OSDN Git Service

91b6c2fdc420e7061369e4628d56fe606104b745
[tomoyo/tomoyo-test1.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 #define BTRFS_ROOT_TRANS_TAG 0
41
42 /*
43  * Transaction states and transitions
44  *
45  * No running transaction (fs tree blocks are not modified)
46  * |
47  * | To next stage:
48  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49  * V
50  * Transaction N [[TRANS_STATE_RUNNING]]
51  * |
52  * | New trans handles can be attached to transaction N by calling all
53  * | start_transaction() variants.
54  * |
55  * | To next stage:
56  * |  Call btrfs_commit_transaction() on any trans handle attached to
57  * |  transaction N
58  * V
59  * Transaction N [[TRANS_STATE_COMMIT_START]]
60  * |
61  * | Will wait for previous running transaction to completely finish if there
62  * | is one
63  * |
64  * | Then one of the following happes:
65  * | - Wait for all other trans handle holders to release.
66  * |   The btrfs_commit_transaction() caller will do the commit work.
67  * | - Wait for current transaction to be committed by others.
68  * |   Other btrfs_commit_transaction() caller will do the commit work.
69  * |
70  * | At this stage, only btrfs_join_transaction*() variants can attach
71  * | to this running transaction.
72  * | All other variants will wait for current one to finish and attach to
73  * | transaction N+1.
74  * |
75  * | To next stage:
76  * |  Caller is chosen to commit transaction N, and all other trans handle
77  * |  haven been released.
78  * V
79  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80  * |
81  * | The heavy lifting transaction work is started.
82  * | From running delayed refs (modifying extent tree) to creating pending
83  * | snapshots, running qgroups.
84  * | In short, modify supporting trees to reflect modifications of subvolume
85  * | trees.
86  * |
87  * | At this stage, all start_transaction() calls will wait for this
88  * | transaction to finish and attach to transaction N+1.
89  * |
90  * | To next stage:
91  * |  Until all supporting trees are updated.
92  * V
93  * Transaction N [[TRANS_STATE_UNBLOCKED]]
94  * |                                                Transaction N+1
95  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
96  * | need to write them back to disk and update     |
97  * | super blocks.                                  |
98  * |                                                |
99  * | At this stage, new transaction is allowed to   |
100  * | start.                                         |
101  * | All new start_transaction() calls will be      |
102  * | attached to transid N+1.                       |
103  * |                                                |
104  * | To next stage:                                 |
105  * |  Until all tree blocks are super blocks are    |
106  * |  written to block devices                      |
107  * V                                                |
108  * Transaction N [[TRANS_STATE_COMPLETED]]          V
109  *   All tree blocks and super blocks are written.  Transaction N+1
110  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
111  *   data structures will be cleaned up.            | Life goes on
112  */
113 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114         [TRANS_STATE_RUNNING]           = 0U,
115         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
116         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOSTART),
120         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
121                                            __TRANS_ATTACH |
122                                            __TRANS_JOIN |
123                                            __TRANS_JOIN_NOLOCK |
124                                            __TRANS_JOIN_NOSTART),
125         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
126                                            __TRANS_ATTACH |
127                                            __TRANS_JOIN |
128                                            __TRANS_JOIN_NOLOCK |
129                                            __TRANS_JOIN_NOSTART),
130         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
131                                            __TRANS_ATTACH |
132                                            __TRANS_JOIN |
133                                            __TRANS_JOIN_NOLOCK |
134                                            __TRANS_JOIN_NOSTART),
135 };
136
137 void btrfs_put_transaction(struct btrfs_transaction *transaction)
138 {
139         WARN_ON(refcount_read(&transaction->use_count) == 0);
140         if (refcount_dec_and_test(&transaction->use_count)) {
141                 BUG_ON(!list_empty(&transaction->list));
142                 WARN_ON(!RB_EMPTY_ROOT(
143                                 &transaction->delayed_refs.href_root.rb_root));
144                 WARN_ON(!RB_EMPTY_ROOT(
145                                 &transaction->delayed_refs.dirty_extent_root));
146                 if (transaction->delayed_refs.pending_csums)
147                         btrfs_err(transaction->fs_info,
148                                   "pending csums is %llu",
149                                   transaction->delayed_refs.pending_csums);
150                 /*
151                  * If any block groups are found in ->deleted_bgs then it's
152                  * because the transaction was aborted and a commit did not
153                  * happen (things failed before writing the new superblock
154                  * and calling btrfs_finish_extent_commit()), so we can not
155                  * discard the physical locations of the block groups.
156                  */
157                 while (!list_empty(&transaction->deleted_bgs)) {
158                         struct btrfs_block_group *cache;
159
160                         cache = list_first_entry(&transaction->deleted_bgs,
161                                                  struct btrfs_block_group,
162                                                  bg_list);
163                         list_del_init(&cache->bg_list);
164                         btrfs_unfreeze_block_group(cache);
165                         btrfs_put_block_group(cache);
166                 }
167                 WARN_ON(!list_empty(&transaction->dev_update_list));
168                 kfree(transaction);
169         }
170 }
171
172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173 {
174         struct btrfs_transaction *cur_trans = trans->transaction;
175         struct btrfs_fs_info *fs_info = trans->fs_info;
176         struct btrfs_root *root, *tmp;
177
178         /*
179          * At this point no one can be using this transaction to modify any tree
180          * and no one can start another transaction to modify any tree either.
181          */
182         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184         down_write(&fs_info->commit_root_sem);
185
186         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187                 fs_info->last_reloc_trans = trans->transid;
188
189         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190                                  dirty_list) {
191                 list_del_init(&root->dirty_list);
192                 free_extent_buffer(root->commit_root);
193                 root->commit_root = btrfs_root_node(root);
194                 extent_io_tree_release(&root->dirty_log_pages);
195                 btrfs_qgroup_clean_swapped_blocks(root);
196         }
197
198         /* We can free old roots now. */
199         spin_lock(&cur_trans->dropped_roots_lock);
200         while (!list_empty(&cur_trans->dropped_roots)) {
201                 root = list_first_entry(&cur_trans->dropped_roots,
202                                         struct btrfs_root, root_list);
203                 list_del_init(&root->root_list);
204                 spin_unlock(&cur_trans->dropped_roots_lock);
205                 btrfs_free_log(trans, root);
206                 btrfs_drop_and_free_fs_root(fs_info, root);
207                 spin_lock(&cur_trans->dropped_roots_lock);
208         }
209         spin_unlock(&cur_trans->dropped_roots_lock);
210
211         up_write(&fs_info->commit_root_sem);
212 }
213
214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215                                          unsigned int type)
216 {
217         if (type & TRANS_EXTWRITERS)
218                 atomic_inc(&trans->num_extwriters);
219 }
220
221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222                                          unsigned int type)
223 {
224         if (type & TRANS_EXTWRITERS)
225                 atomic_dec(&trans->num_extwriters);
226 }
227
228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229                                           unsigned int type)
230 {
231         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232 }
233
234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235 {
236         return atomic_read(&trans->num_extwriters);
237 }
238
239 /*
240  * To be called after doing the chunk btree updates right after allocating a new
241  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242  * chunk after all chunk btree updates and after finishing the second phase of
243  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244  * group had its chunk item insertion delayed to the second phase.
245  */
246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247 {
248         struct btrfs_fs_info *fs_info = trans->fs_info;
249
250         if (!trans->chunk_bytes_reserved)
251                 return;
252
253         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254                                 trans->chunk_bytes_reserved, NULL);
255         trans->chunk_bytes_reserved = 0;
256 }
257
258 /*
259  * either allocate a new transaction or hop into the existing one
260  */
261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262                                      unsigned int type)
263 {
264         struct btrfs_transaction *cur_trans;
265
266         spin_lock(&fs_info->trans_lock);
267 loop:
268         /* The file system has been taken offline. No new transactions. */
269         if (BTRFS_FS_ERROR(fs_info)) {
270                 spin_unlock(&fs_info->trans_lock);
271                 return -EROFS;
272         }
273
274         cur_trans = fs_info->running_transaction;
275         if (cur_trans) {
276                 if (TRANS_ABORTED(cur_trans)) {
277                         spin_unlock(&fs_info->trans_lock);
278                         return cur_trans->aborted;
279                 }
280                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281                         spin_unlock(&fs_info->trans_lock);
282                         return -EBUSY;
283                 }
284                 refcount_inc(&cur_trans->use_count);
285                 atomic_inc(&cur_trans->num_writers);
286                 extwriter_counter_inc(cur_trans, type);
287                 spin_unlock(&fs_info->trans_lock);
288                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
290                 return 0;
291         }
292         spin_unlock(&fs_info->trans_lock);
293
294         /*
295          * If we are ATTACH, we just want to catch the current transaction,
296          * and commit it. If there is no transaction, just return ENOENT.
297          */
298         if (type == TRANS_ATTACH)
299                 return -ENOENT;
300
301         /*
302          * JOIN_NOLOCK only happens during the transaction commit, so
303          * it is impossible that ->running_transaction is NULL
304          */
305         BUG_ON(type == TRANS_JOIN_NOLOCK);
306
307         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
308         if (!cur_trans)
309                 return -ENOMEM;
310
311         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
312         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
313
314         spin_lock(&fs_info->trans_lock);
315         if (fs_info->running_transaction) {
316                 /*
317                  * someone started a transaction after we unlocked.  Make sure
318                  * to redo the checks above
319                  */
320                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
321                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
322                 kfree(cur_trans);
323                 goto loop;
324         } else if (BTRFS_FS_ERROR(fs_info)) {
325                 spin_unlock(&fs_info->trans_lock);
326                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
327                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
328                 kfree(cur_trans);
329                 return -EROFS;
330         }
331
332         cur_trans->fs_info = fs_info;
333         atomic_set(&cur_trans->pending_ordered, 0);
334         init_waitqueue_head(&cur_trans->pending_wait);
335         atomic_set(&cur_trans->num_writers, 1);
336         extwriter_counter_init(cur_trans, type);
337         init_waitqueue_head(&cur_trans->writer_wait);
338         init_waitqueue_head(&cur_trans->commit_wait);
339         cur_trans->state = TRANS_STATE_RUNNING;
340         /*
341          * One for this trans handle, one so it will live on until we
342          * commit the transaction.
343          */
344         refcount_set(&cur_trans->use_count, 2);
345         cur_trans->flags = 0;
346         cur_trans->start_time = ktime_get_seconds();
347
348         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
349
350         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
351         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
352         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
353
354         /*
355          * although the tree mod log is per file system and not per transaction,
356          * the log must never go across transaction boundaries.
357          */
358         smp_mb();
359         if (!list_empty(&fs_info->tree_mod_seq_list))
360                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363         atomic64_set(&fs_info->tree_mod_seq, 0);
364
365         spin_lock_init(&cur_trans->delayed_refs.lock);
366
367         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368         INIT_LIST_HEAD(&cur_trans->dev_update_list);
369         INIT_LIST_HEAD(&cur_trans->switch_commits);
370         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371         INIT_LIST_HEAD(&cur_trans->io_bgs);
372         INIT_LIST_HEAD(&cur_trans->dropped_roots);
373         mutex_init(&cur_trans->cache_write_mutex);
374         spin_lock_init(&cur_trans->dirty_bgs_lock);
375         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376         spin_lock_init(&cur_trans->dropped_roots_lock);
377         list_add_tail(&cur_trans->list, &fs_info->trans_list);
378         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
379                         IO_TREE_TRANS_DIRTY_PAGES);
380         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
381                         IO_TREE_FS_PINNED_EXTENTS);
382         fs_info->generation++;
383         cur_trans->transid = fs_info->generation;
384         fs_info->running_transaction = cur_trans;
385         cur_trans->aborted = 0;
386         spin_unlock(&fs_info->trans_lock);
387
388         return 0;
389 }
390
391 /*
392  * This does all the record keeping required to make sure that a shareable root
393  * is properly recorded in a given transaction.  This is required to make sure
394  * the old root from before we joined the transaction is deleted when the
395  * transaction commits.
396  */
397 static int record_root_in_trans(struct btrfs_trans_handle *trans,
398                                struct btrfs_root *root,
399                                int force)
400 {
401         struct btrfs_fs_info *fs_info = root->fs_info;
402         int ret = 0;
403
404         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405             root->last_trans < trans->transid) || force) {
406                 WARN_ON(!force && root->commit_root != root->node);
407
408                 /*
409                  * see below for IN_TRANS_SETUP usage rules
410                  * we have the reloc mutex held now, so there
411                  * is only one writer in this function
412                  */
413                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
414
415                 /* make sure readers find IN_TRANS_SETUP before
416                  * they find our root->last_trans update
417                  */
418                 smp_wmb();
419
420                 spin_lock(&fs_info->fs_roots_radix_lock);
421                 if (root->last_trans == trans->transid && !force) {
422                         spin_unlock(&fs_info->fs_roots_radix_lock);
423                         return 0;
424                 }
425                 radix_tree_tag_set(&fs_info->fs_roots_radix,
426                                    (unsigned long)root->root_key.objectid,
427                                    BTRFS_ROOT_TRANS_TAG);
428                 spin_unlock(&fs_info->fs_roots_radix_lock);
429                 root->last_trans = trans->transid;
430
431                 /* this is pretty tricky.  We don't want to
432                  * take the relocation lock in btrfs_record_root_in_trans
433                  * unless we're really doing the first setup for this root in
434                  * this transaction.
435                  *
436                  * Normally we'd use root->last_trans as a flag to decide
437                  * if we want to take the expensive mutex.
438                  *
439                  * But, we have to set root->last_trans before we
440                  * init the relocation root, otherwise, we trip over warnings
441                  * in ctree.c.  The solution used here is to flag ourselves
442                  * with root IN_TRANS_SETUP.  When this is 1, we're still
443                  * fixing up the reloc trees and everyone must wait.
444                  *
445                  * When this is zero, they can trust root->last_trans and fly
446                  * through btrfs_record_root_in_trans without having to take the
447                  * lock.  smp_wmb() makes sure that all the writes above are
448                  * done before we pop in the zero below
449                  */
450                 ret = btrfs_init_reloc_root(trans, root);
451                 smp_mb__before_atomic();
452                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
453         }
454         return ret;
455 }
456
457
458 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
459                             struct btrfs_root *root)
460 {
461         struct btrfs_fs_info *fs_info = root->fs_info;
462         struct btrfs_transaction *cur_trans = trans->transaction;
463
464         /* Add ourselves to the transaction dropped list */
465         spin_lock(&cur_trans->dropped_roots_lock);
466         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
467         spin_unlock(&cur_trans->dropped_roots_lock);
468
469         /* Make sure we don't try to update the root at commit time */
470         spin_lock(&fs_info->fs_roots_radix_lock);
471         radix_tree_tag_clear(&fs_info->fs_roots_radix,
472                              (unsigned long)root->root_key.objectid,
473                              BTRFS_ROOT_TRANS_TAG);
474         spin_unlock(&fs_info->fs_roots_radix_lock);
475 }
476
477 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
478                                struct btrfs_root *root)
479 {
480         struct btrfs_fs_info *fs_info = root->fs_info;
481         int ret;
482
483         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
484                 return 0;
485
486         /*
487          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
488          * and barriers
489          */
490         smp_rmb();
491         if (root->last_trans == trans->transid &&
492             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
493                 return 0;
494
495         mutex_lock(&fs_info->reloc_mutex);
496         ret = record_root_in_trans(trans, root, 0);
497         mutex_unlock(&fs_info->reloc_mutex);
498
499         return ret;
500 }
501
502 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
503 {
504         return (trans->state >= TRANS_STATE_COMMIT_START &&
505                 trans->state < TRANS_STATE_UNBLOCKED &&
506                 !TRANS_ABORTED(trans));
507 }
508
509 /* wait for commit against the current transaction to become unblocked
510  * when this is done, it is safe to start a new transaction, but the current
511  * transaction might not be fully on disk.
512  */
513 static void wait_current_trans(struct btrfs_fs_info *fs_info)
514 {
515         struct btrfs_transaction *cur_trans;
516
517         spin_lock(&fs_info->trans_lock);
518         cur_trans = fs_info->running_transaction;
519         if (cur_trans && is_transaction_blocked(cur_trans)) {
520                 refcount_inc(&cur_trans->use_count);
521                 spin_unlock(&fs_info->trans_lock);
522
523                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
524                 wait_event(fs_info->transaction_wait,
525                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
526                            TRANS_ABORTED(cur_trans));
527                 btrfs_put_transaction(cur_trans);
528         } else {
529                 spin_unlock(&fs_info->trans_lock);
530         }
531 }
532
533 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
534 {
535         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
536                 return 0;
537
538         if (type == TRANS_START)
539                 return 1;
540
541         return 0;
542 }
543
544 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
545 {
546         struct btrfs_fs_info *fs_info = root->fs_info;
547
548         if (!fs_info->reloc_ctl ||
549             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
550             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
551             root->reloc_root)
552                 return false;
553
554         return true;
555 }
556
557 static struct btrfs_trans_handle *
558 start_transaction(struct btrfs_root *root, unsigned int num_items,
559                   unsigned int type, enum btrfs_reserve_flush_enum flush,
560                   bool enforce_qgroups)
561 {
562         struct btrfs_fs_info *fs_info = root->fs_info;
563         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
564         struct btrfs_trans_handle *h;
565         struct btrfs_transaction *cur_trans;
566         u64 num_bytes = 0;
567         u64 qgroup_reserved = 0;
568         bool reloc_reserved = false;
569         bool do_chunk_alloc = false;
570         int ret;
571
572         if (BTRFS_FS_ERROR(fs_info))
573                 return ERR_PTR(-EROFS);
574
575         if (current->journal_info) {
576                 WARN_ON(type & TRANS_EXTWRITERS);
577                 h = current->journal_info;
578                 refcount_inc(&h->use_count);
579                 WARN_ON(refcount_read(&h->use_count) > 2);
580                 h->orig_rsv = h->block_rsv;
581                 h->block_rsv = NULL;
582                 goto got_it;
583         }
584
585         /*
586          * Do the reservation before we join the transaction so we can do all
587          * the appropriate flushing if need be.
588          */
589         if (num_items && root != fs_info->chunk_root) {
590                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
591                 u64 delayed_refs_bytes = 0;
592
593                 qgroup_reserved = num_items * fs_info->nodesize;
594                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
595                                 enforce_qgroups);
596                 if (ret)
597                         return ERR_PTR(ret);
598
599                 /*
600                  * We want to reserve all the bytes we may need all at once, so
601                  * we only do 1 enospc flushing cycle per transaction start.  We
602                  * accomplish this by simply assuming we'll do num_items worth
603                  * of delayed refs updates in this trans handle, and refill that
604                  * amount for whatever is missing in the reserve.
605                  */
606                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
607                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
608                     !btrfs_block_rsv_full(delayed_refs_rsv)) {
609                         delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
610                                                                           num_items);
611                         num_bytes += delayed_refs_bytes;
612                 }
613
614                 /*
615                  * Do the reservation for the relocation root creation
616                  */
617                 if (need_reserve_reloc_root(root)) {
618                         num_bytes += fs_info->nodesize;
619                         reloc_reserved = true;
620                 }
621
622                 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
623                 if (ret)
624                         goto reserve_fail;
625                 if (delayed_refs_bytes) {
626                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
627                                                           delayed_refs_bytes);
628                         num_bytes -= delayed_refs_bytes;
629                 }
630
631                 if (rsv->space_info->force_alloc)
632                         do_chunk_alloc = true;
633         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
634                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
635                 /*
636                  * Some people call with btrfs_start_transaction(root, 0)
637                  * because they can be throttled, but have some other mechanism
638                  * for reserving space.  We still want these guys to refill the
639                  * delayed block_rsv so just add 1 items worth of reservation
640                  * here.
641                  */
642                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
643                 if (ret)
644                         goto reserve_fail;
645         }
646 again:
647         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
648         if (!h) {
649                 ret = -ENOMEM;
650                 goto alloc_fail;
651         }
652
653         /*
654          * If we are JOIN_NOLOCK we're already committing a transaction and
655          * waiting on this guy, so we don't need to do the sb_start_intwrite
656          * because we're already holding a ref.  We need this because we could
657          * have raced in and did an fsync() on a file which can kick a commit
658          * and then we deadlock with somebody doing a freeze.
659          *
660          * If we are ATTACH, it means we just want to catch the current
661          * transaction and commit it, so we needn't do sb_start_intwrite(). 
662          */
663         if (type & __TRANS_FREEZABLE)
664                 sb_start_intwrite(fs_info->sb);
665
666         if (may_wait_transaction(fs_info, type))
667                 wait_current_trans(fs_info);
668
669         do {
670                 ret = join_transaction(fs_info, type);
671                 if (ret == -EBUSY) {
672                         wait_current_trans(fs_info);
673                         if (unlikely(type == TRANS_ATTACH ||
674                                      type == TRANS_JOIN_NOSTART))
675                                 ret = -ENOENT;
676                 }
677         } while (ret == -EBUSY);
678
679         if (ret < 0)
680                 goto join_fail;
681
682         cur_trans = fs_info->running_transaction;
683
684         h->transid = cur_trans->transid;
685         h->transaction = cur_trans;
686         refcount_set(&h->use_count, 1);
687         h->fs_info = root->fs_info;
688
689         h->type = type;
690         INIT_LIST_HEAD(&h->new_bgs);
691
692         smp_mb();
693         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
694             may_wait_transaction(fs_info, type)) {
695                 current->journal_info = h;
696                 btrfs_commit_transaction(h);
697                 goto again;
698         }
699
700         if (num_bytes) {
701                 trace_btrfs_space_reservation(fs_info, "transaction",
702                                               h->transid, num_bytes, 1);
703                 h->block_rsv = &fs_info->trans_block_rsv;
704                 h->bytes_reserved = num_bytes;
705                 h->reloc_reserved = reloc_reserved;
706         }
707
708 got_it:
709         if (!current->journal_info)
710                 current->journal_info = h;
711
712         /*
713          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
714          * ALLOC_FORCE the first run through, and then we won't allocate for
715          * anybody else who races in later.  We don't care about the return
716          * value here.
717          */
718         if (do_chunk_alloc && num_bytes) {
719                 u64 flags = h->block_rsv->space_info->flags;
720
721                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
722                                   CHUNK_ALLOC_NO_FORCE);
723         }
724
725         /*
726          * btrfs_record_root_in_trans() needs to alloc new extents, and may
727          * call btrfs_join_transaction() while we're also starting a
728          * transaction.
729          *
730          * Thus it need to be called after current->journal_info initialized,
731          * or we can deadlock.
732          */
733         ret = btrfs_record_root_in_trans(h, root);
734         if (ret) {
735                 /*
736                  * The transaction handle is fully initialized and linked with
737                  * other structures so it needs to be ended in case of errors,
738                  * not just freed.
739                  */
740                 btrfs_end_transaction(h);
741                 return ERR_PTR(ret);
742         }
743
744         return h;
745
746 join_fail:
747         if (type & __TRANS_FREEZABLE)
748                 sb_end_intwrite(fs_info->sb);
749         kmem_cache_free(btrfs_trans_handle_cachep, h);
750 alloc_fail:
751         if (num_bytes)
752                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
753                                         num_bytes, NULL);
754 reserve_fail:
755         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
756         return ERR_PTR(ret);
757 }
758
759 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
760                                                    unsigned int num_items)
761 {
762         return start_transaction(root, num_items, TRANS_START,
763                                  BTRFS_RESERVE_FLUSH_ALL, true);
764 }
765
766 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
767                                         struct btrfs_root *root,
768                                         unsigned int num_items)
769 {
770         return start_transaction(root, num_items, TRANS_START,
771                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
772 }
773
774 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
775 {
776         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
777                                  true);
778 }
779
780 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
781 {
782         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
783                                  BTRFS_RESERVE_NO_FLUSH, true);
784 }
785
786 /*
787  * Similar to regular join but it never starts a transaction when none is
788  * running or after waiting for the current one to finish.
789  */
790 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
791 {
792         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
793                                  BTRFS_RESERVE_NO_FLUSH, true);
794 }
795
796 /*
797  * btrfs_attach_transaction() - catch the running transaction
798  *
799  * It is used when we want to commit the current the transaction, but
800  * don't want to start a new one.
801  *
802  * Note: If this function return -ENOENT, it just means there is no
803  * running transaction. But it is possible that the inactive transaction
804  * is still in the memory, not fully on disk. If you hope there is no
805  * inactive transaction in the fs when -ENOENT is returned, you should
806  * invoke
807  *     btrfs_attach_transaction_barrier()
808  */
809 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
810 {
811         return start_transaction(root, 0, TRANS_ATTACH,
812                                  BTRFS_RESERVE_NO_FLUSH, true);
813 }
814
815 /*
816  * btrfs_attach_transaction_barrier() - catch the running transaction
817  *
818  * It is similar to the above function, the difference is this one
819  * will wait for all the inactive transactions until they fully
820  * complete.
821  */
822 struct btrfs_trans_handle *
823 btrfs_attach_transaction_barrier(struct btrfs_root *root)
824 {
825         struct btrfs_trans_handle *trans;
826
827         trans = start_transaction(root, 0, TRANS_ATTACH,
828                                   BTRFS_RESERVE_NO_FLUSH, true);
829         if (trans == ERR_PTR(-ENOENT)) {
830                 int ret;
831
832                 ret = btrfs_wait_for_commit(root->fs_info, 0);
833                 if (ret)
834                         return ERR_PTR(ret);
835         }
836
837         return trans;
838 }
839
840 /* Wait for a transaction commit to reach at least the given state. */
841 static noinline void wait_for_commit(struct btrfs_transaction *commit,
842                                      const enum btrfs_trans_state min_state)
843 {
844         struct btrfs_fs_info *fs_info = commit->fs_info;
845         u64 transid = commit->transid;
846         bool put = false;
847
848         /*
849          * At the moment this function is called with min_state either being
850          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
851          */
852         if (min_state == TRANS_STATE_COMPLETED)
853                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
854         else
855                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
856
857         while (1) {
858                 wait_event(commit->commit_wait, commit->state >= min_state);
859                 if (put)
860                         btrfs_put_transaction(commit);
861
862                 if (min_state < TRANS_STATE_COMPLETED)
863                         break;
864
865                 /*
866                  * A transaction isn't really completed until all of the
867                  * previous transactions are completed, but with fsync we can
868                  * end up with SUPER_COMMITTED transactions before a COMPLETED
869                  * transaction. Wait for those.
870                  */
871
872                 spin_lock(&fs_info->trans_lock);
873                 commit = list_first_entry_or_null(&fs_info->trans_list,
874                                                   struct btrfs_transaction,
875                                                   list);
876                 if (!commit || commit->transid > transid) {
877                         spin_unlock(&fs_info->trans_lock);
878                         break;
879                 }
880                 refcount_inc(&commit->use_count);
881                 put = true;
882                 spin_unlock(&fs_info->trans_lock);
883         }
884 }
885
886 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
887 {
888         struct btrfs_transaction *cur_trans = NULL, *t;
889         int ret = 0;
890
891         if (transid) {
892                 if (transid <= fs_info->last_trans_committed)
893                         goto out;
894
895                 /* find specified transaction */
896                 spin_lock(&fs_info->trans_lock);
897                 list_for_each_entry(t, &fs_info->trans_list, list) {
898                         if (t->transid == transid) {
899                                 cur_trans = t;
900                                 refcount_inc(&cur_trans->use_count);
901                                 ret = 0;
902                                 break;
903                         }
904                         if (t->transid > transid) {
905                                 ret = 0;
906                                 break;
907                         }
908                 }
909                 spin_unlock(&fs_info->trans_lock);
910
911                 /*
912                  * The specified transaction doesn't exist, or we
913                  * raced with btrfs_commit_transaction
914                  */
915                 if (!cur_trans) {
916                         if (transid > fs_info->last_trans_committed)
917                                 ret = -EINVAL;
918                         goto out;
919                 }
920         } else {
921                 /* find newest transaction that is committing | committed */
922                 spin_lock(&fs_info->trans_lock);
923                 list_for_each_entry_reverse(t, &fs_info->trans_list,
924                                             list) {
925                         if (t->state >= TRANS_STATE_COMMIT_START) {
926                                 if (t->state == TRANS_STATE_COMPLETED)
927                                         break;
928                                 cur_trans = t;
929                                 refcount_inc(&cur_trans->use_count);
930                                 break;
931                         }
932                 }
933                 spin_unlock(&fs_info->trans_lock);
934                 if (!cur_trans)
935                         goto out;  /* nothing committing|committed */
936         }
937
938         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
939         ret = cur_trans->aborted;
940         btrfs_put_transaction(cur_trans);
941 out:
942         return ret;
943 }
944
945 void btrfs_throttle(struct btrfs_fs_info *fs_info)
946 {
947         wait_current_trans(fs_info);
948 }
949
950 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
951 {
952         struct btrfs_transaction *cur_trans = trans->transaction;
953
954         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
955             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
956                 return true;
957
958         if (btrfs_check_space_for_delayed_refs(trans->fs_info))
959                 return true;
960
961         return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
962 }
963
964 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
965
966 {
967         struct btrfs_fs_info *fs_info = trans->fs_info;
968
969         if (!trans->block_rsv) {
970                 ASSERT(!trans->bytes_reserved);
971                 return;
972         }
973
974         if (!trans->bytes_reserved)
975                 return;
976
977         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
978         trace_btrfs_space_reservation(fs_info, "transaction",
979                                       trans->transid, trans->bytes_reserved, 0);
980         btrfs_block_rsv_release(fs_info, trans->block_rsv,
981                                 trans->bytes_reserved, NULL);
982         trans->bytes_reserved = 0;
983 }
984
985 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
986                                    int throttle)
987 {
988         struct btrfs_fs_info *info = trans->fs_info;
989         struct btrfs_transaction *cur_trans = trans->transaction;
990         int err = 0;
991
992         if (refcount_read(&trans->use_count) > 1) {
993                 refcount_dec(&trans->use_count);
994                 trans->block_rsv = trans->orig_rsv;
995                 return 0;
996         }
997
998         btrfs_trans_release_metadata(trans);
999         trans->block_rsv = NULL;
1000
1001         btrfs_create_pending_block_groups(trans);
1002
1003         btrfs_trans_release_chunk_metadata(trans);
1004
1005         if (trans->type & __TRANS_FREEZABLE)
1006                 sb_end_intwrite(info->sb);
1007
1008         WARN_ON(cur_trans != info->running_transaction);
1009         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1010         atomic_dec(&cur_trans->num_writers);
1011         extwriter_counter_dec(cur_trans, trans->type);
1012
1013         cond_wake_up(&cur_trans->writer_wait);
1014
1015         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1016         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1017
1018         btrfs_put_transaction(cur_trans);
1019
1020         if (current->journal_info == trans)
1021                 current->journal_info = NULL;
1022
1023         if (throttle)
1024                 btrfs_run_delayed_iputs(info);
1025
1026         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1027                 wake_up_process(info->transaction_kthread);
1028                 if (TRANS_ABORTED(trans))
1029                         err = trans->aborted;
1030                 else
1031                         err = -EROFS;
1032         }
1033
1034         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1035         return err;
1036 }
1037
1038 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1039 {
1040         return __btrfs_end_transaction(trans, 0);
1041 }
1042
1043 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1044 {
1045         return __btrfs_end_transaction(trans, 1);
1046 }
1047
1048 /*
1049  * when btree blocks are allocated, they have some corresponding bits set for
1050  * them in one of two extent_io trees.  This is used to make sure all of
1051  * those extents are sent to disk but does not wait on them
1052  */
1053 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1054                                struct extent_io_tree *dirty_pages, int mark)
1055 {
1056         int err = 0;
1057         int werr = 0;
1058         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1059         struct extent_state *cached_state = NULL;
1060         u64 start = 0;
1061         u64 end;
1062
1063         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1064                                       mark, &cached_state)) {
1065                 bool wait_writeback = false;
1066
1067                 err = convert_extent_bit(dirty_pages, start, end,
1068                                          EXTENT_NEED_WAIT,
1069                                          mark, &cached_state);
1070                 /*
1071                  * convert_extent_bit can return -ENOMEM, which is most of the
1072                  * time a temporary error. So when it happens, ignore the error
1073                  * and wait for writeback of this range to finish - because we
1074                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1075                  * to __btrfs_wait_marked_extents() would not know that
1076                  * writeback for this range started and therefore wouldn't
1077                  * wait for it to finish - we don't want to commit a
1078                  * superblock that points to btree nodes/leafs for which
1079                  * writeback hasn't finished yet (and without errors).
1080                  * We cleanup any entries left in the io tree when committing
1081                  * the transaction (through extent_io_tree_release()).
1082                  */
1083                 if (err == -ENOMEM) {
1084                         err = 0;
1085                         wait_writeback = true;
1086                 }
1087                 if (!err)
1088                         err = filemap_fdatawrite_range(mapping, start, end);
1089                 if (err)
1090                         werr = err;
1091                 else if (wait_writeback)
1092                         werr = filemap_fdatawait_range(mapping, start, end);
1093                 free_extent_state(cached_state);
1094                 cached_state = NULL;
1095                 cond_resched();
1096                 start = end + 1;
1097         }
1098         return werr;
1099 }
1100
1101 /*
1102  * when btree blocks are allocated, they have some corresponding bits set for
1103  * them in one of two extent_io trees.  This is used to make sure all of
1104  * those extents are on disk for transaction or log commit.  We wait
1105  * on all the pages and clear them from the dirty pages state tree
1106  */
1107 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1108                                        struct extent_io_tree *dirty_pages)
1109 {
1110         int err = 0;
1111         int werr = 0;
1112         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1113         struct extent_state *cached_state = NULL;
1114         u64 start = 0;
1115         u64 end;
1116
1117         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1118                                       EXTENT_NEED_WAIT, &cached_state)) {
1119                 /*
1120                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1121                  * When committing the transaction, we'll remove any entries
1122                  * left in the io tree. For a log commit, we don't remove them
1123                  * after committing the log because the tree can be accessed
1124                  * concurrently - we do it only at transaction commit time when
1125                  * it's safe to do it (through extent_io_tree_release()).
1126                  */
1127                 err = clear_extent_bit(dirty_pages, start, end,
1128                                        EXTENT_NEED_WAIT, &cached_state);
1129                 if (err == -ENOMEM)
1130                         err = 0;
1131                 if (!err)
1132                         err = filemap_fdatawait_range(mapping, start, end);
1133                 if (err)
1134                         werr = err;
1135                 free_extent_state(cached_state);
1136                 cached_state = NULL;
1137                 cond_resched();
1138                 start = end + 1;
1139         }
1140         if (err)
1141                 werr = err;
1142         return werr;
1143 }
1144
1145 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1146                        struct extent_io_tree *dirty_pages)
1147 {
1148         bool errors = false;
1149         int err;
1150
1151         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1152         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1153                 errors = true;
1154
1155         if (errors && !err)
1156                 err = -EIO;
1157         return err;
1158 }
1159
1160 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1161 {
1162         struct btrfs_fs_info *fs_info = log_root->fs_info;
1163         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1164         bool errors = false;
1165         int err;
1166
1167         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1168
1169         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1170         if ((mark & EXTENT_DIRTY) &&
1171             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1172                 errors = true;
1173
1174         if ((mark & EXTENT_NEW) &&
1175             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1176                 errors = true;
1177
1178         if (errors && !err)
1179                 err = -EIO;
1180         return err;
1181 }
1182
1183 /*
1184  * When btree blocks are allocated the corresponding extents are marked dirty.
1185  * This function ensures such extents are persisted on disk for transaction or
1186  * log commit.
1187  *
1188  * @trans: transaction whose dirty pages we'd like to write
1189  */
1190 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1191 {
1192         int ret;
1193         int ret2;
1194         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1195         struct btrfs_fs_info *fs_info = trans->fs_info;
1196         struct blk_plug plug;
1197
1198         blk_start_plug(&plug);
1199         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1200         blk_finish_plug(&plug);
1201         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1202
1203         extent_io_tree_release(&trans->transaction->dirty_pages);
1204
1205         if (ret)
1206                 return ret;
1207         else if (ret2)
1208                 return ret2;
1209         else
1210                 return 0;
1211 }
1212
1213 /*
1214  * this is used to update the root pointer in the tree of tree roots.
1215  *
1216  * But, in the case of the extent allocation tree, updating the root
1217  * pointer may allocate blocks which may change the root of the extent
1218  * allocation tree.
1219  *
1220  * So, this loops and repeats and makes sure the cowonly root didn't
1221  * change while the root pointer was being updated in the metadata.
1222  */
1223 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1224                                struct btrfs_root *root)
1225 {
1226         int ret;
1227         u64 old_root_bytenr;
1228         u64 old_root_used;
1229         struct btrfs_fs_info *fs_info = root->fs_info;
1230         struct btrfs_root *tree_root = fs_info->tree_root;
1231
1232         old_root_used = btrfs_root_used(&root->root_item);
1233
1234         while (1) {
1235                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1236                 if (old_root_bytenr == root->node->start &&
1237                     old_root_used == btrfs_root_used(&root->root_item))
1238                         break;
1239
1240                 btrfs_set_root_node(&root->root_item, root->node);
1241                 ret = btrfs_update_root(trans, tree_root,
1242                                         &root->root_key,
1243                                         &root->root_item);
1244                 if (ret)
1245                         return ret;
1246
1247                 old_root_used = btrfs_root_used(&root->root_item);
1248         }
1249
1250         return 0;
1251 }
1252
1253 /*
1254  * update all the cowonly tree roots on disk
1255  *
1256  * The error handling in this function may not be obvious. Any of the
1257  * failures will cause the file system to go offline. We still need
1258  * to clean up the delayed refs.
1259  */
1260 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1261 {
1262         struct btrfs_fs_info *fs_info = trans->fs_info;
1263         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1264         struct list_head *io_bgs = &trans->transaction->io_bgs;
1265         struct list_head *next;
1266         struct extent_buffer *eb;
1267         int ret;
1268
1269         /*
1270          * At this point no one can be using this transaction to modify any tree
1271          * and no one can start another transaction to modify any tree either.
1272          */
1273         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1274
1275         eb = btrfs_lock_root_node(fs_info->tree_root);
1276         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1277                               0, &eb, BTRFS_NESTING_COW);
1278         btrfs_tree_unlock(eb);
1279         free_extent_buffer(eb);
1280
1281         if (ret)
1282                 return ret;
1283
1284         ret = btrfs_run_dev_stats(trans);
1285         if (ret)
1286                 return ret;
1287         ret = btrfs_run_dev_replace(trans);
1288         if (ret)
1289                 return ret;
1290         ret = btrfs_run_qgroups(trans);
1291         if (ret)
1292                 return ret;
1293
1294         ret = btrfs_setup_space_cache(trans);
1295         if (ret)
1296                 return ret;
1297
1298 again:
1299         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1300                 struct btrfs_root *root;
1301                 next = fs_info->dirty_cowonly_roots.next;
1302                 list_del_init(next);
1303                 root = list_entry(next, struct btrfs_root, dirty_list);
1304                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1305
1306                 list_add_tail(&root->dirty_list,
1307                               &trans->transaction->switch_commits);
1308                 ret = update_cowonly_root(trans, root);
1309                 if (ret)
1310                         return ret;
1311         }
1312
1313         /* Now flush any delayed refs generated by updating all of the roots */
1314         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1315         if (ret)
1316                 return ret;
1317
1318         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1319                 ret = btrfs_write_dirty_block_groups(trans);
1320                 if (ret)
1321                         return ret;
1322
1323                 /*
1324                  * We're writing the dirty block groups, which could generate
1325                  * delayed refs, which could generate more dirty block groups,
1326                  * so we want to keep this flushing in this loop to make sure
1327                  * everything gets run.
1328                  */
1329                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1330                 if (ret)
1331                         return ret;
1332         }
1333
1334         if (!list_empty(&fs_info->dirty_cowonly_roots))
1335                 goto again;
1336
1337         /* Update dev-replace pointer once everything is committed */
1338         fs_info->dev_replace.committed_cursor_left =
1339                 fs_info->dev_replace.cursor_left_last_write_of_item;
1340
1341         return 0;
1342 }
1343
1344 /*
1345  * If we had a pending drop we need to see if there are any others left in our
1346  * dead roots list, and if not clear our bit and wake any waiters.
1347  */
1348 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1349 {
1350         /*
1351          * We put the drop in progress roots at the front of the list, so if the
1352          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1353          * up.
1354          */
1355         spin_lock(&fs_info->trans_lock);
1356         if (!list_empty(&fs_info->dead_roots)) {
1357                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1358                                                            struct btrfs_root,
1359                                                            root_list);
1360                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1361                         spin_unlock(&fs_info->trans_lock);
1362                         return;
1363                 }
1364         }
1365         spin_unlock(&fs_info->trans_lock);
1366
1367         btrfs_wake_unfinished_drop(fs_info);
1368 }
1369
1370 /*
1371  * dead roots are old snapshots that need to be deleted.  This allocates
1372  * a dirty root struct and adds it into the list of dead roots that need to
1373  * be deleted
1374  */
1375 void btrfs_add_dead_root(struct btrfs_root *root)
1376 {
1377         struct btrfs_fs_info *fs_info = root->fs_info;
1378
1379         spin_lock(&fs_info->trans_lock);
1380         if (list_empty(&root->root_list)) {
1381                 btrfs_grab_root(root);
1382
1383                 /* We want to process the partially complete drops first. */
1384                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1385                         list_add(&root->root_list, &fs_info->dead_roots);
1386                 else
1387                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1388         }
1389         spin_unlock(&fs_info->trans_lock);
1390 }
1391
1392 /*
1393  * Update each subvolume root and its relocation root, if it exists, in the tree
1394  * of tree roots. Also free log roots if they exist.
1395  */
1396 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1397 {
1398         struct btrfs_fs_info *fs_info = trans->fs_info;
1399         struct btrfs_root *gang[8];
1400         int i;
1401         int ret;
1402
1403         /*
1404          * At this point no one can be using this transaction to modify any tree
1405          * and no one can start another transaction to modify any tree either.
1406          */
1407         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1408
1409         spin_lock(&fs_info->fs_roots_radix_lock);
1410         while (1) {
1411                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1412                                                  (void **)gang, 0,
1413                                                  ARRAY_SIZE(gang),
1414                                                  BTRFS_ROOT_TRANS_TAG);
1415                 if (ret == 0)
1416                         break;
1417                 for (i = 0; i < ret; i++) {
1418                         struct btrfs_root *root = gang[i];
1419                         int ret2;
1420
1421                         /*
1422                          * At this point we can neither have tasks logging inodes
1423                          * from a root nor trying to commit a log tree.
1424                          */
1425                         ASSERT(atomic_read(&root->log_writers) == 0);
1426                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1427                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1428
1429                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1430                                         (unsigned long)root->root_key.objectid,
1431                                         BTRFS_ROOT_TRANS_TAG);
1432                         spin_unlock(&fs_info->fs_roots_radix_lock);
1433
1434                         btrfs_free_log(trans, root);
1435                         ret2 = btrfs_update_reloc_root(trans, root);
1436                         if (ret2)
1437                                 return ret2;
1438
1439                         /* see comments in should_cow_block() */
1440                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1441                         smp_mb__after_atomic();
1442
1443                         if (root->commit_root != root->node) {
1444                                 list_add_tail(&root->dirty_list,
1445                                         &trans->transaction->switch_commits);
1446                                 btrfs_set_root_node(&root->root_item,
1447                                                     root->node);
1448                         }
1449
1450                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1451                                                 &root->root_key,
1452                                                 &root->root_item);
1453                         if (ret2)
1454                                 return ret2;
1455                         spin_lock(&fs_info->fs_roots_radix_lock);
1456                         btrfs_qgroup_free_meta_all_pertrans(root);
1457                 }
1458         }
1459         spin_unlock(&fs_info->fs_roots_radix_lock);
1460         return 0;
1461 }
1462
1463 /*
1464  * defrag a given btree.
1465  * Every leaf in the btree is read and defragged.
1466  */
1467 int btrfs_defrag_root(struct btrfs_root *root)
1468 {
1469         struct btrfs_fs_info *info = root->fs_info;
1470         struct btrfs_trans_handle *trans;
1471         int ret;
1472
1473         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1474                 return 0;
1475
1476         while (1) {
1477                 trans = btrfs_start_transaction(root, 0);
1478                 if (IS_ERR(trans)) {
1479                         ret = PTR_ERR(trans);
1480                         break;
1481                 }
1482
1483                 ret = btrfs_defrag_leaves(trans, root);
1484
1485                 btrfs_end_transaction(trans);
1486                 btrfs_btree_balance_dirty(info);
1487                 cond_resched();
1488
1489                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1490                         break;
1491
1492                 if (btrfs_defrag_cancelled(info)) {
1493                         btrfs_debug(info, "defrag_root cancelled");
1494                         ret = -EAGAIN;
1495                         break;
1496                 }
1497         }
1498         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1499         return ret;
1500 }
1501
1502 /*
1503  * Do all special snapshot related qgroup dirty hack.
1504  *
1505  * Will do all needed qgroup inherit and dirty hack like switch commit
1506  * roots inside one transaction and write all btree into disk, to make
1507  * qgroup works.
1508  */
1509 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1510                                    struct btrfs_root *src,
1511                                    struct btrfs_root *parent,
1512                                    struct btrfs_qgroup_inherit *inherit,
1513                                    u64 dst_objectid)
1514 {
1515         struct btrfs_fs_info *fs_info = src->fs_info;
1516         int ret;
1517
1518         /*
1519          * Save some performance in the case that qgroups are not
1520          * enabled. If this check races with the ioctl, rescan will
1521          * kick in anyway.
1522          */
1523         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1524                 return 0;
1525
1526         /*
1527          * Ensure dirty @src will be committed.  Or, after coming
1528          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1529          * recorded root will never be updated again, causing an outdated root
1530          * item.
1531          */
1532         ret = record_root_in_trans(trans, src, 1);
1533         if (ret)
1534                 return ret;
1535
1536         /*
1537          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1538          * src root, so we must run the delayed refs here.
1539          *
1540          * However this isn't particularly fool proof, because there's no
1541          * synchronization keeping us from changing the tree after this point
1542          * before we do the qgroup_inherit, or even from making changes while
1543          * we're doing the qgroup_inherit.  But that's a problem for the future,
1544          * for now flush the delayed refs to narrow the race window where the
1545          * qgroup counters could end up wrong.
1546          */
1547         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1548         if (ret) {
1549                 btrfs_abort_transaction(trans, ret);
1550                 return ret;
1551         }
1552
1553         ret = commit_fs_roots(trans);
1554         if (ret)
1555                 goto out;
1556         ret = btrfs_qgroup_account_extents(trans);
1557         if (ret < 0)
1558                 goto out;
1559
1560         /* Now qgroup are all updated, we can inherit it to new qgroups */
1561         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1562                                    inherit);
1563         if (ret < 0)
1564                 goto out;
1565
1566         /*
1567          * Now we do a simplified commit transaction, which will:
1568          * 1) commit all subvolume and extent tree
1569          *    To ensure all subvolume and extent tree have a valid
1570          *    commit_root to accounting later insert_dir_item()
1571          * 2) write all btree blocks onto disk
1572          *    This is to make sure later btree modification will be cowed
1573          *    Or commit_root can be populated and cause wrong qgroup numbers
1574          * In this simplified commit, we don't really care about other trees
1575          * like chunk and root tree, as they won't affect qgroup.
1576          * And we don't write super to avoid half committed status.
1577          */
1578         ret = commit_cowonly_roots(trans);
1579         if (ret)
1580                 goto out;
1581         switch_commit_roots(trans);
1582         ret = btrfs_write_and_wait_transaction(trans);
1583         if (ret)
1584                 btrfs_handle_fs_error(fs_info, ret,
1585                         "Error while writing out transaction for qgroup");
1586
1587 out:
1588         /*
1589          * Force parent root to be updated, as we recorded it before so its
1590          * last_trans == cur_transid.
1591          * Or it won't be committed again onto disk after later
1592          * insert_dir_item()
1593          */
1594         if (!ret)
1595                 ret = record_root_in_trans(trans, parent, 1);
1596         return ret;
1597 }
1598
1599 /*
1600  * new snapshots need to be created at a very specific time in the
1601  * transaction commit.  This does the actual creation.
1602  *
1603  * Note:
1604  * If the error which may affect the commitment of the current transaction
1605  * happens, we should return the error number. If the error which just affect
1606  * the creation of the pending snapshots, just return 0.
1607  */
1608 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1609                                    struct btrfs_pending_snapshot *pending)
1610 {
1611
1612         struct btrfs_fs_info *fs_info = trans->fs_info;
1613         struct btrfs_key key;
1614         struct btrfs_root_item *new_root_item;
1615         struct btrfs_root *tree_root = fs_info->tree_root;
1616         struct btrfs_root *root = pending->root;
1617         struct btrfs_root *parent_root;
1618         struct btrfs_block_rsv *rsv;
1619         struct inode *parent_inode = pending->dir;
1620         struct btrfs_path *path;
1621         struct btrfs_dir_item *dir_item;
1622         struct extent_buffer *tmp;
1623         struct extent_buffer *old;
1624         struct timespec64 cur_time;
1625         int ret = 0;
1626         u64 to_reserve = 0;
1627         u64 index = 0;
1628         u64 objectid;
1629         u64 root_flags;
1630         unsigned int nofs_flags;
1631         struct fscrypt_name fname;
1632
1633         ASSERT(pending->path);
1634         path = pending->path;
1635
1636         ASSERT(pending->root_item);
1637         new_root_item = pending->root_item;
1638
1639         /*
1640          * We're inside a transaction and must make sure that any potential
1641          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1642          * filesystem.
1643          */
1644         nofs_flags = memalloc_nofs_save();
1645         pending->error = fscrypt_setup_filename(parent_inode,
1646                                                 &pending->dentry->d_name, 0,
1647                                                 &fname);
1648         memalloc_nofs_restore(nofs_flags);
1649         if (pending->error)
1650                 goto free_pending;
1651
1652         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1653         if (pending->error)
1654                 goto free_fname;
1655
1656         /*
1657          * Make qgroup to skip current new snapshot's qgroupid, as it is
1658          * accounted by later btrfs_qgroup_inherit().
1659          */
1660         btrfs_set_skip_qgroup(trans, objectid);
1661
1662         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1663
1664         if (to_reserve > 0) {
1665                 pending->error = btrfs_block_rsv_add(fs_info,
1666                                                      &pending->block_rsv,
1667                                                      to_reserve,
1668                                                      BTRFS_RESERVE_NO_FLUSH);
1669                 if (pending->error)
1670                         goto clear_skip_qgroup;
1671         }
1672
1673         key.objectid = objectid;
1674         key.offset = (u64)-1;
1675         key.type = BTRFS_ROOT_ITEM_KEY;
1676
1677         rsv = trans->block_rsv;
1678         trans->block_rsv = &pending->block_rsv;
1679         trans->bytes_reserved = trans->block_rsv->reserved;
1680         trace_btrfs_space_reservation(fs_info, "transaction",
1681                                       trans->transid,
1682                                       trans->bytes_reserved, 1);
1683         parent_root = BTRFS_I(parent_inode)->root;
1684         ret = record_root_in_trans(trans, parent_root, 0);
1685         if (ret)
1686                 goto fail;
1687         cur_time = current_time(parent_inode);
1688
1689         /*
1690          * insert the directory item
1691          */
1692         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1693         if (ret) {
1694                 btrfs_abort_transaction(trans, ret);
1695                 goto fail;
1696         }
1697
1698         /* check if there is a file/dir which has the same name. */
1699         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1700                                          btrfs_ino(BTRFS_I(parent_inode)),
1701                                          &fname.disk_name, 0);
1702         if (dir_item != NULL && !IS_ERR(dir_item)) {
1703                 pending->error = -EEXIST;
1704                 goto dir_item_existed;
1705         } else if (IS_ERR(dir_item)) {
1706                 ret = PTR_ERR(dir_item);
1707                 btrfs_abort_transaction(trans, ret);
1708                 goto fail;
1709         }
1710         btrfs_release_path(path);
1711
1712         /*
1713          * pull in the delayed directory update
1714          * and the delayed inode item
1715          * otherwise we corrupt the FS during
1716          * snapshot
1717          */
1718         ret = btrfs_run_delayed_items(trans);
1719         if (ret) {      /* Transaction aborted */
1720                 btrfs_abort_transaction(trans, ret);
1721                 goto fail;
1722         }
1723
1724         ret = record_root_in_trans(trans, root, 0);
1725         if (ret) {
1726                 btrfs_abort_transaction(trans, ret);
1727                 goto fail;
1728         }
1729         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1730         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1731         btrfs_check_and_init_root_item(new_root_item);
1732
1733         root_flags = btrfs_root_flags(new_root_item);
1734         if (pending->readonly)
1735                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1736         else
1737                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1738         btrfs_set_root_flags(new_root_item, root_flags);
1739
1740         btrfs_set_root_generation_v2(new_root_item,
1741                         trans->transid);
1742         generate_random_guid(new_root_item->uuid);
1743         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1744                         BTRFS_UUID_SIZE);
1745         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1746                 memset(new_root_item->received_uuid, 0,
1747                        sizeof(new_root_item->received_uuid));
1748                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1749                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1750                 btrfs_set_root_stransid(new_root_item, 0);
1751                 btrfs_set_root_rtransid(new_root_item, 0);
1752         }
1753         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1754         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1755         btrfs_set_root_otransid(new_root_item, trans->transid);
1756
1757         old = btrfs_lock_root_node(root);
1758         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1759                               BTRFS_NESTING_COW);
1760         if (ret) {
1761                 btrfs_tree_unlock(old);
1762                 free_extent_buffer(old);
1763                 btrfs_abort_transaction(trans, ret);
1764                 goto fail;
1765         }
1766
1767         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1768         /* clean up in any case */
1769         btrfs_tree_unlock(old);
1770         free_extent_buffer(old);
1771         if (ret) {
1772                 btrfs_abort_transaction(trans, ret);
1773                 goto fail;
1774         }
1775         /* see comments in should_cow_block() */
1776         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1777         smp_wmb();
1778
1779         btrfs_set_root_node(new_root_item, tmp);
1780         /* record when the snapshot was created in key.offset */
1781         key.offset = trans->transid;
1782         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1783         btrfs_tree_unlock(tmp);
1784         free_extent_buffer(tmp);
1785         if (ret) {
1786                 btrfs_abort_transaction(trans, ret);
1787                 goto fail;
1788         }
1789
1790         /*
1791          * insert root back/forward references
1792          */
1793         ret = btrfs_add_root_ref(trans, objectid,
1794                                  parent_root->root_key.objectid,
1795                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1796                                  &fname.disk_name);
1797         if (ret) {
1798                 btrfs_abort_transaction(trans, ret);
1799                 goto fail;
1800         }
1801
1802         key.offset = (u64)-1;
1803         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1804         if (IS_ERR(pending->snap)) {
1805                 ret = PTR_ERR(pending->snap);
1806                 pending->snap = NULL;
1807                 btrfs_abort_transaction(trans, ret);
1808                 goto fail;
1809         }
1810
1811         ret = btrfs_reloc_post_snapshot(trans, pending);
1812         if (ret) {
1813                 btrfs_abort_transaction(trans, ret);
1814                 goto fail;
1815         }
1816
1817         /*
1818          * Do special qgroup accounting for snapshot, as we do some qgroup
1819          * snapshot hack to do fast snapshot.
1820          * To co-operate with that hack, we do hack again.
1821          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1822          */
1823         ret = qgroup_account_snapshot(trans, root, parent_root,
1824                                       pending->inherit, objectid);
1825         if (ret < 0)
1826                 goto fail;
1827
1828         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1829                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1830                                     index);
1831         /* We have check then name at the beginning, so it is impossible. */
1832         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1833         if (ret) {
1834                 btrfs_abort_transaction(trans, ret);
1835                 goto fail;
1836         }
1837
1838         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1839                                                   fname.disk_name.len * 2);
1840         parent_inode->i_mtime = current_time(parent_inode);
1841         parent_inode->i_ctime = parent_inode->i_mtime;
1842         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1843         if (ret) {
1844                 btrfs_abort_transaction(trans, ret);
1845                 goto fail;
1846         }
1847         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1848                                   BTRFS_UUID_KEY_SUBVOL,
1849                                   objectid);
1850         if (ret) {
1851                 btrfs_abort_transaction(trans, ret);
1852                 goto fail;
1853         }
1854         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1855                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1856                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1857                                           objectid);
1858                 if (ret && ret != -EEXIST) {
1859                         btrfs_abort_transaction(trans, ret);
1860                         goto fail;
1861                 }
1862         }
1863
1864 fail:
1865         pending->error = ret;
1866 dir_item_existed:
1867         trans->block_rsv = rsv;
1868         trans->bytes_reserved = 0;
1869 clear_skip_qgroup:
1870         btrfs_clear_skip_qgroup(trans);
1871 free_fname:
1872         fscrypt_free_filename(&fname);
1873 free_pending:
1874         kfree(new_root_item);
1875         pending->root_item = NULL;
1876         btrfs_free_path(path);
1877         pending->path = NULL;
1878
1879         return ret;
1880 }
1881
1882 /*
1883  * create all the snapshots we've scheduled for creation
1884  */
1885 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1886 {
1887         struct btrfs_pending_snapshot *pending, *next;
1888         struct list_head *head = &trans->transaction->pending_snapshots;
1889         int ret = 0;
1890
1891         list_for_each_entry_safe(pending, next, head, list) {
1892                 list_del(&pending->list);
1893                 ret = create_pending_snapshot(trans, pending);
1894                 if (ret)
1895                         break;
1896         }
1897         return ret;
1898 }
1899
1900 static void update_super_roots(struct btrfs_fs_info *fs_info)
1901 {
1902         struct btrfs_root_item *root_item;
1903         struct btrfs_super_block *super;
1904
1905         super = fs_info->super_copy;
1906
1907         root_item = &fs_info->chunk_root->root_item;
1908         super->chunk_root = root_item->bytenr;
1909         super->chunk_root_generation = root_item->generation;
1910         super->chunk_root_level = root_item->level;
1911
1912         root_item = &fs_info->tree_root->root_item;
1913         super->root = root_item->bytenr;
1914         super->generation = root_item->generation;
1915         super->root_level = root_item->level;
1916         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1917                 super->cache_generation = root_item->generation;
1918         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1919                 super->cache_generation = 0;
1920         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1921                 super->uuid_tree_generation = root_item->generation;
1922 }
1923
1924 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1925 {
1926         struct btrfs_transaction *trans;
1927         int ret = 0;
1928
1929         spin_lock(&info->trans_lock);
1930         trans = info->running_transaction;
1931         if (trans)
1932                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1933         spin_unlock(&info->trans_lock);
1934         return ret;
1935 }
1936
1937 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1938 {
1939         struct btrfs_transaction *trans;
1940         int ret = 0;
1941
1942         spin_lock(&info->trans_lock);
1943         trans = info->running_transaction;
1944         if (trans)
1945                 ret = is_transaction_blocked(trans);
1946         spin_unlock(&info->trans_lock);
1947         return ret;
1948 }
1949
1950 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1951 {
1952         struct btrfs_fs_info *fs_info = trans->fs_info;
1953         struct btrfs_transaction *cur_trans;
1954
1955         /* Kick the transaction kthread. */
1956         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1957         wake_up_process(fs_info->transaction_kthread);
1958
1959         /* take transaction reference */
1960         cur_trans = trans->transaction;
1961         refcount_inc(&cur_trans->use_count);
1962
1963         btrfs_end_transaction(trans);
1964
1965         /*
1966          * Wait for the current transaction commit to start and block
1967          * subsequent transaction joins
1968          */
1969         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1970         wait_event(fs_info->transaction_blocked_wait,
1971                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1972                    TRANS_ABORTED(cur_trans));
1973         btrfs_put_transaction(cur_trans);
1974 }
1975
1976 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1977 {
1978         struct btrfs_fs_info *fs_info = trans->fs_info;
1979         struct btrfs_transaction *cur_trans = trans->transaction;
1980
1981         WARN_ON(refcount_read(&trans->use_count) > 1);
1982
1983         btrfs_abort_transaction(trans, err);
1984
1985         spin_lock(&fs_info->trans_lock);
1986
1987         /*
1988          * If the transaction is removed from the list, it means this
1989          * transaction has been committed successfully, so it is impossible
1990          * to call the cleanup function.
1991          */
1992         BUG_ON(list_empty(&cur_trans->list));
1993
1994         if (cur_trans == fs_info->running_transaction) {
1995                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1996                 spin_unlock(&fs_info->trans_lock);
1997
1998                 /*
1999                  * The thread has already released the lockdep map as reader
2000                  * already in btrfs_commit_transaction().
2001                  */
2002                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2003                 wait_event(cur_trans->writer_wait,
2004                            atomic_read(&cur_trans->num_writers) == 1);
2005
2006                 spin_lock(&fs_info->trans_lock);
2007         }
2008
2009         /*
2010          * Now that we know no one else is still using the transaction we can
2011          * remove the transaction from the list of transactions. This avoids
2012          * the transaction kthread from cleaning up the transaction while some
2013          * other task is still using it, which could result in a use-after-free
2014          * on things like log trees, as it forces the transaction kthread to
2015          * wait for this transaction to be cleaned up by us.
2016          */
2017         list_del_init(&cur_trans->list);
2018
2019         spin_unlock(&fs_info->trans_lock);
2020
2021         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2022
2023         spin_lock(&fs_info->trans_lock);
2024         if (cur_trans == fs_info->running_transaction)
2025                 fs_info->running_transaction = NULL;
2026         spin_unlock(&fs_info->trans_lock);
2027
2028         if (trans->type & __TRANS_FREEZABLE)
2029                 sb_end_intwrite(fs_info->sb);
2030         btrfs_put_transaction(cur_trans);
2031         btrfs_put_transaction(cur_trans);
2032
2033         trace_btrfs_transaction_commit(fs_info);
2034
2035         if (current->journal_info == trans)
2036                 current->journal_info = NULL;
2037
2038         /*
2039          * If relocation is running, we can't cancel scrub because that will
2040          * result in a deadlock. Before relocating a block group, relocation
2041          * pauses scrub, then starts and commits a transaction before unpausing
2042          * scrub. If the transaction commit is being done by the relocation
2043          * task or triggered by another task and the relocation task is waiting
2044          * for the commit, and we end up here due to an error in the commit
2045          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2046          * asking for scrub to stop while having it asked to be paused higher
2047          * above in relocation code.
2048          */
2049         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2050                 btrfs_scrub_cancel(fs_info);
2051
2052         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2053 }
2054
2055 /*
2056  * Release reserved delayed ref space of all pending block groups of the
2057  * transaction and remove them from the list
2058  */
2059 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2060 {
2061        struct btrfs_fs_info *fs_info = trans->fs_info;
2062        struct btrfs_block_group *block_group, *tmp;
2063
2064        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2065                btrfs_delayed_refs_rsv_release(fs_info, 1);
2066                list_del_init(&block_group->bg_list);
2067        }
2068 }
2069
2070 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2071 {
2072         /*
2073          * We use try_to_writeback_inodes_sb() here because if we used
2074          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2075          * Currently are holding the fs freeze lock, if we do an async flush
2076          * we'll do btrfs_join_transaction() and deadlock because we need to
2077          * wait for the fs freeze lock.  Using the direct flushing we benefit
2078          * from already being in a transaction and our join_transaction doesn't
2079          * have to re-take the fs freeze lock.
2080          *
2081          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2082          * if it can read lock sb->s_umount. It will always be able to lock it,
2083          * except when the filesystem is being unmounted or being frozen, but in
2084          * those cases sync_filesystem() is called, which results in calling
2085          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2086          * Note that we don't call writeback_inodes_sb() directly, because it
2087          * will emit a warning if sb->s_umount is not locked.
2088          */
2089         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2090                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2091         return 0;
2092 }
2093
2094 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2095 {
2096         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2097                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2098 }
2099
2100 /*
2101  * Add a pending snapshot associated with the given transaction handle to the
2102  * respective handle. This must be called after the transaction commit started
2103  * and while holding fs_info->trans_lock.
2104  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2105  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2106  * returns an error.
2107  */
2108 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2109 {
2110         struct btrfs_transaction *cur_trans = trans->transaction;
2111
2112         if (!trans->pending_snapshot)
2113                 return;
2114
2115         lockdep_assert_held(&trans->fs_info->trans_lock);
2116         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2117
2118         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2119 }
2120
2121 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2122 {
2123         fs_info->commit_stats.commit_count++;
2124         fs_info->commit_stats.last_commit_dur = interval;
2125         fs_info->commit_stats.max_commit_dur =
2126                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2127         fs_info->commit_stats.total_commit_dur += interval;
2128 }
2129
2130 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2131 {
2132         struct btrfs_fs_info *fs_info = trans->fs_info;
2133         struct btrfs_transaction *cur_trans = trans->transaction;
2134         struct btrfs_transaction *prev_trans = NULL;
2135         int ret;
2136         ktime_t start_time;
2137         ktime_t interval;
2138
2139         ASSERT(refcount_read(&trans->use_count) == 1);
2140         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2141
2142         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2143
2144         /* Stop the commit early if ->aborted is set */
2145         if (TRANS_ABORTED(cur_trans)) {
2146                 ret = cur_trans->aborted;
2147                 goto lockdep_trans_commit_start_release;
2148         }
2149
2150         btrfs_trans_release_metadata(trans);
2151         trans->block_rsv = NULL;
2152
2153         /*
2154          * We only want one transaction commit doing the flushing so we do not
2155          * waste a bunch of time on lock contention on the extent root node.
2156          */
2157         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2158                               &cur_trans->delayed_refs.flags)) {
2159                 /*
2160                  * Make a pass through all the delayed refs we have so far.
2161                  * Any running threads may add more while we are here.
2162                  */
2163                 ret = btrfs_run_delayed_refs(trans, 0);
2164                 if (ret)
2165                         goto lockdep_trans_commit_start_release;
2166         }
2167
2168         btrfs_create_pending_block_groups(trans);
2169
2170         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2171                 int run_it = 0;
2172
2173                 /* this mutex is also taken before trying to set
2174                  * block groups readonly.  We need to make sure
2175                  * that nobody has set a block group readonly
2176                  * after a extents from that block group have been
2177                  * allocated for cache files.  btrfs_set_block_group_ro
2178                  * will wait for the transaction to commit if it
2179                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2180                  *
2181                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2182                  * only one process starts all the block group IO.  It wouldn't
2183                  * hurt to have more than one go through, but there's no
2184                  * real advantage to it either.
2185                  */
2186                 mutex_lock(&fs_info->ro_block_group_mutex);
2187                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2188                                       &cur_trans->flags))
2189                         run_it = 1;
2190                 mutex_unlock(&fs_info->ro_block_group_mutex);
2191
2192                 if (run_it) {
2193                         ret = btrfs_start_dirty_block_groups(trans);
2194                         if (ret)
2195                                 goto lockdep_trans_commit_start_release;
2196                 }
2197         }
2198
2199         spin_lock(&fs_info->trans_lock);
2200         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2201                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2202
2203                 add_pending_snapshot(trans);
2204
2205                 spin_unlock(&fs_info->trans_lock);
2206                 refcount_inc(&cur_trans->use_count);
2207
2208                 if (trans->in_fsync)
2209                         want_state = TRANS_STATE_SUPER_COMMITTED;
2210
2211                 btrfs_trans_state_lockdep_release(fs_info,
2212                                                   BTRFS_LOCKDEP_TRANS_COMMIT_START);
2213                 ret = btrfs_end_transaction(trans);
2214                 wait_for_commit(cur_trans, want_state);
2215
2216                 if (TRANS_ABORTED(cur_trans))
2217                         ret = cur_trans->aborted;
2218
2219                 btrfs_put_transaction(cur_trans);
2220
2221                 return ret;
2222         }
2223
2224         cur_trans->state = TRANS_STATE_COMMIT_START;
2225         wake_up(&fs_info->transaction_blocked_wait);
2226         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2227
2228         if (cur_trans->list.prev != &fs_info->trans_list) {
2229                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2230
2231                 if (trans->in_fsync)
2232                         want_state = TRANS_STATE_SUPER_COMMITTED;
2233
2234                 prev_trans = list_entry(cur_trans->list.prev,
2235                                         struct btrfs_transaction, list);
2236                 if (prev_trans->state < want_state) {
2237                         refcount_inc(&prev_trans->use_count);
2238                         spin_unlock(&fs_info->trans_lock);
2239
2240                         wait_for_commit(prev_trans, want_state);
2241
2242                         ret = READ_ONCE(prev_trans->aborted);
2243
2244                         btrfs_put_transaction(prev_trans);
2245                         if (ret)
2246                                 goto lockdep_release;
2247                 } else {
2248                         spin_unlock(&fs_info->trans_lock);
2249                 }
2250         } else {
2251                 spin_unlock(&fs_info->trans_lock);
2252                 /*
2253                  * The previous transaction was aborted and was already removed
2254                  * from the list of transactions at fs_info->trans_list. So we
2255                  * abort to prevent writing a new superblock that reflects a
2256                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2257                  */
2258                 if (BTRFS_FS_ERROR(fs_info)) {
2259                         ret = -EROFS;
2260                         goto lockdep_release;
2261                 }
2262         }
2263
2264         /*
2265          * Get the time spent on the work done by the commit thread and not
2266          * the time spent waiting on a previous commit
2267          */
2268         start_time = ktime_get_ns();
2269
2270         extwriter_counter_dec(cur_trans, trans->type);
2271
2272         ret = btrfs_start_delalloc_flush(fs_info);
2273         if (ret)
2274                 goto lockdep_release;
2275
2276         ret = btrfs_run_delayed_items(trans);
2277         if (ret)
2278                 goto lockdep_release;
2279
2280         /*
2281          * The thread has started/joined the transaction thus it holds the
2282          * lockdep map as a reader. It has to release it before acquiring the
2283          * lockdep map as a writer.
2284          */
2285         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2286         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2287         wait_event(cur_trans->writer_wait,
2288                    extwriter_counter_read(cur_trans) == 0);
2289
2290         /* some pending stuffs might be added after the previous flush. */
2291         ret = btrfs_run_delayed_items(trans);
2292         if (ret) {
2293                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2294                 goto cleanup_transaction;
2295         }
2296
2297         btrfs_wait_delalloc_flush(fs_info);
2298
2299         /*
2300          * Wait for all ordered extents started by a fast fsync that joined this
2301          * transaction. Otherwise if this transaction commits before the ordered
2302          * extents complete we lose logged data after a power failure.
2303          */
2304         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2305         wait_event(cur_trans->pending_wait,
2306                    atomic_read(&cur_trans->pending_ordered) == 0);
2307
2308         btrfs_scrub_pause(fs_info);
2309         /*
2310          * Ok now we need to make sure to block out any other joins while we
2311          * commit the transaction.  We could have started a join before setting
2312          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2313          */
2314         spin_lock(&fs_info->trans_lock);
2315         add_pending_snapshot(trans);
2316         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2317         spin_unlock(&fs_info->trans_lock);
2318
2319         /*
2320          * The thread has started/joined the transaction thus it holds the
2321          * lockdep map as a reader. It has to release it before acquiring the
2322          * lockdep map as a writer.
2323          */
2324         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2325         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2326         wait_event(cur_trans->writer_wait,
2327                    atomic_read(&cur_trans->num_writers) == 1);
2328
2329         /*
2330          * Make lockdep happy by acquiring the state locks after
2331          * btrfs_trans_num_writers is released. If we acquired the state locks
2332          * before releasing the btrfs_trans_num_writers lock then lockdep would
2333          * complain because we did not follow the reverse order unlocking rule.
2334          */
2335         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2336         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2337         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2338
2339         /*
2340          * We've started the commit, clear the flag in case we were triggered to
2341          * do an async commit but somebody else started before the transaction
2342          * kthread could do the work.
2343          */
2344         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2345
2346         if (TRANS_ABORTED(cur_trans)) {
2347                 ret = cur_trans->aborted;
2348                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2349                 goto scrub_continue;
2350         }
2351         /*
2352          * the reloc mutex makes sure that we stop
2353          * the balancing code from coming in and moving
2354          * extents around in the middle of the commit
2355          */
2356         mutex_lock(&fs_info->reloc_mutex);
2357
2358         /*
2359          * We needn't worry about the delayed items because we will
2360          * deal with them in create_pending_snapshot(), which is the
2361          * core function of the snapshot creation.
2362          */
2363         ret = create_pending_snapshots(trans);
2364         if (ret)
2365                 goto unlock_reloc;
2366
2367         /*
2368          * We insert the dir indexes of the snapshots and update the inode
2369          * of the snapshots' parents after the snapshot creation, so there
2370          * are some delayed items which are not dealt with. Now deal with
2371          * them.
2372          *
2373          * We needn't worry that this operation will corrupt the snapshots,
2374          * because all the tree which are snapshoted will be forced to COW
2375          * the nodes and leaves.
2376          */
2377         ret = btrfs_run_delayed_items(trans);
2378         if (ret)
2379                 goto unlock_reloc;
2380
2381         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2382         if (ret)
2383                 goto unlock_reloc;
2384
2385         /*
2386          * make sure none of the code above managed to slip in a
2387          * delayed item
2388          */
2389         btrfs_assert_delayed_root_empty(fs_info);
2390
2391         WARN_ON(cur_trans != trans->transaction);
2392
2393         ret = commit_fs_roots(trans);
2394         if (ret)
2395                 goto unlock_reloc;
2396
2397         /* commit_fs_roots gets rid of all the tree log roots, it is now
2398          * safe to free the root of tree log roots
2399          */
2400         btrfs_free_log_root_tree(trans, fs_info);
2401
2402         /*
2403          * Since fs roots are all committed, we can get a quite accurate
2404          * new_roots. So let's do quota accounting.
2405          */
2406         ret = btrfs_qgroup_account_extents(trans);
2407         if (ret < 0)
2408                 goto unlock_reloc;
2409
2410         ret = commit_cowonly_roots(trans);
2411         if (ret)
2412                 goto unlock_reloc;
2413
2414         /*
2415          * The tasks which save the space cache and inode cache may also
2416          * update ->aborted, check it.
2417          */
2418         if (TRANS_ABORTED(cur_trans)) {
2419                 ret = cur_trans->aborted;
2420                 goto unlock_reloc;
2421         }
2422
2423         cur_trans = fs_info->running_transaction;
2424
2425         btrfs_set_root_node(&fs_info->tree_root->root_item,
2426                             fs_info->tree_root->node);
2427         list_add_tail(&fs_info->tree_root->dirty_list,
2428                       &cur_trans->switch_commits);
2429
2430         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2431                             fs_info->chunk_root->node);
2432         list_add_tail(&fs_info->chunk_root->dirty_list,
2433                       &cur_trans->switch_commits);
2434
2435         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2436                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2437                                     fs_info->block_group_root->node);
2438                 list_add_tail(&fs_info->block_group_root->dirty_list,
2439                               &cur_trans->switch_commits);
2440         }
2441
2442         switch_commit_roots(trans);
2443
2444         ASSERT(list_empty(&cur_trans->dirty_bgs));
2445         ASSERT(list_empty(&cur_trans->io_bgs));
2446         update_super_roots(fs_info);
2447
2448         btrfs_set_super_log_root(fs_info->super_copy, 0);
2449         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2450         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2451                sizeof(*fs_info->super_copy));
2452
2453         btrfs_commit_device_sizes(cur_trans);
2454
2455         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2456         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2457
2458         btrfs_trans_release_chunk_metadata(trans);
2459
2460         /*
2461          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2462          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2463          * make sure that before we commit our superblock, no other task can
2464          * start a new transaction and commit a log tree before we commit our
2465          * superblock. Anyone trying to commit a log tree locks this mutex before
2466          * writing its superblock.
2467          */
2468         mutex_lock(&fs_info->tree_log_mutex);
2469
2470         spin_lock(&fs_info->trans_lock);
2471         cur_trans->state = TRANS_STATE_UNBLOCKED;
2472         fs_info->running_transaction = NULL;
2473         spin_unlock(&fs_info->trans_lock);
2474         mutex_unlock(&fs_info->reloc_mutex);
2475
2476         wake_up(&fs_info->transaction_wait);
2477         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2478
2479         /* If we have features changed, wake up the cleaner to update sysfs. */
2480         if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2481             fs_info->cleaner_kthread)
2482                 wake_up_process(fs_info->cleaner_kthread);
2483
2484         ret = btrfs_write_and_wait_transaction(trans);
2485         if (ret) {
2486                 btrfs_handle_fs_error(fs_info, ret,
2487                                       "Error while writing out transaction");
2488                 mutex_unlock(&fs_info->tree_log_mutex);
2489                 goto scrub_continue;
2490         }
2491
2492         ret = write_all_supers(fs_info, 0);
2493         /*
2494          * the super is written, we can safely allow the tree-loggers
2495          * to go about their business
2496          */
2497         mutex_unlock(&fs_info->tree_log_mutex);
2498         if (ret)
2499                 goto scrub_continue;
2500
2501         /*
2502          * We needn't acquire the lock here because there is no other task
2503          * which can change it.
2504          */
2505         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2506         wake_up(&cur_trans->commit_wait);
2507         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2508
2509         btrfs_finish_extent_commit(trans);
2510
2511         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2512                 btrfs_clear_space_info_full(fs_info);
2513
2514         fs_info->last_trans_committed = cur_trans->transid;
2515         /*
2516          * We needn't acquire the lock here because there is no other task
2517          * which can change it.
2518          */
2519         cur_trans->state = TRANS_STATE_COMPLETED;
2520         wake_up(&cur_trans->commit_wait);
2521         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2522
2523         spin_lock(&fs_info->trans_lock);
2524         list_del_init(&cur_trans->list);
2525         spin_unlock(&fs_info->trans_lock);
2526
2527         btrfs_put_transaction(cur_trans);
2528         btrfs_put_transaction(cur_trans);
2529
2530         if (trans->type & __TRANS_FREEZABLE)
2531                 sb_end_intwrite(fs_info->sb);
2532
2533         trace_btrfs_transaction_commit(fs_info);
2534
2535         interval = ktime_get_ns() - start_time;
2536
2537         btrfs_scrub_continue(fs_info);
2538
2539         if (current->journal_info == trans)
2540                 current->journal_info = NULL;
2541
2542         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2543
2544         update_commit_stats(fs_info, interval);
2545
2546         return ret;
2547
2548 unlock_reloc:
2549         mutex_unlock(&fs_info->reloc_mutex);
2550         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2551 scrub_continue:
2552         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2553         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2554         btrfs_scrub_continue(fs_info);
2555 cleanup_transaction:
2556         btrfs_trans_release_metadata(trans);
2557         btrfs_cleanup_pending_block_groups(trans);
2558         btrfs_trans_release_chunk_metadata(trans);
2559         trans->block_rsv = NULL;
2560         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2561         if (current->journal_info == trans)
2562                 current->journal_info = NULL;
2563         cleanup_transaction(trans, ret);
2564
2565         return ret;
2566
2567 lockdep_release:
2568         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2569         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2570         goto cleanup_transaction;
2571
2572 lockdep_trans_commit_start_release:
2573         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2574         btrfs_end_transaction(trans);
2575         return ret;
2576 }
2577
2578 /*
2579  * return < 0 if error
2580  * 0 if there are no more dead_roots at the time of call
2581  * 1 there are more to be processed, call me again
2582  *
2583  * The return value indicates there are certainly more snapshots to delete, but
2584  * if there comes a new one during processing, it may return 0. We don't mind,
2585  * because btrfs_commit_super will poke cleaner thread and it will process it a
2586  * few seconds later.
2587  */
2588 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2589 {
2590         struct btrfs_root *root;
2591         int ret;
2592
2593         spin_lock(&fs_info->trans_lock);
2594         if (list_empty(&fs_info->dead_roots)) {
2595                 spin_unlock(&fs_info->trans_lock);
2596                 return 0;
2597         }
2598         root = list_first_entry(&fs_info->dead_roots,
2599                         struct btrfs_root, root_list);
2600         list_del_init(&root->root_list);
2601         spin_unlock(&fs_info->trans_lock);
2602
2603         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2604
2605         btrfs_kill_all_delayed_nodes(root);
2606
2607         if (btrfs_header_backref_rev(root->node) <
2608                         BTRFS_MIXED_BACKREF_REV)
2609                 ret = btrfs_drop_snapshot(root, 0, 0);
2610         else
2611                 ret = btrfs_drop_snapshot(root, 1, 0);
2612
2613         btrfs_put_root(root);
2614         return (ret < 0) ? 0 : 1;
2615 }
2616
2617 /*
2618  * We only mark the transaction aborted and then set the file system read-only.
2619  * This will prevent new transactions from starting or trying to join this
2620  * one.
2621  *
2622  * This means that error recovery at the call site is limited to freeing
2623  * any local memory allocations and passing the error code up without
2624  * further cleanup. The transaction should complete as it normally would
2625  * in the call path but will return -EIO.
2626  *
2627  * We'll complete the cleanup in btrfs_end_transaction and
2628  * btrfs_commit_transaction.
2629  */
2630 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2631                                       const char *function,
2632                                       unsigned int line, int errno, bool first_hit)
2633 {
2634         struct btrfs_fs_info *fs_info = trans->fs_info;
2635
2636         WRITE_ONCE(trans->aborted, errno);
2637         WRITE_ONCE(trans->transaction->aborted, errno);
2638         if (first_hit && errno == -ENOSPC)
2639                 btrfs_dump_space_info_for_trans_abort(fs_info);
2640         /* Wake up anybody who may be waiting on this transaction */
2641         wake_up(&fs_info->transaction_wait);
2642         wake_up(&fs_info->transaction_blocked_wait);
2643         __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2644 }
2645
2646 int __init btrfs_transaction_init(void)
2647 {
2648         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2649                         sizeof(struct btrfs_trans_handle), 0,
2650                         SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2651         if (!btrfs_trans_handle_cachep)
2652                 return -ENOMEM;
2653         return 0;
2654 }
2655
2656 void __cold btrfs_transaction_exit(void)
2657 {
2658         kmem_cache_destroy(btrfs_trans_handle_cachep);
2659 }