OSDN Git Service

PR rtl-optimization/44787
[pf3gnuchains/gcc-fork.git] / gcc / config / arm / arm1026ejs.md
1 ;; ARM 1026EJ-S Pipeline Description
2 ;; Copyright (C) 2003, 2007 Free Software Foundation, Inc.
3 ;; Written by CodeSourcery, LLC.
4 ;;
5 ;; This file is part of GCC.
6 ;;
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
10 ;; any later version.
11 ;;
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 ;; General Public License for more details.
16 ;;
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3.  If not see
19 ;; <http://www.gnu.org/licenses/>.  */
20
21 ;; These descriptions are based on the information contained in the
22 ;; ARM1026EJ-S Technical Reference Manual, Copyright (c) 2003 ARM
23 ;; Limited.
24 ;;
25
26 ;; This automaton provides a pipeline description for the ARM
27 ;; 1026EJ-S core.
28 ;;
29 ;; The model given here assumes that the condition for all conditional
30 ;; instructions is "true", i.e., that all of the instructions are
31 ;; actually executed.
32
33 (define_automaton "arm1026ejs")
34
35 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36 ;; Pipelines
37 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38
39 ;; There are two pipelines:
40 ;; 
41 ;; - An Arithmetic Logic Unit (ALU) pipeline.
42 ;;
43 ;;   The ALU pipeline has fetch, issue, decode, execute, memory, and
44 ;;   write stages. We only need to model the execute, memory and write
45 ;;   stages.
46 ;;
47 ;; - A Load-Store Unit (LSU) pipeline.
48 ;;
49 ;;   The LSU pipeline has decode, execute, memory, and write stages.
50 ;;   We only model the execute, memory and write stages.
51
52 (define_cpu_unit "a_e,a_m,a_w" "arm1026ejs")
53 (define_cpu_unit "l_e,l_m,l_w" "arm1026ejs")
54
55 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
56 ;; ALU Instructions
57 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
58
59 ;; ALU instructions require three cycles to execute, and use the ALU
60 ;; pipeline in each of the three stages.  The results are available
61 ;; after the execute stage stage has finished.
62 ;;
63 ;; If the destination register is the PC, the pipelines are stalled
64 ;; for several cycles.  That case is not modeled here.
65
66 ;; ALU operations with no shifted operand
67 (define_insn_reservation "alu_op" 1 
68  (and (eq_attr "tune" "arm1026ejs")
69       (eq_attr "type" "alu"))
70  "a_e,a_m,a_w")
71
72 ;; ALU operations with a shift-by-constant operand
73 (define_insn_reservation "alu_shift_op" 1 
74  (and (eq_attr "tune" "arm1026ejs")
75       (eq_attr "type" "alu_shift"))
76  "a_e,a_m,a_w")
77
78 ;; ALU operations with a shift-by-register operand
79 ;; These really stall in the decoder, in order to read
80 ;; the shift value in a second cycle. Pretend we take two cycles in
81 ;; the execute stage.
82 (define_insn_reservation "alu_shift_reg_op" 2 
83  (and (eq_attr "tune" "arm1026ejs")
84       (eq_attr "type" "alu_shift_reg"))
85  "a_e*2,a_m,a_w")
86
87 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
88 ;; Multiplication Instructions
89 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
90
91 ;; Multiplication instructions loop in the execute stage until the
92 ;; instruction has been passed through the multiplier array enough
93 ;; times.
94
95 ;; The result of the "smul" and "smulw" instructions is not available
96 ;; until after the memory stage.
97 (define_insn_reservation "mult1" 2
98  (and (eq_attr "tune" "arm1026ejs")
99       (eq_attr "insn" "smulxy,smulwy"))
100  "a_e,a_m,a_w")
101
102 ;; The "smlaxy" and "smlawx" instructions require two iterations through
103 ;; the execute stage; the result is available immediately following
104 ;; the execute stage.
105 (define_insn_reservation "mult2" 2
106  (and (eq_attr "tune" "arm1026ejs")
107       (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
108  "a_e*2,a_m,a_w")
109
110 ;; The "smlalxy", "mul", and "mla" instructions require two iterations
111 ;; through the execute stage; the result is not available until after
112 ;; the memory stage.
113 (define_insn_reservation "mult3" 3
114  (and (eq_attr "tune" "arm1026ejs")
115       (eq_attr "insn" "smlalxy,mul,mla"))
116  "a_e*2,a_m,a_w")
117
118 ;; The "muls" and "mlas" instructions loop in the execute stage for
119 ;; four iterations in order to set the flags.  The value result is
120 ;; available after three iterations.
121 (define_insn_reservation "mult4" 3
122  (and (eq_attr "tune" "arm1026ejs")
123       (eq_attr "insn" "muls,mlas"))
124  "a_e*4,a_m,a_w")
125
126 ;; Long multiply instructions that produce two registers of
127 ;; output (such as umull) make their results available in two cycles;
128 ;; the least significant word is available before the most significant
129 ;; word.  That fact is not modeled; instead, the instructions are
130 ;; described.as if the entire result was available at the end of the
131 ;; cycle in which both words are available.
132
133 ;; The "umull", "umlal", "smull", and "smlal" instructions all take
134 ;; three iterations through the execute cycle, and make their results
135 ;; available after the memory cycle.
136 (define_insn_reservation "mult5" 4
137  (and (eq_attr "tune" "arm1026ejs")
138       (eq_attr "insn" "umull,umlal,smull,smlal"))
139  "a_e*3,a_m,a_w")
140
141 ;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
142 ;; the execute stage for five iterations in order to set the flags.
143 ;; The value result is available after four iterations.
144 (define_insn_reservation "mult6" 4
145  (and (eq_attr "tune" "arm1026ejs")
146       (eq_attr "insn" "umulls,umlals,smulls,smlals"))
147  "a_e*5,a_m,a_w")
148
149 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
150 ;; Load/Store Instructions
151 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
152
153 ;; The models for load/store instructions do not accurately describe
154 ;; the difference between operations with a base register writeback
155 ;; (such as "ldm!").  These models assume that all memory references
156 ;; hit in dcache.
157
158 ;; LSU instructions require six cycles to execute.  They use the ALU
159 ;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
160 ;; three through six.
161 ;; Loads and stores which use a scaled register offset or scaled
162 ;; register pre-indexed addressing mode take three cycles EXCEPT for
163 ;; those that are base + offset with LSL of 0 or 2, or base - offset
164 ;; with LSL of zero.  The remainder take 1 cycle to execute.
165 ;; For 4byte loads there is a bypass from the load stage
166
167 (define_insn_reservation "load1_op" 2
168  (and (eq_attr "tune" "arm1026ejs")
169       (eq_attr "type" "load_byte,load1"))
170  "a_e+l_e,l_m,a_w+l_w")
171
172 (define_insn_reservation "store1_op" 0
173  (and (eq_attr "tune" "arm1026ejs")
174       (eq_attr "type" "store1"))
175  "a_e+l_e,l_m,a_w+l_w")
176
177 ;; A load's result can be stored by an immediately following store
178 (define_bypass 1 "load1_op" "store1_op" "arm_no_early_store_addr_dep")
179
180 ;; On a LDM/STM operation, the LSU pipeline iterates until all of the
181 ;; registers have been processed.
182 ;;
183 ;; The time it takes to load the data depends on whether or not the
184 ;; base address is 64-bit aligned; if it is not, an additional cycle
185 ;; is required.  This model assumes that the address is always 64-bit
186 ;; aligned.  Because the processor can load two registers per cycle,
187 ;; that assumption means that we use the same instruction reservations
188 ;; for loading 2k and 2k - 1 registers.
189 ;;
190 ;; The ALU pipeline is stalled until the completion of the last memory
191 ;; stage in the LSU pipeline.  That is modeled by keeping the ALU
192 ;; execute stage busy until that point.
193 ;;
194 ;; As with ALU operations, if one of the destination registers is the
195 ;; PC, there are additional stalls; that is not modeled.
196
197 (define_insn_reservation "load2_op" 2
198  (and (eq_attr "tune" "arm1026ejs")
199       (eq_attr "type" "load2"))
200  "a_e+l_e,l_m,a_w+l_w")
201
202 (define_insn_reservation "store2_op" 0
203  (and (eq_attr "tune" "arm1026ejs")
204       (eq_attr "type" "store2"))
205  "a_e+l_e,l_m,a_w+l_w")
206
207 (define_insn_reservation "load34_op" 3
208  (and (eq_attr "tune" "arm1026ejs")
209       (eq_attr "type" "load3,load4"))
210  "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
211
212 (define_insn_reservation "store34_op" 0
213  (and (eq_attr "tune" "arm1026ejs")
214       (eq_attr "type" "store3,store4"))
215  "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
216
217 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
218 ;; Branch and Call Instructions
219 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
220
221 ;; Branch instructions are difficult to model accurately.  The ARM
222 ;; core can predict most branches.  If the branch is predicted
223 ;; correctly, and predicted early enough, the branch can be completely
224 ;; eliminated from the instruction stream.  Some branches can
225 ;; therefore appear to require zero cycles to execute.  We assume that
226 ;; all branches are predicted correctly, and that the latency is
227 ;; therefore the minimum value.
228
229 (define_insn_reservation "branch_op" 0
230  (and (eq_attr "tune" "arm1026ejs")
231       (eq_attr "type" "branch"))
232  "nothing")
233
234 ;; The latency for a call is not predictable.  Therefore, we use 32 as
235 ;; roughly equivalent to positive infinity.
236
237 (define_insn_reservation "call_op" 32
238  (and (eq_attr "tune" "arm1026ejs")
239       (eq_attr "type" "call"))
240  "nothing")