250
251 A @code{TREE_VEC} is a simple vector.  The @code{TREE_VEC_LENGTH} is an
252 integer (not a tree) giving the number of nodes in the vector.  The
253 nodes themselves are accessed using the @code{TREE_VEC_ELT} macro, which
254 takes two arguments.  The first is the @code{TREE_VEC} in question; the
255 second is an integer indicating which element in the vector is desired.
256 The elements are indexed from zero.
257
258 @c ---------------------------------------------------------------------
259 @c Types
260 @c ---------------------------------------------------------------------
261
262 @node Types
263 @section Types
264 @cindex type
265 @cindex pointer
266 @cindex reference
267 @cindex fundamental type
268 @cindex array
269 @tindex VOID_TYPE
270 @tindex INTEGER_TYPE
271 @tindex TYPE_MIN_VALUE
272 @tindex TYPE_MAX_VALUE
273 @tindex REAL_TYPE
274 @tindex COMPLEX_TYPE
275 @tindex ENUMERAL_TYPE
276 @tindex BOOLEAN_TYPE
277 @tindex POINTER_TYPE
278 @tindex REFERENCE_TYPE
279 @tindex FUNCTION_TYPE
280 @tindex METHOD_TYPE
281 @tindex ARRAY_TYPE
282 @tindex RECORD_TYPE
283 @tindex UNION_TYPE
284 @tindex UNKNOWN_TYPE
285 @tindex OFFSET_TYPE
286 @tindex TYPENAME_TYPE
287 @tindex TYPEOF_TYPE
288 @findex CP_TYPE_QUALS
289 @findex TYPE_UNQUALIFIED
290 @findex TYPE_QUAL_CONST
291 @findex TYPE_QUAL_VOLATILE
292 @findex TYPE_QUAL_RESTRICT
293 @findex TYPE_MAIN_VARIANT
294 @cindex qualified type
295 @findex TYPE_SIZE
296 @findex TYPE_ALIGN
297 @findex TYPE_PRECISION
298 @findex TYPE_ARG_TYPES
299 @findex TYPE_METHOD_BASETYPE
300 @findex TYPE_PTRMEM_P
301 @findex TYPE_OFFSET_BASETYPE
302 @findex TREE_TYPE
303 @findex TYPE_CONTEXT
304 @findex TYPE_NAME
305 @findex TYPENAME_TYPE_FULLNAME
306 @findex TYPE_FIELDS
307 @findex TYPE_PTROBV_P
308
309 All types have corresponding tree nodes.  However, you should not assume
310 that there is exactly one tree node corresponding to each type.  There
311 are often several nodes each of which correspond to the same type.
312
313 For the most part, different kinds of types have different tree codes.
314 (For example, pointer types use a @code{POINTER_TYPE} code while arrays
315 use an @code{ARRAY_TYPE} code.)  However, pointers to member functions
316 use the @code{RECORD_TYPE} code.  Therefore, when writing a
317 @code{switch} statement that depends on the code associated with a
318 particular type, you should take care to handle pointers to member
319 functions under the @code{RECORD_TYPE} case label.
320
321 In C++, an array type is not qualified; rather the type of the array
322 elements is qualified.  This situation is reflected in the intermediate
323 representation.  The macros described here will always examine the
324 qualification of the underlying element type when applied to an array
325 type.  (If the element type is itself an array, then the recursion
326 continues until a non-array type is found, and the qualification of this
327 type is examined.)  So, for example, @code{CP_TYPE_CONST_P} will hold of
328 the type @code{const int ()[7]}, denoting an array of seven @code{int}s.
329
330 The following functions and macros deal with cv-qualification of types:
331 @ftable @code
332 @item CP_TYPE_QUALS
333 This macro returns the set of type qualifiers applied to this type.
334 This value is @code{TYPE_UNQUALIFIED} if no qualifiers have been
335 applied.  The @code{TYPE_QUAL_CONST} bit is set if the type is
336 @code{const}-qualified.  The @code{TYPE_QUAL_VOLATILE} bit is set if the
337 type is @code{volatile}-qualified.  The @code{TYPE_QUAL_RESTRICT} bit is
338 set if the type is @code{restrict}-qualified.
339
340 @item CP_TYPE_CONST_P
341 This macro holds if the type is @code{const}-qualified.
342
343 @item CP_TYPE_VOLATILE_P
344 This macro holds if the type is @code{volatile}-qualified.
345
346 @item CP_TYPE_RESTRICT_P
347 This macro holds if the type is @code{restrict}-qualified.
348
349 @item CP_TYPE_CONST_NON_VOLATILE_P
350 This predicate holds for a type that is @code{const}-qualified, but
351 @emph{not} @code{volatile}-qualified; other cv-qualifiers are ignored as
352 well: only the @code{const}-ness is tested.
353
354 @item TYPE_MAIN_VARIANT
355 This macro returns the unqualified version of a type.  It may be applied
356 to an unqualified type, but it is not always the identity function in
357 that case.
358 @end ftable
359
360 A few other macros and functions are usable with all types:
361 @ftable @code
362 @item TYPE_SIZE
363 The number of bits required to represent the type, represented as an
364 @code{INTEGER_CST}.  For an incomplete type, @code{TYPE_SIZE} will be
365 @code{NULL_TREE}.
366
367 @item TYPE_ALIGN
368 The alignment of the type, in bits, represented as an @code{int}.
369
370 @item TYPE_NAME
371 This macro returns a declaration (in the form of a @code{TYPE_DECL}) for
372 the type.  (Note this macro does @emph{not} return a
373 @code{IDENTIFIER_NODE}, as you might expect, given its name!)  You can
374 look at the @code{DECL_NAME} of the @code{TYPE_DECL} to obtain the
375 actual name of the type.  The @code{TYPE_NAME} will be @code{NULL_TREE}
376 for a type that is not a built-in type, the result of a typedef, or a
377 named class type.
378
379 @item CP_INTEGRAL_TYPE
380 This predicate holds if the type is an integral type.  Notice that in
381 C++, enumerations are @emph{not} integral types.
382
383 @item ARITHMETIC_TYPE_P
384 This predicate holds if the type is an integral type (in the C++ sense)
385 or a floating point type.
386
387 @item CLASS_TYPE_P
388 This predicate holds for a class-type.
389
390 @item TYPE_BUILT_IN
391 This predicate holds for a built-in type.
392
393 @item TYPE_PTRMEM_P
394 This predicate holds if the type is a pointer to data member.
395
396 @item TYPE_PTR_P
397 This predicate holds if the type is a pointer type, and the pointee is
398 not a data member.
399
400 @item TYPE_PTRFN_P
401 This predicate holds for a pointer to function type.
402
403 @item TYPE_PTROB_P
404 This predicate holds for a pointer to object type.  Note however that it
405 does not hold for the generic pointer to object type @code{void *}.  You
406 may use @code{TYPE_PTROBV_P} to test for a pointer to object type as
407 well as @code{void *}.
408
409 @item same_type_p
410 This predicate takes two types as input, and holds if they are the same
411 type.  For example, if one type is a @code{typedef} for the other, or
412 both are @code{typedef}s for the same type.  This predicate also holds if
413 the two trees given as input are simply copies of one another; i.e.,
414 there is no difference between them at the source level, but, for
415 whatever reason, a duplicate has been made in the representation.  You
416 should never use @code{==} (pointer equality) to compare types; always
417 use @code{same_type_p} instead.
418 @end ftable
419
420 Detailed below are the various kinds of types, and the macros that can
421 be used to access them.  Although other kinds of types are used
422 elsewhere in G++, the types described here are the only ones that you
423 will encounter while examining the intermediate representation.
424
425 @table @code
426 @item VOID_TYPE
427 Used to represent the @code{void} type.
428
429 @item INTEGER_TYPE
430 Used to represent the various integral types, including @code{char},
431 @code{short}, @code{int}, @code{long}, and @code{long long}.  This code
432 is not used for enumeration types, nor for the @code{bool} type.  Note
433 that GCC's @code{CHAR_TYPE} node is @emph{not} used to represent
434 @code{char}.  The @code{TYPE_PRECISION} is the number of bits used in
435 the representation, represented as an @code{unsigned int}.  (Note that
436 in the general case this is not the same value as @code{TYPE_SIZE};
437 suppose that there were a 24-bit integer type, but that alignment
438 requirements for the ABI required 32-bit alignment.  Then,
439 @code{TYPE_SIZE} would be an @code{INTEGER_CST} for 32, while
440 @code{TYPE_PRECISION} would be 24.)  The integer type is unsigned if
441 @code{TYPE_UNSIGNED} holds; otherwise, it is signed.
442
443 The @code{TYPE_MIN_VALUE} is an @code{INTEGER_CST} for the smallest
444 integer that may be represented by this type.  Similarly, the
445 @code{TYPE_MAX_VALUE} is an @code{INTEGER_CST} for the largest integer
446 that may be represented by this type.
447
448 @item REAL_TYPE
449 Used to represent the @code{float}, @code{double}, and @code{long
450 double} types.  The number of bits in the floating-point representation
451 is given by @code{TYPE_PRECISION}, as in the @code{INTEGER_TYPE} case.
452
453 @item COMPLEX_TYPE
454 Used to represent GCC built-in @code{__complex__} data types.  The
455 @code{TREE_TYPE} is the type of the real and imaginary parts.
456
457 @item ENUMERAL_TYPE
458 Used to represent an enumeration type.  The @code{TYPE_PRECISION} gives
459 (as an @code{int}), the number of bits used to represent the type.  If
460 there are no negative enumeration constants, @code{TYPE_UNSIGNED} will
461 hold.  The minimum and maximum enumeration constants may be obtained
462 with @code{TYPE_MIN_VALUE} and @code{TYPE_MAX_VALUE}, respectively; each
463 of these macros returns an @code{INTEGER_CST}.
464
465 The actual enumeration constants themselves may be obtained by looking
466 at the @code{TYPE_VALUES}.  This macro will return a @code{TREE_LIST},
467 containing the constants.  The @code{TREE_PURPOSE} of each node will be
468 an @code{IDENTIFIER_NODE} giving the name of the constant; the
469 @code{TREE_VALUE} will be an @code{INTEGER_CST} giving the value
470 assigned to that constant.  These constants will appear in the order in
471 which they were declared.  The @code{TREE_TYPE} of each of these
472 constants will be the type of enumeration type itself.
473
474 @item BOOLEAN_TYPE
475 Used to represent the @code{bool} type.
476
477 @item POINTER_TYPE
478 Used to represent pointer types, and pointer to data member types.  The
479 @code{TREE_TYPE} gives the type to which this type points.  If the type
480 is a pointer to data member type, then @code{TYPE_PTRMEM_P} will hold.
481 For a pointer to data member type of the form @samp{T X::*},
482 @code{TYPE_PTRMEM_CLASS_TYPE} will be the type @code{X}, while
483 @code{TYPE_PTRMEM_POINTED_TO_TYPE} will be the type @code{T}.
484
485 @item REFERENCE_TYPE
486 Used to represent reference types.  The @code{TREE_TYPE} gives the type
487 to which this type refers.
488
489 @item FUNCTION_TYPE
490 Used to represent the type of non-member functions and of static member
491 functions.  The @code{TREE_TYPE} gives the return type of the function.
492 The @code{TYPE_ARG_TYPES} are a @code{TREE_LIST} of the argument types.
493 The @code{TREE_VALUE} of each node in this list is the type of the
494 corresponding argument; the @code{TREE_PURPOSE} is an expression for the
495 default argument value, if any.  If the last node in the list is
496 @code{void_list_node} (a @code{TREE_LIST} node whose @code{TREE_VALUE}
497 is the @code{void_type_node}), then functions of this type do not take
498 variable arguments.  Otherwise, they do take a variable number of
499 arguments.
500
501 Note that in C (but not in C++) a function declared like @code{void f()}
502 is an unprototyped function taking a variable number of arguments; the
503 @code{TYPE_ARG_TYPES} of such a function will be @code{NULL}.
504
505 @item METHOD_TYPE
506 Used to represent the type of a non-static member function.  Like a
507 @code{FUNCTION_TYPE}, the return type is given by the @code{TREE_TYPE}.
508 The type of @code{*this}, i.e., the class of which functions of this
509 type are a member, is given by the @code{TYPE_METHOD_BASETYPE}.  The
510 @code{TYPE_ARG_TYPES} is the parameter list, as for a
511 @code{FUNCTION_TYPE}, and includes the @code{this} argument.
512
513 @item ARRAY_TYPE
514 Used to represent array types.  The @code{TREE_TYPE} gives the type of
515 the elements in the array.  If the array-bound is present in the type,
516 the @code{TYPE_DOMAIN} is an @code{INTEGER_TYPE} whose
517 @code{TYPE_MIN_VALUE} and @code{TYPE_MAX_VALUE} will be the lower and
518 upper bounds of the array, respectively.  The @code{TYPE_MIN_VALUE} will
519 always be an @code{INTEGER_CST} for zero, while the
520 @code{TYPE_MAX_VALUE} will be one less than the number of elements in
521 the array, i.e., the highest value which may be used to index an element
522 in the array.
523
524 @item RECORD_TYPE
525 Used to represent @code{struct} and @code{class} types, as well as
526 pointers to member functions and similar constructs in other languages.
527 @code{TYPE_FIELDS} contains the items contained in this type, each of
528 which can be a @code{FIELD_DECL}, @code{VAR_DECL}, @code{CONST_DECL}, or
529 @code{TYPE_DECL}.  You may not make any assumptions about the ordering
530 of the fields in the type or whether one or more of them overlap.  If
531 @code{TYPE_PTRMEMFUNC_P} holds, then this type is a pointer-to-member
532 type.  In that case, the @code{TYPE_PTRMEMFUNC_FN_TYPE} is a
533 @code{POINTER_TYPE} pointing to a @code{METHOD_TYPE}.  The
534 @code{METHOD_TYPE} is the type of a function pointed to by the
535 pointer-to-member function.  If @code{TYPE_PTRMEMFUNC_P} does not hold,
536 this type is a class type.  For more information, see @pxref{Classes}.
537
538 @item UNION_TYPE
539 Used to represent @code{union} types.  Similar to @code{RECORD_TYPE}
540 except that all @code{FIELD_DECL} nodes in @code{TYPE_FIELD} start at
541 bit position zero.
542
543 @item QUAL_UNION_TYPE
544 Used to represent part of a variant record in Ada.  Similar to
545 @code{UNION_TYPE} except that each @code{FIELD_DECL} has a
546 @code{DECL_QUALIFIER} field, which contains a boolean expression that
547 indicates whether the field is present in the object.  The type will only
548 have one field, so each field's @code{DECL_QUALIFIER} is only evaluated
549 if none of the expressions in the previous fields in @code{TYPE_FIELDS}
550 are nonzero.  Normally these expressions will reference a field in the
551 outer object using a @code{PLACEHOLDER_EXPR}.
552
553 @item UNKNOWN_TYPE
554 This node is used to represent a type the knowledge of which is
555 insufficient for a sound processing.
556
557 @item OFFSET_TYPE
558 This node is used to represent a pointer-to-data member.  For a data
559 member @code{X::m} the @code{TYPE_OFFSET_BASETYPE} is @code{X} and the
560 @code{TREE_TYPE} is the type of @code{m}.
561
562 @item TYPENAME_TYPE
563 Used to represent a construct of the form @code{typename T::A}.  The
564 @code{TYPE_CONTEXT} is @code{T}; the @code{TYPE_NAME} is an
565 @code{IDENTIFIER_NODE} for @code{A}.  If the type is specified via a
566 template-id, then @code{TYPENAME_TYPE_FULLNAME} yields a
567 @code{TEMPLATE_ID_EXPR}.  The @code{TREE_TYPE} is non-@code{NULL} if the
568 node is implicitly generated in support for the implicit typename
569 extension; in which case the @code{TREE_TYPE} is a type node for the
570 base-class.
571
572 @item TYPEOF_TYPE
573 Used to represent the @code{__typeof__} extension.  The
574 @code{TYPE_FIELDS} is the expression the type of which is being
575 represented.
576 @end table
577
578 There are variables whose values represent some of the basic types.
579 These include:
580 @table @code
581 @item void_type_node
582 A node for @code{void}.
583
584 @item integer_type_node
585 A node for @code{int}.
586
587 @item unsigned_type_node.
588 A node for @code{unsigned int}.
589
590 @item char_type_node.
591 A node for @code{char}.
592 @end table
593 @noindent
594 It may sometimes be useful to compare one of these variables with a type
595 in hand, using @code{same_type_p}.
596
597 @c ---------------------------------------------------------------------
598 @c Scopes
599 @c ---------------------------------------------------------------------
600
601 @node Scopes
602 @section Scopes
603 @cindex namespace, class, scope
604
605 The root of the entire intermediate representation is the variable
606 @code{global_namespace}.  This is the namespace specified with @code{::}
607 in C++ source code.  All other namespaces, types, variables, functions,
608 and so forth can be found starting with this namespace.
609
610 Besides namespaces, the other high-level scoping construct in C++ is the
611 class.  (Throughout this manual the term @dfn{class} is used to mean the
612 types referred to in the ANSI/ISO C++ Standard as classes; these include
613 types defined with the @code{class}, @code{struct}, and @code{union}
614 keywords.)
615
616 @menu
617 * Namespaces::          Member functions, types, etc.
618 * Classes::             Members, bases, friends, etc.
619 @end menu
620
621 @c ---------------------------------------------------------------------
622 @c Namespaces
623 @c ---------------------------------------------------------------------
624
625 @node Namespaces
626 @subsection Namespaces
627 @cindex namespace
628 @tindex NAMESPACE_DECL
629
630 A namespace is represented by a @code{NAMESPACE_DECL} node.
631
632 However, except for the fact that it is distinguished as the root of the
633 representation, the global namespace is no different from any other
634 namespace.  Thus, in what follows, we describe namespaces generally,
635 rather than the global namespace in particular.
636
637 The following macros and functions can be used on a @code{NAMESPACE_DECL}:
638
639 @ftable @code
640 @item DECL_NAME
641 This macro is used to obtain the @code{IDENTIFIER_NODE} corresponding to
642 the unqualified name of the name of the namespace (@pxref{Identifiers}).
643 The name of the global namespace is @samp{::}, even though in C++ the
644 global namespace is unnamed.  However, you should use comparison with
645 @code{global_namespace}, rather than @code{DECL_NAME} to determine
646 whether or not a namespace is the global one.  An unnamed namespace
647 will have a @code{DECL_NAME} equal to @code{anonymous_namespace_name}.
648 Within a single translation unit, all unnamed namespaces will have the
649 same name.
650
651 @item DECL_CONTEXT
652 This macro returns the enclosing namespace.  The @code{DECL_CONTEXT} for
653 the @code{global_namespace} is @code{NULL_TREE}.
654
655 @item DECL_NAMESPACE_ALIAS
656 If this declaration is for a namespace alias, then
657 @code{DECL_NAMESPACE_ALIAS} is the namespace for which this one is an
658 alias.
659
660 Do not attempt to use @code{cp_namespace_decls} for a namespace which is
661 an alias.  Instead, follow @code{DECL_NAMESPACE_ALIAS} links until you
662 reach an ordinary, non-alias, namespace, and call
663 @code{cp_namespace_decls} there.
664
665 @item DECL_NAMESPACE_STD_P
666 This predicate holds if the namespace is the special @code{::std}
667 namespace.
668
669 @item cp_namespace_decls
670 This function will return the declarations contained in the namespace,
671 including types, overloaded functions, other namespaces, and so forth.
672 If there are no declarations, this function will return
673 @code{NULL_TREE}.  The declarations are connected through their
674 @code{TREE_CHAIN} fields.
675
676 Although most entries on this list will be declarations,
677 @code{TREE_LIST} nodes may also appear.  In this case, the
678 @code{TREE_VALUE} will be an @code{OVERLOAD}.  The value of the
679 @code{TREE_PURPOSE} is unspecified; back ends should ignore this value.
680 As with the other kinds of declarations returned by
681 @code{cp_namespace_decls}, the @code{TREE_CHAIN} will point to the next
682 declaration in this list.
683
684 For more information on the kinds of declarations that can occur on this
685 list, @xref{Declarations}.  Some declarations will not appear on this
686 list.  In particular, no @code{FIELD_DECL}, @code{LABEL_DECL}, or
687 @code{PARM_DECL} nodes will appear here.
688
689 This function cannot be used with namespaces that have
690 @code{DECL_NAMESPACE_ALIAS} set.
691
692 @end ftable
693
694 @c ---------------------------------------------------------------------
695 @c Classes
696 @c ---------------------------------------------------------------------
697
698 @node Classes
699 @subsection Classes
700 @cindex class
701 @tindex RECORD_TYPE
702 @tindex UNION_TYPE
703 @findex CLASSTYPE_DECLARED_CLASS
704 @findex TYPE_BINFO
705 @findex BINFO_TYPE
706 @findex TREE_VIA_PUBLIC
707 @findex TREE_VIA_PROTECTED
708 @findex TREE_VIA_PRIVATE
709 @findex TYPE_FIELDS
710 @findex TYPE_VFIELD
711 @findex TYPE_METHODS
712
713 A class type is represented by either a @code{RECORD_TYPE} or a
714 @code{UNION_TYPE}.  A class declared with the @code{union} tag is
715 represented by a @code{UNION_TYPE}, while classes declared with either
716 the @code{struct} or the @code{class} tag are represented by
717 @code{RECORD_TYPE}s.  You can use the @code{CLASSTYPE_DECLARED_CLASS}
718 macro to discern whether or not a particular type is a @code{class} as
719 opposed to a @code{struct}.  This macro will be true only for classes
720 declared with the @code{class} tag.
721
722 Almost all non-function members are available on the @code{TYPE_FIELDS}
723 list.  Given one member, the next can be found by following the
724 @code{TREE_CHAIN}.  You should not depend in any way on the order in
725 which fields appear on this list.  All nodes on this list will be
726 @samp{DECL} nodes.  A @code{FIELD_DECL} is used to represent a non-static
727 data member, a @code{VAR_DECL} is used to represent a static data
728 member, and a @code{TYPE_DECL} is used to represent a type.  Note that
729 the @code{CONST_DECL} for an enumeration constant will appear on this
730 list, if the enumeration type was declared in the class.  (Of course,
731 the @code{TYPE_DECL} for the enumeration type will appear here as well.)
732 There are no entries for base classes on this list.  In particular,
733 there is no @code{FIELD_DECL} for the ``base-class portion'' of an
734 object.
735
736 The @code{TYPE_VFIELD} is a compiler-generated field used to point to
737 virtual function tables.  It may or may not appear on the
738 @code{TYPE_FIELDS} list.  However, back ends should handle the
739 @code{TYPE_VFIELD} just like all the entries on the @code{TYPE_FIELDS}
740 list.
741
742 The function members are available on the @code{TYPE_METHODS} list.
743 Again, subsequent members are found by following the @code{TREE_CHAIN}
744 field.  If a function is overloaded, each of the overloaded functions
745 appears; no @code{OVERLOAD} nodes appear on the @code{TYPE_METHODS}
746 list.  Implicitly declared functions (including default constructors,
747 copy constructors, assignment operators, and destructors) will appear on
748 this list as well.
749
750 Every class has an associated @dfn{binfo}, which can be obtained with
751 @code{TYPE_BINFO}.  Binfos are used to represent base-classes.  The
752 binfo given by @code{TYPE_BINFO} is the degenerate case, whereby every
753 class is considered to be its own base-class.  The base binfos for a
754 particular binfo are held in a vector, whose length is obtained with
755 @code{BINFO_N_BASE_BINFOS}.  The base binfos themselves are obtained
756 with @code{BINFO_BASE_BINFO} and @code{BINFO_BASE_ITERATE}.  To add a
757 new binfo, use @code{BINFO_BASE_APPEND}.  The vector of base binfos can
758 be obtained with @code{BINFO_BASE_BINFOS}, but normally you do not need
759 to use that.  The class type associated with a binfo is given by
760 @code{BINFO_TYPE}.  It is not always the case that @code{BINFO_TYPE
761 (TYPE_BINFO (x))}, because of typedefs and qualified types.  Neither is
762 it the case that @code{TYPE_BINFO (BINFO_TYPE (y))} is the same binfo as
763 @code{y}.  The reason is that if @code{y} is a binfo representing a
764 base-class @code{B} of a derived class @code{D}, then @code{BINFO_TYPE
765 (y)} will be @code{B}, and @code{TYPE_BINFO (BINFO_TYPE (y))} will be
766 @code{B} as its own base-class, rather than as a base-class of @code{D}.
767
768 The access to a base type can be found with @code{BINFO_BASE_ACCESS}.
769 This will produce @code{access_public_node}, @code{access_private_node}
770 or @code{access_protected_node}.  If bases are always public,
771 @code{BINFO_BASE_ACCESSES} may be @code{NULL}.
772
773 @code{BINFO_VIRTUAL_P} is used to specify whether the binfo is inherited
774 virtually or not.  The other flags, @code{BINFO_MARKED_P} and
775 @code{BINFO_FLAG_1} to @code{BINFO_FLAG_6} can be used for language
776 specific use.
777
778 The following macros can be used on a tree node representing a class-type.
779
780 @ftable @code
781 @item LOCAL_CLASS_P
782 This predicate holds if the class is local class @emph{i.e.} declared
783 inside a function body.
784
785 @item TYPE_POLYMORPHIC_P
786 This predicate holds if the class has at least one virtual function
787 (declared or inherited).
788
789 @item TYPE_HAS_DEFAULT_CONSTRUCTOR
790 This predicate holds whenever its argument represents a class-type with
791 default constructor.
792
793 @item CLASSTYPE_HAS_MUTABLE
794 @itemx TYPE_HAS_MUTABLE_P
795 These predicates hold for a class-type having a mutable data member.
796
797 @item CLASSTYPE_NON_POD_P
798 This predicate holds only for class-types that are not PODs.
799
800 @item TYPE_HAS_NEW_OPERATOR
801 This predicate holds for a class-type that defines
802 @code{operator new}.
803
804 @item TYPE_HAS_ARRAY_NEW_OPERATOR
805 This predicate holds for a class-type for which
806 @code{operator new[]} is defined.
807
808 @item TYPE_OVERLOADS_CALL_EXPR
809 This predicate holds for class-type for which the function call
810 @code{operator()} is overloaded.
811
812 @item TYPE_OVERLOADS_ARRAY_REF
813 This predicate holds for a class-type that overloads
814 @code{operator[]}
815
816 @item TYPE_OVERLOADS_ARROW
817 This predicate holds for a class-type for which @code{operator->} is
818 overloaded.
819
820 @end ftable
821
822 @c ---------------------------------------------------------------------
823 @c Declarations
824 @c ---------------------------------------------------------------------
825
826 @node Declarations
827 @section Declarations
828 @cindex declaration
829 @cindex variable
830 @cindex type declaration
831 @tindex LABEL_DECL
832 @tindex CONST_DECL
833 @tindex TYPE_DECL
834 @tindex VAR_DECL
835 @tindex PARM_DECL
836 @tindex FIELD_DECL
837 @tindex NAMESPACE_DECL
838 @tindex RESULT_DECL
839 @tindex TEMPLATE_DECL
840 @tindex THUNK_DECL
841 @tindex USING_DECL
842 @findex THUNK_DELTA
843 @findex DECL_INITIAL
844 @findex DECL_SIZE
845 @findex DECL_ALIGN
846 @findex DECL_EXTERNAL
847
848 This section covers the various kinds of declarations that appear in the
849 internal representation, except for declarations of functions
850 (represented by @code{FUNCTION_DECL} nodes), which are described in
851 @ref{Functions}.
852
853 Some macros can be used with any kind of declaration.  These include:
854 @ftable @code
855 @item DECL_NAME
856 This macro returns an @code{IDENTIFIER_NODE} giving the name of the
857 entity.
858
859 @item TREE_TYPE
860 This macro returns the type of the entity declared.
861
862 @item TREE_FILENAME
863 This macro returns the name of the file in which the entity was
864 declared, as a @code{char*}.  For an entity declared implicitly by the
865 compiler (like @code{__builtin_memcpy}), this will be the string
866 @code{"<internal>"}.
867
868 @item TREE_LINENO
869 This macro returns the line number at which the entity was declared, as
870 an @code{int}.
871
872 @item DECL_ARTIFICIAL
873 This predicate holds if the declaration was implicitly generated by the
874 compiler.  For example, this predicate will hold of an implicitly
875 declared member function, or of the @code{TYPE_DECL} implicitly
876 generated for a class type.  Recall that in C++ code like:
877 @smallexample
878 struct S @{@};
879 @end smallexample
880 @noindent
881 is roughly equivalent to C code like:
882 @smallexample
883 struct S @{@};
884 typedef struct S S;
885 @end smallexample
886 The implicitly generated @code{typedef} declaration is represented by a
887 @code{TYPE_DECL} for which @code{DECL_ARTIFICIAL} holds.
888
889 @item DECL_NAMESPACE_SCOPE_P
890 This predicate holds if the entity was declared at a namespace scope.
891
892 @item DECL_CLASS_SCOPE_P
893 This predicate holds if the entity was declared at a class scope.
894
895 @item DECL_FUNCTION_SCOPE_P
896 This predicate holds if the entity was declared inside a function
897 body.
898
899 @end ftable
900
901 The various kinds of declarations include:
902 @table @code
903 @item LABEL_DECL
904 These nodes are used to represent labels in function bodies.  For more
905 information, see @ref{Functions}.  These nodes only appear in block
906 scopes.
907
908 @item CONST_DECL
909 These nodes are used to represent enumeration constants.  The value of
910 the constant is given by @code{DECL_INITIAL} which will be an
911 @code{INTEGER_CST} with the same type as the @code{TREE_TYPE} of the
912 @code{CONST_DECL}, i.e., an @code{ENUMERAL_TYPE}.
913
914 @item RESULT_DECL
915 These nodes represent the value returned by a function.  When a value is
916 assigned to a @code{RESULT_DECL}, that indicates that the value should
917 be returned, via bitwise copy, by the function.  You can use
918 @code{DECL_SIZE} and @code{DECL_ALIGN} on a @code{RESULT_DECL}, just as
919 with a @code{VAR_DECL}.
920
921 @item TYPE_DECL
922 These nodes represent @code{typedef} declarations.  The @code{TREE_TYPE}
923 is the type declared to have the name given by @code{DECL_NAME}.  In
924 some cases, there is no associated name.
925
926 @item VAR_DECL
927 These nodes represent variables with namespace or block scope, as well
928 as static data members.  The @code{DECL_SIZE} and @code{DECL_ALIGN} are
929 analogous to @code{TYPE_SIZE} and @code{TYPE_ALIGN}.  For a declaration,
930 you should always use the @code{DECL_SIZE} and @code{DECL_ALIGN} rather
931 than the @code{TYPE_SIZE} and @code{TYPE_ALIGN} given by the
932 @code{TREE_TYPE}, since special attributes may have been applied to the
933 variable to give it a particular size and alignment.  You may use the
934 predicates @code{DECL_THIS_STATIC} or @code{DECL_THIS_EXTERN} to test
935 whether the storage class specifiers @code{static} or @code{extern} were
936 used to declare a variable.
937
938 If this variable is initialized (but does not require a constructor),
939 the @code{DECL_INITIAL} will be an expression for the initializer.  The
940 initializer should be evaluated, and a bitwise copy into the variable
941 performed.  If the @code{DECL_INITIAL} is the @code{error_mark_node},
942 there is an initializer, but it is given by an explicit statement later
943 in the code; no bitwise copy is required.
944
945 GCC provides an extension that allows either automatic variables, or
946 global variables, to be placed in particular registers.  This extension
947 is being used for a particular @code{VAR_DECL} if @code{DECL_REGISTER}
948 holds for the @code{VAR_DECL}, and if @code{DECL_ASSEMBLER_NAME} is not
949 equal to @code{DECL_NAME}.  In that case, @code{DECL_ASSEMBLER_NAME} is
950 the name of the register into which the variable will be placed.
951
952 @item PARM_DECL
953 Used to represent a parameter to a function.  Treat these nodes
954 similarly to @code{VAR_DECL} nodes.  These nodes only appear in the
955 @code{DECL_ARGUMENTS} for a @code{FUNCTION_DECL}.
956
957 The @code{DECL_ARG_TYPE} for a @code{PARM_DECL} is the type that will
958 actually be used when a value is passed to this function.  It may be a
959 wider type than the @code{TREE_TYPE} of the parameter; for example, the
960 ordinary type might be @code{short} while the @code{DECL_ARG_TYPE} is
961 @code{int}.
962
963 @item FIELD_DECL
964 These nodes represent non-static data members.  The @code{DECL_SIZE} and
965 @code{DECL_ALIGN} behave as for @code{VAR_DECL} nodes.  The
966 @code{DECL_FIELD_BITPOS} gives the first bit used for this field, as an
967 @code{INTEGER_CST}.  These values are indexed from zero, where zero
968 indicates the first bit in the object.
969
970 If @code{DECL_C_BIT_FIELD} holds, this field is a bit-field.
971
972 @item NAMESPACE_DECL
973 @xref{Namespaces}.
974
975 @item TEMPLATE_DECL
976
977 These nodes are used to represent class, function, and variable (static
978 data member) templates.  The @code{DECL_TEMPLATE_SPECIALIZATIONS} are a
979 @code{TREE_LIST}.  The @code{TREE_VALUE} of each node in the list is a
980 @code{TEMPLATE_DECL}s or @code{FUNCTION_DECL}s representing
981 specializations (including instantiations) of this template.  Back ends
982 can safely ignore @code{TEMPLATE_DECL}s, but should examine
983 @code{FUNCTION_DECL} nodes on the specializations list just as they
984 would ordinary @code{FUNCTION_DECL} nodes.
985
986 For a class template, the @code{DECL_TEMPLATE_INSTANTIATIONS} list
987 contains the instantiations.  The @code{TREE_VALUE} of each node is an
988 instantiation of the class.  The @code{DECL_TEMPLATE_SPECIALIZATIONS}
989 contains partial specializations of the class.
990
991 @item USING_DECL
992
993 Back ends can safely ignore these nodes.
994
995 @end table
996
997 @c ---------------------------------------------------------------------
998 @c Functions
999 @c ---------------------------------------------------------------------
1000
1001 @node Functions
1002 @section Functions
1003 @cindex function
1004 @tindex FUNCTION_DECL
1005 @tindex OVERLOAD
1006 @findex OVL_CURRENT
1007 @findex OVL_NEXT
1008
1009 A function is represented by a @code{FUNCTION_DECL} node.  A set of
1010 overloaded functions is sometimes represented by a @code{OVERLOAD} node.
1011
1012 An @code{OVERLOAD} node is not a declaration, so none of the
1013 @samp{DECL_} macros should be used on an @code{OVERLOAD}.  An
1014 @code{OVERLOAD} node is similar to a @code{TREE_LIST}.  Use
1015 @code{OVL_CURRENT} to get the function associated with an
1016 @code{OVERLOAD} node; use @code{OVL_NEXT} to get the next
1017 @code{OVERLOAD} node in the list of overloaded functions.  The macros
1018 @code{OVL_CURRENT} and @code{OVL_NEXT} are actually polymorphic; you can
1019 use them to work with @code{FUNCTION_DECL} nodes as well as with
1020 overloads.  In the case of a @code{FUNCTION_DECL}, @code{OVL_CURRENT}
1021 will always return the function itself, and @code{OVL_NEXT} will always
1022 be @code{NULL_TREE}.
1023
1024 To determine the scope of a function, you can use the
1025 @code{DECL_CONTEXT} macro.  This macro will return the class
1026 (either a @code{RECORD_TYPE} or a @code{UNION_TYPE}) or namespace (a
1027 @code{NAMESPACE_DECL}) of which the function is a member.  For a virtual
1028 function, this macro returns the class in which the function was
1029 actually defined, not the base class in which the virtual declaration
1030 occurred.
1031
1032 If a friend function is defined in a class scope, the
1033 @code{DECL_FRIEND_CONTEXT} macro can be used to determine the class in
1034 which it was defined.  For example, in
1035 @smallexample
1036 class C @{ friend void f() @{@} @};
1037 @end smallexample
1038 @noindent
1039 the @code{DECL_CONTEXT} for @code{f} will be the
1040 @code{global_namespace}, but the @code{DECL_FRIEND_CONTEXT} will be the
1041 @code{RECORD_TYPE} for @code{C}.
1042
1043 In C, the @code{DECL_CONTEXT} for a function maybe another function.
1044 This representation indicates that the GNU nested function extension
1045 is in use.  For details on the semantics of nested functions, see the
1046 GCC Manual.  The nested function can refer to local variables in its
1047 containing function.  Such references are not explicitly marked in the
1048 tree structure; back ends must look at the @code{DECL_CONTEXT} for the
1049 referenced @code{VAR_DECL}.  If the @code{DECL_CONTEXT} for the
1050 referenced @code{VAR_DECL} is not the same as the function currently
1051 being processed, and neither @code{DECL_EXTERNAL} nor
1052 @code{DECL_STATIC} hold, then the reference is to a local variable in
1053 a containing function, and the back end must take appropriate action.
1054
1055 @menu
1056 * Function Basics::     Function names, linkage, and so forth.
1057 * Function Bodies::     The statements that make up a function body.
1058 @end menu
1059
1060 @c ---------------------------------------------------------------------
1061 @c Function Basics
1062 @c ---------------------------------------------------------------------
1063
1064 @node Function Basics
1065 @subsection Function Basics
1066 @cindex constructor
1067 @cindex destructor
1068 @cindex copy constructor
1069 @cindex assignment operator
1070 @cindex linkage
1071 @findex DECL_NAME
1072 @findex DECL_ASSEMBLER_NAME
1073 @findex TREE_PUBLIC
1074 @findex DECL_LINKONCE_P
1075 @findex DECL_FUNCTION_MEMBER_P
1076 @findex DECL_CONSTRUCTOR_P
1077 @findex DECL_DESTRUCTOR_P
1078 @findex DECL_OVERLOADED_OPERATOR_P
1079 @findex DECL_CONV_FN_P
1080 @findex DECL_ARTIFICIAL
1081 @findex DECL_GLOBAL_CTOR_P
1082 @findex DECL_GLOBAL_DTOR_P
1083 @findex GLOBAL_INIT_PRIORITY
1084
1085 The following macros and functions can be used on a @code{FUNCTION_DECL}:
1086 @ftable @code
1087 @item DECL_MAIN_P
1088 This predicate holds for a function that is the program entry point
1089 @code{::code}.
1090
1091 @item DECL_NAME
1092 This macro returns the unqualified name of the function, as an
1093 @code{IDENTIFIER_NODE}.  For an instantiation of a function template,
1094 the @code{DECL_NAME} is the unqualified name of the template, not
1095 something like @code{f<int>}.  The value of @code{DECL_NAME} is
1096 undefined when used on a constructor, destructor, overloaded operator,
1097 or type-conversion operator, or any function that is implicitly
1098 generated by the compiler.  See below for macros that can be used to
1099 distinguish these cases.
1100
1101 @item DECL_ASSEMBLER_NAME
1102 This macro returns the mangled name of the function, also an
1103 @code{IDENTIFIER_NODE}.  This name does not contain leading underscores
1104 on systems that prefix all identifiers with underscores.  The mangled
1105 name is computed in the same way on all platforms; if special processing
1106 is required to deal with the object file format used on a particular
1107 platform, it is the responsibility of the back end to perform those
1108 modifications.  (Of course, the back end should not modify
1109 @code{DECL_ASSEMBLER_NAME} itself.)
1110
1111 Using @code{DECL_ASSEMBLER_NAME} will cause additional memory to be
1112 allocated (for the mangled name of the entity) so it should be used
1113 only when emitting assembly code.  It should not be used within the
1114 optimizers to determine whether or not two declarations are the same,
1115 even though some of the existing optimizers do use it in that way.
1116 These uses will be removed over time.
1117
1118 @item DECL_EXTERNAL
1119 This predicate holds if the function is undefined.
1120
1121 @item TREE_PUBLIC
1122 This predicate holds if the function has external linkage.
1123
1124 @item DECL_LOCAL_FUNCTION_P
1125 This predicate holds if the function was declared at block scope, even
1126 though it has a global scope.
1127
1128 @item DECL_ANTICIPATED
1129 This predicate holds if the function is a built-in function but its
1130 prototype is not yet explicitly declared.
1131
1132 @item DECL_EXTERN_C_FUNCTION_P
1133 This predicate holds if the function is declared as an
1134 `@code{extern "C"}' function.
1135
1136 @item DECL_LINKONCE_P
1137 This macro holds if multiple copies of this function may be emitted in
1138 various translation units.  It is the responsibility of the linker to
1139 merge the various copies.  Template instantiations are the most common
1140 example of functions for which @code{DECL_LINKONCE_P} holds; G++
1141 instantiates needed templates in all translation units which require them,
1142 and then relies on the linker to remove duplicate instantiations.
1143
1144 FIXME: This macro is not yet implemented.
1145
1146 @item DECL_FUNCTION_MEMBER_P
1147 This macro holds if the function is a member of a class, rather than a
1148 member of a namespace.
1149
1150 @item DECL_STATIC_FUNCTION_P
1151 This predicate holds if the function a static member function.
1152
1153 @item DECL_NONSTATIC_MEMBER_FUNCTION_P
1154 This macro holds for a non-static member function.
1155
1156 @item DECL_CONST_MEMFUNC_P
1157 This predicate holds for a @code{const}-member function.
1158
1159 @item DECL_VOLATILE_MEMFUNC_P
1160 This predicate holds for a @code{volatile}-member function.
1161
1162 @item DECL_CONSTRUCTOR_P
1163 This macro holds if the function is a constructor.
1164
1165 @item DECL_NONCONVERTING_P
1166 This predicate holds if the constructor is a non-converting constructor.
1167
1168 @item DECL_COMPLETE_CONSTRUCTOR_P
1169 This predicate holds for a function which is a constructor for an object
1170 of a complete type.
1171
1172 @item DECL_BASE_CONSTRUCTOR_P
1173 This predicate holds for a function which is a constructor for a base
1174 class sub-object.
1175
1176 @item DECL_COPY_CONSTRUCTOR_P
1177 This predicate holds for a function which is a copy-constructor.
1178
1179 @item DECL_DESTRUCTOR_P
1180 This macro holds if the function is a destructor.
1181
1182 @item DECL_COMPLETE_DESTRUCTOR_P
1183 This predicate holds if the function is the destructor for an object a
1184 complete type.
1185
1186 @item DECL_OVERLOADED_OPERATOR_P
1187 This macro holds if the function is an overloaded operator.
1188
1189 @item DECL_CONV_FN_P
1190 This macro holds if the function is a type-conversion operator.
1191
1192 @item DECL_GLOBAL_CTOR_P
1193 This predicate holds if the function is a file-scope initialization
1194 function.
1195
1196 @item DECL_GLOBAL_DTOR_P
1197 This predicate holds if the function is a file-scope finalization
1198 function.
1199
1200 @item DECL_THUNK_P
1201 This predicate holds if the function is a thunk.
1202
1203 These functions represent stub code that adjusts the @code{this} pointer
1204 and then jumps to another function.  When the jumped-to function
1205 returns, control is transferred directly to the caller, without
1206 returning to the thunk.  The first parameter to the thunk is always the
1207 @code{this} pointer; the thunk should add @code{THUNK_DELTA} to this
1208 value.  (The @code{THUNK_DELTA} is an @code{int}, not an
1209 @code{INTEGER_CST}.)
1210
1211 Then, if @code{THUNK_VCALL_OFFSET} (an @code{INTEGER_CST}) is nonzero
1212 the adjusted @code{this} pointer must be adjusted again.  The complete
1213 calculation is given by the following pseudo-code:
1214
1215 @smallexample
1216 this += THUNK_DELTA
1217 if (THUNK_VCALL_OFFSET)
1218   this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]
1219 @end smallexample
1220
1221 Finally, the thunk should jump to the location given
1222 by @code{DECL_INITIAL}; this will always be an expression for the
1223 address of a function.
1224
1225 @item DECL_NON_THUNK_FUNCTION_P
1226 This predicate holds if the function is @emph{not} a thunk function.
1227
1228 @item GLOBAL_INIT_PRIORITY
1229 If either @code{DECL_GLOBAL_CTOR_P} or @code{DECL_GLOBAL_DTOR_P} holds,
1230 then this gives the initialization priority for the function.  The
1231 linker will arrange that all functions for which
1232 @code{DECL_GLOBAL_CTOR_P} holds are run in increasing order of priority
1233 before @code{main} is called.  When the program exits, all functions for
1234 which @code{DECL_GLOBAL_DTOR_P} holds are run in the reverse order.
1235
1236 @item DECL_ARTIFICIAL
1237 This macro holds if the function was implicitly generated by the
1238 compiler, rather than explicitly declared.  In addition to implicitly
1239 generated class member functions, this macro holds for the special
1240 functions created to implement static initialization and destruction, to
1241 compute run-time type information, and so forth.
1242
1243 @item DECL_ARGUMENTS
1244 This macro returns the @code{PARM_DECL} for the first argument to the
1245 function.  Subsequent @code{PARM_DECL} nodes can be obtained by
1246 following the @code{TREE_CHAIN} links.
1247
1248 @item DECL_RESULT
1249 This macro returns the @code{RESULT_DECL} for the function.
1250
1251 @item TREE_TYPE
1252 This macro returns the @code{FUNCTION_TYPE} or @code{METHOD_TYPE} for
1253 the function.
1254
1255 @item TYPE_RAISES_EXCEPTIONS
1256 This macro returns the list of exceptions that a (member-)function can
1257 raise.  The returned list, if non @code{NULL}, is comprised of nodes
1258 whose @code{TREE_VALUE} represents a type.
1259
1260 @item TYPE_NOTHROW_P
1261 This predicate holds when the exception-specification of its arguments
1262 if of the form `@code{()}'.
1263
1264 @item DECL_ARRAY_DELETE_OPERATOR_P
1265 This predicate holds if the function an overloaded
1266 @code{operator delete[]}.
1267
1268 @end ftable
1269
1270 @c ---------------------------------------------------------------------
1271 @c Function Bodies
1272 @c ---------------------------------------------------------------------
1273
1274 @node Function Bodies
1275 @subsection Function Bodies
1276 @cindex function body
1277 @cindex statements
1278 @tindex BREAK_STMT
1279 @tindex CLEANUP_STMT
1280 @findex CLEANUP_DECL
1281 @findex CLEANUP_EXPR
1282 @tindex CONTINUE_STMT
1283 @tindex DECL_STMT
1284 @findex DECL_STMT_DECL
1285 @tindex DO_STMT
1286 @findex DO_BODY
1287 @findex DO_COND
1288 @tindex EMPTY_CLASS_EXPR
1289 @tindex EXPR_STMT
1290 @findex EXPR_STMT_EXPR
1291 @tindex FOR_STMT
1292 @findex FOR_INIT_STMT
1293 @findex FOR_COND
1294 @findex FOR_EXPR
1295 @findex FOR_BODY
1296 @tindex HANDLER
1297 @tindex IF_STMT
1298 @findex IF_COND
1299 @findex THEN_CLAUSE
1300 @findex ELSE_CLAUSE
1301 @tindex RETURN_INIT
1302 @tindex RETURN_STMT
1303 @findex RETURN_EXPR
1304 @tindex SUBOBJECT
1305 @findex SUBOBJECT_CLEANUP
1306 @tindex SWITCH_STMT
1307 @findex SWITCH_COND
1308 @findex SWITCH_BODY
1309 @tindex TRY_BLOCK
1310 @findex TRY_STMTS
1311 @findex TRY_HANDLERS
1312 @findex HANDLER_PARMS
1313 @findex HANDLER_BODY
1314 @findex USING_STMT
1315 @tindex WHILE_STMT
1316 @findex WHILE_BODY
1317 @findex WHILE_COND
1318
1319 A function that has a definition in the current translation unit will
1320 have a non-@code{NULL} @code{DECL_INITIAL}.  However, back ends should not make
1321 use of the particular value given by @code{DECL_INITIAL}.
1322
1323 The @code{DECL_SAVED_TREE} macro will give the complete body of the
1324 function.
1325
1326 @subsubsection Statements
1327
1328 There are tree nodes corresponding to all of the source-level
1329 statement constructs, used within the C and C++ frontends.  These are
1330 enumerated here, together with a list of the various macros that can
1331 be used to obtain information about them.  There are a few macros that
1332 can be used with all statements:
1333
1334 @ftable @code
1335 @item STMT_IS_FULL_EXPR_P
1336 In C++, statements normally constitute ``full expressions''; temporaries
1337 created during a statement are destroyed when the statement is complete.
1338 However, G++ sometimes represents expressions by statements; these
1339 statements will not have @code{STMT_IS_FULL_EXPR_P} set.  Temporaries
1340 created during such statements should be destroyed when the innermost
1341 enclosing statement with @code{STMT_IS_FULL_EXPR_P} set is exited.
1342
1343 @end ftable
1344
1345 Here is the list of the various statement nodes, and the macros used to
1346 access them.  This documentation describes the use of these nodes in
1347 non-template functions (including instantiations of template functions).
1348 In template functions, the same nodes are used, but sometimes in
1349 slightly different ways.
1350
1351 Many of the statements have substatements.  For example, a @code{while}
1352 loop will have a body, which is itself a statement.  If the substatement
1353 is @code{NULL_TREE}, it is considered equivalent to a statement
1354 consisting of a single @code{;}, i.e., an expression statement in which
1355 the expression has been omitted.  A substatement may in fact be a list
1356 of statements, connected via their @code{TREE_CHAIN}s.  So, you should
1357 always process the statement tree by looping over substatements, like
1358 this:
1359 @smallexample
1360 void process_stmt (stmt)
1361      tree stmt;
1362 @{
1363   while (stmt)
1364     @{
1365       switch (TREE_CODE (stmt))
1366         @{
1367         case IF_STMT:
1368           process_stmt (THEN_CLAUSE (stmt));
1369           /* More processing here.  */
1370           break;
1371
1372         @dots{}
1373         @}
1374
1375       stmt = TREE_CHAIN (stmt);
1376     @}
1377 @}
1378 @end smallexample
1379 In other words, while the @code{then} clause of an @code{if} statement
1380 in C++ can be only one statement (although that one statement may be a
1381 compound statement), the intermediate representation will sometimes use
1382 several statements chained together.
1383
1384 @table @code
1385 @item ASM_EXPR
1386
1387 Used to represent an inline assembly statement.  For an inline assembly
1388 statement like:
1389 @smallexample
1390 asm ("mov x, y");
1391 @end smallexample
1392 The @code{ASM_STRING} macro will return a @code{STRING_CST} node for
1393 @code{"mov x, y"}.  If the original statement made use of the
1394 extended-assembly syntax, then @code{ASM_OUTPUTS},
1395 @code{ASM_INPUTS}, and @code{ASM_CLOBBERS} will be the outputs, inputs,
1396 and clobbers for the statement, represented as @code{STRING_CST} nodes.
1397 The extended-assembly syntax looks like:
1398 @smallexample
1399 asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
1400 @end smallexample
1401 The first string is the @code{ASM_STRING}, containing the instruction
1402 template.  The next two strings are the output and inputs, respectively;
1403 this statement has no clobbers.  As this example indicates, ``plain''
1404 assembly statements are merely a special case of extended assembly
1405 statements; they have no cv-qualifiers, outputs, inputs, or clobbers.
1406 All of the strings will be @code{NUL}-terminated, and will contain no
1407 embedded @code{NUL}-characters.
1408
1409 If the assembly statement is declared @code{volatile}, or if the
1410 statement was not an extended assembly statement, and is therefore
1411 implicitly volatile, then the predicate @code{ASM_VOLATILE_P} will hold
1412 of the @code{ASM_EXPR}.
1413
1414 @item BREAK_STMT
1415
1416 Used to represent a @code{break} statement.  There are no additional
1417 fields.
1418
1419 @item CASE_LABEL_EXPR
1420
1421 Use to represent a @code{case} label, range of @code{case} labels, or a
1422 @code{default} label.  If @code{CASE_LOW} is @code{NULL_TREE}, then this is a
1423 @code{default} label.  Otherwise, if @code{CASE_HIGH} is @code{NULL_TREE}, then
1424 this is an ordinary @code{case} label.  In this case, @code{CASE_LOW} is
1425 an expression giving the value of the label.  Both @code{CASE_LOW} and
1426 @code{CASE_HIGH} are @code{INTEGER_CST} nodes.  These values will have
1427 the same type as the condition expression in the switch statement.
1428
1429 Otherwise, if both @code{CASE_LOW} and @code{CASE_HIGH} are defined, the
1430 statement is a range of case labels.  Such statements originate with the
1431 extension that allows users to write things of the form:
1432 @smallexample
1433 case 2 ... 5:
1434 @end smallexample
1435 The first value will be @code{CASE_LOW}, while the second will be
1436 @code{CASE_HIGH}.
1437
1438 @item CLEANUP_STMT
1439
1440 Used to represent an action that should take place upon exit from the
1441 enclosing scope.  Typically, these actions are calls to destructors for
1442 local objects, but back ends cannot rely on this fact.  If these nodes
1443 are in fact representing such destructors, @code{CLEANUP_DECL} will be
1444 the @code{VAR_DECL} destroyed.  Otherwise, @code{CLEANUP_DECL} will be
1445 @code{NULL_TREE}.  In any case, the @code{CLEANUP_EXPR} is the
1446 expression to execute.  The cleanups executed on exit from a scope
1447 should be run in the reverse order of the order in which the associated
1448 @code{CLEANUP_STMT}s were encountered.
1449
1450 @item CONTINUE_STMT
1451
1452 Used to represent a @code{continue} statement.  There are no additional
1453 fields.
1454
1455 @item CTOR_STMT
1456
1457 Used to mark the beginning (if @code{CTOR_BEGIN_P} holds) or end (if
1458 @code{CTOR_END_P} holds of the main body of a constructor.  See also
1459 @code{SUBOBJECT} for more information on how to use these nodes.
1460
1461 @item DECL_STMT
1462
1463 Used to represent a local declaration.  The @code{DECL_STMT_DECL} macro
1464 can be used to obtain the entity declared.  This declaration may be a
1465 @code{LABEL_DECL}, indicating that the label declared is a local label.
1466 (As an extension, GCC allows the declaration of labels with scope.)  In
1467 C, this declaration may be a @code{FUNCTION_DECL}, indicating the
1468 use of the GCC nested function extension.  For more information,
1469 @pxref{Functions}.
1470
1471 @item DO_STMT
1472
1473 Used to represent a @code{do} loop.  The body of the loop is given by
1474 @code{DO_BODY} while the termination condition for the loop is given by
1475 @code{DO_COND}.  The condition for a @code{do}-statement is always an
1476 expression.
1477
1478 @item EMPTY_CLASS_EXPR
1479
1480 Used to represent a temporary object of a class with no data whose
1481 address is never taken.  (All such objects are interchangeable.)  The
1482 @code{TREE_TYPE} represents the type of the object.
1483
1484 @item EXPR_STMT
1485
1486 Used to represent an expression statement.  Use @code{EXPR_STMT_EXPR} to
1487 obtain the expression.
1488
1489 @item FOR_STMT
1490
1491 Used to represent a @code{for} statement.  The @code{FOR_INIT_STMT} is
1492 the initialization statement for the loop.  The @code{FOR_COND} is the
1493 termination condition.  The @code{FOR_EXPR} is the expression executed
1494 right before the @code{FOR_COND} on each loop iteration; often, this
1495 expression increments a counter.  The body of the loop is given by
1496 @code{FOR_BODY}.  Note that @code{FOR_INIT_STMT} and @code{FOR_BODY}
1497 return statements, while @code{FOR_COND} and @code{FOR_EXPR} return
1498 expressions.
1499
1500 @item GOTO_EXPR
1501
1502 Used to represent a @code{goto} statement.  The @code{GOTO_DESTINATION} will
1503 usually be a @code{LABEL_DECL}.  However, if the ``computed goto'' extension
1504 has been used, the @code{GOTO_DESTINATION} will be an arbitrary expression
1505 indicating the destination.  This expression will always have pointer type.
1506
1507 @item HANDLER
1508
1509 Used to represent a C++ @code{catch} block.  The @code{HANDLER_TYPE}
1510 is the type of exception that will be caught by this handler; it is
1511 equal (by pointer equality) to @code{NULL} if this handler is for all
1512 types.  @code{HANDLER_PARMS} is the @code{DECL_STMT} for the catch
1513 parameter, and @code{HANDLER_BODY} is the code for the block itself.
1514
1515 @item IF_STMT
1516
1517 Used to represent an @code{if} statement.  The @code{IF_COND} is the
1518 expression.
1519
1520 If the condition is a @code{TREE_LIST}, then the @code{TREE_PURPOSE} is
1521 a statement (usually a @code{DECL_STMT}).  Each time the condition is
1522 evaluated, the statement should be executed.  Then, the
1523 @code{TREE_VALUE} should be used as the conditional expression itself.
1524 This representation is used to handle C++ code like this:
1525
1526 @smallexample
1527 if (int i = 7) @dots{}
1528 @end smallexample
1529
1530 where there is a new local variable (or variables) declared within the
1531 condition.
1532
1533 The @code{THEN_CLAUSE} represents the statement given by the @code{then}
1534 condition, while the @code{ELSE_CLAUSE} represents the statement given
1535 by the @code{else} condition.
1536
1537 @item LABEL_EXPR
1538
1539 Used to represent a label.  The @code{LABEL_DECL} declared by this
1540 statement can be obtained with the @code{LABEL_EXPR_LABEL} macro.  The
1541 @code{IDENTIFIER_NODE} giving the name of the label can be obtained from
1542 the @code{LABEL_DECL} with @code{DECL_NAME}.
1543
1544 @item RETURN_INIT
1545
1546 If the function uses the G++ ``named return value'' extension, meaning
1547 that the function has been defined like:
1548 @smallexample
1549 S f(int) return s @{@dots{}@}
1550 @end smallexample
1551 then there will be a @code{RETURN_INIT}.  There is never a named
1552 returned value for a constructor.  The first argument to the
1553 @code{RETURN_INIT} is the name of the object returned; the second
1554 argument is the initializer for the object.  The object is initialized
1555 when the @code{RETURN_INIT} is encountered.  The object referred to is
1556 the actual object returned; this extension is a manual way of doing the
1557 ``return-value optimization.''  Therefore, the object must actually be
1558 constructed in the place where the object will be returned.
1559
1560 @item RETURN_STMT
1561
1562 Used to represent a @code{return} statement.  The @code{RETURN_EXPR} is
1563 the expression returned; it will be @code{NULL_TREE} if the statement
1564 was just
1565 @smallexample
1566 return;
1567 @end smallexample
1568
1569 @item SUBOBJECT
1570
1571 In a constructor, these nodes are used to mark the point at which a
1572 subobject of @code{this} is fully constructed.  If, after this point, an
1573 exception is thrown before a @code{CTOR_STMT} with @code{CTOR_END_P} set
1574 is encountered, the @code{SUBOBJECT_CLEANUP} must be executed.  The
1575 cleanups must be executed in the reverse order in which they appear.
1576
1577 @item SWITCH_STMT
1578
1579 Used to represent a @code{switch} statement.  The @code{SWITCH_COND} is
1580 the expression on which the switch is occurring.  See the documentation
1581 for an @code{IF_STMT} for more information on the representation used
1582 for the condition.  The @code{SWITCH_BODY} is the body of the switch
1583 statement.   The @code{SWITCH_TYPE} is the original type of switch
1584 expression as given in the source, before any compiler conversions.
1585
1586 @item TRY_BLOCK
1587 Used to represent a @code{try} block.  The body of the try block is
1588 given by @code{TRY_STMTS}.  Each of the catch blocks is a @code{HANDLER}
1589 node.  The first handler is given by @code{TRY_HANDLERS}.  Subsequent
1590 handlers are obtained by following the @code{TREE_CHAIN} link from one
1591 handler to the next.  The body of the handler is given by
1592 @code{HANDLER_BODY}.
1593
1594 If @code{CLEANUP_P} holds of the @code{TRY_BLOCK}, then the
1595 @code{TRY_HANDLERS} will not be a @code{HANDLER} node.  Instead, it will
1596 be an expression that should be executed if an exception is thrown in
1597 the try block.  It must rethrow the exception after executing that code.
1598 And, if an exception is thrown while the expression is executing,
1599 @code{terminate} must be called.
1600
1601 @item USING_STMT
1602 Used to represent a @code{using} directive.  The namespace is given by
1603 @code{USING_STMT_NAMESPACE}, which will be a NAMESPACE_DECL@.  This node
1604 is needed inside template functions, to implement using directives
1605 during instantiation.
1606
1607 @item WHILE_STMT
1608
1609 Used to represent a @code{while} loop.  The @code{WHILE_COND} is the
1610 termination condition for the loop.  See the documentation for an
1611 @code{IF_STMT} for more information on the representation used for the
1612 condition.
1613
1614 The @code{WHILE_BODY} is the body of the loop.
1615
1616 @end table
1617
1618 @c ---------------------------------------------------------------------
1619 @c Attributes
1620 @c ---------------------------------------------------------------------
1621 @node Attributes
1622 @section Attributes in trees
1623 @cindex attributes
1624
1625 Attributes, as specified using the @code{__attribute__} keyword, are
1626 represented internally as a @code{TREE_LIST}.  The @code{TREE_PURPOSE}
1627 is the name of the attribute, as an @code{IDENTIFIER_NODE}.  The
1628 @code{TREE_VALUE} is a @code{TREE_LIST} of the arguments of the
1629 attribute, if any, or @code{NULL_TREE} if there are no arguments; the
1630 arguments are stored as the @code{TREE_VALUE} of successive entries in
1631 the list, and may be identifiers or expressions.  The @code{TREE_CHAIN}
1632 of the attribute is the next attribute in a list of attributes applying
1633 to the same declaration or type, or @code{NULL_TREE} if there are no
1634 further attributes in the list.
1635
1636 Attributes may be attached to declarations and to types; these
1637 attributes may be accessed with the following macros.  All attributes
1638 are stored in this way, and many also cause other changes to the
1639 declaration or type or to other internal compiler data structures.
1640
1641 @deftypefn {Tree Macro} tree DECL_ATTRIBUTES (tree @var{decl})
1642 This macro returns the attributes on the declaration @var{decl}.
1643 @end deftypefn
1644
1645 @deftypefn {Tree Macro} tree TYPE_ATTRIBUTES (tree @var{type})
1646 This macro returns the attributes on the type @var{type}.
1647 @end deftypefn
1648
1649 @c ---------------------------------------------------------------------
1650 @c Expressions
1651 @c ---------------------------------------------------------------------
1652
1653 @node Expression trees
1654 @section Expressions
1655 @cindex expression
1656 @findex TREE_TYPE
1657 @findex TREE_OPERAND
1658 @tindex INTEGER_CST
1659 @findex TREE_INT_CST_HIGH
1660 @findex TREE_INT_CST_LOW
1661 @findex tree_int_cst_lt
1662 @findex tree_int_cst_equal
1663 @tindex REAL_CST
1664 @tindex COMPLEX_CST
1665 @tindex VECTOR_CST
1666 @tindex STRING_CST
1667 @findex TREE_STRING_LENGTH
1668 @findex TREE_STRING_POINTER
1669 @tindex PTRMEM_CST
1670 @findex PTRMEM_CST_CLASS
1671 @findex PTRMEM_CST_MEMBER
1672 @tindex VAR_DECL
1673 @tindex NEGATE_EXPR
1674 @tindex ABS_EXPR
1675 @tindex BIT_NOT_EXPR
1676 @tindex TRUTH_NOT_EXPR
1677 @tindex PREDECREMENT_EXPR
1678 @tindex PREINCREMENT_EXPR
1679 @tindex POSTDECREMENT_EXPR
1680 @tindex POSTINCREMENT_EXPR
1681 @tindex ADDR_EXPR
1682 @tindex INDIRECT_REF
1683 @tindex FIX_TRUNC_EXPR
1684 @tindex FLOAT_EXPR
1685 @tindex COMPLEX_EXPR
1686 @tindex CONJ_EXPR
1687 @tindex REALPART_EXPR
1688 @tindex IMAGPART_EXPR
1689 @tindex NON_LVALUE_EXPR
1690 @tindex NOP_EXPR
1691 @tindex CONVERT_EXPR
1692 @tindex THROW_EXPR
1693 @tindex LSHIFT_EXPR
1694 @tindex RSHIFT_EXPR
1695 @tindex BIT_IOR_EXPR
1696 @tindex BIT_XOR_EXPR
1697 @tindex BIT_AND_EXPR
1698 @tindex TRUTH_ANDIF_EXPR
1699 @tindex TRUTH_ORIF_EXPR
1700 @tindex TRUTH_AND_EXPR
1701 @tindex TRUTH_OR_EXPR
1702 @tindex TRUTH_XOR_EXPR
1703 @tindex PLUS_EXPR
1704 @tindex MINUS_EXPR
1705 @tindex MULT_EXPR
1706 @tindex RDIV_EXPR
1707 @tindex TRUNC_DIV_EXPR
1708 @tindex FLOOR_DIV_EXPR
1709 @tindex CEIL_DIV_EXPR
1710 @tindex ROUND_DIV_EXPR
1711 @tindex TRUNC_MOD_EXPR
1712 @tindex FLOOR_MOD_EXPR
1713 @tindex CEIL_MOD_EXPR
1714 @tindex ROUND_MOD_EXPR
1715 @tindex EXACT_DIV_EXPR
1716 @tindex ARRAY_REF
1717 @tindex ARRAY_RANGE_REF
1718 @tindex LT_EXPR
1719 @tindex LE_EXPR
1720 @tindex GT_EXPR
1721 @tindex GE_EXPR
1722 @tindex EQ_EXPR
1723 @tindex NE_EXPR
1724 @tindex ORDERED_EXPR
1725 @tindex UNORDERED_EXPR
1726 @tindex UNLT_EXPR
1727 @tindex UNLE_EXPR
1728 @tindex UNGT_EXPR
1729 @tindex UNGE_EXPR
1730 @tindex UNEQ_EXPR
1731 @tindex LTGT_EXPR
1732 @tindex MODIFY_EXPR
1733 @tindex INIT_EXPR
1734 @tindex COMPONENT_REF
1735 @tindex COMPOUND_EXPR
1736 @tindex COND_EXPR
1737 @tindex CALL_EXPR
1738 @tindex STMT_EXPR
1739 @tindex BIND_EXPR
1740 @tindex LOOP_EXPR
1741 @tindex EXIT_EXPR
1742 @tindex CLEANUP_POINT_EXPR
1743 @tindex CONSTRUCTOR
1744 @tindex COMPOUND_LITERAL_EXPR
1745 @tindex SAVE_EXPR
1746 @tindex TARGET_EXPR
1747 @tindex AGGR_INIT_EXPR
1748 @tindex VA_ARG_EXPR
1749
1750 The internal representation for expressions is for the most part quite
1751 straightforward.  However, there are a few facts that one must bear in
1752 mind.  In particular, the expression ``tree'' is actually a directed
1753 acyclic graph.  (For example there may be many references to the integer
1754 constant zero throughout the source program; many of these will be
1755 represented by the same expression node.)  You should not rely on
1756 certain kinds of node being shared, nor should rely on certain kinds of
1757 nodes being unshared.
1758
1759 The following macros can be used with all expression nodes:
1760
1761 @ftable @code
1762 @item TREE_TYPE
1763 Returns the type of the expression.  This value may not be precisely the
1764 same type that would be given the expression in the original program.
1765 @end ftable
1766
1767 In what follows, some nodes that one might expect to always have type
1768 @code{bool} are documented to have either integral or boolean type.  At
1769 some point in the future, the C front end may also make use of this same
1770 intermediate representation, and at this point these nodes will
1771 certainly have integral type.  The previous sentence is not meant to
1772 imply that the C++ front end does not or will not give these nodes
1773 integral type.
1774
1775 Below, we list the various kinds of expression nodes.  Except where
1776 noted otherwise, the operands to an expression are accessed using the
1777 @code{TREE_OPERAND} macro.  For example, to access the first operand to
1778 a binary plus expression @code{expr}, use:
1779
1780 @smallexample
1781 TREE_OPERAND (expr, 0)
1782 @end smallexample
1783 @noindent
1784 As this example indicates, the operands are zero-indexed.
1785
1786 The table below begins with constants, moves on to unary expressions,
1787 then proceeds to binary expressions, and concludes with various other
1788 kinds of expressions:
1789
1790 @table @code
1791 @item INTEGER_CST
1792 These nodes represent integer constants.  Note that the type of these
1793 constants is obtained with @code{TREE_TYPE}; they are not always of type
1794 @code{int}.  In particular, @code{char} constants are represented with
1795 @code{INTEGER_CST} nodes.  The value of the integer constant @code{e} is
1796 given by
1797 @smallexample
1798 ((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)
1799 + TREE_INST_CST_LOW (e))
1800 @end smallexample
1801 @noindent
1802 HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms.  Both
1803 @code{TREE_INT_CST_HIGH} and @code{TREE_INT_CST_LOW} return a
1804 @code{HOST_WIDE_INT}.  The value of an @code{INTEGER_CST} is interpreted
1805 as a signed or unsigned quantity depending on the type of the constant.
1806 In general, the expression given above will overflow, so it should not
1807 be used to calculate the value of the constant.
1808
1809 The variable @code{integer_zero_node} is an integer constant with value
1810 zero.  Similarly, @code{integer_one_node} is an integer constant with
1811 value one.  The @code{size_zero_node} and @code{size_one_node} variables
1812 are analogous, but have type @code{size_t} rather than @code{int}.
1813
1814 The function @code{tree_int_cst_lt} is a predicate which holds if its
1815 first argument is less than its second.  Both constants are assumed to
1816 have the same signedness (i.e., either both should be signed or both
1817 should be unsigned.)  The full width of the constant is used when doing
1818 the comparison; the usual rules about promotions and conversions are
1819 ignored.  Similarly, @code{tree_int_cst_equal} holds if the two
1820 constants are equal.  The @code{tree_int_cst_sgn} function returns the
1821 sign of a constant.  The value is @code{1}, @code{0}, or @code{-1}
1822 according on whether the constant is greater than, equal to, or less
1823 than zero.  Again, the signedness of the constant's type is taken into
1824 account; an unsigned constant is never less than zero, no matter what
1825 its bit-pattern.
1826
1827 @item REAL_CST
1828
1829 FIXME: Talk about how to obtain representations of this constant, do
1830 comparisons, and so forth.
1831
1832 @item COMPLEX_CST
1833 These nodes are used to represent complex number constants, that is a
1834 @code{__complex__} whose parts are constant nodes.  The
1835 @code{TREE_REALPART} and @code{TREE_IMAGPART} return the real and the
1836 imaginary parts respectively.
1837
1838 @item VECTOR_CST
1839 These nodes are used to represent vector constants, whose parts are
1840 constant nodes.  Each individual constant node is either an integer or a
1841 double constant node.  The first operand is a @code{TREE_LIST} of the
1842 constant nodes and is accessed through @code{TREE_VECTOR_CST_ELTS}.
1843
1844 @item STRING_CST
1845 These nodes represent string-constants.  The @code{TREE_STRING_LENGTH}
1846 returns the length of the string, as an @code{int}.  The
1847 @code{TREE_STRING_POINTER} is a @code{char*} containing the string
1848 itself.  The string may not be @code{NUL}-terminated, and it may contain
1849 embedded @code{NUL} characters.  Therefore, the
1850 @code{TREE_STRING_LENGTH} includes the trailing @code{NUL} if it is
1851 present.
1852
1853 For wide string constants, the @code{TREE_STRING_LENGTH} is the number
1854 of bytes in the string, and the @code{TREE_STRING_POINTER}
1855 points to an array of the bytes of the string, as represented on the
1856 target system (that is, as integers in the target endianness).  Wide and
1857 non-wide string constants are distinguished only by the @code{TREE_TYPE}
1858 of the @code{STRING_CST}.
1859
1860 FIXME: The formats of string constants are not well-defined when the
1861 target system bytes are not the same width as host system bytes.
1862
1863 @item PTRMEM_CST
1864 These nodes are used to represent pointer-to-member constants.  The
1865 @code{PTRMEM_CST_CLASS} is the class type (either a @code{RECORD_TYPE}
1866 or @code{UNION_TYPE} within which the pointer points), and the
1867 @code{PTRMEM_CST_MEMBER} is the declaration for the pointed to object.
1868 Note that the @code{DECL_CONTEXT} for the @code{PTRMEM_CST_MEMBER} is in
1869 general different from the @code{PTRMEM_CST_CLASS}.  For example,
1870 given:
1871 @smallexample
1872 struct B @{ int i; @};
1873 struct D : public B @{@};
1874 int D::*dp = &D::i;
1875 @end smallexample
1876 @noindent
1877 The @code{PTRMEM_CST_CLASS} for @code{&D::i} is @code{D}, even though
1878 the @code{DECL_CONTEXT} for the @code{PTRMEM_CST_MEMBER} is @code{B},
1879 since @code{B::i} is a member of @code{B}, not @code{D}.
1880
1881 @item VAR_DECL
1882
1883 These nodes represent variables, including static data members.  For
1884 more information, @pxref{Declarations}.
1885
1886 @item NEGATE_EXPR
1887 These nodes represent unary negation of the single operand, for both
1888 integer and floating-point types.  The type of negation can be
1889 determined by looking at the type of the expression.
1890
1891 The behavior of this operation on signed arithmetic overflow is
1892 controlled by the @code{flag_wrapv} and @code{flag_trapv} variables.
1893
1894 @item ABS_EXPR
1895 These nodes represent the absolute value of the single operand, for
1896 both integer and floating-point types.  This is typically used to
1897 implement the @code{abs}, @code{labs} and @code{llabs} builtins for
1898 integer types, and the @code{fabs}, @code{fabsf} and @code{fabsl}
1899 builtins for floating point types.  The type of abs operation can
1900 be determined by looking at the type of the expression.
1901
1902 This node is not used for complex types.  To represent the modulus
1903 or complex abs of a complex value, use the @code{BUILT_IN_CABS},
1904 @code{BUILT_IN_CABSF} or @code{BUILT_IN_CABSL} builtins, as used
1905 to implement the C99 @code{cabs}, @code{cabsf} and @code{cabsl}
1906 built-in functions.
1907
1908 @item BIT_NOT_EXPR
1909 These nodes represent bitwise complement, and will always have integral
1910 type.  The only operand is the value to be complemented.
1911
1912 @item TRUTH_NOT_EXPR
1913 These nodes represent logical negation, and will always have integral
1914 (or boolean) type.  The operand is the value being negated.
1915
1916 @item PREDECREMENT_EXPR
1917 @itemx PREINCREMENT_EXPR
1918 @itemx POSTDECREMENT_EXPR
1919 @itemx POSTINCREMENT_EXPR
1920 These nodes represent increment and decrement expressions.  The value of
1921 the single operand is computed, and the operand incremented or
1922 decremented.  In the case of @code{PREDECREMENT_EXPR} and
1923 @code{PREINCREMENT_EXPR}, the value of the expression is the value
1924 resulting after the increment or decrement; in the case of
1925 @code{POSTDECREMENT_EXPR} and @code{POSTINCREMENT_EXPR} is the value
1926 before the increment or decrement occurs.  The type of the operand, like
1927 that of the result, will be either integral, boolean, or floating-point.
1928
1929 @item ADDR_EXPR
1930 These nodes are used to represent the address of an object.  (These
1931 expressions will always have pointer or reference type.)  The operand may
1932 be another expression, or it may be a declaration.
1933
1934 As an extension, GCC allows users to take the address of a label.  In
1935 this case, the operand of the @code{ADDR_EXPR} will be a
1936 @code{LABEL_DECL}.  The type of such an expression is @code{void*}.
1937
1938 If the object addressed is not an lvalue, a temporary is created, and
1939 the address of the temporary is used.
1940
1941 @item INDIRECT_REF
1942 These nodes are used to represent the object pointed to by a pointer.
1943 The operand is the pointer being dereferenced; it will always have
1944 pointer or reference type.
1945
1946 @item FIX_TRUNC_EXPR
1947 These nodes represent conversion of a floating-point value to an
1948 integer.  The single operand will have a floating-point type, while the
1949 the complete expression will have an integral (or boolean) type.  The
1950 operand is rounded towards zero.
1951
1952 @item FLOAT_EXPR
1953 These nodes represent conversion of an integral (or boolean) value to a
1954 floating-point value.  The single operand will have integral type, while
1955 the complete expression will have a floating-point type.
1956
1957 FIXME: How is the operand supposed to be rounded?  Is this dependent on
1958 @option{-mieee}?
1959
1960 @item COMPLEX_EXPR
1961 These nodes are used to represent complex numbers constructed from two
1962 expressions of the same (integer or real) type.  The first operand is the
1963 real part and the second operand is the imaginary part.
1964
1965 @item CONJ_EXPR
1966 These nodes represent the conjugate of their operand.
1967
1968 @item REALPART_EXPR
1969 @itemx IMAGPART_EXPR
1970 These nodes represent respectively the real and the imaginary parts
1971 of complex numbers (their sole argument).
1972
1973 @item NON_LVALUE_EXPR
1974 These nodes indicate that their one and only operand is not an lvalue.
1975 A back end can treat these identically to the single operand.
1976
1977 @item NOP_EXPR
1978 These nodes are used to represent conversions that do not require any
1979 code-generation.  For example, conversion of a @code{char*} to an
1980 @code{int*} does not require any code be generated; such a conversion is
1981 represented by a @code{NOP_EXPR}.  The single operand is the expression
1982 to be converted.  The conversion from a pointer to a reference is also
1983 represented with a @code{NOP_EXPR}.
1984
1985 @item CONVERT_EXPR
1986 These nodes are similar to @code{NOP_EXPR}s, but are used in those
1987 situations where code may need to be generated.  For example, if an
1988 @code{int*} is converted to an @code{int} code may need to be generated
1989 on some platforms.  These nodes are never used for C++-specific
1990 conversions, like conversions between pointers to different classes in
1991 an inheritance hierarchy.  Any adjustments that need to be made in such
1992 cases are always indicated explicitly.  Similarly, a user-defined
1993 conversion is never represented by a @code{CONVERT_EXPR}; instead, the
1994 function calls are made explicit.
1995
1996 @item THROW_EXPR
1997 These nodes represent @code{throw} expressions.  The single operand is
1998 an expression for the code that should be executed to throw the
1999 exception.  However, there is one implicit action not represented in
2000 that expression; namely the call to @code{__throw}.  This function takes
2001 no arguments.  If @code{setjmp}/@code{longjmp} exceptions are used, the
2002 function @code{__sjthrow} is called instead.  The normal GCC back end
2003 uses the function @code{emit_throw} to generate this code; you can
2004 examine this function to see what needs to be done.
2005
2006 @item LSHIFT_EXPR
2007 @itemx RSHIFT_EXPR
2008 These nodes represent left and right shifts, respectively.  The first
2009 operand is the value to shift; it will always be of integral type.  The
2010 second operand is an expression for the number of bits by which to
2011 shift.  Right shift should be treated as arithmetic, i.e., the
2012 high-order bits should be zero-filled when the expression has unsigned
2013 type and filled with the sign bit when the expression has signed type.
2014 Note that the result is undefined if the second operand is larger
2015 than the first operand's type size.
2016
2017
2018 @item BIT_IOR_EXPR
2019 @itemx BIT_XOR_EXPR
2020 @itemx BIT_AND_EXPR
2021 These nodes represent bitwise inclusive or, bitwise exclusive or, and
2022 bitwise and, respectively.  Both operands will always have integral
2023 type.
2024
2025 @item TRUTH_ANDIF_EXPR
2026 @itemx TRUTH_ORIF_EXPR
2027 These nodes represent logical and and logical or, respectively.  These
2028 operators are not strict; i.e., the second operand is evaluated only if
2029 the value of the expression is not determined by evaluation of the first
2030 operand.  The type of the operands, and the result type, is always of
2031 boolean or integral type.
2032
2033 @item TRUTH_AND_EXPR
2034 @itemx TRUTH_OR_EXPR
2035 @itemx TRUTH_XOR_EXPR
2036 These nodes represent logical and, logical or, and logical exclusive or.
2037 They are strict; both arguments are always evaluated.  There are no
2038 corresponding operators in C or C++, but the front end will sometimes
2039 generate these expressions anyhow, if it can tell that strictness does
2040 not matter.
2041
2042 @itemx PLUS_EXPR
2043 @itemx MINUS_EXPR
2044 @itemx MULT_EXPR
2045 These nodes represent various binary arithmetic operations.
2046 Respectively, these operations are addition, subtraction (of the second
2047 operand from the first) and multiplication.  Their operands may have
2048 either integral or floating type, but there will never be case in which
2049 one operand is of floating type and the other is of integral type.
2050
2051 The behavior of these operations on signed arithmetic overflow is
2052 controlled by the @code{flag_wrapv} and @code{flag_trapv} variables.
2053
2054 @item RDIV_EXPR
2055 This node represents a floating point division operation.
2056
2057 @item TRUNC_DIV_EXPR
2058 @itemx FLOOR_DIV_EXPR
2059 @itemx CEIL_DIV_EXPR
2060 @itemx ROUND_DIV_EXPR
2061 These nodes represent integer division operations that return an integer
2062 result.  @code{TRUNC_DIV_EXPR} rounds towards zero, @code{FLOOR_DIV_EXPR}
2063 rounds towards negative infinity, @code{CEIL_DIV_EXPR} rounds towards
2064 positive infinity and @code{ROUND_DIV_EXPR} rounds to the closest integer.
2065 Integer division in C and C++ is truncating, i.e@. @code{TRUNC_DIV_EXPR}.
2066
2067 The behavior of these operations on signed arithmetic overflow, when
2068 dividing the minimum signed integer by minus one, is controlled by the
2069 @code{flag_wrapv} and @code{flag_trapv} variables.
2070
2071 @item TRUNC_MOD_EXPR
2072 @itemx FLOOR_MOD_EXPR
2073 @itemx CEIL_MOD_EXPR
2074 @itemx ROUND_MOD_EXPR
2075 These nodes represent the integer remainder or modulus operation.
2076 The integer modulus of two operands @code{a} and @code{b} is
2077 defined as @code{a - (a/b)*b} where the division calculated using
2078 the corresponding division operator.  Hence for @code{TRUNC_MOD_EXPR}
2079 this definition assumes division using truncation towards zero, i.e@.
2080 @code{TRUNC_DIV_EXPR}.  Integer remainder in C and C++ uses truncating
2081 division, i.e@. @code{TRUNC_MOD_EXPR}.
2082
2083 @item EXACT_DIV_EXPR
2084 The @code{EXACT_DIV_EXPR} code is used to represent integer divisions where
2085 the numerator is known to be an exact multiple of the denominator.  This
2086 allows the backend to choose between the faster of @code{TRUNC_DIV_EXPR},
2087 @code{CEIL_DIV_EXPR} and @code{FLOOR_DIV_EXPR} for the current target.
2088
2089 @item ARRAY_REF
2090 These nodes represent array accesses.  The first operand is the array;
2091 the second is the index.  To calculate the address of the memory
2092 accessed, you must scale the index by the size of the type of the array
2093 elements.  The type of these expressions must be the type of a component of
2094 the array.
2095
2096 @item ARRAY_RANGE_REF
2097 These nodes represent access to a range (or ``slice'') of an array.  The
2098 operands are the same as that for @code{ARRAY_REF} and have the same
2099 meanings.  The type of these expressions must be an array whose component
2100 type is the same as that of the first operand.  The range of that array
2101 type determines the amount of data these expressions access.
2102
2103 @item LT_EXPR
2104 @itemx LE_EXPR
2105 @itemx GT_EXPR
2106 @itemx GE_EXPR
2107 @itemx EQ_EXPR
2108 @itemx NE_EXPR
2109 These nodes represent the less than, less than or equal to, greater
2110 than, greater than or equal to, equal, and not equal comparison
2111 operators.  The first and second operand with either be both of integral
2112 type or both of floating type.  The result type of these expressions
2113 will always be of integral or boolean type.  These operations return
2114 the result type's zero value for false, and the result type's one value
2115 for true.
2116
2117 For floating point comparisons, if we honor IEEE NaNs and either operand
2118 is NaN, then @code{NE_EXPR} always returns true and the remaining operators
2119 always return false.  On some targets, comparisons against an IEEE NaN,
2120 other than equality and inequality, may generate a floating point exception.
2121
2122 @item ORDERED_EXPR
2123 @itemx UNORDERED_EXPR
2124 These nodes represent non-trapping ordered and unordered comparison
2125 operators.  These operations take two floating point operands and
2126 determine whether they are ordered or unordered relative to each other.
2127 If either operand is an IEEE NaN, their comparison is defined to be
2128 unordered, otherwise the comparison is defined to be ordered.  The
2129 result type of these expressions will always be of integral or boolean
2130 type.  These operations return the result type's zero value for false,
2131 and the result type's one value for true.
2132
2133 @item UNLT_EXPR
2134 @itemx UNLE_EXPR
2135 @itemx UNGT_EXPR
2136 @itemx UNGE_EXPR
2137 @itemx UNEQ_EXPR
2138 @itemx LTGT_EXPR
2139 These nodes represent the unordered comparison operators.
2140 These operations take two floating point operands and determine whether
2141 the operands are unordered or are less than, less than or equal to,
2142 greater than, greater than or equal to, or equal respectively.  For
2143 example, @code{UNLT_EXPR} returns true if either operand is an IEEE
2144 NaN or the first operand is less than the second.  With the possible
2145 exception of @code{LTGT_EXPR}, all of these operations are guaranteed
2146 not to generate a floating point exception.  The result
2147 type of these expressions will always be of integral or boolean type.
2148 These operations return the result type's zero value for false,
2149 and the result type's one value for true.
2150
2151 @item MODIFY_EXPR
2152 These nodes represent assignment.  The left-hand side is the first
2153 operand; the right-hand side is the second operand.  The left-hand side
2154 will be a @code{VAR_DECL}, @code{INDIRECT_REF}, @code{COMPONENT_REF}, or
2155 other lvalue.
2156
2157 These nodes are used to represent not only assignment with @samp{=} but
2158 also compound assignments (like @samp{+=}), by reduction to @samp{=}
2159 assignment.  In other words, the representation for @samp{i += 3} looks
2160 just like that for @samp{i = i + 3}.
2161
2162 @item INIT_EXPR
2163 These nodes are just like @code{MODIFY_EXPR}, but are used only when a
2164 variable is initialized, rather than assigned to subsequently.
2165
2166 @item COMPONENT_REF
2167 These nodes represent non-static data member accesses.  The first
2168 operand is the object (rather than a pointer to it); the second operand
2169 is the @code{FIELD_DECL} for the data member.
2170
2171 @item COMPOUND_EXPR
2172 These nodes represent comma-expressions.  The first operand is an
2173 expression whose value is computed and thrown away prior to the
2174 evaluation of the second operand.  The value of the entire expression is
2175 the value of the second operand.
2176
2177 @item COND_EXPR
2178 These nodes represent @code{?:} expressions.  The first operand
2179 is of boolean or integral type.  If it evaluates to a nonzero value,
2180 the second operand should be evaluated, and returned as the value of the
2181 expression.  Otherwise, the third operand is evaluated, and returned as
2182 the value of the expression.
2183
2184 The second operand must have the same type as the entire expression,
2185 unless it unconditionally throws an exception or calls a noreturn
2186 function, in which case it should have void type.  The same constraints
2187 apply to the third operand.  This allows array bounds checks to be
2188 represented conveniently as @code{(i >= 0 && i < 10) ? i : abort()}.
2189
2190 As a GNU extension, the C language front-ends allow the second
2191 operand of the @code{?:} operator may be omitted in the source.
2192 For example, @code{x ? : 3} is equivalent to @code{x ? x : 3},
2193 assuming that @code{x} is an expression without side-effects.
2194 In the tree representation, however, the second operand is always
2195 present, possibly protected by @code{SAVE_EXPR} if the first
2196 argument does cause side-effects.
2197
2198 @item CALL_EXPR
2199 These nodes are used to represent calls to functions, including
2200 non-static member functions.  The first operand is a pointer to the
2201 function to call; it is always an expression whose type is a
2202 @code{POINTER_TYPE}.  The second argument is a @code{TREE_LIST}.  The
2203 arguments to the call appear left-to-right in the list.  The
2204 @code{TREE_VALUE} of each list node contains the expression
2205 corresponding to that argument.  (The value of @code{TREE_PURPOSE} for
2206 these nodes is unspecified, and should be ignored.)  For non-static
2207 member functions, there will be an operand corresponding to the
2208 @code{this} pointer.  There will always be expressions corresponding to
2209 all of the arguments, even if the function is declared with default
2210 arguments and some arguments are not explicitly provided at the call
2211 sites.
2212
2213 @item STMT_EXPR
2214 These nodes are used to represent GCC's statement-expression extension.
2215 The statement-expression extension allows code like this:
2216 @smallexample
2217 int f() @{ return (@{ int j; j = 3; j + 7; @}); @}
2218 @end smallexample
2219 In other words, an sequence of statements may occur where a single
2220 expression would normally appear.  The @code{STMT_EXPR} node represents
2221 such an expression.  The @code{STMT_EXPR_STMT} gives the statement
2222 contained in the expression.  The value of the expression is the value
2223 of the last sub-statement in the body.  More precisely, the value is the
2224 value computed by the last statement nested inside @code{BIND_EXPR},
2225 @code{TRY_FINALLY_EXPR}, or @code{TRY_CATCH_EXPR}.  For example, in:
2226 @smallexample
2227 (@{ 3; @})
2228 @end smallexample
2229 the value is @code{3} while in:
2230 @smallexample
2231 (@{ if (x) @{ 3; @} @})
2232 @end smallexample
2233 there is no value.  If the @code{STMT_EXPR} does not yield a value,
2234 it's type will be @code{void}.
2235
2236 @item BIND_EXPR
2237 These nodes represent local blocks.  The first operand is a list of
2238 variables, connected via their @code{TREE_CHAIN} field.  These will
2239 never require cleanups.  The scope of these variables is just the body
2240 of the @code{BIND_EXPR}.  The body of the @code{BIND_EXPR} is the
2241 second operand.
2242
2243 @item LOOP_EXPR
2244 These nodes represent ``infinite'' loops.  The @code{LOOP_EXPR_BODY}
2245 represents the body of the loop.  It should be executed forever, unless
2246 an @code{EXIT_EXPR} is encountered.
2247
2248 @item EXIT_EXPR
2249 These nodes represent conditional exits from the nearest enclosing
2250 @code{LOOP_EXPR}.  The single operand is the condition; if it is
2251 nonzero, then the loop should be exited.  An @code{EXIT_EXPR} will only
2252 appear within a @code{LOOP_EXPR}.
2253
2254 @item CLEANUP_POINT_EXPR
2255 These nodes represent full-expressions.  The single operand is an
2256 expression to evaluate.  Any destructor calls engendered by the creation
2257 of temporaries during the evaluation of that expression should be
2258 performed immediately after the expression is evaluated.
2259
2260 @item CONSTRUCTOR
2261 These nodes represent the brace-enclosed initializers for a structure or
2262 array.  The first operand is reserved for use by the back end.  The
2263 second operand is a @code{TREE_LIST}.  If the @code{TREE_TYPE} of the
2264 @code{CONSTRUCTOR} is a @code{RECORD_TYPE} or @code{UNION_TYPE}, then
2265 the @code{TREE_PURPOSE} of each node in the @code{TREE_LIST} will be a
2266 @code{FIELD_DECL} and the @code{TREE_VALUE} of each node will be the
2267 expression used to initialize that field.
2268
2269 If the @code{TREE_TYPE} of the @code{CONSTRUCTOR} is an
2270 @code{ARRAY_TYPE}, then the @code{TREE_PURPOSE} of each element in the
2271 @code{TREE_LIST} will be an @code{INTEGER_CST}.  This constant indicates
2272 which element of the array (indexed from zero) is being assigned to;
2273 again, the @code{TREE_VALUE} is the corresponding initializer.  If the
2274 @code{TREE_PURPOSE} is @code{NULL_TREE}, then the initializer is for the
2275 next available array element.
2276
2277 In the front end, you should not depend on the fields appearing in any
2278 particular order.  However, in the middle end, fields must appear in
2279 declaration order.  You should not assume that all fields will be
2280 represented.  Unrepresented fields will be set to zero.
2281
2282 @item COMPOUND_LITERAL_EXPR
2283 @findex COMPOUND_LITERAL_EXPR_DECL_STMT
2284 @findex COMPOUND_LITERAL_EXPR_DECL
2285 These nodes represent ISO C99 compound literals.  The
2286 @code{COMPOUND_LITERAL_EXPR_DECL_STMT} is a @code{DECL_STMT}
2287 containing an anonymous @code{VAR_DECL} for
2288 the unnamed object represented by the compound literal; the
2289 @code{DECL_INITIAL} of that @code{VAR_DECL} is a @code{CONSTRUCTOR}
2290 representing the brace-enclosed list of initializers in the compound
2291 literal.  That anonymous @code{VAR_DECL} can also be accessed directly
2292 by the @code{COMPOUND_LITERAL_EXPR_DECL} macro.
2293
2294 @item SAVE_EXPR
2295
2296 A @code{SAVE_EXPR} represents an expression (possibly involving
2297 side-effects) that is used more than once.  The side-effects should
2298 occur only the first time the expression is evaluated.  Subsequent uses
2299 should just reuse the computed value.  The first operand to the
2300 @code{SAVE_EXPR} is the expression to evaluate.  The side-effects should
2301 be executed where the @code{SAVE_EXPR} is first encountered in a
2302 depth-first preorder traversal of the expression tree.
2303
2304 @item TARGET_EXPR
2305 A @code{TARGET_EXPR} represents a temporary object.  The first operand
2306 is a @code{VAR_DECL} for the temporary variable.  The second operand is
2307 the initializer for the temporary.  The initializer is evaluated and,
2308 if non-void, copied (bitwise) into the temporary.  If the initializer
2309 is void, that means that it will perform the initialization itself.
2310
2311 Often, a @code{TARGET_EXPR} occurs on the right-hand side of an
2312 assignment, or as the second operand to a comma-expression which is
2313 itself the right-hand side of an assignment, etc.  In this case, we say
2314 that the @code{TARGET_EXPR} is ``normal''; otherwise, we say it is
2315 ``orphaned''.  For a normal @code{TARGET_EXPR} the temporary variable
2316 should be treated as an alias for the left-hand side of the assignment,
2317 rather than as a new temporary variable.
2318
2319 The third operand to the @code{TARGET_EXPR}, if present, is a
2320 cleanup-expression (i.e., destructor call) for the temporary.  If this
2321 expression is orphaned, then this expression must be executed when the
2322 statement containing this expression is complete.  These cleanups must
2323 always be executed in the order opposite to that in which they were
2324 encountered.  Note that if a temporary is created on one branch of a
2325 conditional operator (i.e., in the second or third operand to a
2326 @code{COND_EXPR}), the cleanup must be run only if that branch is
2327 actually executed.
2328
2329 See @code{STMT_IS_FULL_EXPR_P} for more information about running these
2330 cleanups.
2331
2332 @item AGGR_INIT_EXPR
2333 An @code{AGGR_INIT_EXPR} represents the initialization as the return
2334 value of a function call, or as the result of a constructor.  An
2335 @code{AGGR_INIT_EXPR} will only appear as a full-expression, or as the
2336 second operand of a @code{TARGET_EXPR}.  The first operand to the
2337 @code{AGGR_INIT_EXPR} is the address of a function to call, just as in
2338 a @code{CALL_EXPR}.  The second operand are the arguments to pass that
2339 function, as a @code{TREE_LIST}, again in a manner similar to that of
2340 a @code{CALL_EXPR}.
2341
2342 If @code{AGGR_INIT_VIA_CTOR_P} holds of the @code{AGGR_INIT_EXPR}, then
2343 the initialization is via a constructor call.  The address of the third
2344 operand of the @code{AGGR_INIT_EXPR}, which is always a @code{VAR_DECL},
2345 is taken, and this value replaces the first argument in the argument
2346 list.
2347
2348 In either case, the expression is void.
2349
2350 @item VA_ARG_EXPR
2351 This node is used to implement support for the C/C++ variable argument-list
2352 mechanism.  It represents expressions like @code{va_arg (ap, type)}.
2353 Its @code{TREE_TYPE} yields the tree representation for @code{type} and
2354 its sole argument yields the representation for @code{ap}.
2355
2356 @end table