OSDN Git Service

2009-05-14 Paolo Bonzini <bonzini@gnu.org>
[pf3gnuchains/gcc-fork.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
4    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21
22 /* Target CPU builtins.  */
23 #define TARGET_CPU_CPP_BUILTINS()                       \
24   do                                                    \
25     {                                                   \
26         builtin_define ("__alpha");                     \
27         builtin_define ("__alpha__");                   \
28         builtin_assert ("cpu=alpha");                   \
29         builtin_assert ("machine=alpha");               \
30         if (TARGET_CIX)                                 \
31           {                                             \
32             builtin_define ("__alpha_cix__");           \
33             builtin_assert ("cpu=cix");                 \
34           }                                             \
35         if (TARGET_FIX)                                 \
36           {                                             \
37             builtin_define ("__alpha_fix__");           \
38             builtin_assert ("cpu=fix");                 \
39           }                                             \
40         if (TARGET_BWX)                                 \
41           {                                             \
42             builtin_define ("__alpha_bwx__");           \
43             builtin_assert ("cpu=bwx");                 \
44           }                                             \
45         if (TARGET_MAX)                                 \
46           {                                             \
47             builtin_define ("__alpha_max__");           \
48             builtin_assert ("cpu=max");                 \
49           }                                             \
50         if (alpha_cpu == PROCESSOR_EV6)                 \
51           {                                             \
52             builtin_define ("__alpha_ev6__");           \
53             builtin_assert ("cpu=ev6");                 \
54           }                                             \
55         else if (alpha_cpu == PROCESSOR_EV5)            \
56           {                                             \
57             builtin_define ("__alpha_ev5__");           \
58             builtin_assert ("cpu=ev5");                 \
59           }                                             \
60         else    /* Presumably ev4.  */                  \
61           {                                             \
62             builtin_define ("__alpha_ev4__");           \
63             builtin_assert ("cpu=ev4");                 \
64           }                                             \
65         if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT)    \
66           builtin_define ("_IEEE_FP");                  \
67         if (TARGET_IEEE_WITH_INEXACT)                   \
68           builtin_define ("_IEEE_FP_INEXACT");          \
69         if (TARGET_LONG_DOUBLE_128)                     \
70           builtin_define ("__LONG_DOUBLE_128__");       \
71                                                         \
72         /* Macros dependent on the C dialect.  */       \
73         SUBTARGET_LANGUAGE_CPP_BUILTINS();              \
74 } while (0)
75
76 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
77 #define SUBTARGET_LANGUAGE_CPP_BUILTINS()               \
78   do                                                    \
79     {                                                   \
80       if (preprocessing_asm_p ())                       \
81         builtin_define_std ("LANGUAGE_ASSEMBLY");       \
82       else if (c_dialect_cxx ())                        \
83         {                                               \
84           builtin_define ("__LANGUAGE_C_PLUS_PLUS");    \
85           builtin_define ("__LANGUAGE_C_PLUS_PLUS__");  \
86         }                                               \
87       else                                              \
88         builtin_define_std ("LANGUAGE_C");              \
89       if (c_dialect_objc ())                            \
90         {                                               \
91           builtin_define ("__LANGUAGE_OBJECTIVE_C");    \
92           builtin_define ("__LANGUAGE_OBJECTIVE_C__");  \
93         }                                               \
94     }                                                   \
95   while (0)
96 #endif
97
98 #define WORD_SWITCH_TAKES_ARG(STR)              \
99  (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
100
101 /* Print subsidiary information on the compiler version in use.  */
102 #define TARGET_VERSION
103
104 /* Run-time compilation parameters selecting different hardware subsets.  */
105
106 /* Which processor to schedule for. The cpu attribute defines a list that
107    mirrors this list, so changes to alpha.md must be made at the same time.  */
108
109 enum processor_type
110 {
111   PROCESSOR_EV4,                        /* 2106[46]{a,} */
112   PROCESSOR_EV5,                        /* 21164{a,pc,} */
113   PROCESSOR_EV6,                        /* 21264 */
114   PROCESSOR_MAX
115 };
116
117 extern enum processor_type alpha_cpu;
118 extern enum processor_type alpha_tune;
119
120 enum alpha_trap_precision
121 {
122   ALPHA_TP_PROG,        /* No precision (default).  */
123   ALPHA_TP_FUNC,        /* Trap contained within originating function.  */
124   ALPHA_TP_INSN         /* Instruction accuracy and code is resumption safe.  */
125 };
126
127 enum alpha_fp_rounding_mode
128 {
129   ALPHA_FPRM_NORM,      /* Normal rounding mode.  */
130   ALPHA_FPRM_MINF,      /* Round towards minus-infinity.  */
131   ALPHA_FPRM_CHOP,      /* Chopped rounding mode (towards 0).  */
132   ALPHA_FPRM_DYN        /* Dynamic rounding mode.  */
133 };
134
135 enum alpha_fp_trap_mode
136 {
137   ALPHA_FPTM_N,         /* Normal trap mode.  */
138   ALPHA_FPTM_U,         /* Underflow traps enabled.  */
139   ALPHA_FPTM_SU,        /* Software completion, w/underflow traps */
140   ALPHA_FPTM_SUI        /* Software completion, w/underflow & inexact traps */
141 };
142
143 extern int target_flags;
144
145 extern enum alpha_trap_precision alpha_tp;
146 extern enum alpha_fp_rounding_mode alpha_fprm;
147 extern enum alpha_fp_trap_mode alpha_fptm;
148
149 /* Invert the easy way to make options work.  */
150 #define TARGET_FP       (!TARGET_SOFT_FP)
151
152 /* These are for target os support and cannot be changed at runtime.  */
153 #define TARGET_ABI_WINDOWS_NT 0
154 #define TARGET_ABI_OPEN_VMS 0
155 #define TARGET_ABI_UNICOSMK 0
156 #define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT  \
157                         && !TARGET_ABI_OPEN_VMS \
158                         && !TARGET_ABI_UNICOSMK)
159
160 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
161 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
162 #endif
163 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
164 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
165 #endif
166 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
167 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
168 #endif
169 #ifndef TARGET_HAS_XFLOATING_LIBS
170 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
171 #endif
172 #ifndef TARGET_PROFILING_NEEDS_GP
173 #define TARGET_PROFILING_NEEDS_GP 0
174 #endif
175 #ifndef TARGET_LD_BUGGY_LDGP
176 #define TARGET_LD_BUGGY_LDGP 0
177 #endif
178 #ifndef TARGET_FIXUP_EV5_PREFETCH
179 #define TARGET_FIXUP_EV5_PREFETCH 0
180 #endif
181 #ifndef HAVE_AS_TLS
182 #define HAVE_AS_TLS 0
183 #endif
184
185 #define TARGET_DEFAULT MASK_FPREGS
186
187 #ifndef TARGET_CPU_DEFAULT
188 #define TARGET_CPU_DEFAULT 0
189 #endif
190
191 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
192 #ifdef HAVE_AS_EXPLICIT_RELOCS
193 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
194 #define TARGET_SUPPORT_ARCH 1
195 #else
196 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
197 #endif
198 #endif
199
200 #ifndef TARGET_SUPPORT_ARCH
201 #define TARGET_SUPPORT_ARCH 0
202 #endif
203
204 /* Support for a compile-time default CPU, et cetera.  The rules are:
205    --with-cpu is ignored if -mcpu is specified.
206    --with-tune is ignored if -mtune is specified.  */
207 #define OPTION_DEFAULT_SPECS \
208   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
209   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
210
211 /* Sometimes certain combinations of command options do not make sense
212    on a particular target machine.  You can define a macro
213    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
214    defined, is executed once just after all the command options have
215    been parsed.
216
217    On the Alpha, it is used to translate target-option strings into
218    numeric values.  */
219
220 #define OVERRIDE_OPTIONS override_options ()
221
222
223 /* Define this macro to change register usage conditional on target flags.
224
225    On the Alpha, we use this to disable the floating-point registers when
226    they don't exist.  */
227
228 #define CONDITIONAL_REGISTER_USAGE              \
229 {                                               \
230   int i;                                        \
231   if (! TARGET_FPREGS)                          \
232     for (i = 32; i < 63; i++)                   \
233       fixed_regs[i] = call_used_regs[i] = 1;    \
234 }
235
236
237 /* Show we can debug even without a frame pointer.  */
238 #define CAN_DEBUG_WITHOUT_FP
239 \f
240 /* target machine storage layout */
241
242 /* Define the size of `int'.  The default is the same as the word size.  */
243 #define INT_TYPE_SIZE 32
244
245 /* Define the size of `long long'.  The default is the twice the word size.  */
246 #define LONG_LONG_TYPE_SIZE 64
247
248 /* The two floating-point formats we support are S-floating, which is
249    4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
250    and `long double' are T.  */
251
252 #define FLOAT_TYPE_SIZE 32
253 #define DOUBLE_TYPE_SIZE 64
254 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
255
256 /* Define this to set long double type size to use in libgcc2.c, which can
257    not depend on target_flags.  */
258 #ifdef __LONG_DOUBLE_128__
259 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
260 #else
261 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
262 #endif
263
264 /* Work around target_flags dependency in ada/targtyps.c.  */
265 #define WIDEST_HARDWARE_FP_SIZE 64
266
267 #define WCHAR_TYPE "unsigned int"
268 #define WCHAR_TYPE_SIZE 32
269
270 /* Define this macro if it is advisable to hold scalars in registers
271    in a wider mode than that declared by the program.  In such cases,
272    the value is constrained to be within the bounds of the declared
273    type, but kept valid in the wider mode.  The signedness of the
274    extension may differ from that of the type.
275
276    For Alpha, we always store objects in a full register.  32-bit integers
277    are always sign-extended, but smaller objects retain their signedness.
278
279    Note that small vector types can get mapped onto integer modes at the
280    whim of not appearing in alpha-modes.def.  We never promoted these
281    values before; don't do so now that we've trimmed the set of modes to
282    those actually implemented in the backend.  */
283
284 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)                       \
285   if (GET_MODE_CLASS (MODE) == MODE_INT                         \
286       && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE)      \
287       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)                 \
288     {                                                           \
289       if ((MODE) == SImode)                                     \
290         (UNSIGNEDP) = 0;                                        \
291       (MODE) = DImode;                                          \
292     }
293
294 /* Define this if most significant bit is lowest numbered
295    in instructions that operate on numbered bit-fields.
296
297    There are no such instructions on the Alpha, but the documentation
298    is little endian.  */
299 #define BITS_BIG_ENDIAN 0
300
301 /* Define this if most significant byte of a word is the lowest numbered.
302    This is false on the Alpha.  */
303 #define BYTES_BIG_ENDIAN 0
304
305 /* Define this if most significant word of a multiword number is lowest
306    numbered.
307
308    For Alpha we can decide arbitrarily since there are no machine instructions
309    for them.  Might as well be consistent with bytes.  */
310 #define WORDS_BIG_ENDIAN 0
311
312 /* Width of a word, in units (bytes).  */
313 #define UNITS_PER_WORD 8
314
315 /* Width in bits of a pointer.
316    See also the macro `Pmode' defined below.  */
317 #define POINTER_SIZE 64
318
319 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
320 #define PARM_BOUNDARY 64
321
322 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
323 #define STACK_BOUNDARY 128
324
325 /* Allocation boundary (in *bits*) for the code of a function.  */
326 #define FUNCTION_BOUNDARY 32
327
328 /* Alignment of field after `int : 0' in a structure.  */
329 #define EMPTY_FIELD_BOUNDARY 64
330
331 /* Every structure's size must be a multiple of this.  */
332 #define STRUCTURE_SIZE_BOUNDARY 8
333
334 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
335 #define PCC_BITFIELD_TYPE_MATTERS 1
336
337 /* No data type wants to be aligned rounder than this.  */
338 #define BIGGEST_ALIGNMENT 128
339
340 /* For atomic access to objects, must have at least 32-bit alignment
341    unless the machine has byte operations.  */
342 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
343
344 /* Align all constants and variables to at least a word boundary so
345    we can pick up pieces of them faster.  */
346 /* ??? Only if block-move stuff knows about different source/destination
347    alignment.  */
348 #if 0
349 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
350 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
351 #endif
352
353 /* Set this nonzero if move instructions will actually fail to work
354    when given unaligned data.
355
356    Since we get an error message when we do one, call them invalid.  */
357
358 #define STRICT_ALIGNMENT 1
359
360 /* Set this nonzero if unaligned move instructions are extremely slow.
361
362    On the Alpha, they trap.  */
363
364 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
365
366 /* Standard register usage.  */
367
368 /* Number of actual hardware registers.
369    The hardware registers are assigned numbers for the compiler
370    from 0 to just below FIRST_PSEUDO_REGISTER.
371    All registers that the compiler knows about must be given numbers,
372    even those that are not normally considered general registers.
373
374    We define all 32 integer registers, even though $31 is always zero,
375    and all 32 floating-point registers, even though $f31 is also
376    always zero.  We do not bother defining the FP status register and
377    there are no other registers.
378
379    Since $31 is always zero, we will use register number 31 as the
380    argument pointer.  It will never appear in the generated code
381    because we will always be eliminating it in favor of the stack
382    pointer or hardware frame pointer.
383
384    Likewise, we use $f31 for the frame pointer, which will always
385    be eliminated in favor of the hardware frame pointer or the
386    stack pointer.  */
387
388 #define FIRST_PSEUDO_REGISTER 64
389
390 /* 1 for registers that have pervasive standard uses
391    and are not available for the register allocator.  */
392
393 #define FIXED_REGISTERS  \
394  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
395   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
396   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
397   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
398
399 /* 1 for registers not available across function calls.
400    These must include the FIXED_REGISTERS and also any
401    registers that can be used without being saved.
402    The latter must include the registers where values are returned
403    and the register where structure-value addresses are passed.
404    Aside from that, you can include as many other registers as you like.  */
405 #define CALL_USED_REGISTERS  \
406  {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
407   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
408   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
409   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
410
411 /* List the order in which to allocate registers.  Each register must be
412    listed once, even those in FIXED_REGISTERS.  */
413
414 #define REG_ALLOC_ORDER { \
415    1, 2, 3, 4, 5, 6, 7, 8,      /* nonsaved integer registers */        \
416    22, 23, 24, 25, 28,          /* likewise */                          \
417    0,                           /* likewise, but return value */        \
418    21, 20, 19, 18, 17, 16,      /* likewise, but input args */          \
419    27,                          /* likewise, but OSF procedure value */ \
420                                                                         \
421    42, 43, 44, 45, 46, 47,      /* nonsaved floating-point registers */ \
422    54, 55, 56, 57, 58, 59,      /* likewise */                          \
423    60, 61, 62,                  /* likewise */                          \
424    32, 33,                      /* likewise, but return values */       \
425    53, 52, 51, 50, 49, 48,      /* likewise, but input args */          \
426                                                                         \
427    9, 10, 11, 12, 13, 14,       /* saved integer registers */           \
428    26,                          /* return address */                    \
429    15,                          /* hard frame pointer */                \
430                                                                         \
431    34, 35, 36, 37, 38, 39,      /* saved floating-point registers */    \
432    40, 41,                      /* likewise */                          \
433                                                                         \
434    29, 30, 31, 63               /* gp, sp, ap, sfp */                   \
435 }
436
437 /* Return number of consecutive hard regs needed starting at reg REGNO
438    to hold something of mode MODE.
439    This is ordinarily the length in words of a value of mode MODE
440    but can be less for certain modes in special long registers.  */
441
442 #define HARD_REGNO_NREGS(REGNO, MODE)   \
443   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
444
445 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
446    On Alpha, the integer registers can hold any mode.  The floating-point
447    registers can hold 64-bit integers as well, but not smaller values.  */
448
449 #define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
450   (IN_RANGE ((REGNO), 32, 62)                                           \
451    ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode           \
452      || (MODE) == SCmode || (MODE) == DCmode                            \
453    : 1)
454
455 /* A C expression that is nonzero if a value of mode
456    MODE1 is accessible in mode MODE2 without copying.
457
458    This asymmetric test is true when MODE1 could be put
459    in an FP register but MODE2 could not.  */
460
461 #define MODES_TIEABLE_P(MODE1, MODE2)                           \
462   (HARD_REGNO_MODE_OK (32, (MODE1))                             \
463    ? HARD_REGNO_MODE_OK (32, (MODE2))                           \
464    : 1)
465
466 /* Specify the registers used for certain standard purposes.
467    The values of these macros are register numbers.  */
468
469 /* Alpha pc isn't overloaded on a register that the compiler knows about.  */
470 /* #define PC_REGNUM  */
471
472 /* Register to use for pushing function arguments.  */
473 #define STACK_POINTER_REGNUM 30
474
475 /* Base register for access to local variables of the function.  */
476 #define HARD_FRAME_POINTER_REGNUM 15
477
478 /* Base register for access to arguments of the function.  */
479 #define ARG_POINTER_REGNUM 31
480
481 /* Base register for access to local variables of function.  */
482 #define FRAME_POINTER_REGNUM 63
483
484 /* Register in which static-chain is passed to a function.
485
486    For the Alpha, this is based on an example; the calling sequence
487    doesn't seem to specify this.  */
488 #define STATIC_CHAIN_REGNUM 1
489
490 /* The register number of the register used to address a table of
491    static data addresses in memory.  */
492 #define PIC_OFFSET_TABLE_REGNUM 29
493
494 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
495    is clobbered by calls.  */
496 /* ??? It is and it isn't.  It's required to be valid for a given
497    function when the function returns.  It isn't clobbered by
498    current_file functions.  Moreover, we do not expose the ldgp
499    until after reload, so we're probably safe.  */
500 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
501 \f
502 /* Define the classes of registers for register constraints in the
503    machine description.  Also define ranges of constants.
504
505    One of the classes must always be named ALL_REGS and include all hard regs.
506    If there is more than one class, another class must be named NO_REGS
507    and contain no registers.
508
509    The name GENERAL_REGS must be the name of a class (or an alias for
510    another name such as ALL_REGS).  This is the class of registers
511    that is allowed by "g" or "r" in a register constraint.
512    Also, registers outside this class are allocated only when
513    instructions express preferences for them.
514
515    The classes must be numbered in nondecreasing order; that is,
516    a larger-numbered class must never be contained completely
517    in a smaller-numbered class.
518
519    For any two classes, it is very desirable that there be another
520    class that represents their union.  */
521
522 enum reg_class {
523   NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
524   GENERAL_REGS, FLOAT_REGS, ALL_REGS,
525   LIM_REG_CLASSES
526 };
527
528 #define N_REG_CLASSES (int) LIM_REG_CLASSES
529
530 /* Give names of register classes as strings for dump file.  */
531
532 #define REG_CLASS_NAMES                                 \
533  {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
534   "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
535
536 /* Define which registers fit in which classes.
537    This is an initializer for a vector of HARD_REG_SET
538    of length N_REG_CLASSES.  */
539
540 #define REG_CLASS_CONTENTS                              \
541 { {0x00000000, 0x00000000},     /* NO_REGS */           \
542   {0x00000001, 0x00000000},     /* R0_REG */            \
543   {0x01000000, 0x00000000},     /* R24_REG */           \
544   {0x02000000, 0x00000000},     /* R25_REG */           \
545   {0x08000000, 0x00000000},     /* R27_REG */           \
546   {0xffffffff, 0x80000000},     /* GENERAL_REGS */      \
547   {0x00000000, 0x7fffffff},     /* FLOAT_REGS */        \
548   {0xffffffff, 0xffffffff} }
549
550 /* The following macro defines cover classes for Integrated Register
551    Allocator.  Cover classes is a set of non-intersected register
552    classes covering all hard registers used for register allocation
553    purpose.  Any move between two registers of a cover class should be
554    cheaper than load or store of the registers.  The macro value is
555    array of register classes with LIM_REG_CLASSES used as the end
556    marker.  */
557
558 #define IRA_COVER_CLASSES                                                    \
559 {                                                                            \
560   GENERAL_REGS, FLOAT_REGS, LIM_REG_CLASSES                                  \
561 }
562
563 /* The same information, inverted:
564    Return the class number of the smallest class containing
565    reg number REGNO.  This could be a conditional expression
566    or could index an array.  */
567
568 #define REGNO_REG_CLASS(REGNO)                  \
569  ((REGNO) == 0 ? R0_REG                         \
570   : (REGNO) == 24 ? R24_REG                     \
571   : (REGNO) == 25 ? R25_REG                     \
572   : (REGNO) == 27 ? R27_REG                     \
573   : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS     \
574   : GENERAL_REGS)
575
576 /* The class value for index registers, and the one for base regs.  */
577 #define INDEX_REG_CLASS NO_REGS
578 #define BASE_REG_CLASS GENERAL_REGS
579
580 /* Given an rtx X being reloaded into a reg required to be
581    in class CLASS, return the class of reg to actually use.
582    In general this is just CLASS; but on some machines
583    in some cases it is preferable to use a more restrictive class.  */
584
585 #define PREFERRED_RELOAD_CLASS  alpha_preferred_reload_class
586
587 /* If we are copying between general and FP registers, we need a memory
588    location unless the FIX extension is available.  */
589
590 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
591  (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
592                    || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
593
594 /* Specify the mode to be used for memory when a secondary memory
595    location is needed.  If MODE is floating-point, use it.  Otherwise,
596    widen to a word like the default.  This is needed because we always
597    store integers in FP registers in quadword format.  This whole
598    area is very tricky! */
599 #define SECONDARY_MEMORY_NEEDED_MODE(MODE)              \
600   (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE)         \
601    : GET_MODE_SIZE (MODE) >= 4 ? (MODE)                 \
602    : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
603
604 /* Return the maximum number of consecutive registers
605    needed to represent mode MODE in a register of class CLASS.  */
606
607 #define CLASS_MAX_NREGS(CLASS, MODE)                            \
608  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
609
610 /* Return the class of registers that cannot change mode from FROM to TO.  */
611
612 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
613   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                   \
614    ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
615
616 /* Define the cost of moving between registers of various classes.  Moving
617    between FLOAT_REGS and anything else except float regs is expensive.
618    In fact, we make it quite expensive because we really don't want to
619    do these moves unless it is clearly worth it.  Optimizations may
620    reduce the impact of not being able to allocate a pseudo to a
621    hard register.  */
622
623 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                \
624   (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2     \
625    : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8)              \
626    : 4+2*alpha_memory_latency)
627
628 /* A C expressions returning the cost of moving data of MODE from a register to
629    or from memory.
630
631    On the Alpha, bump this up a bit.  */
632
633 extern int alpha_memory_latency;
634 #define MEMORY_MOVE_COST(MODE,CLASS,IN)  (2*alpha_memory_latency)
635
636 /* Provide the cost of a branch.  Exact meaning under development.  */
637 #define BRANCH_COST(speed_p, predictable_p) 5
638 \f
639 /* Stack layout; function entry, exit and calling.  */
640
641 /* Define this if pushing a word on the stack
642    makes the stack pointer a smaller address.  */
643 #define STACK_GROWS_DOWNWARD
644
645 /* Define this to nonzero if the nominal address of the stack frame
646    is at the high-address end of the local variables;
647    that is, each additional local variable allocated
648    goes at a more negative offset in the frame.  */
649 /* #define FRAME_GROWS_DOWNWARD 0 */
650
651 /* Offset within stack frame to start allocating local variables at.
652    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
653    first local allocated.  Otherwise, it is the offset to the BEGINNING
654    of the first local allocated.  */
655
656 #define STARTING_FRAME_OFFSET 0
657
658 /* If we generate an insn to push BYTES bytes,
659    this says how many the stack pointer really advances by.
660    On Alpha, don't define this because there are no push insns.  */
661 /*  #define PUSH_ROUNDING(BYTES) */
662
663 /* Define this to be nonzero if stack checking is built into the ABI.  */
664 #define STACK_CHECK_BUILTIN 1
665
666 /* Define this if the maximum size of all the outgoing args is to be
667    accumulated and pushed during the prologue.  The amount can be
668    found in the variable crtl->outgoing_args_size.  */
669 #define ACCUMULATE_OUTGOING_ARGS 1
670
671 /* Offset of first parameter from the argument pointer register value.  */
672
673 #define FIRST_PARM_OFFSET(FNDECL) 0
674
675 /* Definitions for register eliminations.
676
677    We have two registers that can be eliminated on the Alpha.  First, the
678    frame pointer register can often be eliminated in favor of the stack
679    pointer register.  Secondly, the argument pointer register can always be
680    eliminated; it is replaced with either the stack or frame pointer.  */
681
682 /* This is an array of structures.  Each structure initializes one pair
683    of eliminable registers.  The "from" register number is given first,
684    followed by "to".  Eliminations of the same "from" register are listed
685    in order of preference.  */
686
687 #define ELIMINABLE_REGS                              \
688 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},        \
689  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
690  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},      \
691  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
692
693 /* Given FROM and TO register numbers, say whether this elimination is allowed.
694    Frame pointer elimination is automatically handled.
695
696    All eliminations are valid since the cases where FP can't be
697    eliminated are already handled.  */
698
699 #define CAN_ELIMINATE(FROM, TO) 1
700
701 /* Round up to a multiple of 16 bytes.  */
702 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
703
704 /* Define the offset between two registers, one to be eliminated, and the other
705    its replacement, at the start of a routine.  */
706 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
707   ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
708
709 /* Define this if stack space is still allocated for a parameter passed
710    in a register.  */
711 /* #define REG_PARM_STACK_SPACE */
712
713 /* Value is the number of bytes of arguments automatically
714    popped when returning from a subroutine call.
715    FUNDECL is the declaration node of the function (as a tree),
716    FUNTYPE is the data type of the function (as a tree),
717    or for a library call it is an identifier node for the subroutine name.
718    SIZE is the number of bytes of arguments passed on the stack.  */
719
720 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
721
722 /* Define how to find the value returned by a function.
723    VALTYPE is the data type of the value (as a tree).
724    If the precise function being called is known, FUNC is its FUNCTION_DECL;
725    otherwise, FUNC is 0.
726
727    On Alpha the value is found in $0 for integer functions and
728    $f0 for floating-point functions.  */
729
730 #define FUNCTION_VALUE(VALTYPE, FUNC) \
731   function_value (VALTYPE, FUNC, VOIDmode)
732
733 /* Define how to find the value returned by a library function
734    assuming the value has mode MODE.  */
735
736 #define LIBCALL_VALUE(MODE) \
737   function_value (NULL, NULL, MODE)
738
739 /* 1 if N is a possible register number for a function value
740    as seen by the caller.  */
741
742 #define FUNCTION_VALUE_REGNO_P(N)  \
743   ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
744
745 /* 1 if N is a possible register number for function argument passing.
746    On Alpha, these are $16-$21 and $f16-$f21.  */
747
748 #define FUNCTION_ARG_REGNO_P(N) \
749   (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
750 \f
751 /* Define a data type for recording info about an argument list
752    during the scan of that argument list.  This data type should
753    hold all necessary information about the function itself
754    and about the args processed so far, enough to enable macros
755    such as FUNCTION_ARG to determine where the next arg should go.
756
757    On Alpha, this is a single integer, which is a number of words
758    of arguments scanned so far.
759    Thus 6 or more means all following args should go on the stack.  */
760
761 #define CUMULATIVE_ARGS int
762
763 /* Initialize a variable CUM of type CUMULATIVE_ARGS
764    for a call to a function whose data type is FNTYPE.
765    For a library call, FNTYPE is 0.  */
766
767 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
768   (CUM) = 0
769
770 /* Define intermediate macro to compute the size (in registers) of an argument
771    for the Alpha.  */
772
773 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED)                               \
774   ((MODE) == TFmode || (MODE) == TCmode ? 1                             \
775    : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
776       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
777
778 /* Update the data in CUM to advance over an argument
779    of mode MODE and data type TYPE.
780    (TYPE is null for libcalls where that information may not be available.)  */
781
782 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
783   ((CUM) +=                                                             \
784    (targetm.calls.must_pass_in_stack (MODE, TYPE))                      \
785     ? 6 : ALPHA_ARG_SIZE (MODE, TYPE, NAMED))
786
787 /* Determine where to put an argument to a function.
788    Value is zero to push the argument on the stack,
789    or a hard register in which to store the argument.
790
791    MODE is the argument's machine mode.
792    TYPE is the data type of the argument (as a tree).
793     This is null for libcalls where that information may
794     not be available.
795    CUM is a variable of type CUMULATIVE_ARGS which gives info about
796     the preceding args and about the function being called.
797    NAMED is nonzero if this argument is a named parameter
798     (otherwise it is an extra parameter matching an ellipsis).
799
800    On Alpha the first 6 words of args are normally in registers
801    and the rest are pushed.  */
802
803 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)    \
804   function_arg((CUM), (MODE), (TYPE), (NAMED))
805
806 /* Make (or fake) .linkage entry for function call.
807    IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
808
809 /* This macro defines the start of an assembly comment.  */
810
811 #define ASM_COMMENT_START " #"
812
813 /* This macro produces the initial definition of a function.  */
814
815 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
816   alpha_start_function(FILE,NAME,DECL);
817
818 /* This macro closes up a function definition for the assembler.  */
819
820 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
821   alpha_end_function(FILE,NAME,DECL)
822
823 /* Output any profiling code before the prologue.  */
824
825 #define PROFILE_BEFORE_PROLOGUE 1
826
827 /* Never use profile counters.  */
828
829 #define NO_PROFILE_COUNTERS 1
830
831 /* Output assembler code to FILE to increment profiler label # LABELNO
832    for profiling a function entry.  Under OSF/1, profiling is enabled
833    by simply passing -pg to the assembler and linker.  */
834
835 #define FUNCTION_PROFILER(FILE, LABELNO)
836
837 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
838    the stack pointer does not matter.  The value is tested only in
839    functions that have frame pointers.
840    No definition is equivalent to always zero.  */
841
842 #define EXIT_IGNORE_STACK 1
843
844 /* Define registers used by the epilogue and return instruction.  */
845
846 #define EPILOGUE_USES(REGNO)    ((REGNO) == 26)
847 \f
848 /* Output assembler code for a block containing the constant parts
849    of a trampoline, leaving space for the variable parts.
850
851    The trampoline should set the static chain pointer to value placed
852    into the trampoline and should branch to the specified routine.
853    Note that $27 has been set to the address of the trampoline, so we can
854    use it for addressability of the two data items.  */
855
856 #define TRAMPOLINE_TEMPLATE(FILE)               \
857 do {                                            \
858   fprintf (FILE, "\tldq $1,24($27)\n");         \
859   fprintf (FILE, "\tldq $27,16($27)\n");        \
860   fprintf (FILE, "\tjmp $31,($27),0\n");        \
861   fprintf (FILE, "\tnop\n");                    \
862   fprintf (FILE, "\t.quad 0,0\n");              \
863 } while (0)
864
865 /* Section in which to place the trampoline.  On Alpha, instructions
866    may only be placed in a text segment.  */
867
868 #define TRAMPOLINE_SECTION text_section
869
870 /* Length in units of the trampoline for entering a nested function.  */
871
872 #define TRAMPOLINE_SIZE    32
873
874 /* The alignment of a trampoline, in bits.  */
875
876 #define TRAMPOLINE_ALIGNMENT  64
877
878 /* Emit RTL insns to initialize the variable parts of a trampoline.
879    FNADDR is an RTX for the address of the function's pure code.
880    CXT is an RTX for the static chain value for the function.  */
881
882 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
883   alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
884
885 /* A C expression whose value is RTL representing the value of the return
886    address for the frame COUNT steps up from the current frame.
887    FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
888    the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */
889
890 #define RETURN_ADDR_RTX  alpha_return_addr
891
892 /* Before the prologue, RA lives in $26.  */
893 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)
894 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
895 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
896 #define DWARF_ZERO_REG 31
897
898 /* Describe how we implement __builtin_eh_return.  */
899 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
900 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 28)
901 #define EH_RETURN_HANDLER_RTX \
902   gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
903                                      crtl->outgoing_args_size))
904 \f
905 /* Addressing modes, and classification of registers for them.  */
906
907 /* Macros to check register numbers against specific register classes.  */
908
909 /* These assume that REGNO is a hard or pseudo reg number.
910    They give nonzero only if REGNO is a hard reg of the suitable class
911    or a pseudo reg currently allocated to a suitable hard reg.
912    Since they use reg_renumber, they are safe only once reg_renumber
913    has been allocated, which happens in local-alloc.c.  */
914
915 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
916 #define REGNO_OK_FOR_BASE_P(REGNO) \
917 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
918  || (REGNO) == 63 || reg_renumber[REGNO] == 63)
919 \f
920 /* Maximum number of registers that can appear in a valid memory address.  */
921 #define MAX_REGS_PER_ADDRESS 1
922
923 /* Recognize any constant value that is a valid address.  For the Alpha,
924    there are only constants none since we want to use LDA to load any
925    symbolic addresses into registers.  */
926
927 #define CONSTANT_ADDRESS_P(X)   \
928   (CONST_INT_P (X)              \
929    && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
930
931 /* Include all constant integers and constant doubles, but not
932    floating-point, except for floating-point zero.  */
933
934 #define LEGITIMATE_CONSTANT_P  alpha_legitimate_constant_p
935
936 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
937    and check its validity for a certain class.
938    We have two alternate definitions for each of them.
939    The usual definition accepts all pseudo regs; the other rejects
940    them unless they have been allocated suitable hard regs.
941    The symbol REG_OK_STRICT causes the latter definition to be used.
942
943    Most source files want to accept pseudo regs in the hope that
944    they will get allocated to the class that the insn wants them to be in.
945    Source files for reload pass need to be strict.
946    After reload, it makes no difference, since pseudo regs have
947    been eliminated by then.  */
948
949 /* Nonzero if X is a hard reg that can be used as an index
950    or if it is a pseudo reg.  */
951 #define REG_OK_FOR_INDEX_P(X) 0
952
953 /* Nonzero if X is a hard reg that can be used as a base reg
954    or if it is a pseudo reg.  */
955 #define NONSTRICT_REG_OK_FOR_BASE_P(X)  \
956   (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
957
958 /* ??? Nonzero if X is the frame pointer, or some virtual register
959    that may eliminate to the frame pointer.  These will be allowed to
960    have offsets greater than 32K.  This is done because register
961    elimination offsets will change the hi/lo split, and if we split
962    before reload, we will require additional instructions.  */
963 #define NONSTRICT_REG_OK_FP_BASE_P(X)           \
964   (REGNO (X) == 31 || REGNO (X) == 63           \
965    || (REGNO (X) >= FIRST_PSEUDO_REGISTER       \
966        && REGNO (X) < LAST_VIRTUAL_REGISTER))
967
968 /* Nonzero if X is a hard reg that can be used as a base reg.  */
969 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
970
971 #ifdef REG_OK_STRICT
972 #define REG_OK_FOR_BASE_P(X)    STRICT_REG_OK_FOR_BASE_P (X)
973 #else
974 #define REG_OK_FOR_BASE_P(X)    NONSTRICT_REG_OK_FOR_BASE_P (X)
975 #endif
976 \f
977 /* Try a machine-dependent way of reloading an illegitimate address
978    operand.  If we find one, push the reload and jump to WIN.  This
979    macro is used in only one place: `find_reloads_address' in reload.c.  */
980
981 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)               \
982 do {                                                                         \
983   rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
984   if (new_x)                                                                 \
985     {                                                                        \
986       X = new_x;                                                             \
987       goto WIN;                                                              \
988     }                                                                        \
989 } while (0)
990
991 /* Go to LABEL if ADDR (a legitimate address expression)
992    has an effect that depends on the machine mode it is used for.
993    On the Alpha this is true only for the unaligned modes.   We can
994    simplify this test since we know that the address must be valid.  */
995
996 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
997 { if (GET_CODE (ADDR) == AND) goto LABEL; }
998 \f
999 /* Specify the machine mode that this machine uses
1000    for the index in the tablejump instruction.  */
1001 #define CASE_VECTOR_MODE SImode
1002
1003 /* Define as C expression which evaluates to nonzero if the tablejump
1004    instruction expects the table to contain offsets from the address of the
1005    table.
1006
1007    Do not define this if the table should contain absolute addresses.
1008    On the Alpha, the table is really GP-relative, not relative to the PC
1009    of the table, but we pretend that it is PC-relative; this should be OK,
1010    but we should try to find some better way sometime.  */
1011 #define CASE_VECTOR_PC_RELATIVE 1
1012
1013 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1014 #define DEFAULT_SIGNED_CHAR 1
1015
1016 /* Max number of bytes we can move to or from memory
1017    in one reasonably fast instruction.  */
1018
1019 #define MOVE_MAX 8
1020
1021 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1022    move-instruction pairs, we will do a movmem or libcall instead.
1023
1024    Without byte/word accesses, we want no more than four instructions;
1025    with, several single byte accesses are better.  */
1026
1027 #define MOVE_RATIO(speed)  (TARGET_BWX ? 7 : 2)
1028
1029 /* Largest number of bytes of an object that can be placed in a register.
1030    On the Alpha we have plenty of registers, so use TImode.  */
1031 #define MAX_FIXED_MODE_SIZE     GET_MODE_BITSIZE (TImode)
1032
1033 /* Nonzero if access to memory by bytes is no faster than for words.
1034    Also nonzero if doing byte operations (specifically shifts) in registers
1035    is undesirable.
1036
1037    On the Alpha, we want to not use the byte operation and instead use
1038    masking operations to access fields; these will save instructions.  */
1039
1040 #define SLOW_BYTE_ACCESS        1
1041
1042 /* Define if operations between registers always perform the operation
1043    on the full register even if a narrower mode is specified.  */
1044 #define WORD_REGISTER_OPERATIONS
1045
1046 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1047    will either zero-extend or sign-extend.  The value of this macro should
1048    be the code that says which one of the two operations is implicitly
1049    done, UNKNOWN if none.  */
1050 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1051
1052 /* Define if loading short immediate values into registers sign extends.  */
1053 #define SHORT_IMMEDIATES_SIGN_EXTEND
1054
1055 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1056    is done just by pretending it is already truncated.  */
1057 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1058
1059 /* The CIX ctlz and cttz instructions return 64 for zero.  */
1060 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
1061 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
1062
1063 /* Define the value returned by a floating-point comparison instruction.  */
1064
1065 #define FLOAT_STORE_FLAG_VALUE(MODE) \
1066   REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1067
1068 /* Canonicalize a comparison from one we don't have to one we do have.  */
1069
1070 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1071   do {                                                                  \
1072     if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1073         && (REG_P (OP1) || (OP1) == const0_rtx))                \
1074       {                                                                 \
1075         rtx tem = (OP0);                                                \
1076         (OP0) = (OP1);                                                  \
1077         (OP1) = tem;                                                    \
1078         (CODE) = swap_condition (CODE);                                 \
1079       }                                                                 \
1080     if (((CODE) == LT || (CODE) == LTU)                                 \
1081         && CONST_INT_P (OP1) && INTVAL (OP1) == 256)                    \
1082       {                                                                 \
1083         (CODE) = (CODE) == LT ? LE : LEU;                               \
1084         (OP1) = GEN_INT (255);                                          \
1085       }                                                                 \
1086   } while (0)
1087
1088 /* Specify the machine mode that pointers have.
1089    After generation of rtl, the compiler makes no further distinction
1090    between pointers and any other objects of this machine mode.  */
1091 #define Pmode DImode
1092
1093 /* Mode of a function address in a call instruction (for indexing purposes).  */
1094
1095 #define FUNCTION_MODE Pmode
1096
1097 /* Define this if addresses of constant functions
1098    shouldn't be put through pseudo regs where they can be cse'd.
1099    Desirable on machines where ordinary constants are expensive
1100    but a CALL with constant address is cheap.
1101
1102    We define this on the Alpha so that gen_call and gen_call_value
1103    get to see the SYMBOL_REF (for the hint field of the jsr).  It will
1104    then copy it into a register, thus actually letting the address be
1105    cse'ed.  */
1106
1107 #define NO_FUNCTION_CSE
1108
1109 /* Define this to be nonzero if shift instructions ignore all but the low-order
1110    few bits.  */
1111 #define SHIFT_COUNT_TRUNCATED 1
1112 \f
1113 /* Control the assembler format that we output.  */
1114
1115 /* Output to assembler file text saying following lines
1116    may contain character constants, extra white space, comments, etc.  */
1117 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1118
1119 /* Output to assembler file text saying following lines
1120    no longer contain unusual constructs.  */
1121 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1122
1123 #define TEXT_SECTION_ASM_OP "\t.text"
1124
1125 /* Output before read-only data.  */
1126
1127 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1128
1129 /* Output before writable data.  */
1130
1131 #define DATA_SECTION_ASM_OP "\t.data"
1132
1133 /* How to refer to registers in assembler output.
1134    This sequence is indexed by compiler's hard-register-number (see above).  */
1135
1136 #define REGISTER_NAMES                                          \
1137 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",          \
1138  "$9", "$10", "$11", "$12", "$13", "$14", "$15",                \
1139  "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",        \
1140  "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",         \
1141  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1142  "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",         \
1143  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1144  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1145
1146 /* Strip name encoding when emitting labels.  */
1147
1148 #define ASM_OUTPUT_LABELREF(STREAM, NAME)       \
1149 do {                                            \
1150   const char *name_ = NAME;                     \
1151   if (*name_ == '@' || *name_ == '%')           \
1152     name_ += 2;                                 \
1153   if (*name_ == '*')                            \
1154     name_++;                                    \
1155   else                                          \
1156     fputs (user_label_prefix, STREAM);          \
1157   fputs (name_, STREAM);                        \
1158 } while (0)
1159
1160 /* Globalizing directive for a label.  */
1161 #define GLOBAL_ASM_OP "\t.globl "
1162
1163 /* The prefix to add to user-visible assembler symbols.  */
1164
1165 #define USER_LABEL_PREFIX ""
1166
1167 /* This is how to output a label for a jump table.  Arguments are the same as
1168    for (*targetm.asm_out.internal_label), except the insn for the jump table is
1169    passed.  */
1170
1171 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN)        \
1172 { ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1173
1174 /* This is how to store into the string LABEL
1175    the symbol_ref name of an internal numbered label where
1176    PREFIX is the class of label and NUM is the number within the class.
1177    This is suitable for output with `assemble_name'.  */
1178
1179 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1180   sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1181
1182 /* We use the default ASCII-output routine, except that we don't write more
1183    than 50 characters since the assembler doesn't support very long lines.  */
1184
1185 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1186   do {                                                                        \
1187     FILE *_hide_asm_out_file = (MYFILE);                                      \
1188     const unsigned char *_hide_p = (const unsigned char *) (MYSTRING);        \
1189     int _hide_thissize = (MYLENGTH);                                          \
1190     int _size_so_far = 0;                                                     \
1191     {                                                                         \
1192       FILE *asm_out_file = _hide_asm_out_file;                                \
1193       const unsigned char *p = _hide_p;                                       \
1194       int thissize = _hide_thissize;                                          \
1195       int i;                                                                  \
1196       fprintf (asm_out_file, "\t.ascii \"");                                  \
1197                                                                               \
1198       for (i = 0; i < thissize; i++)                                          \
1199         {                                                                     \
1200           register int c = p[i];                                              \
1201                                                                               \
1202           if (_size_so_far ++ > 50 && i < thissize - 4)                       \
1203             _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");      \
1204                                                                               \
1205           if (c == '\"' || c == '\\')                                         \
1206             putc ('\\', asm_out_file);                                        \
1207           if (c >= ' ' && c < 0177)                                           \
1208             putc (c, asm_out_file);                                           \
1209           else                                                                \
1210             {                                                                 \
1211               fprintf (asm_out_file, "\\%o", c);                              \
1212               /* After an octal-escape, if a digit follows,                   \
1213                  terminate one string constant and start another.             \
1214                  The VAX assembler fails to stop reading the escape           \
1215                  after three digits, so this is the only way we               \
1216                  can get it to parse the data properly.  */                   \
1217               if (i < thissize - 1 && ISDIGIT (p[i + 1]))                     \
1218                 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");  \
1219           }                                                                   \
1220         }                                                                     \
1221       fprintf (asm_out_file, "\"\n");                                         \
1222     }                                                                         \
1223   }                                                                           \
1224   while (0)
1225
1226 /* This is how to output an element of a case-vector that is relative.  */
1227
1228 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1229   fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1230            (VALUE))
1231
1232 /* This is how to output an assembler line
1233    that says to advance the location counter
1234    to a multiple of 2**LOG bytes.  */
1235
1236 #define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1237   if ((LOG) != 0)                       \
1238     fprintf (FILE, "\t.align %d\n", LOG);
1239
1240 /* This is how to advance the location counter by SIZE bytes.  */
1241
1242 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1243   fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1244
1245 /* This says how to output an assembler line
1246    to define a global common symbol.  */
1247
1248 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1249 ( fputs ("\t.comm ", (FILE)),                   \
1250   assemble_name ((FILE), (NAME)),               \
1251   fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1252
1253 /* This says how to output an assembler line
1254    to define a local common symbol.  */
1255
1256 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED)      \
1257 ( fputs ("\t.lcomm ", (FILE)),                          \
1258   assemble_name ((FILE), (NAME)),                       \
1259   fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1260 \f
1261
1262 /* Print operand X (an rtx) in assembler syntax to file FILE.
1263    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1264    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1265
1266 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1267
1268 /* Determine which codes are valid without a following integer.  These must
1269    not be alphabetic.
1270
1271    ~    Generates the name of the current function.
1272
1273    /    Generates the instruction suffix.  The TRAP_SUFFIX and ROUND_SUFFIX
1274         attributes are examined to determine what is appropriate.
1275
1276    ,    Generates single precision suffix for floating point
1277         instructions (s for IEEE, f for VAX)
1278
1279    -    Generates double precision suffix for floating point
1280         instructions (t for IEEE, g for VAX)
1281    */
1282
1283 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1284   ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1285    || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1286
1287 /* Print a memory address as an operand to reference that memory location.  */
1288
1289 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1290   print_operand_address((FILE), (ADDR))
1291 \f
1292 /* Tell collect that the object format is ECOFF.  */
1293 #define OBJECT_FORMAT_COFF
1294 #define EXTENDED_COFF
1295
1296 /* If we use NM, pass -g to it so it only lists globals.  */
1297 #define NM_FLAGS "-pg"
1298
1299 /* Definitions for debugging.  */
1300
1301 #define SDB_DEBUGGING_INFO 1            /* generate info for mips-tfile */
1302 #define DBX_DEBUGGING_INFO 1            /* generate embedded stabs */
1303 #define MIPS_DEBUGGING_INFO 1           /* MIPS specific debugging info */
1304
1305 #ifndef PREFERRED_DEBUGGING_TYPE        /* assume SDB_DEBUGGING_INFO */
1306 #define PREFERRED_DEBUGGING_TYPE  SDB_DEBUG
1307 #endif
1308
1309
1310 /* Correct the offset of automatic variables and arguments.  Note that
1311    the Alpha debug format wants all automatic variables and arguments
1312    to be in terms of two different offsets from the virtual frame pointer,
1313    which is the stack pointer before any adjustment in the function.
1314    The offset for the argument pointer is fixed for the native compiler,
1315    it is either zero (for the no arguments case) or large enough to hold
1316    all argument registers.
1317    The offset for the auto pointer is the fourth argument to the .frame
1318    directive (local_offset).
1319    To stay compatible with the native tools we use the same offsets
1320    from the virtual frame pointer and adjust the debugger arg/auto offsets
1321    accordingly. These debugger offsets are set up in output_prolog.  */
1322
1323 extern long alpha_arg_offset;
1324 extern long alpha_auto_offset;
1325 #define DEBUGGER_AUTO_OFFSET(X) \
1326   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1327 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1328
1329 /* mips-tfile doesn't understand .stabd directives.  */
1330 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {      \
1331   dbxout_begin_stabn_sline (LINE);                              \
1332   dbxout_stab_value_internal_label ("LM", &COUNTER);            \
1333 } while (0)
1334
1335 /* We want to use MIPS-style .loc directives for SDB line numbers.  */
1336 extern int num_source_filenames;
1337 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)    \
1338   fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1339
1340 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)                        \
1341   alpha_output_filename (STREAM, NAME)
1342
1343 /* mips-tfile.c limits us to strings of one page.  We must underestimate this
1344    number, because the real length runs past this up to the next
1345    continuation point.  This is really a dbxout.c bug.  */
1346 #define DBX_CONTIN_LENGTH 3000
1347
1348 /* By default, turn on GDB extensions.  */
1349 #define DEFAULT_GDB_EXTENSIONS 1
1350
1351 /* Stabs-in-ECOFF can't handle dbxout_function_end().  */
1352 #define NO_DBX_FUNCTION_END 1
1353
1354 /* If we are smuggling stabs through the ALPHA ECOFF object
1355    format, put a comment in front of the .stab<x> operation so
1356    that the ALPHA assembler does not choke.  The mips-tfile program
1357    will correctly put the stab into the object file.  */
1358
1359 #define ASM_STABS_OP    ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1360 #define ASM_STABN_OP    ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1361 #define ASM_STABD_OP    ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1362
1363 /* Forward references to tags are allowed.  */
1364 #define SDB_ALLOW_FORWARD_REFERENCES
1365
1366 /* Unknown tags are also allowed.  */
1367 #define SDB_ALLOW_UNKNOWN_REFERENCES
1368
1369 #define PUT_SDB_DEF(a)                                  \
1370 do {                                                    \
1371   fprintf (asm_out_file, "\t%s.def\t",                  \
1372            (TARGET_GAS) ? "" : "#");                    \
1373   ASM_OUTPUT_LABELREF (asm_out_file, a);                \
1374   fputc (';', asm_out_file);                            \
1375 } while (0)
1376
1377 #define PUT_SDB_PLAIN_DEF(a)                            \
1378 do {                                                    \
1379   fprintf (asm_out_file, "\t%s.def\t.%s;",              \
1380            (TARGET_GAS) ? "" : "#", (a));               \
1381 } while (0)
1382
1383 #define PUT_SDB_TYPE(a)                                 \
1384 do {                                                    \
1385   fprintf (asm_out_file, "\t.type\t0x%x;", (a));        \
1386 } while (0)
1387
1388 /* For block start and end, we create labels, so that
1389    later we can figure out where the correct offset is.
1390    The normal .ent/.end serve well enough for functions,
1391    so those are just commented out.  */
1392
1393 extern int sdb_label_count;             /* block start/end next label # */
1394
1395 #define PUT_SDB_BLOCK_START(LINE)                       \
1396 do {                                                    \
1397   fprintf (asm_out_file,                                \
1398            "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n",           \
1399            sdb_label_count,                             \
1400            (TARGET_GAS) ? "" : "#",                     \
1401            sdb_label_count,                             \
1402            (LINE));                                     \
1403   sdb_label_count++;                                    \
1404 } while (0)
1405
1406 #define PUT_SDB_BLOCK_END(LINE)                         \
1407 do {                                                    \
1408   fprintf (asm_out_file,                                \
1409            "$Le%d:\n\t%s.bend\t$Le%d\t%d\n",            \
1410            sdb_label_count,                             \
1411            (TARGET_GAS) ? "" : "#",                     \
1412            sdb_label_count,                             \
1413            (LINE));                                     \
1414   sdb_label_count++;                                    \
1415 } while (0)
1416
1417 #define PUT_SDB_FUNCTION_START(LINE)
1418
1419 #define PUT_SDB_FUNCTION_END(LINE)
1420
1421 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1422
1423 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1424    mips-tdump.c to print them out.
1425
1426    These must match the corresponding definitions in gdb/mipsread.c.
1427    Unfortunately, gcc and gdb do not currently share any directories.  */
1428
1429 #define CODE_MASK 0x8F300
1430 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1431 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1432 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1433
1434 /* Override some mips-tfile definitions.  */
1435
1436 #define SHASH_SIZE 511
1437 #define THASH_SIZE 55
1438
1439 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints.  */
1440
1441 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1442
1443 /* The system headers under Alpha systems are generally C++-aware.  */
1444 #define NO_IMPLICIT_EXTERN_C