OSDN Git Service

Merge "Fix how the ProfileSaver thread attaches to the runtime." into nyc-dev
[android-x86/art.git] / compiler / image_writer.cc
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #include "image_writer.h"
18
19 #include <sys/stat.h>
20 #include <lz4.h>
21 #include <lz4hc.h>
22
23 #include <memory>
24 #include <numeric>
25 #include <unordered_set>
26 #include <vector>
27
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/logging.h"
31 #include "base/unix_file/fd_file.h"
32 #include "class_linker-inl.h"
33 #include "compiled_method.h"
34 #include "dex_file-inl.h"
35 #include "driver/compiler_driver.h"
36 #include "elf_file.h"
37 #include "elf_utils.h"
38 #include "elf_writer.h"
39 #include "gc/accounting/card_table-inl.h"
40 #include "gc/accounting/heap_bitmap.h"
41 #include "gc/accounting/space_bitmap-inl.h"
42 #include "gc/heap.h"
43 #include "gc/space/large_object_space.h"
44 #include "gc/space/space-inl.h"
45 #include "globals.h"
46 #include "image.h"
47 #include "intern_table.h"
48 #include "linear_alloc.h"
49 #include "lock_word.h"
50 #include "mirror/abstract_method.h"
51 #include "mirror/array-inl.h"
52 #include "mirror/class-inl.h"
53 #include "mirror/class_loader.h"
54 #include "mirror/dex_cache-inl.h"
55 #include "mirror/method.h"
56 #include "mirror/object-inl.h"
57 #include "mirror/object_array-inl.h"
58 #include "mirror/string-inl.h"
59 #include "oat.h"
60 #include "oat_file.h"
61 #include "oat_file_manager.h"
62 #include "runtime.h"
63 #include "scoped_thread_state_change.h"
64 #include "handle_scope-inl.h"
65 #include "utils/dex_cache_arrays_layout-inl.h"
66
67 using ::art::mirror::Class;
68 using ::art::mirror::DexCache;
69 using ::art::mirror::Object;
70 using ::art::mirror::ObjectArray;
71 using ::art::mirror::String;
72
73 namespace art {
74
75 // Separate objects into multiple bins to optimize dirty memory use.
76 static constexpr bool kBinObjects = true;
77
78 // Return true if an object is already in an image space.
79 bool ImageWriter::IsInBootImage(const void* obj) const {
80   gc::Heap* const heap = Runtime::Current()->GetHeap();
81   if (!compile_app_image_) {
82     DCHECK(heap->GetBootImageSpaces().empty());
83     return false;
84   }
85   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
86     const uint8_t* image_begin = boot_image_space->Begin();
87     // Real image end including ArtMethods and ArtField sections.
88     const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
89     if (image_begin <= obj && obj < image_end) {
90       return true;
91     }
92   }
93   return false;
94 }
95
96 bool ImageWriter::IsInBootOatFile(const void* ptr) const {
97   gc::Heap* const heap = Runtime::Current()->GetHeap();
98   if (!compile_app_image_) {
99     DCHECK(heap->GetBootImageSpaces().empty());
100     return false;
101   }
102   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
103     const ImageHeader& image_header = boot_image_space->GetImageHeader();
104     if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
105       return true;
106     }
107   }
108   return false;
109 }
110
111 static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
112     SHARED_REQUIRES(Locks::mutator_lock_) {
113   Class* klass = obj->GetClass();
114   CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
115 }
116
117 static void CheckNoDexObjects() {
118   ScopedObjectAccess soa(Thread::Current());
119   Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
120 }
121
122 bool ImageWriter::PrepareImageAddressSpace() {
123   target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
124   gc::Heap* const heap = Runtime::Current()->GetHeap();
125   {
126     ScopedObjectAccess soa(Thread::Current());
127     PruneNonImageClasses();  // Remove junk
128     if (!compile_app_image_) {
129       // Avoid for app image since this may increase RAM and image size.
130       ComputeLazyFieldsForImageClasses();  // Add useful information
131     }
132   }
133   heap->CollectGarbage(false);  // Remove garbage.
134
135   // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
136   // dex files.
137   //
138   // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
139   // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
140   // true.
141   if (kIsDebugBuild) {
142     CheckNoDexObjects();
143   }
144
145   if (kIsDebugBuild) {
146     ScopedObjectAccess soa(Thread::Current());
147     CheckNonImageClassesRemoved();
148   }
149
150   {
151     ScopedObjectAccess soa(Thread::Current());
152     CalculateNewObjectOffsets();
153   }
154
155   // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
156   // bin size sums being calculated.
157   if (!AllocMemory()) {
158     return false;
159   }
160
161   return true;
162 }
163
164 bool ImageWriter::Write(int image_fd,
165                         const std::vector<const char*>& image_filenames,
166                         const std::vector<const char*>& oat_filenames) {
167   // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
168   // oat_filenames.
169   CHECK(!image_filenames.empty());
170   if (image_fd != kInvalidFd) {
171     CHECK_EQ(image_filenames.size(), 1u);
172   }
173   CHECK(!oat_filenames.empty());
174   CHECK_EQ(image_filenames.size(), oat_filenames.size());
175
176   {
177     ScopedObjectAccess soa(Thread::Current());
178     for (size_t i = 0; i < oat_filenames.size(); ++i) {
179       CreateHeader(i);
180       CopyAndFixupNativeData(i);
181     }
182   }
183
184   {
185     // TODO: heap validation can't handle these fix up passes.
186     ScopedObjectAccess soa(Thread::Current());
187     Runtime::Current()->GetHeap()->DisableObjectValidation();
188     CopyAndFixupObjects();
189   }
190
191   for (size_t i = 0; i < image_filenames.size(); ++i) {
192     const char* image_filename = image_filenames[i];
193     ImageInfo& image_info = GetImageInfo(i);
194     std::unique_ptr<File> image_file;
195     if (image_fd != kInvalidFd) {
196       if (strlen(image_filename) == 0u) {
197         image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
198         // Empty the file in case it already exists.
199         if (image_file != nullptr) {
200           TEMP_FAILURE_RETRY(image_file->SetLength(0));
201           TEMP_FAILURE_RETRY(image_file->Flush());
202         }
203       } else {
204         LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
205       }
206     } else {
207       image_file.reset(OS::CreateEmptyFile(image_filename));
208     }
209
210     if (image_file == nullptr) {
211       LOG(ERROR) << "Failed to open image file " << image_filename;
212       return false;
213     }
214
215     if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
216       PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
217       image_file->Erase();
218       return EXIT_FAILURE;
219     }
220
221     std::unique_ptr<char[]> compressed_data;
222     // Image data size excludes the bitmap and the header.
223     ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
224     const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
225     char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
226     size_t data_size;
227     const char* image_data_to_write;
228     const uint64_t compress_start_time = NanoTime();
229
230     CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
231     switch (image_storage_mode_) {
232       case ImageHeader::kStorageModeLZ4HC:  // Fall-through.
233       case ImageHeader::kStorageModeLZ4: {
234         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
235         compressed_data.reset(new char[compressed_max_size]);
236         data_size = LZ4_compress(
237             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
238             &compressed_data[0],
239             image_data_size);
240
241         break;
242       }
243       /*
244        * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
245       case ImageHeader::kStorageModeLZ4HC: {
246         // Bound is same as non HC.
247         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
248         compressed_data.reset(new char[compressed_max_size]);
249         data_size = LZ4_compressHC(
250             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
251             &compressed_data[0],
252             image_data_size);
253         break;
254       }
255       */
256       case ImageHeader::kStorageModeUncompressed: {
257         data_size = image_data_size;
258         image_data_to_write = image_data;
259         break;
260       }
261       default: {
262         LOG(FATAL) << "Unsupported";
263         UNREACHABLE();
264       }
265     }
266
267     if (compressed_data != nullptr) {
268       image_data_to_write = &compressed_data[0];
269       VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
270                      << PrettyDuration(NanoTime() - compress_start_time);
271       if (kIsDebugBuild) {
272         std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
273         const size_t decompressed_size = LZ4_decompress_safe(
274             reinterpret_cast<char*>(&compressed_data[0]),
275             reinterpret_cast<char*>(&temp[0]),
276             data_size,
277             image_data_size);
278         CHECK_EQ(decompressed_size, image_data_size);
279         CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
280       }
281     }
282
283     // Write out the image + fields + methods.
284     const bool is_compressed = compressed_data != nullptr;
285     if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
286       PLOG(ERROR) << "Failed to write image file data " << image_filename;
287       image_file->Erase();
288       return false;
289     }
290
291     // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
292     // convenience.
293     const ImageSection& bitmap_section = image_header->GetImageSection(
294         ImageHeader::kSectionImageBitmap);
295     // Align up since data size may be unaligned if the image is compressed.
296     size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
297     if (!is_compressed) {
298       CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
299     }
300     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
301                                  bitmap_section.Size(),
302                                  bitmap_position_in_file)) {
303       PLOG(ERROR) << "Failed to write image file " << image_filename;
304       image_file->Erase();
305       return false;
306     }
307
308     int err = image_file->Flush();
309     if (err < 0) {
310       PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
311       image_file->Erase();
312       return false;
313     }
314
315     // Write header last in case the compiler gets killed in the middle of image writing.
316     // We do not want to have a corrupted image with a valid header.
317     // The header is uncompressed since it contains whether the image is compressed or not.
318     image_header->data_size_ = data_size;
319     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
320                                  sizeof(ImageHeader),
321                                  0)) {
322       PLOG(ERROR) << "Failed to write image file header " << image_filename;
323       image_file->Erase();
324       return false;
325     }
326
327     CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
328              static_cast<size_t>(image_file->GetLength()));
329     if (image_file->FlushCloseOrErase() != 0) {
330       PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
331       return false;
332     }
333   }
334   return true;
335 }
336
337 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
338   DCHECK(object != nullptr);
339   DCHECK_NE(offset, 0U);
340
341   // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
342   object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
343   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
344   DCHECK(IsImageOffsetAssigned(object));
345 }
346
347 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
348   DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
349   obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
350   DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
351 }
352
353 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
354   DCHECK(object != nullptr);
355   DCHECK_NE(image_objects_offset_begin_, 0u);
356
357   size_t oat_index = GetOatIndex(object);
358   ImageInfo& image_info = GetImageInfo(oat_index);
359   size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
360   size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
361   DCHECK_ALIGNED(new_offset, kObjectAlignment);
362
363   SetImageOffset(object, new_offset);
364   DCHECK_LT(new_offset, image_info.image_end_);
365 }
366
367 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
368   // Will also return true if the bin slot was assigned since we are reusing the lock word.
369   DCHECK(object != nullptr);
370   return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
371 }
372
373 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
374   DCHECK(object != nullptr);
375   DCHECK(IsImageOffsetAssigned(object));
376   LockWord lock_word = object->GetLockWord(false);
377   size_t offset = lock_word.ForwardingAddress();
378   size_t oat_index = GetOatIndex(object);
379   const ImageInfo& image_info = GetImageInfo(oat_index);
380   DCHECK_LT(offset, image_info.image_end_);
381   return offset;
382 }
383
384 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
385   DCHECK(object != nullptr);
386   DCHECK(!IsImageOffsetAssigned(object));
387   DCHECK(!IsImageBinSlotAssigned(object));
388
389   // Before we stomp over the lock word, save the hash code for later.
390   Monitor::Deflate(Thread::Current(), object);;
391   LockWord lw(object->GetLockWord(false));
392   switch (lw.GetState()) {
393     case LockWord::kFatLocked: {
394       LOG(FATAL) << "Fat locked object " << object << " found during object copy";
395       break;
396     }
397     case LockWord::kThinLocked: {
398       LOG(FATAL) << "Thin locked object " << object << " found during object copy";
399       break;
400     }
401     case LockWord::kUnlocked:
402       // No hash, don't need to save it.
403       break;
404     case LockWord::kHashCode:
405       DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
406       saved_hashcode_map_.emplace(object, lw.GetHashCode());
407       break;
408     default:
409       LOG(FATAL) << "Unreachable.";
410       UNREACHABLE();
411   }
412   object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
413   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
414   DCHECK(IsImageBinSlotAssigned(object));
415 }
416
417 void ImageWriter::PrepareDexCacheArraySlots() {
418   // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
419   // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
420   // when AssignImageBinSlot() assigns their indexes out or order.
421   for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
422     auto it = dex_file_oat_index_map_.find(dex_file);
423     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
424     ImageInfo& image_info = GetImageInfo(it->second);
425     image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
426     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
427     image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
428   }
429
430   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
431   Thread* const self = Thread::Current();
432   ReaderMutexLock mu(self, *class_linker->DexLock());
433   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
434     mirror::DexCache* dex_cache =
435         down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
436     if (dex_cache == nullptr || IsInBootImage(dex_cache)) {
437       continue;
438     }
439     const DexFile* dex_file = dex_cache->GetDexFile();
440     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
441     DCHECK(layout.Valid());
442     size_t oat_index = GetOatIndexForDexCache(dex_cache);
443     ImageInfo& image_info = GetImageInfo(oat_index);
444     uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
445     DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
446     AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
447                                start + layout.TypesOffset(),
448                                dex_cache);
449     DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
450     AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
451                                start + layout.MethodsOffset(),
452                                dex_cache);
453     DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
454     AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
455                                start + layout.FieldsOffset(),
456                                dex_cache);
457     DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
458     AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
459   }
460 }
461
462 void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) {
463   if (array != nullptr) {
464     DCHECK(!IsInBootImage(array));
465     size_t oat_index = GetOatIndexForDexCache(dex_cache);
466     native_object_relocations_.emplace(array,
467         NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
468   }
469 }
470
471 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
472   DCHECK(arr != nullptr);
473   if (kIsDebugBuild) {
474     for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
475       ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
476       if (method != nullptr && !method->IsRuntimeMethod()) {
477         mirror::Class* klass = method->GetDeclaringClass();
478         CHECK(klass == nullptr || KeepClass(klass))
479             << PrettyClass(klass) << " should be a kept class";
480       }
481     }
482   }
483   // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
484   // ArtMethods.
485   pointer_arrays_.emplace(arr, kBinArtMethodClean);
486 }
487
488 void ImageWriter::AssignImageBinSlot(mirror::Object* object) {
489   DCHECK(object != nullptr);
490   size_t object_size = object->SizeOf();
491
492   // The magic happens here. We segregate objects into different bins based
493   // on how likely they are to get dirty at runtime.
494   //
495   // Likely-to-dirty objects get packed together into the same bin so that
496   // at runtime their page dirtiness ratio (how many dirty objects a page has) is
497   // maximized.
498   //
499   // This means more pages will stay either clean or shared dirty (with zygote) and
500   // the app will use less of its own (private) memory.
501   Bin bin = kBinRegular;
502   size_t current_offset = 0u;
503
504   if (kBinObjects) {
505     //
506     // Changing the bin of an object is purely a memory-use tuning.
507     // It has no change on runtime correctness.
508     //
509     // Memory analysis has determined that the following types of objects get dirtied
510     // the most:
511     //
512     // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
513     //   a fixed layout which helps improve generated code (using PC-relative addressing),
514     //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
515     //   Since these arrays are huge, most pages do not overlap other objects and it's not
516     //   really important where they are for the clean/dirty separation. Due to their
517     //   special PC-relative addressing, we arbitrarily keep them at the end.
518     // * Class'es which are verified [their clinit runs only at runtime]
519     //   - classes in general [because their static fields get overwritten]
520     //   - initialized classes with all-final statics are unlikely to be ever dirty,
521     //     so bin them separately
522     // * Art Methods that are:
523     //   - native [their native entry point is not looked up until runtime]
524     //   - have declaring classes that aren't initialized
525     //            [their interpreter/quick entry points are trampolines until the class
526     //             becomes initialized]
527     //
528     // We also assume the following objects get dirtied either never or extremely rarely:
529     //  * Strings (they are immutable)
530     //  * Art methods that aren't native and have initialized declared classes
531     //
532     // We assume that "regular" bin objects are highly unlikely to become dirtied,
533     // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
534     //
535     if (object->IsClass()) {
536       bin = kBinClassVerified;
537       mirror::Class* klass = object->AsClass();
538
539       // Add non-embedded vtable to the pointer array table if there is one.
540       auto* vtable = klass->GetVTable();
541       if (vtable != nullptr) {
542         AddMethodPointerArray(vtable);
543       }
544       auto* iftable = klass->GetIfTable();
545       if (iftable != nullptr) {
546         for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
547           if (iftable->GetMethodArrayCount(i) > 0) {
548             AddMethodPointerArray(iftable->GetMethodArray(i));
549           }
550         }
551       }
552
553       if (klass->GetStatus() == Class::kStatusInitialized) {
554         bin = kBinClassInitialized;
555
556         // If the class's static fields are all final, put it into a separate bin
557         // since it's very likely it will stay clean.
558         uint32_t num_static_fields = klass->NumStaticFields();
559         if (num_static_fields == 0) {
560           bin = kBinClassInitializedFinalStatics;
561         } else {
562           // Maybe all the statics are final?
563           bool all_final = true;
564           for (uint32_t i = 0; i < num_static_fields; ++i) {
565             ArtField* field = klass->GetStaticField(i);
566             if (!field->IsFinal()) {
567               all_final = false;
568               break;
569             }
570           }
571
572           if (all_final) {
573             bin = kBinClassInitializedFinalStatics;
574           }
575         }
576       }
577     } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
578       bin = kBinString;  // Strings are almost always immutable (except for object header).
579     } else if (object->GetClass<kVerifyNone>() ==
580         Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
581       // Instance of java lang object, probably a lock object. This means it will be dirty when we
582       // synchronize on it.
583       bin = kBinMiscDirty;
584     } else if (object->IsDexCache()) {
585       // Dex file field becomes dirty when the image is loaded.
586       bin = kBinMiscDirty;
587     }
588     // else bin = kBinRegular
589   }
590
591   size_t oat_index = GetOatIndex(object);
592   ImageInfo& image_info = GetImageInfo(oat_index);
593
594   size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
595   current_offset = image_info.bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
596   // Move the current bin size up to accommodate the object we just assigned a bin slot.
597   image_info.bin_slot_sizes_[bin] += offset_delta;
598
599   BinSlot new_bin_slot(bin, current_offset);
600   SetImageBinSlot(object, new_bin_slot);
601
602   ++image_info.bin_slot_count_[bin];
603
604   // Grow the image closer to the end by the object we just assigned.
605   image_info.image_end_ += offset_delta;
606 }
607
608 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
609   if (m->IsNative()) {
610     return true;
611   }
612   mirror::Class* declaring_class = m->GetDeclaringClass();
613   // Initialized is highly unlikely to dirty since there's no entry points to mutate.
614   return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
615 }
616
617 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
618   DCHECK(object != nullptr);
619
620   // We always stash the bin slot into a lockword, in the 'forwarding address' state.
621   // If it's in some other state, then we haven't yet assigned an image bin slot.
622   if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
623     return false;
624   } else if (kIsDebugBuild) {
625     LockWord lock_word = object->GetLockWord(false);
626     size_t offset = lock_word.ForwardingAddress();
627     BinSlot bin_slot(offset);
628     size_t oat_index = GetOatIndex(object);
629     const ImageInfo& image_info = GetImageInfo(oat_index);
630     DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
631         << "bin slot offset should not exceed the size of that bin";
632   }
633   return true;
634 }
635
636 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
637   DCHECK(object != nullptr);
638   DCHECK(IsImageBinSlotAssigned(object));
639
640   LockWord lock_word = object->GetLockWord(false);
641   size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
642   DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
643
644   BinSlot bin_slot(static_cast<uint32_t>(offset));
645   size_t oat_index = GetOatIndex(object);
646   const ImageInfo& image_info = GetImageInfo(oat_index);
647   DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);
648
649   return bin_slot;
650 }
651
652 bool ImageWriter::AllocMemory() {
653   for (ImageInfo& image_info : image_infos_) {
654     ImageSection unused_sections[ImageHeader::kSectionCount];
655     const size_t length = RoundUp(
656         image_info.CreateImageSections(unused_sections), kPageSize);
657
658     std::string error_msg;
659     image_info.image_.reset(MemMap::MapAnonymous("image writer image",
660                                                  nullptr,
661                                                  length,
662                                                  PROT_READ | PROT_WRITE,
663                                                  false,
664                                                  false,
665                                                  &error_msg));
666     if (UNLIKELY(image_info.image_.get() == nullptr)) {
667       LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
668       return false;
669     }
670
671     // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
672     CHECK_LE(image_info.image_end_, length);
673     image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
674         "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
675     if (image_info.image_bitmap_.get() == nullptr) {
676       LOG(ERROR) << "Failed to allocate memory for image bitmap";
677       return false;
678     }
679   }
680   return true;
681 }
682
683 class ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
684  public:
685   bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
686     StackHandleScope<1> hs(Thread::Current());
687     mirror::Class::ComputeName(hs.NewHandle(c));
688     return true;
689   }
690 };
691
692 void ImageWriter::ComputeLazyFieldsForImageClasses() {
693   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
694   ComputeLazyFieldsForClassesVisitor visitor;
695   class_linker->VisitClassesWithoutClassesLock(&visitor);
696 }
697
698 static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) {
699   return klass->GetClassLoader() == nullptr;
700 }
701
702 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
703   return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
704 }
705
706 bool ImageWriter::PruneAppImageClass(mirror::Class* klass) {
707   bool early_exit = false;
708   std::unordered_set<mirror::Class*> visited;
709   return PruneAppImageClassInternal(klass, &early_exit, &visited);
710 }
711
712 bool ImageWriter::PruneAppImageClassInternal(
713     mirror::Class* klass,
714     bool* early_exit,
715     std::unordered_set<mirror::Class*>* visited) {
716   DCHECK(early_exit != nullptr);
717   DCHECK(visited != nullptr);
718   DCHECK(compile_app_image_);
719   if (klass == nullptr || IsInBootImage(klass)) {
720     return false;
721   }
722   auto found = prune_class_memo_.find(klass);
723   if (found != prune_class_memo_.end()) {
724     // Already computed, return the found value.
725     return found->second;
726   }
727   // Circular dependencies, return false but do not store the result in the memoization table.
728   if (visited->find(klass) != visited->end()) {
729     *early_exit = true;
730     return false;
731   }
732   visited->emplace(klass);
733   bool result = IsBootClassLoaderClass(klass);
734   std::string temp;
735   // Prune if not an image class, this handles any broken sets of image classes such as having a
736   // class in the set but not it's superclass.
737   result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
738   bool my_early_exit = false;  // Only for ourselves, ignore caller.
739   // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
740   // app image.
741   if (klass->GetStatus() == mirror::Class::kStatusError) {
742     result = true;
743   } else {
744     CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass);
745   }
746   if (!result) {
747     // Check interfaces since these wont be visited through VisitReferences.)
748     mirror::IfTable* if_table = klass->GetIfTable();
749     for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
750       result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
751                                                     &my_early_exit,
752                                                     visited);
753     }
754   }
755   if (klass->IsObjectArrayClass()) {
756     result = result || PruneAppImageClassInternal(klass->GetComponentType(),
757                                                   &my_early_exit,
758                                                   visited);
759   }
760   // Check static fields and their classes.
761   size_t num_static_fields = klass->NumReferenceStaticFields();
762   if (num_static_fields != 0 && klass->IsResolved()) {
763     // Presumably GC can happen when we are cross compiling, it should not cause performance
764     // problems to do pointer size logic.
765     MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
766         Runtime::Current()->GetClassLinker()->GetImagePointerSize());
767     for (size_t i = 0u; i < num_static_fields; ++i) {
768       mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
769       if (ref != nullptr) {
770         if (ref->IsClass()) {
771           result = result || PruneAppImageClassInternal(ref->AsClass(),
772                                                         &my_early_exit,
773                                                         visited);
774         } else {
775           result = result || PruneAppImageClassInternal(ref->GetClass(),
776                                                         &my_early_exit,
777                                                         visited);
778         }
779       }
780       field_offset = MemberOffset(field_offset.Uint32Value() +
781                                   sizeof(mirror::HeapReference<mirror::Object>));
782     }
783   }
784   result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
785                                                 &my_early_exit,
786                                                 visited);
787   // Erase the element we stored earlier since we are exiting the function.
788   auto it = visited->find(klass);
789   DCHECK(it != visited->end());
790   visited->erase(it);
791   // Only store result if it is true or none of the calls early exited due to circular
792   // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
793   // a child call and we can remember the result.
794   if (result == true || !my_early_exit || visited->empty()) {
795     prune_class_memo_[klass] = result;
796   }
797   *early_exit |= my_early_exit;
798   return result;
799 }
800
801 bool ImageWriter::KeepClass(Class* klass) {
802   if (klass == nullptr) {
803     return false;
804   }
805   if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
806     // Already in boot image, return true.
807     return true;
808   }
809   std::string temp;
810   if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
811     return false;
812   }
813   if (compile_app_image_) {
814     // For app images, we need to prune boot loader classes that are not in the boot image since
815     // these may have already been loaded when the app image is loaded.
816     // Keep classes in the boot image space since we don't want to re-resolve these.
817     return !PruneAppImageClass(klass);
818   }
819   return true;
820 }
821
822 class NonImageClassesVisitor : public ClassVisitor {
823  public:
824   explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
825
826   bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
827     if (!image_writer_->KeepClass(klass)) {
828       classes_to_prune_.insert(klass);
829     }
830     return true;
831   }
832
833   std::unordered_set<mirror::Class*> classes_to_prune_;
834   ImageWriter* const image_writer_;
835 };
836
837 void ImageWriter::PruneNonImageClasses() {
838   Runtime* runtime = Runtime::Current();
839   ClassLinker* class_linker = runtime->GetClassLinker();
840   Thread* self = Thread::Current();
841
842   // Make a list of classes we would like to prune.
843   NonImageClassesVisitor visitor(this);
844   class_linker->VisitClasses(&visitor);
845
846   // Remove the undesired classes from the class roots.
847   VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes";
848   for (mirror::Class* klass : visitor.classes_to_prune_) {
849     std::string temp;
850     const char* name = klass->GetDescriptor(&temp);
851     VLOG(compiler) << "Pruning class " << name;
852     if (!compile_app_image_) {
853       DCHECK(IsBootClassLoaderClass(klass));
854     }
855     bool result = class_linker->RemoveClass(name, klass->GetClassLoader());
856     DCHECK(result);
857   }
858
859   // Clear references to removed classes from the DexCaches.
860   ArtMethod* resolution_method = runtime->GetResolutionMethod();
861
862   ScopedAssertNoThreadSuspension sa(self, __FUNCTION__);
863   ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);  // For ClassInClassTable
864   ReaderMutexLock mu2(self, *class_linker->DexLock());
865   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
866     if (self->IsJWeakCleared(data.weak_root)) {
867       continue;
868     }
869     mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache();
870     for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
871       Class* klass = dex_cache->GetResolvedType(i);
872       if (klass != nullptr && !KeepClass(klass)) {
873         dex_cache->SetResolvedType(i, nullptr);
874       }
875     }
876     ArtMethod** resolved_methods = dex_cache->GetResolvedMethods();
877     for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) {
878       ArtMethod* method =
879           mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_);
880       DCHECK(method != nullptr) << "Expected resolution method instead of null method";
881       mirror::Class* declaring_class = method->GetDeclaringClass();
882       // Copied methods may be held live by a class which was not an image class but have a
883       // declaring class which is an image class. Set it to the resolution method to be safe and
884       // prevent dangling pointers.
885       if (method->IsCopied() || !KeepClass(declaring_class)) {
886         mirror::DexCache::SetElementPtrSize(resolved_methods,
887                                             i,
888                                             resolution_method,
889                                             target_ptr_size_);
890       } else {
891         // Check that the class is still in the classes table.
892         DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
893             << PrettyClass(declaring_class) << " not in class linker table";
894       }
895     }
896     ArtField** resolved_fields = dex_cache->GetResolvedFields();
897     for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
898       ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_);
899       if (field != nullptr && !KeepClass(field->GetDeclaringClass())) {
900         dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
901       }
902     }
903     // Clean the dex field. It might have been populated during the initialization phase, but
904     // contains data only valid during a real run.
905     dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
906   }
907
908   // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
909   class_linker->DropFindArrayClassCache();
910
911   // Clear to save RAM.
912   prune_class_memo_.clear();
913 }
914
915 void ImageWriter::CheckNonImageClassesRemoved() {
916   if (compiler_driver_.GetImageClasses() != nullptr) {
917     gc::Heap* heap = Runtime::Current()->GetHeap();
918     heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
919   }
920 }
921
922 void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
923   ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
924   if (obj->IsClass() && !image_writer->IsInBootImage(obj)) {
925     Class* klass = obj->AsClass();
926     if (!image_writer->KeepClass(klass)) {
927       image_writer->DumpImageClasses();
928       std::string temp;
929       CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp)
930                                             << " " << PrettyDescriptor(klass);
931     }
932   }
933 }
934
935 void ImageWriter::DumpImageClasses() {
936   auto image_classes = compiler_driver_.GetImageClasses();
937   CHECK(image_classes != nullptr);
938   for (const std::string& image_class : *image_classes) {
939     LOG(INFO) << " " << image_class;
940   }
941 }
942
943 mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
944   Thread* const self = Thread::Current();
945   for (const ImageInfo& image_info : image_infos_) {
946     mirror::String* const found = image_info.intern_table_->LookupStrong(self, string);
947     DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
948         << string->ToModifiedUtf8();
949     if (found != nullptr) {
950       return found;
951     }
952   }
953   if (compile_app_image_) {
954     Runtime* const runtime = Runtime::Current();
955     mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string);
956     // If we found it in the runtime intern table it could either be in the boot image or interned
957     // during app image compilation. If it was in the boot image return that, otherwise return null
958     // since it belongs to another image space.
959     if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) {
960       return found;
961     }
962     DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
963         << string->ToModifiedUtf8();
964   }
965   return nullptr;
966 }
967
968 void ImageWriter::CalculateObjectBinSlots(Object* obj) {
969   DCHECK(obj != nullptr);
970   // if it is a string, we want to intern it if its not interned.
971   if (obj->GetClass()->IsStringClass()) {
972     size_t oat_index = GetOatIndex(obj);
973     ImageInfo& image_info = GetImageInfo(oat_index);
974
975     // we must be an interned string that was forward referenced and already assigned
976     if (IsImageBinSlotAssigned(obj)) {
977       DCHECK_EQ(obj, FindInternedString(obj->AsString()));
978       return;
979     }
980     // Need to check if the string is already interned in another image info so that we don't have
981     // the intern tables of two different images contain the same string.
982     mirror::String* interned = FindInternedString(obj->AsString());
983     if (interned == nullptr) {
984       // Not in another image space, insert to our table.
985       interned = image_info.intern_table_->InternStrongImageString(obj->AsString());
986     }
987     if (obj != interned) {
988       if (!IsImageBinSlotAssigned(interned)) {
989         // interned obj is after us, allocate its location early
990         AssignImageBinSlot(interned);
991       }
992       // point those looking for this object to the interned version.
993       SetImageBinSlot(obj, GetImageBinSlot(interned));
994       return;
995     }
996     // else (obj == interned), nothing to do but fall through to the normal case
997   }
998
999   AssignImageBinSlot(obj);
1000 }
1001
1002 ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
1003   Runtime* runtime = Runtime::Current();
1004   ClassLinker* class_linker = runtime->GetClassLinker();
1005   Thread* self = Thread::Current();
1006   StackHandleScope<3> hs(self);
1007   Handle<Class> object_array_class(hs.NewHandle(
1008       class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
1009
1010   std::unordered_set<const DexFile*> image_dex_files;
1011   for (auto& pair : dex_file_oat_index_map_) {
1012     const DexFile* image_dex_file = pair.first;
1013     size_t image_oat_index = pair.second;
1014     if (oat_index == image_oat_index) {
1015       image_dex_files.insert(image_dex_file);
1016     }
1017   }
1018
1019   // build an Object[] of all the DexCaches used in the source_space_.
1020   // Since we can't hold the dex lock when allocating the dex_caches
1021   // ObjectArray, we lock the dex lock twice, first to get the number
1022   // of dex caches first and then lock it again to copy the dex
1023   // caches. We check that the number of dex caches does not change.
1024   size_t dex_cache_count = 0;
1025   {
1026     ReaderMutexLock mu(self, *class_linker->DexLock());
1027     // Count number of dex caches not in the boot image.
1028     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1029       mirror::DexCache* dex_cache =
1030           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1031       const DexFile* dex_file = dex_cache->GetDexFile();
1032       if (!IsInBootImage(dex_cache)) {
1033         dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1034       }
1035     }
1036   }
1037   Handle<ObjectArray<Object>> dex_caches(
1038       hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
1039   CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
1040   {
1041     ReaderMutexLock mu(self, *class_linker->DexLock());
1042     size_t non_image_dex_caches = 0;
1043     // Re-count number of non image dex caches.
1044     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1045       mirror::DexCache* dex_cache =
1046           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1047       const DexFile* dex_file = dex_cache->GetDexFile();
1048       if (!IsInBootImage(dex_cache)) {
1049         non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1050       }
1051     }
1052     CHECK_EQ(dex_cache_count, non_image_dex_caches)
1053         << "The number of non-image dex caches changed.";
1054     size_t i = 0;
1055     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1056       mirror::DexCache* dex_cache =
1057           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1058       const DexFile* dex_file = dex_cache->GetDexFile();
1059       if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) {
1060         dex_caches->Set<false>(i, dex_cache);
1061         ++i;
1062       }
1063     }
1064   }
1065
1066   // build an Object[] of the roots needed to restore the runtime
1067   auto image_roots(hs.NewHandle(
1068       ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
1069   image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1070   image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1071   for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
1072     CHECK(image_roots->Get(i) != nullptr);
1073   }
1074   return image_roots.Get();
1075 }
1076
1077 // Walk instance fields of the given Class. Separate function to allow recursion on the super
1078 // class.
1079 void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
1080   // Visit fields of parent classes first.
1081   StackHandleScope<1> hs(Thread::Current());
1082   Handle<mirror::Class> h_class(hs.NewHandle(klass));
1083   mirror::Class* super = h_class->GetSuperClass();
1084   if (super != nullptr) {
1085     WalkInstanceFields(obj, super);
1086   }
1087   //
1088   size_t num_reference_fields = h_class->NumReferenceInstanceFields();
1089   MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset();
1090   for (size_t i = 0; i < num_reference_fields; ++i) {
1091     mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset);
1092     if (value != nullptr) {
1093       WalkFieldsInOrder(value);
1094     }
1095     field_offset = MemberOffset(field_offset.Uint32Value() +
1096                                 sizeof(mirror::HeapReference<mirror::Object>));
1097   }
1098 }
1099
1100 // For an unvisited object, visit it then all its children found via fields.
1101 void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
1102   if (IsInBootImage(obj)) {
1103     // Object is in the image, don't need to fix it up.
1104     return;
1105   }
1106   // Use our own visitor routine (instead of GC visitor) to get better locality between
1107   // an object and its fields
1108   if (!IsImageBinSlotAssigned(obj)) {
1109     // Walk instance fields of all objects
1110     StackHandleScope<2> hs(Thread::Current());
1111     Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1112     Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass()));
1113     // visit the object itself.
1114     CalculateObjectBinSlots(h_obj.Get());
1115     WalkInstanceFields(h_obj.Get(), klass.Get());
1116     // Walk static fields of a Class.
1117     if (h_obj->IsClass()) {
1118       size_t num_reference_static_fields = klass->NumReferenceStaticFields();
1119       MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_);
1120       for (size_t i = 0; i < num_reference_static_fields; ++i) {
1121         mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset);
1122         if (value != nullptr) {
1123           WalkFieldsInOrder(value);
1124         }
1125         field_offset = MemberOffset(field_offset.Uint32Value() +
1126                                     sizeof(mirror::HeapReference<mirror::Object>));
1127       }
1128       // Visit and assign offsets for fields and field arrays.
1129       auto* as_klass = h_obj->AsClass();
1130       mirror::DexCache* dex_cache = as_klass->GetDexCache();
1131       DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1132       if (compile_app_image_) {
1133         // Extra sanity, no boot loader classes should be left!
1134         CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass);
1135       }
1136       LengthPrefixedArray<ArtField>* fields[] = {
1137           as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
1138       };
1139       size_t oat_index = GetOatIndexForDexCache(dex_cache);
1140       ImageInfo& image_info = GetImageInfo(oat_index);
1141       {
1142         // Note: This table is only accessed from the image writer, so the lock is technically
1143         // unnecessary.
1144         WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1145         // Insert in the class table for this iamge.
1146         image_info.class_table_->Insert(as_klass);
1147       }
1148       for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1149         // Total array length including header.
1150         if (cur_fields != nullptr) {
1151           const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
1152           // Forward the entire array at once.
1153           auto it = native_object_relocations_.find(cur_fields);
1154           CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
1155                                                   << " already forwarded";
1156           size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
1157           DCHECK(!IsInBootImage(cur_fields));
1158           native_object_relocations_.emplace(
1159               cur_fields,
1160               NativeObjectRelocation {
1161                   oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
1162               });
1163           offset += header_size;
1164           // Forward individual fields so that we can quickly find where they belong.
1165           for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
1166             // Need to forward arrays separate of fields.
1167             ArtField* field = &cur_fields->At(i);
1168             auto it2 = native_object_relocations_.find(field);
1169             CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
1170                 << " already assigned " << PrettyField(field) << " static=" << field->IsStatic();
1171             DCHECK(!IsInBootImage(field));
1172             native_object_relocations_.emplace(
1173                 field,
1174                 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
1175             offset += sizeof(ArtField);
1176           }
1177         }
1178       }
1179       // Visit and assign offsets for methods.
1180       size_t num_methods = as_klass->NumMethods();
1181       if (num_methods != 0) {
1182         bool any_dirty = false;
1183         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1184           if (WillMethodBeDirty(&m)) {
1185             any_dirty = true;
1186             break;
1187           }
1188         }
1189         NativeObjectRelocationType type = any_dirty
1190             ? kNativeObjectRelocationTypeArtMethodDirty
1191             : kNativeObjectRelocationTypeArtMethodClean;
1192         Bin bin_type = BinTypeForNativeRelocationType(type);
1193         // Forward the entire array at once, but header first.
1194         const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1195         const size_t method_size = ArtMethod::Size(target_ptr_size_);
1196         const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1197                                                                                method_size,
1198                                                                                method_alignment);
1199         LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
1200         auto it = native_object_relocations_.find(array);
1201         CHECK(it == native_object_relocations_.end())
1202             << "Method array " << array << " already forwarded";
1203         size_t& offset = image_info.bin_slot_sizes_[bin_type];
1204         DCHECK(!IsInBootImage(array));
1205         native_object_relocations_.emplace(array,
1206             NativeObjectRelocation {
1207                 oat_index,
1208                 offset,
1209                 any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
1210                           : kNativeObjectRelocationTypeArtMethodArrayClean });
1211         offset += header_size;
1212         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1213           AssignMethodOffset(&m, type, oat_index);
1214         }
1215         (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1216
1217         // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1218         // live.
1219         if (as_klass->ShouldHaveEmbeddedImtAndVTable()) {
1220           for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
1221             ArtMethod* imt_method = as_klass->GetEmbeddedImTableEntry(i, target_ptr_size_);
1222             DCHECK(imt_method != nullptr);
1223             if (imt_method->IsRuntimeMethod() &&
1224                 !IsInBootImage(imt_method) &&
1225                 !NativeRelocationAssigned(imt_method)) {
1226               AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
1227             }
1228           }
1229         }
1230       }
1231     } else if (h_obj->IsObjectArray()) {
1232       // Walk elements of an object array.
1233       int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength();
1234       for (int32_t i = 0; i < length; i++) {
1235         mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>();
1236         mirror::Object* value = obj_array->Get(i);
1237         if (value != nullptr) {
1238           WalkFieldsInOrder(value);
1239         }
1240       }
1241     } else if (h_obj->IsClassLoader()) {
1242       // Register the class loader if it has a class table.
1243       // The fake boot class loader should not get registered and we should end up with only one
1244       // class loader.
1245       mirror::ClassLoader* class_loader = h_obj->AsClassLoader();
1246       if (class_loader->GetClassTable() != nullptr) {
1247         class_loaders_.insert(class_loader);
1248       }
1249     }
1250   }
1251 }
1252
1253 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1254   return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1255 }
1256
1257 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1258   // No offset, or already assigned.
1259   if (table == nullptr || NativeRelocationAssigned(table)) {
1260     return;
1261   }
1262   CHECK(!IsInBootImage(table));
1263   // If the method is a conflict method we also want to assign the conflict table offset.
1264   ImageInfo& image_info = GetImageInfo(oat_index);
1265   const size_t size = table->ComputeSize(target_ptr_size_);
1266   native_object_relocations_.emplace(
1267       table,
1268       NativeObjectRelocation {
1269           oat_index,
1270           image_info.bin_slot_sizes_[kBinIMTConflictTable],
1271           kNativeObjectRelocationTypeIMTConflictTable});
1272   image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
1273 }
1274
1275 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1276                                      NativeObjectRelocationType type,
1277                                      size_t oat_index) {
1278   DCHECK(!IsInBootImage(method));
1279   CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1280       << PrettyMethod(method);
1281   if (method->IsRuntimeMethod()) {
1282     TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1283   }
1284   ImageInfo& image_info = GetImageInfo(oat_index);
1285   size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
1286   native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
1287   offset += ArtMethod::Size(target_ptr_size_);
1288 }
1289
1290 void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
1291   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1292   DCHECK(writer != nullptr);
1293   writer->WalkFieldsInOrder(obj);
1294 }
1295
1296 void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
1297   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1298   DCHECK(writer != nullptr);
1299   if (!writer->IsInBootImage(obj)) {
1300     writer->UnbinObjectsIntoOffset(obj);
1301   }
1302 }
1303
1304 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
1305   DCHECK(!IsInBootImage(obj));
1306   CHECK(obj != nullptr);
1307
1308   // We know the bin slot, and the total bin sizes for all objects by now,
1309   // so calculate the object's final image offset.
1310
1311   DCHECK(IsImageBinSlotAssigned(obj));
1312   BinSlot bin_slot = GetImageBinSlot(obj);
1313   // Change the lockword from a bin slot into an offset
1314   AssignImageOffset(obj, bin_slot);
1315 }
1316
1317 void ImageWriter::CalculateNewObjectOffsets() {
1318   Thread* const self = Thread::Current();
1319   StackHandleScopeCollection handles(self);
1320   std::vector<Handle<ObjectArray<Object>>> image_roots;
1321   for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
1322     image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
1323   }
1324
1325   auto* runtime = Runtime::Current();
1326   auto* heap = runtime->GetHeap();
1327
1328   // Leave space for the header, but do not write it yet, we need to
1329   // know where image_roots is going to end up
1330   image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
1331
1332   const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1333   // Write the image runtime methods.
1334   image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
1335   image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
1336   image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
1337   image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
1338   image_methods_[ImageHeader::kRefsOnlySaveMethod] =
1339       runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
1340   image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
1341       runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
1342   // Visit image methods first to have the main runtime methods in the first image.
1343   for (auto* m : image_methods_) {
1344     CHECK(m != nullptr);
1345     CHECK(m->IsRuntimeMethod());
1346     DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
1347     if (!IsInBootImage(m)) {
1348       AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
1349     }
1350   }
1351
1352   // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots.
1353   heap->VisitObjects(WalkFieldsCallback, this);
1354
1355   // Calculate size of the dex cache arrays slot and prepare offsets.
1356   PrepareDexCacheArraySlots();
1357
1358   // Calculate the sizes of the intern tables and class tables.
1359   for (ImageInfo& image_info : image_infos_) {
1360     // Calculate how big the intern table will be after being serialized.
1361     InternTable* const intern_table = image_info.intern_table_.get();
1362     CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
1363     image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
1364     // Calculate the size of the class table.
1365     ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1366     image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
1367   }
1368
1369   // Calculate bin slot offsets.
1370   for (ImageInfo& image_info : image_infos_) {
1371     size_t bin_offset = image_objects_offset_begin_;
1372     for (size_t i = 0; i != kBinSize; ++i) {
1373       switch (i) {
1374         case kBinArtMethodClean:
1375         case kBinArtMethodDirty: {
1376           bin_offset = RoundUp(bin_offset, method_alignment);
1377           break;
1378         }
1379         case kBinIMTConflictTable: {
1380           bin_offset = RoundUp(bin_offset, target_ptr_size_);
1381           break;
1382         }
1383         default: {
1384           // Normal alignment.
1385         }
1386       }
1387       image_info.bin_slot_offsets_[i] = bin_offset;
1388       bin_offset += image_info.bin_slot_sizes_[i];
1389     }
1390     // NOTE: There may be additional padding between the bin slots and the intern table.
1391     DCHECK_EQ(image_info.image_end_,
1392               GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
1393   }
1394
1395   // Calculate image offsets.
1396   size_t image_offset = 0;
1397   for (ImageInfo& image_info : image_infos_) {
1398     image_info.image_begin_ = global_image_begin_ + image_offset;
1399     image_info.image_offset_ = image_offset;
1400     ImageSection unused_sections[ImageHeader::kSectionCount];
1401     image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
1402     // There should be no gaps until the next image.
1403     image_offset += image_info.image_size_;
1404   }
1405
1406   // Transform each object's bin slot into an offset which will be used to do the final copy.
1407   heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
1408
1409   // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
1410
1411   size_t i = 0;
1412   for (ImageInfo& image_info : image_infos_) {
1413     image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
1414     i++;
1415   }
1416
1417   // Update the native relocations by adding their bin sums.
1418   for (auto& pair : native_object_relocations_) {
1419     NativeObjectRelocation& relocation = pair.second;
1420     Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
1421     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1422     relocation.offset += image_info.bin_slot_offsets_[bin_type];
1423   }
1424
1425   // Note that image_info.image_end_ is left at end of used mirror object section.
1426 }
1427
1428 size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
1429   DCHECK(out_sections != nullptr);
1430
1431   // Do not round up any sections here that are represented by the bins since it will break
1432   // offsets.
1433
1434   // Objects section
1435   ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
1436   *objects_section = ImageSection(0u, image_end_);
1437
1438   // Add field section.
1439   ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
1440   *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
1441   CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());
1442
1443   // Add method section.
1444   ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
1445   *methods_section = ImageSection(
1446       bin_slot_offsets_[kBinArtMethodClean],
1447       bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);
1448
1449   // Conflict tables section.
1450   ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
1451   *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
1452                                               bin_slot_sizes_[kBinIMTConflictTable]);
1453
1454   // Runtime methods section.
1455   ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
1456   *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
1457                                           bin_slot_sizes_[kBinRuntimeMethod]);
1458
1459   // Add dex cache arrays section.
1460   ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
1461   *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
1462                                            bin_slot_sizes_[kBinDexCacheArray]);
1463
1464   // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
1465   size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
1466   // Calculate the size of the interned strings.
1467   ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
1468   *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
1469   cur_pos = interned_strings_section->End();
1470   // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
1471   cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
1472   // Calculate the size of the class table section.
1473   ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
1474   *class_table_section = ImageSection(cur_pos, class_table_bytes_);
1475   cur_pos = class_table_section->End();
1476   // Image end goes right before the start of the image bitmap.
1477   return cur_pos;
1478 }
1479
1480 void ImageWriter::CreateHeader(size_t oat_index) {
1481   ImageInfo& image_info = GetImageInfo(oat_index);
1482   const uint8_t* oat_file_begin = image_info.oat_file_begin_;
1483   const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
1484   const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
1485
1486   // Create the image sections.
1487   ImageSection sections[ImageHeader::kSectionCount];
1488   const size_t image_end = image_info.CreateImageSections(sections);
1489
1490   // Finally bitmap section.
1491   const size_t bitmap_bytes = image_info.image_bitmap_->Size();
1492   auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
1493   *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
1494   if (VLOG_IS_ON(compiler)) {
1495     LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
1496     size_t idx = 0;
1497     for (const ImageSection& section : sections) {
1498       LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
1499       ++idx;
1500     }
1501     LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
1502     LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
1503     LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
1504               << " Image offset=" << image_info.image_offset_ << std::dec;
1505     LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
1506               << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
1507               << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
1508               << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
1509   }
1510   // Store boot image info for app image so that we can relocate.
1511   uint32_t boot_image_begin = 0;
1512   uint32_t boot_image_end = 0;
1513   uint32_t boot_oat_begin = 0;
1514   uint32_t boot_oat_end = 0;
1515   gc::Heap* const heap = Runtime::Current()->GetHeap();
1516   heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1517
1518   // Create the header, leave 0 for data size since we will fill this in as we are writing the
1519   // image.
1520   new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
1521                                                image_end,
1522                                                sections,
1523                                                image_info.image_roots_address_,
1524                                                image_info.oat_checksum_,
1525                                                PointerToLowMemUInt32(oat_file_begin),
1526                                                PointerToLowMemUInt32(image_info.oat_data_begin_),
1527                                                PointerToLowMemUInt32(oat_data_end),
1528                                                PointerToLowMemUInt32(oat_file_end),
1529                                                boot_image_begin,
1530                                                boot_image_end - boot_image_begin,
1531                                                boot_oat_begin,
1532                                                boot_oat_end - boot_oat_begin,
1533                                                target_ptr_size_,
1534                                                compile_pic_,
1535                                                /*is_pic*/compile_app_image_,
1536                                                image_storage_mode_,
1537                                                /*data_size*/0u);
1538 }
1539
1540 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
1541   auto it = native_object_relocations_.find(method);
1542   CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method;
1543   size_t oat_index = GetOatIndex(method->GetDexCache());
1544   ImageInfo& image_info = GetImageInfo(oat_index);
1545   CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
1546   return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
1547 }
1548
1549 class FixupRootVisitor : public RootVisitor {
1550  public:
1551   explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
1552   }
1553
1554   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1555       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1556     for (size_t i = 0; i < count; ++i) {
1557       *roots[i] = image_writer_->GetImageAddress(*roots[i]);
1558     }
1559   }
1560
1561   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1562                   const RootInfo& info ATTRIBUTE_UNUSED)
1563       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1564     for (size_t i = 0; i < count; ++i) {
1565       roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr()));
1566     }
1567   }
1568
1569  private:
1570   ImageWriter* const image_writer_;
1571 };
1572
1573 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
1574   const size_t count = orig->NumEntries(target_ptr_size_);
1575   for (size_t i = 0; i < count; ++i) {
1576     ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
1577     ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
1578     copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method));
1579     copy->SetImplementationMethod(i,
1580                                   target_ptr_size_,
1581                                   NativeLocationInImage(implementation_method));
1582   }
1583 }
1584
1585 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
1586   const ImageInfo& image_info = GetImageInfo(oat_index);
1587   // Copy ArtFields and methods to their locations and update the array for convenience.
1588   for (auto& pair : native_object_relocations_) {
1589     NativeObjectRelocation& relocation = pair.second;
1590     // Only work with fields and methods that are in the current oat file.
1591     if (relocation.oat_index != oat_index) {
1592       continue;
1593     }
1594     auto* dest = image_info.image_->Begin() + relocation.offset;
1595     DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
1596     DCHECK(!IsInBootImage(pair.first));
1597     switch (relocation.type) {
1598       case kNativeObjectRelocationTypeArtField: {
1599         memcpy(dest, pair.first, sizeof(ArtField));
1600         reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
1601             GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
1602         break;
1603       }
1604       case kNativeObjectRelocationTypeRuntimeMethod:
1605       case kNativeObjectRelocationTypeArtMethodClean:
1606       case kNativeObjectRelocationTypeArtMethodDirty: {
1607         CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
1608                            reinterpret_cast<ArtMethod*>(dest),
1609                            image_info);
1610         break;
1611       }
1612       // For arrays, copy just the header since the elements will get copied by their corresponding
1613       // relocations.
1614       case kNativeObjectRelocationTypeArtFieldArray: {
1615         memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
1616         break;
1617       }
1618       case kNativeObjectRelocationTypeArtMethodArrayClean:
1619       case kNativeObjectRelocationTypeArtMethodArrayDirty: {
1620         size_t size = ArtMethod::Size(target_ptr_size_);
1621         size_t alignment = ArtMethod::Alignment(target_ptr_size_);
1622         memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
1623         // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
1624         reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
1625         break;
1626       }
1627       case kNativeObjectRelocationTypeDexCacheArray:
1628         // Nothing to copy here, everything is done in FixupDexCache().
1629         break;
1630       case kNativeObjectRelocationTypeIMTConflictTable: {
1631         auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
1632         CopyAndFixupImtConflictTable(
1633             orig_table,
1634             new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
1635         break;
1636       }
1637     }
1638   }
1639   // Fixup the image method roots.
1640   auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
1641   for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
1642     ArtMethod* method = image_methods_[i];
1643     CHECK(method != nullptr);
1644     if (!IsInBootImage(method)) {
1645       method = NativeLocationInImage(method);
1646     }
1647     image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
1648   }
1649   FixupRootVisitor root_visitor(this);
1650
1651   // Write the intern table into the image.
1652   if (image_info.intern_table_bytes_ > 0) {
1653     const ImageSection& intern_table_section = image_header->GetImageSection(
1654         ImageHeader::kSectionInternedStrings);
1655     InternTable* const intern_table = image_info.intern_table_.get();
1656     uint8_t* const intern_table_memory_ptr =
1657         image_info.image_->Begin() + intern_table_section.Offset();
1658     const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
1659     CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
1660     // Fixup the pointers in the newly written intern table to contain image addresses.
1661     InternTable temp_intern_table;
1662     // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
1663     // the VisitRoots() will update the memory directly rather than the copies.
1664     // This also relies on visit roots not doing any verification which could fail after we update
1665     // the roots to be the image addresses.
1666     temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
1667     CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
1668     temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
1669   }
1670   // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
1671   // class loaders. Writing multiple class tables into the image is currently unsupported.
1672   if (image_info.class_table_bytes_ > 0u) {
1673     const ImageSection& class_table_section = image_header->GetImageSection(
1674         ImageHeader::kSectionClassTable);
1675     uint8_t* const class_table_memory_ptr =
1676         image_info.image_->Begin() + class_table_section.Offset();
1677     ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1678
1679     ClassTable* table = image_info.class_table_.get();
1680     CHECK(table != nullptr);
1681     const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
1682     CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
1683     // Fixup the pointers in the newly written class table to contain image addresses. See
1684     // above comment for intern tables.
1685     ClassTable temp_class_table;
1686     temp_class_table.ReadFromMemory(class_table_memory_ptr);
1687     CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() +
1688              table->NumZygoteClasses());
1689     BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor,
1690                                                                     RootInfo(kRootUnknown));
1691     temp_class_table.VisitRoots(buffered_visitor);
1692   }
1693 }
1694
1695 void ImageWriter::CopyAndFixupObjects() {
1696   gc::Heap* heap = Runtime::Current()->GetHeap();
1697   heap->VisitObjects(CopyAndFixupObjectsCallback, this);
1698   // Fix up the object previously had hash codes.
1699   for (const auto& hash_pair : saved_hashcode_map_) {
1700     Object* obj = hash_pair.first;
1701     DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
1702     obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
1703   }
1704   saved_hashcode_map_.clear();
1705 }
1706
1707 void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
1708   DCHECK(obj != nullptr);
1709   DCHECK(arg != nullptr);
1710   reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
1711 }
1712
1713 void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
1714                                     mirror::Class* klass, Bin array_type) {
1715   CHECK(klass->IsArrayClass());
1716   CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
1717   // Fixup int and long pointers for the ArtMethod or ArtField arrays.
1718   const size_t num_elements = arr->GetLength();
1719   dst->SetClass(GetImageAddress(arr->GetClass()));
1720   auto* dest_array = down_cast<mirror::PointerArray*>(dst);
1721   for (size_t i = 0, count = num_elements; i < count; ++i) {
1722     void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
1723     if (elem != nullptr && !IsInBootImage(elem)) {
1724       auto it = native_object_relocations_.find(elem);
1725       if (UNLIKELY(it == native_object_relocations_.end())) {
1726         if (it->second.IsArtMethodRelocation()) {
1727           auto* method = reinterpret_cast<ArtMethod*>(elem);
1728           LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
1729               << method << " idx=" << i << "/" << num_elements << " with declaring class "
1730               << PrettyClass(method->GetDeclaringClass());
1731         } else {
1732           CHECK_EQ(array_type, kBinArtField);
1733           auto* field = reinterpret_cast<ArtField*>(elem);
1734           LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
1735               << field << " idx=" << i << "/" << num_elements << " with declaring class "
1736               << PrettyClass(field->GetDeclaringClass());
1737         }
1738         UNREACHABLE();
1739       } else {
1740         ImageInfo& image_info = GetImageInfo(it->second.oat_index);
1741         elem = image_info.image_begin_ + it->second.offset;
1742       }
1743     }
1744     dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
1745   }
1746 }
1747
1748 void ImageWriter::CopyAndFixupObject(Object* obj) {
1749   if (IsInBootImage(obj)) {
1750     return;
1751   }
1752   size_t offset = GetImageOffset(obj);
1753   size_t oat_index = GetOatIndex(obj);
1754   ImageInfo& image_info = GetImageInfo(oat_index);
1755   auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
1756   DCHECK_LT(offset, image_info.image_end_);
1757   const auto* src = reinterpret_cast<const uint8_t*>(obj);
1758
1759   image_info.image_bitmap_->Set(dst);  // Mark the obj as live.
1760
1761   const size_t n = obj->SizeOf();
1762   DCHECK_LE(offset + n, image_info.image_->Size());
1763   memcpy(dst, src, n);
1764
1765   // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
1766   // word.
1767   const auto it = saved_hashcode_map_.find(obj);
1768   dst->SetLockWord(it != saved_hashcode_map_.end() ?
1769       LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
1770   FixupObject(obj, dst);
1771 }
1772
1773 // Rewrite all the references in the copied object to point to their image address equivalent
1774 class FixupVisitor {
1775  public:
1776   FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
1777   }
1778
1779   // Ignore class roots since we don't have a way to map them to the destination. These are handled
1780   // with other logic.
1781   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1782       const {}
1783   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1784
1785
1786   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1787       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1788     Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
1789     // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1790     // image.
1791     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1792         offset,
1793         image_writer_->GetImageAddress(ref));
1794   }
1795
1796   // java.lang.ref.Reference visitor.
1797   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
1798       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1799     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1800         mirror::Reference::ReferentOffset(),
1801         image_writer_->GetImageAddress(ref->GetReferent()));
1802   }
1803
1804  protected:
1805   ImageWriter* const image_writer_;
1806   mirror::Object* const copy_;
1807 };
1808
1809 class FixupClassVisitor FINAL : public FixupVisitor {
1810  public:
1811   FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
1812   }
1813
1814   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1815       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1816     DCHECK(obj->IsClass());
1817     FixupVisitor::operator()(obj, offset, /*is_static*/false);
1818   }
1819
1820   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
1821                   mirror::Reference* ref ATTRIBUTE_UNUSED) const
1822       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1823     LOG(FATAL) << "Reference not expected here.";
1824   }
1825 };
1826
1827 uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
1828   DCHECK(obj != nullptr);
1829   DCHECK(!IsInBootImage(obj));
1830   auto it = native_object_relocations_.find(obj);
1831   CHECK(it != native_object_relocations_.end()) << obj << " spaces "
1832       << Runtime::Current()->GetHeap()->DumpSpaces();
1833   const NativeObjectRelocation& relocation = it->second;
1834   return relocation.offset;
1835 }
1836
1837 template <typename T>
1838 T* ImageWriter::NativeLocationInImage(T* obj) {
1839   if (obj == nullptr || IsInBootImage(obj)) {
1840     return obj;
1841   } else {
1842     auto it = native_object_relocations_.find(obj);
1843     CHECK(it != native_object_relocations_.end()) << obj << " spaces "
1844         << Runtime::Current()->GetHeap()->DumpSpaces();
1845     const NativeObjectRelocation& relocation = it->second;
1846     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1847     return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
1848   }
1849 }
1850
1851 template <typename T>
1852 T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
1853   if (obj == nullptr || IsInBootImage(obj)) {
1854     return obj;
1855   } else {
1856     size_t oat_index = GetOatIndexForDexCache(dex_cache);
1857     ImageInfo& image_info = GetImageInfo(oat_index);
1858     return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
1859   }
1860 }
1861
1862 class NativeLocationVisitor {
1863  public:
1864   explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
1865
1866   template <typename T>
1867   T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
1868     return image_writer_->NativeLocationInImage(ptr);
1869   }
1870
1871  private:
1872   ImageWriter* const image_writer_;
1873 };
1874
1875 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
1876   orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
1877   FixupClassVisitor visitor(this, copy);
1878   static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor);
1879
1880   // Remove the clinitThreadId. This is required for image determinism.
1881   copy->SetClinitThreadId(static_cast<pid_t>(0));
1882 }
1883
1884 void ImageWriter::FixupObject(Object* orig, Object* copy) {
1885   DCHECK(orig != nullptr);
1886   DCHECK(copy != nullptr);
1887   if (kUseBakerOrBrooksReadBarrier) {
1888     orig->AssertReadBarrierPointer();
1889     if (kUseBrooksReadBarrier) {
1890       // Note the address 'copy' isn't the same as the image address of 'orig'.
1891       copy->SetReadBarrierPointer(GetImageAddress(orig));
1892       DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
1893     }
1894   }
1895   auto* klass = orig->GetClass();
1896   if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
1897     // Is this a native pointer array?
1898     auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
1899     if (it != pointer_arrays_.end()) {
1900       // Should only need to fixup every pointer array exactly once.
1901       FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
1902       pointer_arrays_.erase(it);
1903       return;
1904     }
1905   }
1906   if (orig->IsClass()) {
1907     FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
1908   } else {
1909     if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
1910       // Need to go update the ArtMethod.
1911       auto* dest = down_cast<mirror::AbstractMethod*>(copy);
1912       auto* src = down_cast<mirror::AbstractMethod*>(orig);
1913       ArtMethod* src_method = src->GetArtMethod();
1914       auto it = native_object_relocations_.find(src_method);
1915       CHECK(it != native_object_relocations_.end())
1916           << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method);
1917       dest->SetArtMethod(
1918           reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset));
1919     } else if (!klass->IsArrayClass()) {
1920       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1921       if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
1922         FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
1923       } else if (klass->IsClassLoaderClass()) {
1924         mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
1925         // If src is a ClassLoader, set the class table to null so that it gets recreated by the
1926         // ClassLoader.
1927         copy_loader->SetClassTable(nullptr);
1928         // Also set allocator to null to be safe. The allocator is created when we create the class
1929         // table. We also never expect to unload things in the image since they are held live as
1930         // roots.
1931         copy_loader->SetAllocator(nullptr);
1932       }
1933     }
1934     FixupVisitor visitor(this, copy);
1935     orig->VisitReferences(visitor, visitor);
1936   }
1937 }
1938
1939
1940 class ImageAddressVisitor {
1941  public:
1942   explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
1943
1944   template <typename T>
1945   T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
1946     return image_writer_->GetImageAddress(ptr);
1947   }
1948
1949  private:
1950   ImageWriter* const image_writer_;
1951 };
1952
1953
1954 void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
1955                                 mirror::DexCache* copy_dex_cache) {
1956   // Though the DexCache array fields are usually treated as native pointers, we set the full
1957   // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
1958   // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
1959   //     static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
1960   GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings();
1961   if (orig_strings != nullptr) {
1962     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
1963                                                NativeLocationInImage(orig_strings),
1964                                                /*pointer size*/8u);
1965     orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache),
1966                                  ImageAddressVisitor(this));
1967   }
1968   GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes();
1969   if (orig_types != nullptr) {
1970     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
1971                                                NativeLocationInImage(orig_types),
1972                                                /*pointer size*/8u);
1973     orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
1974                                        ImageAddressVisitor(this));
1975   }
1976   ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods();
1977   if (orig_methods != nullptr) {
1978     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
1979                                                NativeLocationInImage(orig_methods),
1980                                                /*pointer size*/8u);
1981     ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
1982     for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
1983       ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_);
1984       // NativeLocationInImage also handles runtime methods since these have relocation info.
1985       ArtMethod* copy = NativeLocationInImage(orig);
1986       mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_);
1987     }
1988   }
1989   ArtField** orig_fields = orig_dex_cache->GetResolvedFields();
1990   if (orig_fields != nullptr) {
1991     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
1992                                                NativeLocationInImage(orig_fields),
1993                                                /*pointer size*/8u);
1994     ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
1995     for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
1996       ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_);
1997       ArtField* copy = NativeLocationInImage(orig);
1998       mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_);
1999     }
2000   }
2001
2002   // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
2003   // compiler pointers in here will make the output non-deterministic.
2004   copy_dex_cache->SetDexFile(nullptr);
2005 }
2006
2007 const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
2008   DCHECK_LT(type, kOatAddressCount);
2009   // If we are compiling an app image, we need to use the stubs of the boot image.
2010   if (compile_app_image_) {
2011     // Use the current image pointers.
2012     const std::vector<gc::space::ImageSpace*>& image_spaces =
2013         Runtime::Current()->GetHeap()->GetBootImageSpaces();
2014     DCHECK(!image_spaces.empty());
2015     const OatFile* oat_file = image_spaces[0]->GetOatFile();
2016     CHECK(oat_file != nullptr);
2017     const OatHeader& header = oat_file->GetOatHeader();
2018     switch (type) {
2019       // TODO: We could maybe clean this up if we stored them in an array in the oat header.
2020       case kOatAddressQuickGenericJNITrampoline:
2021         return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
2022       case kOatAddressInterpreterToInterpreterBridge:
2023         return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
2024       case kOatAddressInterpreterToCompiledCodeBridge:
2025         return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
2026       case kOatAddressJNIDlsymLookup:
2027         return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
2028       case kOatAddressQuickIMTConflictTrampoline:
2029         return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
2030       case kOatAddressQuickResolutionTrampoline:
2031         return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
2032       case kOatAddressQuickToInterpreterBridge:
2033         return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
2034       default:
2035         UNREACHABLE();
2036     }
2037   }
2038   const ImageInfo& primary_image_info = GetImageInfo(0);
2039   return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
2040 }
2041
2042 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
2043                                          const ImageInfo& image_info,
2044                                          bool* quick_is_interpreted) {
2045   DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method);
2046   DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method);
2047   DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method);
2048   DCHECK(method->IsInvokable()) << PrettyMethod(method);
2049   DCHECK(!IsInBootImage(method)) << PrettyMethod(method);
2050
2051   // Use original code if it exists. Otherwise, set the code pointer to the resolution
2052   // trampoline.
2053
2054   // Quick entrypoint:
2055   const void* quick_oat_entry_point =
2056       method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
2057   const uint8_t* quick_code;
2058
2059   if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
2060     DCHECK(method->IsCopied());
2061     // If the code is not in the oat file corresponding to this image (e.g. default methods)
2062     quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
2063   } else {
2064     uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
2065     quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
2066   }
2067
2068   *quick_is_interpreted = false;
2069   if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
2070       method->GetDeclaringClass()->IsInitialized())) {
2071     // We have code for a non-static or initialized method, just use the code.
2072   } else if (quick_code == nullptr && method->IsNative() &&
2073       (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
2074     // Non-static or initialized native method missing compiled code, use generic JNI version.
2075     quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
2076   } else if (quick_code == nullptr && !method->IsNative()) {
2077     // We don't have code at all for a non-native method, use the interpreter.
2078     quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
2079     *quick_is_interpreted = true;
2080   } else {
2081     CHECK(!method->GetDeclaringClass()->IsInitialized());
2082     // We have code for a static method, but need to go through the resolution stub for class
2083     // initialization.
2084     quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
2085   }
2086   if (!IsInBootOatFile(quick_code)) {
2087     // DCHECK_GE(quick_code, oat_data_begin_);
2088   }
2089   return quick_code;
2090 }
2091
2092 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
2093                                      ArtMethod* copy,
2094                                      const ImageInfo& image_info) {
2095   memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
2096
2097   copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
2098   ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_);
2099   copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
2100   GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_);
2101   copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_);
2102
2103   // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
2104   // oat_begin_
2105
2106   // The resolution method has a special trampoline to call.
2107   Runtime* runtime = Runtime::Current();
2108   if (orig->IsRuntimeMethod()) {
2109     ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
2110     if (orig_table != nullptr) {
2111       // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
2112       copy->SetEntryPointFromQuickCompiledCodePtrSize(
2113           GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
2114       copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
2115     } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
2116       copy->SetEntryPointFromQuickCompiledCodePtrSize(
2117           GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
2118     } else {
2119       bool found_one = false;
2120       for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
2121         auto idx = static_cast<Runtime::CalleeSaveType>(i);
2122         if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
2123           found_one = true;
2124           break;
2125         }
2126       }
2127       CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
2128       CHECK(copy->IsRuntimeMethod());
2129     }
2130   } else {
2131     // We assume all methods have code. If they don't currently then we set them to the use the
2132     // resolution trampoline. Abstract methods never have code and so we need to make sure their
2133     // use results in an AbstractMethodError. We use the interpreter to achieve this.
2134     if (UNLIKELY(!orig->IsInvokable())) {
2135       copy->SetEntryPointFromQuickCompiledCodePtrSize(
2136           GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
2137     } else {
2138       bool quick_is_interpreted;
2139       const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
2140       copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
2141
2142       // JNI entrypoint:
2143       if (orig->IsNative()) {
2144         // The native method's pointer is set to a stub to lookup via dlsym.
2145         // Note this is not the code_ pointer, that is handled above.
2146         copy->SetEntryPointFromJniPtrSize(
2147             GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
2148       }
2149     }
2150   }
2151 }
2152
2153 size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
2154   DCHECK_LE(up_to, kBinSize);
2155   return std::accumulate(&image_info.bin_slot_sizes_[0],
2156                          &image_info.bin_slot_sizes_[up_to],
2157                          /*init*/0);
2158 }
2159
2160 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
2161   // These values may need to get updated if more bins are added to the enum Bin
2162   static_assert(kBinBits == 3, "wrong number of bin bits");
2163   static_assert(kBinShift == 27, "wrong number of shift");
2164   static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
2165
2166   DCHECK_LT(GetBin(), kBinSize);
2167   DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
2168 }
2169
2170 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
2171     : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
2172   DCHECK_EQ(index, GetIndex());
2173 }
2174
2175 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
2176   return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
2177 }
2178
2179 uint32_t ImageWriter::BinSlot::GetIndex() const {
2180   return lockword_ & ~kBinMask;
2181 }
2182
2183 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
2184   switch (type) {
2185     case kNativeObjectRelocationTypeArtField:
2186     case kNativeObjectRelocationTypeArtFieldArray:
2187       return kBinArtField;
2188     case kNativeObjectRelocationTypeArtMethodClean:
2189     case kNativeObjectRelocationTypeArtMethodArrayClean:
2190       return kBinArtMethodClean;
2191     case kNativeObjectRelocationTypeArtMethodDirty:
2192     case kNativeObjectRelocationTypeArtMethodArrayDirty:
2193       return kBinArtMethodDirty;
2194     case kNativeObjectRelocationTypeDexCacheArray:
2195       return kBinDexCacheArray;
2196     case kNativeObjectRelocationTypeRuntimeMethod:
2197       return kBinRuntimeMethod;
2198     case kNativeObjectRelocationTypeIMTConflictTable:
2199       return kBinIMTConflictTable;
2200   }
2201   UNREACHABLE();
2202 }
2203
2204 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
2205   if (compile_app_image_) {
2206     return GetDefaultOatIndex();
2207   } else {
2208     mirror::DexCache* dex_cache =
2209         obj->IsDexCache() ? obj->AsDexCache()
2210                           : obj->IsClass() ? obj->AsClass()->GetDexCache()
2211                                            : obj->GetClass()->GetDexCache();
2212     return GetOatIndexForDexCache(dex_cache);
2213   }
2214 }
2215
2216 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
2217   if (compile_app_image_) {
2218     return GetDefaultOatIndex();
2219   } else {
2220     auto it = dex_file_oat_index_map_.find(dex_file);
2221     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2222     return it->second;
2223   }
2224 }
2225
2226 size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const {
2227   if (dex_cache == nullptr) {
2228     return GetDefaultOatIndex();
2229   } else {
2230     return GetOatIndexForDexFile(dex_cache->GetDexFile());
2231   }
2232 }
2233
2234 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
2235                                       size_t oat_loaded_size,
2236                                       size_t oat_data_offset,
2237                                       size_t oat_data_size) {
2238   const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
2239   for (const ImageInfo& info : image_infos_) {
2240     DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
2241   }
2242   DCHECK(images_end != nullptr);  // Image space must be ready.
2243
2244   ImageInfo& cur_image_info = GetImageInfo(oat_index);
2245   cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
2246   cur_image_info.oat_loaded_size_ = oat_loaded_size;
2247   cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
2248   cur_image_info.oat_size_ = oat_data_size;
2249
2250   if (compile_app_image_) {
2251     CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
2252     return;
2253   }
2254
2255   // Update the oat_offset of the next image info.
2256   if (oat_index + 1u != oat_filenames_.size()) {
2257     // There is a following one.
2258     ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
2259     next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
2260   }
2261 }
2262
2263 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
2264   ImageInfo& cur_image_info = GetImageInfo(oat_index);
2265   cur_image_info.oat_checksum_ = oat_header.GetChecksum();
2266
2267   if (oat_index == GetDefaultOatIndex()) {
2268     // Primary oat file, read the trampolines.
2269     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
2270         oat_header.GetInterpreterToInterpreterBridgeOffset();
2271     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
2272         oat_header.GetInterpreterToCompiledCodeBridgeOffset();
2273     cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
2274         oat_header.GetJniDlsymLookupOffset();
2275     cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
2276         oat_header.GetQuickGenericJniTrampolineOffset();
2277     cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
2278         oat_header.GetQuickImtConflictTrampolineOffset();
2279     cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
2280         oat_header.GetQuickResolutionTrampolineOffset();
2281     cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
2282         oat_header.GetQuickToInterpreterBridgeOffset();
2283   }
2284 }
2285
2286 ImageWriter::ImageWriter(
2287     const CompilerDriver& compiler_driver,
2288     uintptr_t image_begin,
2289     bool compile_pic,
2290     bool compile_app_image,
2291     ImageHeader::StorageMode image_storage_mode,
2292     const std::vector<const char*>& oat_filenames,
2293     const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map)
2294     : compiler_driver_(compiler_driver),
2295       global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
2296       image_objects_offset_begin_(0),
2297       compile_pic_(compile_pic),
2298       compile_app_image_(compile_app_image),
2299       target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
2300       image_infos_(oat_filenames.size()),
2301       dirty_methods_(0u),
2302       clean_methods_(0u),
2303       image_storage_mode_(image_storage_mode),
2304       oat_filenames_(oat_filenames),
2305       dex_file_oat_index_map_(dex_file_oat_index_map) {
2306   CHECK_NE(image_begin, 0U);
2307   std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
2308   CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
2309       << "Compiling a boot image should occur iff there are no boot image spaces loaded";
2310 }
2311
2312 ImageWriter::ImageInfo::ImageInfo()
2313     : intern_table_(new InternTable),
2314       class_table_(new ClassTable) {}
2315
2316 }  // namespace art