OSDN Git Service

Prune class path classes from profile
[android-x86/art.git] / compiler / image_writer.cc
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #include "image_writer.h"
18
19 #include <sys/stat.h>
20 #include <lz4.h>
21 #include <lz4hc.h>
22
23 #include <memory>
24 #include <numeric>
25 #include <unordered_set>
26 #include <vector>
27
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/logging.h"
31 #include "base/unix_file/fd_file.h"
32 #include "class_linker-inl.h"
33 #include "compiled_method.h"
34 #include "dex_file-inl.h"
35 #include "driver/compiler_driver.h"
36 #include "elf_file.h"
37 #include "elf_utils.h"
38 #include "elf_writer.h"
39 #include "gc/accounting/card_table-inl.h"
40 #include "gc/accounting/heap_bitmap.h"
41 #include "gc/accounting/space_bitmap-inl.h"
42 #include "gc/heap.h"
43 #include "gc/space/large_object_space.h"
44 #include "gc/space/space-inl.h"
45 #include "globals.h"
46 #include "image.h"
47 #include "intern_table.h"
48 #include "linear_alloc.h"
49 #include "lock_word.h"
50 #include "mirror/abstract_method.h"
51 #include "mirror/array-inl.h"
52 #include "mirror/class-inl.h"
53 #include "mirror/class_loader.h"
54 #include "mirror/dex_cache-inl.h"
55 #include "mirror/method.h"
56 #include "mirror/object-inl.h"
57 #include "mirror/object_array-inl.h"
58 #include "mirror/string-inl.h"
59 #include "oat.h"
60 #include "oat_file.h"
61 #include "oat_file_manager.h"
62 #include "runtime.h"
63 #include "scoped_thread_state_change.h"
64 #include "handle_scope-inl.h"
65 #include "utils/dex_cache_arrays_layout-inl.h"
66
67 using ::art::mirror::Class;
68 using ::art::mirror::DexCache;
69 using ::art::mirror::Object;
70 using ::art::mirror::ObjectArray;
71 using ::art::mirror::String;
72
73 namespace art {
74
75 // Separate objects into multiple bins to optimize dirty memory use.
76 static constexpr bool kBinObjects = true;
77
78 // Return true if an object is already in an image space.
79 bool ImageWriter::IsInBootImage(const void* obj) const {
80   gc::Heap* const heap = Runtime::Current()->GetHeap();
81   if (!compile_app_image_) {
82     DCHECK(heap->GetBootImageSpaces().empty());
83     return false;
84   }
85   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
86     const uint8_t* image_begin = boot_image_space->Begin();
87     // Real image end including ArtMethods and ArtField sections.
88     const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
89     if (image_begin <= obj && obj < image_end) {
90       return true;
91     }
92   }
93   return false;
94 }
95
96 bool ImageWriter::IsInBootOatFile(const void* ptr) const {
97   gc::Heap* const heap = Runtime::Current()->GetHeap();
98   if (!compile_app_image_) {
99     DCHECK(heap->GetBootImageSpaces().empty());
100     return false;
101   }
102   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
103     const ImageHeader& image_header = boot_image_space->GetImageHeader();
104     if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
105       return true;
106     }
107   }
108   return false;
109 }
110
111 static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
112     SHARED_REQUIRES(Locks::mutator_lock_) {
113   Class* klass = obj->GetClass();
114   CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
115 }
116
117 static void CheckNoDexObjects() {
118   ScopedObjectAccess soa(Thread::Current());
119   Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
120 }
121
122 bool ImageWriter::PrepareImageAddressSpace() {
123   target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
124   gc::Heap* const heap = Runtime::Current()->GetHeap();
125   {
126     ScopedObjectAccess soa(Thread::Current());
127     PruneNonImageClasses();  // Remove junk
128     if (!compile_app_image_) {
129       // Avoid for app image since this may increase RAM and image size.
130       ComputeLazyFieldsForImageClasses();  // Add useful information
131     }
132   }
133   heap->CollectGarbage(false);  // Remove garbage.
134
135   // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
136   // dex files.
137   //
138   // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
139   // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
140   // true.
141   if (kIsDebugBuild) {
142     CheckNoDexObjects();
143   }
144
145   if (kIsDebugBuild) {
146     ScopedObjectAccess soa(Thread::Current());
147     CheckNonImageClassesRemoved();
148   }
149
150   {
151     ScopedObjectAccess soa(Thread::Current());
152     CalculateNewObjectOffsets();
153   }
154
155   // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
156   // bin size sums being calculated.
157   if (!AllocMemory()) {
158     return false;
159   }
160
161   return true;
162 }
163
164 bool ImageWriter::Write(int image_fd,
165                         const std::vector<const char*>& image_filenames,
166                         const std::vector<const char*>& oat_filenames) {
167   // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
168   // oat_filenames.
169   CHECK(!image_filenames.empty());
170   if (image_fd != kInvalidFd) {
171     CHECK_EQ(image_filenames.size(), 1u);
172   }
173   CHECK(!oat_filenames.empty());
174   CHECK_EQ(image_filenames.size(), oat_filenames.size());
175
176   {
177     ScopedObjectAccess soa(Thread::Current());
178     for (size_t i = 0; i < oat_filenames.size(); ++i) {
179       CreateHeader(i);
180       CopyAndFixupNativeData(i);
181     }
182   }
183
184   {
185     // TODO: heap validation can't handle these fix up passes.
186     ScopedObjectAccess soa(Thread::Current());
187     Runtime::Current()->GetHeap()->DisableObjectValidation();
188     CopyAndFixupObjects();
189   }
190
191   for (size_t i = 0; i < image_filenames.size(); ++i) {
192     const char* image_filename = image_filenames[i];
193     ImageInfo& image_info = GetImageInfo(i);
194     std::unique_ptr<File> image_file;
195     if (image_fd != kInvalidFd) {
196       if (strlen(image_filename) == 0u) {
197         image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
198         // Empty the file in case it already exists.
199         if (image_file != nullptr) {
200           TEMP_FAILURE_RETRY(image_file->SetLength(0));
201           TEMP_FAILURE_RETRY(image_file->Flush());
202         }
203       } else {
204         LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
205       }
206     } else {
207       image_file.reset(OS::CreateEmptyFile(image_filename));
208     }
209
210     if (image_file == nullptr) {
211       LOG(ERROR) << "Failed to open image file " << image_filename;
212       return false;
213     }
214
215     if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
216       PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
217       image_file->Erase();
218       return EXIT_FAILURE;
219     }
220
221     std::unique_ptr<char[]> compressed_data;
222     // Image data size excludes the bitmap and the header.
223     ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
224     const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
225     char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
226     size_t data_size;
227     const char* image_data_to_write;
228     const uint64_t compress_start_time = NanoTime();
229
230     CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
231     switch (image_storage_mode_) {
232       case ImageHeader::kStorageModeLZ4HC:  // Fall-through.
233       case ImageHeader::kStorageModeLZ4: {
234         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
235         compressed_data.reset(new char[compressed_max_size]);
236         data_size = LZ4_compress(
237             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
238             &compressed_data[0],
239             image_data_size);
240
241         break;
242       }
243       /*
244        * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
245       case ImageHeader::kStorageModeLZ4HC: {
246         // Bound is same as non HC.
247         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
248         compressed_data.reset(new char[compressed_max_size]);
249         data_size = LZ4_compressHC(
250             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
251             &compressed_data[0],
252             image_data_size);
253         break;
254       }
255       */
256       case ImageHeader::kStorageModeUncompressed: {
257         data_size = image_data_size;
258         image_data_to_write = image_data;
259         break;
260       }
261       default: {
262         LOG(FATAL) << "Unsupported";
263         UNREACHABLE();
264       }
265     }
266
267     if (compressed_data != nullptr) {
268       image_data_to_write = &compressed_data[0];
269       VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
270                      << PrettyDuration(NanoTime() - compress_start_time);
271       if (kIsDebugBuild) {
272         std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
273         const size_t decompressed_size = LZ4_decompress_safe(
274             reinterpret_cast<char*>(&compressed_data[0]),
275             reinterpret_cast<char*>(&temp[0]),
276             data_size,
277             image_data_size);
278         CHECK_EQ(decompressed_size, image_data_size);
279         CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
280       }
281     }
282
283     // Write out the image + fields + methods.
284     const bool is_compressed = compressed_data != nullptr;
285     if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
286       PLOG(ERROR) << "Failed to write image file data " << image_filename;
287       image_file->Erase();
288       return false;
289     }
290
291     // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
292     // convenience.
293     const ImageSection& bitmap_section = image_header->GetImageSection(
294         ImageHeader::kSectionImageBitmap);
295     // Align up since data size may be unaligned if the image is compressed.
296     size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
297     if (!is_compressed) {
298       CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
299     }
300     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
301                                  bitmap_section.Size(),
302                                  bitmap_position_in_file)) {
303       PLOG(ERROR) << "Failed to write image file " << image_filename;
304       image_file->Erase();
305       return false;
306     }
307
308     int err = image_file->Flush();
309     if (err < 0) {
310       PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
311       image_file->Erase();
312       return false;
313     }
314
315     // Write header last in case the compiler gets killed in the middle of image writing.
316     // We do not want to have a corrupted image with a valid header.
317     // The header is uncompressed since it contains whether the image is compressed or not.
318     image_header->data_size_ = data_size;
319     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
320                                  sizeof(ImageHeader),
321                                  0)) {
322       PLOG(ERROR) << "Failed to write image file header " << image_filename;
323       image_file->Erase();
324       return false;
325     }
326
327     CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
328              static_cast<size_t>(image_file->GetLength()));
329     if (image_file->FlushCloseOrErase() != 0) {
330       PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
331       return false;
332     }
333   }
334   return true;
335 }
336
337 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
338   DCHECK(object != nullptr);
339   DCHECK_NE(offset, 0U);
340
341   // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
342   object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
343   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
344   DCHECK(IsImageOffsetAssigned(object));
345 }
346
347 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
348   DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
349   obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
350   DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
351 }
352
353 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
354   DCHECK(object != nullptr);
355   DCHECK_NE(image_objects_offset_begin_, 0u);
356
357   size_t oat_index = GetOatIndex(object);
358   ImageInfo& image_info = GetImageInfo(oat_index);
359   size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
360   size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
361   DCHECK_ALIGNED(new_offset, kObjectAlignment);
362
363   SetImageOffset(object, new_offset);
364   DCHECK_LT(new_offset, image_info.image_end_);
365 }
366
367 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
368   // Will also return true if the bin slot was assigned since we are reusing the lock word.
369   DCHECK(object != nullptr);
370   return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
371 }
372
373 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
374   DCHECK(object != nullptr);
375   DCHECK(IsImageOffsetAssigned(object));
376   LockWord lock_word = object->GetLockWord(false);
377   size_t offset = lock_word.ForwardingAddress();
378   size_t oat_index = GetOatIndex(object);
379   const ImageInfo& image_info = GetImageInfo(oat_index);
380   DCHECK_LT(offset, image_info.image_end_);
381   return offset;
382 }
383
384 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
385   DCHECK(object != nullptr);
386   DCHECK(!IsImageOffsetAssigned(object));
387   DCHECK(!IsImageBinSlotAssigned(object));
388
389   // Before we stomp over the lock word, save the hash code for later.
390   Monitor::Deflate(Thread::Current(), object);;
391   LockWord lw(object->GetLockWord(false));
392   switch (lw.GetState()) {
393     case LockWord::kFatLocked: {
394       LOG(FATAL) << "Fat locked object " << object << " found during object copy";
395       break;
396     }
397     case LockWord::kThinLocked: {
398       LOG(FATAL) << "Thin locked object " << object << " found during object copy";
399       break;
400     }
401     case LockWord::kUnlocked:
402       // No hash, don't need to save it.
403       break;
404     case LockWord::kHashCode:
405       DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
406       saved_hashcode_map_.emplace(object, lw.GetHashCode());
407       break;
408     default:
409       LOG(FATAL) << "Unreachable.";
410       UNREACHABLE();
411   }
412   object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
413   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
414   DCHECK(IsImageBinSlotAssigned(object));
415 }
416
417 void ImageWriter::PrepareDexCacheArraySlots() {
418   // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
419   // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
420   // when AssignImageBinSlot() assigns their indexes out or order.
421   for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
422     auto it = dex_file_oat_index_map_.find(dex_file);
423     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
424     ImageInfo& image_info = GetImageInfo(it->second);
425     image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
426     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
427     image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
428   }
429
430   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
431   Thread* const self = Thread::Current();
432   ReaderMutexLock mu(self, *class_linker->DexLock());
433   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
434     mirror::DexCache* dex_cache =
435         down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
436     if (dex_cache == nullptr || IsInBootImage(dex_cache)) {
437       continue;
438     }
439     const DexFile* dex_file = dex_cache->GetDexFile();
440     CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
441         << "Dex cache should have been pruned " << dex_file->GetLocation()
442         << "; possibly in class path";
443     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
444     DCHECK(layout.Valid());
445     size_t oat_index = GetOatIndexForDexCache(dex_cache);
446     ImageInfo& image_info = GetImageInfo(oat_index);
447     uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
448     DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
449     AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
450                                start + layout.TypesOffset(),
451                                dex_cache);
452     DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
453     AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
454                                start + layout.MethodsOffset(),
455                                dex_cache);
456     DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
457     AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
458                                start + layout.FieldsOffset(),
459                                dex_cache);
460     DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
461     AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
462   }
463 }
464
465 void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) {
466   if (array != nullptr) {
467     DCHECK(!IsInBootImage(array));
468     size_t oat_index = GetOatIndexForDexCache(dex_cache);
469     native_object_relocations_.emplace(array,
470         NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
471   }
472 }
473
474 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
475   DCHECK(arr != nullptr);
476   if (kIsDebugBuild) {
477     for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
478       ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
479       if (method != nullptr && !method->IsRuntimeMethod()) {
480         mirror::Class* klass = method->GetDeclaringClass();
481         CHECK(klass == nullptr || KeepClass(klass))
482             << PrettyClass(klass) << " should be a kept class";
483       }
484     }
485   }
486   // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
487   // ArtMethods.
488   pointer_arrays_.emplace(arr, kBinArtMethodClean);
489 }
490
491 void ImageWriter::AssignImageBinSlot(mirror::Object* object) {
492   DCHECK(object != nullptr);
493   size_t object_size = object->SizeOf();
494
495   // The magic happens here. We segregate objects into different bins based
496   // on how likely they are to get dirty at runtime.
497   //
498   // Likely-to-dirty objects get packed together into the same bin so that
499   // at runtime their page dirtiness ratio (how many dirty objects a page has) is
500   // maximized.
501   //
502   // This means more pages will stay either clean or shared dirty (with zygote) and
503   // the app will use less of its own (private) memory.
504   Bin bin = kBinRegular;
505   size_t current_offset = 0u;
506
507   if (kBinObjects) {
508     //
509     // Changing the bin of an object is purely a memory-use tuning.
510     // It has no change on runtime correctness.
511     //
512     // Memory analysis has determined that the following types of objects get dirtied
513     // the most:
514     //
515     // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
516     //   a fixed layout which helps improve generated code (using PC-relative addressing),
517     //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
518     //   Since these arrays are huge, most pages do not overlap other objects and it's not
519     //   really important where they are for the clean/dirty separation. Due to their
520     //   special PC-relative addressing, we arbitrarily keep them at the end.
521     // * Class'es which are verified [their clinit runs only at runtime]
522     //   - classes in general [because their static fields get overwritten]
523     //   - initialized classes with all-final statics are unlikely to be ever dirty,
524     //     so bin them separately
525     // * Art Methods that are:
526     //   - native [their native entry point is not looked up until runtime]
527     //   - have declaring classes that aren't initialized
528     //            [their interpreter/quick entry points are trampolines until the class
529     //             becomes initialized]
530     //
531     // We also assume the following objects get dirtied either never or extremely rarely:
532     //  * Strings (they are immutable)
533     //  * Art methods that aren't native and have initialized declared classes
534     //
535     // We assume that "regular" bin objects are highly unlikely to become dirtied,
536     // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
537     //
538     if (object->IsClass()) {
539       bin = kBinClassVerified;
540       mirror::Class* klass = object->AsClass();
541
542       // Add non-embedded vtable to the pointer array table if there is one.
543       auto* vtable = klass->GetVTable();
544       if (vtable != nullptr) {
545         AddMethodPointerArray(vtable);
546       }
547       auto* iftable = klass->GetIfTable();
548       if (iftable != nullptr) {
549         for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
550           if (iftable->GetMethodArrayCount(i) > 0) {
551             AddMethodPointerArray(iftable->GetMethodArray(i));
552           }
553         }
554       }
555
556       if (klass->GetStatus() == Class::kStatusInitialized) {
557         bin = kBinClassInitialized;
558
559         // If the class's static fields are all final, put it into a separate bin
560         // since it's very likely it will stay clean.
561         uint32_t num_static_fields = klass->NumStaticFields();
562         if (num_static_fields == 0) {
563           bin = kBinClassInitializedFinalStatics;
564         } else {
565           // Maybe all the statics are final?
566           bool all_final = true;
567           for (uint32_t i = 0; i < num_static_fields; ++i) {
568             ArtField* field = klass->GetStaticField(i);
569             if (!field->IsFinal()) {
570               all_final = false;
571               break;
572             }
573           }
574
575           if (all_final) {
576             bin = kBinClassInitializedFinalStatics;
577           }
578         }
579       }
580     } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
581       bin = kBinString;  // Strings are almost always immutable (except for object header).
582     } else if (object->GetClass<kVerifyNone>() ==
583         Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
584       // Instance of java lang object, probably a lock object. This means it will be dirty when we
585       // synchronize on it.
586       bin = kBinMiscDirty;
587     } else if (object->IsDexCache()) {
588       // Dex file field becomes dirty when the image is loaded.
589       bin = kBinMiscDirty;
590     }
591     // else bin = kBinRegular
592   }
593
594   size_t oat_index = GetOatIndex(object);
595   ImageInfo& image_info = GetImageInfo(oat_index);
596
597   size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
598   current_offset = image_info.bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
599   // Move the current bin size up to accommodate the object we just assigned a bin slot.
600   image_info.bin_slot_sizes_[bin] += offset_delta;
601
602   BinSlot new_bin_slot(bin, current_offset);
603   SetImageBinSlot(object, new_bin_slot);
604
605   ++image_info.bin_slot_count_[bin];
606
607   // Grow the image closer to the end by the object we just assigned.
608   image_info.image_end_ += offset_delta;
609 }
610
611 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
612   if (m->IsNative()) {
613     return true;
614   }
615   mirror::Class* declaring_class = m->GetDeclaringClass();
616   // Initialized is highly unlikely to dirty since there's no entry points to mutate.
617   return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
618 }
619
620 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
621   DCHECK(object != nullptr);
622
623   // We always stash the bin slot into a lockword, in the 'forwarding address' state.
624   // If it's in some other state, then we haven't yet assigned an image bin slot.
625   if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
626     return false;
627   } else if (kIsDebugBuild) {
628     LockWord lock_word = object->GetLockWord(false);
629     size_t offset = lock_word.ForwardingAddress();
630     BinSlot bin_slot(offset);
631     size_t oat_index = GetOatIndex(object);
632     const ImageInfo& image_info = GetImageInfo(oat_index);
633     DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
634         << "bin slot offset should not exceed the size of that bin";
635   }
636   return true;
637 }
638
639 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
640   DCHECK(object != nullptr);
641   DCHECK(IsImageBinSlotAssigned(object));
642
643   LockWord lock_word = object->GetLockWord(false);
644   size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
645   DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
646
647   BinSlot bin_slot(static_cast<uint32_t>(offset));
648   size_t oat_index = GetOatIndex(object);
649   const ImageInfo& image_info = GetImageInfo(oat_index);
650   DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);
651
652   return bin_slot;
653 }
654
655 bool ImageWriter::AllocMemory() {
656   for (ImageInfo& image_info : image_infos_) {
657     ImageSection unused_sections[ImageHeader::kSectionCount];
658     const size_t length = RoundUp(
659         image_info.CreateImageSections(unused_sections), kPageSize);
660
661     std::string error_msg;
662     image_info.image_.reset(MemMap::MapAnonymous("image writer image",
663                                                  nullptr,
664                                                  length,
665                                                  PROT_READ | PROT_WRITE,
666                                                  false,
667                                                  false,
668                                                  &error_msg));
669     if (UNLIKELY(image_info.image_.get() == nullptr)) {
670       LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
671       return false;
672     }
673
674     // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
675     CHECK_LE(image_info.image_end_, length);
676     image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
677         "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
678     if (image_info.image_bitmap_.get() == nullptr) {
679       LOG(ERROR) << "Failed to allocate memory for image bitmap";
680       return false;
681     }
682   }
683   return true;
684 }
685
686 class ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
687  public:
688   bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
689     StackHandleScope<1> hs(Thread::Current());
690     mirror::Class::ComputeName(hs.NewHandle(c));
691     return true;
692   }
693 };
694
695 void ImageWriter::ComputeLazyFieldsForImageClasses() {
696   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
697   ComputeLazyFieldsForClassesVisitor visitor;
698   class_linker->VisitClassesWithoutClassesLock(&visitor);
699 }
700
701 static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) {
702   return klass->GetClassLoader() == nullptr;
703 }
704
705 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
706   return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
707 }
708
709 bool ImageWriter::PruneAppImageClass(mirror::Class* klass) {
710   bool early_exit = false;
711   std::unordered_set<mirror::Class*> visited;
712   return PruneAppImageClassInternal(klass, &early_exit, &visited);
713 }
714
715 bool ImageWriter::PruneAppImageClassInternal(
716     mirror::Class* klass,
717     bool* early_exit,
718     std::unordered_set<mirror::Class*>* visited) {
719   DCHECK(early_exit != nullptr);
720   DCHECK(visited != nullptr);
721   DCHECK(compile_app_image_);
722   if (klass == nullptr || IsInBootImage(klass)) {
723     return false;
724   }
725   auto found = prune_class_memo_.find(klass);
726   if (found != prune_class_memo_.end()) {
727     // Already computed, return the found value.
728     return found->second;
729   }
730   // Circular dependencies, return false but do not store the result in the memoization table.
731   if (visited->find(klass) != visited->end()) {
732     *early_exit = true;
733     return false;
734   }
735   visited->emplace(klass);
736   bool result = IsBootClassLoaderClass(klass);
737   std::string temp;
738   // Prune if not an image class, this handles any broken sets of image classes such as having a
739   // class in the set but not it's superclass.
740   result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
741   bool my_early_exit = false;  // Only for ourselves, ignore caller.
742   // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
743   // app image.
744   if (klass->GetStatus() == mirror::Class::kStatusError) {
745     result = true;
746   } else {
747     CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass);
748   }
749   if (!result) {
750     // Check interfaces since these wont be visited through VisitReferences.)
751     mirror::IfTable* if_table = klass->GetIfTable();
752     for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
753       result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
754                                                     &my_early_exit,
755                                                     visited);
756     }
757   }
758   if (klass->IsObjectArrayClass()) {
759     result = result || PruneAppImageClassInternal(klass->GetComponentType(),
760                                                   &my_early_exit,
761                                                   visited);
762   }
763   // Check static fields and their classes.
764   size_t num_static_fields = klass->NumReferenceStaticFields();
765   if (num_static_fields != 0 && klass->IsResolved()) {
766     // Presumably GC can happen when we are cross compiling, it should not cause performance
767     // problems to do pointer size logic.
768     MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
769         Runtime::Current()->GetClassLinker()->GetImagePointerSize());
770     for (size_t i = 0u; i < num_static_fields; ++i) {
771       mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
772       if (ref != nullptr) {
773         if (ref->IsClass()) {
774           result = result || PruneAppImageClassInternal(ref->AsClass(),
775                                                         &my_early_exit,
776                                                         visited);
777         } else {
778           result = result || PruneAppImageClassInternal(ref->GetClass(),
779                                                         &my_early_exit,
780                                                         visited);
781         }
782       }
783       field_offset = MemberOffset(field_offset.Uint32Value() +
784                                   sizeof(mirror::HeapReference<mirror::Object>));
785     }
786   }
787   result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
788                                                 &my_early_exit,
789                                                 visited);
790   // Erase the element we stored earlier since we are exiting the function.
791   auto it = visited->find(klass);
792   DCHECK(it != visited->end());
793   visited->erase(it);
794   // Only store result if it is true or none of the calls early exited due to circular
795   // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
796   // a child call and we can remember the result.
797   if (result == true || !my_early_exit || visited->empty()) {
798     prune_class_memo_[klass] = result;
799   }
800   *early_exit |= my_early_exit;
801   return result;
802 }
803
804 bool ImageWriter::KeepClass(Class* klass) {
805   if (klass == nullptr) {
806     return false;
807   }
808   if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
809     // Already in boot image, return true.
810     return true;
811   }
812   std::string temp;
813   if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
814     return false;
815   }
816   if (compile_app_image_) {
817     // For app images, we need to prune boot loader classes that are not in the boot image since
818     // these may have already been loaded when the app image is loaded.
819     // Keep classes in the boot image space since we don't want to re-resolve these.
820     return !PruneAppImageClass(klass);
821   }
822   return true;
823 }
824
825 class NonImageClassesVisitor : public ClassVisitor {
826  public:
827   explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
828
829   bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
830     if (!image_writer_->KeepClass(klass)) {
831       classes_to_prune_.insert(klass);
832     }
833     return true;
834   }
835
836   std::unordered_set<mirror::Class*> classes_to_prune_;
837   ImageWriter* const image_writer_;
838 };
839
840 void ImageWriter::PruneNonImageClasses() {
841   Runtime* runtime = Runtime::Current();
842   ClassLinker* class_linker = runtime->GetClassLinker();
843   Thread* self = Thread::Current();
844
845   // Make a list of classes we would like to prune.
846   NonImageClassesVisitor visitor(this);
847   class_linker->VisitClasses(&visitor);
848
849   // Remove the undesired classes from the class roots.
850   VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes";
851   for (mirror::Class* klass : visitor.classes_to_prune_) {
852     std::string temp;
853     const char* name = klass->GetDescriptor(&temp);
854     VLOG(compiler) << "Pruning class " << name;
855     if (!compile_app_image_) {
856       DCHECK(IsBootClassLoaderClass(klass));
857     }
858     bool result = class_linker->RemoveClass(name, klass->GetClassLoader());
859     DCHECK(result);
860   }
861
862   // Clear references to removed classes from the DexCaches.
863   ArtMethod* resolution_method = runtime->GetResolutionMethod();
864
865   ScopedAssertNoThreadSuspension sa(self, __FUNCTION__);
866   ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);  // For ClassInClassTable
867   ReaderMutexLock mu2(self, *class_linker->DexLock());
868   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
869     if (self->IsJWeakCleared(data.weak_root)) {
870       continue;
871     }
872     mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache();
873     for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
874       Class* klass = dex_cache->GetResolvedType(i);
875       if (klass != nullptr && !KeepClass(klass)) {
876         dex_cache->SetResolvedType(i, nullptr);
877       }
878     }
879     ArtMethod** resolved_methods = dex_cache->GetResolvedMethods();
880     for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) {
881       ArtMethod* method =
882           mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_);
883       DCHECK(method != nullptr) << "Expected resolution method instead of null method";
884       mirror::Class* declaring_class = method->GetDeclaringClass();
885       // Copied methods may be held live by a class which was not an image class but have a
886       // declaring class which is an image class. Set it to the resolution method to be safe and
887       // prevent dangling pointers.
888       if (method->IsCopied() || !KeepClass(declaring_class)) {
889         mirror::DexCache::SetElementPtrSize(resolved_methods,
890                                             i,
891                                             resolution_method,
892                                             target_ptr_size_);
893       } else {
894         // Check that the class is still in the classes table.
895         DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
896             << PrettyClass(declaring_class) << " not in class linker table";
897       }
898     }
899     ArtField** resolved_fields = dex_cache->GetResolvedFields();
900     for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
901       ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_);
902       if (field != nullptr && !KeepClass(field->GetDeclaringClass())) {
903         dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
904       }
905     }
906     // Clean the dex field. It might have been populated during the initialization phase, but
907     // contains data only valid during a real run.
908     dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
909   }
910
911   // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
912   class_linker->DropFindArrayClassCache();
913
914   // Clear to save RAM.
915   prune_class_memo_.clear();
916 }
917
918 void ImageWriter::CheckNonImageClassesRemoved() {
919   if (compiler_driver_.GetImageClasses() != nullptr) {
920     gc::Heap* heap = Runtime::Current()->GetHeap();
921     heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
922   }
923 }
924
925 void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
926   ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
927   if (obj->IsClass() && !image_writer->IsInBootImage(obj)) {
928     Class* klass = obj->AsClass();
929     if (!image_writer->KeepClass(klass)) {
930       image_writer->DumpImageClasses();
931       std::string temp;
932       CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp)
933                                             << " " << PrettyDescriptor(klass);
934     }
935   }
936 }
937
938 void ImageWriter::DumpImageClasses() {
939   auto image_classes = compiler_driver_.GetImageClasses();
940   CHECK(image_classes != nullptr);
941   for (const std::string& image_class : *image_classes) {
942     LOG(INFO) << " " << image_class;
943   }
944 }
945
946 mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
947   Thread* const self = Thread::Current();
948   for (const ImageInfo& image_info : image_infos_) {
949     mirror::String* const found = image_info.intern_table_->LookupStrong(self, string);
950     DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
951         << string->ToModifiedUtf8();
952     if (found != nullptr) {
953       return found;
954     }
955   }
956   if (compile_app_image_) {
957     Runtime* const runtime = Runtime::Current();
958     mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string);
959     // If we found it in the runtime intern table it could either be in the boot image or interned
960     // during app image compilation. If it was in the boot image return that, otherwise return null
961     // since it belongs to another image space.
962     if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) {
963       return found;
964     }
965     DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
966         << string->ToModifiedUtf8();
967   }
968   return nullptr;
969 }
970
971 void ImageWriter::CalculateObjectBinSlots(Object* obj) {
972   DCHECK(obj != nullptr);
973   // if it is a string, we want to intern it if its not interned.
974   if (obj->GetClass()->IsStringClass()) {
975     size_t oat_index = GetOatIndex(obj);
976     ImageInfo& image_info = GetImageInfo(oat_index);
977
978     // we must be an interned string that was forward referenced and already assigned
979     if (IsImageBinSlotAssigned(obj)) {
980       DCHECK_EQ(obj, FindInternedString(obj->AsString()));
981       return;
982     }
983     // Need to check if the string is already interned in another image info so that we don't have
984     // the intern tables of two different images contain the same string.
985     mirror::String* interned = FindInternedString(obj->AsString());
986     if (interned == nullptr) {
987       // Not in another image space, insert to our table.
988       interned = image_info.intern_table_->InternStrongImageString(obj->AsString());
989     }
990     if (obj != interned) {
991       if (!IsImageBinSlotAssigned(interned)) {
992         // interned obj is after us, allocate its location early
993         AssignImageBinSlot(interned);
994       }
995       // point those looking for this object to the interned version.
996       SetImageBinSlot(obj, GetImageBinSlot(interned));
997       return;
998     }
999     // else (obj == interned), nothing to do but fall through to the normal case
1000   }
1001
1002   AssignImageBinSlot(obj);
1003 }
1004
1005 ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
1006   Runtime* runtime = Runtime::Current();
1007   ClassLinker* class_linker = runtime->GetClassLinker();
1008   Thread* self = Thread::Current();
1009   StackHandleScope<3> hs(self);
1010   Handle<Class> object_array_class(hs.NewHandle(
1011       class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
1012
1013   std::unordered_set<const DexFile*> image_dex_files;
1014   for (auto& pair : dex_file_oat_index_map_) {
1015     const DexFile* image_dex_file = pair.first;
1016     size_t image_oat_index = pair.second;
1017     if (oat_index == image_oat_index) {
1018       image_dex_files.insert(image_dex_file);
1019     }
1020   }
1021
1022   // build an Object[] of all the DexCaches used in the source_space_.
1023   // Since we can't hold the dex lock when allocating the dex_caches
1024   // ObjectArray, we lock the dex lock twice, first to get the number
1025   // of dex caches first and then lock it again to copy the dex
1026   // caches. We check that the number of dex caches does not change.
1027   size_t dex_cache_count = 0;
1028   {
1029     ReaderMutexLock mu(self, *class_linker->DexLock());
1030     // Count number of dex caches not in the boot image.
1031     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1032       mirror::DexCache* dex_cache =
1033           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1034       if (dex_cache == nullptr) {
1035         continue;
1036       }
1037       const DexFile* dex_file = dex_cache->GetDexFile();
1038       if (!IsInBootImage(dex_cache)) {
1039         dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1040       }
1041     }
1042   }
1043   Handle<ObjectArray<Object>> dex_caches(
1044       hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
1045   CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
1046   {
1047     ReaderMutexLock mu(self, *class_linker->DexLock());
1048     size_t non_image_dex_caches = 0;
1049     // Re-count number of non image dex caches.
1050     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1051       mirror::DexCache* dex_cache =
1052           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1053       if (dex_cache == nullptr) {
1054         continue;
1055       }
1056       const DexFile* dex_file = dex_cache->GetDexFile();
1057       if (!IsInBootImage(dex_cache)) {
1058         non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1059       }
1060     }
1061     CHECK_EQ(dex_cache_count, non_image_dex_caches)
1062         << "The number of non-image dex caches changed.";
1063     size_t i = 0;
1064     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1065       mirror::DexCache* dex_cache =
1066           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1067       if (dex_cache == nullptr) {
1068         continue;
1069       }
1070       const DexFile* dex_file = dex_cache->GetDexFile();
1071       if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) {
1072         dex_caches->Set<false>(i, dex_cache);
1073         ++i;
1074       }
1075     }
1076   }
1077
1078   // build an Object[] of the roots needed to restore the runtime
1079   auto image_roots(hs.NewHandle(
1080       ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
1081   image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1082   image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1083   for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
1084     CHECK(image_roots->Get(i) != nullptr);
1085   }
1086   return image_roots.Get();
1087 }
1088
1089 // Walk instance fields of the given Class. Separate function to allow recursion on the super
1090 // class.
1091 void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
1092   // Visit fields of parent classes first.
1093   StackHandleScope<1> hs(Thread::Current());
1094   Handle<mirror::Class> h_class(hs.NewHandle(klass));
1095   mirror::Class* super = h_class->GetSuperClass();
1096   if (super != nullptr) {
1097     WalkInstanceFields(obj, super);
1098   }
1099   //
1100   size_t num_reference_fields = h_class->NumReferenceInstanceFields();
1101   MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset();
1102   for (size_t i = 0; i < num_reference_fields; ++i) {
1103     mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset);
1104     if (value != nullptr) {
1105       WalkFieldsInOrder(value);
1106     }
1107     field_offset = MemberOffset(field_offset.Uint32Value() +
1108                                 sizeof(mirror::HeapReference<mirror::Object>));
1109   }
1110 }
1111
1112 // For an unvisited object, visit it then all its children found via fields.
1113 void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
1114   if (IsInBootImage(obj)) {
1115     // Object is in the image, don't need to fix it up.
1116     return;
1117   }
1118   // Use our own visitor routine (instead of GC visitor) to get better locality between
1119   // an object and its fields
1120   if (!IsImageBinSlotAssigned(obj)) {
1121     // Walk instance fields of all objects
1122     StackHandleScope<2> hs(Thread::Current());
1123     Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1124     Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass()));
1125     // visit the object itself.
1126     CalculateObjectBinSlots(h_obj.Get());
1127     WalkInstanceFields(h_obj.Get(), klass.Get());
1128     // Walk static fields of a Class.
1129     if (h_obj->IsClass()) {
1130       size_t num_reference_static_fields = klass->NumReferenceStaticFields();
1131       MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_);
1132       for (size_t i = 0; i < num_reference_static_fields; ++i) {
1133         mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset);
1134         if (value != nullptr) {
1135           WalkFieldsInOrder(value);
1136         }
1137         field_offset = MemberOffset(field_offset.Uint32Value() +
1138                                     sizeof(mirror::HeapReference<mirror::Object>));
1139       }
1140       // Visit and assign offsets for fields and field arrays.
1141       auto* as_klass = h_obj->AsClass();
1142       mirror::DexCache* dex_cache = as_klass->GetDexCache();
1143       DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1144       if (compile_app_image_) {
1145         // Extra sanity, no boot loader classes should be left!
1146         CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass);
1147       }
1148       LengthPrefixedArray<ArtField>* fields[] = {
1149           as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
1150       };
1151       size_t oat_index = GetOatIndexForDexCache(dex_cache);
1152       ImageInfo& image_info = GetImageInfo(oat_index);
1153       {
1154         // Note: This table is only accessed from the image writer, so the lock is technically
1155         // unnecessary.
1156         WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1157         // Insert in the class table for this iamge.
1158         image_info.class_table_->Insert(as_klass);
1159       }
1160       for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1161         // Total array length including header.
1162         if (cur_fields != nullptr) {
1163           const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
1164           // Forward the entire array at once.
1165           auto it = native_object_relocations_.find(cur_fields);
1166           CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
1167                                                   << " already forwarded";
1168           size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
1169           DCHECK(!IsInBootImage(cur_fields));
1170           native_object_relocations_.emplace(
1171               cur_fields,
1172               NativeObjectRelocation {
1173                   oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
1174               });
1175           offset += header_size;
1176           // Forward individual fields so that we can quickly find where they belong.
1177           for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
1178             // Need to forward arrays separate of fields.
1179             ArtField* field = &cur_fields->At(i);
1180             auto it2 = native_object_relocations_.find(field);
1181             CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
1182                 << " already assigned " << PrettyField(field) << " static=" << field->IsStatic();
1183             DCHECK(!IsInBootImage(field));
1184             native_object_relocations_.emplace(
1185                 field,
1186                 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
1187             offset += sizeof(ArtField);
1188           }
1189         }
1190       }
1191       // Visit and assign offsets for methods.
1192       size_t num_methods = as_klass->NumMethods();
1193       if (num_methods != 0) {
1194         bool any_dirty = false;
1195         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1196           if (WillMethodBeDirty(&m)) {
1197             any_dirty = true;
1198             break;
1199           }
1200         }
1201         NativeObjectRelocationType type = any_dirty
1202             ? kNativeObjectRelocationTypeArtMethodDirty
1203             : kNativeObjectRelocationTypeArtMethodClean;
1204         Bin bin_type = BinTypeForNativeRelocationType(type);
1205         // Forward the entire array at once, but header first.
1206         const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1207         const size_t method_size = ArtMethod::Size(target_ptr_size_);
1208         const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1209                                                                                method_size,
1210                                                                                method_alignment);
1211         LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
1212         auto it = native_object_relocations_.find(array);
1213         CHECK(it == native_object_relocations_.end())
1214             << "Method array " << array << " already forwarded";
1215         size_t& offset = image_info.bin_slot_sizes_[bin_type];
1216         DCHECK(!IsInBootImage(array));
1217         native_object_relocations_.emplace(array,
1218             NativeObjectRelocation {
1219                 oat_index,
1220                 offset,
1221                 any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
1222                           : kNativeObjectRelocationTypeArtMethodArrayClean });
1223         offset += header_size;
1224         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1225           AssignMethodOffset(&m, type, oat_index);
1226         }
1227         (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1228       }
1229       // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1230       // live.
1231       if (as_klass->ShouldHaveEmbeddedImtAndVTable()) {
1232         for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
1233           ArtMethod* imt_method = as_klass->GetEmbeddedImTableEntry(i, target_ptr_size_);
1234           DCHECK(imt_method != nullptr);
1235           if (imt_method->IsRuntimeMethod() &&
1236               !IsInBootImage(imt_method) &&
1237               !NativeRelocationAssigned(imt_method)) {
1238             AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
1239           }
1240         }
1241       }
1242     } else if (h_obj->IsObjectArray()) {
1243       // Walk elements of an object array.
1244       int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength();
1245       for (int32_t i = 0; i < length; i++) {
1246         mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>();
1247         mirror::Object* value = obj_array->Get(i);
1248         if (value != nullptr) {
1249           WalkFieldsInOrder(value);
1250         }
1251       }
1252     } else if (h_obj->IsClassLoader()) {
1253       // Register the class loader if it has a class table.
1254       // The fake boot class loader should not get registered and we should end up with only one
1255       // class loader.
1256       mirror::ClassLoader* class_loader = h_obj->AsClassLoader();
1257       if (class_loader->GetClassTable() != nullptr) {
1258         class_loaders_.insert(class_loader);
1259       }
1260     }
1261   }
1262 }
1263
1264 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1265   return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1266 }
1267
1268 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1269   // No offset, or already assigned.
1270   if (table == nullptr || NativeRelocationAssigned(table)) {
1271     return;
1272   }
1273   CHECK(!IsInBootImage(table));
1274   // If the method is a conflict method we also want to assign the conflict table offset.
1275   ImageInfo& image_info = GetImageInfo(oat_index);
1276   const size_t size = table->ComputeSize(target_ptr_size_);
1277   native_object_relocations_.emplace(
1278       table,
1279       NativeObjectRelocation {
1280           oat_index,
1281           image_info.bin_slot_sizes_[kBinIMTConflictTable],
1282           kNativeObjectRelocationTypeIMTConflictTable});
1283   image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
1284 }
1285
1286 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1287                                      NativeObjectRelocationType type,
1288                                      size_t oat_index) {
1289   DCHECK(!IsInBootImage(method));
1290   CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1291       << PrettyMethod(method);
1292   if (method->IsRuntimeMethod()) {
1293     TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1294   }
1295   ImageInfo& image_info = GetImageInfo(oat_index);
1296   size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
1297   native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
1298   offset += ArtMethod::Size(target_ptr_size_);
1299 }
1300
1301 void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
1302   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1303   DCHECK(writer != nullptr);
1304   writer->WalkFieldsInOrder(obj);
1305 }
1306
1307 void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
1308   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1309   DCHECK(writer != nullptr);
1310   if (!writer->IsInBootImage(obj)) {
1311     writer->UnbinObjectsIntoOffset(obj);
1312   }
1313 }
1314
1315 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
1316   DCHECK(!IsInBootImage(obj));
1317   CHECK(obj != nullptr);
1318
1319   // We know the bin slot, and the total bin sizes for all objects by now,
1320   // so calculate the object's final image offset.
1321
1322   DCHECK(IsImageBinSlotAssigned(obj));
1323   BinSlot bin_slot = GetImageBinSlot(obj);
1324   // Change the lockword from a bin slot into an offset
1325   AssignImageOffset(obj, bin_slot);
1326 }
1327
1328 void ImageWriter::CalculateNewObjectOffsets() {
1329   Thread* const self = Thread::Current();
1330   StackHandleScopeCollection handles(self);
1331   std::vector<Handle<ObjectArray<Object>>> image_roots;
1332   for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
1333     image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
1334   }
1335
1336   auto* runtime = Runtime::Current();
1337   auto* heap = runtime->GetHeap();
1338
1339   // Leave space for the header, but do not write it yet, we need to
1340   // know where image_roots is going to end up
1341   image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
1342
1343   const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1344   // Write the image runtime methods.
1345   image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
1346   image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
1347   image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
1348   image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
1349   image_methods_[ImageHeader::kRefsOnlySaveMethod] =
1350       runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
1351   image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
1352       runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
1353   // Visit image methods first to have the main runtime methods in the first image.
1354   for (auto* m : image_methods_) {
1355     CHECK(m != nullptr);
1356     CHECK(m->IsRuntimeMethod());
1357     DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
1358     if (!IsInBootImage(m)) {
1359       AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
1360     }
1361   }
1362
1363   // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots.
1364   heap->VisitObjects(WalkFieldsCallback, this);
1365
1366   // Calculate size of the dex cache arrays slot and prepare offsets.
1367   PrepareDexCacheArraySlots();
1368
1369   // Calculate the sizes of the intern tables and class tables.
1370   for (ImageInfo& image_info : image_infos_) {
1371     // Calculate how big the intern table will be after being serialized.
1372     InternTable* const intern_table = image_info.intern_table_.get();
1373     CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
1374     image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
1375     // Calculate the size of the class table.
1376     ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1377     image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
1378   }
1379
1380   // Calculate bin slot offsets.
1381   for (ImageInfo& image_info : image_infos_) {
1382     size_t bin_offset = image_objects_offset_begin_;
1383     for (size_t i = 0; i != kBinSize; ++i) {
1384       switch (i) {
1385         case kBinArtMethodClean:
1386         case kBinArtMethodDirty: {
1387           bin_offset = RoundUp(bin_offset, method_alignment);
1388           break;
1389         }
1390         case kBinIMTConflictTable: {
1391           bin_offset = RoundUp(bin_offset, target_ptr_size_);
1392           break;
1393         }
1394         default: {
1395           // Normal alignment.
1396         }
1397       }
1398       image_info.bin_slot_offsets_[i] = bin_offset;
1399       bin_offset += image_info.bin_slot_sizes_[i];
1400     }
1401     // NOTE: There may be additional padding between the bin slots and the intern table.
1402     DCHECK_EQ(image_info.image_end_,
1403               GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
1404   }
1405
1406   // Calculate image offsets.
1407   size_t image_offset = 0;
1408   for (ImageInfo& image_info : image_infos_) {
1409     image_info.image_begin_ = global_image_begin_ + image_offset;
1410     image_info.image_offset_ = image_offset;
1411     ImageSection unused_sections[ImageHeader::kSectionCount];
1412     image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
1413     // There should be no gaps until the next image.
1414     image_offset += image_info.image_size_;
1415   }
1416
1417   // Transform each object's bin slot into an offset which will be used to do the final copy.
1418   heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
1419
1420   // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
1421
1422   size_t i = 0;
1423   for (ImageInfo& image_info : image_infos_) {
1424     image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
1425     i++;
1426   }
1427
1428   // Update the native relocations by adding their bin sums.
1429   for (auto& pair : native_object_relocations_) {
1430     NativeObjectRelocation& relocation = pair.second;
1431     Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
1432     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1433     relocation.offset += image_info.bin_slot_offsets_[bin_type];
1434   }
1435
1436   // Note that image_info.image_end_ is left at end of used mirror object section.
1437 }
1438
1439 size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
1440   DCHECK(out_sections != nullptr);
1441
1442   // Do not round up any sections here that are represented by the bins since it will break
1443   // offsets.
1444
1445   // Objects section
1446   ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
1447   *objects_section = ImageSection(0u, image_end_);
1448
1449   // Add field section.
1450   ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
1451   *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
1452   CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());
1453
1454   // Add method section.
1455   ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
1456   *methods_section = ImageSection(
1457       bin_slot_offsets_[kBinArtMethodClean],
1458       bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);
1459
1460   // Conflict tables section.
1461   ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
1462   *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
1463                                               bin_slot_sizes_[kBinIMTConflictTable]);
1464
1465   // Runtime methods section.
1466   ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
1467   *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
1468                                           bin_slot_sizes_[kBinRuntimeMethod]);
1469
1470   // Add dex cache arrays section.
1471   ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
1472   *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
1473                                            bin_slot_sizes_[kBinDexCacheArray]);
1474
1475   // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
1476   size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
1477   // Calculate the size of the interned strings.
1478   ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
1479   *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
1480   cur_pos = interned_strings_section->End();
1481   // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
1482   cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
1483   // Calculate the size of the class table section.
1484   ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
1485   *class_table_section = ImageSection(cur_pos, class_table_bytes_);
1486   cur_pos = class_table_section->End();
1487   // Image end goes right before the start of the image bitmap.
1488   return cur_pos;
1489 }
1490
1491 void ImageWriter::CreateHeader(size_t oat_index) {
1492   ImageInfo& image_info = GetImageInfo(oat_index);
1493   const uint8_t* oat_file_begin = image_info.oat_file_begin_;
1494   const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
1495   const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
1496
1497   // Create the image sections.
1498   ImageSection sections[ImageHeader::kSectionCount];
1499   const size_t image_end = image_info.CreateImageSections(sections);
1500
1501   // Finally bitmap section.
1502   const size_t bitmap_bytes = image_info.image_bitmap_->Size();
1503   auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
1504   *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
1505   if (VLOG_IS_ON(compiler)) {
1506     LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
1507     size_t idx = 0;
1508     for (const ImageSection& section : sections) {
1509       LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
1510       ++idx;
1511     }
1512     LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
1513     LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
1514     LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
1515               << " Image offset=" << image_info.image_offset_ << std::dec;
1516     LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
1517               << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
1518               << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
1519               << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
1520   }
1521   // Store boot image info for app image so that we can relocate.
1522   uint32_t boot_image_begin = 0;
1523   uint32_t boot_image_end = 0;
1524   uint32_t boot_oat_begin = 0;
1525   uint32_t boot_oat_end = 0;
1526   gc::Heap* const heap = Runtime::Current()->GetHeap();
1527   heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1528
1529   // Create the header, leave 0 for data size since we will fill this in as we are writing the
1530   // image.
1531   new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
1532                                                image_end,
1533                                                sections,
1534                                                image_info.image_roots_address_,
1535                                                image_info.oat_checksum_,
1536                                                PointerToLowMemUInt32(oat_file_begin),
1537                                                PointerToLowMemUInt32(image_info.oat_data_begin_),
1538                                                PointerToLowMemUInt32(oat_data_end),
1539                                                PointerToLowMemUInt32(oat_file_end),
1540                                                boot_image_begin,
1541                                                boot_image_end - boot_image_begin,
1542                                                boot_oat_begin,
1543                                                boot_oat_end - boot_oat_begin,
1544                                                target_ptr_size_,
1545                                                compile_pic_,
1546                                                /*is_pic*/compile_app_image_,
1547                                                image_storage_mode_,
1548                                                /*data_size*/0u);
1549 }
1550
1551 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
1552   auto it = native_object_relocations_.find(method);
1553   CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method;
1554   size_t oat_index = GetOatIndex(method->GetDexCache());
1555   ImageInfo& image_info = GetImageInfo(oat_index);
1556   CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
1557   return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
1558 }
1559
1560 class FixupRootVisitor : public RootVisitor {
1561  public:
1562   explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
1563   }
1564
1565   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1566       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1567     for (size_t i = 0; i < count; ++i) {
1568       *roots[i] = image_writer_->GetImageAddress(*roots[i]);
1569     }
1570   }
1571
1572   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1573                   const RootInfo& info ATTRIBUTE_UNUSED)
1574       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1575     for (size_t i = 0; i < count; ++i) {
1576       roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr()));
1577     }
1578   }
1579
1580  private:
1581   ImageWriter* const image_writer_;
1582 };
1583
1584 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
1585   const size_t count = orig->NumEntries(target_ptr_size_);
1586   for (size_t i = 0; i < count; ++i) {
1587     ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
1588     ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
1589     copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method));
1590     copy->SetImplementationMethod(i,
1591                                   target_ptr_size_,
1592                                   NativeLocationInImage(implementation_method));
1593   }
1594 }
1595
1596 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
1597   const ImageInfo& image_info = GetImageInfo(oat_index);
1598   // Copy ArtFields and methods to their locations and update the array for convenience.
1599   for (auto& pair : native_object_relocations_) {
1600     NativeObjectRelocation& relocation = pair.second;
1601     // Only work with fields and methods that are in the current oat file.
1602     if (relocation.oat_index != oat_index) {
1603       continue;
1604     }
1605     auto* dest = image_info.image_->Begin() + relocation.offset;
1606     DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
1607     DCHECK(!IsInBootImage(pair.first));
1608     switch (relocation.type) {
1609       case kNativeObjectRelocationTypeArtField: {
1610         memcpy(dest, pair.first, sizeof(ArtField));
1611         reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
1612             GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
1613         break;
1614       }
1615       case kNativeObjectRelocationTypeRuntimeMethod:
1616       case kNativeObjectRelocationTypeArtMethodClean:
1617       case kNativeObjectRelocationTypeArtMethodDirty: {
1618         CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
1619                            reinterpret_cast<ArtMethod*>(dest),
1620                            image_info);
1621         break;
1622       }
1623       // For arrays, copy just the header since the elements will get copied by their corresponding
1624       // relocations.
1625       case kNativeObjectRelocationTypeArtFieldArray: {
1626         memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
1627         break;
1628       }
1629       case kNativeObjectRelocationTypeArtMethodArrayClean:
1630       case kNativeObjectRelocationTypeArtMethodArrayDirty: {
1631         size_t size = ArtMethod::Size(target_ptr_size_);
1632         size_t alignment = ArtMethod::Alignment(target_ptr_size_);
1633         memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
1634         // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
1635         reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
1636         break;
1637       }
1638       case kNativeObjectRelocationTypeDexCacheArray:
1639         // Nothing to copy here, everything is done in FixupDexCache().
1640         break;
1641       case kNativeObjectRelocationTypeIMTConflictTable: {
1642         auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
1643         CopyAndFixupImtConflictTable(
1644             orig_table,
1645             new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
1646         break;
1647       }
1648     }
1649   }
1650   // Fixup the image method roots.
1651   auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
1652   for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
1653     ArtMethod* method = image_methods_[i];
1654     CHECK(method != nullptr);
1655     if (!IsInBootImage(method)) {
1656       method = NativeLocationInImage(method);
1657     }
1658     image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
1659   }
1660   FixupRootVisitor root_visitor(this);
1661
1662   // Write the intern table into the image.
1663   if (image_info.intern_table_bytes_ > 0) {
1664     const ImageSection& intern_table_section = image_header->GetImageSection(
1665         ImageHeader::kSectionInternedStrings);
1666     InternTable* const intern_table = image_info.intern_table_.get();
1667     uint8_t* const intern_table_memory_ptr =
1668         image_info.image_->Begin() + intern_table_section.Offset();
1669     const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
1670     CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
1671     // Fixup the pointers in the newly written intern table to contain image addresses.
1672     InternTable temp_intern_table;
1673     // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
1674     // the VisitRoots() will update the memory directly rather than the copies.
1675     // This also relies on visit roots not doing any verification which could fail after we update
1676     // the roots to be the image addresses.
1677     temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
1678     CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
1679     temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
1680   }
1681   // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
1682   // class loaders. Writing multiple class tables into the image is currently unsupported.
1683   if (image_info.class_table_bytes_ > 0u) {
1684     const ImageSection& class_table_section = image_header->GetImageSection(
1685         ImageHeader::kSectionClassTable);
1686     uint8_t* const class_table_memory_ptr =
1687         image_info.image_->Begin() + class_table_section.Offset();
1688     ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1689
1690     ClassTable* table = image_info.class_table_.get();
1691     CHECK(table != nullptr);
1692     const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
1693     CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
1694     // Fixup the pointers in the newly written class table to contain image addresses. See
1695     // above comment for intern tables.
1696     ClassTable temp_class_table;
1697     temp_class_table.ReadFromMemory(class_table_memory_ptr);
1698     CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() +
1699              table->NumZygoteClasses());
1700     BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor,
1701                                                                     RootInfo(kRootUnknown));
1702     temp_class_table.VisitRoots(buffered_visitor);
1703   }
1704 }
1705
1706 void ImageWriter::CopyAndFixupObjects() {
1707   gc::Heap* heap = Runtime::Current()->GetHeap();
1708   heap->VisitObjects(CopyAndFixupObjectsCallback, this);
1709   // Fix up the object previously had hash codes.
1710   for (const auto& hash_pair : saved_hashcode_map_) {
1711     Object* obj = hash_pair.first;
1712     DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
1713     obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
1714   }
1715   saved_hashcode_map_.clear();
1716 }
1717
1718 void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
1719   DCHECK(obj != nullptr);
1720   DCHECK(arg != nullptr);
1721   reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
1722 }
1723
1724 void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
1725                                     mirror::Class* klass, Bin array_type) {
1726   CHECK(klass->IsArrayClass());
1727   CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
1728   // Fixup int and long pointers for the ArtMethod or ArtField arrays.
1729   const size_t num_elements = arr->GetLength();
1730   dst->SetClass(GetImageAddress(arr->GetClass()));
1731   auto* dest_array = down_cast<mirror::PointerArray*>(dst);
1732   for (size_t i = 0, count = num_elements; i < count; ++i) {
1733     void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
1734     if (elem != nullptr && !IsInBootImage(elem)) {
1735       auto it = native_object_relocations_.find(elem);
1736       if (UNLIKELY(it == native_object_relocations_.end())) {
1737         if (it->second.IsArtMethodRelocation()) {
1738           auto* method = reinterpret_cast<ArtMethod*>(elem);
1739           LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
1740               << method << " idx=" << i << "/" << num_elements << " with declaring class "
1741               << PrettyClass(method->GetDeclaringClass());
1742         } else {
1743           CHECK_EQ(array_type, kBinArtField);
1744           auto* field = reinterpret_cast<ArtField*>(elem);
1745           LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
1746               << field << " idx=" << i << "/" << num_elements << " with declaring class "
1747               << PrettyClass(field->GetDeclaringClass());
1748         }
1749         UNREACHABLE();
1750       } else {
1751         ImageInfo& image_info = GetImageInfo(it->second.oat_index);
1752         elem = image_info.image_begin_ + it->second.offset;
1753       }
1754     }
1755     dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
1756   }
1757 }
1758
1759 void ImageWriter::CopyAndFixupObject(Object* obj) {
1760   if (IsInBootImage(obj)) {
1761     return;
1762   }
1763   size_t offset = GetImageOffset(obj);
1764   size_t oat_index = GetOatIndex(obj);
1765   ImageInfo& image_info = GetImageInfo(oat_index);
1766   auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
1767   DCHECK_LT(offset, image_info.image_end_);
1768   const auto* src = reinterpret_cast<const uint8_t*>(obj);
1769
1770   image_info.image_bitmap_->Set(dst);  // Mark the obj as live.
1771
1772   const size_t n = obj->SizeOf();
1773   DCHECK_LE(offset + n, image_info.image_->Size());
1774   memcpy(dst, src, n);
1775
1776   // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
1777   // word.
1778   const auto it = saved_hashcode_map_.find(obj);
1779   dst->SetLockWord(it != saved_hashcode_map_.end() ?
1780       LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
1781   FixupObject(obj, dst);
1782 }
1783
1784 // Rewrite all the references in the copied object to point to their image address equivalent
1785 class FixupVisitor {
1786  public:
1787   FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
1788   }
1789
1790   // Ignore class roots since we don't have a way to map them to the destination. These are handled
1791   // with other logic.
1792   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1793       const {}
1794   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1795
1796
1797   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1798       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1799     Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
1800     // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1801     // image.
1802     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1803         offset,
1804         image_writer_->GetImageAddress(ref));
1805   }
1806
1807   // java.lang.ref.Reference visitor.
1808   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
1809       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1810     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1811         mirror::Reference::ReferentOffset(),
1812         image_writer_->GetImageAddress(ref->GetReferent()));
1813   }
1814
1815  protected:
1816   ImageWriter* const image_writer_;
1817   mirror::Object* const copy_;
1818 };
1819
1820 class FixupClassVisitor FINAL : public FixupVisitor {
1821  public:
1822   FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
1823   }
1824
1825   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1826       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1827     DCHECK(obj->IsClass());
1828     FixupVisitor::operator()(obj, offset, /*is_static*/false);
1829   }
1830
1831   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
1832                   mirror::Reference* ref ATTRIBUTE_UNUSED) const
1833       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1834     LOG(FATAL) << "Reference not expected here.";
1835   }
1836 };
1837
1838 uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
1839   DCHECK(obj != nullptr);
1840   DCHECK(!IsInBootImage(obj));
1841   auto it = native_object_relocations_.find(obj);
1842   CHECK(it != native_object_relocations_.end()) << obj << " spaces "
1843       << Runtime::Current()->GetHeap()->DumpSpaces();
1844   const NativeObjectRelocation& relocation = it->second;
1845   return relocation.offset;
1846 }
1847
1848 template <typename T>
1849 T* ImageWriter::NativeLocationInImage(T* obj) {
1850   if (obj == nullptr || IsInBootImage(obj)) {
1851     return obj;
1852   } else {
1853     auto it = native_object_relocations_.find(obj);
1854     CHECK(it != native_object_relocations_.end()) << obj << " spaces "
1855         << Runtime::Current()->GetHeap()->DumpSpaces();
1856     const NativeObjectRelocation& relocation = it->second;
1857     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1858     return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
1859   }
1860 }
1861
1862 template <typename T>
1863 T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
1864   if (obj == nullptr || IsInBootImage(obj)) {
1865     return obj;
1866   } else {
1867     size_t oat_index = GetOatIndexForDexCache(dex_cache);
1868     ImageInfo& image_info = GetImageInfo(oat_index);
1869     return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
1870   }
1871 }
1872
1873 class NativeLocationVisitor {
1874  public:
1875   explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
1876
1877   template <typename T>
1878   T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
1879     return image_writer_->NativeLocationInImage(ptr);
1880   }
1881
1882  private:
1883   ImageWriter* const image_writer_;
1884 };
1885
1886 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
1887   orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
1888   FixupClassVisitor visitor(this, copy);
1889   static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor);
1890
1891   // Remove the clinitThreadId. This is required for image determinism.
1892   copy->SetClinitThreadId(static_cast<pid_t>(0));
1893 }
1894
1895 void ImageWriter::FixupObject(Object* orig, Object* copy) {
1896   DCHECK(orig != nullptr);
1897   DCHECK(copy != nullptr);
1898   if (kUseBakerOrBrooksReadBarrier) {
1899     orig->AssertReadBarrierPointer();
1900     if (kUseBrooksReadBarrier) {
1901       // Note the address 'copy' isn't the same as the image address of 'orig'.
1902       copy->SetReadBarrierPointer(GetImageAddress(orig));
1903       DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
1904     }
1905   }
1906   auto* klass = orig->GetClass();
1907   if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
1908     // Is this a native pointer array?
1909     auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
1910     if (it != pointer_arrays_.end()) {
1911       // Should only need to fixup every pointer array exactly once.
1912       FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
1913       pointer_arrays_.erase(it);
1914       return;
1915     }
1916   }
1917   if (orig->IsClass()) {
1918     FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
1919   } else {
1920     if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
1921       // Need to go update the ArtMethod.
1922       auto* dest = down_cast<mirror::AbstractMethod*>(copy);
1923       auto* src = down_cast<mirror::AbstractMethod*>(orig);
1924       ArtMethod* src_method = src->GetArtMethod();
1925       auto it = native_object_relocations_.find(src_method);
1926       CHECK(it != native_object_relocations_.end())
1927           << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method);
1928       dest->SetArtMethod(
1929           reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset));
1930     } else if (!klass->IsArrayClass()) {
1931       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1932       if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
1933         FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
1934       } else if (klass->IsClassLoaderClass()) {
1935         mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
1936         // If src is a ClassLoader, set the class table to null so that it gets recreated by the
1937         // ClassLoader.
1938         copy_loader->SetClassTable(nullptr);
1939         // Also set allocator to null to be safe. The allocator is created when we create the class
1940         // table. We also never expect to unload things in the image since they are held live as
1941         // roots.
1942         copy_loader->SetAllocator(nullptr);
1943       }
1944     }
1945     FixupVisitor visitor(this, copy);
1946     orig->VisitReferences(visitor, visitor);
1947   }
1948 }
1949
1950
1951 class ImageAddressVisitor {
1952  public:
1953   explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
1954
1955   template <typename T>
1956   T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
1957     return image_writer_->GetImageAddress(ptr);
1958   }
1959
1960  private:
1961   ImageWriter* const image_writer_;
1962 };
1963
1964
1965 void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
1966                                 mirror::DexCache* copy_dex_cache) {
1967   // Though the DexCache array fields are usually treated as native pointers, we set the full
1968   // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
1969   // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
1970   //     static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
1971   GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings();
1972   if (orig_strings != nullptr) {
1973     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
1974                                                NativeLocationInImage(orig_strings),
1975                                                /*pointer size*/8u);
1976     orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache),
1977                                  ImageAddressVisitor(this));
1978   }
1979   GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes();
1980   if (orig_types != nullptr) {
1981     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
1982                                                NativeLocationInImage(orig_types),
1983                                                /*pointer size*/8u);
1984     orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
1985                                        ImageAddressVisitor(this));
1986   }
1987   ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods();
1988   if (orig_methods != nullptr) {
1989     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
1990                                                NativeLocationInImage(orig_methods),
1991                                                /*pointer size*/8u);
1992     ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
1993     for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
1994       ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_);
1995       // NativeLocationInImage also handles runtime methods since these have relocation info.
1996       ArtMethod* copy = NativeLocationInImage(orig);
1997       mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_);
1998     }
1999   }
2000   ArtField** orig_fields = orig_dex_cache->GetResolvedFields();
2001   if (orig_fields != nullptr) {
2002     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
2003                                                NativeLocationInImage(orig_fields),
2004                                                /*pointer size*/8u);
2005     ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
2006     for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
2007       ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_);
2008       ArtField* copy = NativeLocationInImage(orig);
2009       mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_);
2010     }
2011   }
2012
2013   // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
2014   // compiler pointers in here will make the output non-deterministic.
2015   copy_dex_cache->SetDexFile(nullptr);
2016 }
2017
2018 const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
2019   DCHECK_LT(type, kOatAddressCount);
2020   // If we are compiling an app image, we need to use the stubs of the boot image.
2021   if (compile_app_image_) {
2022     // Use the current image pointers.
2023     const std::vector<gc::space::ImageSpace*>& image_spaces =
2024         Runtime::Current()->GetHeap()->GetBootImageSpaces();
2025     DCHECK(!image_spaces.empty());
2026     const OatFile* oat_file = image_spaces[0]->GetOatFile();
2027     CHECK(oat_file != nullptr);
2028     const OatHeader& header = oat_file->GetOatHeader();
2029     switch (type) {
2030       // TODO: We could maybe clean this up if we stored them in an array in the oat header.
2031       case kOatAddressQuickGenericJNITrampoline:
2032         return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
2033       case kOatAddressInterpreterToInterpreterBridge:
2034         return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
2035       case kOatAddressInterpreterToCompiledCodeBridge:
2036         return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
2037       case kOatAddressJNIDlsymLookup:
2038         return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
2039       case kOatAddressQuickIMTConflictTrampoline:
2040         return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
2041       case kOatAddressQuickResolutionTrampoline:
2042         return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
2043       case kOatAddressQuickToInterpreterBridge:
2044         return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
2045       default:
2046         UNREACHABLE();
2047     }
2048   }
2049   const ImageInfo& primary_image_info = GetImageInfo(0);
2050   return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
2051 }
2052
2053 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
2054                                          const ImageInfo& image_info,
2055                                          bool* quick_is_interpreted) {
2056   DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method);
2057   DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method);
2058   DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method);
2059   DCHECK(method->IsInvokable()) << PrettyMethod(method);
2060   DCHECK(!IsInBootImage(method)) << PrettyMethod(method);
2061
2062   // Use original code if it exists. Otherwise, set the code pointer to the resolution
2063   // trampoline.
2064
2065   // Quick entrypoint:
2066   const void* quick_oat_entry_point =
2067       method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
2068   const uint8_t* quick_code;
2069
2070   if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
2071     DCHECK(method->IsCopied());
2072     // If the code is not in the oat file corresponding to this image (e.g. default methods)
2073     quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
2074   } else {
2075     uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
2076     quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
2077   }
2078
2079   *quick_is_interpreted = false;
2080   if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
2081       method->GetDeclaringClass()->IsInitialized())) {
2082     // We have code for a non-static or initialized method, just use the code.
2083   } else if (quick_code == nullptr && method->IsNative() &&
2084       (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
2085     // Non-static or initialized native method missing compiled code, use generic JNI version.
2086     quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
2087   } else if (quick_code == nullptr && !method->IsNative()) {
2088     // We don't have code at all for a non-native method, use the interpreter.
2089     quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
2090     *quick_is_interpreted = true;
2091   } else {
2092     CHECK(!method->GetDeclaringClass()->IsInitialized());
2093     // We have code for a static method, but need to go through the resolution stub for class
2094     // initialization.
2095     quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
2096   }
2097   if (!IsInBootOatFile(quick_code)) {
2098     // DCHECK_GE(quick_code, oat_data_begin_);
2099   }
2100   return quick_code;
2101 }
2102
2103 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
2104                                      ArtMethod* copy,
2105                                      const ImageInfo& image_info) {
2106   memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
2107
2108   copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
2109   ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_);
2110   copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
2111   GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_);
2112   copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_);
2113
2114   // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
2115   // oat_begin_
2116
2117   // The resolution method has a special trampoline to call.
2118   Runtime* runtime = Runtime::Current();
2119   if (orig->IsRuntimeMethod()) {
2120     ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
2121     if (orig_table != nullptr) {
2122       // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
2123       copy->SetEntryPointFromQuickCompiledCodePtrSize(
2124           GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
2125       copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
2126     } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
2127       copy->SetEntryPointFromQuickCompiledCodePtrSize(
2128           GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
2129     } else {
2130       bool found_one = false;
2131       for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
2132         auto idx = static_cast<Runtime::CalleeSaveType>(i);
2133         if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
2134           found_one = true;
2135           break;
2136         }
2137       }
2138       CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
2139       CHECK(copy->IsRuntimeMethod());
2140     }
2141   } else {
2142     // We assume all methods have code. If they don't currently then we set them to the use the
2143     // resolution trampoline. Abstract methods never have code and so we need to make sure their
2144     // use results in an AbstractMethodError. We use the interpreter to achieve this.
2145     if (UNLIKELY(!orig->IsInvokable())) {
2146       copy->SetEntryPointFromQuickCompiledCodePtrSize(
2147           GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
2148     } else {
2149       bool quick_is_interpreted;
2150       const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
2151       copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
2152
2153       // JNI entrypoint:
2154       if (orig->IsNative()) {
2155         // The native method's pointer is set to a stub to lookup via dlsym.
2156         // Note this is not the code_ pointer, that is handled above.
2157         copy->SetEntryPointFromJniPtrSize(
2158             GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
2159       }
2160     }
2161   }
2162 }
2163
2164 size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
2165   DCHECK_LE(up_to, kBinSize);
2166   return std::accumulate(&image_info.bin_slot_sizes_[0],
2167                          &image_info.bin_slot_sizes_[up_to],
2168                          /*init*/0);
2169 }
2170
2171 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
2172   // These values may need to get updated if more bins are added to the enum Bin
2173   static_assert(kBinBits == 3, "wrong number of bin bits");
2174   static_assert(kBinShift == 27, "wrong number of shift");
2175   static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
2176
2177   DCHECK_LT(GetBin(), kBinSize);
2178   DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
2179 }
2180
2181 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
2182     : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
2183   DCHECK_EQ(index, GetIndex());
2184 }
2185
2186 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
2187   return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
2188 }
2189
2190 uint32_t ImageWriter::BinSlot::GetIndex() const {
2191   return lockword_ & ~kBinMask;
2192 }
2193
2194 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
2195   switch (type) {
2196     case kNativeObjectRelocationTypeArtField:
2197     case kNativeObjectRelocationTypeArtFieldArray:
2198       return kBinArtField;
2199     case kNativeObjectRelocationTypeArtMethodClean:
2200     case kNativeObjectRelocationTypeArtMethodArrayClean:
2201       return kBinArtMethodClean;
2202     case kNativeObjectRelocationTypeArtMethodDirty:
2203     case kNativeObjectRelocationTypeArtMethodArrayDirty:
2204       return kBinArtMethodDirty;
2205     case kNativeObjectRelocationTypeDexCacheArray:
2206       return kBinDexCacheArray;
2207     case kNativeObjectRelocationTypeRuntimeMethod:
2208       return kBinRuntimeMethod;
2209     case kNativeObjectRelocationTypeIMTConflictTable:
2210       return kBinIMTConflictTable;
2211   }
2212   UNREACHABLE();
2213 }
2214
2215 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
2216   if (compile_app_image_) {
2217     return GetDefaultOatIndex();
2218   } else {
2219     mirror::DexCache* dex_cache =
2220         obj->IsDexCache() ? obj->AsDexCache()
2221                           : obj->IsClass() ? obj->AsClass()->GetDexCache()
2222                                            : obj->GetClass()->GetDexCache();
2223     return GetOatIndexForDexCache(dex_cache);
2224   }
2225 }
2226
2227 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
2228   if (compile_app_image_) {
2229     return GetDefaultOatIndex();
2230   } else {
2231     auto it = dex_file_oat_index_map_.find(dex_file);
2232     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2233     return it->second;
2234   }
2235 }
2236
2237 size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const {
2238   if (dex_cache == nullptr) {
2239     return GetDefaultOatIndex();
2240   } else {
2241     return GetOatIndexForDexFile(dex_cache->GetDexFile());
2242   }
2243 }
2244
2245 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
2246                                       size_t oat_loaded_size,
2247                                       size_t oat_data_offset,
2248                                       size_t oat_data_size) {
2249   const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
2250   for (const ImageInfo& info : image_infos_) {
2251     DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
2252   }
2253   DCHECK(images_end != nullptr);  // Image space must be ready.
2254
2255   ImageInfo& cur_image_info = GetImageInfo(oat_index);
2256   cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
2257   cur_image_info.oat_loaded_size_ = oat_loaded_size;
2258   cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
2259   cur_image_info.oat_size_ = oat_data_size;
2260
2261   if (compile_app_image_) {
2262     CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
2263     return;
2264   }
2265
2266   // Update the oat_offset of the next image info.
2267   if (oat_index + 1u != oat_filenames_.size()) {
2268     // There is a following one.
2269     ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
2270     next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
2271   }
2272 }
2273
2274 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
2275   ImageInfo& cur_image_info = GetImageInfo(oat_index);
2276   cur_image_info.oat_checksum_ = oat_header.GetChecksum();
2277
2278   if (oat_index == GetDefaultOatIndex()) {
2279     // Primary oat file, read the trampolines.
2280     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
2281         oat_header.GetInterpreterToInterpreterBridgeOffset();
2282     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
2283         oat_header.GetInterpreterToCompiledCodeBridgeOffset();
2284     cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
2285         oat_header.GetJniDlsymLookupOffset();
2286     cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
2287         oat_header.GetQuickGenericJniTrampolineOffset();
2288     cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
2289         oat_header.GetQuickImtConflictTrampolineOffset();
2290     cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
2291         oat_header.GetQuickResolutionTrampolineOffset();
2292     cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
2293         oat_header.GetQuickToInterpreterBridgeOffset();
2294   }
2295 }
2296
2297 ImageWriter::ImageWriter(
2298     const CompilerDriver& compiler_driver,
2299     uintptr_t image_begin,
2300     bool compile_pic,
2301     bool compile_app_image,
2302     ImageHeader::StorageMode image_storage_mode,
2303     const std::vector<const char*>& oat_filenames,
2304     const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map)
2305     : compiler_driver_(compiler_driver),
2306       global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
2307       image_objects_offset_begin_(0),
2308       compile_pic_(compile_pic),
2309       compile_app_image_(compile_app_image),
2310       target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
2311       image_infos_(oat_filenames.size()),
2312       dirty_methods_(0u),
2313       clean_methods_(0u),
2314       image_storage_mode_(image_storage_mode),
2315       oat_filenames_(oat_filenames),
2316       dex_file_oat_index_map_(dex_file_oat_index_map) {
2317   CHECK_NE(image_begin, 0U);
2318   std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
2319   CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
2320       << "Compiling a boot image should occur iff there are no boot image spaces loaded";
2321 }
2322
2323 ImageWriter::ImageInfo::ImageInfo()
2324     : intern_table_(new InternTable),
2325       class_table_(new ClassTable) {}
2326
2327 }  // namespace art