OSDN Git Service

print_operand accepts %/ for REGISTER_PREFIX.
[pf3gnuchains/gcc-fork.git] / gcc / config / m68k / m68k.h
1 /* Definitions of target machine for GNU compiler.  Sun 68000/68020 version.
2    Copyright (C) 1987, 1988 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
19
20
21 /* Note that some other tm.h files include this one and then override
22    many of the definitions that relate to assembler syntax.  */
23
24
25 /* Names to predefine in the preprocessor for this target machine.  */
26
27 /* See sun3.h, sun2.h, isi.h for different CPP_PREDEFINES.  */
28
29 /* Print subsidiary information on the compiler version in use.  */
30 #ifdef MOTOROLA
31 #define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
32 #else
33 #define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");
34 #endif
35
36 /* Define SUPPORT_SUN_FPA to include support for generating code for
37    the Sun Floating Point Accelerator, an optional product for Sun 3
38    machines.  By default, it is not defined.  Avoid defining it unless
39    you need to output code for the Sun3+FPA architecture, as it has the
40    effect of slowing down the register set operations in hard-reg-set.h
41    (total number of registers will exceed number of bits in a long,
42    if defined, causing the set operations to expand to loops).
43    SUPPORT_SUN_FPA is typically defined in sun3.h.  */
44
45 /* Run-time compilation parameters selecting different hardware subsets.  */
46
47 extern int target_flags;
48
49 /* Macros used in the machine description to test the flags.  */
50
51 /* Compile for a 68020 (not a 68000 or 68010).  */
52 #define TARGET_68020 (target_flags & 1)
53
54 /* Compile 68881 insns for floating point (not library calls).  */
55 #define TARGET_68881 (target_flags & 2)
56
57 /* Compile using 68020 bitfield insns.  */
58 #define TARGET_BITFIELD (target_flags & 4)
59
60 /* Compile using rtd insn calling sequence.
61    This will not work unless you use prototypes at least
62    for all functions that can take varying numbers of args.  */
63 #define TARGET_RTD (target_flags & 8)
64
65 /* Compile passing first two args in regs 0 and 1.
66    This exists only to test compiler features that will
67    be needed for RISC chips.  It is not usable
68    and is not intended to be usable on this cpu.  */
69 #define TARGET_REGPARM (target_flags & 020)
70
71 /* Compile with 16-bit `int'.  */
72 #define TARGET_SHORT (target_flags & 040)
73
74 /* Compile with special insns for Sun FPA.  */
75 #ifdef SUPPORT_SUN_FPA
76 #define TARGET_FPA (target_flags & 0100)
77 #else
78 #define TARGET_FPA 0
79 #endif
80
81 /* Compile (actually, link) for Sun SKY board.  */
82 #define TARGET_SKY (target_flags & 0200)
83
84 /* Optimize for 68040, but still allow execution on 68020
85    (-m68020-40 or -m68040).
86    The 68040 will execute all 68030 and 68881/2 instructions, but some
87    of them must be emulated in software by the OS.  When TARGET_68040 is
88    turned on, these instructions won't be used.  This code will still
89    run on a 68030 and 68881/2. */
90 #define TARGET_68040 (target_flags & 01400)
91
92 /* Use the 68040-only fp instructions (-m68040).  */
93 #define TARGET_68040_ONLY (target_flags & 01000)
94
95 /* Macro to define tables used to set the flags.
96    This is a list in braces of pairs in braces,
97    each pair being { "NAME", VALUE }
98    where VALUE is the bits to set or minus the bits to clear.
99    An empty string NAME is used to identify the default VALUE.  */
100
101 #define TARGET_SWITCHES  \
102   { { "68020", 5},                              \
103     { "c68020", 5},                             \
104     { "68881", 2},                              \
105     { "bitfield", 4},                           \
106     { "68000", -5},                             \
107     { "c68000", -5},                            \
108     { "soft-float", -0102},                     \
109     { "nobitfield", -4},                        \
110     { "rtd", 8},                                \
111     { "nortd", -8},                             \
112     { "short", 040},                            \
113     { "noshort", -040},                         \
114     { "fpa", 0100},                             \
115     { "nofpa", -0100},                          \
116     { "sky", 0200},                             \
117     { "nosky", -0200},                          \
118     { "68020-40", 0407},                                \
119     { "68030", -01400},                         \
120     { "68030", 5},                              \
121     { "68040", 01007},                  \
122     { "", TARGET_DEFAULT}}
123 /* TARGET_DEFAULT is defined in sun*.h and isi.h, etc.  */
124
125 #ifdef SUPPORT_SUN_FPA
126 /* Blow away 68881 flag silently on TARGET_FPA (since we can't clear
127    any bits in TARGET_SWITCHES above) */
128 #define OVERRIDE_OPTIONS                \
129 {                                       \
130   if (TARGET_FPA) target_flags &= ~2;   \
131   if (! TARGET_68020 && flag_pic == 2)  \
132     error("-fPIC is not currently supported on the 68000 or 68010\n");  \
133 }
134 #else
135 #define OVERRIDE_OPTIONS                \
136 {                                       \
137   if (! TARGET_68020 && flag_pic == 2)  \
138     error("-fPIC is not currently supported on the 68000 or 68010\n");  \
139 }
140 #endif /* defined SUPPORT_SUN_FPA */
141 \f
142 /* target machine storage layout */
143
144 /* Define this if most significant bit is lowest numbered
145    in instructions that operate on numbered bit-fields.
146    This is true for 68020 insns such as bfins and bfexts.
147    We make it true always by avoiding using the single-bit insns
148    except in special cases with constant bit numbers.  */
149 #define BITS_BIG_ENDIAN 1
150
151 /* Define this if most significant byte of a word is the lowest numbered.  */
152 /* That is true on the 68000.  */
153 #define BYTES_BIG_ENDIAN 1
154
155 /* Define this if most significant word of a multiword number is the lowest
156    numbered.  */
157 /* For 68000 we can decide arbitrarily
158    since there are no machine instructions for them.
159    So let's be consistent.  */
160 #define WORDS_BIG_ENDIAN 1
161
162 /* number of bits in an addressable storage unit */
163 #define BITS_PER_UNIT 8
164
165 /* Width in bits of a "word", which is the contents of a machine register.
166    Note that this is not necessarily the width of data type `int';
167    if using 16-bit ints on a 68000, this would still be 32.
168    But on a machine with 16-bit registers, this would be 16.  */
169 #define BITS_PER_WORD 32
170
171 /* Width of a word, in units (bytes).  */
172 #define UNITS_PER_WORD 4
173
174 /* Width in bits of a pointer.
175    See also the macro `Pmode' defined below.  */
176 #define POINTER_SIZE 32
177
178 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
179 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
180
181 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
182 #define STACK_BOUNDARY 16
183
184 /* Allocation boundary (in *bits*) for the code of a function.  */
185 #define FUNCTION_BOUNDARY 16
186
187 /* Alignment of field after `int : 0' in a structure.  */
188 #define EMPTY_FIELD_BOUNDARY 16
189
190 /* No data type wants to be aligned rounder than this.  */
191 #define BIGGEST_ALIGNMENT 16
192
193 /* Set this nonzero if move instructions will actually fail to work
194    when given unaligned data.  */
195 #define STRICT_ALIGNMENT 1
196
197 #define SELECT_RTX_SECTION(MODE, X)                                     \
198 {                                                                       \
199   if (!flag_pic)                                                        \
200     readonly_data_section();                                            \
201   else if (LEGITIMATE_PIC_OPERAND_P (X))                                \
202     readonly_data_section();                                            \
203   else                                                                  \
204     data_section();                                                     \
205 }
206
207 /* Define number of bits in most basic integer type.
208    (If undefined, default is BITS_PER_WORD).  */
209
210 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
211
212 /* Define these to avoid dependence on meaning of `int'.
213    Note that WCHAR_TYPE_SIZE is used in cexp.y,
214    where TARGET_SHORT is not available.  */
215
216 #define WCHAR_TYPE "long int"
217 #define WCHAR_TYPE_SIZE 32
218 \f
219 /* Standard register usage.  */
220
221 /* Number of actual hardware registers.
222    The hardware registers are assigned numbers for the compiler
223    from 0 to just below FIRST_PSEUDO_REGISTER.
224    All registers that the compiler knows about must be given numbers,
225    even those that are not normally considered general registers.
226    For the 68000, we give the data registers numbers 0-7,
227    the address registers numbers 010-017,
228    and the 68881 floating point registers numbers 020-027.  */
229 #ifndef SUPPORT_SUN_FPA
230 #define FIRST_PSEUDO_REGISTER 24
231 #else
232 #define FIRST_PSEUDO_REGISTER 56
233 #endif
234
235 /* This defines the register which is used to hold the offset table for PIC. */
236 #define PIC_OFFSET_TABLE_REGNUM 13
237
238 /* Used to output a (use pic_offset_table_rtx) so that we 
239    always save/restore a5 in functions that use PIC relocation
240    at *any* time during the compilation process. */
241 #define FINALIZE_PIC finalize_pic()
242
243 #ifndef SUPPORT_SUN_FPA
244
245 /* 1 for registers that have pervasive standard uses
246    and are not available for the register allocator.
247    On the 68000, only the stack pointer is such.  */
248
249 #define FIXED_REGISTERS        \
250  {/* Data registers.  */       \
251   0, 0, 0, 0, 0, 0, 0, 0,      \
252                                \
253   /* Address registers.  */    \
254   0, 0, 0, 0, 0, 0, 0, 1,      \
255                                \
256   /* Floating point registers  \
257      (if available).  */       \
258   0, 0, 0, 0, 0, 0, 0, 0 }
259
260 /* 1 for registers not available across function calls.
261    These must include the FIXED_REGISTERS and also any
262    registers that can be used without being saved.
263    The latter must include the registers where values are returned
264    and the register where structure-value addresses are passed.
265    Aside from that, you can include as many other registers as you like.  */
266 #define CALL_USED_REGISTERS \
267  {1, 1, 0, 0, 0, 0, 0, 0,   \
268   1, 1, 0, 0, 0, 0, 0, 1,   \
269   1, 1, 0, 0, 0, 0, 0, 0 }
270
271 #else /* SUPPORT_SUN_FPA */
272
273 /* 1 for registers that have pervasive standard uses
274    and are not available for the register allocator.
275    On the 68000, only the stack pointer is such.  */
276
277 /* fpa0 is also reserved so that it can be used to move shit back and
278    forth between high fpa regs and everything else. */
279
280 #define FIXED_REGISTERS        \
281  {/* Data registers.  */       \
282   0, 0, 0, 0, 0, 0, 0, 0,      \
283                                \
284   /* Address registers.  */    \
285   0, 0, 0, 0, 0, 0, 0, 1,      \
286                                \
287   /* Floating point registers  \
288      (if available).  */       \
289   0, 0, 0, 0, 0, 0, 0, 0,      \
290                                \
291   /* Sun3 FPA registers.  */   \
292   1, 0, 0, 0, 0, 0, 0, 0,      \
293   0, 0, 0, 0, 0, 0, 0, 0,      \
294   0, 0, 0, 0, 0, 0, 0, 0,      \
295   0, 0, 0, 0, 0, 0, 0, 0 }
296
297 /* 1 for registers not available across function calls.
298    These must include the FIXED_REGISTERS and also any
299    registers that can be used without being saved.
300    The latter must include the registers where values are returned
301    and the register where structure-value addresses are passed.
302    Aside from that, you can include as many other registers as you like.  */
303 #define CALL_USED_REGISTERS \
304  {1, 1, 0, 0, 0, 0, 0, 0, \
305   1, 1, 0, 0, 0, 0, 0, 1, \
306   1, 1, 0, 0, 0, 0, 0, 0, \
307   /* FPA registers.  */   \
308   1, 1, 1, 1, 0, 0, 0, 0, \
309   0, 0, 0, 0, 0, 0, 0, 0, \
310   0, 0, 0, 0, 0, 0, 0, 0, \
311   0, 0, 0, 0, 0, 0, 0, 0  }
312
313 #endif /* defined SUPPORT_SUN_FPA */
314
315
316 /* Make sure everything's fine if we *don't* have a given processor.
317    This assumes that putting a register in fixed_regs will keep the
318    compiler's mitts completely off it.  We don't bother to zero it out
319    of register classes.  If neither TARGET_FPA or TARGET_68881 is set,
320    the compiler won't touch since no instructions that use these
321    registers will be valid.  
322
323    Reserve PIC_OFFSET_TABLE_REGNUM (a5) for doing PIC relocation if
324    position independent code is being generated by making it a 
325    fixed register */
326
327 #ifndef SUPPORT_SUN_FPA
328
329 #define CONDITIONAL_REGISTER_USAGE \
330 {                                               \
331   if (flag_pic)                                 \
332     fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
333 }
334
335 #else /* defined SUPPORT_SUN_FPA */
336
337 #define CONDITIONAL_REGISTER_USAGE \
338 {                                               \
339   int i;                                        \
340   HARD_REG_SET x;                               \
341   if (!TARGET_FPA)                              \
342     {                                           \
343       COPY_HARD_REG_SET (x, reg_class_contents[(int)FPA_REGS]); \
344       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
345        if (TEST_HARD_REG_BIT (x, i))            \
346         fixed_regs[i] = call_used_regs[i] = 1;  \
347     }                                           \
348   if (TARGET_FPA)                               \
349     {                                           \
350       COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
351       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
352        if (TEST_HARD_REG_BIT (x, i))            \
353         fixed_regs[i] = call_used_regs[i] = 1;  \
354     }                                           \
355   if (flag_pic)                                 \
356     fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
357 }
358
359 #endif /* defined SUPPORT_SUN_FPA */
360
361 /* Return number of consecutive hard regs needed starting at reg REGNO
362    to hold something of mode MODE.
363    This is ordinarily the length in words of a value of mode MODE
364    but can be less for certain modes in special long registers.
365
366    On the 68000, ordinary registers hold 32 bits worth;
367    for the 68881 registers, a single register is always enough for
368    anything that can be stored in them at all.  */
369 #define HARD_REGNO_NREGS(REGNO, MODE)   \
370   ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE)       \
371    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
372
373 #ifndef SUPPORT_SUN_FPA
374
375 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
376    On the 68000, the cpu registers can hold any mode but the 68881 registers
377    can hold only SFmode or DFmode.  The 68881 registers can't hold anything
378    if 68881 use is disabled.  */
379
380 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
381   (((REGNO) < 16)                                       \
382    || ((REGNO) < 24                                     \
383        && TARGET_68881                                  \
384        && (GET_MODE_CLASS (MODE) == MODE_FLOAT          \
385            || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)))
386
387 #else /* defined SUPPORT_SUN_FPA */
388
389 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
390    On the 68000, the cpu registers can hold any mode but the 68881 registers
391    can hold only SFmode or DFmode.  And the 68881 registers can't hold anything
392    if 68881 use is disabled.  However, the Sun FPA register can
393    (apparently) hold whatever you feel like putting in them.
394    If using the fpa, don't put a double in d7/a0.  */
395
396 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
397 (((REGNO) < 16                                                          \
398   && !(TARGET_FPA                                                       \
399        && GET_MODE_CLASS ((MODE)) != MODE_INT                           \
400        && GET_MODE_UNIT_SIZE ((MODE)) > 4                               \
401        && (REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8       \
402        && (REGNO) % (GET_MODE_UNIT_SIZE ((MODE)) / 4) != 0))            \
403  || ((REGNO) < 24                                                       \
404      ? TARGET_68881 && (GET_MODE_CLASS (MODE) == MODE_FLOAT             \
405                         || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
406      : ((REGNO) < 56 ? TARGET_FPA : 0)))
407
408 #endif /* defined SUPPORT_SUN_FPA */
409
410 /* Value is 1 if it is a good idea to tie two pseudo registers
411    when one has mode MODE1 and one has mode MODE2.
412    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
413    for any hard reg, then this must be 0 for correct output.  */
414 #define MODES_TIEABLE_P(MODE1, MODE2)                   \
415   (! TARGET_68881                                       \
416    || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT            \
417         || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)        \
418        == (GET_MODE_CLASS (MODE2) == MODE_FLOAT         \
419            || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
420
421 /* Specify the registers used for certain standard purposes.
422    The values of these macros are register numbers.  */
423
424 /* m68000 pc isn't overloaded on a register.  */
425 /* #define PC_REGNUM  */
426
427 /* Register to use for pushing function arguments.  */
428 #define STACK_POINTER_REGNUM 15
429
430 /* Base register for access to local variables of the function.  */
431 #define FRAME_POINTER_REGNUM 14
432
433 /* Value should be nonzero if functions must have frame pointers.
434    Zero means the frame pointer need not be set up (and parms
435    may be accessed via the stack pointer) in functions that seem suitable.
436    This is computed in `reload', in reload1.c.  */
437 #define FRAME_POINTER_REQUIRED 0
438
439 /* Base register for access to arguments of the function.  */
440 #define ARG_POINTER_REGNUM 14
441
442 /* Register in which static-chain is passed to a function.  */
443 #define STATIC_CHAIN_REGNUM 8
444
445 /* Register in which address to store a structure value
446    is passed to a function.  */
447 #define STRUCT_VALUE_REGNUM 9
448 \f
449 /* Define the classes of registers for register constraints in the
450    machine description.  Also define ranges of constants.
451
452    One of the classes must always be named ALL_REGS and include all hard regs.
453    If there is more than one class, another class must be named NO_REGS
454    and contain no registers.
455
456    The name GENERAL_REGS must be the name of a class (or an alias for
457    another name such as ALL_REGS).  This is the class of registers
458    that is allowed by "g" or "r" in a register constraint.
459    Also, registers outside this class are allocated only when
460    instructions express preferences for them.
461
462    The classes must be numbered in nondecreasing order; that is,
463    a larger-numbered class must never be contained completely
464    in a smaller-numbered class.
465
466    For any two classes, it is very desirable that there be another
467    class that represents their union.  */
468
469 /* The 68000 has three kinds of registers, so eight classes would be
470    a complete set.  One of them is not needed.  */
471
472 #ifndef SUPPORT_SUN_FPA
473
474 enum reg_class {
475   NO_REGS, DATA_REGS,
476   ADDR_REGS, FP_REGS,
477   GENERAL_REGS, DATA_OR_FP_REGS,
478   ADDR_OR_FP_REGS, ALL_REGS,
479   LIM_REG_CLASSES };
480
481 #define N_REG_CLASSES (int) LIM_REG_CLASSES
482
483 /* Give names of register classes as strings for dump file.   */
484
485 #define REG_CLASS_NAMES \
486  { "NO_REGS", "DATA_REGS",              \
487    "ADDR_REGS", "FP_REGS",              \
488    "GENERAL_REGS", "DATA_OR_FP_REGS",   \
489    "ADDR_OR_FP_REGS", "ALL_REGS" }
490
491 /* Define which registers fit in which classes.
492    This is an initializer for a vector of HARD_REG_SET
493    of length N_REG_CLASSES.  */
494
495 #define REG_CLASS_CONTENTS \
496 {                                       \
497  0x00000000,    /* NO_REGS */           \
498  0x000000ff,    /* DATA_REGS */         \
499  0x0000ff00,    /* ADDR_REGS */         \
500  0x00ff0000,    /* FP_REGS */           \
501  0x0000ffff,    /* GENERAL_REGS */      \
502  0x00ff00ff,    /* DATA_OR_FP_REGS */   \
503  0x00ffff00,    /* ADDR_OR_FP_REGS */   \
504  0x00ffffff,    /* ALL_REGS */          \
505 }
506
507 /* The same information, inverted:
508    Return the class number of the smallest class containing
509    reg number REGNO.  This could be a conditional expression
510    or could index an array.  */
511
512 #define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1)
513
514 #else /* defined SUPPORT_SUN_FPA */
515
516 /*
517  * Notes on final choices:
518  *
519  *   1) Didn't feel any need to union-ize LOW_FPA_REGS with anything
520  * else.
521  *   2) Removed all unions that involve address registers with
522  * floating point registers (left in unions of address and data with
523  * floating point).
524  *   3) Defined GENERAL_REGS as ADDR_OR_DATA_REGS.
525  *   4) Defined ALL_REGS as FPA_OR_FP_OR_GENERAL_REGS.
526  *   4) Left in everything else.
527  */
528 enum reg_class { NO_REGS, LO_FPA_REGS, FPA_REGS, FP_REGS,
529   FP_OR_FPA_REGS, DATA_REGS, DATA_OR_FPA_REGS, DATA_OR_FP_REGS,
530   DATA_OR_FP_OR_FPA_REGS, ADDR_REGS, GENERAL_REGS,
531   GENERAL_OR_FPA_REGS, GENERAL_OR_FP_REGS, ALL_REGS,
532   LIM_REG_CLASSES };
533
534 #define N_REG_CLASSES (int) LIM_REG_CLASSES
535
536 /* Give names of register classes as strings for dump file.   */
537
538 #define REG_CLASS_NAMES \
539  { "NO_REGS", "LO_FPA_REGS", "FPA_REGS", "FP_REGS",  \
540    "FP_OR_FPA_REGS", "DATA_REGS", "DATA_OR_FPA_REGS", "DATA_OR_FP_REGS",  \
541    "DATA_OR_FP_OR_FPA_REGS", "ADDR_REGS", "GENERAL_REGS",  \
542    "GENERAL_OR_FPA_REGS", "GENERAL_OR_FP_REGS", "ALL_REGS" }
543
544 /* Define which registers fit in which classes.
545    This is an initializer for a vector of HARD_REG_SET
546    of length N_REG_CLASSES.  */
547
548 #define REG_CLASS_CONTENTS \
549 {                                                       \
550  {0, 0},                        /* NO_REGS */           \
551  {0xff000000, 0x000000ff},      /* LO_FPA_REGS */       \
552  {0xff000000, 0x00ffffff},      /* FPA_REGS */          \
553  {0x00ff0000, 0x00000000},      /* FP_REGS */           \
554  {0xffff0000, 0x00ffffff},      /* FP_OR_FPA_REGS */    \
555  {0x000000ff, 0x00000000},      /* DATA_REGS */         \
556  {0xff0000ff, 0x00ffffff},      /* DATA_OR_FPA_REGS */  \
557  {0x00ff00ff, 0x00000000},      /* DATA_OR_FP_REGS */   \
558  {0xffff00ff, 0x00ffffff},      /* DATA_OR_FP_OR_FPA_REGS */\
559  {0x0000ff00, 0x00000000},      /* ADDR_REGS */         \
560  {0x0000ffff, 0x00000000},      /* GENERAL_REGS */      \
561  {0xff00ffff, 0x00ffffff},      /* GENERAL_OR_FPA_REGS */\
562  {0x00ffffff, 0x00000000},      /* GENERAL_OR_FP_REGS */\
563  {0xffffffff, 0x00ffffff},      /* ALL_REGS */          \
564 }
565
566 /* The same information, inverted:
567    Return the class number of the smallest class containing
568    reg number REGNO.  This could be a conditional expression
569    or could index an array.  */
570
571 extern enum reg_class regno_reg_class[];
572 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
573
574 #endif /* SUPPORT_SUN_FPA */
575
576 /* The class value for index registers, and the one for base regs.  */
577
578 #define INDEX_REG_CLASS GENERAL_REGS
579 #define BASE_REG_CLASS ADDR_REGS
580
581 /* Get reg_class from a letter such as appears in the machine description.
582    We do a trick here to modify the effective constraints on the
583    machine description; we zorch the constraint letters that aren't
584    appropriate for a specific target.  This allows us to guarantee
585    that a specific kind of register will not be used for a given target
586    without fiddling with the register classes above. */
587
588 #ifndef SUPPORT_SUN_FPA
589
590 #define REG_CLASS_FROM_LETTER(C) \
591   ((C) == 'a' ? ADDR_REGS :                     \
592    ((C) == 'd' ? DATA_REGS :                    \
593     ((C) == 'f' ? (TARGET_68881 ? FP_REGS :     \
594                    NO_REGS) :                   \
595      NO_REGS)))
596
597 #else /* defined SUPPORT_SUN_FPA */
598
599 #define REG_CLASS_FROM_LETTER(C) \
600   ((C) == 'a' ? ADDR_REGS :                     \
601    ((C) == 'd' ? DATA_REGS :                    \
602     ((C) == 'f' ? (TARGET_68881 ? FP_REGS :     \
603                    NO_REGS) :                   \
604      ((C) == 'x' ? (TARGET_FPA ? FPA_REGS :     \
605                     NO_REGS) :                  \
606       ((C) == 'y' ? (TARGET_FPA ? LO_FPA_REGS : \
607                      NO_REGS) :                 \
608        NO_REGS)))))
609
610 #endif /* defined SUPPORT_SUN_FPA */
611
612 /* The letters I, J, K, L and M in a register constraint string
613    can be used to stand for particular ranges of immediate operands.
614    This macro defines what the ranges are.
615    C is the letter, and VALUE is a constant value.
616    Return 1 if VALUE is in the range specified by C.
617
618    For the 68000, `I' is used for the range 1 to 8
619    allowed as immediate shift counts and in addq.
620    `J' is used for the range of signed numbers that fit in 16 bits.
621    `K' is for numbers that moveq can't handle.
622    `L' is for range -8 to -1, range of values that can be added with subq.  */
623
624 #define CONST_OK_FOR_LETTER_P(VALUE, C)  \
625   ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 :    \
626    (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF :       \
627    (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 :    \
628    (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
629
630 /*
631  * A small bit of explanation:
632  * "G" defines all of the floating constants that are *NOT* 68881
633  * constants.  this is so 68881 constants get reloaded and the
634  * fpmovecr is used.  "H" defines *only* the class of constants that
635  * the fpa can use, because these can be gotten at in any fpa
636  * instruction and there is no need to force reloads.
637  */
638 #ifndef SUPPORT_SUN_FPA
639 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
640   ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
641 #else /* defined SUPPORT_SUN_FPA */
642 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
643   ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : \
644    (C) == 'H' ? (TARGET_FPA && standard_sun_fpa_constant_p (VALUE)) : 0)
645 #endif /* defined SUPPORT_SUN_FPA */
646
647 /* Given an rtx X being reloaded into a reg required to be
648    in class CLASS, return the class of reg to actually use.
649    In general this is just CLASS; but on some machines
650    in some cases it is preferable to use a more restrictive class.
651    On the 68000 series, use a data reg if possible when the
652    value is a constant in the range where moveq could be used
653    and we ensure that QImodes are reloaded into data regs.
654    Also, if a floating constant needs reloading, put it in memory
655    if possible.  */
656
657 #define PREFERRED_RELOAD_CLASS(X,CLASS)  \
658   ((GET_CODE (X) == CONST_INT                   \
659     && (unsigned) (INTVAL (X) + 0x80) < 0x100   \
660     && (CLASS) != ADDR_REGS)                    \
661    ? DATA_REGS                                  \
662    : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
663    ? DATA_REGS                                  \
664    : (GET_CODE (X) == CONST_DOUBLE              \
665       && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
666    ? NO_REGS                                    \
667    : (CLASS))
668
669 /* Return the maximum number of consecutive registers
670    needed to represent mode MODE in a register of class CLASS.  */
671 /* On the 68000, this is the size of MODE in words,
672    except in the FP regs, where a single reg is always enough.  */
673 #ifndef SUPPORT_SUN_FPA
674
675 #define CLASS_MAX_NREGS(CLASS, MODE)    \
676  ((CLASS) == FP_REGS ? 1 \
677   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
678
679 /* Moves between fp regs and other regs are two insns.  */
680 #define REGISTER_MOVE_COST(CLASS1, CLASS2)              \
681   (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS)         \
682     || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)     \
683     ? 4 : 2)
684
685 #else /* defined SUPPORT_SUN_FPA */
686
687 #define CLASS_MAX_NREGS(CLASS, MODE)    \
688  ((CLASS) == FP_REGS || (CLASS) == FPA_REGS || (CLASS) == LO_FPA_REGS ? 1 \
689   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
690
691 /* Moves between fp regs and other regs are two insns.  */
692 /* Likewise for high fpa regs and other regs.  */
693 #define REGISTER_MOVE_COST(CLASS1, CLASS2)              \
694   ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS)        \
695     || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)     \
696     || ((CLASS1) == FPA_REGS && (CLASS2) != FPA_REGS)   \
697     || ((CLASS2) == FPA_REGS && (CLASS1) != FPA_REGS))  \
698    ? 4 : 2)
699
700 #endif /* define SUPPORT_SUN_FPA */
701 \f
702 /* Stack layout; function entry, exit and calling.  */
703
704 /* Define this if pushing a word on the stack
705    makes the stack pointer a smaller address.  */
706 #define STACK_GROWS_DOWNWARD
707
708 /* Nonzero if we need to generate stack-probe insns.
709    On most systems they are not needed.
710    When they are needed, define this as the stack offset to probe at.  */
711 #define NEED_PROBE 0
712
713 /* Define this if the nominal address of the stack frame
714    is at the high-address end of the local variables;
715    that is, each additional local variable allocated
716    goes at a more negative offset in the frame.  */
717 #define FRAME_GROWS_DOWNWARD
718
719 /* Offset within stack frame to start allocating local variables at.
720    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
721    first local allocated.  Otherwise, it is the offset to the BEGINNING
722    of the first local allocated.  */
723 #define STARTING_FRAME_OFFSET 0
724
725 /* If we generate an insn to push BYTES bytes,
726    this says how many the stack pointer really advances by.
727    On the 68000, sp@- in a byte insn really pushes a word.  */
728 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
729
730 /* Offset of first parameter from the argument pointer register value.  */
731 #define FIRST_PARM_OFFSET(FNDECL) 8
732
733 /* Value is the number of byte of arguments automatically
734    popped when returning from a subroutine call.
735    FUNTYPE is the data type of the function (as a tree),
736    or for a library call it is an identifier node for the subroutine name.
737    SIZE is the number of bytes of arguments passed on the stack.
738
739    On the 68000, the RTS insn cannot pop anything.
740    On the 68010, the RTD insn may be used to pop them if the number
741      of args is fixed, but if the number is variable then the caller
742      must pop them all.  RTD can't be used for library calls now
743      because the library is compiled with the Unix compiler.
744    Use of RTD is a selectable option, since it is incompatible with
745    standard Unix calling sequences.  If the option is not selected,
746    the caller must always pop the args.  */
747
748 #define RETURN_POPS_ARGS(FUNTYPE,SIZE)   \
749   ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE        \
750     && (TYPE_ARG_TYPES (FUNTYPE) == 0                           \
751         || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE)))   \
752             == void_type_node)))                                \
753    ? (SIZE) : 0)
754
755 /* Define how to find the value returned by a function.
756    VALTYPE is the data type of the value (as a tree).
757    If the precise function being called is known, FUNC is its FUNCTION_DECL;
758    otherwise, FUNC is 0.  */
759
760 /* On the 68000 the return value is in D0 regardless.  */
761
762 #define FUNCTION_VALUE(VALTYPE, FUNC)  \
763   gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
764
765 /* Define how to find the value returned by a library function
766    assuming the value has mode MODE.  */
767
768 /* On the 68000 the return value is in D0 regardless.  */
769
770 #define LIBCALL_VALUE(MODE)  gen_rtx (REG, MODE, 0)
771
772 /* 1 if N is a possible register number for a function value.
773    On the 68000, d0 is the only register thus used.  */
774
775 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
776
777 /* Define this if PCC uses the nonreentrant convention for returning
778    structure and union values.  */
779
780 #define PCC_STATIC_STRUCT_RETURN
781
782 /* 1 if N is a possible register number for function argument passing.
783    On the 68000, no registers are used in this way.  */
784
785 #define FUNCTION_ARG_REGNO_P(N) 0
786 \f
787 /* Define a data type for recording info about an argument list
788    during the scan of that argument list.  This data type should
789    hold all necessary information about the function itself
790    and about the args processed so far, enough to enable macros
791    such as FUNCTION_ARG to determine where the next arg should go.
792
793    On the m68k, this is a single integer, which is a number of bytes
794    of arguments scanned so far.  */
795
796 #define CUMULATIVE_ARGS int
797
798 /* Initialize a variable CUM of type CUMULATIVE_ARGS
799    for a call to a function whose data type is FNTYPE.
800    For a library call, FNTYPE is 0.
801
802    On the m68k, the offset starts at 0.  */
803
804 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME)        \
805  ((CUM) = 0)
806
807 /* Update the data in CUM to advance over an argument
808    of mode MODE and data type TYPE.
809    (TYPE is null for libcalls where that information may not be available.)  */
810
811 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
812  ((CUM) += ((MODE) != BLKmode                   \
813             ? (GET_MODE_SIZE (MODE) + 3) & ~3   \
814             : (int_size_in_bytes (TYPE) + 3) & ~3))
815
816 /* Define where to put the arguments to a function.
817    Value is zero to push the argument on the stack,
818    or a hard register in which to store the argument.
819
820    MODE is the argument's machine mode.
821    TYPE is the data type of the argument (as a tree).
822     This is null for libcalls where that information may
823     not be available.
824    CUM is a variable of type CUMULATIVE_ARGS which gives info about
825     the preceding args and about the function being called.
826    NAMED is nonzero if this argument is a named parameter
827     (otherwise it is an extra parameter matching an ellipsis).  */
828
829 /* On the 68000 all args are pushed, except if -mregparm is specified
830    then the first two words of arguments are passed in d0, d1.
831    *NOTE* -mregparm does not work.
832    It exists only to test register calling conventions.  */
833
834 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
835 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
836
837 /* For an arg passed partly in registers and partly in memory,
838    this is the number of registers used.
839    For args passed entirely in registers or entirely in memory, zero.  */
840
841 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
842 ((TARGET_REGPARM && (CUM) < 8                                   \
843   && 8 < ((CUM) + ((MODE) == BLKmode                            \
844                       ? int_size_in_bytes (TYPE)                \
845                       : GET_MODE_SIZE (MODE))))                 \
846  ? 2 - (CUM) / 4 : 0)
847
848 /* Generate the assembly code for function entry. */
849 #define FUNCTION_PROLOGUE(FILE, SIZE) output_function_prologue(FILE, SIZE)
850
851 /* Output assembler code to FILE to increment profiler label # LABELNO
852    for profiling a function entry.  */
853
854 #define FUNCTION_PROFILER(FILE, LABELNO)  \
855   asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
856
857 /* Output assembler code to FILE to initialize this source file's
858    basic block profiling info, if that has not already been done.  */
859
860 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO)  \
861   asm_fprintf (FILE, "\ttstl %LLPBX0\n\tbne %LLPI%d\n\tpea %LLPBX0\n\tjsr %U__bb_init_func\n\taddql %I4,%Rsp\n%LLPI%d:\n",  \
862            LABELNO, LABELNO);
863
864 /* Output assembler code to FILE to increment the entry-count for
865    the BLOCKNO'th basic block in this source file.  */
866
867 #define BLOCK_PROFILER(FILE, BLOCKNO)   \
868   asm_fprintf (FILE, "\taddql %I1,%LLPBX2+%d\n", 4 * BLOCKNO)
869
870 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
871    the stack pointer does not matter.  The value is tested only in
872    functions that have frame pointers.
873    No definition is equivalent to always zero.  */
874
875 #define EXIT_IGNORE_STACK 1
876
877 /* Generate the assembly code for function exit. */
878 #define FUNCTION_EPILOGUE(FILE, SIZE) output_function_epilogue (FILE, SIZE)
879   
880 /* This is a hook for other tm files to change.  */
881 /* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
882
883 /* Determine if the epilogue should be output as RTL.
884    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
885 #define USE_RETURN_INSN use_return_insn ()
886
887 /* Store in the variable DEPTH the initial difference between the
888    frame pointer reg contents and the stack pointer reg contents,
889    as of the start of the function body.  This depends on the layout
890    of the fixed parts of the stack frame and on how registers are saved.
891
892    On the 68k, if we have a frame, we must add one word to its length
893    to allow for the place that a6 is stored when we do have a frame pointer.
894    Otherwise, we would need to compute the offset from the frame pointer
895    of a local variable as a function of frame_pointer_needed, which
896    is hard.  */
897
898 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH)                     \
899 { int regno;                                                    \
900   int offset = -4;                                              \
901   for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++)      \
902     if (regs_ever_live[regno] && ! call_used_regs[regno])       \
903       offset += 12;                                             \
904   for (regno = 0; regno < 16; regno++)                          \
905     if (regs_ever_live[regno] && ! call_used_regs[regno])       \
906       offset += 4;                                              \
907   (DEPTH) = (offset + ((get_frame_size () + 3) & -4)            \
908              + (get_frame_size () == 0 ? 0 : 4));               \
909 }
910
911 /* Output assembler code for a block containing the constant parts
912    of a trampoline, leaving space for the variable parts.  */
913
914 /* On the 68k, the trampoline looks like this:
915      mov  @#.,a0
916      jsr  @#___trampoline
917      jsr  @#___trampoline
918      .long STATIC
919      .long FUNCTION
920 The reason for having three jsr insns is so that an entire line
921 of the instruction cache is filled in a predictable way
922 that will always be the same.
923
924 We always use the assembler label ___trampoline
925 regardless of whether the system adds underscores.  */
926
927 #define TRAMPOLINE_TEMPLATE(FILE)                                       \
928 {                                                                       \
929   ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x207c));       \
930   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
931   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
932   ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9));       \
933   ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
934   ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9));       \
935   ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
936   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
937   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
938   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
939   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
940 }
941
942 /* Length in units of the trampoline for entering a nested function.  */
943
944 #define TRAMPOLINE_SIZE 26
945
946 /* Alignment required for a trampoline.  16 is used to find the
947    beginning of a line in the instruction cache.  */
948
949 #define TRAMPOLINE_ALIGN 16
950
951 /* Emit RTL insns to initialize the variable parts of a trampoline.
952    FNADDR is an RTX for the address of the function's pure code.
953    CXT is an RTX for the static chain value for the function.  */
954
955 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)                       \
956 {                                                                       \
957   emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), TRAMP); \
958   emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 18)), CXT); \
959   emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 22)), FNADDR); \
960 }
961
962 /* This is the library routine that is used
963    to transfer control from the trampoline
964    to the actual nested function.  */
965
966 /* A colon is used with no explicit operands
967    to cause the template string to be scanned for %-constructs.  */
968 /* The function name __transfer_from_trampoline is not actually used.
969    The function definition just permits use of "asm with operands"
970    (though the operand list is empty).  */
971 #define TRANSFER_FROM_TRAMPOLINE                                \
972 void                                                            \
973 __transfer_from_trampoline ()                                   \
974 {                                                               \
975   register char *a0 asm ("%a0");                                \
976   asm (GLOBAL_ASM_OP " ___trampoline");                         \
977   asm ("___trampoline:");                                       \
978   asm volatile ("move%.l %0,%@" : : "m" (a0[22]));              \
979   asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18]));    \
980   asm ("rts":);                                                 \
981 }
982 \f
983 /* Addressing modes, and classification of registers for them.  */
984
985 #define HAVE_POST_INCREMENT
986 /* #define HAVE_POST_DECREMENT */
987
988 #define HAVE_PRE_DECREMENT
989 /* #define HAVE_PRE_INCREMENT */
990
991 /* Macros to check register numbers against specific register classes.  */
992
993 /* These assume that REGNO is a hard or pseudo reg number.
994    They give nonzero only if REGNO is a hard reg of the suitable class
995    or a pseudo reg currently allocated to a suitable hard reg.
996    Since they use reg_renumber, they are safe only once reg_renumber
997    has been allocated, which happens in local-alloc.c.  */
998
999 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1000 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1001 #define REGNO_OK_FOR_BASE_P(REGNO) \
1002 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
1003 #define REGNO_OK_FOR_DATA_P(REGNO) \
1004 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
1005 #define REGNO_OK_FOR_FP_P(REGNO) \
1006 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
1007 #ifdef SUPPORT_SUN_FPA
1008 #define REGNO_OK_FOR_FPA_P(REGNO) \
1009 (((REGNO) >= 24 && (REGNO) < 56) || (reg_renumber[REGNO] >= 24 && reg_renumber[REGNO] < 56))
1010 #endif
1011
1012 /* Now macros that check whether X is a register and also,
1013    strictly, whether it is in a specified class.
1014
1015    These macros are specific to the 68000, and may be used only
1016    in code for printing assembler insns and in conditions for
1017    define_optimization.  */
1018
1019 /* 1 if X is a data register.  */
1020
1021 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1022
1023 /* 1 if X is an fp register.  */
1024
1025 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1026
1027 /* 1 if X is an address register  */
1028
1029 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1030
1031 #ifdef SUPPORT_SUN_FPA
1032 /* 1 if X is a register in the Sun FPA.  */
1033 #define FPA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPA_P (REGNO (X)))
1034 #else
1035 /* Answer must be no if we don't have an FPA.  */
1036 #define FPA_REG_P(X) 0
1037 #endif
1038 \f
1039 /* Maximum number of registers that can appear in a valid memory address.  */
1040
1041 #define MAX_REGS_PER_ADDRESS 2
1042
1043 /* Recognize any constant value that is a valid address.  */
1044
1045 #define CONSTANT_ADDRESS_P(X)  CONSTANT_P (X)
1046
1047 /* Nonzero if the constant value X is a legitimate general operand.
1048    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1049
1050 #define LEGITIMATE_CONSTANT_P(X) 1
1051
1052 /* Nonzero if the constant value X is a legitimate general operand
1053    when generating PIC code.  It is given that flag_pic is on and 
1054    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1055
1056 #define LEGITIMATE_PIC_OPERAND_P(X)     \
1057   (! symbolic_operand (X, VOIDmode))
1058
1059 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1060    and check its validity for a certain class.
1061    We have two alternate definitions for each of them.
1062    The usual definition accepts all pseudo regs; the other rejects
1063    them unless they have been allocated suitable hard regs.
1064    The symbol REG_OK_STRICT causes the latter definition to be used.
1065
1066    Most source files want to accept pseudo regs in the hope that
1067    they will get allocated to the class that the insn wants them to be in.
1068    Source files for reload pass need to be strict.
1069    After reload, it makes no difference, since pseudo regs have
1070    been eliminated by then.  */
1071
1072 #ifndef REG_OK_STRICT
1073
1074 /* Nonzero if X is a hard reg that can be used as an index
1075    or if it is a pseudo reg.  */
1076 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
1077 /* Nonzero if X is a hard reg that can be used as a base reg
1078    or if it is a pseudo reg.  */
1079 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
1080
1081 #else
1082
1083 /* Nonzero if X is a hard reg that can be used as an index.  */
1084 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1085 /* Nonzero if X is a hard reg that can be used as a base reg.  */
1086 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1087
1088 #endif
1089 \f
1090 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1091    that is a valid memory address for an instruction.
1092    The MODE argument is the machine mode for the MEM expression
1093    that wants to use this address.
1094
1095    When generating PIC, an address involving a SYMBOL_REF is legitimate
1096    if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
1097    We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
1098    and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
1099
1100    Likewise for a LABEL_REF when generating PIC.
1101
1102    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.  */
1103
1104 #define INDIRECTABLE_1_ADDRESS_P(X)  \
1105   ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
1106    || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))                    \
1107    || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC)            \
1108        && REG_P (XEXP (X, 0))                                           \
1109        && REG_OK_FOR_BASE_P (XEXP (X, 0)))                              \
1110    || (GET_CODE (X) == PLUS                                             \
1111        && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0))        \
1112        && GET_CODE (XEXP (X, 1)) == CONST_INT                           \
1113        && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)         \
1114    || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx      \
1115        && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF)             \
1116    || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx      \
1117        && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF))             \
1118
1119 #if 0
1120 /* This should replace the last two (non-pic) lines
1121    except that Sun's assembler does not seem to handle such operands.  */
1122        && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1))              \
1123            : (GET_CODE (XEXP (X, 1)) == CONST_INT                       \
1124               && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))))
1125 #endif
1126
1127
1128 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR)  \
1129 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
1130
1131 /* Only labels on dispatch tables are valid for indexing from.  */
1132 #define GO_IF_INDEXABLE_BASE(X, ADDR)                           \
1133 { rtx temp;                                                     \
1134   if (GET_CODE (X) == LABEL_REF                                 \
1135       && (temp = next_nonnote_insn (XEXP (X, 0))) != 0          \
1136       && GET_CODE (temp) == JUMP_INSN                           \
1137       && (GET_CODE (PATTERN (temp)) == ADDR_VEC                 \
1138           || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC))       \
1139     goto ADDR;                                                  \
1140   if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; }
1141
1142 #define GO_IF_INDEXING(X, ADDR) \
1143 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0)))         \
1144     { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); }                       \
1145   if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1)))         \
1146     { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
1147
1148 #define GO_IF_INDEXED_ADDRESS(X, ADDR)   \
1149 { GO_IF_INDEXING (X, ADDR);                                             \
1150   if (GET_CODE (X) == PLUS)                                             \
1151     { if (GET_CODE (XEXP (X, 1)) == CONST_INT                           \
1152           && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100)            \
1153         { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); }  \
1154       if (GET_CODE (XEXP (X, 0)) == CONST_INT                           \
1155           && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100)            \
1156         { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
1157
1158 #define LEGITIMATE_INDEX_REG_P(X)   \
1159   ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))      \
1160    || (GET_CODE (X) == SIGN_EXTEND                      \
1161        && GET_CODE (XEXP (X, 0)) == REG                 \
1162        && GET_MODE (XEXP (X, 0)) == HImode              \
1163        && REG_OK_FOR_INDEX_P (XEXP (X, 0))))
1164
1165 #define LEGITIMATE_INDEX_P(X)   \
1166    (LEGITIMATE_INDEX_REG_P (X)                          \
1167     || (TARGET_68020 && GET_CODE (X) == MULT            \
1168         && LEGITIMATE_INDEX_REG_P (XEXP (X, 0))         \
1169         && GET_CODE (XEXP (X, 1)) == CONST_INT          \
1170         && (INTVAL (XEXP (X, 1)) == 2                   \
1171             || INTVAL (XEXP (X, 1)) == 4                \
1172             || INTVAL (XEXP (X, 1)) == 8)))
1173
1174 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)  \
1175 { GO_IF_NONINDEXED_ADDRESS (X, ADDR);                   \
1176   GO_IF_INDEXED_ADDRESS (X, ADDR); }
1177 \f
1178 /* Try machine-dependent ways of modifying an illegitimate address
1179    to be legitimate.  If we find one, return the new, valid address.
1180    This macro is used in only one place: `memory_address' in explow.c.
1181
1182    OLDX is the address as it was before break_out_memory_refs was called.
1183    In some cases it is useful to look at this to decide what needs to be done.
1184
1185    MODE and WIN are passed so that this macro can use
1186    GO_IF_LEGITIMATE_ADDRESS.
1187
1188    It is always safe for this macro to do nothing.  It exists to recognize
1189    opportunities to optimize the output.
1190
1191    For the 68000, we handle X+REG by loading X into a register R and
1192    using R+REG.  R will go in an address reg and indexing will be used.
1193    However, if REG is a broken-out memory address or multiplication,
1194    nothing needs to be done because REG can certainly go in an address reg.  */
1195
1196 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1197 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)   \
1198 { register int ch = (X) != (OLDX);                                      \
1199   if (GET_CODE (X) == PLUS)                                             \
1200     { int copied = 0;                                                   \
1201       if (GET_CODE (XEXP (X, 0)) == MULT)                               \
1202         { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \
1203       if (GET_CODE (XEXP (X, 1)) == MULT)                               \
1204         { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \
1205       if (ch && GET_CODE (XEXP (X, 1)) == REG                           \
1206           && GET_CODE (XEXP (X, 0)) == REG)                             \
1207         goto WIN;                                                       \
1208       if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); }              \
1209       if (GET_CODE (XEXP (X, 0)) == REG                                 \
1210                || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND                \
1211                    && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG           \
1212                    && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode))      \
1213         { register rtx temp = gen_reg_rtx (Pmode);                      \
1214           register rtx val = force_operand (XEXP (X, 1), 0);            \
1215           emit_move_insn (temp, val);                                   \
1216           COPY_ONCE (X);                                                \
1217           XEXP (X, 1) = temp;                                           \
1218           goto WIN; }                                                   \
1219       else if (GET_CODE (XEXP (X, 1)) == REG                            \
1220                || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND                \
1221                    && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG           \
1222                    && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode))      \
1223         { register rtx temp = gen_reg_rtx (Pmode);                      \
1224           register rtx val = force_operand (XEXP (X, 0), 0);            \
1225           emit_move_insn (temp, val);                                   \
1226           COPY_ONCE (X);                                                \
1227           XEXP (X, 0) = temp;                                           \
1228           goto WIN; }}}
1229
1230 /* Go to LABEL if ADDR (a legitimate address expression)
1231    has an effect that depends on the machine mode it is used for.
1232    On the 68000, only predecrement and postincrement address depend thus
1233    (the amount of decrement or increment being the length of the operand).  */
1234
1235 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)        \
1236  if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1237 \f
1238 /* Specify the machine mode that this machine uses
1239    for the index in the tablejump instruction.  */
1240 #define CASE_VECTOR_MODE HImode
1241
1242 /* Define this if the tablejump instruction expects the table
1243    to contain offsets from the address of the table.
1244    Do not define this if the table should contain absolute addresses.  */
1245 #define CASE_VECTOR_PC_RELATIVE
1246
1247 /* Specify the tree operation to be used to convert reals to integers.  */
1248 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1249
1250 /* This is the kind of divide that is easiest to do in the general case.  */
1251 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1252
1253 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1254 #define DEFAULT_SIGNED_CHAR 1
1255
1256 /* Don't cse the address of the function being compiled.  */
1257 #define NO_RECURSIVE_FUNCTION_CSE
1258
1259 /* Max number of bytes we can move from memory to memory
1260    in one reasonably fast instruction.  */
1261 #define MOVE_MAX 4
1262
1263 /* Define this if zero-extension is slow (more than one real instruction).  */
1264 #define SLOW_ZERO_EXTEND
1265
1266 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1267 #define SLOW_BYTE_ACCESS 0
1268
1269 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1270    is done just by pretending it is already truncated.  */
1271 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1272
1273 /* We assume that the store-condition-codes instructions store 0 for false
1274    and some other value for true.  This is the value stored for true.  */
1275
1276 #define STORE_FLAG_VALUE -1
1277
1278 /* When a prototype says `char' or `short', really pass an `int'.  */
1279 #define PROMOTE_PROTOTYPES
1280
1281 /* Specify the machine mode that pointers have.
1282    After generation of rtl, the compiler makes no further distinction
1283    between pointers and any other objects of this machine mode.  */
1284 #define Pmode SImode
1285
1286 /* A function address in a call instruction
1287    is a byte address (for indexing purposes)
1288    so give the MEM rtx a byte's mode.  */
1289 #define FUNCTION_MODE QImode
1290
1291 /* Compute the cost of computing a constant rtl expression RTX
1292    whose rtx-code is CODE.  The body of this macro is a portion
1293    of a switch statement.  If the code is computed here,
1294    return it with a return statement.  Otherwise, break from the switch.  */
1295
1296 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1297   case CONST_INT:                                               \
1298     /* Constant zero is super cheap due to clr instruction.  */ \
1299     if (RTX == const0_rtx) return 0;                            \
1300     /* Constants between -128 and 127 are cheap due to moveq */ \
1301     if (INTVAL (RTX) >= -128 && INTVAL (RTX) <= 127) return 1;  \
1302     /* Constants between -136 and 254 are easily generated */   \
1303     /* by intelligent uses of moveq, add[q], and subq      */   \
1304     if ((OUTER_CODE) == SET && INTVAL (RTX) >= -136             \
1305         && INTVAL (RTX) <= 254) return 2;                       \
1306   case CONST:                                                   \
1307   case LABEL_REF:                                               \
1308   case SYMBOL_REF:                                              \
1309     return 3;                                                   \
1310   case CONST_DOUBLE:                                            \
1311     return 5;
1312
1313 /* Compute the cost of various arithmetic operations.
1314    These are vaguely right for a 68020.  */
1315 /* The costs for long multiply have been adjusted to
1316    work properly in synth_mult on the 68020,
1317    relative to an average of the time for add and the time for shift,
1318    taking away a little more because sometimes move insns are needed.  */
1319 #define MULL_COST (TARGET_68040 ? 5 : 13)
1320 #define MULW_COST (TARGET_68040 ? 3 : 8)
1321
1322 #define RTX_COSTS(X,CODE,OUTER_CODE)                            \
1323   case PLUS:                                                    \
1324     /* An lea costs about three times as much as a simple add.  */  \
1325     if (GET_MODE (X) == SImode                                  \
1326         && GET_CODE (XEXP (X, 0)) == REG                        \
1327         && GET_CODE (XEXP (X, 1)) == MULT                       \
1328         && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG              \
1329         && GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT        \
1330         && (INTVAL (XEXP (XEXP (X, 1), 1)) == 2                 \
1331             || INTVAL (XEXP (XEXP (X, 1), 1)) == 4              \
1332             || INTVAL (XEXP (XEXP (X, 1), 1)) == 8))            \
1333       return COSTS_N_INSNS (3);  /* lea an@(dx:l:i),am */       \
1334     break;                                                      \
1335   case ASHIFT:                                                  \
1336   case ASHIFTRT:                                                \
1337   case LSHIFT:                                                  \
1338   case LSHIFTRT:                                                \
1339     /* A shift by a big integer takes an extra instruction.  */ \
1340     if (GET_CODE (XEXP (X, 1)) == CONST_INT                     \
1341         && (INTVAL (XEXP (X, 1)) == 16))                        \
1342       return COSTS_N_INSNS (2);  /* clrw;swap */                \
1343     if (GET_CODE (XEXP (X, 1)) == CONST_INT                     \
1344         && !(INTVAL (XEXP (X, 1)) > 0                           \
1345              && INTVAL (XEXP (X, 1)) <= 8))                     \
1346       return COSTS_N_INSNS (3);  /* lsr #i,dn */                \
1347     break;                                                      \
1348   case MULT:                                                    \
1349     if (GET_CODE (XEXP (x, 1)) == CONST_INT                     \
1350         && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)              \
1351       {                                                         \
1352         /* A shift by a big integer takes an extra instruction.  */ \
1353         if (GET_CODE (XEXP (X, 1)) == CONST_INT                 \
1354             && (INTVAL (XEXP (X, 1)) == (1 << 16)))             \
1355           return COSTS_N_INSNS (2);      /* clrw;swap */        \
1356         if (GET_CODE (XEXP (X, 1)) == CONST_INT                 \
1357             && !(INTVAL (XEXP (X, 1)) > 1                       \
1358                  && INTVAL (XEXP (X, 1)) <= 256))               \
1359           return COSTS_N_INSNS (3);      /* lsr #i,dn */        \
1360         break;                                                  \
1361       }                                                         \
1362     else if (GET_MODE (X) == QImode || GET_MODE (X) == HImode)  \
1363       return COSTS_N_INSNS (MULW_COST);                         \
1364     else                                                        \
1365       return COSTS_N_INSNS (MULL_COST);                         \
1366     break;                                                      \
1367   case DIV:                                                     \
1368   case UDIV:                                                    \
1369   case MOD:                                                     \
1370   case UMOD:                                                    \
1371     if (GET_MODE (X) == QImode || GET_MODE (X) == HImode)       \
1372       return COSTS_N_INSNS (27); /* div.w */                    \
1373     return COSTS_N_INSNS (43);   /* div.l */
1374 \f
1375 /* Tell final.c how to eliminate redundant test instructions.  */
1376
1377 /* Here we define machine-dependent flags and fields in cc_status
1378    (see `conditions.h').  */
1379
1380 /* Set if the cc value is actually in the 68881, so a floating point
1381    conditional branch must be output.  */
1382 #define CC_IN_68881 04000
1383
1384 /* Store in cc_status the expressions that the condition codes will
1385    describe after execution of an instruction whose pattern is EXP.
1386    Do not alter them if the instruction would not alter the cc's.  */
1387
1388 /* On the 68000, all the insns to store in an address register fail to
1389    set the cc's.  However, in some cases these instructions can make it
1390    possibly invalid to use the saved cc's.  In those cases we clear out
1391    some or all of the saved cc's so they won't be used.  */
1392
1393 #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1394
1395 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV)  \
1396 { if (cc_prev_status.flags & CC_IN_68881)                       \
1397     return FLOAT;                                               \
1398   if (cc_prev_status.flags & CC_NO_OVERFLOW)                    \
1399     return NO_OV;                                               \
1400   return NORMAL; }
1401 \f
1402 /* Control the assembler format that we output.  */
1403
1404 /* Output at beginning of assembler file.  */
1405
1406 #define ASM_FILE_START(FILE)    \
1407   fprintf (FILE, "#NO_APP\n");
1408
1409 /* Output to assembler file text saying following lines
1410    may contain character constants, extra white space, comments, etc.  */
1411
1412 #define ASM_APP_ON "#APP\n"
1413
1414 /* Output to assembler file text saying following lines
1415    no longer contain unusual constructs.  */
1416
1417 #define ASM_APP_OFF "#NO_APP\n"
1418
1419 /* Output before read-only data.  */
1420
1421 #define TEXT_SECTION_ASM_OP ".text"
1422
1423 /* Output before writable data.  */
1424
1425 #define DATA_SECTION_ASM_OP ".data"
1426
1427 /* Here are four prefixes that are used by asm_fprintf to
1428    facilitate customization for alternate assembler syntaxes.
1429    Machines with no likelihood of an alternate syntax need not
1430    define these and need not use asm_fprintf.  */
1431
1432 /* The prefix for register names.  Note that REGISTER_NAMES
1433    is supposed to include this prefix.  */
1434
1435 #define REGISTER_PREFIX ""
1436
1437 /* The prefix for local labels.  You should be able to define this as
1438    an empty string, or any arbitrary string (such as ".", ".L%", etc)
1439    without having to make any other changes to account for the specific
1440    definition.  Note it is a string literal, not interpreted by printf
1441    and friends. */
1442
1443 #define LOCAL_LABEL_PREFIX ""
1444
1445 /* The prefix to add to user-visible assembler symbols.  */
1446
1447 #define USER_LABEL_PREFIX "_"
1448
1449 /* The prefix for immediate operands.  */
1450
1451 #define IMMEDIATE_PREFIX "#"
1452
1453 /* How to refer to registers in assembler output.
1454    This sequence is indexed by compiler's hard-register-number (see above).  */
1455
1456 #ifndef SUPPORT_SUN_FPA
1457
1458 #define REGISTER_NAMES \
1459 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",        \
1460  "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp",        \
1461  "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
1462
1463 #else /* SUPPORTED_SUN_FPA */
1464
1465 #define REGISTER_NAMES \
1466 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",        \
1467  "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp",        \
1468  "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
1469  "fpa0", "fpa1", "fpa2", "fpa3", "fpa4", "fpa5", "fpa6", "fpa7", \
1470  "fpa8", "fpa9", "fpa10", "fpa11", "fpa12", "fpa13", "fpa14", "fpa15", \
1471  "fpa16", "fpa17", "fpa18", "fpa19", "fpa20", "fpa21", "fpa22", "fpa23", \
1472  "fpa24", "fpa25", "fpa26", "fpa27", "fpa28", "fpa29", "fpa30", "fpa31" }
1473
1474 #endif /* defined SUPPORT_SUN_FPA */
1475
1476 /* How to renumber registers for dbx and gdb.
1477    On the Sun-3, the floating point registers have numbers
1478    18 to 25, not 16 to 23 as they do in the compiler.  */
1479
1480 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1481
1482 /* This is how to output the definition of a user-level label named NAME,
1483    such as the label on a static function or variable NAME.  */
1484
1485 #define ASM_OUTPUT_LABEL(FILE,NAME)     \
1486   do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1487
1488 /* This is how to output a command to make the user-level label named NAME
1489    defined for reference from other files.  */
1490
1491 #define GLOBAL_ASM_OP ".globl"
1492 #define ASM_GLOBALIZE_LABEL(FILE,NAME)  \
1493   do { fprintf (FILE, "%s ", GLOBAL_ASM_OP);            \
1494        assemble_name (FILE, NAME);                      \
1495        fputs ("\n", FILE);} while (0)
1496
1497 /* This is how to output a reference to a user-level label named NAME.
1498    `assemble_name' uses this.  */
1499
1500 #define ASM_OUTPUT_LABELREF(FILE,NAME)  \
1501   asm_fprintf (FILE, "%0U%s", NAME)
1502
1503 /* This is how to output an internal numbered label where
1504    PREFIX is the class of label and NUM is the number within the class.  */
1505
1506 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)      \
1507   asm_fprintf (FILE, "%0L%s%d:\n", PREFIX, NUM)
1508
1509 /* This is how to store into the string LABEL
1510    the symbol_ref name of an internal numbered label where
1511    PREFIX is the class of label and NUM is the number within the class.
1512    This is suitable for output with `assemble_name'.  */
1513
1514 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1515   sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
1516
1517 /* This is how to output an assembler line defining a `double' constant.  */
1518
1519 #define ASM_OUTPUT_DOUBLE(FILE,VALUE)  \
1520   fprintf (FILE, "\t.double 0r%.20g\n", (VALUE))
1521
1522 /* This is how to output an assembler line defining a `float' constant.  */
1523
1524 /* Sun's assembler can't handle floating constants written as floating.
1525    However, when cross-compiling, always use that in case format differs.  */
1526
1527 #ifdef CROSS_COMPILE
1528
1529 #define ASM_OUTPUT_FLOAT(FILE,VALUE)  \
1530   fprintf (FILE, "\t.float 0r%.10g\n", (VALUE))
1531
1532 #else
1533
1534 #define ASM_OUTPUT_FLOAT(FILE,VALUE)  \
1535 do { union { float f; long l;} tem;                     \
1536      tem.f = (VALUE);                                   \
1537      fprintf (FILE, "\t.long 0x%x\n", tem.l);   \
1538    } while (0)
1539
1540 #endif /* not CROSS_COMPILE */
1541
1542 /* This is how to output an assembler line defining an `int' constant.  */
1543
1544 #define ASM_OUTPUT_INT(FILE,VALUE)  \
1545 ( fprintf (FILE, "\t.long "),                   \
1546   output_addr_const (FILE, (VALUE)),            \
1547   fprintf (FILE, "\n"))
1548
1549 /* Likewise for `char' and `short' constants.  */
1550
1551 #define ASM_OUTPUT_SHORT(FILE,VALUE)  \
1552 ( fprintf (FILE, "\t.word "),                   \
1553   output_addr_const (FILE, (VALUE)),            \
1554   fprintf (FILE, "\n"))
1555
1556 #define ASM_OUTPUT_CHAR(FILE,VALUE)  \
1557 ( fprintf (FILE, "\t.byte "),                   \
1558   output_addr_const (FILE, (VALUE)),            \
1559   fprintf (FILE, "\n"))
1560
1561 /* This is how to output an assembler line for a numeric constant byte.  */
1562
1563 #define ASM_OUTPUT_BYTE(FILE,VALUE)  \
1564   fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1565
1566 /* This is how to output an insn to push a register on the stack.
1567    It need not be very fast code.  */
1568
1569 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1570   asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1571
1572 /* This is how to output an insn to pop a register from the stack.
1573    It need not be very fast code.  */
1574
1575 #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1576   asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1577
1578 /* This is how to output an element of a case-vector that is absolute.
1579    (The 68000 does not use such vectors,
1580    but we must define this macro anyway.)  */
1581
1582 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1583   asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1584
1585 /* This is how to output an element of a case-vector that is relative.  */
1586
1587 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)  \
1588   asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1589
1590 /* This is how to output an assembler line
1591    that says to advance the location counter
1592    to a multiple of 2**LOG bytes.  */
1593
1594 /* We don't have a way to align to more than a two-byte boundary, so do the
1595    best we can and don't complain.  */
1596 #define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1597   if ((LOG) >= 1)                       \
1598     fprintf (FILE, "\t.even\n");
1599
1600 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1601   fprintf (FILE, "\t.skip %u\n", (SIZE))
1602
1603 /* This says how to output an assembler line
1604    to define a global common symbol.  */
1605
1606 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1607 ( fputs (".comm ", (FILE)),                     \
1608   assemble_name ((FILE), (NAME)),               \
1609   fprintf ((FILE), ",%u\n", (ROUNDED)))
1610
1611 /* This says how to output an assembler line
1612    to define a local common symbol.  */
1613
1614 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
1615 ( fputs (".lcomm ", (FILE)),                    \
1616   assemble_name ((FILE), (NAME)),               \
1617   fprintf ((FILE), ",%u\n", (ROUNDED)))
1618
1619 /* Store in OUTPUT a string (made with alloca) containing
1620    an assembler-name for a local static variable named NAME.
1621    LABELNO is an integer which is different for each call.  */
1622
1623 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)  \
1624 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),    \
1625   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1626
1627 /* Define the parentheses used to group arithmetic operations
1628    in assembler code.  */
1629
1630 #define ASM_OPEN_PAREN "("
1631 #define ASM_CLOSE_PAREN ")"
1632
1633 /* Define results of standard character escape sequences.  */
1634 #define TARGET_BELL 007
1635 #define TARGET_BS 010
1636 #define TARGET_TAB 011
1637 #define TARGET_NEWLINE 012
1638 #define TARGET_VT 013
1639 #define TARGET_FF 014
1640 #define TARGET_CR 015
1641
1642 /* Output a float value (represented as a C double) as an immediate operand.
1643    This macro is a 68k-specific macro.  */
1644 #define ASM_OUTPUT_FLOAT_OPERAND(FILE,VALUE)                            \
1645   asm_fprintf (FILE, "%I0r%.9g", (VALUE))
1646
1647 /* Output a double value (represented as a C double) as an immediate operand.
1648    This macro is a 68k-specific macro.  */
1649 #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE)                           \
1650   asm_fprintf (FILE, "%I0r%.20g", (VALUE))
1651
1652 /* Print operand X (an rtx) in assembler syntax to file FILE.
1653    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1654    For `%' followed by punctuation, CODE is the punctuation and X is null.
1655
1656    On the 68000, we use several CODE characters:
1657    '.' for dot needed in Motorola-style opcode names.
1658    '-' for an operand pushing on the stack:
1659        sp@-, -(sp) or -(%sp) depending on the style of syntax.
1660    '+' for an operand pushing on the stack:
1661        sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1662    '@' for a reference to the top word on the stack:
1663        sp@, (sp) or (%sp) depending on the style of syntax.
1664    '#' for an immediate operand prefix (# in MIT and Motorola syntax
1665        but & in SGS syntax).
1666    '!' for the fpcr register (used in some float-to-fixed conversions).
1667    '$' for the letter `s' in an op code, but only on the 68040.
1668    '&' for the letter `d' in an op code, but only on the 68040.
1669    '/' for register prefix needed by longlong.h.
1670
1671    'b' for byte insn (no effect, on the Sun; this is for the ISI).
1672    'd' to force memory addressing to be absolute, not relative.
1673    'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1674    'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
1675        than directly).  Second part of 'y' below.
1676    'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1677        or print pair of registers as rx:ry.
1678    'y' for a FPA insn (print pair of registers as rx:ry).  This also outputs
1679        CONST_DOUBLE's as SunFPA constant RAM registers if
1680        possible, so it should not be used except for the SunFPA. */
1681
1682 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)                               \
1683   ((CODE) == '.' || (CODE) == '#' || (CODE) == '-'                      \
1684    || (CODE) == '+' || (CODE) == '@' || (CODE) == '!'                   \
1685    || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
1686
1687 #ifdef HOST_WORDS_BIG_ENDIAN
1688 #define PRINT_OPERAND_EXTRACT_FLOAT(X)                                  \
1689       u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X);
1690 #else
1691 #define PRINT_OPERAND_EXTRACT_FLOAT(X)                                  \
1692       u.i[0] = CONST_DOUBLE_HIGH (X); u.i[1] = CONST_DOUBLE_LOW (X);
1693 #endif
1694
1695 #ifdef CROSS_COMPILE
1696 #define PRINT_OPERAND_PRINT_FLOAT(CODE, FILE)   \
1697   ASM_OUTPUT_FLOAT_OPERAND (FILE, u1.f);
1698 #else
1699 #define PRINT_OPERAND_PRINT_FLOAT(CODE, FILE)   \
1700 { if (CODE == 'f')                                                      \
1701     ASM_OUTPUT_FLOAT_OPERAND (FILE, u1.f);                              \
1702   else                                                                  \
1703     asm_fprintf (FILE, "%I0x%x", u1.i); }
1704 #endif
1705
1706 /* A C compound statement to output to stdio stream STREAM the
1707    assembler syntax for an instruction operand X.  X is an RTL
1708    expression.
1709
1710    CODE is a value that can be used to specify one of several ways
1711    of printing the operand.  It is used when identical operands
1712    must be printed differently depending on the context.  CODE
1713    comes from the `%' specification that was used to request
1714    printing of the operand.  If the specification was just `%DIGIT'
1715    then CODE is 0; if the specification was `%LTR DIGIT' then CODE
1716    is the ASCII code for LTR.
1717
1718    If X is a register, this macro should print the register's name.
1719    The names can be found in an array `reg_names' whose type is
1720    `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
1721
1722    When the machine description has a specification `%PUNCT' (a `%'
1723    followed by a punctuation character), this macro is called with
1724    a null pointer for X and the punctuation character for CODE.
1725
1726    See m68k.c for the m68k specific codes.  */
1727
1728 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1729
1730 /* A C compound statement to output to stdio stream STREAM the
1731    assembler syntax for an instruction operand that is a memory
1732    reference whose address is ADDR.  ADDR is an RTL expression.
1733
1734    On some machines, the syntax for a symbolic address depends on
1735    the section that the address refers to.  On these machines,
1736    define the macro `ENCODE_SECTION_INFO' to store the information
1737    into the `symbol_ref', and then check for it here.  */
1738
1739 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1740
1741
1742 /* Define functions defined in aux-output.c and used in templates.  */
1743
1744 extern char *output_move_double ();
1745 extern char *output_move_const_single ();
1746 extern char *output_move_const_double ();
1747 extern char *output_btst ();
1748 \f
1749 /*
1750 Local variables:
1751 version-control: t
1752 End:
1753 */