OSDN Git Service

abec9d764fe4ac04c0cd13005d5a945ead9e679e
[pf3gnuchains/gcc-fork.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for Intel 80386.
2    Copyright (C) 1988, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
19
20
21 /* The purpose of this file is to define the characteristics of the i386,
22    independent of assembler syntax or operating system.
23
24    Three other files build on this one to describe a specific assembler syntax:
25    bsd386.h, att386.h, and sun386.h.
26
27    The actual tm.h file for a particular system should include
28    this file, and then the file for the appropriate assembler syntax.
29
30    Many macros that specify assembler syntax are omitted entirely from
31    this file because they really belong in the files for particular
32    assemblers.  These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
33    PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
34    PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP.  */
35
36 /* Names to predefine in the preprocessor for this target machine.  */
37
38 #define I386 1
39
40 /* Stubs for half-pic support if not OSF/1 reference platform.  */
41
42 #ifndef HALF_PIC_P
43 #define HALF_PIC_P() 0
44 #define HALF_PIC_NUMBER_PTRS 0
45 #define HALF_PIC_NUMBER_REFS 0
46 #define HALF_PIC_ENCODE(DECL)
47 #define HALF_PIC_DECLARE(NAME)
48 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
49 #define HALF_PIC_ADDRESS_P(X) 0
50 #define HALF_PIC_PTR(X) X
51 #define HALF_PIC_FINISH(STREAM)
52 #endif
53
54 /* Run-time compilation parameters selecting different hardware subsets.  */
55
56 extern int target_flags;
57
58 /* Macros used in the machine description to test the flags.  */
59
60 /* Compile 80387 insns for floating point (not library calls).  */
61 #define TARGET_80387 (target_flags & 1)
62 /* Compile code for an i486. */
63 #define TARGET_486 (target_flags & 2)
64 /* Compile using ret insn that pops args.
65    This will not work unless you use prototypes at least
66    for all functions that can take varying numbers of args.  */  
67 #define TARGET_RTD (target_flags & 8)
68 /* Compile passing first two args in regs 0 and 1.
69    This exists only to test compiler features that will
70    be needed for RISC chips.  It is not usable
71    and is not intended to be usable on this cpu.  */
72 #define TARGET_REGPARM (target_flags & 020)
73
74 /* Put uninitialized locals into bss, not data.
75    Meaningful only on svr3.  */
76 #define TARGET_SVR3_SHLIB (target_flags & 040)
77
78 /* Use IEEE floating point comparisons.  These handle correctly the cases
79    where the result of a comparison is unordered.  Normally SIGFPE is
80    generated in such cases, in which case this isn't needed.  */
81 #define TARGET_IEEE_FP (target_flags & 0100)
82
83 /* Functions that return a floating point value may return that value
84    in the 387 FPU or in 386 integer registers.  If set, this flag causes
85    the 387 to be used, which is compatible with most calling conventions. */
86 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & 0200)
87
88 /* Macro to define tables used to set the flags.
89    This is a list in braces of pairs in braces,
90    each pair being { "NAME", VALUE }
91    where VALUE is the bits to set or minus the bits to clear.
92    An empty string NAME is used to identify the default VALUE.  */
93
94 #define TARGET_SWITCHES  \
95   { { "80387", 1},                              \
96     { "no-80387", -1},                          \
97     { "soft-float", -1},                        \
98     { "no-soft-float", 1},                      \
99     { "486", 2},                                \
100     { "no-486", -2},                            \
101     { "386", -2},                               \
102     { "rtd", 8},                                \
103     { "no-rtd", -8},                            \
104     { "regparm", 020},                          \
105     { "no-regparm", -020},                      \
106     { "svr3-shlib", 040},                       \
107     { "no-svr3-shlib", -040},                   \
108     { "ieee-fp", 0100},                         \
109     { "no-ieee-fp", -0100},                     \
110     { "fp-ret-in-387", 0200},                   \
111     { "no-fp-ret-in-387", -0200},               \
112     SUBTARGET_SWITCHES                          \
113     { "", TARGET_DEFAULT}}
114
115 /* This is meant to be redefined in the host dependent files */
116 #define SUBTARGET_SWITCHES
117
118 \f
119 /* target machine storage layout */
120
121 /* Define this if most significant byte of a word is the lowest numbered.  */
122 /* That is true on the 80386.  */
123
124 #define BITS_BIG_ENDIAN 0
125
126 /* Define this if most significant byte of a word is the lowest numbered.  */
127 /* That is not true on the 80386.  */
128 #define BYTES_BIG_ENDIAN 0
129
130 /* Define this if most significant word of a multiword number is the lowest
131    numbered.  */
132 /* Not true for 80386 */
133 #define WORDS_BIG_ENDIAN 0
134
135 /* number of bits in an addressable storage unit */
136 #define BITS_PER_UNIT 8
137
138 /* Width in bits of a "word", which is the contents of a machine register.
139    Note that this is not necessarily the width of data type `int';
140    if using 16-bit ints on a 80386, this would still be 32.
141    But on a machine with 16-bit registers, this would be 16.  */
142 #define BITS_PER_WORD 32
143
144 /* Width of a word, in units (bytes).  */
145 #define UNITS_PER_WORD 4
146
147 /* Width in bits of a pointer.
148    See also the macro `Pmode' defined below.  */
149 #define POINTER_SIZE 32
150
151 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
152 #define PARM_BOUNDARY 32
153
154 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
155 #define STACK_BOUNDARY 32
156
157 /* Allocation boundary (in *bits*) for the code of a function.
158    For i486, we get better performance by aligning to a cache
159    line (i.e. 16 byte) boundary.  */
160 #define FUNCTION_BOUNDARY (TARGET_486 ? 128 : 32)
161
162 /* Alignment of field after `int : 0' in a structure. */
163
164 #define EMPTY_FIELD_BOUNDARY 32
165
166 /* Minimum size in bits of the largest boundary to which any
167    and all fundamental data types supported by the hardware
168    might need to be aligned. No data type wants to be aligned
169    rounder than this.  The i386 supports 64-bit floating point
170    quantities, but these can be aligned on any 32-bit boundary.  */
171 #define BIGGEST_ALIGNMENT 32
172
173 /* Set this non-zero if move instructions will actually fail to work
174    when given unaligned data.  */
175 #define STRICT_ALIGNMENT 0
176
177 /* If bit field type is int, don't let it cross an int,
178    and give entire struct the alignment of an int.  */
179 /* Required on the 386 since it doesn't have bitfield insns.  */
180 #define PCC_BITFIELD_TYPE_MATTERS 1
181
182 /* Align loop starts for optimal branching.  */
183 #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
184   ASM_OUTPUT_ALIGN (FILE, 2)
185
186 /* This is how to align an instruction for optimal branching.
187    On i486 we'll get better performance by aligning on a
188    cache line (i.e. 16 byte) boundary.  */
189 #define ASM_OUTPUT_ALIGN_CODE(FILE)     \
190   ASM_OUTPUT_ALIGN ((FILE), (TARGET_486 ? 4 : 2))
191 \f
192 /* Standard register usage.  */
193
194 /* This processor has special stack-like registers.  See reg-stack.c
195    for details. */
196
197 #define STACK_REGS
198
199 /* Number of actual hardware registers.
200    The hardware registers are assigned numbers for the compiler
201    from 0 to just below FIRST_PSEUDO_REGISTER.
202    All registers that the compiler knows about must be given numbers,
203    even those that are not normally considered general registers.
204
205    In the 80386 we give the 8 general purpose registers the numbers 0-7.
206    We number the floating point registers 8-15.
207    Note that registers 0-7 can be accessed as a  short or int,
208    while only 0-3 may be used with byte `mov' instructions.
209
210    Reg 16 does not correspond to any hardware register, but instead
211    appears in the RTL as an argument pointer prior to reload, and is
212    eliminated during reloading in favor of either the stack or frame
213    pointer. */
214
215 #define FIRST_PSEUDO_REGISTER 17
216
217 /* 1 for registers that have pervasive standard uses
218    and are not available for the register allocator.
219    On the 80386, the stack pointer is such, as is the arg pointer. */
220 #define FIXED_REGISTERS \
221 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/       \
222 {  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,  1 }
223
224 /* 1 for registers not available across function calls.
225    These must include the FIXED_REGISTERS and also any
226    registers that can be used without being saved.
227    The latter must include the registers where values are returned
228    and the register where structure-value addresses are passed.
229    Aside from that, you can include as many other registers as you like.  */
230
231 #define CALL_USED_REGISTERS \
232 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
233 {  1, 1, 1, 0, 0, 0, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1 }
234
235 /* Macro to conditionally modify fixed_regs/call_used_regs.  */
236 #define CONDITIONAL_REGISTER_USAGE                      \
237   {                                                     \
238     if (flag_pic)                                       \
239       {                                                 \
240         fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;        \
241         call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
242       }                                                 \
243     if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
244       {                                                 \
245         int i;                                          \
246         HARD_REG_SET x;                                 \
247         COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
248         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ )    \
249          if (TEST_HARD_REG_BIT (x, i))                  \
250           fixed_regs[i] = call_used_regs[i] = 1;        \
251       }                                                 \
252   }
253
254 /* Return number of consecutive hard regs needed starting at reg REGNO
255    to hold something of mode MODE.
256    This is ordinarily the length in words of a value of mode MODE
257    but can be less for certain modes in special long registers.
258
259    Actually there are no two word move instructions for consecutive 
260    registers.  And only registers 0-3 may have mov byte instructions
261    applied to them.
262    */
263
264 #define HARD_REGNO_NREGS(REGNO, MODE)   \
265   (FP_REGNO_P (REGNO) ? 1 \
266    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
267
268 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
269    On the 80386, the first 4 cpu registers can hold any mode
270    while the floating point registers may hold only floating point.
271    Make it clear that the fp regs could not hold a 16-byte float.  */
272
273 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
274   ((REGNO) < 2 ? 1                                                      \
275    : (REGNO) < 4 ? 1                                                    \
276    : (REGNO) >= 8 ? ((GET_MODE_CLASS (MODE) == MODE_FLOAT               \
277                       || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)   \
278                      && GET_MODE_UNIT_SIZE (MODE) <= 8)                 \
279    : (MODE) != QImode)
280
281 /* Value is 1 if it is a good idea to tie two pseudo registers
282    when one has mode MODE1 and one has mode MODE2.
283    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
284    for any hard reg, then this must be 0 for correct output.  */
285
286 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
287
288 /* A C expression returning the cost of moving data from a register of class
289    CLASS1 to one of CLASS2.
290
291    On the i386, copying between floating-point and fixed-point
292    registers is expensive.  */
293
294 #define REGISTER_MOVE_COST(CLASS1, CLASS2)              \
295   ((((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS)  \
296     || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS))      \
297    ? 10 : 2)
298
299 /* Specify the registers used for certain standard purposes.
300    The values of these macros are register numbers.  */
301
302 /* on the 386 the pc register is %eip, and is not usable as a general
303    register.  The ordinary mov instructions won't work */
304 /* #define PC_REGNUM  */
305
306 /* Register to use for pushing function arguments.  */
307 #define STACK_POINTER_REGNUM 7
308
309 /* Base register for access to local variables of the function.  */
310 #define FRAME_POINTER_REGNUM 6
311
312 /* First floating point reg */
313 #define FIRST_FLOAT_REG 8
314
315 /* First & last stack-like regs */
316 #define FIRST_STACK_REG FIRST_FLOAT_REG
317 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
318
319 /* Value should be nonzero if functions must have frame pointers.
320    Zero means the frame pointer need not be set up (and parms
321    may be accessed via the stack pointer) in functions that seem suitable.
322    This is computed in `reload', in reload1.c.  */
323 #define FRAME_POINTER_REQUIRED 0
324
325 /* Base register for access to arguments of the function.  */
326 #define ARG_POINTER_REGNUM 16
327
328 /* Register in which static-chain is passed to a function.  */
329 #define STATIC_CHAIN_REGNUM 2
330
331 /* Register to hold the addressing base for position independent
332    code access to data items.  */
333 #define PIC_OFFSET_TABLE_REGNUM 3
334
335 /* Register in which address to store a structure value
336    arrives in the function.  On the 386, the prologue
337    copies this from the stack to register %eax.  */
338 #define STRUCT_VALUE_INCOMING 0
339
340 /* Place in which caller passes the structure value address.
341    0 means push the value on the stack like an argument.  */
342 #define STRUCT_VALUE 0
343 \f
344 /* Define the classes of registers for register constraints in the
345    machine description.  Also define ranges of constants.
346
347    One of the classes must always be named ALL_REGS and include all hard regs.
348    If there is more than one class, another class must be named NO_REGS
349    and contain no registers.
350
351    The name GENERAL_REGS must be the name of a class (or an alias for
352    another name such as ALL_REGS).  This is the class of registers
353    that is allowed by "g" or "r" in a register constraint.
354    Also, registers outside this class are allocated only when
355    instructions express preferences for them.
356
357    The classes must be numbered in nondecreasing order; that is,
358    a larger-numbered class must never be contained completely
359    in a smaller-numbered class.
360
361    For any two classes, it is very desirable that there be another
362    class that represents their union.
363
364    It might seem that class BREG is unnecessary, since no useful 386
365    opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
366    and the "b" register constraint is useful in asms for syscalls.  */
367
368 enum reg_class
369 {
370   NO_REGS,
371   AREG, DREG, CREG, BREG,
372   Q_REGS,                       /* %eax %ebx %ecx %edx */
373   SIREG, DIREG,
374   INDEX_REGS,                   /* %eax %ebx %ecx %edx %esi %edi %ebp */
375   GENERAL_REGS,                 /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
376   FP_TOP_REG, FP_SECOND_REG,    /* %st(0) %st(1) */
377   FLOAT_REGS,
378   ALL_REGS, LIM_REG_CLASSES
379 };
380
381 #define N_REG_CLASSES (int) LIM_REG_CLASSES
382
383 /* Give names of register classes as strings for dump file.   */
384
385 #define REG_CLASS_NAMES \
386 {  "NO_REGS",                           \
387    "AREG", "DREG", "CREG", "BREG",      \
388    "Q_REGS",                            \
389    "SIREG", "DIREG",                    \
390    "INDEX_REGS",                        \
391    "GENERAL_REGS",                      \
392    "FP_TOP_REG", "FP_SECOND_REG",       \
393    "FLOAT_REGS",                        \
394    "ALL_REGS" }
395
396 /* Define which registers fit in which classes.
397    This is an initializer for a vector of HARD_REG_SET
398    of length N_REG_CLASSES.  */
399
400 #define REG_CLASS_CONTENTS \
401 {      0,                                                       \
402      0x1,    0x2,  0x4,  0x8,   /* AREG, DREG, CREG, BREG */    \
403      0xf,                       /* Q_REGS */                    \
404     0x10,   0x20,               /* SIREG, DIREG */              \
405  0x1007f,                       /* INDEX_REGS */                \
406  0x100ff,                       /* GENERAL_REGS */              \
407   0x0100, 0x0200,               /* FP_TOP_REG, FP_SECOND_REG */ \
408   0xff00,                       /* FLOAT_REGS */                \
409  0x1ffff }
410
411 /* The same information, inverted:
412    Return the class number of the smallest class containing
413    reg number REGNO.  This could be a conditional expression
414    or could index an array.  */
415
416 extern enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
417 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
418
419 /* When defined, the compiler allows registers explicitly used in the
420    rtl to be used as spill registers but prevents the compiler from
421    extending the lifetime of these registers. */
422
423 #define SMALL_REGISTER_CLASSES
424
425 #define QI_REG_P(X) \
426   (REG_P (X) && REGNO (X) < 4)
427 #define NON_QI_REG_P(X) \
428   (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
429
430 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
431 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
432   
433 #define STACK_REG_P(xop) (REG_P (xop) &&                        \
434                           REGNO (xop) >= FIRST_STACK_REG &&     \
435                           REGNO (xop) <= LAST_STACK_REG)
436
437 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
438
439 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
440
441 /* Try to maintain the accuracy of the death notes for regs satisfying the
442    following.  Important for stack like regs, to know when to pop. */
443
444 /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
445
446 /* 1 if register REGNO can magically overlap other regs.
447    Note that nonzero values work only in very special circumstances. */
448
449 /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
450
451 /* The class value for index registers, and the one for base regs.  */
452
453 #define INDEX_REG_CLASS INDEX_REGS
454 #define BASE_REG_CLASS GENERAL_REGS
455
456 /* Get reg_class from a letter such as appears in the machine description.  */
457
458 #define REG_CLASS_FROM_LETTER(C)        \
459   ((C) == 'r' ? GENERAL_REGS :                                  \
460    (C) == 'q' ? Q_REGS :                                        \
461    (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387  \
462                  ? FLOAT_REGS                                   \
463                  : NO_REGS) :                                   \
464    (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387  \
465                  ? FP_TOP_REG                                   \
466                  : NO_REGS) :                                   \
467    (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387  \
468                  ? FP_SECOND_REG                                \
469                  : NO_REGS) :                                   \
470    (C) == 'a' ? AREG :                                          \
471    (C) == 'b' ? BREG :                                          \
472    (C) == 'c' ? CREG :                                          \
473    (C) == 'd' ? DREG :                                          \
474    (C) == 'D' ? DIREG :                                         \
475    (C) == 'S' ? SIREG : NO_REGS)
476
477 /* The letters I, J, K, L and M in a register constraint string
478    can be used to stand for particular ranges of immediate operands.
479    This macro defines what the ranges are.
480    C is the letter, and VALUE is a constant value.
481    Return 1 if VALUE is in the range specified by C.
482
483    I is for non-DImode shifts.
484    J is for DImode shifts.
485    K and L are for an `andsi' optimization.
486    M is for shifts that can be executed by the "lea" opcode.
487    */
488
489 #define CONST_OK_FOR_LETTER_P(VALUE, C)  \
490   ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
491    (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
492    (C) == 'K' ? (VALUE) == 0xff :               \
493    (C) == 'L' ? (VALUE) == 0xffff :             \
494    (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 :  \
495    0)
496
497 /* Similar, but for floating constants, and defining letters G and H.
498    Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
499    TARGET_387 isn't set, because the stack register converter may need to
500    load 0.0 into the function value register. */
501
502 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
503   ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
504
505 /* Place additional restrictions on the register class to use when it
506    is necessary to be able to hold a value of mode @var{mode} in a reload
507    register for which class @var{class} would ordinarily be used. */
508
509 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
510   ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
511    ? Q_REGS : (CLASS))
512
513 /* Given an rtx X being reloaded into a reg required to be
514    in class CLASS, return the class of reg to actually use.
515    In general this is just CLASS; but on some machines
516    in some cases it is preferable to use a more restrictive class.
517    On the 80386 series, we prevent floating constants from being
518    reloaded into floating registers (since no move-insn can do that)
519    and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
520
521 /* Don't put CONST_DOUBLE into FLOAT_REGS.
522    QImode must go into class Q_REGS.
523    MODE_INT must not go into FLOAT_REGS. */
524
525 #define PREFERRED_RELOAD_CLASS(X,CLASS)                 \
526   (GET_CODE (X) == CONST_DOUBLE                         \
527    ? (reg_class_subset_p ((CLASS), GENERAL_REGS) || (CLASS) == ALL_REGS \
528       ? (CLASS) : NO_REGS)                              \
529    : GET_MODE (X) == QImode                             \
530    ? (! reg_class_subset_p ((CLASS), Q_REGS) ? Q_REGS : (CLASS))        \
531    : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT && (CLASS) == FLOAT_REGS ? \
532       GENERAL_REGS : (CLASS)))
533
534 /* Return the maximum number of consecutive registers
535    needed to represent mode MODE in a register of class CLASS.  */
536 /* On the 80386, this is the size of MODE in words,
537    except in the FP regs, where a single reg is always enough.  */
538 #define CLASS_MAX_NREGS(CLASS, MODE)    \
539  ((CLASS) == FLOAT_REGS ? 1 :           \
540   (CLASS) == FP_TOP_REG ? 1 :           \
541   (CLASS) == FP_SECOND_REG ? 1 :        \
542    ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
543 \f
544 /* Stack layout; function entry, exit and calling.  */
545
546 /* Define this if pushing a word on the stack
547    makes the stack pointer a smaller address.  */
548 #define STACK_GROWS_DOWNWARD
549
550 /* Define this if the nominal address of the stack frame
551    is at the high-address end of the local variables;
552    that is, each additional local variable allocated
553    goes at a more negative offset in the frame.  */
554 #define FRAME_GROWS_DOWNWARD
555
556 /* Offset within stack frame to start allocating local variables at.
557    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
558    first local allocated.  Otherwise, it is the offset to the BEGINNING
559    of the first local allocated.  */
560 #define STARTING_FRAME_OFFSET 0
561
562 /* If we generate an insn to push BYTES bytes,
563    this says how many the stack pointer really advances by.
564    On 386 pushw decrements by exactly 2 no matter what the position was.
565    On the 386 there is no pushb; we use pushw instead, and this
566    has the effect of rounding up to 2.  */
567
568 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
569
570 /* Offset of first parameter from the argument pointer register value.  */
571 #define FIRST_PARM_OFFSET(FNDECL) 0
572
573 /* Value is the number of bytes of arguments automatically
574    popped when returning from a subroutine call.
575    FUNTYPE is the data type of the function (as a tree),
576    or for a library call it is an identifier node for the subroutine name.
577    SIZE is the number of bytes of arguments passed on the stack.
578
579    On the 80386, the RTD insn may be used to pop them if the number
580      of args is fixed, but if the number is variable then the caller
581      must pop them all.  RTD can't be used for library calls now
582      because the library is compiled with the Unix compiler.
583    Use of RTD is a selectable option, since it is incompatible with
584    standard Unix calling sequences.  If the option is not selected,
585    the caller must always pop the args.  */
586
587 #define RETURN_POPS_ARGS(FUNTYPE,SIZE)   \
588   (TREE_CODE (FUNTYPE) == IDENTIFIER_NODE ? 0                   \
589    : (TARGET_RTD                                                \
590       && (TYPE_ARG_TYPES (FUNTYPE) == 0                         \
591           || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
592               == void_type_node))) ? (SIZE)                     \
593    : (aggregate_value_p (FUNTYPE)) ? GET_MODE_SIZE (Pmode) : 0)
594
595 /* Define how to find the value returned by a function.
596    VALTYPE is the data type of the value (as a tree).
597    If the precise function being called is known, FUNC is its FUNCTION_DECL;
598    otherwise, FUNC is 0.  */
599 #define FUNCTION_VALUE(VALTYPE, FUNC)  \
600    gen_rtx (REG, TYPE_MODE (VALTYPE), \
601             VALUE_REGNO (TYPE_MODE (VALTYPE)))
602
603 /* Define how to find the value returned by a library function
604    assuming the value has mode MODE.  */
605
606 #define LIBCALL_VALUE(MODE) \
607   gen_rtx (REG, MODE, VALUE_REGNO (MODE))
608
609 /* 1 if N is a possible register number for function argument passing.
610    On the 80386, no registers are used in this way.
611       *NOTE* -mregparm does not work.
612    It exists only to test register calling conventions.  */
613
614 #define FUNCTION_ARG_REGNO_P(N) 0
615
616 /* Define a data type for recording info about an argument list
617    during the scan of that argument list.  This data type should
618    hold all necessary information about the function itself
619    and about the args processed so far, enough to enable macros
620    such as FUNCTION_ARG to determine where the next arg should go.
621
622    On the 80386, this is a single integer, which is a number of bytes
623    of arguments scanned so far.  */
624
625 #define CUMULATIVE_ARGS int
626
627 /* Initialize a variable CUM of type CUMULATIVE_ARGS
628    for a call to a function whose data type is FNTYPE.
629    For a library call, FNTYPE is 0.
630
631    On the 80386, the offset starts at 0.  */
632
633 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME)        \
634  ((CUM) = 0)
635
636 /* Update the data in CUM to advance over an argument
637    of mode MODE and data type TYPE.
638    (TYPE is null for libcalls where that information may not be available.)  */
639
640 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
641  ((CUM) += ((MODE) != BLKmode                   \
642             ? (GET_MODE_SIZE (MODE) + 3) & ~3   \
643             : (int_size_in_bytes (TYPE) + 3) & ~3))
644
645 /* Define where to put the arguments to a function.
646    Value is zero to push the argument on the stack,
647    or a hard register in which to store the argument.
648
649    MODE is the argument's machine mode.
650    TYPE is the data type of the argument (as a tree).
651     This is null for libcalls where that information may
652     not be available.
653    CUM is a variable of type CUMULATIVE_ARGS which gives info about
654     the preceding args and about the function being called.
655    NAMED is nonzero if this argument is a named parameter
656     (otherwise it is an extra parameter matching an ellipsis).  */
657
658
659 /* On the 80386 all args are pushed, except if -mregparm is specified
660    then the first two words of arguments are passed in EAX, EDX.
661    *NOTE* -mregparm does not work.
662    It exists only to test register calling conventions.  */
663
664 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
665 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
666
667 /* For an arg passed partly in registers and partly in memory,
668    this is the number of registers used.
669    For args passed entirely in registers or entirely in memory, zero.  */
670
671
672 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
673 ((TARGET_REGPARM && (CUM) < 8                                   \
674   && 8 < ((CUM) + ((MODE) == BLKmode                            \
675                       ? int_size_in_bytes (TYPE)                \
676                       : GET_MODE_SIZE (MODE))))                 \
677  ? 2 - (CUM) / 4 : 0)
678
679 /* This macro generates the assembly code for function entry.
680    FILE is a stdio stream to output the code to.
681    SIZE is an int: how many units of temporary storage to allocate.
682    Refer to the array `regs_ever_live' to determine which registers
683    to save; `regs_ever_live[I]' is nonzero if register number I
684    is ever used in the function.  This macro is responsible for
685    knowing which registers should not be saved even if used.  */
686
687 #define FUNCTION_PROLOGUE(FILE, SIZE)     \
688   function_prologue (FILE, SIZE)
689
690 /* Output assembler code to FILE to increment profiler label # LABELNO
691    for profiling a function entry.  */
692
693 #define FUNCTION_PROFILER(FILE, LABELNO)  \
694 {                                                                       \
695   if (flag_pic)                                                         \
696     {                                                                   \
697       fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n",              \
698                LPREFIX, (LABELNO));                                     \
699       fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n");                   \
700     }                                                                   \
701   else                                                                  \
702     {                                                                   \
703       fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO));      \
704       fprintf (FILE, "\tcall _mcount\n");                               \
705     }                                                                   \
706 }
707
708 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
709    the stack pointer does not matter.  The value is tested only in
710    functions that have frame pointers.
711    No definition is equivalent to always zero.  */
712 /* Note on the 386 it might be more efficient not to define this since 
713    we have to restore it ourselves from the frame pointer, in order to
714    use pop */
715
716 #define EXIT_IGNORE_STACK 1
717
718 /* This macro generates the assembly code for function exit,
719    on machines that need it.  If FUNCTION_EPILOGUE is not defined
720    then individual return instructions are generated for each
721    return statement.  Args are same as for FUNCTION_PROLOGUE.
722
723    The function epilogue should not depend on the current stack pointer!
724    It should use the frame pointer only.  This is mandatory because
725    of alloca; we also take advantage of it to omit stack adjustments
726    before returning.
727
728    If the last non-note insn in the function is a BARRIER, then there
729    is no need to emit a function prologue, because control does not fall
730    off the end.  This happens if the function ends in an "exit" call, or
731    if a `return' insn is emitted directly into the function. */
732
733 #define FUNCTION_EPILOGUE(FILE, SIZE)           \
734 do {                                            \
735   rtx last = get_last_insn ();                  \
736   if (last && GET_CODE (last) == NOTE)          \
737     last = prev_nonnote_insn (last);            \
738   if (! last || GET_CODE (last) != BARRIER)     \
739     function_epilogue (FILE, SIZE);             \
740 } while (0)
741
742 /* Output assembler code for a block containing the constant parts
743    of a trampoline, leaving space for the variable parts.  */
744
745 /* On the 386, the trampoline contains three instructions:
746      mov #STATIC,ecx
747      mov #FUNCTION,eax
748      jmp @eax  */
749 #define TRAMPOLINE_TEMPLATE(FILE)                       \
750 {                                                       \
751   ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9));               \
752   ASM_OUTPUT_SHORT (FILE, const0_rtx);                  \
753   ASM_OUTPUT_SHORT (FILE, const0_rtx);                  \
754   ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8));               \
755   ASM_OUTPUT_SHORT (FILE, const0_rtx);                  \
756   ASM_OUTPUT_SHORT (FILE, const0_rtx);                  \
757   ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff));               \
758   ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0));               \
759 }
760
761 /* Length in units of the trampoline for entering a nested function.  */
762
763 #define TRAMPOLINE_SIZE 12
764
765 /* Emit RTL insns to initialize the variable parts of a trampoline.
766    FNADDR is an RTX for the address of the function's pure code.
767    CXT is an RTX for the static chain value for the function.  */
768
769 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)                       \
770 {                                                                       \
771   emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 1)), CXT); \
772   emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 6)), FNADDR); \
773 }
774 \f
775 /* Definitions for register eliminations.
776
777    This is an array of structures.  Each structure initializes one pair
778    of eliminable registers.  The "from" register number is given first,
779    followed by "to".  Eliminations of the same "from" register are listed
780    in order of preference.
781
782    We have two registers that can be eliminated on the i386.  First, the
783    frame pointer register can often be eliminated in favor of the stack
784    pointer register.  Secondly, the argument pointer register can always be
785    eliminated; it is replaced with either the stack or frame pointer. */
786
787 #define ELIMINABLE_REGS                         \
788 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},   \
789  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},   \
790  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
791
792 /* Given FROM and TO register numbers, say whether this elimination is allowed.
793    Frame pointer elimination is automatically handled.
794
795    For the i386, if frame pointer elimination is being done, we would like to
796    convert ap into sp, not fp.
797
798    All other eliminations are valid.  */
799
800 #define CAN_ELIMINATE(FROM, TO)                                 \
801  ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM  \
802   ? ! frame_pointer_needed                                      \
803   : 1)
804
805 /* Define the offset between two registers, one to be eliminated, and the other
806    its replacement, at the start of a routine.  */
807
808 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
809 {                                                                       \
810   if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)     \
811     (OFFSET) = 8;       /* Skip saved PC and previous frame pointer */  \
812   else                                                                  \
813     {                                                                   \
814       int regno;                                                        \
815       int offset = 0;                                                   \
816                                                                         \
817       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)           \
818         if ((regs_ever_live[regno] && ! call_used_regs[regno])          \
819             || (current_function_uses_pic_offset_table                  \
820                 && regno == PIC_OFFSET_TABLE_REGNUM))                   \
821           offset += 4;                                                  \
822                                                                         \
823       (OFFSET) = offset + get_frame_size ();                            \
824                                                                         \
825       if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
826         (OFFSET) += 4;  /* Skip saved PC */                             \
827     }                                                                   \
828 }
829 \f
830 /* Addressing modes, and classification of registers for them.  */
831
832 /* #define HAVE_POST_INCREMENT */
833 /* #define HAVE_POST_DECREMENT */
834
835 /* #define HAVE_PRE_DECREMENT */
836 /* #define HAVE_PRE_INCREMENT */
837
838 /* Macros to check register numbers against specific register classes.  */
839
840 /* These assume that REGNO is a hard or pseudo reg number.
841    They give nonzero only if REGNO is a hard reg of the suitable class
842    or a pseudo reg currently allocated to a suitable hard reg.
843    Since they use reg_renumber, they are safe only once reg_renumber
844    has been allocated, which happens in local-alloc.c.  */
845
846 #define REGNO_OK_FOR_INDEX_P(REGNO) \
847   ((REGNO) < STACK_POINTER_REGNUM \
848    || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
849
850 #define REGNO_OK_FOR_BASE_P(REGNO) \
851   ((REGNO) <= STACK_POINTER_REGNUM \
852    || (REGNO) == ARG_POINTER_REGNUM \
853    || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
854
855 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
856 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
857
858 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
859    and check its validity for a certain class.
860    We have two alternate definitions for each of them.
861    The usual definition accepts all pseudo regs; the other rejects
862    them unless they have been allocated suitable hard regs.
863    The symbol REG_OK_STRICT causes the latter definition to be used.
864
865    Most source files want to accept pseudo regs in the hope that
866    they will get allocated to the class that the insn wants them to be in.
867    Source files for reload pass need to be strict.
868    After reload, it makes no difference, since pseudo regs have
869    been eliminated by then.  */
870
871 #ifndef REG_OK_STRICT
872
873 /* Nonzero if X is a hard reg that can be used as an index or if
874    it is a pseudo reg.  */
875
876 #define REG_OK_FOR_INDEX_P(X) \
877   (REGNO (X) < STACK_POINTER_REGNUM \
878    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
879
880 /* Nonzero if X is a hard reg that can be used as a base reg
881    of if it is a pseudo reg.  */
882   /* ?wfs */
883
884 #define REG_OK_FOR_BASE_P(X) \
885   (REGNO (X) <= STACK_POINTER_REGNUM \
886    || REGNO (X) == ARG_POINTER_REGNUM \
887    || REGNO(X) >= FIRST_PSEUDO_REGISTER)
888
889 #define REG_OK_FOR_STRREG_P(X) \
890   (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
891
892 #else
893
894 /* Nonzero if X is a hard reg that can be used as an index.  */
895 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
896 /* Nonzero if X is a hard reg that can be used as a base reg.  */
897 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
898 #define REG_OK_FOR_STRREG_P(X) \
899   (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
900
901 #endif
902
903 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
904    that is a valid memory address for an instruction.
905    The MODE argument is the machine mode for the MEM expression
906    that wants to use this address.
907
908    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
909    except for CONSTANT_ADDRESS_P which is usually machine-independent.
910
911    See legitimize_pic_address in i386.c for details as to what
912    constitutes a legitimate address when -fpic is used.  */
913
914 #define MAX_REGS_PER_ADDRESS 2
915
916 #define CONSTANT_ADDRESS_P(X)   CONSTANT_P (X)
917
918 /* Nonzero if the constant value X is a legitimate general operand.
919    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
920
921 #define LEGITIMATE_CONSTANT_P(X) 1
922
923 #define GO_IF_INDEXABLE_BASE(X, ADDR)   \
924  if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR
925
926 #define LEGITIMATE_INDEX_REG_P(X)   \
927   (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
928
929 /* Return 1 if X is an index or an index times a scale.  */
930
931 #define LEGITIMATE_INDEX_P(X)   \
932    (LEGITIMATE_INDEX_REG_P (X)                          \
933     || (GET_CODE (X) == MULT                            \
934         && LEGITIMATE_INDEX_REG_P (XEXP (X, 0))         \
935         && GET_CODE (XEXP (X, 1)) == CONST_INT          \
936         && (INTVAL (XEXP (X, 1)) == 2                   \
937             || INTVAL (XEXP (X, 1)) == 4                \
938             || INTVAL (XEXP (X, 1)) == 8)))
939
940 /* Go to ADDR if X is an index term, a base reg, or a sum of those.  */
941
942 #define GO_IF_INDEXING(X, ADDR) \
943 { if (LEGITIMATE_INDEX_P (X)) goto ADDR;                                \
944   GO_IF_INDEXABLE_BASE (X, ADDR);                                       \
945   if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0)))         \
946     { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); }                       \
947   if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1)))         \
948     { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
949
950 /* We used to allow this, but it isn't ever used.
951    || ((GET_CODE (X) == POST_DEC || GET_CODE (X) == POST_INC)           \
952        && REG_P (XEXP (X, 0))                                           \
953        && REG_OK_FOR_STRREG_P (XEXP (X, 0)))                            \
954 */
955
956 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
957 {                                                                       \
958   if (CONSTANT_ADDRESS_P (X)                                            \
959       && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (X)))                  \
960     goto ADDR;                                                          \
961   GO_IF_INDEXING (X, ADDR);                                             \
962   if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1)))         \
963     {                                                                   \
964       rtx x0 = XEXP (X, 0);                                             \
965       if (! flag_pic || ! SYMBOLIC_CONST (XEXP (X, 1)))                 \
966         { GO_IF_INDEXING (x0, ADDR); }                                  \
967       else if (x0 == pic_offset_table_rtx)                              \
968         goto ADDR;                                                      \
969       else if (GET_CODE (x0) == PLUS)                                   \
970         {                                                               \
971           if (XEXP (x0, 0) == pic_offset_table_rtx)                     \
972             { GO_IF_INDEXABLE_BASE (XEXP (x0, 1), ADDR); }              \
973           if (XEXP (x0, 1) == pic_offset_table_rtx)                     \
974             { GO_IF_INDEXABLE_BASE (XEXP (x0, 0), ADDR); }              \
975         }                                                               \
976     }                                                                   \
977 }
978
979 /* Try machine-dependent ways of modifying an illegitimate address
980    to be legitimate.  If we find one, return the new, valid address.
981    This macro is used in only one place: `memory_address' in explow.c.
982
983    OLDX is the address as it was before break_out_memory_refs was called.
984    In some cases it is useful to look at this to decide what needs to be done.
985
986    MODE and WIN are passed so that this macro can use
987    GO_IF_LEGITIMATE_ADDRESS.
988
989    It is always safe for this macro to do nothing.  It exists to recognize
990    opportunities to optimize the output.
991
992    For the 80386, we handle X+REG by loading X into a register R and
993    using R+REG.  R will go in a general reg and indexing will be used.
994    However, if REG is a broken-out memory address or multiplication,
995    nothing needs to be done because REG can certainly go in a general reg.
996
997    When -fpic is used, special handling is needed for symbolic references.
998    See comments by legitimize_pic_address in i386.c for details.  */
999
1000 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)   \
1001 { extern rtx legitimize_pic_address ();                                 \
1002   int ch = (X) != (OLDX);                                               \
1003   if (flag_pic && SYMBOLIC_CONST (X))                                   \
1004     {                                                                   \
1005       (X) = legitimize_pic_address (X, 0);                              \
1006       if (memory_address_p (MODE, X))                                   \
1007         goto WIN;                                                       \
1008     }                                                                   \
1009   if (GET_CODE (X) == PLUS)                                             \
1010     { if (GET_CODE (XEXP (X, 0)) == MULT)                               \
1011         ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0);           \
1012       if (GET_CODE (XEXP (X, 1)) == MULT)                               \
1013         ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0);           \
1014       if (ch && GET_CODE (XEXP (X, 1)) == REG                           \
1015           && GET_CODE (XEXP (X, 0)) == REG)                             \
1016         goto WIN;                                                       \
1017       if (flag_pic && SYMBOLIC_CONST (XEXP (X, 1)))                     \
1018         ch = 1, (X) = legitimize_pic_address (X, 0);                    \
1019       if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); }              \
1020       if (GET_CODE (XEXP (X, 0)) == REG)                                \
1021         { register rtx temp = gen_reg_rtx (Pmode);                      \
1022           register rtx val = force_operand (XEXP (X, 1), temp);         \
1023           if (val != temp) emit_move_insn (temp, val);                  \
1024           XEXP (X, 1) = temp;                                           \
1025           goto WIN; }                                                   \
1026       else if (GET_CODE (XEXP (X, 1)) == REG)                           \
1027         { register rtx temp = gen_reg_rtx (Pmode);                      \
1028           register rtx val = force_operand (XEXP (X, 0), temp);         \
1029           if (val != temp) emit_move_insn (temp, val);                  \
1030           XEXP (X, 0) = temp;                                           \
1031           goto WIN; }}}
1032
1033 /* Nonzero if the constant value X is a legitimate general operand
1034    when generating PIC code.  It is given that flag_pic is on and 
1035    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1036
1037 #define LEGITIMATE_PIC_OPERAND_P(X) \
1038   (! SYMBOLIC_CONST (X)                                                 \
1039    || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
1040
1041 #define SYMBOLIC_CONST(X)       \
1042 (GET_CODE (X) == SYMBOL_REF                                             \
1043  || GET_CODE (X) == LABEL_REF                                           \
1044  || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1045
1046 /* Go to LABEL if ADDR (a legitimate address expression)
1047    has an effect that depends on the machine mode it is used for.
1048    On the 80386, only postdecrement and postincrement address depend thus
1049    (the amount of decrement or increment being the length of the operand).  */
1050 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)        \
1051  if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1052 \f
1053 /* Define this macro if references to a symbol must be treated
1054    differently depending on something about the variable or
1055    function named by the symbol (such as what section it is in).
1056
1057    On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
1058    so that we may access it directly in the GOT.  */
1059
1060 #define ENCODE_SECTION_INFO(DECL) \
1061 do                                                                      \
1062   {                                                                     \
1063     if (flag_pic)                                                       \
1064       {                                                                 \
1065         rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'            \
1066                    ? TREE_CST_RTL (DECL) : DECL_RTL (DECL));            \
1067         SYMBOL_REF_FLAG (XEXP (rtl, 0))                                 \
1068           = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'                  \
1069              || ! TREE_PUBLIC (DECL));                                  \
1070       }                                                                 \
1071   }                                                                     \
1072 while (0)
1073 \f
1074 /* Specify the machine mode that this machine uses
1075    for the index in the tablejump instruction.  */
1076 #define CASE_VECTOR_MODE Pmode
1077
1078 /* Define this if the tablejump instruction expects the table
1079    to contain offsets from the address of the table.
1080    Do not define this if the table should contain absolute addresses.  */
1081 /* #define CASE_VECTOR_PC_RELATIVE */
1082
1083 /* Specify the tree operation to be used to convert reals to integers.
1084    This should be changed to take advantage of fist --wfs ??
1085  */
1086 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1087
1088 /* This is the kind of divide that is easiest to do in the general case.  */
1089 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1090
1091 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1092 #define DEFAULT_SIGNED_CHAR 1
1093
1094 /* Max number of bytes we can move from memory to memory
1095    in one reasonably fast instruction.  */
1096 #define MOVE_MAX 4
1097
1098 /* MOVE_RATIO is the number of move instructions that is better than a
1099    block move.  Make this large on i386, since the block move is very
1100    inefficient with small blocks, and the hard register needs of the
1101    block move require much reload work. */
1102 #define MOVE_RATIO 5
1103
1104 /* Define this if zero-extension is slow (more than one real instruction).  */
1105 /* #define SLOW_ZERO_EXTEND */
1106
1107 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1108 #define SLOW_BYTE_ACCESS 0
1109
1110 /* Define if shifts truncate the shift count
1111    which implies one can omit a sign-extension or zero-extension
1112    of a shift count.  */
1113 /* One i386, shifts do truncate the count.  But bit opcodes don't. */
1114
1115 /* #define SHIFT_COUNT_TRUNCATED */
1116
1117 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1118    is done just by pretending it is already truncated.  */
1119 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1120
1121 /* We assume that the store-condition-codes instructions store 0 for false
1122    and some other value for true.  This is the value stored for true.  */
1123
1124 #define STORE_FLAG_VALUE 1
1125
1126 /* When a prototype says `char' or `short', really pass an `int'.
1127    (The 386 can't easily push less than an int.)  */
1128
1129 #define PROMOTE_PROTOTYPES
1130
1131 /* Specify the machine mode that pointers have.
1132    After generation of rtl, the compiler makes no further distinction
1133    between pointers and any other objects of this machine mode.  */
1134 #define Pmode SImode
1135
1136 /* A function address in a call instruction
1137    is a byte address (for indexing purposes)
1138    so give the MEM rtx a byte's mode.  */
1139 #define FUNCTION_MODE QImode
1140
1141 /* Define this if addresses of constant functions
1142    shouldn't be put through pseudo regs where they can be cse'd.
1143    Desirable on the 386 because a CALL with a constant address is
1144    not much slower than one with a register address.  */
1145 #define NO_FUNCTION_CSE
1146
1147 /* Provide the costs of a rtl expression.  This is in the body of a
1148    switch on CODE. */
1149
1150 #define RTX_COSTS(X,CODE,OUTER_CODE)                    \
1151   case MULT:                                            \
1152     return COSTS_N_INSNS (10);                          \
1153   case DIV:                                             \
1154   case UDIV:                                            \
1155   case MOD:                                             \
1156   case UMOD:                                            \
1157     return COSTS_N_INSNS (40);                          \
1158   case PLUS:                                            \
1159     if (GET_CODE (XEXP (X, 0)) == REG                   \
1160         && GET_CODE (XEXP (X, 1)) == CONST_INT)         \
1161       return 1;                                         \
1162     break;
1163
1164
1165 /* Compute the cost of computing a constant rtl expression RTX
1166    whose rtx-code is CODE.  The body of this macro is a portion
1167    of a switch statement.  If the code is computed here,
1168    return it with a return statement.  Otherwise, break from the switch.  */
1169
1170 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1171   case CONST_INT:                                               \
1172   case CONST:                                                   \
1173   case LABEL_REF:                                               \
1174   case SYMBOL_REF:                                              \
1175     return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 0;            \
1176   case CONST_DOUBLE:                                            \
1177     {                                                           \
1178       int code = standard_80387_constant_p (RTX);               \
1179       return code == 1 ? 0 :                                    \
1180              code == 2 ? 1 :                                    \
1181                          2;                                     \
1182     }
1183
1184 /* Compute the cost of an address.  This is meant to approximate the size
1185    and/or execution delay of an insn using that address.  If the cost is
1186    approximated by the RTL complexity, including CONST_COSTS above, as
1187    is usually the case for CISC machines, this macro should not be defined.
1188    For aggressively RISCy machines, only one insn format is allowed, so
1189    this macro should be a constant.  The value of this macro only matters
1190    for valid addresses.
1191
1192    For i386, it is better to use a complex address than let gcc copy
1193    the address into a reg and make a new pseudo.  But not if the address
1194    requires to two regs - that would mean more pseudos with longer
1195    lifetimes.  */
1196
1197 #define ADDRESS_COST(RTX) \
1198   ((CONSTANT_P (RTX)                                            \
1199     || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1))    \
1200         && REG_P (XEXP (RTX, 0)))) ? 0                          \
1201    : REG_P (RTX) ? 1                                            \
1202    : 2)
1203 \f
1204 /* Add any extra modes needed to represent the condition code.
1205
1206    For the i386, we need separate modes when floating-point equality
1207    comparisons are being done.  */
1208
1209 #define EXTRA_CC_MODES CCFPEQmode
1210
1211 /* Define the names for the modes specified above.  */
1212 #define EXTRA_CC_NAMES "CCFPEQ"
1213
1214 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1215    return the mode to be used for the comparison.
1216
1217    For floating-point equality comparisons, CCFPEQmode should be used.
1218    VOIDmode should be used in all other cases.  */
1219
1220 #define SELECT_CC_MODE(OP,X,Y) \
1221   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT                  \
1222    && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : CCmode)
1223
1224 /* Define the information needed to generate branch and scc insns.  This is
1225    stored from the compare operation.  Note that we can't use "rtx" here
1226    since it hasn't been defined!  */
1227
1228 extern struct rtx_def *i386_compare_op0, *i386_compare_op1;
1229 extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
1230
1231 /* Tell final.c how to eliminate redundant test instructions.  */
1232
1233 /* Here we define machine-dependent flags and fields in cc_status
1234    (see `conditions.h').  */
1235
1236 /* Set if the cc value is actually in the 80387, so a floating point
1237    conditional branch must be output.  */
1238 #define CC_IN_80387 04000
1239
1240 /* Set if the CC value was stored in a nonstandard way, so that
1241    the state of equality is indicated by zero in the carry bit.  */
1242 #define CC_Z_IN_NOT_C 010000
1243
1244 /* Store in cc_status the expressions
1245    that the condition codes will describe
1246    after execution of an instruction whose pattern is EXP.
1247    Do not alter them if the instruction would not alter the cc's.  */
1248
1249 #define NOTICE_UPDATE_CC(EXP, INSN) \
1250   notice_update_cc((EXP))
1251
1252 /* Output a signed jump insn.  Use template NORMAL ordinarily, or
1253    FLOAT following a floating point comparison.
1254    Use NO_OV following an arithmetic insn that set the cc's
1255    before a test insn that was deleted.
1256    NO_OV may be zero, meaning final should reinsert the test insn
1257    because the jump cannot be handled properly without it.  */
1258
1259 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV)                       \
1260 {                                                               \
1261   if (cc_prev_status.flags & CC_IN_80387)                       \
1262     return FLOAT;                                               \
1263   if (cc_prev_status.flags & CC_NO_OVERFLOW)                    \
1264     return NO_OV;                                               \
1265   return NORMAL;                                                \
1266 }
1267 \f
1268 /* Control the assembler format that we output, to the extent
1269    this does not vary between assemblers.  */
1270
1271 /* How to refer to registers in assembler output.
1272    This sequence is indexed by compiler's hard-register-number (see above). */
1273
1274 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
1275    For non floating point regs, the following are the HImode names.
1276
1277    For float regs, the stack top is sometimes referred to as "%st(0)"
1278    instead of just "%st".  PRINT_REG in i386.c handles with with the
1279    "y" code.  */
1280
1281 #define HI_REGISTER_NAMES \
1282 {"ax","dx","cx","bx","si","di","bp","sp",          \
1283  "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
1284
1285 #define REGISTER_NAMES HI_REGISTER_NAMES
1286
1287 /* Table of additional register names to use in user input.  */
1288
1289 #define ADDITIONAL_REGISTER_NAMES \
1290 { "eax", 0, "edx", 1, "ecx", 2, "ebx", 3,       \
1291   "esi", 4, "edi", 5, "ebp", 6, "esp", 7,       \
1292   "al", 0, "dl", 1, "cl", 2, "bl", 3,           \
1293   "ah", 0, "dh", 1, "ch", 2, "bh", 3 }
1294
1295 /* Note we are omitting these since currently I don't know how
1296 to get gcc to use these, since they want the same but different
1297 number as al, and ax.
1298 */
1299
1300 /* note the last four are not really qi_registers, but
1301    the md will have to never output movb into one of them
1302    only a movw .  There is no movb into the last four regs */
1303
1304 #define QI_REGISTER_NAMES \
1305 {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
1306
1307 /* These parallel the array above, and can be used to access bits 8:15
1308    of regs 0 through 3. */
1309
1310 #define QI_HIGH_REGISTER_NAMES \
1311 {"ah", "dh", "ch", "bh", }
1312
1313 /* How to renumber registers for dbx and gdb.  */
1314
1315 /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17}  */
1316 #define DBX_REGISTER_NUMBER(n) \
1317 ((n) == 0 ? 0 : \
1318  (n) == 1 ? 2 : \
1319  (n) == 2 ? 1 : \
1320  (n) == 3 ? 3 : \
1321  (n) == 4 ? 6 : \
1322  (n) == 5 ? 7 : \
1323  (n) == 6 ? 4 : \
1324  (n) == 7 ? 5 : \
1325  (n) + 4)
1326
1327 /* This is how to output the definition of a user-level label named NAME,
1328    such as the label on a static function or variable NAME.  */
1329
1330 #define ASM_OUTPUT_LABEL(FILE,NAME)     \
1331   (assemble_name (FILE, NAME), fputs (":\n", FILE))
1332
1333 /* This is how to output an assembler line defining a `double' constant.  */
1334
1335 #define ASM_OUTPUT_DOUBLE(FILE,VALUE)  \
1336   fprintf (FILE, "%s %.22e\n", ASM_DOUBLE, (VALUE))
1337
1338
1339 /* This is how to output an assembler line defining a `float' constant.  */
1340
1341 #define ASM_OUTPUT_FLOAT(FILE,VALUE)  \
1342 do { union { float f; long l;} tem;                     \
1343      tem.f = (VALUE);                                   \
1344      fprintf((FILE), "%s 0x%x\n", ASM_LONG, tem.l);     \
1345    } while (0)
1346
1347
1348 /* Store in OUTPUT a string (made with alloca) containing
1349    an assembler-name for a local static variable named NAME.
1350    LABELNO is an integer which is different for each call.  */
1351
1352 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)  \
1353 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),    \
1354   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1355
1356
1357
1358 /* This is how to output an assembler line defining an `int' constant.  */
1359
1360 #define ASM_OUTPUT_INT(FILE,VALUE)  \
1361 ( fprintf (FILE, "%s ", ASM_LONG),              \
1362   output_addr_const (FILE,(VALUE)),             \
1363   putc('\n',FILE))
1364
1365 /* Likewise for `char' and `short' constants.  */
1366 /* is this supposed to do align too?? */
1367
1368 #define ASM_OUTPUT_SHORT(FILE,VALUE)  \
1369 ( fprintf (FILE, "%s ", ASM_SHORT),             \
1370   output_addr_const (FILE,(VALUE)),             \
1371   putc('\n',FILE))
1372
1373 /*
1374 #define ASM_OUTPUT_SHORT(FILE,VALUE)  \
1375 ( fprintf (FILE, "%s ", ASM_BYTE_OP),           \
1376   output_addr_const (FILE,(VALUE)),             \
1377   fputs (",", FILE),                            \
1378   output_addr_const (FILE,(VALUE)),             \
1379   fputs (" >> 8\n",FILE))
1380 */
1381
1382
1383 #define ASM_OUTPUT_CHAR(FILE,VALUE)  \
1384 ( fprintf (FILE, "%s ", ASM_BYTE_OP),           \
1385   output_addr_const (FILE, (VALUE)),            \
1386   putc ('\n', FILE))
1387
1388 /* This is how to output an assembler line for a numeric constant byte.  */
1389
1390 #define ASM_OUTPUT_BYTE(FILE,VALUE)  \
1391   fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
1392
1393 /* This is how to output an insn to push a register on the stack.
1394    It need not be very fast code.  */
1395
1396 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1397   fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO])
1398
1399 /* This is how to output an insn to pop a register from the stack.
1400    It need not be very fast code.  */
1401
1402 #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1403   fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO])
1404
1405 /* This is how to output an element of a case-vector that is absolute.
1406      */
1407
1408 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1409   fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
1410
1411 /* This is how to output an element of a case-vector that is relative.
1412    We don't use these on the 386 yet, because the ATT assembler can't do
1413    forward reference the differences.  
1414  */
1415
1416 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1417   fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
1418
1419 /* Define the parentheses used to group arithmetic operations
1420    in assembler code.  */
1421
1422 #define ASM_OPEN_PAREN ""
1423 #define ASM_CLOSE_PAREN ""
1424
1425 /* Define results of standard character escape sequences.  */
1426 #define TARGET_BELL 007
1427 #define TARGET_BS 010
1428 #define TARGET_TAB 011
1429 #define TARGET_NEWLINE 012
1430 #define TARGET_VT 013
1431 #define TARGET_FF 014
1432 #define TARGET_CR 015
1433 \f
1434 /* Print operand X (an rtx) in assembler syntax to file FILE.
1435    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1436    The CODE z takes the size of operand from the following digit, and
1437    outputs b,w,or l respectively.
1438
1439    On the 80386, we use several such letters:
1440    f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
1441    L,W,B,Q,S -- print the opcode suffix for specified size of operand.
1442    R -- print the prefix for register names.
1443    z -- print the opcode suffix for the size of the current operand.
1444    * -- print a star (in certain assembler syntax)
1445    w -- print the operand as if it's a "word" (HImode) even if it isn't.
1446    b -- print the operand as if it's a byte (QImode) even if it isn't.
1447    c -- don't print special prefixes before constant operands.  */
1448
1449 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)                               \
1450   ((CODE) == '*')
1451
1452 /* Print the name of a register based on its machine mode and number.
1453    If CODE is 'w', pretend the mode is HImode.
1454    If CODE is 'b', pretend the mode is QImode.
1455    If CODE is 'k', pretend the mode is SImode.
1456    If CODE is 'h', pretend the reg is the `high' byte register.
1457    If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
1458
1459 extern char *hi_reg_name[];
1460 extern char *qi_reg_name[];
1461 extern char *qi_high_reg_name[];
1462
1463 #define PRINT_REG(X, CODE, FILE) \
1464   do { if (REGNO (X) == ARG_POINTER_REGNUM)             \
1465          abort ();                                      \
1466        fprintf (FILE, "%s", RP);                        \
1467        switch ((CODE == 'w' ? 2                         \
1468                 : CODE == 'b' ? 1                       \
1469                 : CODE == 'k' ? 4                       \
1470                 : CODE == 'y' ? 3                       \
1471                 : CODE == 'h' ? 0                       \
1472                 : GET_MODE_SIZE (GET_MODE (X))))        \
1473          {                                              \
1474          case 3:                                        \
1475            if (STACK_TOP_P (X))                         \
1476              {                                          \
1477                fputs ("st(0)", FILE);                   \
1478                break;                                   \
1479              }                                          \
1480          case 4:                                        \
1481          case 8:                                        \
1482            if (!FP_REG_P (X)) fputs ("e", FILE);        \
1483          case 2:                                        \
1484            fputs (hi_reg_name[REGNO (X)], FILE);        \
1485            break;                                       \
1486          case 1:                                        \
1487            fputs (qi_reg_name[REGNO (X)], FILE);        \
1488            break;                                       \
1489          case 0:                                        \
1490            fputs (qi_high_reg_name[REGNO (X)], FILE);   \
1491            break;                                       \
1492          }                                              \
1493      } while (0)
1494
1495 #define PRINT_OPERAND(FILE, X, CODE)  \
1496   print_operand (FILE, X, CODE)
1497
1498 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1499   print_operand_address (FILE, ADDR)
1500
1501 /* Output the prefix for an immediate operand, or for an offset operand.  */
1502 #define PRINT_IMMED_PREFIX(FILE)  fputs (IP, (FILE))
1503 #define PRINT_OFFSET_PREFIX(FILE)  fputs (IP, (FILE))
1504
1505 /* Routines in libgcc that return floats must return them in an fp reg,
1506    just as other functions do which return such values.
1507    These macros make that happen.  */
1508
1509 #define FLOAT_VALUE_TYPE float
1510 #define INTIFY(FLOATVAL) FLOATVAL
1511
1512 /* Nonzero if INSN magically clobbers register REGNO.  */
1513
1514 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO)   \
1515     (FP_REGNO_P (REGNO)                         \
1516      && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
1517 */
1518
1519 /* a letter which is not needed by the normal asm syntax, which
1520    we can use for operand syntax in the extended asm */
1521
1522 #define ASM_OPERAND_LETTER '#'
1523 \f
1524 #define RET return ""
1525 #define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx))
1526 \f
1527 /*
1528 Local variables:
1529 version-control: t
1530 End:
1531 */