OSDN Git Service

PR target/38842
[pf3gnuchains/gcc-fork.git] / gcc / config / arm / arm1136jfs.md
1 ;; ARM 1136J[F]-S Pipeline Description
2 ;; Copyright (C) 2003, 2007 Free Software Foundation, Inc.
3 ;; Written by CodeSourcery, LLC.
4 ;;
5 ;; This file is part of GCC.
6 ;;
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
10 ;; any later version.
11 ;;
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 ;; General Public License for more details.
16 ;;
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3.  If not see
19 ;; <http://www.gnu.org/licenses/>.  */
20
21 ;; These descriptions are based on the information contained in the
22 ;; ARM1136JF-S Technical Reference Manual, Copyright (c) 2003 ARM
23 ;; Limited.
24 ;;
25
26 ;; This automaton provides a pipeline description for the ARM
27 ;; 1136J-S and 1136JF-S cores.
28 ;;
29 ;; The model given here assumes that the condition for all conditional
30 ;; instructions is "true", i.e., that all of the instructions are
31 ;; actually executed.
32
33 (define_automaton "arm1136jfs")
34
35 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36 ;; Pipelines
37 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38
39 ;; There are three distinct pipelines (page 1-26 and following):
40 ;;
41 ;; - A 4-stage decode pipeline, shared by all three.  It has fetch (1),
42 ;;   fetch (2), decode, and issue stages.  Since this is always involved,
43 ;;   we do not model it in the scheduler.
44 ;;
45 ;; - A 4-stage ALU pipeline.  It has shifter, ALU (main integer operations),
46 ;;   and saturation stages.  The fourth stage is writeback; see below.
47 ;;
48 ;; - A 4-stage multiply-accumulate pipeline.  It has three stages, called
49 ;;   MAC1 through MAC3, and a fourth writeback stage.
50 ;;
51 ;;   The 4th-stage writeback is shared between the ALU and MAC pipelines,
52 ;;   which operate in lockstep.  Results from either pipeline will be
53 ;;   moved into the writeback stage.  Because the two pipelines operate
54 ;;   in lockstep, we schedule them as a single "execute" pipeline.
55 ;;
56 ;; - A 4-stage LSU pipeline.  It has address generation, data cache (1),
57 ;;   data cache (2), and writeback stages.  (Note that this pipeline,
58 ;;   including the writeback stage, is independent from the ALU & LSU pipes.)  
59
60 (define_cpu_unit "e_1,e_2,e_3,e_wb" "arm1136jfs")     ; ALU and MAC
61 ; e_1 = Sh/Mac1, e_2 = ALU/Mac2, e_3 = SAT/Mac3
62 (define_cpu_unit "l_a,l_dc1,l_dc2,l_wb" "arm1136jfs") ; Load/Store
63
64 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
65 ;; ALU Instructions
66 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
67
68 ;; ALU instructions require eight cycles to execute, and use the ALU
69 ;; pipeline in each of the eight stages.  The results are available
70 ;; after the alu stage has finished.
71 ;;
72 ;; If the destination register is the PC, the pipelines are stalled
73 ;; for several cycles.  That case is not modelled here.
74
75 ;; ALU operations with no shifted operand
76 (define_insn_reservation "11_alu_op" 2
77  (and (eq_attr "tune" "arm1136js,arm1136jfs")
78       (eq_attr "type" "alu"))
79  "e_1,e_2,e_3,e_wb")
80
81 ;; ALU operations with a shift-by-constant operand
82 (define_insn_reservation "11_alu_shift_op" 2
83  (and (eq_attr "tune" "arm1136js,arm1136jfs")
84       (eq_attr "type" "alu_shift"))
85  "e_1,e_2,e_3,e_wb")
86
87 ;; ALU operations with a shift-by-register operand
88 ;; These really stall in the decoder, in order to read
89 ;; the shift value in a second cycle. Pretend we take two cycles in
90 ;; the shift stage.
91 (define_insn_reservation "11_alu_shift_reg_op" 3
92  (and (eq_attr "tune" "arm1136js,arm1136jfs")
93       (eq_attr "type" "alu_shift_reg"))
94  "e_1*2,e_2,e_3,e_wb")
95
96 ;; alu_ops can start sooner, if there is no shifter dependency
97 (define_bypass 1 "11_alu_op,11_alu_shift_op"
98                "11_alu_op")
99 (define_bypass 1 "11_alu_op,11_alu_shift_op"
100                "11_alu_shift_op"
101                "arm_no_early_alu_shift_value_dep")
102 (define_bypass 1 "11_alu_op,11_alu_shift_op"
103                "11_alu_shift_reg_op"
104                "arm_no_early_alu_shift_dep")
105 (define_bypass 2 "11_alu_shift_reg_op"
106                "11_alu_op")
107 (define_bypass 2 "11_alu_shift_reg_op"
108                "11_alu_shift_op"
109                "arm_no_early_alu_shift_value_dep")
110 (define_bypass 2 "11_alu_shift_reg_op"
111                "11_alu_shift_reg_op"
112                "arm_no_early_alu_shift_dep")
113
114 (define_bypass 1 "11_alu_op,11_alu_shift_op"
115                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
116                "arm_no_early_mul_dep")
117 (define_bypass 2 "11_alu_shift_reg_op"
118                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
119                "arm_no_early_mul_dep")
120
121 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
122 ;; Multiplication Instructions
123 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
124
125 ;; Multiplication instructions loop in the first two execute stages until
126 ;; the instruction has been passed through the multiplier array enough
127 ;; times.
128
129 ;; Multiply and multiply-accumulate results are available after four stages.
130 (define_insn_reservation "11_mult1" 4
131  (and (eq_attr "tune" "arm1136js,arm1136jfs")
132       (eq_attr "insn" "mul,mla"))
133  "e_1*2,e_2,e_3,e_wb")
134
135 ;; The *S variants set the condition flags, which requires three more cycles.
136 (define_insn_reservation "11_mult2" 4
137  (and (eq_attr "tune" "arm1136js,arm1136jfs")
138       (eq_attr "insn" "muls,mlas"))
139  "e_1*2,e_2,e_3,e_wb")
140
141 (define_bypass 3 "11_mult1,11_mult2"
142                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
143                "arm_no_early_mul_dep")
144 (define_bypass 3 "11_mult1,11_mult2"
145                "11_alu_op")
146 (define_bypass 3 "11_mult1,11_mult2"
147                "11_alu_shift_op"
148                "arm_no_early_alu_shift_value_dep")
149 (define_bypass 3 "11_mult1,11_mult2"
150                "11_alu_shift_reg_op"
151                "arm_no_early_alu_shift_dep")
152 (define_bypass 3 "11_mult1,11_mult2"
153                "11_store1"
154                "arm_no_early_store_addr_dep")
155
156 ;; Signed and unsigned multiply long results are available across two cycles;
157 ;; the less significant word is available one cycle before the more significant
158 ;; word.  Here we conservatively wait until both are available, which is
159 ;; after three iterations and the memory cycle.  The same is also true of
160 ;; the two multiply-accumulate instructions.
161 (define_insn_reservation "11_mult3" 5
162  (and (eq_attr "tune" "arm1136js,arm1136jfs")
163       (eq_attr "insn" "smull,umull,smlal,umlal"))
164  "e_1*3,e_2,e_3,e_wb*2")
165
166 ;; The *S variants set the condition flags, which requires three more cycles.
167 (define_insn_reservation "11_mult4" 5
168  (and (eq_attr "tune" "arm1136js,arm1136jfs")
169       (eq_attr "insn" "smulls,umulls,smlals,umlals"))
170  "e_1*3,e_2,e_3,e_wb*2")
171
172 (define_bypass 4 "11_mult3,11_mult4"
173                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
174                "arm_no_early_mul_dep")
175 (define_bypass 4 "11_mult3,11_mult4"
176                "11_alu_op")
177 (define_bypass 4 "11_mult3,11_mult4"
178                "11_alu_shift_op"
179                "arm_no_early_alu_shift_value_dep")
180 (define_bypass 4 "11_mult3,11_mult4"
181                "11_alu_shift_reg_op"
182                "arm_no_early_alu_shift_dep")
183 (define_bypass 4 "11_mult3,11_mult4"
184                "11_store1"
185                "arm_no_early_store_addr_dep")
186
187 ;; Various 16x16->32 multiplies and multiply-accumulates, using combinations
188 ;; of high and low halves of the argument registers.  They take a single
189 ;; pass through the pipeline and make the result available after three
190 ;; cycles.
191 (define_insn_reservation "11_mult5" 3
192  (and (eq_attr "tune" "arm1136js,arm1136jfs")
193       (eq_attr "insn" "smulxy,smlaxy,smulwy,smlawy,smuad,smuadx,smlad,smladx,smusd,smusdx,smlsd,smlsdx"))
194  "e_1,e_2,e_3,e_wb")
195
196 (define_bypass 2 "11_mult5"
197                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
198                "arm_no_early_mul_dep")
199 (define_bypass 2 "11_mult5"
200                "11_alu_op")
201 (define_bypass 2 "11_mult5"
202                "11_alu_shift_op"
203                "arm_no_early_alu_shift_value_dep")
204 (define_bypass 2 "11_mult5"
205                "11_alu_shift_reg_op"
206                "arm_no_early_alu_shift_dep")
207 (define_bypass 2 "11_mult5"
208                "11_store1"
209                "arm_no_early_store_addr_dep")
210
211 ;; The same idea, then the 32-bit result is added to a 64-bit quantity.
212 (define_insn_reservation "11_mult6" 4
213  (and (eq_attr "tune" "arm1136js,arm1136jfs")
214       (eq_attr "insn" "smlalxy"))
215  "e_1*2,e_2,e_3,e_wb*2")
216
217 ;; Signed 32x32 multiply, then the most significant 32 bits are extracted
218 ;; and are available after the memory stage.
219 (define_insn_reservation "11_mult7" 4
220  (and (eq_attr "tune" "arm1136js,arm1136jfs")
221       (eq_attr "insn" "smmul,smmulr"))
222  "e_1*2,e_2,e_3,e_wb")
223
224 (define_bypass 3 "11_mult6,11_mult7"
225                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
226                "arm_no_early_mul_dep")
227 (define_bypass 3 "11_mult6,11_mult7"
228                "11_alu_op")
229 (define_bypass 3 "11_mult6,11_mult7"
230                "11_alu_shift_op"
231                "arm_no_early_alu_shift_value_dep")
232 (define_bypass 3 "11_mult6,11_mult7"
233                "11_alu_shift_reg_op"
234                "arm_no_early_alu_shift_dep")
235 (define_bypass 3 "11_mult6,11_mult7"
236                "11_store1"
237                "arm_no_early_store_addr_dep")
238
239 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
240 ;; Branch Instructions
241 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
242
243 ;; These vary greatly depending on their arguments and the results of
244 ;; stat prediction.  Cycle count ranges from zero (unconditional branch,
245 ;; folded dynamic prediction) to seven (incorrect predictions, etc).  We
246 ;; assume an optimal case for now, because the cost of a cache miss
247 ;; overwhelms the cost of everything else anyhow.
248
249 (define_insn_reservation "11_branches" 0
250  (and (eq_attr "tune" "arm1136js,arm1136jfs")
251       (eq_attr "type" "branch"))
252  "nothing")
253
254 ;; Call latencies are not predictable.  A semi-arbitrary very large
255 ;; number is used as "positive infinity" so that everything should be
256 ;; finished by the time of return.
257 (define_insn_reservation "11_call" 32
258  (and (eq_attr "tune" "arm1136js,arm1136jfs")
259       (eq_attr "type" "call"))
260  "nothing")
261
262 ;; Branches are predicted. A correctly predicted branch will be no
263 ;; cost, but we're conservative here, and use the timings a
264 ;; late-register would give us.
265 (define_bypass 1 "11_alu_op,11_alu_shift_op"
266                "11_branches")
267 (define_bypass 2 "11_alu_shift_reg_op"
268                "11_branches")
269 (define_bypass 2 "11_load1,11_load2"
270                "11_branches")
271 (define_bypass 3 "11_load34"
272                "11_branches")
273
274 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
275 ;; Load/Store Instructions
276 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
277
278 ;; The models for load/store instructions do not accurately describe
279 ;; the difference between operations with a base register writeback.
280 ;; These models assume that all memory references hit in dcache.  Also,
281 ;; if the PC is one of the registers involved, there are additional stalls
282 ;; not modelled here.  Addressing modes are also not modelled.
283
284 (define_insn_reservation "11_load1" 3
285  (and (eq_attr "tune" "arm1136js,arm1136jfs")
286       (eq_attr "type" "load1"))
287  "l_a+e_1,l_dc1,l_dc2,l_wb")
288
289 ;; Load byte results are not available until the writeback stage, where
290 ;; the correct byte is extracted.
291
292 (define_insn_reservation "11_loadb" 4
293  (and (eq_attr "tune" "arm1136js,arm1136jfs")
294       (eq_attr "type" "load_byte"))
295  "l_a+e_1,l_dc1,l_dc2,l_wb")
296
297 (define_insn_reservation "11_store1" 0
298  (and (eq_attr "tune" "arm1136js,arm1136jfs")
299       (eq_attr "type" "store1"))
300  "l_a+e_1,l_dc1,l_dc2,l_wb")
301
302 ;; Load/store double words into adjacent registers.  The timing and
303 ;; latencies are different depending on whether the address is 64-bit
304 ;; aligned.  This model assumes that it is.
305 (define_insn_reservation "11_load2" 3
306  (and (eq_attr "tune" "arm1136js,arm1136jfs")
307       (eq_attr "type" "load2"))
308  "l_a+e_1,l_dc1,l_dc2,l_wb")
309
310 (define_insn_reservation "11_store2" 0
311  (and (eq_attr "tune" "arm1136js,arm1136jfs")
312       (eq_attr "type" "store2"))
313  "l_a+e_1,l_dc1,l_dc2,l_wb")
314
315 ;; Load/store multiple registers.  Two registers are stored per cycle.
316 ;; Actual timing depends on how many registers are affected, so we
317 ;; optimistically schedule a low latency.
318 (define_insn_reservation "11_load34" 4
319  (and (eq_attr "tune" "arm1136js,arm1136jfs")
320       (eq_attr "type" "load3,load4"))
321  "l_a+e_1,l_dc1*2,l_dc2,l_wb")
322
323 (define_insn_reservation "11_store34" 0
324  (and (eq_attr "tune" "arm1136js,arm1136jfs")
325       (eq_attr "type" "store3,store4"))
326  "l_a+e_1,l_dc1*2,l_dc2,l_wb")
327
328 ;; A store can start immediately after an alu op, if that alu op does
329 ;; not provide part of the address to access.
330 (define_bypass 1 "11_alu_op,11_alu_shift_op"
331                "11_store1"
332                "arm_no_early_store_addr_dep")
333 (define_bypass 2 "11_alu_shift_reg_op"
334                "11_store1"
335                "arm_no_early_store_addr_dep")
336
337 ;; An alu op can start sooner after a load, if that alu op does not
338 ;; have an early register dependency on the load
339 (define_bypass 2 "11_load1"
340                "11_alu_op")
341 (define_bypass 2 "11_load1"
342                "11_alu_shift_op"
343                "arm_no_early_alu_shift_value_dep")
344 (define_bypass 2 "11_load1"
345                "11_alu_shift_reg_op"
346                "arm_no_early_alu_shift_dep")
347
348 (define_bypass 3 "11_loadb"
349                "11_alu_op")
350 (define_bypass 3 "11_loadb"
351                "11_alu_shift_op"
352                "arm_no_early_alu_shift_value_dep")
353 (define_bypass 3 "11_loadb"
354                "11_alu_shift_reg_op"
355                "arm_no_early_alu_shift_dep")
356
357 ;; A mul op can start sooner after a load, if that mul op does not
358 ;; have an early multiply dependency
359 (define_bypass 2 "11_load1"
360                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
361                "arm_no_early_mul_dep")
362 (define_bypass 3 "11_load34"
363                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
364                "arm_no_early_mul_dep")
365 (define_bypass 3 "11_loadb"
366                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
367                "arm_no_early_mul_dep")
368
369 ;; A store can start sooner after a load, if that load does not
370 ;; produce part of the address to access
371 (define_bypass 2 "11_load1"
372                "11_store1"
373                "arm_no_early_store_addr_dep")
374 (define_bypass 3 "11_loadb"
375                "11_store1"
376                "arm_no_early_store_addr_dep")