OSDN Git Service

Merge tag 'rtc-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[tomoyo/tomoyo-test1.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *       notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *       notice, this list of conditions and the following disclaimer in the
9  *       documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *       names of its contributors may be used to endorse or promote products
12  *       derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <linux/phy_fixed.h>
55 #include <soc/fsl/bman.h>
56 #include <soc/fsl/qman.h>
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76 #define FM_FD_STAT_RX_ERRORS                                            \
77         (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL     | \
78          FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79          FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME     | \
80          FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81          FM_FD_ERR_PRS_HDR_ERR)
82
83 #define FM_FD_STAT_TX_ERRORS \
84         (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85          FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88                           NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89                           NETIF_MSG_IFDOWN)
90
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL        127
124
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127
128 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
129 #define DPAA_SGT_SIZE 256
130
131 /* Values for the L3R field of the FM Parse Results
132  */
133 /* L3 Type field: First IP Present IPv4 */
134 #define FM_L3_PARSE_RESULT_IPV4 0x8000
135 /* L3 Type field: First IP Present IPv6 */
136 #define FM_L3_PARSE_RESULT_IPV6 0x4000
137 /* Values for the L4R field of the FM Parse Results */
138 /* L4 Type field: UDP */
139 #define FM_L4_PARSE_RESULT_UDP  0x40
140 /* L4 Type field: TCP */
141 #define FM_L4_PARSE_RESULT_TCP  0x20
142
143 /* FD status field indicating whether the FM Parser has attempted to validate
144  * the L4 csum of the frame.
145  * Note that having this bit set doesn't necessarily imply that the checksum
146  * is valid. One would have to check the parse results to find that out.
147  */
148 #define FM_FD_STAT_L4CV         0x00000004
149
150 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
151 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
152
153 #define FSL_DPAA_BPID_INV               0xff
154 #define FSL_DPAA_ETH_MAX_BUF_COUNT      128
155 #define FSL_DPAA_ETH_REFILL_THRESHOLD   80
156
157 #define DPAA_TX_PRIV_DATA_SIZE  16
158 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
159 #define DPAA_TIME_STAMP_SIZE 8
160 #define DPAA_HASH_RESULTS_SIZE 8
161 #define DPAA_RX_PRIV_DATA_SIZE  (u16)(DPAA_TX_PRIV_DATA_SIZE + \
162                                         dpaa_rx_extra_headroom)
163
164 #define DPAA_ETH_PCD_RXQ_NUM    128
165
166 #define DPAA_ENQUEUE_RETRIES    100000
167
168 enum port_type {RX, TX};
169
170 struct fm_port_fqs {
171         struct dpaa_fq *tx_defq;
172         struct dpaa_fq *tx_errq;
173         struct dpaa_fq *rx_defq;
174         struct dpaa_fq *rx_errq;
175         struct dpaa_fq *rx_pcdq;
176 };
177
178 /* All the dpa bps in use at any moment */
179 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
180
181 #define DPAA_BP_RAW_SIZE 4096
182
183 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
184
185 static int dpaa_max_frm;
186
187 static int dpaa_rx_extra_headroom;
188
189 #define dpaa_get_max_mtu()      \
190         (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
191
192 static int dpaa_netdev_init(struct net_device *net_dev,
193                             const struct net_device_ops *dpaa_ops,
194                             u16 tx_timeout)
195 {
196         struct dpaa_priv *priv = netdev_priv(net_dev);
197         struct device *dev = net_dev->dev.parent;
198         struct dpaa_percpu_priv *percpu_priv;
199         const u8 *mac_addr;
200         int i, err;
201
202         /* Although we access another CPU's private data here
203          * we do it at initialization so it is safe
204          */
205         for_each_possible_cpu(i) {
206                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
207                 percpu_priv->net_dev = net_dev;
208         }
209
210         net_dev->netdev_ops = dpaa_ops;
211         mac_addr = priv->mac_dev->addr;
212
213         net_dev->mem_start = priv->mac_dev->res->start;
214         net_dev->mem_end = priv->mac_dev->res->end;
215
216         net_dev->min_mtu = ETH_MIN_MTU;
217         net_dev->max_mtu = dpaa_get_max_mtu();
218
219         net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
220                                  NETIF_F_LLTX | NETIF_F_RXHASH);
221
222         net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
223         /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
224          * For conformity, we'll still declare GSO explicitly.
225          */
226         net_dev->features |= NETIF_F_GSO;
227         net_dev->features |= NETIF_F_RXCSUM;
228
229         net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
230         /* we do not want shared skbs on TX */
231         net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
232
233         net_dev->features |= net_dev->hw_features;
234         net_dev->vlan_features = net_dev->features;
235
236         memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
237         memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
238
239         net_dev->ethtool_ops = &dpaa_ethtool_ops;
240
241         net_dev->needed_headroom = priv->tx_headroom;
242         net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
243
244         /* start without the RUNNING flag, phylib controls it later */
245         netif_carrier_off(net_dev);
246
247         err = register_netdev(net_dev);
248         if (err < 0) {
249                 dev_err(dev, "register_netdev() = %d\n", err);
250                 return err;
251         }
252
253         return 0;
254 }
255
256 static int dpaa_stop(struct net_device *net_dev)
257 {
258         struct mac_device *mac_dev;
259         struct dpaa_priv *priv;
260         int i, err, error;
261
262         priv = netdev_priv(net_dev);
263         mac_dev = priv->mac_dev;
264
265         netif_tx_stop_all_queues(net_dev);
266         /* Allow the Fman (Tx) port to process in-flight frames before we
267          * try switching it off.
268          */
269         msleep(200);
270
271         err = mac_dev->stop(mac_dev);
272         if (err < 0)
273                 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
274                           err);
275
276         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
277                 error = fman_port_disable(mac_dev->port[i]);
278                 if (error)
279                         err = error;
280         }
281
282         if (net_dev->phydev)
283                 phy_disconnect(net_dev->phydev);
284         net_dev->phydev = NULL;
285
286         msleep(200);
287
288         return err;
289 }
290
291 static void dpaa_tx_timeout(struct net_device *net_dev)
292 {
293         struct dpaa_percpu_priv *percpu_priv;
294         const struct dpaa_priv  *priv;
295
296         priv = netdev_priv(net_dev);
297         percpu_priv = this_cpu_ptr(priv->percpu_priv);
298
299         netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
300                    jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
301
302         percpu_priv->stats.tx_errors++;
303 }
304
305 /* Calculates the statistics for the given device by adding the statistics
306  * collected by each CPU.
307  */
308 static void dpaa_get_stats64(struct net_device *net_dev,
309                              struct rtnl_link_stats64 *s)
310 {
311         int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
312         struct dpaa_priv *priv = netdev_priv(net_dev);
313         struct dpaa_percpu_priv *percpu_priv;
314         u64 *netstats = (u64 *)s;
315         u64 *cpustats;
316         int i, j;
317
318         for_each_possible_cpu(i) {
319                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
320
321                 cpustats = (u64 *)&percpu_priv->stats;
322
323                 /* add stats from all CPUs */
324                 for (j = 0; j < numstats; j++)
325                         netstats[j] += cpustats[j];
326         }
327 }
328
329 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
330                          void *type_data)
331 {
332         struct dpaa_priv *priv = netdev_priv(net_dev);
333         struct tc_mqprio_qopt *mqprio = type_data;
334         u8 num_tc;
335         int i;
336
337         if (type != TC_SETUP_QDISC_MQPRIO)
338                 return -EOPNOTSUPP;
339
340         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
341         num_tc = mqprio->num_tc;
342
343         if (num_tc == priv->num_tc)
344                 return 0;
345
346         if (!num_tc) {
347                 netdev_reset_tc(net_dev);
348                 goto out;
349         }
350
351         if (num_tc > DPAA_TC_NUM) {
352                 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
353                            DPAA_TC_NUM);
354                 return -EINVAL;
355         }
356
357         netdev_set_num_tc(net_dev, num_tc);
358
359         for (i = 0; i < num_tc; i++)
360                 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
361                                     i * DPAA_TC_TXQ_NUM);
362
363 out:
364         priv->num_tc = num_tc ? : 1;
365         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
366         return 0;
367 }
368
369 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
370 {
371         struct dpaa_eth_data *eth_data;
372         struct device *dpaa_dev;
373         struct mac_device *mac_dev;
374
375         dpaa_dev = &pdev->dev;
376         eth_data = dpaa_dev->platform_data;
377         if (!eth_data) {
378                 dev_err(dpaa_dev, "eth_data missing\n");
379                 return ERR_PTR(-ENODEV);
380         }
381         mac_dev = eth_data->mac_dev;
382         if (!mac_dev) {
383                 dev_err(dpaa_dev, "mac_dev missing\n");
384                 return ERR_PTR(-EINVAL);
385         }
386
387         return mac_dev;
388 }
389
390 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
391 {
392         const struct dpaa_priv *priv;
393         struct mac_device *mac_dev;
394         struct sockaddr old_addr;
395         int err;
396
397         priv = netdev_priv(net_dev);
398
399         memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
400
401         err = eth_mac_addr(net_dev, addr);
402         if (err < 0) {
403                 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
404                 return err;
405         }
406
407         mac_dev = priv->mac_dev;
408
409         err = mac_dev->change_addr(mac_dev->fman_mac,
410                                    (enet_addr_t *)net_dev->dev_addr);
411         if (err < 0) {
412                 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
413                           err);
414                 /* reverting to previous address */
415                 eth_mac_addr(net_dev, &old_addr);
416
417                 return err;
418         }
419
420         return 0;
421 }
422
423 static void dpaa_set_rx_mode(struct net_device *net_dev)
424 {
425         const struct dpaa_priv  *priv;
426         int err;
427
428         priv = netdev_priv(net_dev);
429
430         if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
431                 priv->mac_dev->promisc = !priv->mac_dev->promisc;
432                 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
433                                                  priv->mac_dev->promisc);
434                 if (err < 0)
435                         netif_err(priv, drv, net_dev,
436                                   "mac_dev->set_promisc() = %d\n",
437                                   err);
438         }
439
440         if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
441                 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
442                 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
443                                                   priv->mac_dev->allmulti);
444                 if (err < 0)
445                         netif_err(priv, drv, net_dev,
446                                   "mac_dev->set_allmulti() = %d\n",
447                                   err);
448         }
449
450         err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
451         if (err < 0)
452                 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
453                           err);
454 }
455
456 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
457 {
458         if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
459                 return NULL;
460
461         return dpaa_bp_array[bpid];
462 }
463
464 /* checks if this bpool is already allocated */
465 static bool dpaa_bpid2pool_use(int bpid)
466 {
467         if (dpaa_bpid2pool(bpid)) {
468                 refcount_inc(&dpaa_bp_array[bpid]->refs);
469                 return true;
470         }
471
472         return false;
473 }
474
475 /* called only once per bpid by dpaa_bp_alloc_pool() */
476 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
477 {
478         dpaa_bp_array[bpid] = dpaa_bp;
479         refcount_set(&dpaa_bp->refs, 1);
480 }
481
482 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
483 {
484         int err;
485
486         if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
487                 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
488                        __func__);
489                 return -EINVAL;
490         }
491
492         /* If the pool is already specified, we only create one per bpid */
493         if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
494             dpaa_bpid2pool_use(dpaa_bp->bpid))
495                 return 0;
496
497         if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
498                 dpaa_bp->pool = bman_new_pool();
499                 if (!dpaa_bp->pool) {
500                         pr_err("%s: bman_new_pool() failed\n",
501                                __func__);
502                         return -ENODEV;
503                 }
504
505                 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
506         }
507
508         if (dpaa_bp->seed_cb) {
509                 err = dpaa_bp->seed_cb(dpaa_bp);
510                 if (err)
511                         goto pool_seed_failed;
512         }
513
514         dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
515
516         return 0;
517
518 pool_seed_failed:
519         pr_err("%s: pool seeding failed\n", __func__);
520         bman_free_pool(dpaa_bp->pool);
521
522         return err;
523 }
524
525 /* remove and free all the buffers from the given buffer pool */
526 static void dpaa_bp_drain(struct dpaa_bp *bp)
527 {
528         u8 num = 8;
529         int ret;
530
531         do {
532                 struct bm_buffer bmb[8];
533                 int i;
534
535                 ret = bman_acquire(bp->pool, bmb, num);
536                 if (ret < 0) {
537                         if (num == 8) {
538                                 /* we have less than 8 buffers left;
539                                  * drain them one by one
540                                  */
541                                 num = 1;
542                                 ret = 1;
543                                 continue;
544                         } else {
545                                 /* Pool is fully drained */
546                                 break;
547                         }
548                 }
549
550                 if (bp->free_buf_cb)
551                         for (i = 0; i < num; i++)
552                                 bp->free_buf_cb(bp, &bmb[i]);
553         } while (ret > 0);
554 }
555
556 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
557 {
558         struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
559
560         /* the mapping between bpid and dpaa_bp is done very late in the
561          * allocation procedure; if something failed before the mapping, the bp
562          * was not configured, therefore we don't need the below instructions
563          */
564         if (!bp)
565                 return;
566
567         if (!refcount_dec_and_test(&bp->refs))
568                 return;
569
570         if (bp->free_buf_cb)
571                 dpaa_bp_drain(bp);
572
573         dpaa_bp_array[bp->bpid] = NULL;
574         bman_free_pool(bp->pool);
575 }
576
577 static void dpaa_bps_free(struct dpaa_priv *priv)
578 {
579         dpaa_bp_free(priv->dpaa_bp);
580 }
581
582 /* Use multiple WQs for FQ assignment:
583  *      - Tx Confirmation queues go to WQ1.
584  *      - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
585  *        to be scheduled, in case there are many more FQs in WQ6).
586  *      - Rx Default goes to WQ6.
587  *      - Tx queues go to different WQs depending on their priority. Equal
588  *        chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
589  *        WQ0 (highest priority).
590  * This ensures that Tx-confirmed buffers are timely released. In particular,
591  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
592  * are greatly outnumbered by other FQs in the system, while
593  * dequeue scheduling is round-robin.
594  */
595 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
596 {
597         switch (fq->fq_type) {
598         case FQ_TYPE_TX_CONFIRM:
599         case FQ_TYPE_TX_CONF_MQ:
600                 fq->wq = 1;
601                 break;
602         case FQ_TYPE_RX_ERROR:
603         case FQ_TYPE_TX_ERROR:
604                 fq->wq = 5;
605                 break;
606         case FQ_TYPE_RX_DEFAULT:
607         case FQ_TYPE_RX_PCD:
608                 fq->wq = 6;
609                 break;
610         case FQ_TYPE_TX:
611                 switch (idx / DPAA_TC_TXQ_NUM) {
612                 case 0:
613                         /* Low priority (best effort) */
614                         fq->wq = 6;
615                         break;
616                 case 1:
617                         /* Medium priority */
618                         fq->wq = 2;
619                         break;
620                 case 2:
621                         /* High priority */
622                         fq->wq = 1;
623                         break;
624                 case 3:
625                         /* Very high priority */
626                         fq->wq = 0;
627                         break;
628                 default:
629                         WARN(1, "Too many TX FQs: more than %d!\n",
630                              DPAA_ETH_TXQ_NUM);
631                 }
632                 break;
633         default:
634                 WARN(1, "Invalid FQ type %d for FQID %d!\n",
635                      fq->fq_type, fq->fqid);
636         }
637 }
638
639 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
640                                      u32 start, u32 count,
641                                      struct list_head *list,
642                                      enum dpaa_fq_type fq_type)
643 {
644         struct dpaa_fq *dpaa_fq;
645         int i;
646
647         dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
648                                GFP_KERNEL);
649         if (!dpaa_fq)
650                 return NULL;
651
652         for (i = 0; i < count; i++) {
653                 dpaa_fq[i].fq_type = fq_type;
654                 dpaa_fq[i].fqid = start ? start + i : 0;
655                 list_add_tail(&dpaa_fq[i].list, list);
656         }
657
658         for (i = 0; i < count; i++)
659                 dpaa_assign_wq(dpaa_fq + i, i);
660
661         return dpaa_fq;
662 }
663
664 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
665                               struct fm_port_fqs *port_fqs)
666 {
667         struct dpaa_fq *dpaa_fq;
668         u32 fq_base, fq_base_aligned, i;
669
670         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
671         if (!dpaa_fq)
672                 goto fq_alloc_failed;
673
674         port_fqs->rx_errq = &dpaa_fq[0];
675
676         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
677         if (!dpaa_fq)
678                 goto fq_alloc_failed;
679
680         port_fqs->rx_defq = &dpaa_fq[0];
681
682         /* the PCD FQIDs range needs to be aligned for correct operation */
683         if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
684                 goto fq_alloc_failed;
685
686         fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
687
688         for (i = fq_base; i < fq_base_aligned; i++)
689                 qman_release_fqid(i);
690
691         for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
692              i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
693                 qman_release_fqid(i);
694
695         dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
696                                 list, FQ_TYPE_RX_PCD);
697         if (!dpaa_fq)
698                 goto fq_alloc_failed;
699
700         port_fqs->rx_pcdq = &dpaa_fq[0];
701
702         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
703                 goto fq_alloc_failed;
704
705         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
706         if (!dpaa_fq)
707                 goto fq_alloc_failed;
708
709         port_fqs->tx_errq = &dpaa_fq[0];
710
711         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
712         if (!dpaa_fq)
713                 goto fq_alloc_failed;
714
715         port_fqs->tx_defq = &dpaa_fq[0];
716
717         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
718                 goto fq_alloc_failed;
719
720         return 0;
721
722 fq_alloc_failed:
723         dev_err(dev, "dpaa_fq_alloc() failed\n");
724         return -ENOMEM;
725 }
726
727 static u32 rx_pool_channel;
728 static DEFINE_SPINLOCK(rx_pool_channel_init);
729
730 static int dpaa_get_channel(void)
731 {
732         spin_lock(&rx_pool_channel_init);
733         if (!rx_pool_channel) {
734                 u32 pool;
735                 int ret;
736
737                 ret = qman_alloc_pool(&pool);
738
739                 if (!ret)
740                         rx_pool_channel = pool;
741         }
742         spin_unlock(&rx_pool_channel_init);
743         if (!rx_pool_channel)
744                 return -ENOMEM;
745         return rx_pool_channel;
746 }
747
748 static void dpaa_release_channel(void)
749 {
750         qman_release_pool(rx_pool_channel);
751 }
752
753 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
754 {
755         u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
756         const cpumask_t *cpus = qman_affine_cpus();
757         struct qman_portal *portal;
758         int cpu;
759
760         for_each_cpu_and(cpu, cpus, cpu_online_mask) {
761                 portal = qman_get_affine_portal(cpu);
762                 qman_p_static_dequeue_add(portal, pool);
763                 qman_start_using_portal(portal, dev);
764         }
765 }
766
767 /* Congestion group state change notification callback.
768  * Stops the device's egress queues while they are congested and
769  * wakes them upon exiting congested state.
770  * Also updates some CGR-related stats.
771  */
772 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
773                            int congested)
774 {
775         struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
776                 struct dpaa_priv, cgr_data.cgr);
777
778         if (congested) {
779                 priv->cgr_data.congestion_start_jiffies = jiffies;
780                 netif_tx_stop_all_queues(priv->net_dev);
781                 priv->cgr_data.cgr_congested_count++;
782         } else {
783                 priv->cgr_data.congested_jiffies +=
784                         (jiffies - priv->cgr_data.congestion_start_jiffies);
785                 netif_tx_wake_all_queues(priv->net_dev);
786         }
787 }
788
789 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
790 {
791         struct qm_mcc_initcgr initcgr;
792         u32 cs_th;
793         int err;
794
795         err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
796         if (err < 0) {
797                 if (netif_msg_drv(priv))
798                         pr_err("%s: Error %d allocating CGR ID\n",
799                                __func__, err);
800                 goto out_error;
801         }
802         priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
803
804         /* Enable Congestion State Change Notifications and CS taildrop */
805         memset(&initcgr, 0, sizeof(initcgr));
806         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
807         initcgr.cgr.cscn_en = QM_CGR_EN;
808
809         /* Set different thresholds based on the MAC speed.
810          * This may turn suboptimal if the MAC is reconfigured at a speed
811          * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
812          * In such cases, we ought to reconfigure the threshold, too.
813          */
814         if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
815                 cs_th = DPAA_CS_THRESHOLD_10G;
816         else
817                 cs_th = DPAA_CS_THRESHOLD_1G;
818         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
819
820         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
821         initcgr.cgr.cstd_en = QM_CGR_EN;
822
823         err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
824                               &initcgr);
825         if (err < 0) {
826                 if (netif_msg_drv(priv))
827                         pr_err("%s: Error %d creating CGR with ID %d\n",
828                                __func__, err, priv->cgr_data.cgr.cgrid);
829                 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
830                 goto out_error;
831         }
832         if (netif_msg_drv(priv))
833                 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
834                          priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
835                          priv->cgr_data.cgr.chan);
836
837 out_error:
838         return err;
839 }
840
841 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
842                                       struct dpaa_fq *fq,
843                                       const struct qman_fq *template)
844 {
845         fq->fq_base = *template;
846         fq->net_dev = priv->net_dev;
847
848         fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
849         fq->channel = priv->channel;
850 }
851
852 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
853                                      struct dpaa_fq *fq,
854                                      struct fman_port *port,
855                                      const struct qman_fq *template)
856 {
857         fq->fq_base = *template;
858         fq->net_dev = priv->net_dev;
859
860         if (port) {
861                 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
862                 fq->channel = (u16)fman_port_get_qman_channel_id(port);
863         } else {
864                 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
865         }
866 }
867
868 static void dpaa_fq_setup(struct dpaa_priv *priv,
869                           const struct dpaa_fq_cbs *fq_cbs,
870                           struct fman_port *tx_port)
871 {
872         int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
873         const cpumask_t *affine_cpus = qman_affine_cpus();
874         u16 channels[NR_CPUS];
875         struct dpaa_fq *fq;
876
877         for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
878                 channels[num_portals++] = qman_affine_channel(cpu);
879
880         if (num_portals == 0)
881                 dev_err(priv->net_dev->dev.parent,
882                         "No Qman software (affine) channels found\n");
883
884         /* Initialize each FQ in the list */
885         list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
886                 switch (fq->fq_type) {
887                 case FQ_TYPE_RX_DEFAULT:
888                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
889                         break;
890                 case FQ_TYPE_RX_ERROR:
891                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
892                         break;
893                 case FQ_TYPE_RX_PCD:
894                         if (!num_portals)
895                                 continue;
896                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
897                         fq->channel = channels[portal_cnt++ % num_portals];
898                         break;
899                 case FQ_TYPE_TX:
900                         dpaa_setup_egress(priv, fq, tx_port,
901                                           &fq_cbs->egress_ern);
902                         /* If we have more Tx queues than the number of cores,
903                          * just ignore the extra ones.
904                          */
905                         if (egress_cnt < DPAA_ETH_TXQ_NUM)
906                                 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
907                         break;
908                 case FQ_TYPE_TX_CONF_MQ:
909                         priv->conf_fqs[conf_cnt++] = &fq->fq_base;
910                         /* fall through */
911                 case FQ_TYPE_TX_CONFIRM:
912                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
913                         break;
914                 case FQ_TYPE_TX_ERROR:
915                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
916                         break;
917                 default:
918                         dev_warn(priv->net_dev->dev.parent,
919                                  "Unknown FQ type detected!\n");
920                         break;
921                 }
922         }
923
924          /* Make sure all CPUs receive a corresponding Tx queue. */
925         while (egress_cnt < DPAA_ETH_TXQ_NUM) {
926                 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
927                         if (fq->fq_type != FQ_TYPE_TX)
928                                 continue;
929                         priv->egress_fqs[egress_cnt++] = &fq->fq_base;
930                         if (egress_cnt == DPAA_ETH_TXQ_NUM)
931                                 break;
932                 }
933         }
934 }
935
936 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
937                                    struct qman_fq *tx_fq)
938 {
939         int i;
940
941         for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
942                 if (priv->egress_fqs[i] == tx_fq)
943                         return i;
944
945         return -EINVAL;
946 }
947
948 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
949 {
950         const struct dpaa_priv  *priv;
951         struct qman_fq *confq = NULL;
952         struct qm_mcc_initfq initfq;
953         struct device *dev;
954         struct qman_fq *fq;
955         int queue_id;
956         int err;
957
958         priv = netdev_priv(dpaa_fq->net_dev);
959         dev = dpaa_fq->net_dev->dev.parent;
960
961         if (dpaa_fq->fqid == 0)
962                 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
963
964         dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
965
966         err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
967         if (err) {
968                 dev_err(dev, "qman_create_fq() failed\n");
969                 return err;
970         }
971         fq = &dpaa_fq->fq_base;
972
973         if (dpaa_fq->init) {
974                 memset(&initfq, 0, sizeof(initfq));
975
976                 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
977                 /* Note: we may get to keep an empty FQ in cache */
978                 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
979
980                 /* Try to reduce the number of portal interrupts for
981                  * Tx Confirmation FQs.
982                  */
983                 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
984                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
985
986                 /* FQ placement */
987                 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
988
989                 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
990
991                 /* Put all egress queues in a congestion group of their own.
992                  * Sensu stricto, the Tx confirmation queues are Rx FQs,
993                  * rather than Tx - but they nonetheless account for the
994                  * memory footprint on behalf of egress traffic. We therefore
995                  * place them in the netdev's CGR, along with the Tx FQs.
996                  */
997                 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
998                     dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
999                     dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1000                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1001                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1002                         initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1003                         /* Set a fixed overhead accounting, in an attempt to
1004                          * reduce the impact of fixed-size skb shells and the
1005                          * driver's needed headroom on system memory. This is
1006                          * especially the case when the egress traffic is
1007                          * composed of small datagrams.
1008                          * Unfortunately, QMan's OAL value is capped to an
1009                          * insufficient value, but even that is better than
1010                          * no overhead accounting at all.
1011                          */
1012                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1013                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1014                         qm_fqd_set_oal(&initfq.fqd,
1015                                        min(sizeof(struct sk_buff) +
1016                                        priv->tx_headroom,
1017                                        (size_t)FSL_QMAN_MAX_OAL));
1018                 }
1019
1020                 if (td_enable) {
1021                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1022                         qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1023                         initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1024                 }
1025
1026                 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1027                         queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1028                         if (queue_id >= 0)
1029                                 confq = priv->conf_fqs[queue_id];
1030                         if (confq) {
1031                                 initfq.we_mask |=
1032                                         cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1033                         /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1034                          *           A2V=1 (contextA A2 field is valid)
1035                          *           A0V=1 (contextA A0 field is valid)
1036                          *           B0V=1 (contextB field is valid)
1037                          * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1038                          * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1039                          */
1040                                 qm_fqd_context_a_set64(&initfq.fqd,
1041                                                        0x1e00000080000000ULL);
1042                         }
1043                 }
1044
1045                 /* Put all the ingress queues in our "ingress CGR". */
1046                 if (priv->use_ingress_cgr &&
1047                     (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1048                      dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1049                      dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1050                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1051                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1052                         initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1053                         /* Set a fixed overhead accounting, just like for the
1054                          * egress CGR.
1055                          */
1056                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1057                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1058                         qm_fqd_set_oal(&initfq.fqd,
1059                                        min(sizeof(struct sk_buff) +
1060                                        priv->tx_headroom,
1061                                        (size_t)FSL_QMAN_MAX_OAL));
1062                 }
1063
1064                 /* Initialization common to all ingress queues */
1065                 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1066                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1067                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1068                                                 QM_FQCTRL_CTXASTASHING);
1069                         initfq.fqd.context_a.stashing.exclusive =
1070                                 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1071                                 QM_STASHING_EXCL_ANNOTATION;
1072                         qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1073                                             DIV_ROUND_UP(sizeof(struct qman_fq),
1074                                                          64));
1075                 }
1076
1077                 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1078                 if (err < 0) {
1079                         dev_err(dev, "qman_init_fq(%u) = %d\n",
1080                                 qman_fq_fqid(fq), err);
1081                         qman_destroy_fq(fq);
1082                         return err;
1083                 }
1084         }
1085
1086         dpaa_fq->fqid = qman_fq_fqid(fq);
1087
1088         return 0;
1089 }
1090
1091 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1092 {
1093         const struct dpaa_priv  *priv;
1094         struct dpaa_fq *dpaa_fq;
1095         int err, error;
1096
1097         err = 0;
1098
1099         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1100         priv = netdev_priv(dpaa_fq->net_dev);
1101
1102         if (dpaa_fq->init) {
1103                 err = qman_retire_fq(fq, NULL);
1104                 if (err < 0 && netif_msg_drv(priv))
1105                         dev_err(dev, "qman_retire_fq(%u) = %d\n",
1106                                 qman_fq_fqid(fq), err);
1107
1108                 error = qman_oos_fq(fq);
1109                 if (error < 0 && netif_msg_drv(priv)) {
1110                         dev_err(dev, "qman_oos_fq(%u) = %d\n",
1111                                 qman_fq_fqid(fq), error);
1112                         if (err >= 0)
1113                                 err = error;
1114                 }
1115         }
1116
1117         qman_destroy_fq(fq);
1118         list_del(&dpaa_fq->list);
1119
1120         return err;
1121 }
1122
1123 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1124 {
1125         struct dpaa_fq *dpaa_fq, *tmp;
1126         int err, error;
1127
1128         err = 0;
1129         list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1130                 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1131                 if (error < 0 && err >= 0)
1132                         err = error;
1133         }
1134
1135         return err;
1136 }
1137
1138 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1139                                  struct dpaa_fq *defq,
1140                                  struct dpaa_buffer_layout *buf_layout)
1141 {
1142         struct fman_buffer_prefix_content buf_prefix_content;
1143         struct fman_port_params params;
1144         int err;
1145
1146         memset(&params, 0, sizeof(params));
1147         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1148
1149         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1150         buf_prefix_content.pass_prs_result = true;
1151         buf_prefix_content.pass_hash_result = true;
1152         buf_prefix_content.pass_time_stamp = true;
1153         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1154
1155         params.specific_params.non_rx_params.err_fqid = errq->fqid;
1156         params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1157
1158         err = fman_port_config(port, &params);
1159         if (err) {
1160                 pr_err("%s: fman_port_config failed\n", __func__);
1161                 return err;
1162         }
1163
1164         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1165         if (err) {
1166                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1167                        __func__);
1168                 return err;
1169         }
1170
1171         err = fman_port_init(port);
1172         if (err)
1173                 pr_err("%s: fm_port_init failed\n", __func__);
1174
1175         return err;
1176 }
1177
1178 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1179                                  struct dpaa_fq *errq,
1180                                  struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1181                                  struct dpaa_buffer_layout *buf_layout)
1182 {
1183         struct fman_buffer_prefix_content buf_prefix_content;
1184         struct fman_port_rx_params *rx_p;
1185         struct fman_port_params params;
1186         int err;
1187
1188         memset(&params, 0, sizeof(params));
1189         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1190
1191         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1192         buf_prefix_content.pass_prs_result = true;
1193         buf_prefix_content.pass_hash_result = true;
1194         buf_prefix_content.pass_time_stamp = true;
1195         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1196
1197         rx_p = &params.specific_params.rx_params;
1198         rx_p->err_fqid = errq->fqid;
1199         rx_p->dflt_fqid = defq->fqid;
1200         if (pcdq) {
1201                 rx_p->pcd_base_fqid = pcdq->fqid;
1202                 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1203         }
1204
1205         rx_p->ext_buf_pools.num_of_pools_used = 1;
1206         rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1207         rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1208
1209         err = fman_port_config(port, &params);
1210         if (err) {
1211                 pr_err("%s: fman_port_config failed\n", __func__);
1212                 return err;
1213         }
1214
1215         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1216         if (err) {
1217                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1218                        __func__);
1219                 return err;
1220         }
1221
1222         err = fman_port_init(port);
1223         if (err)
1224                 pr_err("%s: fm_port_init failed\n", __func__);
1225
1226         return err;
1227 }
1228
1229 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1230                                struct dpaa_bp *bp,
1231                                struct fm_port_fqs *port_fqs,
1232                                struct dpaa_buffer_layout *buf_layout,
1233                                struct device *dev)
1234 {
1235         struct fman_port *rxport = mac_dev->port[RX];
1236         struct fman_port *txport = mac_dev->port[TX];
1237         int err;
1238
1239         err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1240                                     port_fqs->tx_defq, &buf_layout[TX]);
1241         if (err)
1242                 return err;
1243
1244         err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1245                                     port_fqs->rx_defq, port_fqs->rx_pcdq,
1246                                     &buf_layout[RX]);
1247
1248         return err;
1249 }
1250
1251 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1252                              struct bm_buffer *bmb, int cnt)
1253 {
1254         int err;
1255
1256         err = bman_release(dpaa_bp->pool, bmb, cnt);
1257         /* Should never occur, address anyway to avoid leaking the buffers */
1258         if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1259                 while (cnt-- > 0)
1260                         dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1261
1262         return cnt;
1263 }
1264
1265 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1266 {
1267         struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1268         struct dpaa_bp *dpaa_bp;
1269         int i = 0, j;
1270
1271         memset(bmb, 0, sizeof(bmb));
1272
1273         do {
1274                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1275                 if (!dpaa_bp)
1276                         return;
1277
1278                 j = 0;
1279                 do {
1280                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1281
1282                         bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1283
1284                         j++; i++;
1285                 } while (j < ARRAY_SIZE(bmb) &&
1286                                 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1287                                 sgt[i - 1].bpid == sgt[i].bpid);
1288
1289                 dpaa_bman_release(dpaa_bp, bmb, j);
1290         } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1291 }
1292
1293 static void dpaa_fd_release(const struct net_device *net_dev,
1294                             const struct qm_fd *fd)
1295 {
1296         struct qm_sg_entry *sgt;
1297         struct dpaa_bp *dpaa_bp;
1298         struct bm_buffer bmb;
1299         dma_addr_t addr;
1300         void *vaddr;
1301
1302         bmb.data = 0;
1303         bm_buffer_set64(&bmb, qm_fd_addr(fd));
1304
1305         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1306         if (!dpaa_bp)
1307                 return;
1308
1309         if (qm_fd_get_format(fd) == qm_fd_sg) {
1310                 vaddr = phys_to_virt(qm_fd_addr(fd));
1311                 sgt = vaddr + qm_fd_get_offset(fd);
1312
1313                 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1314                                DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1315
1316                 dpaa_release_sgt_members(sgt);
1317
1318                 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1319                                     virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1320                                     DMA_FROM_DEVICE);
1321                 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1322                         netdev_err(net_dev, "DMA mapping failed\n");
1323                         return;
1324                 }
1325                 bm_buffer_set64(&bmb, addr);
1326         }
1327
1328         dpaa_bman_release(dpaa_bp, &bmb, 1);
1329 }
1330
1331 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1332                       const union qm_mr_entry *msg)
1333 {
1334         switch (msg->ern.rc & QM_MR_RC_MASK) {
1335         case QM_MR_RC_CGR_TAILDROP:
1336                 percpu_priv->ern_cnt.cg_tdrop++;
1337                 break;
1338         case QM_MR_RC_WRED:
1339                 percpu_priv->ern_cnt.wred++;
1340                 break;
1341         case QM_MR_RC_ERROR:
1342                 percpu_priv->ern_cnt.err_cond++;
1343                 break;
1344         case QM_MR_RC_ORPWINDOW_EARLY:
1345                 percpu_priv->ern_cnt.early_window++;
1346                 break;
1347         case QM_MR_RC_ORPWINDOW_LATE:
1348                 percpu_priv->ern_cnt.late_window++;
1349                 break;
1350         case QM_MR_RC_FQ_TAILDROP:
1351                 percpu_priv->ern_cnt.fq_tdrop++;
1352                 break;
1353         case QM_MR_RC_ORPWINDOW_RETIRED:
1354                 percpu_priv->ern_cnt.fq_retired++;
1355                 break;
1356         case QM_MR_RC_ORP_ZERO:
1357                 percpu_priv->ern_cnt.orp_zero++;
1358                 break;
1359         }
1360 }
1361
1362 /* Turn on HW checksum computation for this outgoing frame.
1363  * If the current protocol is not something we support in this regard
1364  * (or if the stack has already computed the SW checksum), we do nothing.
1365  *
1366  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1367  * otherwise.
1368  *
1369  * Note that this function may modify the fd->cmd field and the skb data buffer
1370  * (the Parse Results area).
1371  */
1372 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1373                                struct sk_buff *skb,
1374                                struct qm_fd *fd,
1375                                void *parse_results)
1376 {
1377         struct fman_prs_result *parse_result;
1378         u16 ethertype = ntohs(skb->protocol);
1379         struct ipv6hdr *ipv6h = NULL;
1380         struct iphdr *iph;
1381         int retval = 0;
1382         u8 l4_proto;
1383
1384         if (skb->ip_summed != CHECKSUM_PARTIAL)
1385                 return 0;
1386
1387         /* Note: L3 csum seems to be already computed in sw, but we can't choose
1388          * L4 alone from the FM configuration anyway.
1389          */
1390
1391         /* Fill in some fields of the Parse Results array, so the FMan
1392          * can find them as if they came from the FMan Parser.
1393          */
1394         parse_result = (struct fman_prs_result *)parse_results;
1395
1396         /* If we're dealing with VLAN, get the real Ethernet type */
1397         if (ethertype == ETH_P_8021Q) {
1398                 /* We can't always assume the MAC header is set correctly
1399                  * by the stack, so reset to beginning of skb->data
1400                  */
1401                 skb_reset_mac_header(skb);
1402                 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1403         }
1404
1405         /* Fill in the relevant L3 parse result fields
1406          * and read the L4 protocol type
1407          */
1408         switch (ethertype) {
1409         case ETH_P_IP:
1410                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1411                 iph = ip_hdr(skb);
1412                 WARN_ON(!iph);
1413                 l4_proto = iph->protocol;
1414                 break;
1415         case ETH_P_IPV6:
1416                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1417                 ipv6h = ipv6_hdr(skb);
1418                 WARN_ON(!ipv6h);
1419                 l4_proto = ipv6h->nexthdr;
1420                 break;
1421         default:
1422                 /* We shouldn't even be here */
1423                 if (net_ratelimit())
1424                         netif_alert(priv, tx_err, priv->net_dev,
1425                                     "Can't compute HW csum for L3 proto 0x%x\n",
1426                                     ntohs(skb->protocol));
1427                 retval = -EIO;
1428                 goto return_error;
1429         }
1430
1431         /* Fill in the relevant L4 parse result fields */
1432         switch (l4_proto) {
1433         case IPPROTO_UDP:
1434                 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1435                 break;
1436         case IPPROTO_TCP:
1437                 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1438                 break;
1439         default:
1440                 if (net_ratelimit())
1441                         netif_alert(priv, tx_err, priv->net_dev,
1442                                     "Can't compute HW csum for L4 proto 0x%x\n",
1443                                     l4_proto);
1444                 retval = -EIO;
1445                 goto return_error;
1446         }
1447
1448         /* At index 0 is IPOffset_1 as defined in the Parse Results */
1449         parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1450         parse_result->l4_off = (u8)skb_transport_offset(skb);
1451
1452         /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1453         fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1454
1455         /* On P1023 and similar platforms fd->cmd interpretation could
1456          * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1457          * is not set so we do not need to check; in the future, if/when
1458          * using context_a we need to check this bit
1459          */
1460
1461 return_error:
1462         return retval;
1463 }
1464
1465 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1466 {
1467         struct net_device *net_dev = dpaa_bp->priv->net_dev;
1468         struct bm_buffer bmb[8];
1469         dma_addr_t addr;
1470         struct page *p;
1471         u8 i;
1472
1473         for (i = 0; i < 8; i++) {
1474                 p = dev_alloc_pages(0);
1475                 if (unlikely(!p)) {
1476                         netdev_err(net_dev, "dev_alloc_pages() failed\n");
1477                         goto release_previous_buffs;
1478                 }
1479
1480                 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1481                                     DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1482                 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1483                                                addr))) {
1484                         netdev_err(net_dev, "DMA map failed\n");
1485                         goto release_previous_buffs;
1486                 }
1487
1488                 bmb[i].data = 0;
1489                 bm_buffer_set64(&bmb[i], addr);
1490         }
1491
1492 release_bufs:
1493         return dpaa_bman_release(dpaa_bp, bmb, i);
1494
1495 release_previous_buffs:
1496         WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1497
1498         bm_buffer_set64(&bmb[i], 0);
1499         /* Avoid releasing a completely null buffer; bman_release() requires
1500          * at least one buffer.
1501          */
1502         if (likely(i))
1503                 goto release_bufs;
1504
1505         return 0;
1506 }
1507
1508 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1509 {
1510         int i;
1511
1512         /* Give each CPU an allotment of "config_count" buffers */
1513         for_each_possible_cpu(i) {
1514                 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1515                 int j;
1516
1517                 /* Although we access another CPU's counters here
1518                  * we do it at boot time so it is safe
1519                  */
1520                 for (j = 0; j < dpaa_bp->config_count; j += 8)
1521                         *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1522         }
1523         return 0;
1524 }
1525
1526 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1527  * REFILL_THRESHOLD.
1528  */
1529 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1530 {
1531         int count = *countptr;
1532         int new_bufs;
1533
1534         if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1535                 do {
1536                         new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1537                         if (unlikely(!new_bufs)) {
1538                                 /* Avoid looping forever if we've temporarily
1539                                  * run out of memory. We'll try again at the
1540                                  * next NAPI cycle.
1541                                  */
1542                                 break;
1543                         }
1544                         count += new_bufs;
1545                 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1546
1547                 *countptr = count;
1548                 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1549                         return -ENOMEM;
1550         }
1551
1552         return 0;
1553 }
1554
1555 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1556 {
1557         struct dpaa_bp *dpaa_bp;
1558         int *countptr;
1559         int res;
1560
1561         dpaa_bp = priv->dpaa_bp;
1562         if (!dpaa_bp)
1563                 return -EINVAL;
1564         countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1565         res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1566         if (res)
1567                 return res;
1568
1569         return 0;
1570 }
1571
1572 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1573  * either contiguous frames or scatter/gather ones.
1574  * Skb freeing is not handled here.
1575  *
1576  * This function may be called on error paths in the Tx function, so guard
1577  * against cases when not all fd relevant fields were filled in. To avoid
1578  * reading the invalid transmission timestamp for the error paths set ts to
1579  * false.
1580  *
1581  * Return the skb backpointer, since for S/G frames the buffer containing it
1582  * gets freed here.
1583  */
1584 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1585                                           const struct qm_fd *fd, bool ts)
1586 {
1587         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1588         struct device *dev = priv->net_dev->dev.parent;
1589         struct skb_shared_hwtstamps shhwtstamps;
1590         dma_addr_t addr = qm_fd_addr(fd);
1591         void *vaddr = phys_to_virt(addr);
1592         const struct qm_sg_entry *sgt;
1593         struct sk_buff *skb;
1594         u64 ns;
1595         int i;
1596
1597         if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1598                 dma_unmap_page(priv->tx_dma_dev, addr,
1599                                qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1600                                dma_dir);
1601
1602                 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1603                  * it's from lowmem.
1604                  */
1605                 sgt = vaddr + qm_fd_get_offset(fd);
1606
1607                 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1608                 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1609                                  qm_sg_entry_get_len(&sgt[0]), dma_dir);
1610
1611                 /* remaining pages were mapped with skb_frag_dma_map() */
1612                 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1613                      !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1614                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1615
1616                         dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1617                                        qm_sg_entry_get_len(&sgt[i]), dma_dir);
1618                 }
1619         } else {
1620                 dma_unmap_single(priv->tx_dma_dev, addr,
1621                                  priv->tx_headroom + qm_fd_get_length(fd),
1622                                  dma_dir);
1623         }
1624
1625         skb = *(struct sk_buff **)vaddr;
1626
1627         /* DMA unmapping is required before accessing the HW provided info */
1628         if (ts && priv->tx_tstamp &&
1629             skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1630                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1631
1632                 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1633                                           &ns)) {
1634                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
1635                         skb_tstamp_tx(skb, &shhwtstamps);
1636                 } else {
1637                         dev_warn(dev, "fman_port_get_tstamp failed!\n");
1638                 }
1639         }
1640
1641         if (qm_fd_get_format(fd) == qm_fd_sg)
1642                 /* Free the page that we allocated on Tx for the SGT */
1643                 free_pages((unsigned long)vaddr, 0);
1644
1645         return skb;
1646 }
1647
1648 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1649 {
1650         /* The parser has run and performed L4 checksum validation.
1651          * We know there were no parser errors (and implicitly no
1652          * L4 csum error), otherwise we wouldn't be here.
1653          */
1654         if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1655             (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1656                 return CHECKSUM_UNNECESSARY;
1657
1658         /* We're here because either the parser didn't run or the L4 checksum
1659          * was not verified. This may include the case of a UDP frame with
1660          * checksum zero or an L4 proto other than TCP/UDP
1661          */
1662         return CHECKSUM_NONE;
1663 }
1664
1665 /* Build a linear skb around the received buffer.
1666  * We are guaranteed there is enough room at the end of the data buffer to
1667  * accommodate the shared info area of the skb.
1668  */
1669 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1670                                         const struct qm_fd *fd)
1671 {
1672         ssize_t fd_off = qm_fd_get_offset(fd);
1673         dma_addr_t addr = qm_fd_addr(fd);
1674         struct dpaa_bp *dpaa_bp;
1675         struct sk_buff *skb;
1676         void *vaddr;
1677
1678         vaddr = phys_to_virt(addr);
1679         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1680
1681         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1682         if (!dpaa_bp)
1683                 goto free_buffer;
1684
1685         skb = build_skb(vaddr, dpaa_bp->size +
1686                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1687         if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1688                 goto free_buffer;
1689         WARN_ON(fd_off != priv->rx_headroom);
1690         skb_reserve(skb, fd_off);
1691         skb_put(skb, qm_fd_get_length(fd));
1692
1693         skb->ip_summed = rx_csum_offload(priv, fd);
1694
1695         return skb;
1696
1697 free_buffer:
1698         free_pages((unsigned long)vaddr, 0);
1699         return NULL;
1700 }
1701
1702 /* Build an skb with the data of the first S/G entry in the linear portion and
1703  * the rest of the frame as skb fragments.
1704  *
1705  * The page fragment holding the S/G Table is recycled here.
1706  */
1707 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1708                                     const struct qm_fd *fd)
1709 {
1710         ssize_t fd_off = qm_fd_get_offset(fd);
1711         dma_addr_t addr = qm_fd_addr(fd);
1712         const struct qm_sg_entry *sgt;
1713         struct page *page, *head_page;
1714         struct dpaa_bp *dpaa_bp;
1715         void *vaddr, *sg_vaddr;
1716         int frag_off, frag_len;
1717         struct sk_buff *skb;
1718         dma_addr_t sg_addr;
1719         int page_offset;
1720         unsigned int sz;
1721         int *count_ptr;
1722         int i;
1723
1724         vaddr = phys_to_virt(addr);
1725         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1726
1727         /* Iterate through the SGT entries and add data buffers to the skb */
1728         sgt = vaddr + fd_off;
1729         skb = NULL;
1730         for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1731                 /* Extension bit is not supported */
1732                 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1733
1734                 sg_addr = qm_sg_addr(&sgt[i]);
1735                 sg_vaddr = phys_to_virt(sg_addr);
1736                 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1737                                     SMP_CACHE_BYTES));
1738
1739                 /* We may use multiple Rx pools */
1740                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1741                 if (!dpaa_bp)
1742                         goto free_buffers;
1743
1744                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1745                 dma_unmap_page(priv->rx_dma_dev, sg_addr,
1746                                DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1747                 if (!skb) {
1748                         sz = dpaa_bp->size +
1749                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1750                         skb = build_skb(sg_vaddr, sz);
1751                         if (WARN_ON(!skb))
1752                                 goto free_buffers;
1753
1754                         skb->ip_summed = rx_csum_offload(priv, fd);
1755
1756                         /* Make sure forwarded skbs will have enough space
1757                          * on Tx, if extra headers are added.
1758                          */
1759                         WARN_ON(fd_off != priv->rx_headroom);
1760                         skb_reserve(skb, fd_off);
1761                         skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1762                 } else {
1763                         /* Not the first S/G entry; all data from buffer will
1764                          * be added in an skb fragment; fragment index is offset
1765                          * by one since first S/G entry was incorporated in the
1766                          * linear part of the skb.
1767                          *
1768                          * Caution: 'page' may be a tail page.
1769                          */
1770                         page = virt_to_page(sg_vaddr);
1771                         head_page = virt_to_head_page(sg_vaddr);
1772
1773                         /* Compute offset in (possibly tail) page */
1774                         page_offset = ((unsigned long)sg_vaddr &
1775                                         (PAGE_SIZE - 1)) +
1776                                 (page_address(page) - page_address(head_page));
1777                         /* page_offset only refers to the beginning of sgt[i];
1778                          * but the buffer itself may have an internal offset.
1779                          */
1780                         frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1781                         frag_len = qm_sg_entry_get_len(&sgt[i]);
1782                         /* skb_add_rx_frag() does no checking on the page; if
1783                          * we pass it a tail page, we'll end up with
1784                          * bad page accounting and eventually with segafults.
1785                          */
1786                         skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1787                                         frag_len, dpaa_bp->size);
1788                 }
1789                 /* Update the pool count for the current {cpu x bpool} */
1790                 (*count_ptr)--;
1791
1792                 if (qm_sg_entry_is_final(&sgt[i]))
1793                         break;
1794         }
1795         WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1796
1797         /* free the SG table buffer */
1798         free_pages((unsigned long)vaddr, 0);
1799
1800         return skb;
1801
1802 free_buffers:
1803         /* compensate sw bpool counter changes */
1804         for (i--; i >= 0; i--) {
1805                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1806                 if (dpaa_bp) {
1807                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1808                         (*count_ptr)++;
1809                 }
1810         }
1811         /* free all the SG entries */
1812         for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1813                 sg_addr = qm_sg_addr(&sgt[i]);
1814                 sg_vaddr = phys_to_virt(sg_addr);
1815                 free_pages((unsigned long)sg_vaddr, 0);
1816                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1817                 if (dpaa_bp) {
1818                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1819                         (*count_ptr)--;
1820                 }
1821
1822                 if (qm_sg_entry_is_final(&sgt[i]))
1823                         break;
1824         }
1825         /* free the SGT fragment */
1826         free_pages((unsigned long)vaddr, 0);
1827
1828         return NULL;
1829 }
1830
1831 static int skb_to_contig_fd(struct dpaa_priv *priv,
1832                             struct sk_buff *skb, struct qm_fd *fd,
1833                             int *offset)
1834 {
1835         struct net_device *net_dev = priv->net_dev;
1836         enum dma_data_direction dma_dir;
1837         unsigned char *buff_start;
1838         struct sk_buff **skbh;
1839         dma_addr_t addr;
1840         int err;
1841
1842         /* We are guaranteed to have at least tx_headroom bytes
1843          * available, so just use that for offset.
1844          */
1845         fd->bpid = FSL_DPAA_BPID_INV;
1846         buff_start = skb->data - priv->tx_headroom;
1847         dma_dir = DMA_TO_DEVICE;
1848
1849         skbh = (struct sk_buff **)buff_start;
1850         *skbh = skb;
1851
1852         /* Enable L3/L4 hardware checksum computation.
1853          *
1854          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1855          * need to write into the skb.
1856          */
1857         err = dpaa_enable_tx_csum(priv, skb, fd,
1858                                   buff_start + DPAA_TX_PRIV_DATA_SIZE);
1859         if (unlikely(err < 0)) {
1860                 if (net_ratelimit())
1861                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1862                                   err);
1863                 return err;
1864         }
1865
1866         /* Fill in the rest of the FD fields */
1867         qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1868         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1869
1870         /* Map the entire buffer size that may be seen by FMan, but no more */
1871         addr = dma_map_single(priv->tx_dma_dev, buff_start,
1872                               priv->tx_headroom + skb->len, dma_dir);
1873         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1874                 if (net_ratelimit())
1875                         netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1876                 return -EINVAL;
1877         }
1878         qm_fd_addr_set64(fd, addr);
1879
1880         return 0;
1881 }
1882
1883 static int skb_to_sg_fd(struct dpaa_priv *priv,
1884                         struct sk_buff *skb, struct qm_fd *fd)
1885 {
1886         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1887         const int nr_frags = skb_shinfo(skb)->nr_frags;
1888         struct net_device *net_dev = priv->net_dev;
1889         struct qm_sg_entry *sgt;
1890         struct sk_buff **skbh;
1891         void *buff_start;
1892         skb_frag_t *frag;
1893         dma_addr_t addr;
1894         size_t frag_len;
1895         struct page *p;
1896         int i, j, err;
1897
1898         /* get a page to store the SGTable */
1899         p = dev_alloc_pages(0);
1900         if (unlikely(!p)) {
1901                 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1902                 return -ENOMEM;
1903         }
1904         buff_start = page_address(p);
1905
1906         /* Enable L3/L4 hardware checksum computation.
1907          *
1908          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1909          * need to write into the skb.
1910          */
1911         err = dpaa_enable_tx_csum(priv, skb, fd,
1912                                   buff_start + DPAA_TX_PRIV_DATA_SIZE);
1913         if (unlikely(err < 0)) {
1914                 if (net_ratelimit())
1915                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1916                                   err);
1917                 goto csum_failed;
1918         }
1919
1920         /* SGT[0] is used by the linear part */
1921         sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
1922         frag_len = skb_headlen(skb);
1923         qm_sg_entry_set_len(&sgt[0], frag_len);
1924         sgt[0].bpid = FSL_DPAA_BPID_INV;
1925         sgt[0].offset = 0;
1926         addr = dma_map_single(priv->tx_dma_dev, skb->data,
1927                               skb_headlen(skb), dma_dir);
1928         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1929                 netdev_err(priv->net_dev, "DMA mapping failed\n");
1930                 err = -EINVAL;
1931                 goto sg0_map_failed;
1932         }
1933         qm_sg_entry_set64(&sgt[0], addr);
1934
1935         /* populate the rest of SGT entries */
1936         for (i = 0; i < nr_frags; i++) {
1937                 frag = &skb_shinfo(skb)->frags[i];
1938                 frag_len = skb_frag_size(frag);
1939                 WARN_ON(!skb_frag_page(frag));
1940                 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
1941                                         frag_len, dma_dir);
1942                 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1943                         netdev_err(priv->net_dev, "DMA mapping failed\n");
1944                         err = -EINVAL;
1945                         goto sg_map_failed;
1946                 }
1947
1948                 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
1949                 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
1950                 sgt[i + 1].offset = 0;
1951
1952                 /* keep the offset in the address */
1953                 qm_sg_entry_set64(&sgt[i + 1], addr);
1954         }
1955
1956         /* Set the final bit in the last used entry of the SGT */
1957         qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
1958
1959         /* set fd offset to priv->tx_headroom */
1960         qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1961
1962         /* DMA map the SGT page */
1963         skbh = (struct sk_buff **)buff_start;
1964         *skbh = skb;
1965
1966         addr = dma_map_page(priv->tx_dma_dev, p, 0,
1967                             priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
1968         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1969                 netdev_err(priv->net_dev, "DMA mapping failed\n");
1970                 err = -EINVAL;
1971                 goto sgt_map_failed;
1972         }
1973
1974         fd->bpid = FSL_DPAA_BPID_INV;
1975         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1976         qm_fd_addr_set64(fd, addr);
1977
1978         return 0;
1979
1980 sgt_map_failed:
1981 sg_map_failed:
1982         for (j = 0; j < i; j++)
1983                 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
1984                                qm_sg_entry_get_len(&sgt[j]), dma_dir);
1985 sg0_map_failed:
1986 csum_failed:
1987         free_pages((unsigned long)buff_start, 0);
1988
1989         return err;
1990 }
1991
1992 static inline int dpaa_xmit(struct dpaa_priv *priv,
1993                             struct rtnl_link_stats64 *percpu_stats,
1994                             int queue,
1995                             struct qm_fd *fd)
1996 {
1997         struct qman_fq *egress_fq;
1998         int err, i;
1999
2000         egress_fq = priv->egress_fqs[queue];
2001         if (fd->bpid == FSL_DPAA_BPID_INV)
2002                 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2003
2004         /* Trace this Tx fd */
2005         trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2006
2007         for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2008                 err = qman_enqueue(egress_fq, fd);
2009                 if (err != -EBUSY)
2010                         break;
2011         }
2012
2013         if (unlikely(err < 0)) {
2014                 percpu_stats->tx_fifo_errors++;
2015                 return err;
2016         }
2017
2018         percpu_stats->tx_packets++;
2019         percpu_stats->tx_bytes += qm_fd_get_length(fd);
2020
2021         return 0;
2022 }
2023
2024 static netdev_tx_t
2025 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2026 {
2027         const int queue_mapping = skb_get_queue_mapping(skb);
2028         bool nonlinear = skb_is_nonlinear(skb);
2029         struct rtnl_link_stats64 *percpu_stats;
2030         struct dpaa_percpu_priv *percpu_priv;
2031         struct netdev_queue *txq;
2032         struct dpaa_priv *priv;
2033         struct qm_fd fd;
2034         int offset = 0;
2035         int err = 0;
2036
2037         priv = netdev_priv(net_dev);
2038         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2039         percpu_stats = &percpu_priv->stats;
2040
2041         qm_fd_clear_fd(&fd);
2042
2043         if (!nonlinear) {
2044                 /* We're going to store the skb backpointer at the beginning
2045                  * of the data buffer, so we need a privately owned skb
2046                  *
2047                  * We've made sure skb is not shared in dev->priv_flags,
2048                  * we need to verify the skb head is not cloned
2049                  */
2050                 if (skb_cow_head(skb, priv->tx_headroom))
2051                         goto enomem;
2052
2053                 WARN_ON(skb_is_nonlinear(skb));
2054         }
2055
2056         /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2057          * make sure we don't feed FMan with more fragments than it supports.
2058          */
2059         if (unlikely(nonlinear &&
2060                      (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2061                 /* If the egress skb contains more fragments than we support
2062                  * we have no choice but to linearize it ourselves.
2063                  */
2064                 if (__skb_linearize(skb))
2065                         goto enomem;
2066
2067                 nonlinear = skb_is_nonlinear(skb);
2068         }
2069
2070         if (nonlinear) {
2071                 /* Just create a S/G fd based on the skb */
2072                 err = skb_to_sg_fd(priv, skb, &fd);
2073                 percpu_priv->tx_frag_skbuffs++;
2074         } else {
2075                 /* Create a contig FD from this skb */
2076                 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2077         }
2078         if (unlikely(err < 0))
2079                 goto skb_to_fd_failed;
2080
2081         txq = netdev_get_tx_queue(net_dev, queue_mapping);
2082
2083         /* LLTX requires to do our own update of trans_start */
2084         txq->trans_start = jiffies;
2085
2086         if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2087                 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2088                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2089         }
2090
2091         if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2092                 return NETDEV_TX_OK;
2093
2094         dpaa_cleanup_tx_fd(priv, &fd, false);
2095 skb_to_fd_failed:
2096 enomem:
2097         percpu_stats->tx_errors++;
2098         dev_kfree_skb(skb);
2099         return NETDEV_TX_OK;
2100 }
2101
2102 static void dpaa_rx_error(struct net_device *net_dev,
2103                           const struct dpaa_priv *priv,
2104                           struct dpaa_percpu_priv *percpu_priv,
2105                           const struct qm_fd *fd,
2106                           u32 fqid)
2107 {
2108         if (net_ratelimit())
2109                 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2110                           be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2111
2112         percpu_priv->stats.rx_errors++;
2113
2114         if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2115                 percpu_priv->rx_errors.dme++;
2116         if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2117                 percpu_priv->rx_errors.fpe++;
2118         if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2119                 percpu_priv->rx_errors.fse++;
2120         if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2121                 percpu_priv->rx_errors.phe++;
2122
2123         dpaa_fd_release(net_dev, fd);
2124 }
2125
2126 static void dpaa_tx_error(struct net_device *net_dev,
2127                           const struct dpaa_priv *priv,
2128                           struct dpaa_percpu_priv *percpu_priv,
2129                           const struct qm_fd *fd,
2130                           u32 fqid)
2131 {
2132         struct sk_buff *skb;
2133
2134         if (net_ratelimit())
2135                 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2136                            be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2137
2138         percpu_priv->stats.tx_errors++;
2139
2140         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2141         dev_kfree_skb(skb);
2142 }
2143
2144 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2145 {
2146         struct dpaa_napi_portal *np =
2147                         container_of(napi, struct dpaa_napi_portal, napi);
2148
2149         int cleaned = qman_p_poll_dqrr(np->p, budget);
2150
2151         if (cleaned < budget) {
2152                 napi_complete_done(napi, cleaned);
2153                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2154         } else if (np->down) {
2155                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2156         }
2157
2158         return cleaned;
2159 }
2160
2161 static void dpaa_tx_conf(struct net_device *net_dev,
2162                          const struct dpaa_priv *priv,
2163                          struct dpaa_percpu_priv *percpu_priv,
2164                          const struct qm_fd *fd,
2165                          u32 fqid)
2166 {
2167         struct sk_buff  *skb;
2168
2169         if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2170                 if (net_ratelimit())
2171                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2172                                    be32_to_cpu(fd->status) &
2173                                    FM_FD_STAT_TX_ERRORS);
2174
2175                 percpu_priv->stats.tx_errors++;
2176         }
2177
2178         percpu_priv->tx_confirm++;
2179
2180         skb = dpaa_cleanup_tx_fd(priv, fd, true);
2181
2182         consume_skb(skb);
2183 }
2184
2185 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2186                                          struct qman_portal *portal)
2187 {
2188         if (unlikely(in_irq() || !in_serving_softirq())) {
2189                 /* Disable QMan IRQ and invoke NAPI */
2190                 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2191
2192                 percpu_priv->np.p = portal;
2193                 napi_schedule(&percpu_priv->np.napi);
2194                 percpu_priv->in_interrupt++;
2195                 return 1;
2196         }
2197         return 0;
2198 }
2199
2200 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2201                                               struct qman_fq *fq,
2202                                               const struct qm_dqrr_entry *dq)
2203 {
2204         struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2205         struct dpaa_percpu_priv *percpu_priv;
2206         struct net_device *net_dev;
2207         struct dpaa_bp *dpaa_bp;
2208         struct dpaa_priv *priv;
2209
2210         net_dev = dpaa_fq->net_dev;
2211         priv = netdev_priv(net_dev);
2212         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2213         if (!dpaa_bp)
2214                 return qman_cb_dqrr_consume;
2215
2216         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2217
2218         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2219                 return qman_cb_dqrr_stop;
2220
2221         dpaa_eth_refill_bpools(priv);
2222         dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2223
2224         return qman_cb_dqrr_consume;
2225 }
2226
2227 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2228                                                 struct qman_fq *fq,
2229                                                 const struct qm_dqrr_entry *dq)
2230 {
2231         struct skb_shared_hwtstamps *shhwtstamps;
2232         struct rtnl_link_stats64 *percpu_stats;
2233         struct dpaa_percpu_priv *percpu_priv;
2234         const struct qm_fd *fd = &dq->fd;
2235         dma_addr_t addr = qm_fd_addr(fd);
2236         enum qm_fd_format fd_format;
2237         struct net_device *net_dev;
2238         u32 fd_status, hash_offset;
2239         struct dpaa_bp *dpaa_bp;
2240         struct dpaa_priv *priv;
2241         unsigned int skb_len;
2242         struct sk_buff *skb;
2243         int *count_ptr;
2244         void *vaddr;
2245         u64 ns;
2246
2247         fd_status = be32_to_cpu(fd->status);
2248         fd_format = qm_fd_get_format(fd);
2249         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2250         priv = netdev_priv(net_dev);
2251         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2252         if (!dpaa_bp)
2253                 return qman_cb_dqrr_consume;
2254
2255         /* Trace the Rx fd */
2256         trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2257
2258         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2259         percpu_stats = &percpu_priv->stats;
2260
2261         if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2262                 return qman_cb_dqrr_stop;
2263
2264         /* Make sure we didn't run out of buffers */
2265         if (unlikely(dpaa_eth_refill_bpools(priv))) {
2266                 /* Unable to refill the buffer pool due to insufficient
2267                  * system memory. Just release the frame back into the pool,
2268                  * otherwise we'll soon end up with an empty buffer pool.
2269                  */
2270                 dpaa_fd_release(net_dev, &dq->fd);
2271                 return qman_cb_dqrr_consume;
2272         }
2273
2274         if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2275                 if (net_ratelimit())
2276                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2277                                    fd_status & FM_FD_STAT_RX_ERRORS);
2278
2279                 percpu_stats->rx_errors++;
2280                 dpaa_fd_release(net_dev, fd);
2281                 return qman_cb_dqrr_consume;
2282         }
2283
2284         dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2285                        DMA_FROM_DEVICE);
2286
2287         /* prefetch the first 64 bytes of the frame or the SGT start */
2288         vaddr = phys_to_virt(addr);
2289         prefetch(vaddr + qm_fd_get_offset(fd));
2290
2291         /* The only FD types that we may receive are contig and S/G */
2292         WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2293
2294         /* Account for either the contig buffer or the SGT buffer (depending on
2295          * which case we were in) having been removed from the pool.
2296          */
2297         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2298         (*count_ptr)--;
2299
2300         if (likely(fd_format == qm_fd_contig))
2301                 skb = contig_fd_to_skb(priv, fd);
2302         else
2303                 skb = sg_fd_to_skb(priv, fd);
2304         if (!skb)
2305                 return qman_cb_dqrr_consume;
2306
2307         if (priv->rx_tstamp) {
2308                 shhwtstamps = skb_hwtstamps(skb);
2309                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2310
2311                 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2312                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
2313                 else
2314                         dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
2315         }
2316
2317         skb->protocol = eth_type_trans(skb, net_dev);
2318
2319         if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2320             !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2321                                               &hash_offset)) {
2322                 enum pkt_hash_types type;
2323
2324                 /* if L4 exists, it was used in the hash generation */
2325                 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2326                         PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2327                 skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2328                              type);
2329         }
2330
2331         skb_len = skb->len;
2332
2333         if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2334                 percpu_stats->rx_dropped++;
2335                 return qman_cb_dqrr_consume;
2336         }
2337
2338         percpu_stats->rx_packets++;
2339         percpu_stats->rx_bytes += skb_len;
2340
2341         return qman_cb_dqrr_consume;
2342 }
2343
2344 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2345                                                 struct qman_fq *fq,
2346                                                 const struct qm_dqrr_entry *dq)
2347 {
2348         struct dpaa_percpu_priv *percpu_priv;
2349         struct net_device *net_dev;
2350         struct dpaa_priv *priv;
2351
2352         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2353         priv = netdev_priv(net_dev);
2354
2355         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2356
2357         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2358                 return qman_cb_dqrr_stop;
2359
2360         dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2361
2362         return qman_cb_dqrr_consume;
2363 }
2364
2365 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2366                                                struct qman_fq *fq,
2367                                                const struct qm_dqrr_entry *dq)
2368 {
2369         struct dpaa_percpu_priv *percpu_priv;
2370         struct net_device *net_dev;
2371         struct dpaa_priv *priv;
2372
2373         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2374         priv = netdev_priv(net_dev);
2375
2376         /* Trace the fd */
2377         trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2378
2379         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2380
2381         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2382                 return qman_cb_dqrr_stop;
2383
2384         dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2385
2386         return qman_cb_dqrr_consume;
2387 }
2388
2389 static void egress_ern(struct qman_portal *portal,
2390                        struct qman_fq *fq,
2391                        const union qm_mr_entry *msg)
2392 {
2393         const struct qm_fd *fd = &msg->ern.fd;
2394         struct dpaa_percpu_priv *percpu_priv;
2395         const struct dpaa_priv *priv;
2396         struct net_device *net_dev;
2397         struct sk_buff *skb;
2398
2399         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2400         priv = netdev_priv(net_dev);
2401         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2402
2403         percpu_priv->stats.tx_dropped++;
2404         percpu_priv->stats.tx_fifo_errors++;
2405         count_ern(percpu_priv, msg);
2406
2407         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2408         dev_kfree_skb_any(skb);
2409 }
2410
2411 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2412         .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2413         .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2414         .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2415         .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2416         .egress_ern = { .cb = { .ern = egress_ern } }
2417 };
2418
2419 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2420 {
2421         struct dpaa_percpu_priv *percpu_priv;
2422         int i;
2423
2424         for_each_online_cpu(i) {
2425                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2426
2427                 percpu_priv->np.down = 0;
2428                 napi_enable(&percpu_priv->np.napi);
2429         }
2430 }
2431
2432 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2433 {
2434         struct dpaa_percpu_priv *percpu_priv;
2435         int i;
2436
2437         for_each_online_cpu(i) {
2438                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2439
2440                 percpu_priv->np.down = 1;
2441                 napi_disable(&percpu_priv->np.napi);
2442         }
2443 }
2444
2445 static void dpaa_adjust_link(struct net_device *net_dev)
2446 {
2447         struct mac_device *mac_dev;
2448         struct dpaa_priv *priv;
2449
2450         priv = netdev_priv(net_dev);
2451         mac_dev = priv->mac_dev;
2452         mac_dev->adjust_link(mac_dev);
2453 }
2454
2455 static int dpaa_phy_init(struct net_device *net_dev)
2456 {
2457         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2458         struct mac_device *mac_dev;
2459         struct phy_device *phy_dev;
2460         struct dpaa_priv *priv;
2461
2462         priv = netdev_priv(net_dev);
2463         mac_dev = priv->mac_dev;
2464
2465         phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2466                                  &dpaa_adjust_link, 0,
2467                                  mac_dev->phy_if);
2468         if (!phy_dev) {
2469                 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2470                 return -ENODEV;
2471         }
2472
2473         /* Remove any features not supported by the controller */
2474         ethtool_convert_legacy_u32_to_link_mode(mask, mac_dev->if_support);
2475         linkmode_and(phy_dev->supported, phy_dev->supported, mask);
2476
2477         phy_support_asym_pause(phy_dev);
2478
2479         mac_dev->phy_dev = phy_dev;
2480         net_dev->phydev = phy_dev;
2481
2482         return 0;
2483 }
2484
2485 static int dpaa_open(struct net_device *net_dev)
2486 {
2487         struct mac_device *mac_dev;
2488         struct dpaa_priv *priv;
2489         int err, i;
2490
2491         priv = netdev_priv(net_dev);
2492         mac_dev = priv->mac_dev;
2493         dpaa_eth_napi_enable(priv);
2494
2495         err = dpaa_phy_init(net_dev);
2496         if (err)
2497                 goto phy_init_failed;
2498
2499         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2500                 err = fman_port_enable(mac_dev->port[i]);
2501                 if (err)
2502                         goto mac_start_failed;
2503         }
2504
2505         err = priv->mac_dev->start(mac_dev);
2506         if (err < 0) {
2507                 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2508                 goto mac_start_failed;
2509         }
2510
2511         netif_tx_start_all_queues(net_dev);
2512
2513         return 0;
2514
2515 mac_start_failed:
2516         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2517                 fman_port_disable(mac_dev->port[i]);
2518
2519 phy_init_failed:
2520         dpaa_eth_napi_disable(priv);
2521
2522         return err;
2523 }
2524
2525 static int dpaa_eth_stop(struct net_device *net_dev)
2526 {
2527         struct dpaa_priv *priv;
2528         int err;
2529
2530         err = dpaa_stop(net_dev);
2531
2532         priv = netdev_priv(net_dev);
2533         dpaa_eth_napi_disable(priv);
2534
2535         return err;
2536 }
2537
2538 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2539 {
2540         struct dpaa_priv *priv = netdev_priv(dev);
2541         struct hwtstamp_config config;
2542
2543         if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
2544                 return -EFAULT;
2545
2546         switch (config.tx_type) {
2547         case HWTSTAMP_TX_OFF:
2548                 /* Couldn't disable rx/tx timestamping separately.
2549                  * Do nothing here.
2550                  */
2551                 priv->tx_tstamp = false;
2552                 break;
2553         case HWTSTAMP_TX_ON:
2554                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2555                 priv->tx_tstamp = true;
2556                 break;
2557         default:
2558                 return -ERANGE;
2559         }
2560
2561         if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
2562                 /* Couldn't disable rx/tx timestamping separately.
2563                  * Do nothing here.
2564                  */
2565                 priv->rx_tstamp = false;
2566         } else {
2567                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2568                 priv->rx_tstamp = true;
2569                 /* TS is set for all frame types, not only those requested */
2570                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2571         }
2572
2573         return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
2574                         -EFAULT : 0;
2575 }
2576
2577 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2578 {
2579         int ret = -EINVAL;
2580
2581         if (cmd == SIOCGMIIREG) {
2582                 if (net_dev->phydev)
2583                         return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2584         }
2585
2586         if (cmd == SIOCSHWTSTAMP)
2587                 return dpaa_ts_ioctl(net_dev, rq, cmd);
2588
2589         return ret;
2590 }
2591
2592 static const struct net_device_ops dpaa_ops = {
2593         .ndo_open = dpaa_open,
2594         .ndo_start_xmit = dpaa_start_xmit,
2595         .ndo_stop = dpaa_eth_stop,
2596         .ndo_tx_timeout = dpaa_tx_timeout,
2597         .ndo_get_stats64 = dpaa_get_stats64,
2598         .ndo_change_carrier = fixed_phy_change_carrier,
2599         .ndo_set_mac_address = dpaa_set_mac_address,
2600         .ndo_validate_addr = eth_validate_addr,
2601         .ndo_set_rx_mode = dpaa_set_rx_mode,
2602         .ndo_do_ioctl = dpaa_ioctl,
2603         .ndo_setup_tc = dpaa_setup_tc,
2604 };
2605
2606 static int dpaa_napi_add(struct net_device *net_dev)
2607 {
2608         struct dpaa_priv *priv = netdev_priv(net_dev);
2609         struct dpaa_percpu_priv *percpu_priv;
2610         int cpu;
2611
2612         for_each_possible_cpu(cpu) {
2613                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2614
2615                 netif_napi_add(net_dev, &percpu_priv->np.napi,
2616                                dpaa_eth_poll, NAPI_POLL_WEIGHT);
2617         }
2618
2619         return 0;
2620 }
2621
2622 static void dpaa_napi_del(struct net_device *net_dev)
2623 {
2624         struct dpaa_priv *priv = netdev_priv(net_dev);
2625         struct dpaa_percpu_priv *percpu_priv;
2626         int cpu;
2627
2628         for_each_possible_cpu(cpu) {
2629                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2630
2631                 netif_napi_del(&percpu_priv->np.napi);
2632         }
2633 }
2634
2635 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2636                                    struct bm_buffer *bmb)
2637 {
2638         dma_addr_t addr = bm_buf_addr(bmb);
2639
2640         dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2641                        DMA_FROM_DEVICE);
2642
2643         skb_free_frag(phys_to_virt(addr));
2644 }
2645
2646 /* Alloc the dpaa_bp struct and configure default values */
2647 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2648 {
2649         struct dpaa_bp *dpaa_bp;
2650
2651         dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2652         if (!dpaa_bp)
2653                 return ERR_PTR(-ENOMEM);
2654
2655         dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2656         dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2657         if (!dpaa_bp->percpu_count)
2658                 return ERR_PTR(-ENOMEM);
2659
2660         dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2661
2662         dpaa_bp->seed_cb = dpaa_bp_seed;
2663         dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2664
2665         return dpaa_bp;
2666 }
2667
2668 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2669  * We won't be sending congestion notifications to FMan; for now, we just use
2670  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2671  * before they reach our ingress queues and eat up memory.
2672  */
2673 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2674 {
2675         struct qm_mcc_initcgr initcgr;
2676         u32 cs_th;
2677         int err;
2678
2679         err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2680         if (err < 0) {
2681                 if (netif_msg_drv(priv))
2682                         pr_err("Error %d allocating CGR ID\n", err);
2683                 goto out_error;
2684         }
2685
2686         /* Enable CS TD, but disable Congestion State Change Notifications. */
2687         memset(&initcgr, 0, sizeof(initcgr));
2688         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2689         initcgr.cgr.cscn_en = QM_CGR_EN;
2690         cs_th = DPAA_INGRESS_CS_THRESHOLD;
2691         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2692
2693         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2694         initcgr.cgr.cstd_en = QM_CGR_EN;
2695
2696         /* This CGR will be associated with the SWP affined to the current CPU.
2697          * However, we'll place all our ingress FQs in it.
2698          */
2699         err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2700                               &initcgr);
2701         if (err < 0) {
2702                 if (netif_msg_drv(priv))
2703                         pr_err("Error %d creating ingress CGR with ID %d\n",
2704                                err, priv->ingress_cgr.cgrid);
2705                 qman_release_cgrid(priv->ingress_cgr.cgrid);
2706                 goto out_error;
2707         }
2708         if (netif_msg_drv(priv))
2709                 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2710                          priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2711
2712         priv->use_ingress_cgr = true;
2713
2714 out_error:
2715         return err;
2716 }
2717
2718 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2719 {
2720         u16 headroom;
2721
2722         /* The frame headroom must accommodate:
2723          * - the driver private data area
2724          * - parse results, hash results, timestamp if selected
2725          * If either hash results or time stamp are selected, both will
2726          * be copied to/from the frame headroom, as TS is located between PR and
2727          * HR in the IC and IC copy size has a granularity of 16bytes
2728          * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2729          *
2730          * Also make sure the headroom is a multiple of data_align bytes
2731          */
2732         headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2733                 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2734
2735         return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2736                                               DPAA_FD_DATA_ALIGNMENT) :
2737                                         headroom;
2738 }
2739
2740 static int dpaa_eth_probe(struct platform_device *pdev)
2741 {
2742         struct net_device *net_dev = NULL;
2743         struct dpaa_bp *dpaa_bp = NULL;
2744         struct dpaa_fq *dpaa_fq, *tmp;
2745         struct dpaa_priv *priv = NULL;
2746         struct fm_port_fqs port_fqs;
2747         struct mac_device *mac_dev;
2748         int err = 0, channel;
2749         struct device *dev;
2750
2751         dev = &pdev->dev;
2752
2753         err = bman_is_probed();
2754         if (!err)
2755                 return -EPROBE_DEFER;
2756         if (err < 0) {
2757                 dev_err(dev, "failing probe due to bman probe error\n");
2758                 return -ENODEV;
2759         }
2760         err = qman_is_probed();
2761         if (!err)
2762                 return -EPROBE_DEFER;
2763         if (err < 0) {
2764                 dev_err(dev, "failing probe due to qman probe error\n");
2765                 return -ENODEV;
2766         }
2767         err = bman_portals_probed();
2768         if (!err)
2769                 return -EPROBE_DEFER;
2770         if (err < 0) {
2771                 dev_err(dev,
2772                         "failing probe due to bman portals probe error\n");
2773                 return -ENODEV;
2774         }
2775         err = qman_portals_probed();
2776         if (!err)
2777                 return -EPROBE_DEFER;
2778         if (err < 0) {
2779                 dev_err(dev,
2780                         "failing probe due to qman portals probe error\n");
2781                 return -ENODEV;
2782         }
2783
2784         /* Allocate this early, so we can store relevant information in
2785          * the private area
2786          */
2787         net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2788         if (!net_dev) {
2789                 dev_err(dev, "alloc_etherdev_mq() failed\n");
2790                 return -ENOMEM;
2791         }
2792
2793         /* Do this here, so we can be verbose early */
2794         SET_NETDEV_DEV(net_dev, dev);
2795         dev_set_drvdata(dev, net_dev);
2796
2797         priv = netdev_priv(net_dev);
2798         priv->net_dev = net_dev;
2799
2800         priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2801
2802         mac_dev = dpaa_mac_dev_get(pdev);
2803         if (IS_ERR(mac_dev)) {
2804                 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
2805                 err = PTR_ERR(mac_dev);
2806                 goto free_netdev;
2807         }
2808
2809         /* Devices used for DMA mapping */
2810         priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
2811         priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
2812         err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
2813         if (!err)
2814                 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
2815                                                    DMA_BIT_MASK(40));
2816         if (err) {
2817                 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
2818                 return err;
2819         }
2820
2821         /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2822          * we choose conservatively and let the user explicitly set a higher
2823          * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2824          * in the same LAN.
2825          * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2826          * start with the maximum allowed.
2827          */
2828         net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2829
2830         netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2831                    net_dev->mtu);
2832
2833         priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2834         priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2835
2836         /* bp init */
2837         dpaa_bp = dpaa_bp_alloc(dev);
2838         if (IS_ERR(dpaa_bp)) {
2839                 err = PTR_ERR(dpaa_bp);
2840                 goto free_dpaa_bps;
2841         }
2842         /* the raw size of the buffers used for reception */
2843         dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
2844         /* avoid runtime computations by keeping the usable size here */
2845         dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
2846         dpaa_bp->priv = priv;
2847
2848         err = dpaa_bp_alloc_pool(dpaa_bp);
2849         if (err < 0)
2850                 goto free_dpaa_bps;
2851         priv->dpaa_bp = dpaa_bp;
2852
2853         INIT_LIST_HEAD(&priv->dpaa_fq_list);
2854
2855         memset(&port_fqs, 0, sizeof(port_fqs));
2856
2857         err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2858         if (err < 0) {
2859                 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2860                 goto free_dpaa_bps;
2861         }
2862
2863         priv->mac_dev = mac_dev;
2864
2865         channel = dpaa_get_channel();
2866         if (channel < 0) {
2867                 dev_err(dev, "dpaa_get_channel() failed\n");
2868                 err = channel;
2869                 goto free_dpaa_bps;
2870         }
2871
2872         priv->channel = (u16)channel;
2873
2874         /* Walk the CPUs with affine portals
2875          * and add this pool channel to each's dequeue mask.
2876          */
2877         dpaa_eth_add_channel(priv->channel, &pdev->dev);
2878
2879         dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2880
2881         /* Create a congestion group for this netdev, with
2882          * dynamically-allocated CGR ID.
2883          * Must be executed after probing the MAC, but before
2884          * assigning the egress FQs to the CGRs.
2885          */
2886         err = dpaa_eth_cgr_init(priv);
2887         if (err < 0) {
2888                 dev_err(dev, "Error initializing CGR\n");
2889                 goto free_dpaa_bps;
2890         }
2891
2892         err = dpaa_ingress_cgr_init(priv);
2893         if (err < 0) {
2894                 dev_err(dev, "Error initializing ingress CGR\n");
2895                 goto delete_egress_cgr;
2896         }
2897
2898         /* Add the FQs to the interface, and make them active */
2899         list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2900                 err = dpaa_fq_init(dpaa_fq, false);
2901                 if (err < 0)
2902                         goto free_dpaa_fqs;
2903         }
2904
2905         priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2906         priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2907
2908         /* All real interfaces need their ports initialized */
2909         err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
2910                                   &priv->buf_layout[0], dev);
2911         if (err)
2912                 goto free_dpaa_fqs;
2913
2914         /* Rx traffic distribution based on keygen hashing defaults to on */
2915         priv->keygen_in_use = true;
2916
2917         priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2918         if (!priv->percpu_priv) {
2919                 dev_err(dev, "devm_alloc_percpu() failed\n");
2920                 err = -ENOMEM;
2921                 goto free_dpaa_fqs;
2922         }
2923
2924         priv->num_tc = 1;
2925         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2926
2927         /* Initialize NAPI */
2928         err = dpaa_napi_add(net_dev);
2929         if (err < 0)
2930                 goto delete_dpaa_napi;
2931
2932         err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2933         if (err < 0)
2934                 goto delete_dpaa_napi;
2935
2936         dpaa_eth_sysfs_init(&net_dev->dev);
2937
2938         netif_info(priv, probe, net_dev, "Probed interface %s\n",
2939                    net_dev->name);
2940
2941         return 0;
2942
2943 delete_dpaa_napi:
2944         dpaa_napi_del(net_dev);
2945 free_dpaa_fqs:
2946         dpaa_fq_free(dev, &priv->dpaa_fq_list);
2947         qman_delete_cgr_safe(&priv->ingress_cgr);
2948         qman_release_cgrid(priv->ingress_cgr.cgrid);
2949 delete_egress_cgr:
2950         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2951         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2952 free_dpaa_bps:
2953         dpaa_bps_free(priv);
2954 free_netdev:
2955         dev_set_drvdata(dev, NULL);
2956         free_netdev(net_dev);
2957
2958         return err;
2959 }
2960
2961 static int dpaa_remove(struct platform_device *pdev)
2962 {
2963         struct net_device *net_dev;
2964         struct dpaa_priv *priv;
2965         struct device *dev;
2966         int err;
2967
2968         dev = &pdev->dev;
2969         net_dev = dev_get_drvdata(dev);
2970
2971         priv = netdev_priv(net_dev);
2972
2973         dpaa_eth_sysfs_remove(dev);
2974
2975         dev_set_drvdata(dev, NULL);
2976         unregister_netdev(net_dev);
2977
2978         err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2979
2980         qman_delete_cgr_safe(&priv->ingress_cgr);
2981         qman_release_cgrid(priv->ingress_cgr.cgrid);
2982         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2983         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2984
2985         dpaa_napi_del(net_dev);
2986
2987         dpaa_bps_free(priv);
2988
2989         free_netdev(net_dev);
2990
2991         return err;
2992 }
2993
2994 static const struct platform_device_id dpaa_devtype[] = {
2995         {
2996                 .name = "dpaa-ethernet",
2997                 .driver_data = 0,
2998         }, {
2999         }
3000 };
3001 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3002
3003 static struct platform_driver dpaa_driver = {
3004         .driver = {
3005                 .name = KBUILD_MODNAME,
3006         },
3007         .id_table = dpaa_devtype,
3008         .probe = dpaa_eth_probe,
3009         .remove = dpaa_remove
3010 };
3011
3012 static int __init dpaa_load(void)
3013 {
3014         int err;
3015
3016         pr_debug("FSL DPAA Ethernet driver\n");
3017
3018         /* initialize dpaa_eth mirror values */
3019         dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3020         dpaa_max_frm = fman_get_max_frm();
3021
3022         err = platform_driver_register(&dpaa_driver);
3023         if (err < 0)
3024                 pr_err("Error, platform_driver_register() = %d\n", err);
3025
3026         return err;
3027 }
3028 module_init(dpaa_load);
3029
3030 static void __exit dpaa_unload(void)
3031 {
3032         platform_driver_unregister(&dpaa_driver);
3033
3034         /* Only one channel is used and needs to be released after all
3035          * interfaces are removed
3036          */
3037         dpaa_release_channel();
3038 }
3039 module_exit(dpaa_unload);
3040
3041 MODULE_LICENSE("Dual BSD/GPL");
3042 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");